19 research outputs found

    Computation offloading in mobile edge computing: an optimal stopping theory approach

    Get PDF
    In recent years, new mobile devices and applications with different functionalities and uses, such as drones, Autonomous Vehicles (AV) and highly advanced smartphones have emerged. Such devices are now able to launch applications such as augmented and virtual reality, intensive contextual data processing, intelligent vehicle control, traffic management, data mining and interactive applications. Although these mobile nodes have the computing and communication capabilities to run such applications, they remain unable to efficiently handle them mainly due to the significant processing required over relatively short timescales. Additionally, they consume a considerable amount of battery power. Such limitations have motivated the idea of computation offloading where computing tasks are sent to the Cloud instead of executing it locally at the mobile node. The technical concept of this idea is referred to as Mobile Cloud Computing (MCC). However, using the Cloud for computational task offloading of mobile applications introduces a significant latency and adds additional load to the radio and backhaul of the mobile networks. To cope with these challenges, the Cloud’s resources are being deployed near to the users at the Edge of the network in places such as mobile networks at the Base Station (BS), or indoor locations such as Wi-Fi and 3G/4G access points. This architecture is referred to as Mobile Edge Computing or Multi-access Edge Computing (MEC). Computation offloading in such a setting faces the challenge of deciding which time and server to offload computational tasks to. This dissertation aims at designing time-optimised task offloading decision-making algorithms in MEC environments. This will be done to find the optimal time for task offloading. The random variables that can influence the expected processing time at the MEC server are investigated using various probability distributions and representations. In the context being assessed, while the mobile node is sequentially roaming (connecting) through a set of MEC servers, it has to locally and autonomously decide which server should be used for offloading in order to perform the computing task. To deal with this sequential problem, the considered offloading decision-making is modelled as an optimal stopping time problem adopting the principles of Optimal Stopping Theory (OST). Three assessment approaches including simulation approach, real data sets and an actual implementation in real devices, are used to evaluate the performance of the models. The results indicate that OST-based offloading strategies can play an important role in optimising the task offloading decision. In particular, in the simulation approach, the average processing time achieved by the proposed models are higher than the Optimal by only 10%. In the real data set, the models are still near optimal with only 25% difference compared to the Optimal while in the real implementation, the models, most of the time, select the Optimal node for processing the task. Furthermore, the presented algorithms are lightweight, local and can hence be implemented on mobile nodes (for instance, vehicles or smart phones)

    Energy aware and privacy preserving protocols for ad hoc networks with applications to disaster management

    Get PDF
    Disasters can have a serious impact on the functioning of communities and societies. Disaster management aims at providing efficient utilization of resources during pre-disaster (e.g. preparedness and prevention) and post-disaster (e.g. recovery and relief) scenarios to reduce the impact of disasters. Wireless sensors have been extensively used for early detection and prevention of disasters. However, the sensor\u27s operating environment may not always be congenial to these applications. Attackers can observe the traffic flow in the network to determine the location of the sensors and exploit it. For example, in intrusion detection systems, the information can be used to identify coverage gaps and avoid detection. Data source location privacy preservation protocols were designed in this work to address this problem. Using wireless sensors for disaster preparedness, recovery and relief operations can have high deployment costs. Making use of wireless devices (e.g. smartphones and tablets) widely available among people in the affected region is a more practical approach. Disaster preparedness involves dissemination of information among the people to make them aware of the risks they will face in the event of a disaster and how to actively prepare for them. The content is downloaded by the people on their smartphones and tablets for ubiquitous access. As these devices are primarily constrained by their available energy, this work introduces an energy-aware peer-to-peer file sharing protocol for efficient distribution of the content and maximizing the lifetime of the devices. Finally, the ability of the wireless devices to build an ad hoc network for capturing and collecting data for disaster relief and recovery operations was investigated. Specifically, novel energy-adaptive mechanisms were designed for autonomous creation of the ad hoc network, distribution of data capturing task among the devices, and collection of data with minimum delay --Abstract, page iii

    A Localization System for Optimizing the Deployment of Small Cells in 2-Tier Heterogeneous Wireless Networks

