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Abstract

In this thesis we focus on understanding, measuring and describing the performance of

Opportunistic Networks (ONs) and their applications. An “opportunistic network” is a term

introduced to describe a sparse, wireless, ad hoc network with highly mobile nodes. The op-

portunistic networking paradigm deviates from the traditional end-to-end connectivity concept:

Forwarding is based on intermittent connectivity between mobile nodes (typically, users with

wireless devices); complete routes between sources and destinations rarely exist. Due to this

unique property of spontaneous link establishment, the challenges that exist in ONs are specific.

The unstructured nature of these networks makes it difficult to give any performance guar-

antees on data dissemination. For this reason, in Part I of this thesis we explore the dynamics

that affect the performance of opportunistic networks. We choose a number of meaningful sce-

narios where our models and algorithms can be validated using large and credible data sets. We

show that a drift and jump model that takes a spatial approach succeeds in capturing the impact

of infrastructure and mobile-to-mobile exchanges on an opportunistic content update system.

We describe the effects of these dynamics by using the age distribution of a dynamic piece of

data (i.e., information updates) as the performance measure. The model also succeeds in cap-

turing a strong bias in user mobility and reveals the existence of regions, whose statistics play

a critical role in the performance perceived in the network. We exploit these findings to design

an application for greedy infrastructure placement, which relies on the model approximation

for a large number of nodes.

Another great challenge of opportunistic networking lies in the fact that the bandwidth

available on wireless links, coupled with ad hoc networking, failed to rival the capacity of

backbones and to establish opportunistic networks as an alternative to infrastructure-based net-

works. For this reason, we never study ONs in an isolated context. Instead, we consider the

applications that leverage interconnection between opportunistic networks and legacy networks

and we study the benefits this synergy brings to both. Following this approach, we use a large

operator-provided data set to show that opportunistic networks (based on Wi-Fi) are capable of
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offloading a significant amount of traffic from 3G networks. At the same time, the offloading

algorithms we propose reduce the amount of energy consumed by mobiles, while requiring

Wi-Fi coverage that is several times smaller than in the case of real-time offloading. Again we

confirm and reuse the fact that user mobility is biased towards certain regions of the network.

In Part II of this thesis, we treat another issue that is essential for the acceptance and evo-

lution of opportunistic networks and their applications. Namely, we address the absence of

experimental results that would support the findings of simulation based studies. Although

the techniques such as contact-based simulations should intuitively be able to capture the per-

formance of opportunistic applications, this intuition has little evidence in practice. For this

reason, we design and deploy an experiment with real users who use an opportunistic Twitter

application, in a way that allows them to maintain communication with legacy networks (i.e.,

cellular networks, the Internet). The experiment gives us a unique insight into certain perfor-

mance aspects that are typically hidden or misinterpreted when the usual evaluation techniques

(such as simulation) are used. We show that, due to the commonly ignored factors (such as

the limited transmission bandwidth), contact-based simulations significantly overestimate de-

livery ratio and obtain delays that are several times lower than those experimentally acquired.

In addition to this, our results unanimously show that the common practice of assuming infinite

cache sizes in simulation studies, leads to a misinterpretation of the effects of a backbone on an

opportunistic network. Such simulations typically overestimate the performance of the oppor-

tunistic component, while underestimating the utility of the backbone. Given the discovered

deficiencies of the contact-based simulations, we consider an alternative statistical treatment of

contact traces that uses the weighted contact graph. We show that this approach offers a better

interpretation of the impact of a backbone on an opportunistic network and results in a closer

match when it comes to modeling certain aspects of performance (namely, delivery ratio).

Finally, the security requirements for the opportunistic applications that involve an inter-

connection with legacy networks are also highly specific. They cannot be fully addressed by

the solutions proposed in the context of autonomous opportunistic (or ad hoc) networks, nor

by the security frameworks used for securing the applications with continuous connectivity.

Thus, in Part III of this thesis, we put together a security framework that fits the networks and

applications that we target (i.e., the opportunistic networks and applications with occasional

Internet connectivity). We then focus on the impact of security print on network performance

and design a scheme for the protection of optimal relaying capacity in an opportunistic multi-

hop network. We fine-tune the parameters of our scheme by using a game-theoretic approach

and we demonstrate the substantial performance gains provided by the scheme.
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Résumé

Dans cette thèse, nous nous concentrons sur la compréhension, la mesure et la description

des performances des réseaux opportunistes (ROs) et de leurs applications. Le terme “réseau

opportuniste” a été introduit pour décrire des réseaux sans fil ad hoc clairsemés avec des nœuds

très mobiles. Le paradigme de réseau opportuniste s’écarte de la notion de connectivité de bout

en bout traditionnelle. La transmission de données est basé sur la connectivité intermittente

entre les nœuds mobiles (ce sont typiquement les utilisateurs avec des périphériques sans fil).

Le chemin complet entre la source et la destination existe rarement. Grâce à cette propriété

unique de l’établissement du lien spontané, les défis qui existent dans les ROs sont spécifiques.

Tout d’abord, la nature non structurée de ces réseaux rend difficile toute garantie sur la per-

formance de la diffusion des données. Pour cette raison, dans la première partie de cette thèse,

nous explorons les dynamiques qui affectent les performances des réseaux opportunistes. Nous

examinons une sélection de scénarios significatifs, où nos modèles et algorithmes peuvent être

validés en utilisant des jeux de données réalistes. Nous montrons qu’un modèle “drift and

jump”, qui adopte une approche spatiale, réussit à capter les effets de la mobilité, de l’infra-

structure et des échanges directs entre les nœuds, sur la distribution d’âge d’information dyna-

mique, dans un système de mise à jour opportuniste. Nous montrons aussi que la mobilité des

utilisateurs est biaisée en faveur de certaines régions, dont les statistiques jouent un rôle crucial

dans la performance perçue dans le réseau. Nous appliquons ces resultats afin de concevoir

un algorithm glouton de placement d’infrastructure, qui repose sur l’approximation du modèle

pour un grand nombre de nœuds.

Un autre grand défi des réseaux opportunistes réside dans le fait que la bande passante

disponible sur les liaisons sans fil, couplée avec les réseaux ad hoc, n’a pas réussi à rivaliser

avec la capacité des backbones ni à établir des réseaux opportunistes comme une alternative

aux réseaux infrastructurels. Pour cette raison, nous n’avons jamais étudie les ROs dans un

contexte isolé. Au lieu de cela, nous considérons les applications qui bénéficient de l’intercon-

nexion entre des réseaux opportunistes et les réseaux existants et nous étudions les avantages
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que cette synergie apporte aux deux. Conformément à cette approche, nous utilisons les don-

nées fournies par un grand opérateur afin de montrer que les réseaux opportunistes (basés sur

une connexion Wi-Fi) sont capables de décharger un montant significatif du trafic des réseaux

3G. Dans le même temps, les algorithmes de déchargement que nous proposons réduisent la

quantité d’énergie consommée par les mobiles, tout en exigeant une couverture Wi-Fi plusieurs

fois plus petite que la couverture nécessaire en cas de déchargement en temps réel. Encore une

fois, nous confirmons et nous réutilisons le fait que la mobilité des utilisateurs est biaisée en

faveur de certaines régions du réseau.

Dans la deuxième partie de cette thèse, nous traitons une autre question qui est essen-

tielle pour l’acceptation et l’évolution des réseaux opportunistes et de leurs applications. Nous

adressons le problème de l’absence de résultats expérimentaux qui appuient les conclusions des

études par simulation. Les techniques comme la simulation reposant sur les contacts devraient

être intuitivement capables de nous donner la performance des applications opportunistes. Ce-

pendant, cette intuition a peu de preuves dans la pratique. Pour cette raison, nous concevons une

expérience avec les utilisateurs réels qui utilisent une application Twitter opportuniste, d’une

manière qui leur permet de maintenir la communication avec les réseaux existants (c’est-à-dire

réseaux cellulaires, Internet). L’expérience nous donne un aperçu unique sur certains aspects

de la performance qui sont généralement cachés ou mal interprétés, lorsque les techniques

classiques d’évaluation (telles que la simulation) sont utilisés. Nous montrons qu’en raison de

facteurs souvent ignorés (comme la bande passante limitée), les simulations reposant sur des

contacts surestiment considérablement le taux de transfert et sous-estiment le retard. De plus,

nos résultats montrent à l’unanimité que la pratique courante dans les simulations de considé-

rer des tailles de cache infinies, conduit à une interprétation erronée des effets du “backbone”

sur un réseau opportuniste. Ces simulations en général surestiment la performance du com-

posant opportuniste, tandis qu’elles sous-estiment l’utilité du “backbone”. Au vu des lacunes

constatées dans les simulations reposant sur des contacts, nous proposons d’utiliser une autre

méthode de nature statistique reposant sur le graphe de contact pondéré. Nous montrons que

cette approche offre une meilleure interprétation de l’impact d’un “backbone” sur un réseau

opportuniste et entraine de bons resultats quand il s’agit de la modélisation de certains aspects

de la performance du réseau (par exemple le taux de ransfert).

Enfin, les exigences de sécurité pour les applications opportunistes qui impliquent l’inter-

connexion avec les réseaux existants ne peuvent pas être satisfaites par les solutions proposées

dans le contexte des réseaux opportunistes autonomes, ni par les solutions utilisés pour sécu-

riser les applications avec une connectivité continue. Ainsi, dans la troisième partie de cette
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thèse, nous mettons en place une solution de sécurité qui convient aux réseaux et aux appli-

cations que nous visons. Nous nous concentrons par la suite sur l’impact de la sécurité sur

la performance du réseau et nous concevons un système assurant la protection de la capacité

de transmission optimale dans un réseau opportuniste multi-hop. Nous réglons les paramètres

de notre système en utilisant une approche de la théorie des jeux et nous montrons que notre

solution améliore la performance de maniére substantielle.

Mots clés

Réseaux opportunistes, delay-tolerant networks, pocket switched networks, réseaux hy-

brides, modélisation des performances, conception des systèmes, sécurisation de la commu-

nication opportuniste, mesures du réseau, validation des simulations avec des mesures, opti-

misation, conception et analyse des algorithmes, déchargement des réseaux 3G, architectures

énergétiquement efficaces.
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Chapter 1

Introduction

1.1 Motivation

A decade ago, mobile phones were voice-centric devices, capable of sending text messages.

Today, they are powerful data-centric computers, equipped with the ever-evolving cellular data

connection and multiple short-range wireless interfaces, such as Wi-Fi and Bluetooth. This

enables mobile phones to establish direct communication among themselves, but also to act as

gateways towards legacy networks.

The rapid evolution of mobile devices gave birth to a new paradigm of Opportunistic Net-

works (ON) that goes beyond the concept of Mobile Ad Hoc Networks (MANET). Opportunis-

tic networks are based on intermittent connectivity between users with wireless devices. They

are normally built around people, typically pedestrians. In this context, they are also referred

to as Pocket Switched Networks (PSN). As users are typically limited in speed, and much

slower than the data propagation over wired or wireless links, delay in such networks remains

non-negligible. Thus, more generally, opportunistic networks fall under the Delay Tolerant

Networking (DTN) space.

As the idea of opportunistic networking deviates from the traditional end-to-end connectiv-

ity concept, the challenges also differ. First, the unstructured nature of these networks makes

it extremely difficult to put any performance guarantees on data dissemination in opportunistic

networks. For this reason, a large part of this thesis is dedicated to modeling and measuring

information propagation and to the amelioration of the evaluation techniques, with the goal of

improving our understanding of data dissemination in opportunistic networks.

Second, the bandwidth available on wireless links, coupled with ad hoc networking, failed

3
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to rival the capacity of backbones and to establish opportunistic networking as an alternative

to infrastructure-based networks. Thus, we focus on designing innovative services that are

based on interconnection with legacy networks. In other words, we do not study opportunistic

networks in an isolated context. Instead, we consider the applications that leverage intercon-

nection between the opportunistic networks and the backbone-based networks and we study the

benefits that this synergy brings to both.

Finally, the security requirements for the networks and applications that involve an oppor-

tunistic component, as well as the interconnection with the legacy networks (i.e., the Internet or

cellular networks) are rather specific. They cannot be fully addressed by the security solutions

proposed in the context of autonomous opportunistic networks, nor by the security frameworks

used for securing networks and applications with continuous connectivity. Thus, we put to-

gether a security framework that fits the networks and applications that we target. We then

focus on the performance of this security solution, in order to design a method for protection

of the relaying capacity in the opportunistic (multi-hop) networks.

Although we concentrate on a few challenges, the complex interplay between closely re-

lated issues in opportunistic networking makes it difficult to ignore other key aspects. For

example, it is impossible to consider data dissemination and collaboration without addressing

incentives or user mobility. User mobility is particularly challenging. It can be beneficial, as it

allows users to carry large amounts of data around the network. However, it also complicates

the communication due to the instability of forwarding paths.

Similarly, it is impossible to design and implement an opportunistic application without

considering the communication paradigms and related architectural aspects. Traditional com-

munication paradigms such as client-server are not suitable for the opportunistic environment.

Thus, other models, such as an event-based communication model and proximity-based group

communication have to be considered in this context.

1.2 Dissertation Outline

This thesis is organized in three parts. In Part I, we characterize the dynamics that affect

the performance of data dissemination in large scale opportunistic networks. In Chapter 3, we

demonstrate that a continuous Markov chain model that takes a spatial approach allows us to

describe how mobility, opportunistic exchanges and content inputs by arbitrary placed sources

affect the age distribution of a dynamic piece of information in an opportunistic content-update

system. We then use the fluid approximation of the model, which can be entirely characterized
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by a system of ordinary differential equations (ODEs), for the design of an application for

infrastructure dimensioning.

In Chapter 4, we use a much larger operator provided data set, with half a million users,

to study an application of opportunistic networks with a greater reach. Specifically, we study

their capacity to offload a part of the traffic from the congested 3G networks. To offload bulky,

socially recommended contents from 3G networks we propose two algorithms that leverage

prediction, delay-tolerance and the global view of the network available to mobile operators.

Just like in Chapter 3, we exploit the fact that user mobility is biased towards a few regions

of the network, whose statistics play a critical role in the performance seen by users. We

perform extensive performance evaluation of both proposed algorithms and compare them with

an existing real-time offloading solution. We show that our delay-tolerant algorithms reduce

the amount of energy consumed by mobile phones, thus making them appealing to the users.

At the same time the algorithms are interesting to the operators, as they leverage operators’

clouds and offer load balancing between the orthogonal wireless technologies.

Chapter 5 constitutes Part II of this thesis. In this chapter, we go one step further and study

the performance of an opportunistic network through a real application. The application ex-

tends a popular social service on the Internet (Twitter) to the space of intermittently connected

opportunistic clients. We compare the measured performance with the results obtained by using

a standard methodology for performance evaluation of opportunistic networks and applications.

More precisely, we examine the gap between the performance of an opportunistic network ob-

tained via the commonly used contact-based simulations and the performance acquired from a

real deployment of such a network. This is an important problem, which is complex to study,

because, although the trace-based simulations are omnipresent, live deployments of opportunis-

tic networks and their performance measurements are virtually non-existent. For this reason,

we deploy a testbed with our opportunistic Twitter application on the EPFL campus site. The

setup and the three-week long experiment that we perform enable us to collect both the appli-

cation data and the contact traces for 50 experiment participants. We then use the collected data

sets for the comparison between the measured application performance and the results of the

contact-based simulations.

In addition to this, we use our experiment to study the effects of a backbone on an oppor-

tunistic network. This is possible because the implemented opportunistic Twitter application

uses a backbone to help forward the tweets created by the experiment participants and to re-

trieve tweets from the Twitter web site. By comparing again the values obtained from the ex-

periment with the results of the contact-based simulations, we find that the simulations fail to
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capture the effects of adding a backbone to an opportunistic network. The simulations typically

overestimate the performance of the opportunistic component and underestimate the utility of a

backbone. We analyze the assumptions used in the case of contact-based simulations and offer

an explanation for this behavior. Finally, in the last part of Chapter 5 we propose an alterna-

tive statistical treatment of contact traces (as opposed to trace driven simulation) that uses the

weighted contact graph. We show that this approach offers better interpretation of the impact

of a backbone on the opportunistic network and results in a closer match when it comes to

modeling certain aspects of network performance (namely delivery ratio).

Chapters 6 and 7 constitute Part III of this thesis. In Chapter 6 we concentrate on the secu-

rity aspects of the opportunistic Twitter application used in the experiment (and other similar

applications with occasional Internet connectivity). We explain the differences in security re-

quirements, between the opportunistic application clients with intermittent connectivity and

the traditional (always connected) mobile clients, and we propose an architecture for securing

the former. The proposed solution contains certain elements of several security frameworks

designed for different environments, such as the PKI building blocks used to secure vehicular

communication and the OAuth authorization used for authentication of the always-connected

clients.

As the performance of opportunistic networks and applications represents the key focus of

this thesis, in Chapter 7 we revisit this topic. More precisely, we concentrate on the performance

of the opportunistic security framework designed in Chapter 6. We show how it affects the

performance of opportunistic applications, by observing the relaying capacity of mobile nodes.

Hence, we design a scheme that complements the security framework proposed in Chapter

6 and protects the optimal relaying capacity in an opportunistic network. We fine-tune the

parameters of our scheme by using the min-max approach and we demonstrate the substantial

performance gains provided by the scheme.

Finally, we conclude this thesis in Chapter 8 with a summary of the main findings and a

discussion of possible directions for future work.

1.3 Contributions

The following is the list of the main contributions of this thesis.

• We show that a drift and jump model that takes a spatial approach allows us to charac-

terize the age distribution of a dynamic piece of information in an opportunistic content update

system, with arbitrary mobility, contact rates and locations of input sources. Using a 30-day
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trace with 500 taxicabs in San Francisco area, we show that, in addition to the model, its fluid

approximation fits the data well. This allows us to use it as a fast simulation tool in the cases

when traces are not available, or to perform a what-if analysis, or when the number of mo-

bile nodes is very large. We propose an infrastructure dimensioning application that uses the

ordinary differential equations (ODEs) stemming from the fluid approximation.

• We quantify the potential for offloading 3G data networks through the usage of oppor-

tunistic networking. We design two algorithms for delay-tolerant offloading of large, socially

recommended content from 3G networks, and we show their advantages over the real-time of-

floading solution currently deployed by some mobile operators. We perform a comprehensive

evaluation of the algorithms by using a large, operator provided data set, with more than half

a million users. We find that both algorithms succeed in offloading a significant amount of

traffic, with a positive effect on user battery lifetime. We show that the Wi-Fi coverage needed

to offload traffic is reduced very quickly (by a factor of 3 to 4) when some delay is tolerated.

Finally, we show that both algorithms deliver content with the lowest delays during the peak

hours, when offloading is most needed, which means that opportunistic transfers can naturally

complement the energy-costly 3G data downloads.

• We address the problem of the missing evidence that the results of commonly-used

contact-based simulations accurately reflect performance of opportunistic networks and we

find significant gaps between the two. For this purpose, we design and implement a testbed

with a real application and real users, which allows us to collect application data in addition

to the contact traces and compare measured performance to the results of the contact-based

simulations. We show that although the contact-based simulations succeed in capturing the

relative effects of different system parameters, there exist significant discrepancies between the

values obtained through simulation and those obtained from the experiment. We show that, due

to some commonly ignored factors (such as the limited contact durations, finite transmission

bandwidth, technology limitations, etc.) [1, 2], contact-based simulations significantly over-

estimate delivery ratio, and the acquired delays are 2-3 times lower than the experimentally

obtained delays.

• Additionally, the results of our three week-long experiment, with 50 users and a range of

cache sizes and caching strategies, unanimously confirm that the common practice of assum-

ing infinite cache sizes in simulation studies [3] leads to misinterpretation of the effects of a

backbone on an opportunistic network. Our results show that the conclusions about the utility

of a backbone [3] tend to be largely pessimistic. This is an important finding, as it could direct

more attention towards hybrid networks that include both an opportunistic and an infrastruc-



8 1. Introduction

tural component

• We show that a statistical treatment of the contact trace, by using the weighted contact

graph, offers a better prediction of certain performance aspects (namely delivery ratio) than

the trace driven simulation. We expose a strong dependency between a user centrality measure

in this graph and the perceived delivery ratio, and we fit a simple curve to this dependency.

This allows one to predict users’ delivery ratios based on the contact trace. We show that this

dependency persists when a backbone is added to the network, which means that it can be used

to estimate the effects of adding infrastructure to an opportunistic network.

• From the application aspect, our experiment results in the implementation of a full-fledged

opportunistic application for Windows Mobile and Android platforms. The application lever-

ages intermittent Internet connectivity and multi-hop forwarding, enabling mobile users to use

the popular Twitter application in the opportunistic fashion even when the Internet connectivity

is not available (for example when in roaming).

• We propose a full security framework adapted to the specific requirements of the family

of opportunistic applications that we target (i.e., the opportunistic applications that synchronize

with existing web services). The framework combines elements of the novel security solutions

(such as OAuth) used to authenticate mobile clients with continuous Internet connectivity and

the PKI based architecture proposed in the context of vehicular networks.

• Finally, we address the performance of the proposed security framework. In order to pro-

tect the optimal relaying capacity in an opportunistic network we design an adaptive scheme

that can be easily integrated with the proposed security framework. Using extensive simula-

tions, we show that the scheme resists DoS attacks and yields a significant performance in-

crease, irrespective of the number of adversaries in the network.



Chapter 2

Overview of Related Work

2.1 Evolution of Opportunistic Networking Paradigm

The idea of Delay-Tolerant Networking (DTN) was initially inspired by the interplanetary

communication or the interplanetary Internet [4]. The traditional Internet protocols are not

applicable in such an environment, due to high delay (latency), limited resources and only

intermittent connectivity (planet rotation).

The increasing availability of wireless networks and the proliferation of wireless-equipped

devices made the DTN paradigm attractive in other communication contexts [5]. Above all, the

usage of delay-tolerant networking started to be considered in scenarios with mobile users or

vehicles, capable of direct wireless communication [1, 6]. In such environments DTNs are often

referred to as Opportunistic Networks (ONs), as wireless transmission opportunities normally

arise in opportunistic (spontaneous) fashion. In the opportunistic networks, end-to-end routes

can rarely be established. This means that opportunistic networking goes beyond the concept

of Mobile Ad Hoc Networks (MANETs), which usually focus on end-to-end routing between

mobile nodes.

Opportunistic networks are typically considered in environments with intermittently con-

nected wireless nodes, where standard Internet protocols can not be applied or would provide

poor performance. For example, ONs have been proposed as means of bridging between iso-

lated rural areas [7, 8], wildlife monitoring [9, 10] and networking using buses that follow

predictable routes [11].

9
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2.1.1 Pocket Switched Networks (PSNs)

A subset of papers in the area of delay-tolerant networks focus exclusively on opportunistic

networks formed by small human-carried devices. In this context, the ONs are often referred

to as Pocket Switched Networks (PSN) [12, 13]. The specificity of these networks is that data

transmissions occur between mobile nodes with seemingly random mobility.

PSNs can enable data exchanges with moderate delays within small “connectivity islands”

[12]. However, outside these islands connectivity becomes a major problem. For this reason

our approach in this thesis is to always take into account the existing network infrastructure,

which can serve as a backbone or a bridge between connectivity islands. In other words, we

concentrate on the scenarios where opportunistic networks can complement the existing net-

work infrastructure, like in the case of 3G traffic offloading [14] or inexpensive synchronization

of data services in roaming [15]. Such scenarios allow opportunistic networks to provide added

value to infrastructure networks, instead of acting as an alternative. We believe this makes them

more meaningful and attractive from the user point of view.

Apart from this important difference, models, algorithms and applications proposed in this

thesis are close to the PSN context. For example, our solution for the cheap synchronization of

social mobile applications in roaming relies on mobile users (i.e., cellular subscribers in their

home networks that can be found in proximity). The 3G offloading algorithm that we propose

and evaluate is also based on the available opportunistic (mobile-to-mobile) bandwidth. Our

model of age in an opportunistic content update system [16] is evaluated using mobile nodes

that do not follow predefined mobility patterns (unlike buses in [6]).

2.1.2 The Role of Infrastructure in Opportunistic Networking

After the early efforts to design opportunistic networks that would be formed entirely by

(human carried) mobile devices [17, 18, 19, 20, 21], a part of the research community has begun

looking into the ways to reduce delays and improve delivery ratios, by adding certain amount

of infrastructure to these networks [22, 3, 23]. The reason for this is the discovery that hu-

man contact processes exhibit heavy-tailed inter-contact distributions [1, 24]. The pronounced

heavy-tail makes it difficult for any forwarding algorithm that relies only on multiple message

copies, or on encounters with destinations, to deliver content within a reasonable time [1].

The initial studies of the effects of an infrastructure (a network backbone) on the oppor-

tunistic network performance relied exclusively on contact traces [22, 2, 3]. In [22], the authors

consider how infrastructure can be used to design simpler and more efficient (in terms of delay
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and number of hops) opportunistic forwarding algorithms. In [3] the authors perform extensive

simulations using Bluetooth contacts in order to quantify the effects of opportunistic and back-

bone components on a DTN. They conclude that backbone brings only marginal improvements

to opportunistic communication.

The UMass DieselNet testbed addressed a similar topic, but the Wi-Fi equipped buses ex-

changed traffic (artificially obtained from the Poisson distribution) [25, 23, 26]. This time,

much higher utility of the backbone component is observed [25]. In order to find the origins of

this important discrepancy, we dedicate an important part of this thesis to the comparison be-

tween the network performance obtained from experiments and the performance acquired from

contact-based simulations. We reveal that much of the discrepancy in the observed backbone-

induced improvement, comes from a common assumption in contact-based simulations, about

the infinite cache sizes in mobile nodes.

2.2 Data Forwarding in Opportunistic Networks

One of the principal challenges of opportunistic networking is forwarding in the networks

where end-to-end routes are rarely available and where connectivity between mobile nodes is

not a priory known at any given time. Although we are not directly interested in the design of

forwarding algorithms, a short overview of the existing approaches to forwarding in ONs can

help put in context the choices we make in this thesis.

Most proposals that address forwarding in opportunistic networks require certain knowl-

edge of network configuration. In a large number of cases the knowledge of connectivity

schedule is required. In [6], historical data and lists of previous intermediaries are used to

prioritize the schedule of packets transmitted to other peers and the schedule of packets to be

dropped. In [18] forwarding decisions are made based on the topology information, which is

flooded to all nodes inside the link-state packets. In [19], the authors propose PROPHET, a

probabilistic routing protocol that makes forwarding decisions based on the computed delivery

predictability of intermediate nodes. Leguay et al. addresses the forwarding problem with an

algorithm that is based on the use of a high-dimensional Euclidean space, constructed upon

nodes’ mobility patterns. Their algorithm is based on the frequency of nodes’ visits to each

possible location in the network. In [27], the authors use communities obtained from a social

graph to propose a forwarding algorithm based on social relations. Ioannidis et al. use so-

called “weak ties” (i.e., relationships with people outside the narrow social circles) to improve

the dissemination of content updates over a mobile social network [28]. The main problem
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of all these proposals is that they necessitate the knowledge about the network, which is often

unavailable in a self organizing network.

2.2.1 Epidemic Data Forwarding

A special group of forwarding algorithms consists of approaches that rely on epidemic

message replication. The major advantage of this class of forwarding algorithms is that it can

operate with very little or no prior information about network organization. Most of these

proposals assume that a node is equally likely to contact any other node at each time step.

Nevertheless, it has been recently shown that similar performance can be attained when nodes

contact each other, according to some general static graph topology [29, 30].

In addition to being simple and scalable, epidemic procedures were shown to be efficient

with respect to their deterministic counterparts and robust in the face of topological changes

[31]. Due to the fact that epidemic algorithms do not require coordinated collaboration among

nodes, they have been proposed for routing in delay-tolerant networks, where topology is not

a priori known [21]. Even the algorithms that can not be classified as purely epidemic, rely

on epidemic algorithms as a primitive (usually flooding), which is then further improved using

additional information and heuristics to decide which packets to transmit (e.g., [6]).

The epidemic routing is particularly important from the viewpoint of the work done in this

thesis, as we study an opportunistic content update system based on epidemic dissemination in

Chapter 3. Closest to our work is [32], which studies different epidemic strategies for updates

between nodes that are intermittently connected, and focuses on optimal control. However

there are some important differences: first, we assume a more general model, where nodes

move between classes and contact each other and the infrastructure with rates that depend on

the classes. Though our model does not include cost, it allows to truly study the influence of

mobility and geographical constraint on the performance of epidemic algorithm.

Also close to our work on epidemic dissemination (gossip) is the aforementioned [23],

which compares delivery latency of meshes, base stations and mobile relays in opportunistic

systems. Similarities are in the use of a multi-class model for spatial aspects, and in the use of

differential equations. Our goals are significantly different, though. First, we want to character-

ize the complete latency distribution over all nodes and classes, rather than the dissemination

of a single piece of content. To put it differently, and leaving aside the class attribute of a node,

in [23] and [33], the state of one node is a single bit (infected or not) whereas in our case it is a

nonnegative real number (the age of the node’s content). Note that the age cannot be deduced
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from the time since the last infection, since it depends on when the content was originally

emitted by a base station. Thus we have a completely new way to evaluate the freshness of

disseminated information.

2.3 Modeling Human Mobility

In any opportunistic content dissemination system that relies on transmissions between

hand-held devices, human mobility has an important place. For this reason, a number of re-

search efforts directed towards measuring and understanding human mobility (and related to

opportunistic networking) can be found in the literature [34, 35, 12]. In terms of its impact on

the pace of data dissemination, mobility has different and often conflicting roles. On one hand

it can increase the available bandwidth, due to large amounts of data that can be carried by op-

portunistic nodes [36, 37]. On the other hand, mobility is the principle cause of disconnections

between nodes in opportunistic networks.

The existing models of human mobility, such as Levy-walk model, are essentially stochas-

tic, which means that they perceive human mobility as a random process [38, 39]. However,

several recent studies have shown that contrary to the common beliefs about human mobility,

humans follow repetitive and reproducible patterns [40, 41]. In [42] Song et al. measure en-

tropy of users’ trajectories and find 93% predictability in user mobility across the whole user

base. Moreover they find that this predictability varies little across users and does not depend

on distances covered by users on regular basis. Although the authors show the existence of

predictability (by means of measuring entropy), they do not offer algorithms that would help

us use it.

We go on step further and we design and evaluate an algorithm that allows us to extract

and leverage predictability of user mobility (e.g., for energy efficient offloading of 3G data).

In addition to predictability in human mobility, we also detect (in multiple data sets) a strong

mobility bias towards certain regions of the network. We show how this bias can be used to

boost the performance of several applications that we consider (i.e., citywide data dissemina-

tion, orthogonal 3G data offloading, etc.).

2.4 Power Efficiency Aspects of Opportunistic Networking

In line with our efforts to identify the added value that opportunistic networking can bring

to the existing legacy networks, we seek to quantify the energy saving, which is achievable by
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cellular subscribers when they use the available opportunistic bandwidth.

Energy optimization in wireless networks is a problem that draws a lot of attention in re-

search community. A part of the community effort is directed towards the energy saving on

the infrastructure side, namely, in Wi-Fi access points and in cellular base stations. In [43] the

authors consider minimizing the number of base station sites. In [44, 45] switching off certain

sites during the periods when they are under-utilized is proposed. This is typically achieved by

re-arranging the user-cell associations.

Mobile users are much more concerned about the limited battery lifetime of their mobile

devices and, thus, interested in solutions that can extend the battery duration. Comprehensive

measurement studies of energy consumed by wireless smartphone interfaces are performed in

[46, 47, 48]. They all show a strong impact of wireless interfaces on the battery consumption. In

particular, they stress the high cost of 3G transmissions. Nonetheless, they also show that Wi-

Fi scanning and idle state have rather high power consumptions, which means that continuous

Wi-Fi discovery quickly drains the phone battery.

Due to this high energy print of wireless interfaces present on mobile devices, a vast body

of work proposes different techniques that would help us use them in a more economical way.

The proposals usually exploit the diversity of available wireless interfaces and mobility. They

aim at improving energy efficiency, but also download speeds. In [49], the authors propose

collaborative downloading as means of increasing download speeds and battery life. In [50],

policies for switching between multiple interfaces are proposed, with the goal to increase bat-

tery lifetime. Namely, the authors propose switching between Wi-Fi and low-power Bluetooth

radio, during data transmissions. Ananthanarayanan et al. [51] try to improve the energy effi-

ciency of Wi-Fi by replacing Wi-Fi scanning with Bluetooth scanning. Unlike these efforts, we

aim at estimating the energy saving achievable by cellular subscribers that comes from the use

of opportunistic bandwidth.

Many existing proposals (including ours) that target a more efficient content delivery via

wireless necessitate the wakeups of one or more wireless interfaces (that are asleep for the

power efficiency reasons). This often requires certain modifications on the side of infrastruc-

ture. The exception is the work by Wu et al. [52]. They use cellular footprints to wake up the

Wi-Fi interfaces on smartphones when in proximity of Wi-Fi APs. In [53], Agarwal et al. pro-

pose the use of a modified VoIP gateway that would turn on Wi-Fi whenever a VoIP call arrives.

Closer to our work is the proposal by Shih et al. [54], who use a separate paging infrastructure

to wake up Wi-Fi.
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2.5 Securing Opportunistic Communication

Many previous works addressed the problem of security in opportunistic and vehicular

networks. We provide an overview of both groups of proposals, as they are similar with many

respects and they both have some common ground with the security solutions that we propose

in Chapters 6 and 7 of this thesis.

Haggle project addressed the problem of security in autonomous opportunistic networks

[55, 56, 57], which resulted in a number of security mechanisms that are built in the security

manager of the opportunistic Haggle nodes [58]. In [55], the authors analyze the impact of

denial of service attacks on epidemic forwarding protocols, without offering solutions to the

problem. We address this problem in Chapter 7 of this thesis, where we evaluate our scheme for

the reduction of security print. The main difference between Haggle security and the security

solution we propose in Chapter 6 is that the former is designed for a completely autonomous

opportunistic network. We, on the other hand, propose a security framework for the family

of hybrid applications that synchronize with the Internet (i.e., that resamble the opportunistic

Twitter application described in Chapter 5).

A large number of studies addressed the problem of node authentication in an environment

without a trusted authority, where node security credentials are unknown or unobtainable. Solis

et al. [59, 60, 61] propose a method for establishing an initial security context using social

contact information. They then relax authentication requirements in order to reduce security

overhead. In [62], the system of invitations is used to grow an opportunistic network in a

trusted way. In [63], the authors propose a fully self-organized public-key management system

that allows users to perform authentication without any centralized services (i.e., without any

trusted authority). In [64], the authors present a method for key establishment over a radio

link in peer-to-peer networks, based on the modified DH key agreement protocol, resistent to

man-in-the-middle attack. Finally, the work by Asokan et al. [65] is closer to our work, as it

represents a step towards a network security that is bootstrapped using the existing large-scale

security infrastructure.

Unlike the efforts to secure opportunistic networks, the major efforts to secure vehicu-

lar communication assume the existence of a trusted authority (which is why they served as

direct inspiration for a part of the security framework that we propose in Chapter 6). This as-

sumption can be found in three major projects related to vehicular security, namely: the NoW

project [66], the IEEE 1609.2 working group [67], and the SeVeCom project [68]. They all rely

on a Certification Authority (CA) and public key cryptography to protect vehicular communi-
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cation, i.e., to provide message authentication and integrity.

In addition to these large projects, a number of works outlined challenges [69], described

attacks [70], and offered solutions [71, 72, 73] in the field of vehicular networks security. Some

of them propose alternatives to the use of public key cryptography for node authentication. In

[72], symmetric key cryptography complements the public key operations, while in [73] group

signatures are used.

The solutions proposed in [72] and [73] are also important from the aspect of our work

on security print reduction, presented in Chapter 7. In [72], one of the driving forces behind

the introduction of symmetric key cryptography is the reduction of security overhead. In [73]

context-agnostic overhead reduction schemes are proposed. In [74, 75], the authors propose

context-specific strategies for security print reduction. The investigation of the vehicular com-

munications security overhead and its effect on system/application performance is extended in

[76]. These works are complementary to the security print reduction scheme that we propose

and their joint investigation with our scheme would be an interesting point for future work.



Part I

Modeling Data Dissemination in

Opportunistic Networks
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Chapter 3

Epidemic Content Dissemination: Model

and Applications

Simple randomized procedures (also referred to as epidemic or gossiping procedures) have

already been used in computer networks for delivering updates. More precisely, they were

introduced to maintain consistency of a distributed database [77], offering an alternative to

complex deterministic algorithms. Recently, the same epidemic principle was proposed in

the context of data forwarding in an opportunistic network, where links between nodes are

intermittent [21]. However, as nodes (users) move at moderate speeds (in comparison to the

speed of wired/wireless medium) the delay of the epidemic forwarding in an opportunistic

network is a priori non-negligible.

In this chapter, we consider the use of epidemic (gossiping) procedures in an opportunistic

network, where mobile users receive occasional updates through source inputs (from a set of

base stations). Our goal is to determine if gossiping allows for recent updates to be efficiently

maintained, i.e., delivered with low delay to a large number of users.

Applying the concept of epidemic dissemination to an opportunistic network with highly

mobile users is a challenging problem. The lack of structure in these networks makes the mod-

eling of the important dynamics that affect their performance a difficult task. To characterize

the evolution of age (of the latest available update) in an opportunistic content update system,

we use a spatial drift and jump model. The model takes into account mobility, source inputs

and direct mobile-to-mobile (M2M) exchanges. Using a large dataset collected by San Fran-

cisco taxicabs, we show that this approach succeeds in capturing the age evolution with good

accuracy. We then use the mean-field approximation of the model, introduced in [16], to design

19
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an application for greedy infrastructure placement that maximizes the system performance for

the given resources.

The content update system that we consider in this chapter utilizes mobile users, for the

opportunistic dissemination of a single piece of content (that is of interest to all users). The

content is constantly updated at a source and injected in the network via one or more base

stations. In addition to these source inputs, the content propagates in the network as a result of

opportunistic contacts between mobile users. Upon each contact between two mobile users the

one with the most up-to-date copy forwards it to the other, following the epidemic principle.

The metric we are interested in is the age of the latest copy available to each user, or more

precisely, the distribution of ages over all participating users. It is important to note that this age

represents the delay between the broadcast of the content by a base station and its reception by

a mobile node. Thus, the measure that we characterize in this chapter differs from the majority

of the epidemiological (infection) models, which are typically interested in the time elapsed

since the last infection of a node or the spread of a single piece of content.

To account for the fact that contacts between mobile nodes occur as a function of their

location (rather than uniformly), we introduce the notion of spatial classes. A class that a

mobile user belongs to at a given moment in time represents a part of his state description in

the model that we use. A user’s contacts, with base stations and other mobile users, occur

at rates that depend on the current classes of these users. As the mobility of mobile users is

expressed through the change of classes, our goal is not only to capture the age distribution

over the observed user population, but to do this for each of the spatial classes.

The main contributions of this chapter can be summarized as follows. We show that a drift

and jump model that takes a spatial approach allows us to characterize the age distribution of

a dynamic piece of content in an opportunistic content update system. It successfully accounts

for arbitrary mobility, contact rates and the locations of input sources. Using a 30-day trace

with 500 taxicabs in San Francisco area, we show that, in addition to the model, its fluid ap-

proximation fits the data well. This allows us to use it as a fast simulation tool in the cases when

traces are not available, or to perform a what-if analysis, or when the number of mobile nodes

is very large. We propose an infrastructure dimensioning application that uses the ordinary

differential equations (ODEs) that stem from the fluid approximation.

The rest of this chapter is organized as follows. After presenting the related work in the next

section, we describe the model in more detail in Section 3.2. In Section 3.3, we state the main

results derived in [16], related to the mean-field approximation of the model. These results and

the discrete event simulation (stemming from the model) are validated by using a large data set
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in Section 3.4. Finally, in Section 3.5, we describe an application that solves the problem of

infrastructure placement using the equations obtained from the model.

3.1 Related Work

Gossip protocols or epidemic algorithms were used in the past to maintain mutual consis-

tency among multiple database sites [77], for reliable dissemination to a large group [78], or

for peer-to-peer live-streaming [79]. In addition to being simple and scalable, these procedures

were shown to be efficient with respect to their deterministic counterparts and robust in the face

of topological changes [31]. Most of these works assume that a node is equally likely to contact

any other node at each time step. It was recently shown that similar performance can be attained

when nodes contact each other, according to some general static graph topology [29, 30].

Because epidemic algorithms usually assume that nodes collaborate in an uncoordinated

manner, they have also been proposed for routing in ad hoc or delay-tolerant networks where

topology is not known a priori [21]. Most of the routing protocols proposed in opportunistic

delay-tolerant networks rely on epidemic algorithms as a primitive (usually flooding), which is

then further improved using additional information and heuristics to decide which packets to

transmit (see, e.g., [6]). The main difference with the previous works mentioned above is that

messages between nodes are not exchanged randomly or in a static set of neighbors, but they

rather follow contacts created by node mobility.