    Get PDF
    Due to the ever growing population of mobile device users and expansion on the number of devices and applications requiring data usage, there is an increasing demand for improved capacity in wireless cellular networks. Cell densification and 2-tier heterogeneous networks (HetNets) are two solutions which will assist 5G systems in meeting these growing capacity demands. Small-cell deployment over existing heterogeneous networks have been considered by researchers. Different strategies for deploying these small-cells within the existing network among which are random, cell-edge and high user concentration (HUC) have also been explored. Small cells deployed on locations of HUC offloads traffic from existing network infrastructure, ensure good Quality of Service (QoS) and balanced load in the network but there is a challenge of identifying HUC locations. There has been considerable research performed into techniques for determining user location and cell deployment. Currently localization can be achieved using time dependent methods such as Time of Arrival (ToA), Time Difference of Arrival (TDoA), or Global Positioning Systems (GPS). GPS based solutions provide high accuracy user positioning but suffer from concerns over user privacy, and other time dependent approaches require regular synchronization which can be difficult to achieve in practice. Alternatively, Received Signal Strength (RSS) based solutions can provide simple anonymous user data, requiring no extra hardware within the mobile handset but often rely on triangulation from adjacent Base Stations (BS). In mobile cellular networks such solutions are therefore often only applicable near the cell edge, as installing additional BS would increase the complexity and cost of a network deployment. The work presented in this thesis overcomes these limitations by providing an observer system for wireless networks that can be used to periodically monitor the cell coverage area and identify regions of high concentrations of users for possible small cell deployment in 2-tier heterogeneous networks. The observer system comprises of two collinear antennas separated by λ/2. The relative phase of each antenna was varied using a phase shifter so that the combined output of the two antennas were used to create sum and difference radiation patterns, and to steer the antenna radiation pattern creating different azimuth positions for AoA estimation. Statistical regression analysis was used to develop range estimation models based on four different environment empirical pathloss models for user range estimation. Users were located into clusters by classifying them into azimuth-range classes and counting the number of users in each class. Locations for small cell deployment were identified based on class population. BPEM, ADEM, BUEM, EARM and NLOS models were developed for more accurate range estimation. A prototype system was implemented and tested both outdoor and indoor using a network of WiFi nodes. Experimental results show close relationship with simulation and an average PER in range estimation error of 80% by applying developed error models. Based on both simulation and experiment, system showed good performance. By deploying micro-, pico-, or femto-cells in areas of higher user concentration, high data rates and good quality of service in the network can be maintained. The observer system provides the network manager with relative angle of arrival (AoA), distance estimation and relative location of user clusters within the cell. The observer system divides the cell into a series of azimuthal and range sectors, and determines which sector the users are located in. Simulation and a prototype design of the system is presented and results have shown system robustness and high accuracy for its purpose

    Modeling and Measuring Performance of Data Dissemination in Opportunistic Networks

    Get PDF
    In this thesis we focus on understanding, measuring and describing the performance of Opportunistic Networks (ONs) and their applications. An “opportunistic network” is a term introduced to describe a sparse, wireless, ad hoc network with highly mobile nodes. The opportunistic networking paradigm deviates from the traditional end-to-end connectivity concept: Forwarding is based on intermittent connectivity between mobile nodes (typically, users with wireless devices); complete routes between sources and destinations rarely exist. Due to this unique property of spontaneous link establishment, the challenges that exist in ONs are specific. The unstructured nature of these networks makes it difficult to give any performance guarantees on data dissemination. For this reason, in Part I of this thesis we explore the dynamics that affect the performance of opportunistic networks. We choose a number of meaningful scenarios where our models and algorithms can be validated using large and credible data sets. We show that a drift and jump model that takes a spatial approach succeeds in capturing the impact of infrastructure and mobile-to-mobile exchanges on an opportunistic content update system. We describe the effects of these dynamics by using the age distribution of a dynamic piece of data (i.e., information updates) as the performance measure. The model also succeeds in capturing a strong bias in user mobility and reveals the existence of regions, whose statistics play a critical role in the performance perceived in the network. We exploit these findings to design an application for greedy infrastructure placement, which relies on the model approximation for a large number of nodes. Another great challenge of opportunistic networking lies in the fact that the bandwidth available on wireless links, coupled with ad hoc networking, failed to rival the capacity of backbones and to establish opportunistic networks as an alternative to infrastructure-based networks. For this reason, we never study ONs in an isolated context. Instead, we consider the applications that leverage interconnection between opportunistic networks and legacy networks and we study the benefits this synergy brings to both. Following this approach, we use a large operator-provided data set to show that opportunistic networks (based on Wi-Fi) are capable of offloading a significant amount of traffic from 3G networks. At the same time, the offloading algorithms we propose reduce the amount of energy consumed by mobiles, while requiring Wi-Fi coverage that is several times smaller than in the case of real-time offloading. Again we confirm and reuse the fact that user mobility is biased towards certain regions of the network. In Part II of this thesis, we treat another issue that is essential for the acceptance and evolution of opportunistic networks and their applications. Namely, we address the absence of experimental results that would support the findings of simulation based studies. Although the techniques such as contact-based simulations should intuitively be able to capture the performance of opportunistic applications, this intuition has little evidence in practice. For this reason, we design and deploy an experiment with real users who use an opportunistic Twitter application, in a way that allows them to maintain communication with legacy networks (i.e., cellular networks, the Internet). The experiment gives us a unique insight into certain performance aspects that are typically hidden or misinterpreted when the usual evaluation techniques (such as simulation) are used. We show that, due to the commonly ignored factors (such as the limited transmission bandwidth), contact-based simulations significantly overestimate delivery ratio and obtain delays that are several times lower than those experimentally acquired. In addition to this, our results unanimously show that the common practice of assuming infinite cache sizes in simulation studies, leads to a misinterpretation of the effects of a backbone on an opportunistic network. Such simulations typically overestimate the performance of the opportunistic component, while underestimating the utility of the backbone. Given the discovered deficiencies of the contact-based simulations, we consider an alternative statistical treatment of contact traces that uses the weighted contact graph. We show that this approach offers a better interpretation of the impact of a backbone on an opportunistic network and results in a closer match when it comes to modeling certain aspects of performance (namely, delivery ratio). Finally, the security requirements for the opportunistic applications that involve an interconnection with legacy networks are also highly specific. They cannot be fully addressed by the solutions proposed in the context of autonomous opportunistic (or ad hoc) networks, nor by the security frameworks used for securing the applications with continuous connectivity. Thus, in Part III of this thesis, we put together a security framework that fits the networks and applications that we target (i.e., the opportunistic networks and applications with occasional Internet connectivity). We then focus on the impact of security print on network performance and design a scheme for the protection of optimal relaying capacity in an opportunistic multihop network. We fine-tune the parameters of our scheme by using a game-theoretic approach and we demonstrate the substantial performance gains provided by the scheme