Close to our work is a study of different epidemic strategies for updates between nodes that

are intermittently connected with focus on optimal control [32]. However there are important

differences: First, we assume a more general model, where nodes move between classes and

contact each other and a base node with rates that depend on the class. Although our model

does not include cost, it allows us to truly study the influence of mobility and geographical

constraints on the performance of epidemic algorithm. Second, we prove convergence to a

mean field regime, whereas [32] mentions it as a plausible assumption. Third, we completely

characterize the mean field regime by partial differential equations (PDEs), which allows us to

both obtain efficient solution methods and derive analytical conclusions. In particular, we show

that the dynamics of this system follow linear multidimensional ordinary differential equations

(ODEs) when focusing on low and high age, which gives us new insight into the impact of base

stations and opportunistic node contacts.

Also close to our work is a comparison of delivery latency of mesh, base stations and mobile

relays in opportunistic systems [23]. Similarities are in the use of a multi-class model for spatial
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aspects, and in the use of differential equations. Our results are significantly different, though.

First, because we focus on opportunistic content updates, we want to characterize the complete

distribution of latency among nodes and classes, rather than the dissemination of a single piece

of content. To put it differently, and leaving aside the class attribute of a node, in [23] and [33],

the state of one node is a single bit (infected or not), whereas in our case it is a non-negative

real number (the age of the node’s content). Note that the age cannot be inferred from the

time since last infection, as it depends on when the content was originally emitted by a base

station. Hence, we have a completely new way of evaluating the freshness of disseminated

information. Showing convergence to a mean field regime in our case is entirely new (and

non-trivial), whereas convergence to a mean field regime in the case of one bit of information

per node as in [23] follows, for example, from [80]. Also note that one can derive the extent of

infection from the age distribution, so, in some sense, our model generalizes the model in [23]

(but note that [23] focuses on dimensioning rules that are not directly addressed in this paper).

We believe that our complete characterization of the age of gossip for a large system signif-

icantly complements previous works. It can be used as a building block to address future issues

of cost efficiency when mobility plays an important role.

3.2 Specifications and Model

3.2.1 A Multiclass Approach

We assume that mobile users (i.e., users of the opportunistic content update system) are

distributed in a finite number of classes. A user may belong to only one class at a time. Its class

may change with time. As different classes represent different locations (regions), the mobility

of users is modeled through the change of classes. We assume that users in the same class are

statistically equivalent, i.e., two different users, in the same location (captured via their class),

behave statistically the same with respect to the evolution of their information age.

We further assume that a collection of N users move and receive updates according to the

following three dynamics:

• Mobility: There exists a finite collection C ⊂ N of C classes, and each mobile user

belongs to a only one class at any given time. We call ρc,c′ the rate of movements (transitions)

from class c to class c′ per time unit.

• Source Emission: At any time a user can receive updated content directly from the source

(through one of the fixed base stations). This happens at rate µc for users that are in a class c.
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• Opportunistic Contacts: A mobile user may meet opportunistically with other users in

the same or other classes. In this case we assume that the user with the most recent information

transmits it to the other. We define the parameters ηc, c ∈ C such that, whenever a pair of users

both are in class c, they meet at a rate
(

2ηc
N−1

)

. This implies that the total contact rate in one

class is Nc(t)(Nc(t)−1)
N−1

ηc where Nc(t) is the number of mobile users currently in class c.

We also allow for opportunistic contacts among users in different classes. This applies to

cases where classes represent different types of users in the same location, or, as in Section 3.4,

to contacts across class boundaries, when classes represent neighboring subareas. We define

β{c,c′}, for c 6= c′ such that two users belonging to classes c 6= c′ meet with a rate
(

2β{c,c′}

N−1

)

.

Note that a class may have no infrastructure (i.e., µc = 0). In this case, the updates can only

come from users that visit different classes. Similarly a class may represent an inactive state

(i.e., µc = ηc = 0) where users are not likely to meet at all.

Example 1 (Homogeneous network) There is C = 1 class. This is the simplest, but as we

show in Section 3.4.2, not a realistic model. All mobile users are statistically the same and they

are equally likely to meet with the information source at any time (at rate µ), as well as with

each other (with rate η).

Example 2 (Classes as geographical regions) We can map a more realistic scenario to

classes as follows. We divide a geographical area of interest to classes, where each class repre-

sents a sub-area. In some classes there are one or more information (content) sources. In such

a class µc is the aggregate rate of injection of new updates at these sources, i.e., the aggregate

contact rate of mobile users with the sources. In Section 3.4, we explain how to measure µc. In

other classes, where there are no sources, µc = 0. We also introduce an extra class (class 16 in

Section 3.4) to account for the mobile users that leave the area (classes) of interest.

We show in 3.4.2 that classes do matter, in the sense that a model with just one or two

classes gives a poor fit to trace results, whereas the one with more classes results in a good fit.

Note that we assume in the model that the total number of mobile users N is constant.

Nonetheless, as explained in Example 2 above, we can account for a variable number of users

by introducing an extra class, to represent mobile users that are not present in the area of

interest. Thus, with our model, N is in fact an upper bound on the number of users in the area

of interest.



24 3. Epidemic Content Dissemination: Model and Applications

Metric We are interested in the age distribution at any time and in any class. We are interested

in the following quantities.

• uN
c (t) is the fraction of users in class c at time t.

• FN
c (z, t) is the fraction of users at time t that are in class c and whose latest update

(obtained from the sources or by gossiping) has age ≤ z. Note that we have for any t ≥ 0,

0 ≤ FN
c (z, t) ≤ uN

c (t), and FN
c (0, t) = 0, FN

c (∞, t) = uN
c (t).

3.2.2 Drift and Jump Model

The evolution of the system above is captured in continuous time via a drift and jump

process. The state of the system at time t is ( ~XN(t),~cN(t)) =
(

(XN
n (t))Nn=1, (c

N
n (t))

N
n=1

)

, with:

XN
n (t) : age of the most recent information update held by user (node) n.

cNn (t) : current class of user n.

The dynamics that affect ages are essentially characterized by:

• If users m,n meet at time t then XN
m (t) := XN

n (t) := min(XN
m (t−), XN

n (t−).

• If a user m meets a base station at time t then XN
m (t) = 0.

• The age of a user increases at rate 1 in an interval where this user does not meet any other

user(s) nor base station(s).

We now formally describes all details of our model.

Evolution of Users Between Classes

Let { Kn,c,c′ | n ∈ N, c ∈ C, c′ ∈ C, c 6= c′ } be N×C×(C−1) independent Poisson pro-

cesses such that Kn,c,c′ has a rate ρc,c′ . Each point of this process denotes a possible transition

from the class c to the class c′ for a user n (the transition always exist, but it has no effect unless

the user n is currently in state c). Thus

d~cN =
∑

n∈N

∑

c∈C,c′∈C,c′ 6=c

(c′ − c) · 1{cNn =c} · ~endKn,c,c′ ,

where ~em is the N × 1 vector with 0 at all components except the mth which is equal to 1. We

can rewrite the fraction of users in class c, uc for any N and any time t as:

uN
c (t) =

1

N

N
∑

n=1

1{cNn =c} .
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The process
{

(uN
c (t))c∈C

∣

∣ t ≥ 0
}

may also be thought of as the occupancy measure of

the vector ~cN with values in C. In other words, it characterizes the values taken by all the

coordinates of ~cN but ignores to which coordinates each value corresponds.

If we assume that the process above satisfies the initial conditions that converge to a deter-

ministic limit (dc)c∈C:

∀c ∈ C , lim
N→∞

uN
c (0) = dc ,

(

for dc ≥ 0,
∑

c∈C

dc = 1

)

(3.1)

then as N becomes large, the Kurtz’s theorem (see e.g., [80]) states that the process of
{

(uN
c (t))c∈C

∣

∣ t ≥ 0
}

converges to a deterministic limit { (uc(t))c∈C | t ≥ 0 } which is the

unique solution of the following ODE problem:







∀c ∈ C , ∂uc

∂t
=
∑

c′ 6=c ρc′,cuc′ −
(

∑

c′ 6=c ρc,c′
)

uc

∀c ∈ C , uc(0) = dc .
(3.2)

By Cauchy-Lipschitz theorem, for any boundary condition (dc)c∈C this ODE problem ad-

mits a unique solution. Following classical notation, we denote the value at time t of the

solution for boundary condition d by uc(t|d).

Assuming that the matrix ρ is irreducible, we may consider the stable mobility regime where

uc(t) = ũc independently of t and is defined as the unique solution of

∀c ∈ C , ũc(
∑

c′ 6=c

ρc,c′) =
∑

c′ 6=c

ρc′,cũc′ and
∑

c∈C

ũc = 1 . (3.3)

Propagation of Information

Let An,c, n ∈ N, c ∈ C be N × C independent Poisson processes such that An,c has a rate

µc. Each point of this process denotes possible information update received by user n directly

from the source in class c (the transition always exist, but it has no effect unless the user n is

currently in class c).

Let Bm,n,c m ∈ N, n ∈ N,m < n, c ∈ C be N×(N−1)
2

× C independent Poisson processes

such that Bm,n,c has a rate 2·ηc
N−1

. Each point of this process denotes a possible opportunistic

contacts for the pairs { m,n }, occurring in the class c (the transition always exist, but it has

no effect unless the users n and m are currently both in class c).

Similarly, define Cm,n,{c,c′} for m ∈ N, n ∈ N,m < n, c ∈ C, c′ ∈ C, c < c′ be N×(N−1)
2

×
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C×(C−1)
2

independent Poisson processes such that Cm,n,c,c′ has a rate
2·β{c,c′}

N−1
. Each point of this

process denotes a possible opportunistic contacts for the pairs { m,n }, occurring when m or

n is in class c and m or n is in class c′ (the transition always exist, but it has no impact unless

the users n and m are currently one in classes c, the other in class c′).

d ~XN = ~1dt−
∑

n∈N

∑

c∈C X
N
n · 1{cNn =c} · ~endAn,c

+
∑

m<n

∑

c∈C

[

1{XN
m<XN

n }~en
(

XN
m −XN

n

)

+ 1{XN
m>XN

n }~em
(

XN
n −XN

m

)]

1{cNn =c}1{cNm=c} · dBm,n,c

+
∑

m<n

∑

c<c′

[

1{XN
m<XN

n }~en
(

XN
m −XN

n

)

+ 1{XN
m>XN

n }~em
(

XN
n −XN

m

)]

1{{ cNn ,cNm }={ c,c′ }} · dCm,n,c,c′ .

We define the occupancy measure of ~XN(t) in class c by:

MN
c (t) =

1

N

N
∑

n=1

1{cNn (t)=c}δXN
n (t) .

FN
c (z, t) (i.e., the fraction of users that are in class c and with ages lower than z) is

FN
c (z, t) = MN

c (t) ([0; z]) =

∫ z

0

MN
c (t)(du) .

3.3 Mean-Field Regime

3.3.1 Mean-Field Limit

In this section we show that as N gets large, the age evolution of the information available

to mobile users becomes close to a deterministic limit characterized by differential equations.

Here, we derive this result heuristically. In [16], Chaintreau et al. mathematically prove the

result.

The assumption is that the initial conditions of the system, as N gets large, converge to a

deterministic limit. In other words, the occupancy of classes by users converges to a determin-

istic vector (dc)c∈C according to Eq.(3.1), and the initial occupancy measure MN
c (0) of ages in

each class converges weakly to a deterministic distribution m0
c , with CDF F 0

c .

Under these assumptions, as N gets large, the collection of occupancy measures MN
c con-

verges in distribution to deterministic processes { mc(t) | t ≥ 0 }. Furthermore, if m0
c admits
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a density, then mc(t) has a density for all t and its CDF Fc(z, t) is the unique solution of the

following PDE problem



































































∀c ∈ C ,
∂Fc(z, t)

∂t
+

∂Fc(z, t)

∂z
=

∑

c′ 6=c

ρc′,cFc′(z, t)−

(

∑

c′ 6=c

ρc,c′

)

Fc(z, t)

+ (uc(t|d)− Fc(z, t)) (2ηcFc(z, t) + µc)

+ (uc(t|d)− Fc(z, t))
∑

c′ 6=c

2β{c,c′}Fc′(z, t)

∀c ∈ C , ∀t ≥ 0 , Fc(0, t) = 0

∀c ∈ C , ∀z ≥ 0 , Fc(z, 0) = F 0
c (z) .

(3.4)

where uc(t|d) denotes the solution of Eq.(3.2).

This can be heuristically derived by considering the mean-field limit for the densities. The

theorem implies that Fc(z, t) admits a density fc(z, t) at all times t if it has one at time 0;

intuitively, the density should satisfy for all c:

fc(0, t) = µc · uc(t)

∂fc(z, t)

∂t
= −

∂fc(z, t)

∂z
− µcfc(z, t)

+
∑

c′ 6=c

ρc′,cfc′(z, t)−

(

∑

c′ 6=c

ρc,c′

)

fc(z, t)

+ 2ηc [(+1)× (uc(t)− Fc(z, t)) · fc(z, t)

+ (−1)× fc(z, t) · Fc(z, t)]

+
∑

c′ 6=c

2β{c,c′} [(+1)× (uc(t)− Fc(z, t)) · fc′(z, t)+

+ (−1)× fc(z, t) · Fc′(z, t)]

The second equation can be interpreted using the different possible transitions from the

point of view of the current population of users in class c and with ages around z. The first

term denotes the passage of time. The second term denotes the population removed from age

z by source injection. The second line denotes the movement of the user population with

age z among different classes. The third and fourth line denotes the impact of opportunistic

contacts within the same class and among different classes. The first transition corresponds

to a new user in class c becoming of age z (which is why it is multiplied by +1). The user
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should already be in the class c and the users it met should have age z, hence the rate of such

a transition is (uc(t)− Fc(z, t)) · fc(z, t) · 2ηc, or if the contacts is among different classes

(uc(t)− Fc(z, t)) · fc′(z, t) · 2β{c,c′}. Last, we have to account for transition where one user

in class c is not any more with age z (which explains the −1 for the population) because its

age decreases. This user leaving should be of age z, and it should meet a user with an age at

most z, hence the transition occurs with rate fc(z, t) · Fc(z, t) · 2ηc, or respectively with rate

fc(z, t) · Fc′(z, t) · 2β{c,c′} if this is an opportunistic contacts with another class c′.

The above system of equations may be simplified if we write by convention, when c = c′,

β{c,c′} = ηc. We can then write, as an example,
∑

c∈C β{c,c′} =
∑

c 6=c′ β{c,c′} + ηc.

fc(0, t) = µc · uc(t)

∂fc(z, t)

∂t
= −

∂fc(z, t)

∂z
− µcfc(z, t)

+
∑

c′ 6=c

ρc′,cfc′(z, t)−

(

∑

c′ 6=c

ρc,c′

)

fc(z, t)

+
∑

c′

2β{c,c′} [(uc(t)− Fc(z, t)) · fc′(z, t)− fc(z, t) · Fc′(z, t)]

Note that z 7→ (uc(t)−Fc(z, t)) ·Fc′(z, t) is a primitive with regard to z of the terms in the

last sum. Therefore, after integrating with regard to z, we obtain Eq.(3.4).

3.3.2 Solution of the PDE Problem

In [16] Chaintreau et al. prove that the PDE problem described by Eq.(3.4) admits a unique

solution, obtained as the transform of a function defined by an ODE problem. The unique

solution F is given by:

∀c ∈ C , Fc(z, t) =

{

hc(z|0, u(t− z|d)) for z ≤ t

hc(t|F
0
c (z − t), d) for z > t

(3.5)

where h(.|b, d) denotes the solution of the following ODE problem defined for a function
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H : [0;∞[→ [0; 1]C:











































∀c ∈ C ,
d Hc(x)

dx
=
∑

c′ 6=c

ρc′,cHc′(x)− (
∑

c′ 6=c

ρc,c′)Hc(x)

+ (uc(x|d)−Hc(x)) (µc + 2ηcHc(x))

+ (uc(x|d)−Hc(x))

(

∑

c′ 6=c

2β{c,c′}Hc′(x)

)

∀c ∈ C , Hc(0) = bc

(3.6)

In the special case where the class occupancy starts in steady state (i.e., u(0) = ũ), we have

F (z, t) = h(z|0, ũ) for z ≤ t and thus F (z, t) does not depend on t for z ≤ t; however, it still

depends on t for z > t.

3.4 Validation With Traces

3.4.1 Validation Setup

We validate the model and the mean field limit using a dataset collected by Yellow Cab

taxis in the San Francisco Bay Area. Thus, the role of mobile users is assigned to the taxicabs.

We divide the San Francisco Bay Area into 16 classes, as shown in Figure 3.1. Fifteen classes

are obtained using a regular square grid. Each of them corresponds to a region of about 4 sq

km. These are the classes that cover the area of interest. The 16th class surrounds the other

classes and contains the area outside classes 1-15. Its existence is important, as it keeps the

number of mobile users in the system rather constant.

Base stations are placed in fixed locations, and we assume that they always have fresh

information update from a source server. We assume that each mobile user (i.e., a taxicab)

is equipped with a short-range radio, which allows for the exchange of data upon a meeting

with base stations or other mobile users. As previously explained, upon a meeting with a base

station, a mobile user receives fresh information. A meeting between two mobile users results

in both of them having the freshest information available in any of them prior to the meeting.

Data Sets We use GPS position records, logged approximately once per minute, which

have been collected as a part of the Cabspotting project [81]. The project aims at visualizing

the aspects of everyday life in SF. About 500 Yellow cab vehicles that operate in the area are

equipped with GPS receivers. Recorded data is sent to the central dispatcher and stored in the

database. Each GPS record contains the cab ID, current location, as well as the time stamp.
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Figure 3.1: The Bay Area is split into 16 classes.
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This allows us to reconstruct the path of each individual mobile node for the past two years.

We use the 30 day GPS trace, from May 17 to June 15, 2008. We observe the 16 hour

periods between 8 a.m. and midnight, in order to avoid night-time, when the number of active

cabs drops.

Generation of Contact Traces In order to obtain an artificial contact trace from an existing

GPS trace, we first have to define ranges, both for mobile users and for base stations. We also

have to define the notion of a meeting between two mobile users or between a mobile user and

a base station. We assume that the radios of mobile users and base stations have a range of

200m. This corresponds to the envisioned range in vehicular communications [82], and it is a

bit longer than the ranges of 802.11 devices (∼140m) or Bluetooth Class 1 devices (∼100m).

Every mobile user performs scanning once per minute, looking for base stations and other

mobile users in the range. Each time another mobile user or a base station is discovered, we

use interpolation to make sure that the contact lasts at least 10 seconds. So, we assume that

a meeting between two mobile users, or a mobile user and a base station happened if, during

scanning, a mobile user detected another mobile user, or a base station and their contact lasted

for at least 10 seconds. In [6], by observing an opportunistic network with buses (equipped with

802.11b radios), the authors found an average transfer opportunity duration of 10.2 seconds,

which was sufficient to exchange on average 1.2MB of data.

Contacts among mobile users, and contacts between mobile users and base stations, can

also occur in between the scanning periods. We decide to ignore these contacts. Given these

constrains and the provided definition of a meeting, we run a simulation (written in Java) and

obtain the contact trace.

Parameter Settings The input parameters for the model and the mean field approximation,

as defined in Section 3.2, are µc, ηc, βc,c′ and ρc,c′ . For each class, we extract them from the

contact traces as follows:

µc (t) =
Nc,ub (t)

Nc (t)
, µc =

1

60

t0+60
∑

t=t0

µc(t) ,

ηc (t) =
Nc,uu (t)

uc(t) ∗ (Nc (t)− 1)
, ηc =

1

60

t0+60
∑

t=t0

ηc(t) ,

βc,c′(t) =
Nc,c′,uu(t)

2 ∗N(t) ∗ uc(t) ∗ uc′(t)
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where N(t) is the total number of users during an observed one minute interval t; Nc(t) (resp.

uc(t)) is the number (respectively the fraction) of users in class c during the same time interval;

we denote by Nc,ub(t) (resp. Nc,uu(t)) the number of meeting between mobile users and base

stations (respectively between two mobile users) during the time interval t; finally, for any two

classes c 6= c′, we denote by Nc,c′,uu(t) (resp. Nc,c′,trans(t)) the number of meetings between

users in different classes (respectively the number of transitions from c to c′) during the time

interval t. As shown above, per hour values of the parameters are calculated by averaging their

per minute values over the period of one hour.

The values of the input parameters show that the user mobility is highly skewed: 75% of

users can be found within 4 popular classes (classes 2,3,6 and 15, i.e., the city center and the

airport); users spend on average 12 to 40 minutes in one of these classes before moving; 10%

of users can be found in the surrounding classes (i.e., classes 1,4,5,9 and 12) where they spend

less time (4 to 12 minutes before moving away). Class 16 contains roughly 10% of “persistent”

users that remain in this class during two hours on average. All the other classes contain in

total 5% of users; class 13 is normally empty. The meeting rate between any two users within

the same class is typically between (1/60 minutes) and (1/80 minutes); it is higher in classes

9,12,15 (1/20 minutes), and much lower in classes 10,11,13 and 16 (bellow 1/200 minutes).

Contact rates between users in different classes are often negligible (these rates are typically

lower than 1/2000 minutes).

Running the Simulations The obtained input parameters are used for two purposes: (i) to

simulate the random model described in Section 3.2 with N = 500 nodes and, (ii) to compute

the mean field limit by solving the ODEs introduced in Section 3.3.2, using Matlab 1. The

contact trace itself is used directly for an event-driven simulation. In all three cases, we get the

corresponding age distributions for each minute of the observation.

3.4.2 Comparison of the Trace, Model and MF Limit

We now compare the age distributions obtained from the trace, the model and the mean-

field approximation, for the case of a single base station, placed in class 3. In terms of contacts,

a user in class 3 meets the base station with a rate (1/45 minutes). Simulations start at 8 a.m.

We set the initial information age at each mobile user to 8 hours, in line with the night-time

inactivity.

Figure 3.2 shows the Cumulative Distribution Functions (CDFs) for the ages in different

1. The value of ũc in the ODEs is obtained from Eq.(3.3).
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(a) t=1pm

(b) t=8pm

Figure 3.2: CDFs for classes 1-12 and 14-15, obtained from the trace, the model and the mean
field limit. The CDFs show the age distribution (z) in different areas of San Francisco at 1 p.m.
and 8 p.m., for the case of a single base station, placed in class 3.
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classes, obtained at 1 p.m. and 8 p.m. from the trace, the model and the mean field limit.

The hourly CDFs are obtained by averaging the CDFs for individual minutes. We omit classes

13 and 16 as they are of less interest (typically empty and disconnected from the rest of the

network).

The distribution of ages, obtained from the model, shows a very good match with the dis-

tribution acquired from the trace, in particular, for the popular classes (i.e., 2, 3, 6, 15) and the

classes that surround them (i.e., 1, 4, 5, 6, 12). This means that our modeling assumptions suc-

ceeded in capturing the important dynamics. Some discrepancies are observed in peripheral

classes, which may be explained as follows: In classes with very few mobile users, the age of

a single mobile user (which stopped for some reason too far from the main road and cannot

receive an update), can create a significant difference between the trace and the model. Indeed,

classes 10, 11 and 14 contain on average 1.1, 2.1 and 2 mobile users respectively.

The mean-field limit matches the model well, except, again, for discrepancies observed in

peripheral areas.

The Importance of Being Opportunistic

For applications that deliver updates, the quality of service (in terms of age) can be mea-

sured as the fraction of mobile users in each class whose age is lower than a given threshold.

We now compare this measure in the case where opportunistic exchanges between mobile users

are allowed and in the case where dissemination is performed only via the base station.

Figure 3.3 shows the percentage of mobile users in each class that have age lower than 20

minutes at 1p.m. and at 8p.m. (300 and 720 minutes after the start of the observation), obtained

from the trace, the model and the mean-field approximation. The figure also displays the same

measure for the case where only the base station is used to disseminate content. We see that in

this second case, the observed percentage is low and remains under 20%, even in class 3 where

the base station is located. In contract, leveraging opportunistic mobile-to-mobile contacts,

significantly reduces age in all classes. We observe that the fraction of users with age lower

than 20 minutes in classes 2, 3, 6, 9, 12, 15 (that together contain 80% of the nodes) is very

high.

These results can be better interpreted using the spatial representation shown in Figure 3.4,

where data provided in the upper panel of Figure 3.3 are shown spatially for the trace and for

the mean-field approximation. We observe that classes benefit differently from the base station

located in class 3. Classes 2 and 6 feel the benefit as immediate neighbors. Classes 9, 12 and
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Figure 3.3: The fraction of mobile users in classes 1-15 who have age z<20 minutes, acquired
from the trace, the model and the mean field limit, for a single base station placed in class 3.
For the comparison, we plot the values obtained from the trace without opportunistic contacts
(bottom curves). Top panel - values at 1 p.m. (t=300 minutes). Bottom panel - values at 8 p.m.
(t=720 minutes).
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15 benefit from the users who move along the highway between the city center and the airport,

as well as from the high meeting rates among users in these classes. Classes 1 and 5, although

geographically closer to class 3, benefit less from the opportunistic mobile-to-mobile contacts,

due to the bias in mobility. All other classes benefit only marginally as the density of users and

the contact rates in these classes are too small.

Figure 3.4: Comparison between the mean field limit and the trace: Fractions of mobile users
in classes 1-15 with age z<20 minutes at time t=300 minutes (1 p.m.).

In summary, the opportunistic (mobile-to-mobile) contacts are useful as they significantly

improve the availability of the up-to-date content in the network and they can compensate for

a lack of infrastructure. The improvement depends critically on the user density, their mobility

and the opportunistic contact rates and it is accurately captured by the mean-field limit.

The Importance of Being Spatial

We now evaluate the effects of the spatial approach on the accuracy of the model, by com-

paring our previous results (with 16 classes) with a case where classes 1−15 have been merged
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Figure 3.5: The importance of being spatial. The QQ plots, comparing the age quantiles ob-
tained from the dataset with the quantiles obtained from the mean field CDFs, for the 16 class
and 2 class scenarios. The observed time period is 5 p.m.-6 p.m.

into a single class (so that only 2 classes remain, i.e., C = 2).

Figure 3.5 contains two QQ plots. On the first subfigure the age distribution obtained from

the dataset is compared with the age distribution obtained from the mean-field approximation,

for the case with C = 16 classes. On the second subfigure the dataset age distribution is

compared with the age distribution obtained from the mean-field approximation, for the C = 2

class case. The dataset age quantiles for the C = 16 class case, are obtained from the mobile

users in classes 1 − 15, during the afternoon peak hour (5pm-6pm). The dataset age quantiles

for the 2-class case are obtained from mobile users in class 1, during the same period. The

mean-field ages are generated using the mean-field CDFs for the same time interval.

Figure 3.5(a) suggests that in the case with C = 16 classes, the mean-field limit age and the

age obtained form the dataset come from the same distribution. In contrast, in the C = 2 class

case, (Figure 3.5(b)), we observe that the mean-field limit underestimates the quantiles with

low age and almost always overestimates the quantiles for high age. This is a clear indication

that data comes from different distributions.

The results above show that it is essential to capture the diversity of locations (via classes),

as they differ radically in terms of expected performance (age distribution). The primary factors

are the dependencies between classes created by patterns of mobility (transition matrix ρc,c′)

and the contact rates (µc, ηc, βc,c′) that are influenced by mobile user densities and variations in

placement of base stations.
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3.5 Application

We now consider the following problem. We would like to leverage mobility and oppor-

tunistic contacts between taxicabs to disseminate news, traffic information or advertising. Each

of these applications, however, requires a certain level of infrastructure (i.e., the base stations).

The number and placement of base stations, needed to achieve a certain quality of service, are

not easy to guess. The answer, in general, depends on the density of users in different areas,

as well as the transition rates and rates of opportunistic contacts. We show in this section that

a greedy algorithm based on the mean-field limit offers a fast and efficient method for place-

ment of base stations, over multiple classes. It also offers a significant improvement over other

simple heuristics.

3.5.1 Method for Infrastructure Deployment Based on MF Approximation

The problem we try to solve can be formulated in the following way: For a fixed budget

(fixed number of base stations), we would like to find an efficient placement of the base stations

over a predetermined finite set of classes, based on a range of possible metrics.

Assumptions We assume that a predefined set of possible locations in each class, where the

base stations can be placed, is known to the service planners. Each of these locations carries

information about the popularity of the spot. Our assumption is that this piece of information,

along with the other input parameters required by the model, can be provided by traffic engi-

neers (traffic counting and estimation models), or based on a dataset, collected by some other

service in the city (a taxi company for instance).

Metrics We wish to maximize one of the following objectives (Fc(z0, t0) and ũc follow pre-

vious definitions):

metric1 metric2 metric3
∑C′

c=1 Fc(z0, t0)
∑C′

c=1
Fc(z0,t0)

ũc
minc=1,...,C′

Fc(z0,t0)
ũc

Maximizing metric1 is a global “per mobile user” objective; it tends to maximize the

number of mobile users, in all classes, that have an age lower then z0 during the peak hour

(t0); Metric2 is a “per class” metric; using this metric we try to achieve more even distribution

of mobile users with ages lower than z0, over the observed 15 classes. Finally, metric3 focuses

on the class with the “worst” value of the age, and tends to decrease the gap in quality that
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exists between this class and the other classes; this metric can be used for instance if we want

to achieve some minimal QoS in all classes. We denote the total number of classes, where we

plan to place base stations, by C ′. In our particular case C ′ = 15, as we do not place any base

stations in class 16 (our goal is not to improve the quality in class 16).

Class Number of base stations per class
num metr1 metr2 metr3 unif. prop.

c = 1 3 2 0 2 0
c = 2 0 0 0 2 6
c = 3 0 0 0 2 10
c = 4 7 5 0 2 0
c = 5 0 0 0 2 2
c = 6 1 1 0 2 5
c = 7 2 2 1 2 0
c = 8 3 3 1 2 0
c = 9 0 0 1 2 1
c = 10 2 3 5 2 0
c = 11 1 1 9 2 0
c = 12 0 0 0 2 1
c = 13 5 7 7 2 0
c = 14 6 5 5 2 0
c = 15 0 1 1 2 5

Table 3.1: Placement of 30 base stations in classes 1−15, acquired from the greedy placement,
which uses the ODEs for quality estimation. The results for the 3 considered metrics, as well
as for uniform and proportional placements of base stations are shown.

Placement of base stations The algorithm we propose for the placement of base stations is

a greedy algorithm (see [83]). Let us denote the total number of base stations by S, and the

the number of base stations placed in class c by ac. We define the cost as the total number of

base station (i.e., cost =
∑C′

c=1 ac). As previously explained, we assume that the dependency

µc(ac) is known to the service planners, along with the other input parameters for our model.

As defined in Section 3.2, µc denotes a contact rate with the base stations inside class c. We

assume that a base station placed in class c cannot be seen from other classes, but only from

within a region, limited by the base station’s range, inside the class c. We start adding base

stations one by one. For each base station there are C ′ possible placement options, one in each

of the classes to which base stations are being added. Here we apply the greedy approach and

use the ODEs (stemming from the mean field approximation) to evaluate which placement, out

of C ′ possibilities, brings the most benefit to the observed metric. The base station is then

placed accordingly. The procedure is repeated S times until all S base stations are placed.

Algorithm requires the system of ODEs to be solved SxC ′ times.
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Example Here we provide a numerical example for the placement method described above,

based on the taxicab scenario described in Section 3.4. We assume that 30 base stations are to

be placed. The input parameters for the system of ODEs are known, as well as the dependency

µc(ac). We use the input parameters obtained for the afternoon peak hour (5p.m. − 6p.m.).

The goal is to choose the values of ac for each of the fifteen classes where base stations can be

placed.

Table 3.1 shows results obtained with 3 different metrics defined in this section, as well as

the values of ac for proportional and uniform placements. In the case of each metric we use

z0 = 20minutes as the value for the target age.

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15
0

0.2

0.4

0.6

0.8

1

Class number c

F
c
(z

0
=

2
0

m
in

, 
t 0

=
6

p
m

) 
/ 

u
c

 

 

F
c
(z

0
, t

0
)/u

c
−metric1

F
c
(z

0
, t

0
)/u

c
−metric2

F
c
(z

0
, t

0
)/u

c
−metric3

F
c
(z

0
, t

0
)/u

c
−uniform

F
c
(z

0
, t

0
)/u

c
−proportional

I

~

~

~

~

~

Figure 3.6: QoS achieved in classes 1−15 using greedy method for placement of base stations,
based on MF approximation. The curves show fractions of mobile nodes in each class with age
z < 20 minutes, at time t0 = 6p.m., for 3 metrics, defined earlier in this section, as well as for
proportional and uniform placements of base stations.

Figure 3.6 shows the effect the placements have on performance. It displays the fraction

of mobile nodes in each class that have age lower then 20 minutes; we see that metric1 and

metric2 provide similar results, even though the placements of base stations for these two

metrics are different. Metric3 sacrifices efficiency for fairness. It degrades performance of
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most classes, to reach a marginal improvement in the worst case class. Finally we see that

proportional placement of base stations, based on the density of mobile users, results in worse

performance, than the less sophisticated uniform placement with 2 base stations in each class.

3.6 Conclusion

Unlike some earlier studies that focus on latency of a single piece of content, we design a

model that is capable of capturing the age distribution over all users and over different spatial

regions of the network. This choice of metric allows us to observe the performance in different

parts of an opportunistic network and to understand the effects of various factors that affect this

performance, i.e., opportunistic contacts among users, contacts with infrastructure and user

mobility.

We show that, from the perspective of age distribution, areas with large number of users

enter the mean field regime and we provide differential equations that describe this behavior.

Finally, we demonstrate how the mean field approximation can be used as a fast simulation tool

for infrastructure placement, providing the optimal placement for predefined utility functions.
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Chapter 4

Opportunistic Energy-Efficient Offloading

of 3G Networks

In Chapter 3, we use the system of ODEs stemming from the mean field approximation to

design a method for limited infrastructure placement that boosts the performance of an oppor-

tunistic network. In this chapter, we seek to deploy wireless infrastructure and opportunistic

mobile-to-mobile exchanges, in a way that would also take into account the existing cellular

infrastructure. Our principal goal is to utilize the additional capacity available in opportunistic

networks (based on 802.11 technology), in order to alleviate the problem of ever increasing

mobile data consumption, which is putting a huge pressure on mobile operators’ 3G networks.

For example, in three years, the mobile data traffic in AT&T’s network rose 5000% [84].

The primary reason for this situation is the rapid proliferation of smartphones, which is

pushing the existing 3G networks to the limit. Although the backbone capacities are usually

sufficient, it is becoming difficult and expensive for mobile operators, with a strong smartphone

offering, to provide sufficient access capacity to their subscribers. After a series of reported

problems [85], AT&T (until recently the only iPhone vendor in the US) purchased a $2 billion

mobile bandwidth from Qualcomm in December 2010 [86].

In addition to the growth in the number of smartphones, the increase in the amount of

video clips, music files and photos available on the Internet is changing the way mobile users

search and access content. In two weeks, YouTube users upload 120 years’ worth of movies

in IMDb [87]. This user generated content is often served to users through social networks,

social bookmarking services and websites for organization of social news, such as del.icio.us,

Citeulike, StumbleUpon, Digg or Reddit [88].

43
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Several studies have shown the Zipf popularity distribution of contents recommended through

social networks [89]. This means that popular contents are downloaded, without constraints, by

a large number of subscribers. Such behavior leads to bottlenecks, especially in densely popu-

lated urban areas, during peak usage hours. This is a strong incentive for operators to offload

a part of the traffic from their 3G access networks (while preferably maintaining the ability to

charge for data).

From a user’s perspective, the availability of affordable data plans and the growing pop-

ularity of social networks can be mapped into a systematic overuse of battery-intensive 3G

connections and an avalanche of community recommended content. Socially recommended

content may not necessarily be needed in real time, however it is always treated as such and

downloaded immediately via 3G at a high energy cost. For this reason, in the case of bulky

socially recommended content, we propose to users to trade some delay for energy, and extend

the constrained battery life of their smartphones.

We propose two algorithms for energy efficient offloading of 3G networks based on 802.11

protocol. In both cases the focus is on socially recommended, delay-tolerant content. The first

algorithm, which we call the MixZones algorithm, exploits opportunistic exchanges between

smartphones, in the areas called MixZones. The second algorithm, which we refer to as the

HotZones algorithm, requires covering a fraction of cells, dubbed HotZones, with Wi-Fi access

points. Both solutions replace a part of the costly 3G transfers with Wi-Fi transfers. In both

algorithms the problem of high Wi-Fi scanning overhead is solved by the use of prediction,

provided by the operator.

We evaluate the algorithms using a large, operator provided data set, which contains three

months of activity and mobility for more than half a million users, in a European capital and

its major commuting suburbs. We compare their performances with the real-time offloading

solution, currently deployed by certain mobile operators, which allows users to seamlessly

switch between Wi-Fi and 3G (we call it RT Wi-Fi Zones). For the evaluation purposes, we

design a realistic application similar to Apple’s Ping music social network. It allows users to

request music, by relying on social recommendation, from a catalogue characterized by Zipf

popularity distribution.

Our first contribution in this chapter is the design of two algorithms for delay-tolerant of-

floading of large, socially recommended contents from 3G networks. The algorithms take

advantage of the findings made in Chapter 3 that we again confirm by using a much larger data

set in this chapter. For example, although essentially different (as one algorithm relies on M2M

transfers, and the other leverages Wi-Fi access points), both algorithms are based on the fact
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that user mobility is biased towards certain regions, whose statistics play a particular role in the

perceived performance.

The second contribution is the evaluation of the algorithms using a large operator-provided

data set (with more than half a million users) that allows for a comparison of the proposed

algorithms with the real-time offloading solution currently deployed by some operators. We

find that both our algorithms succeed in offloading a significant amount of traffic, with a positive

effect on user battery lifetime. More specifically, we show that prediction and delay (in the

order of a few hours) can reduce the battery consumption coming from 3G transfers of delay-

tolerant content for up to 50%. We also show that the Wi-Fi coverage needed to offload a

significant amount of traffic (80 − 90%) is reduced very quickly (by a factor of 3 to 4) when

some delay is tolerated. Finally, we show that both algorithms deliver content with the lowest

delay during the peak hours, when offloading is most needed.

Surprisingly, we find that all the benefits achieved, with the comprehensive operator-supported

algorithm that relies on direct M2M transfers (MixZones), can be achieved with the less com-

plex HotZones algorithm and a small investment in Wi-Fi access points.

The rest of this chapter is organized as follows. In Section 4.1 we present the problem

background and the related work. In Section 4.2 we introduce our offloading solutions. In Sec-

tion 4.3 we describe our evaluation setup. In Section 4.4 we present the performance evaluation

results and in Section 4.5 we conclude the chapter.

4.1 Problem Background and Related Work

4.1.1 Mobile Data Explosion

When mobile data was introduced in the early 2000s, operators unsuccessfully looked for

applications that would instigate subscribers to use slow 2.5G networks on their voice-centric

phones. It was the e-mail application on the first data-centric smartphones that started to reverse

the situation. The appearance of iPhone in 2007 finally changed everything and exposed users

to rich data services, such as mobile video.

This event transformed the perception of mobile Internet, but it also transformed the prob-

lem of unused capacity in cellular data networks into a problem of enormous growth of mobile

data traffic. Figure 4.1 compares the growth in voice and data traffic in the North America,

from January 2007 to May 2009. The impact iPhone releases have on the shape of the data

curve is clearly visible.
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Figure 4.1: The growth of data relative to voice traffic in North America. The two inflection
points for data correspond to releases of iPhone (July 07) and iPhone 3G (July 08).(Source:
Rysavy Research)

4.1.2 Offloading vs. Capacity Increase

The problem the growth of mobile data traffic creates is particularly difficult to solve in the

radio access part of the network. The part of the spectrum that an operator has at its disposal is

limited and the efficiency of its exploitation depends on the deployed technology.

Building new cell sites or upgrading to new technologies are expensive fixes that have been

applied for the past decade. The US mobile operators alone invest $50 billion in their data

networks every year and the technology upgrades and innovation still fail to keep up with the

demand [90]. Innovation on the other hand evolves the efficiency of transmission and recep-

tion, but it can not eliminate the fact that the number of bits that can be sent in a radio stream

is limited. In spite of the continuous effort to deliver higher bandwidth over more spectral effi-

ciency, even the new generation 4G/LTE networks are not capable of serving growing demand

in the densely populated urban areas.

An alternative to capacity build-up is traffic offloading through orthogonal solutions. Li-

censed spectrum femtocells or unlicensed Wi-Fi can allow operators to increase capacity in cer-

tain areas, while preventing users from bypassing their networks (connections via alternative
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Wi-Fi networks). Operators want to avoid bypassing and maintain control over data exchanged

through the unlicensed spectrum, in order to monetize it. Since May 2010, AT&T has been

deploying Wi-Fi access points in areas with consistently high 3G traffic and mobile data use

[91]. We compare this solution with our delay-tolerant, prediction based algorithms.