    Infrastructure-less D2D Communications through Opportunistic Networks

    Get PDF
    Mención Internacional en el título de doctorIn recent years, we have experienced several social media blackouts, which have shown how much our daily experiences depend on high-quality communication services. Blackouts have occurred because of technical problems, natural disasters, hacker attacks or even due to deliberate censorship actions undertaken by governments. In all cases, the spontaneous reaction of people consisted in finding alternative channels and media so as to reach out to their contacts and partake their experiences. Thus, it has clearly emerged that infrastructured networks—and cellular networks in particular—are well engineered and have been extremely successful so far, although other paradigms should be explored to connect people. The most promising of today’s alternative paradigms is Device-to-Device (D2D) because it allows for building networks almost freely, and because 5G standards are (for the first time) seriously addressing the possibility of using D2D communications. In this dissertation I look at opportunistic D2D networking, possibly operating in an infrastructure-less environment, and I investigate several schemes through modeling and simulation, deriving metrics that characterize their performance. In particular, I consider variations of the Floating Content (FC) paradigm, that was previously proposed in the technical literature. Using FC, it is possible to probabilistically store information over a given restricted local area of interest, by opportunistically spreading it to mobile users while in the area. In more detail, a piece of information which is injected in the area by delivering it to one or more of the mobile users, is opportunistically exchanged among mobile users whenever they come in proximity of one another, progressively reaching most (ideally all) users in the area and thus making the information dwell in the area of interest, like in a sort of distributed storage. While previous works on FC almost exclusively concentrated on the communication component, in this dissertation I look at the storage and computing components of FC, as well as its capability of transferring information from one area of interest to another. I first present background work, including a brief review of my Master Thesis activity, devoted to the design, implementation and validation of a smartphone opportunistic information sharing application. The goal of the app was to collect experimental data that permitted a detailed analysis of the occurring events, and a careful assessment of the performance of opportunistic information sharing services. Through experiments, I showed that many key assumptions commonly adopted in analytical and simulation works do not hold with current technologies. I also showed that the high density of devices and the enforcement of long transmission ranges for links at the edge might counter-intuitively impair performance. The insight obtained during my Master Thesis work was extremely useful to devise smart operating procedures for the opportunistic D2D communications considered in this dissertation. In the core of this dissertation, initially I propose and study a set of schemes to explore and combine different information dissemination paradigms along with real users mobility and predictions focused on the smart diffusion of content over disjoint areas of interest. To analyze the viability of such schemes, I have implemented a Python simulator to evaluate the average availability and lifetime of a piece of information, as well as storage usage and network utilization metrics. Comparing the performance of these predictive schemes with state-of-the-art approaches, results demonstrate the need for smart usage of communication opportunities and storage. The proposed algorithms allow for an important reduction in network activity by decreasing the number of data exchanges by up to 92%, requiring the use of up to 50% less of on-device storage, while guaranteeing the dissemination of information with performance similar to legacy epidemic dissemination protocols. In a second step, I have worked on the analysis of the storage capacity of probabilistic distributed storage systems, developing a simple yet powerful information theoretical analysis based on a mean field model of opportunistic information exchange. I have also extended the previous simulator to compare the numerical results generated by the analytical model to the predictions of realistic simulations under different setups, showing in this way the accuracy of the analytical approach, and characterizing the properties of the system storage capacity. I conclude from analysis and simulated results that when the density of contents seeded in a floating system is larger than the maximum amount which can be sustained by the system in steady state, the mean content availability decreases, and the stored information