4.1.3 The Challenges of Wi-Fi Offloading

Given the classification in Section 4.1.2, our approach can be classified as orthogonal of-

floading through the unlicensed spectrum, namely Wi-Fi. As previously explained, our princi-

pal goals are (i) to offload a part of the data from 3G networks and (ii) to offer users a possibility

to trade delay for extended battery lifetime. We want to achieve these goals by replacing the en-

ergy costly 3G transfers with the more efficient Wi-Fi exchanges. The challenges are however

the Wi-Fi’s limited range, inefficient idle state and high scanning overhead.

The energy consumption of different networking interfaces present on today’s smartphones

depends on multiple factors, such as distance, interference, signal strength or device model.

Thus, the dependency between the size of the transferred data and the energy consumed by

the used networking interface is commonly obtained by averaging series of measurements at

different locations, at different times of the day and by different devices [46, 47, 48, 50]. In

Table 4.1 we summarize the results presented in [46] and [51].

Transfer (J/MB) Idle (W) Scan (W)
3G 100 0 0
Wi-Fi 5 0.77 1.29
Bluetooth 0.1 0.01 0.12

Table 4.1: Consumption of smartphone’s network interfaces. Wi-Fi transfers consume signifi-
cantly less energy than 3G transfers, but scanning and idle state consumption add to the cost.

We see that, observed purely from the aspect of energy required for data transfers (and ig-

noring the range), Wi-Fi is much more efficient than 3G. However, any solution that requires

smartphones to keep their Wi-Fi interfaces switched on, constantly scanning for transfer oppor-

tunities, would actually consume more, and not less energy than 3G transfers. Let’s see it on the

example of an iPhone 4 and its 5.25Wh battery. When switched on, an iPhone’s Wi-Fi interface

interchangeably scans for 1s and then spends 8s in idle state. Given the values in Table 4.1,

simple calculus gives us that in this regime the daily consumption of iPhone’s Wi-Fi interface

would be 19.87Wh. This means that the battery of an iPhone that performs continuous Wi-Fi

scanning empties in less than 6.5h.



48 4. Opportunistic Energy-Efficient Offloading of 3G Networks

So, in the ideal case, 3G transfers would be replaced with energy more efficient Wi-Fi

transfers whenever possible, but Wi-Fi interfaces would be switched off whenever transfer

opportunities are not present. In other words, Wi-Fi craves for alternative solutions for the

detection of transfer opportunities. In order to solve this problem, we use prediction provided

by the operator.

4.1.4 Related Work

Comprehensive measurement studies of energy consumed by wireless smartphone inter-

faces were performed in [46, 47, 48]. They all show that Wi-Fi scanning and idle state have

rather high power consumptions, which means that continuous Wi-Fi discovery quickly drains

the phone battery. In terms of data transmissions, they show that 3G transfers consume sig-

nificantly more energy than Wi-Fi transfers, which is understandable given the radio ranges of

these technologies.

For these reasons, a number of papers proposed modifications in the usage strategies of

different wireless interfaces that are present on mobile devices. This body of work typically

exploits the diversity of smartphone interfaces and mobility, with the goal of improving energy

efficiency and/or download speeds. In [49], the authors propose collaborative downloading as

means of increasing download speeds and battery life. In [50], policies for switching between

multiple interfaces are proposed, with the goal to increase battery lifetime. Namely, the authors

propose switching between Wi-Fi and low-power Bluetooth radio during data transmissions.

Ananthanarayanan et al. [51] try to improve the energy efficiency of Wi-Fi by replacing Wi-Fi

scanning with Bluetooth scanning. To the best of our knowledge, we are the first to estimate

the energy saving achievable by cellular subscribers, coming from the use of opportunistic

bandwidth. Our study is also the first to quantify the amount of data traffic that can be offloaded

from a 3G network using the opportunistic bandwidth for different values of delay (different

QoS requirements).

Most studies that leverage the diversity of wireless interfaces to save energy (including

ours) require occasional wake-ups of the wireless interfaces, which are often asleep for power

efficiency reasons. The existing proposals typically require certain modifications of the existing

infrastructure. The exception is the work by Wu et al. [52]. They use cellular footprints to wake

up the Wi-Fi interfaces on smartphones when in proximity of Wi-Fi APs. In [53], Agarwal et

al. propose the use of a modified VoIP gateway that would turn on Wi-Fi whenever a VoIP

call arrives. Closer to our work is the proposal by Shih et al. [54], who use a separate paging
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infrastructure to wake up Wi-Fi.

Another related body of work concerns studies of human mobility [92]. In [40] and [41],

the authors use operator provided data to show that contrary to common beliefs, humans follow

repetitive and reproducible patterns. We show how this predictability is a key to solve the issue

of energy efficient 3G data offloading. In [93], the authors investigate the correlation between

locations and types of users’ activities (types of content that they access). This mapping be-

tween user mobility and activity can be used to further improve prediction and to simplify the

identification of locations where Wi-Fi can assist 3G data transmissions.

Finally, closely related to the application analyzed in this chapter are the applications that

leverage the cloud to surpass the limitations of mobile environment [94].

4.2 Our Offloading Solutions

In this section we first describe the two algorithms for delay-tolerant offloading of 3G net-

works that we propose, namely, the HotZones algorithm, based on the placement of Wi-Fi ac-

cess points and the MixZones algorithm, based on direct operator-guided M2M transfers. We

then discuss the implementation aspects of these algorithms in Section 4.2.3 and the technique

used to extract user mobility from the used call detail records (CDRs) in Section 4.2.4

4.2.1 HotZones Algorithm

A HotZone is a cell, partly covered by the operator owned Wi-Fi access points. We do not

expect this coverage to be perfect. Thus, when in a HotZone, a user can expect to receive a

requested content through one of these access points with probability p. We assume that an

operator deploys the Wi-Fi access points in addition to the existing 3G infrastructure, with the

goal of offloading a part of the traffic from the 3G network.

In the process of HotZones selection, an operator first extracts typical mobility profiles of

its subscribers. We refer to these profiles as User Mobility Profiles (UMPs). The process of

their extraction is described in Section 4.2.4. With the UMPs created, an operator ranks cells

based on the average number of daily visits. Then, a set of HotZones H is chosen in a greedy

way, so that a cell with the highest number of daily visits is added first to the set, the second

most visited cell is added second, etc. The cardinality of the set H is a tradeoff between the

cost of the Wi-Fi deployment and the targeted benefits. As we show in Section 4.4, this number

strongly affects the observed performance measures.
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Procedure 1 Serving user’s requests in a network with HotZones.

if (Su
r (t) 6= ∅) then

if (c ∈ H) then

Turn on WiF i interface;
Try to serve all r ∈ Su

r (t) via WiF i;
//a success with probability p

else

Get τuH = time before u enters a cell ∈ H ;
for all r ∈ Su

r (t) do

if (τr expires in ≤ τuH) then

Serve r via 3G;
else

Do nothing;
end if

end for

end if

else

Do nothing;
end if

The rationale behind the greedy selection of HotZones is that a user’s request does not have

to be served in a cell where it is created. As we target delay-tolerant offloading (keeping in

mind that Wi-Fi access points are affordable, but not free) it makes sense to concentrate on

cells with a high number of daily visits.

Once the set of HotZones H is created, an operator sends it to each user, along with his

UMP. The operator can also send occasional updates if needed (for example if a new cell is

covered by Wi-Fi access points). As any mobile application can obtain the real-time infor-

mation about the current cell, it can use the set of HotZones and the UMP for the prediction

of Wi-Fi availability. A whole class of mobile applications, where delay-tolerant content is

requested can benefit from such prediction.

One such application, which we use in our evaluation is described in Section 4.3.2. Let us

denote by Su
r (t) the collection of pending requests of a user u (i.e., the user u’s requests that

are still not served at time t). Let us denote by c the current cell of the user u. Finally, let us

denote by D the maximum delay users permit. Each time a request r is created, a timer τr with

timeout equal to D is set by the application. If the request is not served before the expiry of

the timeout, it is served via 3G. Using these parameters, the application on user u’s smartphone

performs Procedure 1 every TP minutes.
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We see that the application relies on the user’s UMP for the prediction of possible Wi-

Fi transfer opportunities within the allowed delay D (enforced with timers τr). If such an

opportunity is not likely to emerge, the pending requests in the set Su
r (t) are served immediately

through 3G in order to minimize delivery delays.

4.2.2 MixZones Algorithm

A MixZone is a (c, t) pair (where c denotes a cell and t denotes an hour of the day). The set

of MixZones M is selected by an operator using the following probabilistic geometric model.

Let us denote by Ae
c the effective area of a cell c. Let us denote by R the Wi-Fi radio range

(90m) and let us denote by Nc(t) the number of users in cell c during hour t. A pair (c, t) is

added to the set M if, on average, the following condition is satisfied for hour t:

pc(t) = 1− (1−
R2π

Ae
c

)Nc(t) ≥ Pthresh

Probability pc(t) is an estimate of the probability that a user in a cell c enters the range of

another user during hour t. We assume that the spatial distribution of users in cell c is uniform.

Pthresh is the value of the probability pc(t), which needs to be exceeded at hour t in order

for the pair (c, t) to be added to the set M . The effective area of the cell Ae
c is introduced

to compensate for the assumption of uniformity, as there are regions in each cell that are less

likely to be visited by users. Thus, Ae
c represents 90% of the cell area in the case of small cells

(A < 4km2), 75% in the case of medium cells and 60% in the case of large cells (A > 25km2).

The HotZones algorithm has only the spatial dimension. With the MixZones algorithm,

we also have the temporal dimension. A cell that is a MixZone at time t1 is not necessarily a

MixZone at time t2, t2 6= t1. This is because the MixZones algorithm is based on opportunistic

transfers, which means that users that want to exchange content have to be in radio range, with

their Wi-Fi interfaces switched on during the same period of time. As we want to avoid the

Wi-Fi scanning, it is the operator who decides when and where the Wi-Fi interfaces on a group

of users’ devices are switched on.

In the case of the MixZones algorithm the quasi-static user mobility profiles (UMPs) are

not sent to users. Instead, an operator uses UMPs, along with the set M , to concurrently signal

to a group of users’ smartphones if their Wi-Fi interfaces need to be switched on. As UMPs

and set M are stored only on the operator side, they can be refreshed more often (than in the

case of the HotZones algorithm), using the information coming from calls and data sessions.

As the MixZones algorithm is based on opportunistic exchanges, it is assumed that every
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Procedure 2 Serving user’s requests in a network with MixZones.

if (c ∈ M) then

Turn on WiF i interfaces in set Uc(t);
Opportunistic WiF i transfers among users;

else

for all users u in cell c do

Get τuM = time before u enters a cell ∈ M ;
for all r ∈ Su

r (t) do

if (τr expires in ≤ τuM) then

Serve r via 3G;
else

Do nothing;
end if

end for

end for

end if

user has a cache, where she stores content that can be sent to other users. Additionally, it is

assumed that an operator has the real-time insight in the content requested by users and content

available in users’ caches. Whenever a user creates an item request or receives an item, she

notifies the operator’s cloud, by sending the ID of the item.

Similarly as in the HotZones algorithm, let us denote by Su
r (t) user u’s collection of pending

requests. Let us denote by D the maximum permitted delay. Each time a request r is created, a

timer τr with timeout D is set by the application. If the request is not served before the expiry

of the timeout, it is served via 3G. Finally, given the knowledge of items requested by users and

items available in their caches, at any time t and in any cell c, an operator can select a set of

users Uc(t), such that each selected user: (i) either has items requested by some other users in c

or (ii) requests items available in the caches of some other users in c. Using these parameters,

a server in the operator’s cloud performs Procedure 2 every TP minutes, for every cell c in the

network.

The idea behind the creation of the set Uc is to switch on only the users that can contribute to

data transfers. The problem is similar to the NP hard set cover problem, where a set of items is

to be covered with a number of subsets. It differs in that in our case each requested item should

be covered by preferably more than one copy, in order to increase the delivery probability.
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4.2.3 Implementation Aspects

From the implementation aspect, HotZones algorithm is less complex to deploy. It requires

an operator to create UMPs and the set H and to deliver them to users. Apart from this ini-

tial support from the operator (and possible occasional updates), the HotZones algorithm is

completely distributed. All decisions with regard to the use of networking interfaces are made

locally by the smartphone application. The APIs of today’s smartphone operating systems

(such as iOS) enable applications to switch between 3G and Wi-Fi. An interworking WLAN

client application on the handset offers the ability for two functions. The switchover is seamless

and presents a transparent view to the user.

In the case of MixZones algorithm, support for ad hoc exchanges between users’ smart-

phones is needed. Such support exists in the case of iPhone and it is additionally improved

with the release of the iOS 4.3 software update.

Regarding the operator’s assistance, MixZones algorithm is more demanding. First, an

operator is required to maintain a fine-grained knowledge of users’ requests and caches, in order

to avoid switching on Wi-Fi interfaces on devices that can not contribute to data exchanges.

This task can be performed by a server in the operator’s cloud. The server can receive small

incremental updates, sent by users, following the changes in their caches or requests. The

updates, containing only item IDs, can be uploaded via 3G. Due to their small size, they would

consume few resources.

Second, MixZones algorithm requires an operator to switch on Wi-Fi interfaces on users’

smartphones remotely, so that a group of users in a cell have their Wi-Fi interfaces turned on

during a same time period. There are multiple possible solutions to this problem. One of them

is the use of control channels. In order to quickly locate called users, base stations maintain

communication with subscribers, even when they are inactive. Cell phones send location up-

dates to base stations through the access channel and base stations occasionally page users

using the paging channel. Control channels are also used for sending text messages and simi-

larly, an operator can use them to signal to a smartphone if a networking interface needs to be

switched on.

4.2.4 Inferring Users’ Mobility

The most commonly stored users’ activity (and mobility) records are Call Detail Records

(CDRs). A CDR contains calling and called users’ numbers (blank in the case of a data ses-

sion), date and time, session duration, caller’s cell ID, cell coordinates, etc. As explained in
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Section 4.3.1, these are precisely the records we have at our disposal.

As both proposed algorithms rely on users’ mobility, we use CDRs to obtain it. The ap-

proaches to describe users’s mobility can be classified as: (i) quasi-static, where a rather per-

manent list of pre-computed locations describes the mobility of a user and (ii) dynamic, where

a list of cells is dynamically adjusted (with expiry of cells).

Using only one month of the data set, we extract what we refer to as quasi-static, user

mobility profiles (UMPs). A UMP is an array of 24 elements, which contains the most visited

cell by a user for each hour of the day. For each of the half of a million users that we observe,

we extract two such profiles, one for the weekdays and one for the days of the weekend. We

use the remaining two months of data to test how accurately UMPs predict users’ mobility.

With only one month of data used for the creation of profiles, we obtain a 69% match with the

remaining two months. This relatively high prediction accuracy, based on a few weeks of data,

is the result of a high correlation between daily mobility patterns of individual users, especially

for the weekdays. Users tend to visit the same cells at the same hours.

Once an operator has the UMPs extracted, these can be sent to users (i.e., every user is

provided with her own mobility profile). Although we find that UMPs show little change over

time, it is possible for an operator to occasionally recalculate UMPs. This way, the quasi-static

mobility profiles can be made more dynamic and adjustable to possible changes in mobility,

which can occur over time (the change of workplace, address, etc.).

Our algorithms use UMPs for the prediction of upcoming areas suitable for Wi-Fi transfers,

where switching between networking interfaces should occur. More generally, the mobility

profiles can be used by a wider range of smartphone applications (for example, any application

that sends push notifications to users based on expected mobility).

Finally, from the perspective of HotZones algorithm, it is interesting to check if most users

generate their requests from a small subset of frequently visited cells. Unfortunately, our data

shows that this is not the case. By observing only data session CDRs, over the period of

three months, we can see that users tend to download content from a wide range of locations.

Similarly, by focusing on MMS records we can see that uploads 1 are made from a variety

of locations. Although users request content from a variety of locations, we notice that a

relatively small subset of cells reoccurs in the majority of UMPs. These are precisely the

highly frequented cells that are top candidates for HotZones.

CDRs are not the most detailed location logs an operator can store. Every cellular operator

has access to more detailed location records. They contain information exchanged via the

1. Uploads are less important for the application that we consider.
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paging and access channels. Log files containing this additional information would allow us

to recreate UMPs with more accuracy. However, from the aspect of our goal, CDRs seem to

naturally fit the purpose. They permit us to observe mobility through activity and as the goal is

an activity driven offload, what is needed are the areas with high user activity.

4.3 Evaluation Setup

4.3.1 About the Data Set Used in the Study

The data set that we use is obtained from a major mobile operator and it consists of CDRs

for 1 million users for a period of three months (October-December 2009). The data covers an

area of a Western European capital and its major commuting suburbs. We focus our analysis

on 533, 189 users, which had more than 50 records (calls/data sessions) per month.

4.3.2 Social Music Sharing Application

In order to estimate the proposed algorithms’ potential for offloading of socially recom-

mended contents, such as music or video, we consider an application that allows users to re-

quest media items based on social recommendation. All items belong to a catalogue of size

I , characterized by Zipf(1) distribution. It was shown that Zipf distribution describes content

popularity in many social and content sharing networks; a recent study of del.icio.us [95] found

Zipf distribution in tags associated with the URLs flickr.com (photos), del.icio.us (social book-

marking), pandora.com (music) and youtube.com (video). The same distribution was found to

describe the popularity of YouTube videos in [87].

We assume that each user has a cache (a library) with b items. The caches are refreshed

following one of the three popular caching strategies: FIFO, LRU (Least Recently Used) and

LFU (Least Frequently Used). The LRU and LFU algorithms are completely distributed; they

are based only on a user’s local observations of the requests for items in his cache.

The total of N users request items following two request dynamics: (i) every time a user

A calls a user B, he requests an item from B’s cache, with the constraint that the item is not

already requested by user A or that it is not in his cache; (ii) every time a user initiates a

data session he requests an item from the catalogue, following the Zipf distribution of items’

popularities.

Given these request dynamics, at each moment in time t, the state of a user u is described

by: (i) the current cell c, (ii) the collection of pending requests Su
r (t) and (iii) the collection of
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available items Su
a (t) (i.e., the b items in the user’s cache).

The described application has certain similarities with two recent Apple projects. In May

2010 Apple filed a patent application that describes a system for targeted ads based on the

contents of friends’ media libraries. In September 2010, Apple added a music social network

to iTunes, called Ping, that enables users to share music preferences with friends [96].

4.3.3 Trace Driven Simulation

We design a Java simulation framework that enables us to perform discrete event simula-

tions, exploiting the real user mobility and activity, extracted from the data set described in

Section 4.3.1. The framework permits, at any moment in time, to keep track of users’ states,

i.e., their current cells, the contents of their caches (Su
a (t)) and the lists of their requests (Su

r (t)).

The requests come as a result of real calls and data sessions initiated by users. The framework

allows us to simulate different caching strategies and different cache sizes.

Figure 4.2: HotZones (yellow cells) and the cells that form the MixZone pairs (black cells) in
the city center. The circle-shaped markers contain numbers of cell towers in different regions.

We simulate the proposed algorithms with N = 533189 users, who move between C =
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1141 cells, following their real mobility recorded in the CDRs. The simulation lasts for 30

days, which are different from the month used to extract UMPs.

With both algorithms, the turning on of a Wi-Fi interface incurs the energy cost of two 1s-

scanning intervals and 8s of idle state, even if no data transfers occur. The energy consumption

is calculated using the values in Table 4.1. The parameter Tp is set to 10min.

There are I = 100K items in the considered media catalogue. The popularity of items

follows Zipf(1) distribution. Users’ caches are initially filled with items following the same

distribution (i.e., the probability that an item is found in a user’s cache depends on its popularity

obtained from Zipf(1) distribution). The caches remain full throughout the simulation. The

items in them are replaced following one of the caching strategies. The item size is uniformly

distributed between 5 and 10MB, which is comparable to the size of a large music file or

an average YouTube video. We run simulations with cache sizes of b = 100 and b = 1000

items, which corresponds to 0.75 − 7.5GB of storage space. The media catalogue size can be

compared with sizes of large music catalogues (such as iTunes), whereas the simulated cache

sizes are a reasonable estimate of the sizes of personal smartphone media libraries.

We first infer the set of MixZones by setting the parameter Pthresh. The choice of this

parameter is conditioned by the energy efficiency requirement. As shown in Figure 4.9, the

value Pthresh = 0.8 saves most energy and allows to 225 cells to form 2612 MixZone (c, t)

pairs. Next, we look for the set of HotZones that provides comparable performance to the

HotZones algorithm. We find that the top 30 cells, selected following the procedure described in

Section 4.2.1 meet this goal. The HotZones specific parameter p (which denotes the probability

that a request is served via a Wi-Fi access point in a HotZone) is set to 0.9. The HotZones in

the city center, and the cells that participate in the MixZone pairs, are shown in Figure 4.2.

We simulate both algorithms with the value of parameter D (maximum permitted delay)

equal to 1h, 6h and 24h. In order to evaluate the impact of prediction and delay tolerance,

we also simulate the special case of the HotZones algorithm, with D = 0, which we dub the

Real-Time Wi-Fi Zones. This solution is currently considered (or deployed) by a number of

operators. Smartphones (such as iPhone) support it with seamless switchover between 3G and

Wi-Fi.

4.4 Performance Evaluation Results

In this section we show the results for the amounts of saved energy and offloaded traffic,

obtained using the data set and the evaluation setup introduced in Section 4.3. We also look
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for the principal factors that influence theses measures, i.e., the major sources of improvement.

We then compare the nominal delay in the system (set through parameter D) with the effective

delay observed for different times of the day. We also compare the resources required to per-

form delay-tolerant offloading with the resources needed for real-time offloading. Finally, we

discuss the process of MixZones selection, which balances between the amount of offloading

traffic and energy efficiency.

4.4.1 Energy Saving and Offloaded Traffic

Both algorithms achieve significant energy saving. Up to 75% of traffic offloaded by

only 30 HotZones. For the selected sets of HotZones and MixZone pairs, we plot the traffic

offloaded from the 3G network and the amount of energy saved, as a function of the maximum

permitted delay D (Figure 4.3). We see that for D = 1h, roughly 20% to 40% gets offloaded to

Wi-Fi and 20% to 35% less energy is consumed by the application. For D = 6h, this fraction

goes up to 50%. In the case of D = 24h, the impressive 60-75% are offloaded with as few as

30 HotZones.
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Figure 4.3: Offloaded traffic and saved energy as a function of the maximum permitted delay
D. The curves are obtained for the MixZones (225 cells) and HotZones (30 cells) algorithms,
with LRU caching strategy. The curves for the HotZones algorithm practically overlap.

We can also see that the HotZones algorithm is less efficient than the MixZones algorithm in

the case of lower permitted delays (D = 1h). This is because one can not expect users to enter
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one of the very few HotZones every 60 minutes. However, as the permitted delay increases,

users become more likely to enter the HotZones and the performance of the algorithm improves.

4.4.2 Effects of Caching

Caching strategy has little effect on performance. Cache size is crucial for the Mix-

Zones algorithm. One of the first things we observe is that for the mobility and the request

dynamics obtained from our data set, caching strategies have a very limited effect. With an

average of 80 requests per month, and the user cache sizes of b = 100 and b = 1000, the initial

Zipf(1) distribution of items in users’ caches is well maintained after 30 days, for all three sim-

ulated caching strategies. The Complementary Cumulative Distribution Functions (CCDFs) in

Figure 4.4 show the initial distribution of items in users’ caches and the distributions after 30-

day simulations, with LRU, LFU and FIFO caching strategies. We see that even with the caches

of b = 100 items, the system stays stable. Consequently, the values of the performance metrics

that we obtain for these caching strategies are very similar. In order to avoid the unnecessary

repetition, in the rest of this section we show the results for the LRU caching strategy only.
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Figure 4.4: Evolution of item popularity distribution: The four curves are plotted on the log-log
scale and they show the initial distribution of items in users’ caches and the distributions after
30-day simulations, with LRU, LFU and FIFO caching strategies.

Unlike caching strategies, the cache size plays a major role in the case of the MixZones

(Figure 4.3). Larger cache sizes increase the probability that an encountered user can serve a
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request. Hence, the improvement brought by the cache size, is significant. On the contrary,

as expected, the cache size does not affect the HotZones algorithm, where serving requests

depends only on users’ mobility and the selected set of HotZones. Thus, the curves for b = 100

and b = 1000 almost overlap.

4.4.3 Sources of Energy Saving

Most energy saving comes from prediction and delay tolerance. The special case of

the HotZones algorithm with D = 0 (which we refer to as the RT Wi-Fi Zones), allows us to

estimate the offloading and energy saving that do not come from prediction and delay tolerance,

but purely from the placement (addition) of Wi-Fi access points. As we see in Figure 4.3, with

30 HotZones and D = 0, only about 10% of traffic is offloaded and about the same amount of

energy is saved. This means that the rest of the improvement observed for higher values of D

comes from prediction and delay tolerance.
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Figure 4.5: Cumulative Distribution Functions (CDFs) for the daily energy consumption of the
application. The subfigures correspond to different combinations of the offloading algorithm
and cache size b.

The energy improvement brought by prediction can be better observed in Figure 4.5. The

figure contains the Cumulative Distribution Functions (CDFs) for the daily energy consumption

of the application, for both evaluated algorithms and cache sizes. The dotted curve in two

bottom figures is the CDF for the case of RT Wi-Fi Zones. We see that it almost overlaps with
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the CDF coming from pure 3G transfers, yielding less than 10% improvement (as shown in

Figure 4.3). Again, the increase in cache size affects only the MixZones algorithm.

In order to better understand the origin of the energy savings with MixZones and HotZones,

we plot two histograms that show the energy consumed to serve users’ requests (Figure 4.6).

We see that in the case of both algorithms a portion of requests is served via 3G. The energy

required to serve such a request ranges from 500 to 1000J , depending on the item size (as

explained in Section 4.3.3, item sizes are uniformly distributed between 5 and 10MB). In the

case of a pure 3G delivery (without either of the proposed algorithms) only this part of the

distribution would exist.

0 500 1000
0

5

10

15
x 10

6 MixZones algorithm

Energy consumed to serve request [J]

#
 o

f 
re

q
u
e
s
ts

0 500 1000
0

5

10

15
x 10

6 HotZones algorithm

Energy consumed to serve request [J]

#
 o

f 
re

q
u
e
s
ts

Figure 4.6: Request energy histograms show energy consumed to serve users’ requests. The
uniform portion on the right comes mostly from the requests served via 3G. The modes on the
left come from the requests served via Wi-Fi.

However, with MixZones and HotZones algorithms, we observe a mode on the left, which

comes from the requests served via Wi-Fi. In the case of HotZones, the mode is formed around

the value that corresponds to the energy needed for a single item download via a Wi-Fi access

point, plus the energy needed for switching on a Wi-Fi interface. In the case of the MixZones

algorithm, the mode is moved towards the value corresponding to two Wi-Fi transfers (sending

and receiving users), plus the energy cost of turning on of two Wi-Fi interfaces. Additionally,

in the case of the MixZones algorithm, this part of the distribution is more skewed, as it is more

likely that a user, with her Wi-Fi interface turned on, would miss a transfer in a MixZone, than
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in a HotZone. This comes from the fact that a user in a HotZone finds an access point (with

access to all items) with probability p = 0.9 and a user in a MixZone meets another user (with

only b items) with probabilityPthresh = 0.8. Thus, the MixZones algorithm sometimes requires

users to have their Wi-Fi interfaces switched on several times before a request is served.
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Figure 4.7: The average delay with which requests are served as a function of the time of the
day and the maximum permitted delay D.

4.4.4 Effective Delay in the System

Effective delay in the system is much lower than the maximum permitted delay D.

Another important performance metric is the delay with which users’ requests are served. The

maximum permitted delay D sets the upper limit on item delivery time. However, as we can

see in Figure 4.7, the average time with which users’ requests are served is often much lower

than the value of D. For D = 24h, the requests are actually served in less then 7h, and as fast as

2h during some periods of the day (depending also on the algorithm used). In case of D = 6h,

the actual delay is between 1.5h and 3h, while for D = 1h, the requests are served in 15− 50

minutes. In Figure 4.7 we also observe the time of the day dependency, with lowest delays

during the peak activity hours. This means that the proposed algorithms offer best offloading

performance during the hours when a 3G network is most heavily loaded.



Performance Evaluation Results 63

4.4.5 Real-Time vs. Delay-Tolerant Offloading

Real-time offloading requires 3-4 times more Wi-Fi cells than the delay-tolerant Hot-

Zones algorithm. It is interesting to compare the offloading potential of the RT Wi-Fi Zones

with our delay-tolerant HotZones algorithm. In order to perform this comparison (in addition

to the analyzed setup with 30 HotZones), we run the HotZones algorithm with 60, 120, 240,

480 and 960 Wi-Fi covered cells. We do it for the values of the permitted delay D = 0h, 1h,

6h and 24h.
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Figure 4.8: Offloaded traffic as a function of the number of HotZones.

On Figure 4.8, we can see that for D = 6h, covering only 10% of cells with Wi-Fi, results

in offloading of 80% of traffic. In order to offload the same amount of traffic with D = 0h,

an operator has to cover four times more cells with Wi-Fi. Similarly, the HotZones algorithm

permits offloading of more than 90% of traffic with only 20% of Wi-Fi covered cells, while

the RT Wi-Fi Zones require coverage of more than 70% of cells for a similar effect. This sig-

nificant quantitative improvement, brought by prediction and delay tolerance in the HotZones

algorithm, is even more valuable knowing that on average the delays are much lower than D.

4.4.6 MixZones Selection as a Compromise

MixZones selection is a compromise: Impossible to maximize both offloading and

energy efficiency. When selecting the number of MixZones (i.e., the algorithm parameter
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Pthresh), we are guided by energy efficiency. The value Pthresh = 0.8 is most energy saving and

it offers a solid offloading performance. Nevertheless, one can opt for another criterion when

choosing the value of Pthres. On Figure 4.9, we plot the amounts of offloaded traffic and energy

saved for the values Pthresh = 0.2, 0.5, 0.8 and 0.9. For these values we get 732, 590, 225 and

131 MixZone cells respectively.
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Figure 4.9: The offloaded traffic and saved energy as a function of the number of Pthreshold (i.e.,

the number of MixZones).

We see that although the value Pthresh = 0.8 guarantees most energy saving, more traffic

gets offloaded for Pthresh = 0.2 and 0.5. On the other hand for Pthresh = 0.9 both offloading

and energy saving deteriorate. This can be interpreted in the following way. With the decrease

of Pthresh (increase in the number of MixZones), the number of Wi-Fi transfers increases.

However, these new MixZones have lower probability of meeting between users, which results

in the increased number of Wi-Fi scanning events without data transfers. This decreases the

energy efficiency. On the other hand, the increase of Pthresh beyond the value of 0.8, reduces

both, the amount of offloaded traffic and the energy saving, due to too few cells that satisfy this

condition.
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4.5 Conclusions

In this chapter we study the use of prediction and opportunistic bandwidth for offloading

of large, socially recommended contents from 3G networks. We show that the two algorithms

we design enable users to trade delay for energy and easily reduce battery consumption coming

from 3G transfers of delay-tolerant content for 50%. We show that the real-time offloading

requires Wi-Fi coverage of 3 to 4 times more cells, than our delay-tolerant algorithm. We find

that both algorithms have lowest delay during the peak hours, when offloading is most needed.

We also demonstrate how operators can benefit the collected data to offer cloud solutions,

appealing to users (extending battery lifetime) and to the operators (load balancing between

orthogonal technologies).

We believe that performance evaluation of the algorithms using a realistic application and

a large data set is a great contribution on its own. It helps community get better idea of the

performance of a large scale delay-tolerant application in the context of a mobile network. It

also allows us to gain insight into the possibilities of orthogonal 3G offloading, which is a topic

that is likely to become increasingly important in the days to come.

Finally, covering a cell with access points (to create a HotZone) incurs certain costs for the

operator, which are not considered in this chapter. However, such a coverage could be facili-

tated (and the cost reduced) by the use of existing operator-owned wireless routers, which pro-

vide Internet access at home to operator’s customers. In order to provide fairness, the scheme

proposed in [97] could be extended to mobile subscribers.
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Twitter in the Air: Beyond Contact-Based

Simulations
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Chapter 5

Performance of an Opportunistic Network

Through a Real Application

Many performance studies of various facets of opportunistic networks are based on simu-

lation with contact traces. They are used for estimation of fundamental networking measures,

such as delay or delivery ratio [3, 2]. They are also used for the design of caching and for-

warding strategies [98, 99] and in the studies that address the effects of adding infrastructure

to an opportunistic network [22]. However, the findings of these studies are practically never

validated using live experimental deployments and real applications.

Although it is intuitive that contacts between users are one of the key factors to take into

account when modeling information propagation in an opportunistic network, contact traces

have certain limitations. By default, contact-based studies do not address the limited transmis-

sion bandwidth [1, 2]. Traffic generation is artificial or obtained from a distribution [16, 25].

Certain technology limitations, such as the inability of Bluetooth to concurrently discover and

send data are ignored. In addition to this, contact-based studies often assume infinite sizes of

users’ caches and data exchanges without prioritization [3]. This, coupled with the absence

of a model for the limited transmission bandwidth, can lead to simulations of unrealistic data

exchanges.

In spite of the obvious need to quantify the effects of these approximations, little effort has

been invested in justifying the perpetual use of contact traces for the analysis and simulation

in the area of opportunistic networks. In other words, little evidence confirms that values,

obtained from the simulations on contact data sets, accurately describe the performance of

opportunistic applications. This situation can be explained, to a large extent, by the high cost

69
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and complexity of the real application deployments. They normally require the implementation

of several system components, the availability of a significant number of mobile devices and

the participation of a non-negligible number of volunteers.

In order to fill this void and gain insight into the performance of an opportunistic network

perceived through a real application, we design and implement a system that enables mobile

users to use one of the most popular social networking applications (Twitter) without a perma-

nent data connection, by leveraging sporadic Bluetooth connectivity with other users. We then

run an experiment with 50 users, during 2.5 weeks in order to collect contact traces and the

application data that can be compared with the results of the contact-based simulations. Our

goal is to find out whether contacts are sufficient to capture the performance of an opportunistic

network, with or without a backbone component and if so, how to best use them to achieve this.

Instead of inventing a new application for this purpose, we deliberately decided to extend

an existing web application - Twitter - to the intermittently connected opportunistic space. This

significantly simplifies the bootstrapping phase (exploits an already established user base and

relationships between users), shortens the learning curve of the experiment participants and

allows them to keep their existing habits and use the application in a more natural way.

The choice of Twitter also allows us to cover several realistic use cases. For example, it is

quite expensive for roaming users to synchronize their mobile applications with the Internet on

foreign networks. However, for a broad set of applications, such as e-mail, Twitter, Facebook

and other social-networking apps, the synchronization may not be needed in real time. An

opportunistic Twitter application, with occasional access to data sinks that provide Internet

connectivity, might deliver tweets with acceptable delays.

Another example where an opportunistic Twitter application (accompanied with a few

points of interconnection with the Internet) can be of great help is deliberate shutdowns of

telecommunication networks during protests. Internet blackouts primarily target Twitter and

other social networks, with the goal of preventing information propagation. Solutions, such

as voice-to-tweet software provided by Google and Twitter, can allow users to tweet using

voice [100]. Nevertheless, when the mobile phone service is down, the opportunistic commu-

nication, supported by a few satellite Internet connections, remains the only option [101].

The main contribution of this chapter is that we show how the common practice of ignor-

ing certain factors in the contact-based studies of opportunistic networks significantly affects

important performance metrics. Specifically, we show that the contact-based simulations over-

estimate the delivery ratios up to 30%, while the estimated delays are 2-3 times lower than the

experimental values. Further, we demonstrate how the default assumption in the contact-based
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simulations about the unlimited cache sizes completely alters conclusions about the utility of

a backbone in an opportunistic network. We verify the robustness of these conclusions by

rotating three different caching strategies, ranging from extremely selfish to altruistic.

In addition to this, we show that the statistical analysis of the weighted contact graph can be

a viable alternative to the contact-based simulation, when it comes to capturing certain aspects

of opportunistic network performance. Namely, we find a strong dependency between a user

centrality measure in this graph and the perceived delivery ratio and we fit a simple curve to this

dependency. This allows us to predict users’ delivery ratios based only on the graph extracted

from the contact trace. We show that this dependency persists when a backbone is added to

the network, meaning that it can be used to estimate the effects of adding infrastructure to an

opportunistic network.

From the systems aspect, in this chapter we give a comprehensive insight into the perfor-

mance of a medium-sized opportunistic application and, to a lesser extent, into users’ reactions

to it. It highlights the most important design choices needed to extend an existing web applica-

tion to the world of intermittently connected devices, such as our proxy server, used for secure

synchronization with an existing web application.

This chapter is organized as follows. After presenting the related work in Section 5.1, we

describe our opportunistic Twitter application and the experimental setup in Section 5.2. We

introduce the notation and metrics used in the rest of the chapter in Section 5.3. In Section

5.4, we analyze certain properties of the data sets obtained from the experiment. Then, in

Section 5.5, we compare the experimentally obtained application performance with the results

of the simulations performed on the collected contact traces. This comparison allows us to

pinpoint the common traps and pitfalls of the simulation based approach. In addition, we use

the obtained data to gain insight into users’ reaction to the observed performance (albeit to a

limited degree) and to compute the costs of cooperation associated with our architecture and

the opportunistic nature of the evaluated application. Finally, in Section 5.6 we show that a

statistical analysis of the contact graph can predict certain aspects of network performance

better than the contact based simulations.

5.1 Related Work

The validation of simulation results with measurements has been used before to evaluate

the accuracy and determine the level of fidelity of simulation models [102], [103]. However,

to the best of our knowledge, the work presented in this chapter is the first effort to study the
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limitations of contact-based simulations in opportunistic networks. This is somewhat surpris-

ing, given the variety of topics and proposals validated using the contact-based simulations.

A possible explanation can be sought in the cost, scale and complexity of the experimental

setup, needed for such a study. Although the first of its kind, this study is closely related to

a large body of work that addresses various aspects of opportunistic communication by using

contact data sets. It concerns contact-based evaluations of caching and replication schemes

[98], validations of forwarding protocols [99] and studies of content dissemination in urban

environment [2, 16].

The work presented in this chapter is also closely related to the studies of the effects of a

network backbone on opportunistic communication. Initially, these studies relied exclusively

on contact traces [22], [3]. In [3], the authors perform extensive simulations using Bluetooth

contacts, in order to quantify the effects of the opportunistic and backbone components on a

delay tolerant network. They conclude that backbone brings only marginal improvements to

opportunistic communication. The UMass DieselNet testbed addressed a similar topic, but the

Wi-Fi equipped buses exchanged traffic (obtained from the Poisson distribution). The authors

observe higher utility of the backbone component [25]. The work presented in the rest of this

chapter permits to reveal that much of this discrepancy, in the observed backbone-induced im-

provement, comes from a common assumption in contact-based simulations about the infinite

cache sizes.

Leveraging statistical properties of graphs that represent user relations has also been consid-

ered before for prediction of various performance measures and for protocol design. In [104],

the authors propose the creation of a community content distribution network that would rely

on “familiar strangers” (i.e., collocated individuals with whom only limited interaction exists).

Ioannidis et al. apply a similar approach [28]. They use so-called “weak ties” (i.e., relationships

with people outside the narrow social circles) to improve the dissemination of content updates

over a mobile social network. In [27], the authors use centrality and communities obtained

from a social graph for the design of a new forwarding algorithm. Finally in [105] properties of

a social graph (extracted from users’ activities) are used to predict customer churn in a cellular

network.

5.2 Experiment Setup

We designed our experiment with two main goals in mind: (i) To collect the application data

from which important performance metrics can be extracted and (ii) to collect the contact traces
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that can be used in discrete event simulations. This allows us to compare the experimentally

obtained results with the values obtained through simulation on contact traces, collected during

the same experiment.

5.2.1 Experiment Scenario

In our experiment, we use the scenario of roaming users as the running example (although

the scenario itself is not essential for the results of the study). We assume a mixed population,

composed of visitors (Roaming Users) and users in their home networks (Home Users), at

the university campus site. The policy restrictions often prevent Roaming Users (RUs) from

connecting to the Internet via the campus WLAN (this is also the case at the EPFL campus).

Thus, we assume that they prefer using free opportunistic applications to paying high roaming

fees for data synchronization via the regular client applications.

As it is difficult to involve real visitors (in sufficient numbers) in a rather long experiment,

we chose 50 volunteers to represent the RUs. While fully aware that the mobility of real

roaming users can be somewhat different, we find that our experiment participants share certain

mobility properties with campus visitors. As explained later in this section, about half of the

participants are master students who followed courses in the classrooms where winter schools

are organized (only for visitors). Also, all participants normally have lunch at the same places

where visitors are likely to have lunch or coffee.

Home Users (students/faculty) are typically in majority. They have laptops with free access

to the campus WLAN, and/or inexpensive data plans with mobile operators. We assume some

of them are cooperative and willing to run a piece of software on their devices, helping Roaming

Users deliver their tweets to the Internet and receive the tweets of the people they follow.