saturates due to the effects of resource contention. With the presence of static nodes, in a system with infinite host memory and at the mean field limit, there is no upper bound to the amount of injected contents which a floating system can sustain. However, as with no static nodes, by increasing the injected information, the amount of stored information eventually reaches a saturation value which corresponds to the injected information at which the mean amount of time spent exchanging content during a contact is equal to the mean duration of a contact. As a final step of my dissertation, I have also explored by simulation the computing and learning capabilities of an infrastructure-less opportunistic communication, storage and computing system, considering an environment that hosts a distributed Machine Learning (ML) paradigm that uses observations collected in the area over which the FC system operates to infer properties of the area. Results show that the ML system can operate in two regimes, depending on the load of the FC scheme. At low FC load, the ML system in each node operates on observations collected by all users and opportunistically shared among nodes. At high FC load, especially when the data to be opportunistically exchanged becomes too large to be transmitted during the average contact time between nodes, the ML system can only exploit the observations endogenous to each user, which are much less numerous. As a result, I conclude that such setups are adequate to support general instances of distributed ML algorithms with continuous learning, only under the condition of low to medium loads of the FC system. While the load of the FC system induces a sort of phase transition on the ML system performance, the effect of computing load is more progressive. When the computing capacity is not sufficient to train all observations, some will be skipped, and performance progressively declines. In summary, with respect to traditional studies of the FC opportunistic information diffusion paradigm, which only look at the communication component over one area of interest, I have considered three types of extensions by looking at the performance of FC: over several disjoint areas of interest; in terms of information storage capacity; in terms of computing capacity that supports distributed learning. The three topics are treated respectively in Chapters 3 to 5.This work has been supported by IMDEA Networks InstitutePrograma de Doctorado en Ingeniería Telemática por la Universidad Carlos III de MadridPresidente: Claudio Ettori Casetti.- Secretario: Antonio de la Oliva Delgado.- Vocal: Christoph Somme

    Context awareness in opportunistic computing

    Get PDF

    Raspberry Pi Technology

    Get PDF

    Brave New Wireless World: Mapping the Rise of Ubiquitous Connectivity from Myth to Market

    Get PDF
    This dissertation offers a critical and historical analysis of the myth of ubiquitous connectivity—a myth widely associated with the technological capabilities offered by “always on” Internet-enabled mobile devices like smartphones and tablets. This myth proclaims that work and social life are optimized, made more flexible, manageable, and productive, through the use of these devices and their related services. The prevalence of this myth—whether articulated as commercial strategy, organizational goal, or mode of social mediation—offers repeated claims that the experience and organization of daily life has passed a technological threshold. Its proponents champion the virtues of the invisible “last mile” tethering individuals (through their devices) primarily to commercial networks. The purpose of this dissertation is to uncover the interaction between the proliferation of media artifacts and the political economic forces and relations occluded by this myth. To do this, herein the development of the BlackBerry, as a specific brand of devices and services, is shown to be intimately interrelated with the myth of ubiquitous connectivity. It demonstrates that the BlackBerry is a technical artifact whose history sheds light on key characteristics of our media environment and the political economic dynamics shaping the development of other technologies, workforce composition and management, and more general consumption proclivities. By pointing to the analytic significance of the BlackBerry, this work does not intend to simply praise its creators for their technical and commercial achievements. Instead, it aims to show how these achievements express a synthesis that represents the motivations of economic actors and prevailing modes of thought most particularly as they are drawn together in and through the myth of ubiquitous connectivity. The narrative arc of this dissertation is anchored by moments of harmonization among political economic interests as these shape (and are shaped by) prevailing modes of producing and relating through ubiquitous connectivity

    Maximizing Mobile

    Get PDF
    corecore