Creating a significant Home User population for the purposes of the experiment (in addition

to the Roaming User population we had to recruit) would require substantial financial and

human resources. Thus, we resort to an abstraction. We place ten Linux laptops in popular

places around the university campus (restaurants, computer rooms, coffee shops, libraries, etc.).

We refer to these machines as Home User Equivalents (HUEs). We believe this is a good

approximation, as (i) these are the locations where Home Users (with their cell phones and

laptops) can be found during the day, (ii) the range of the Bluetooth dongles plugged into

HUEs matches the Bluetooth range of cell phones and laptops (∼ 10m), and (iii) the set of

functions handled by the HUEs is very limited, which means that the code can easily run on

any piece of hardware (smartphones, laptops, etc.).
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5.2.2 System Architecture

Our experimental setup consists of three main components (Figure 5.1): (i) Roaming Users

(RUs) with the opportunistic Twitter application running on their phones, (ii) Home User

Equivalents (HUEs) that serve as interconnection points between the opportunistic space and

the Internet, and (iii) our proxy server, which is in charge of communication with the HUEs on

the front-end and synchronization with Twitter servers on the back-end.

Figure 5.1: The system comprises three major components: (i) Proxy server, (ii) Home User
Equivalents (HUEs), and (iii) the phones carried by Roaming Users (RUs). Proxy server com-
municates with Twitter servers at the back-end and with the HUEs at the front-end. HUEs
provide Internet connectivity to RUs.

5.2.3 Opportunistic Twitter Application

Opportunistic Twitter is a mobile Twitter application we developed for the publicly avail-

able Haggle publish/subscribe framework [106]. It leverages intermittent Bluetooth connec-

tivity for the exchange of messages with other devices running the Haggle framework. The
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framework can work on top of several mobile and desktop operating systems (Windows, An-

droid, Linux, Mac OS, etc.). In our experiment, the framework and the application run on HTC

and Samsung Windows Mobile phones. Like most Twitter applications, our application allows

to a user with a Twitter account to follow a set of other users or channels. As a result, messages

(“tweets”) created by these channels become visible in the user’s message feed. So, every RU

in our experiment has a group of other users/channels that he follows, as well as a group of

followers that receive his updates. We refer to these relationships as the “Twitter following

relationships”. The tweets created by RUs, as well as the changes in the “Twitter following

relationships,” propagate through the network using a form of epidemic, as explained later in

this section. Vibration informs users of message reception.

For the discovery of nearby users, all RUs and HUEs use the Bluetooth inquiry mechanism

that allows them to find other Bluetooth devices within transmission range. Conducting in-

quiries consumes power, so one has to be moderate when setting the inquiry interval. Addition-

ally, while inquiring, a device cannot answer other devices’ inquiries, so performing frequent

inquiries is not the best solution. On the other hand, choosing a too large interval results in

missed discoveries (exchange opportunities). As users can recharge their phones on a daily

basis, we choose a trade-off inquiry interval of 2 minutes. If a contact that was seen during

the previous inquiry disappears during the following inquiry, but reappears again during the

subsequent inquiry, we assume that the recorded contact was never broken.

5.2.4 Home User Equivalents as an Abstraction for Home Users

HUEs run a small application on top of Haggle framework and they have Internet connec-

tivity. This allows to RUs to use them as sinks and have their tweets delivered to the Internet,

i.e., to their external followers around the world. HUEs can also fetch content from our proxy

server and deliver tweets from the Internet to the RUs inside the campus.

The hardware that we use for the Home User Equivalents are Asus Eee PC mini-notebooks

running Linux. They are equipped with Bluetooth dongles that have a radio range of approxi-

mately 10 meters, so in order to start a message exchange with a HUE, a Roaming User has to

be physically close to it.

It is important to note that in spite of our cost-driven choice to use HUEs instead of HUs in

the experiment, HUs are not envisioned as pieces of infrastructure. No infrastructure placement

(access points of any kind) nor any assistance from mobile operators are required. HUs are

conceived as local users with cheap Internet access, willing to share a part of their bandwidth
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with roaming users. The reason why we chose to use mini-laptops placed in popular locations

(and connected to the Internet) as an abstraction for Home Users is our conviction that this

choice provides a good approximation of the places where Home Users can be typically found.

An alternative to this approach is to use a subset of the experiment participants as real mo-

bile Home Users. We indeed implemented a proof of concept opportunistic Twitter application

client for Android (which we dub HTweet) that allows for this. HTweet enables any oppor-

tunistic Twitter user to become a Home User, as soon as a data connection becomes available

to him (for example when the user returns to his home cellular network). In other words, a user

can become a gateway towards Twitter servers for other opportunistic Twitter users equipped

only with Bluetooth, who can not or do not want to access the local network (for example due

to high roaming costs). However, we opted not to use the HTweet and mobile Home Users

during the experiment, as we believe a larger Home User population is needed in order for this

approach to be viable.

5.2.5 Proxy Server

Our proxy server is a part of the system that resides between Twitter servers and HUEs. It is

a component that is essential for the secure exchange of tweets between opportunistic Twitter

users and Twitter servers (i.e., secure user authentication), given the design of the Twitter API

and the security architecture that we propose in Chapter 6. Thus, the proxy server is used for

storing the data important for the operation of the system and for the post-experimental data

mining. We implement it as a Java Web application running on the Apache Tomcat 6 server,

which uses a MySQL database for data storage.

On the back-end (the interaction with Twitter servers), the proxy (i) passes to Twitter servers

the tweets that arrive from HUEs and (ii) fetches from the Internet the tweets of interest to the

experiment participants, by synchronizing the local copies of their accounts with their accounts

on Twitter servers. In both cases Twitter servers require authentication of the users in question.

The exact way in which this was handled by the proxy server at the time of the experiment and

in which it can be done now (after the change of the Twitter API in late 2010) is explained in

Chapter 6.

On the front-end (the exchange with the HUEs), the proxy server processes the messages

received from the HUEs, it performs the database transactions and sends back the messages

that need to be pushed into the opportunistic Haggle space.
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5.2.6 Data Format

Messages exchanged in the Haggle ad hoc space (between RUs, or between RUs and HUEs)

are in XML format. They contain application attributes (important for the operation of the

system and data mining) and Haggle meta data. Several types of messages, each with different

role, are used. Apart from regular tweets, there are messages that carry information about new

channels being followed.

The HUEs and the proxy server communicate through the Internet using XML over HTTP,

which allows for easy parsing on both ends.

5.2.7 Caching Strategies

Caching in RUs. Caching strategies (also called replication strategies) determine the chan-

nels that a user should store on the device and then forward. Note that channels, not packets,

are the proper abstraction for Twitter traffic propagation, contrary to forwarding strategies in

opportunistic networks. The reason is that users express their interests by choosing channels to

follow. These interests remain relatively stable and they do not change on a packet-by-packet

basis.

One can classify caching strategies according to how selfish they are: The more selfish a

strategy is, the more preference it gives to channels that the user is interested in. In contrast,

the more altruistic a strategy is, the more it prefers channels that are of interest to the rest of the

community (network). The choice of strategy can affect network performance metrics.

In our experiment, we want to make sure that our conclusions are robust with respect to

the choice of caching strategy, so we use three very different strategies. The first strategy is

extremely selfish, storing only channels that the user is subscribed to; the second is extremely

altruistic, preferentially storing channels that the user is not interested in; the third, which we

refer to as proportional strategy (proportional to channel popularity), balances between the

two extremes. More specifically, the third strategy [98] always stores the channels that a user

is subscribed to and uses the remaining cache space for helping other channels. When two

devices meet, each helped channel is a candidate for replacement, and each device performs

the following operations: A locally helped channel c is selected uniformly at random among

all locally helped channels, and a remote channel c′ is selected uniformly at random among

those remote channels that are not locally present. Then, the local channel c is dropped and

replaced by the remote channel c′ with probability min{1, βc′

βc
}, where βc is the number of

users following channel c.
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Although considering an altruistic strategy can seem like a strange choice, it is important to

understand that the caching strategy can be chosen by someone else, other than the application

users. For instance, an application developer can intentionally add a dose of altruism in order

to improve the overall performance.

We choose cache sizes for the RUs that we believe are commensurate with the parameters

of our experiment, e.g., , the number of users (devices), the amount of traffic that they generate,

and the device hardware capabilities. Our objective is to examine the effect of a constrained

cache size on the performance of the application. If the cache size is large, it will be practically

infinite for the purposes of our experiment, so the results would not be representative for a

larger network. We present results for cache sizes of 10 and 20 messages. The rationale is to

be able to use the obtained results as best-effort indications of the performance in a larger scale

deployment. Additionally, cached tweets are aged out after 8 hours, as we assume that older

tweets are of no interest to Twitter users.

Caching in HUEs. Home User Equivalents (HUEs) have Internet connectivity. They can

access all tweets available at the proxy in real time. However, keeping all tweets of interest

to RUs in HUEs’ caches is unwise. Downloading all these tweets to the local HUEs’ caches,

would increase the bandwidth cost for HUEs. Additionally, this approach has a scaling issue

with the increase in number of RUs. Thus, we make the content available at HUEs adapted

to the context, i.e., to the interests of RUs in the vicinity of HUEs and other RUs that can be

reached in the near future. HUEs have caches of 40 messages and they are refreshed upon

reception of messages from RUs and messages pushed by the proxy.

5.2.8 Putting it All Together

Message Flow. The users create tweets that are forwarded among them in the follow-

ing way: Upon a meeting between two users, messages in their caches are exchanged over

Bluetooth. The Haggle pub/sub framework prioritizes message exchanges according to user

interests: Messages of higher interest will be exchanged first, followed by the remaining mes-

sages in the cache of the other user’s device. This prioritization is crucial when contacts are too

short to exchange all messages of both caches. After the exchanges are over, the local caching

strategy decides which messages, if any, should be dropped. To avoid transmitting messages

that are then dropped, we align the Haggle prioritization with the caching strategy used at the

time.

The HUEs are interconnection points between the Internet and the disconnected Haggle
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space. The reception of a message from a RU triggers creation of an HTTP request by the

HUE that is sent to the proxy through the Internet. The proxy processes the request, performs

necessary transactions with the database and returns a set of messages (“tweets”) as response.

The HUE adds these messages to its local cache and makes them available to Haggle devices

in its vicinity.

Experiment Population. Our RUs’ population consisted of 50 people. Most of them re-

ceived phones with the opportunistic Twitter application; some of them used their own phones.

For the rest of the paper, we will be referring to our population of Roaming Users (RUs) also

as internal users.

Many participants continued using their existing Twitter accounts. The others were free

to choose the channels to follow. A followed channel can be either internal (content created

by an internal user) or external (content created by an arbitrary Twitter user on the Internet,

henceforth collectively called external users (or channels)). The social graph obtained from

the “Twitter following relationships” shows that almost all internal users follow some internal

and external channels. As the content created by external users is also propagated in our system

we can, in a way, consider the external users as a part of the experiment.

5.3 Notation and Metrics

Let N = {1, . . . , N} be the set of internal users, let X = {1, . . . , X} be the set of external

users, and let Fj ⊆ N ∪ X be the set of users that user j ∈ N follows.

Let A,B ⊆ N∪X be arbitrary subsets of users. We use MA→,MA→ for the set and number

of messages generated by any user i ∈ A; M→B,M→B for the set and number of messages

delivered to any user j ∈ B, and MA→B = MA→ ∩M→B. Only the messages generated by

users that user j follows can ever be considered to be “delivered” to j, but not the messages

that user j receives just to forward on behalf of others.

For an internal user j ∈ N and a message m ∈ M→j , let Dm
j be the delivery delay of

message m to user j. That is, Dm
j is the time elapsed between the generation of m at some user

i ∈ Fj and the delivery of m to j.

For internal users j ∈ N we define the following metrics: The delivery ratio RA
j from A

to j is the fraction of messages generated by users in A and delivered to user j over the total
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number of messages generated by users in A and destined for user j.

RA
j =

MA→j

MA∩Fj→
. (5.1)

When A = Fj we drop A from RA
j , and we simply call Rj the delivery ratio; RN

j is the

internal delivery ratio, and RX
j is the external delivery ratio.

We define the message delay DA
j from A to j as the average delay over all messages gen-

erated by users in A and delivered to user j.

DA
j =

∑

m∈MA→j
Dm

j

MA→j

(5.2)

Again, as with the delivery ratio, when A = Fj we drop A from DA
j and we call Dj the

message delay; DN
j is the internal message delay, and DX

j is the external message delay. The

last two measures are interesting because they represent the average reception delays perceived

by user j for the messages created by internal and external users that user j follows.

We are also interested in evaluating the quality of the synchronization between the op-

portunistic part and the Internet part of the application. For this purpose, we treat the Proxy

server as another user and measure its delivery ratio and message delay. We use the same two

definitions as for mobile users, but we assume that the Proxy follows all internal users.

5.4 Obtained Data Sets

In this section we consider certain properties of the data sets acquired from our experiment

that give us some insight into participants’ behavior and activity during the experiment. These

data sets are then used in Section 5.5 for the comparison between the system performance

measured by the experiment and the performance obtained through post-experiment simulation

on the collected contact traces.

As a result of the experiment we get two data sets: (i) the application metadata that we

use to extract the fundamental performance metrics, such as delay and delivery ratio and (ii)

the contact trace that we use in the trace driven simulations to obtain the same metrics from

the collected contacts. Each of the three caching strategies applied at RUs is evaluated for two

different cache sizes: 10 and 20 messages. This gives a total of six combinations, each of which

is tested during two working days.

In the trace driven simulations that we perform after the experiment we implement the same
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combinations of caching strategies and cache sizes. Each combination is simulated using the

corresponding 2-day contact trace. Additionally, we simulate the case with infinite cache sizes,

which often appears in the related body of work.

In our experiment, an average internal user (RU) follows 9 internal and 14 external channels

(> 600 external channels in total). The maximum number of internal and external channels

followed by an internal user are 17 and 98, respectively. The most popular internal channel is

followed by 18 internal users, while the most popular external channel has 8 internal followers.

Figure 5.2: “Twitter following relationships” between internal users. Each vertex of the graph
represents an internal user (experiment participant). An undirected edge between two users
means that one of the two users follows the other one or that they mutually follow each other.

“Twitter following relationships” between internal users are shown in Figure 5.2. Each

vertex of the graph represents an internal user. Each undirected edge between any two users i

and j, where i, j ∈ {1, . . . , 50} signifies that user i follows user j; or user j follows user i; or

users i and j mutually follow each other.

Figure 5.3 shows the total number of contacts that each of the 50 internal users and 10
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HUEs have with other internal users and HUEs, during the six observed 2-day periods. We

distinguish between the contacts with followed internal users, the contacts with other internal

users and the contacts with HUEs. The total number of contacts varies depending on user ID

and the day of the week. For example, the students of the Master’s program have lectures and

labs together on Thursdays and Fridays. Subfigures 1, 2, 4 and 6 (enumerated from top left to

bottom right), which correspond to 2-day periods that contain either Thursday, Friday or both,

clearly show more contacts (116, 98, 123 and 116 contacts per user per day, respectively) than

subfigures 3 and 5 (56 and 59 contacts per user per day), which correspond to combinations of

Mondays, Tuesdays and Wednesdays.
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Figure 5.3: Total number of contacts experienced by internal users [j = 1, .., 50] and HUEs
(gateways) [j = 51, .., 60] during 2-day evaluations of the 6 combinations of caching strategy
cStrat and cache size cSize.

The contact durations follow a similar pattern. For this reason, the comparison between

the used caching strategies is not perfect, but it is also not the goal of our study. Obtaining

identical contact patterns over all observed 2-day periods, with live and mobile experiment

participants is hardly possible. Nevertheless, it is important to stress that the differences in
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contact traces collected during different 2-day periods do not affect the conclusions of our

comparison (presented in Section 5.5) between the experimentally obtained performance metric

values and their counterparts obtained through contact-based simulation. This is because we

always compare the experimental values for a given 2-day period with the simulation results

acquired using the contact trace collected during the same period.

In Figure 5.4 we plot the complementary cumulative distribution function (CCDF) of the

inter-contact times between the internal users and Home User Equivalents. It shows how often

Roaming Users visit the popular locations within the campus where Home Users can be found.

We view all HUEs as parts of the same backbone (as they all have access to the Internet) and

we calculate inter-contact times with it for all internal users.
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Figure 5.4: The complementary cumulative distribution function (CCDF) of users’ inter-
contact times with Home User Equivalents (HUEs) obtained for the whole duration of the
experiment. All HUEs are perceived as parts of the same backbone (single entity), as they all
have access to the Internet and the inter-contact times are computed accordingly.

The CCDF shown in Figure 5.4 is flat between 3 hours and 20 hours, which implies that it

is more probable for a user to meet a HUE soon after the previous meeting. We also see that

80% of inter-contact times with Home User Equivalents is shorter than 50 minutes and only 3%
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is longer than 24 hours. We observe two drops, at 20-25 hours and at 3 days, corresponding to

meetings that happen once a day around the same time, and Friday meetings that happen again

on Mondays.

In Figure 5.5 we show the complementary cumulative distribution function (CCDF) of the

pair-wise inter-contact times among our experiment participants (internal users), calculated

over the whole duration of the experiment. As this metric has been considered before, it is

interesting to check if the findings of the previous contact-based studies hold in the case of the

distribution function obtained from our contact trace. Indeed, we see the previously observed

power-law and exponential decay properties of the function [24, 1].

Similarly to the function in Figure 5.4, we observe that 90% of the inter-contact times are

shorter than 24 hours, which means that 90% of meetings were repeated (i.e., the same users

met again) within 24 hours. Only 1% of inter-contact times are longer than 1 week. Again,

the flat region of the curve implies that users are more likely to meet again relatively soon after

their previous meeting, and that the probability of a new meeting drops with the time elapsed

since the last meeting.
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Figure 5.5: The complementary cumulative distribution function (CCDF) of the pair-wise inter-
contact times among the experiment participants (internal users) obtained for the whole dura-
tion of the experiment.
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Finally, before moving to Section 5.5, which contains the performance study of the eval-

uated opportunistic Twitter application, let us consider the quality of our HUEs placement.

As previously explained, Home User Equivalents are placed in popular locations to represent

Home Users with smartphones or laptops, who can normally be found in these places. Fig-

ure 5.6 shows the number of first copies of messages (as multiple copies can be created in the

process of opportunistic multi-hop forwarding) delivered by each of the ten HUE to the Inter-

net. We can see that each HUE delivered first copies of a non-negligible number of messages,

with the most popular one delivering about three times as many messages as the least popular

one. This means that all HUEs succeeded in serving their purpose as the points of interconnec-

tion between the intermittently connected opportunistic space and the internet. We also see that

the internal users alone created 3010 tweets during 3 weeks of experiment.
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Figure 5.6: Number of unique internal messages first delivered to the Internet through HUEs
1− 10 from 12/03/09− 12/18/09.

5.5 Traps and Pitfalls of Contact-Based Simulation

The availability of the application metadata and contacts for the same experiment allows us

to test the performance-related prediction accuracy of the commonly used contact-based simu-
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lations. The rotation of caching strategies permits us to verify the robustness of our conclusions,

i.e., whether the conclusions persist for a range of different caching strategies.

We focus on two fundamental networking measures, namely, delay and delivery ratio, as

defined in Section 5.3. In the case of both metrics we first analyze the values obtained from

the experiment. We then compare these values with the corresponding values obtained from

the contact-based simulations. Finally, we study the effects of adding a backbone to an op-

portunistic network, showing that as a rule, contact-based studies underestimate the impact of

backbone, due to hidden assumptions.

5.5.1 Experimentally Obtained Delivery Ratios

Figure 5.7 shows the internal and external delivery ratios, RN
j and RX

j (as defined in Sec-

tion 5.3), seen by internal users (j = 1, ..., 50) and by the proxy server (j = 51), during the

observed evaluation periods. Each period of two working days corresponds to a combination
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Figure 5.7: Internal and external delivery ratios, RN
j and RX

j , seen by the internal users (j =
1, ..., 50) and by the proxy (j = 51). Every combination of caching strategy (cStrat) and cache
size (cSize) was evaluated during 2 days.
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of a caching strategy and a cache size. We see that proportional strategy performs on average

10-20% better for both evaluated cache sizes. We observe higher delivery ratios when the cache

size is 20, regardless of the caching strategy. Finally, through the performance of user 51 (the

proxy server), we see that almost all messages, created by internal users are delivered to Twitter

web site.

Figure 5.7 also shows that the external delivery ratio is lower than the internal. The reason

is that the number of external channels is large (> 600) and there is only a limited overlap

between channels followed by internal users. So, each cached external channel is useful to few

internal users. Even if caches were full of external channels, there would still be channels that

are not cached anywhere, thus making it difficult for the followers of these channels to receive

them.

5.5.2 Contact Simulations Overestimate Delivery Ratios

We now compare the experimentally obtained delivery ratios with the values acquired

through the post-experiment simulation on the collected contact traces. Each combination of

cache size and caching strategy is simulated using contacts collected during the period when

this combination was used.

In Figure 5.8, the three full lines on the bottom subfigure correspond to delivery ratios per-

ceived by experiment participants, for messages created by internal users that they follow and

when using the three evaluated caching strategies with the cache size of 20 messages. The

same unsorted values are shown on Figure 5.7, in the three subfigures on the right, which con-

tain delivery ratios for the cache size of 20 messages. The top subfigure of Figure 5.8 contains

the corresponding delivery ratios, obtained through the contact-based simulation with the same

caching strategies and with the same cache size of 20 messages. In addition to this, the top

subfigure also contains delivery ratios obtained through simulation with unlimited cache sizes,

where users can cache all received messages (top full line). We simulate the case with unlimited

cache sizes, because this is the most frequently used assumption in the existing literature [2],

[3].

The two subfigures in Figure 5.8 allow us to draw the first two conclusions about the de-

ficiencies of contact-based simulations. First, contact-based simulations overestimate delivery

ratios. This is due to the fact that they fail to model the limited contact durations and transfer

bandwidth, as well as the limitations of the used wireless technology. In other words, some

recorded contacts do not result in transfers and some of them allow transfers of only a part of
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Figure 5.8: Delivery ratios obtained from simulation and from the experiment for different
caching strategies. The full lines correspond to the system with the backbone (HUEs, proxy
server). The dotted lines describe the system in which only opportunistic internal users exist.
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the available data. This is further confirmed in Section 5.5.5, where we compare the experimen-

tally acquired delays with the delays obtained through the contact-based simulations. Second,

assuming unlimited cache sizes always increases delivery ratios. For example, we see that this

assumption increases delivery ratios for up to 30%, in comparison to the case with altruistic

caching strategy and the cache size of 20 messages.

5.5.3 Misinterpreting the Importance of a Backbone

The data sets we collected during the experiment enable us to study the improvement that

a backbone brings to opportunistic communication. This is possible, because the application

metadata allows us to differentiate between the copies of a message that traversed the backbone

(HUEs, proxy server) in the process of forwarding and those that reached their destinations us-

ing pure ad hoc forwarding among the experiment participants. By considering the former as

lost, we calculate delivery ratios and delay in a hypothetical system without backbone connec-

tivity.

As external messages cannot enter the system without the backbone, the metrics in the

hypothetical system are about internal messages only. Similarly to the definition of Rj in

Section 5.3, we define R′
j as the fraction of messages delivered to user j over the total number

of messages destined for user j, in a system without a backbone.

The dotted lines in Figure 5.8 represent delivery ratios in the system without a backbone

(HUEs, proxy server), for different caching strategies and for the cache size of 20 messages.

Again, the contact-based simulation significantly overestimates delivery ratios (about 30% in

the case of proportional caching strategy).

Figure 5.8 allows us to observe another trap of contact-based simulations. We see that

in the case of limited cache sizes backbone brings significant improvement to delivery ratios.

However, in the comprehensive simulation study in [3] the authors conclude that backbone

brings only marginal improvement to delivery ratios. This conclusion is the result of an often

hidden assumption in the contact based studies that cache sizes are infinite. Indeed, as we see in

Figure 5.8, in the simulated case with unlimited cache sizes, backbone brings almost negligible

improvement. This is due to the fact that a user with unlimited cache size can store much more

information, so during a contact, he can provide almost as much data as a backbone.
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5.5.4 Experimentally Obtained Delay

Figure 5.9 shows the internal and external message delays, DN
j and DX

j , observed by the

internal users (j = 1, .., 50) and by the proxy server (j = 51). The average internal delay

typically ranges from 100 to 140 minutes. The average external delay is higher. Intuitively, one

would expect the external messages to reach their destinations faster, due to their availability at

all HUEs soon after creation. Messages created by internal users, in contrast, experience a non-

negligible delay before becoming available at HUEs, as we can see from the delay observed

by the proxy (j = 51 in Figure 5.9). However, as we observe in our message log, some of the

external messages created in different time zones are created during the night. This introduces

delay, as there are very few or no internal users on the campus in the nighttime.
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Figure 5.9: The average delay of received message observed by internal users. Every com-
bination of caching strategy (cStrat) and cache size (cSize) was evaluated during 2 working
days.
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Figure 5.10: Delays obtained from the simulations and from the experiment for different
caching strategies. The full lines correspond to the system with the backbone, while the dot-
ted lines describe the system without the backbone. The case with unlimited caches is also
simulated.
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5.5.5 Contact-Based Simulation Underestimates Delay

In Figure 5.10 we plot delays obtained from the experiment and from the contact-based

simulations, for the cases with and without backbone. We see that simulations give delays

that are 2-3 times lower than the experimentally obtained delays. We inspect the contact trace

and the application data and we observe that recorded contacts do not always result in message

transfers. This means that limited transmission bandwidth, short contact durations and inability

of Bluetooth to concurrently scan and send data prevents users from leveraging all transfer

opportunities. As most of these limitations are not inherent only to Bluetooth, we conclude that

delays obtained from contact simulations should be taken with a grain of salt, as they are too

optimistic.

5.5.6 Delay from Users’ Viewpoint

The recorded delays give us some insights into performance from the networking perspec-

tive. However, we would like to know more about users’ perception of this performance and

their reaction to it. More precisely, we would like to know what an average delay of 120 min-

utes represents from the users’ viewpoint, i.e., whether the user still finds this delayed content

relevant and responds to it, or he just ignores it as a piece of obsolete information.

Twitter option called “@replies” allows us to find out more about this. When a Twitter user

receives a tweet he wants to respond to, he can create an @reply message, by putting @ +

the name of the creator of the original tweet in his reply. This helps us easily identify pairs

containing original tweets and @replies to these tweets. We then record delays for the tweets

whose reception led to the creation of @replies by the recipients and we plot the corresponding

CCDF in Figure 5.11.

We can see from the figure that 60% of the tweets that receive an @reply are received

with a delay inferior to 2h. However, 40% of the tweets that instigated the creation of an

@reply message are received with a delay between 2 and 3h. This means that the recipients

still find this non-negligible delay acceptable. In addition to this, we find that many of the

@replies are threaded and parts of longer conversations (we also verify this by checking the

message content), which means that the observed delays allow users to maintain longer message

exchanges.
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Figure 5.11: The distribution function of observed delays for the tweets whose reception led to
the creation of @replies by the recipients.

5.5.7 Cooperation from Users’ Viewpoint

The performance perceived by the RUs comes at a certain cost for the Home Users. In

particular we refer to (i) the bandwidth cost, measured through the amount of data that needs

to be uploaded/downloaded by a HU’s device via 3G, and (ii) the energy cost, especially in the

case of smartphone devices. Using the data obtained from the experiment we compute these

two aspects of the cooperation associated cost.

Bandwidth Cost. The bandwidth cost can be estimated by multiplying three quantities:

the average number of daily contacts per device that result in data exchange (∼ 25, as many

registered contacts are too short to involve data exchange or they happen between the same de-

vices soon after the contacts where data exchanges happened), the number of messages that are

uploaded/downloaded upon a contact (∼ 40) and the average size of a message (∼ 1kB). Thus,

a cooperative HU is expected to upload/download ∼ 1MB on a daily basis. This corresponds

to ∼ 3% of a 1GB monthly data plan, which is probably not unbearable.

Energy Cost. Even more important than the consumed bandwidth is the energy cost. It can
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be split into two components: Bluetooth associated cost and 3G transfer related cost. The daily

Bluetooth associated cost comes from idle periods, scanning, and data transfers. We use the

published Bluetooth consumption characteristics [51] to compute these individual energy tolls.

Given the pattern of scanning used in our experiment (∼ 10s every 2min), the idle periods cost

22∗3600s∗0.01J/s = 792J per day; the scanning periods cost 2∗3600s∗0.12J/s = 864J per

day; and the data transfers can be ignored for the daily amount of data our HUs send/receive.

The energy consumed by ∼ 25 3G uploads/downloads of 40kB of data is calculated (with

the energy model of [48]) to be 25 ∗ (0.025 ∗ 40 + 3.5 + 0.62 ∗ 12.5)J = 291J per day. The

Bluetooth and 3G energy costs add up to a total daily energy consumption of ∼ 1947J .

For an average laptop battery (∼ 130Wh = 468kJ) the costs calculated above are negli-

gible. For a recharged smartphone battery (∼ 5.5Whours = 19.8kJ), the costs associated to

providing Twitter access to roaming users amount to about 10% of battery power.

5.6 Using Contact Graph for Performance Prediction

In Section 5.5 we show that simulations on contact traces suffer from multiple drawbacks.

A contact trace can also be analyzed using its statistical properties. The goal is the same, es-

timating the performance of an opportunistic network/application. In this section, we examine

the usage of contact traces for the prediction of certain aspects of opportunistic network perfor-

mance using an alternative approach. Instead of running simulations, we focus on the properties

of the weighted contact graph. What makes this approach possible is again the availability of

the experimentally obtained metric values and contact traces for the same experiment.

5.6.1 Closeness Centrality Predicts Delivery Ratio

We apply the following approach: to represent the contacts among users, we define the

contact graph as an undirected weighted complete graph Gcon = (N ∪ {I}, Econ). The vertex

set comprises the internal users and the vertex I representing the infrastructure. As the graph is

complete, the edge set Econ comprises all unordered pairs of vertices. The weight of the edge

ij ∈ Econ is equal to wij =
1
cλij

, where cij is the number of contacts between users i and j, and

λ is a real number constant.

In the graph Gcon, we denote by dij(λ) the shortest path distance between i and j. The
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average shortest distance di(λ) of a node i (other than I) to all other nodes in the graph is

di(λ) =

∑

j∈N\{i}∪{I} dij(λ)

N
, (5.3)

also called closeness centrality in the social network literature [107]. The lower this quan-

tity is, the more connected a node is. We find a noticeable dependency between the delivery

ratio Ri of a node i and the node’s closeness centrality di. In particular, the following curve fits

the data well:

Ri =
1

1 + kdi(λ)
, λ = 0.95, (5.4)

where k is a constant that depends on the caching strategy (discussed in Section 5.6.2).

Other centrality measures that we tested, namely degree centrality, eigenvector centrality

and betweenness centrality, result in weaker dependency. By applying a similar approach to

the social graph shown in Figure 5.2, we find no dependency between delivery ratio (or delay)

and centrality measures in this graph.

5.6.2 The Curve Fitting Details

The weight exponent λ can change the relative importance of small and large edge weights.

The weight of a path p is the sum of the weights of its edges e1, e2, ..., el:

w(p) =
1

cλe1
+

1

cλe2
+ . . .+

1

cλel
. (5.5)

With a large positive value of λ, the edges with a small number of contacts dominate, whereas

with a large negative value of λ, the edges with a large number of contacts dominate.

We choose λ = 0.95 because this value maximizes the mutual information between d(λ)

and R, viewed as discrete random variables. Intuitively, the mutual information of d(λ) and R

is high when the knowledge of one reduces our uncertainty about the other, which is desirable

as we want to use d to predict R. The advantage of using mutual information as opposed to,

for instance, correlation, is that mutual information is not biased by the relative values of the

quantities involved. So, we see that, to maximize the predictive power of d for R, all edge

weights should be treated with approximately equal importance. After choosing λ = 0.95, we

do curve fitting to find the value of k that minimizes the sum of vertical distances. The values

of k are always in the interval [2.7, 3.5].

Knowing the dependency and using the curve helps one estimate a typical node’s expected

delivery ratio if one can estimate or guess a typical node’s closeness centrality. Furthermore,
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one can form an expectation about the effect of connecting to the backbone (thus changing

nodes’ closeness centralities) on the delivery ratio that network users will experience.
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Figure 5.12: Dependency between delivery ratio Ri and closeness centrality di.

For k = 3.1, we plot the data and the curve in Figure 5.12. In every subfigure each user’s

Ri and di are plotted for the cases with and without backbone. We see that the R − d depen-

dency holds, not only across users within the same network topology, but persists even across

qualitative changes in the topology.

Moreover, we see that the dependency exists, and the curve fits, regardless of the caching

strategy used. This last point is important, because caching strategies affect delivery ratios. But

the effect of the caching strategy can be included in the constant k, which is limited to a small
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range of values. We conclude that a node’s distance is a reliable indicator of its delivery ratio.

5.7 Conclusion

This chapter shows that studding live opportunistic applications can help us improve our

understanding of the opportunistic network performance, as the results obtained through a live

deployment differ in many respects from the simulation results. They also offer us a unique

insight into some aspects of network performance, that are otherwise impossible to observe

through the commonly used contact-based simulations.

Our experiment with a real application on top of an opportunistic network shows that the

commonly ignored factors in simulation studies of these networks (such as technology limita-

tions, limited contact durations, finite transmission bandwidth, etc.) lead to significant discrep-

ancies between experimental and simulation values. All caching strategies and cache sizes,

tested by 50 users during the 2.5 week experiment, unanimously confirm that contact-based

simulations overestimate network performance (especially in the case of delay). This means

that an effort should be made to include these missing factors in the future trace driven simula-

tions.

In addition to this, we find that some commonly hidden assumptions, like the assumption

about the infinite cache sizes, result in the overly pessimistic conclusions about the utility of

a backbone in an opportunistic network. This is an interesting finding that could direct more

attention towards hybrid networks, that include both, the opportunistic and the infrastructure

component.

Finally, we show that a statistical treatment of the contact trace, offers a good prediction of

certain performance aspects, namely delivery ratio. We show how the existence of a backbone

increases the message delivery ratio by reducing user distances on the contact graph. The

strong statistical dependency that we find (between node’s centrality and delivery ratio) can

help predict not only delivery ratios, but also the effect of adding a backbone to an opportunistic

network.
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Security for Opportunistic Applications

and its Performance
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Chapter 6

Security Architecture for Intermittently

Connected Opportunistic Applications

The opportunistic Twitter application, described in Chapter 5, differs from the traditional

(always connected) Twitter clients in several important ways. These differences are generic

and they persist for a whole range of traditional clients and their opportunistic counterparts

(which can be implemented following the design of our opportunistic Twitter application). The

most important difference is the participation of intermediate users (hops) in the process of data

forwarding. Security threats introduced by the multi-hop forwarding require us to rethink the

security solutions used in the case of traditional application clients (designed exclusively for

direct client-server communication). The goal is to provide comparable level of security to op-

portunistic clients that occasionally synchronize with web services and that rely on intermediate

hops in the process of data forwarding.

At the same time, one has to bare in mind that our opportunistic Twitter clients do not

form a completely autonomous network, as they occasionally access resources on the Internet.

For this reason, the proposed security solutions for autonomous opportunistic networks cannot

be used, as are, because they have to be compatible with the existing security APIs used by

traditional clients.

After presenting the related work in Section 6.1, we explain the specificities of an oppor-

tunistic application client (intermittently connected to the Internet) that relies on multi-hop

forwarding in Section 6.2. We present the security hazards that arise from these specificities

and we show why solutions used to secure traditional (always connected) client applications

are not sufficient in this case. Then, in Section 6.3 we propose a security architecture that takes

101
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these issues into account and leverages some well-established security building blocks to offer

a high level of security to the class of hybrid applications that we consider (i.e., opportunistic

applications with intermittent Internet connectivity).

6.1 Related Work

Several studies addressed the problems of security in opportunistic and vehicular networks

(security issues in these two types of networks are similar with many respects). As a part of

the European Haggle project [55, 56, 57] the authors present their work on a range of security

mechanisms that target Haggle - a framework for autonomous opportunistic communication.

However, their main focus are the security challenges raised by the class of content/context

forwarding algorithms. Thus, they propose multiple solutions for correct forwarding operations

over encrypted data. Another important difference between their work and the security solution

we propose in this chapter is that they target a delay tolerant network in which nodes do not

interact with legacy networks. Unlike them, we propose a security framework for the family

of hybrid applications (that synchronize with the Internet) similar to the opportunistic Twitter

application described in Chapter 5.

An important part of any security framework for a network that involves opportunistic

(multi-hop) forwarding is node authentication. A number of papers address the problem of

node authentication in an autonomous environment, without a trusted authority, where node se-

curity credentials are unknown or unobtainable. Solis et al. [59, 60, 61] propose a method for

establishing an initial security context using casual information that links users to well-known

entities. In [62], the system of invitations is used to expand the network in a trusted way.

In [63], the authors propose a fully self-organized public-key management system that allows

users to generate their public-private key pairs, to issue certificates, and to perform authentica-

tion regardless of the network partitions and without any centralized services. Their approach

does not require any trusted authority. In [64], the authors present a method for key establish-

ment over a radio link in peer-to-peer networks, based on the Diffie-Hellman key agreement

protocol. They solve the problem of vulnerability to man-in-the-middle attack by leveraging on

the ability of users to authenticate each other by visual and verbal contact. Finally, Asokan et

al. [65] are closest to our work, as they investigate how security in DTNs can be bootstrapped

from existing large-scale security infrastructure, like the cellular communication security in-

frastructure.

Unlike the proposals that address security of opportunistic networks, the major efforts to
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secure vehicular communication approach the problem of node authentication with the assump-

tion that there exists a central trusted authority. This assumption can be found in three major ef-

forts to design vehicular security solutions that have been undertaken in industry and academia,

namely: the NoW project [66], the IEEE 1609.2 working group [67], and the SeVeCom project

[68]. They all rely on a Certification Authority (CA) and public key cryptography to protect

vehicular communication, i.e., to provide message authentication and integrity.

In addition to these major projects, a number of other notable studies outlined challenges

[69], described attacks [70], and offered solutions [72, 73] in the domain of vehicular networks

security. Some of them complement the public key operations with the use of symmetric key

cryptography [72] or group signatures [73]. This is to a great extent motivated by the reduction

of security footprint, discussed in Chapter 7.

6.2 Opportunistic Application Security Challenges

6.2.1 Security of Traditional Client Application

When publishing or fetching content, a traditional (always-connected) Twitter client appli-

cation establishes an end-to-end session with Twitter servers. Since August 31st, 2010, third-

party Twitter clients authenticate to Twitter servers using OAuth [108]. OAuth (Open Autho-

rization) was introduced to avoid the exchange of login credentials (username and password)

between different Twitter clients (i.e., client applications implemented by different developers)

and Twitter servers. It ensures that passwords are stored only on Twitter servers and are not ac-

cessible by third-party applications. The password is never stored locally by a client application

and it is never exchanged between the client application and Twitter servers.

OAuth authorization works in the following way: A developer first has to register his client

application with Twitter. As a result of this operation he is provided with two keys (a Con-

sumerKey and a ConsumerSecret) that uniquely identify the application. When a user first tries

to login to Twitter using the developer’s application, he will be redirected to the phone’s web

browser. He then enters his username and password, which are sent to Twitter via HTTPS.

In exchange, the user receives two tokens - AccessToken and AccessTokenSecret. The client

application stores the tokens in an Android shared preferences file, that cannot be accessed by

any other application. The two application keys (ConsumerKey and ConsumerSecret) and the

tokens (AccessToken and AccessTokenSecret) are used for every successive login to Twitter.

Note that the exchange of password between the client and Twitter servers never occurs. Web
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Figure 6.1: Initial login to Twitter: Obtaining AccessToken and AccessTokenSecret using
OAuth authorization protocol. Note that username and password are sent using the mobile
web browser and HTTPS. They are not accessible to the client HTweet application.

browser and HTTPS protocol are used instead. The login process with the Android imple-

mentation of our opportunistic Twitter client (HTweet), discussed in Section 5.2.4, is shown in

Figure 6.1.

OAuth has de facto become an open standard for API access delegation. Today, it is a

part of web services offered by major players on the web, such as Google, Facebook, Twitter,

Microsoft, Yahoo, Netflix or LinkedIn. It allows users to share their private resources (e.g.,

photos, videos, contact lists) stored on one site with another site without having to hand out

their credentials, typically username and password. With OAuth, users hand out tokens instead

of credentials to their data hosted by a given service provider. Each token grants access to a

specific site (e.g., a video editing site) for specific resources (e.g., just videos from a specific

album) and for a defined duration (e.g., the next 2 hours). This allows users to grant a third

party site access to their information stored with another service provider, without sharing their
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access permissions or the full extent of their data.

Although this new security framework has several important advantages over the previously

used security model (which required sending of username and password each time a client

contacts a Twitter server), it is not applicable, as is, in the case of our opportunistic Twitter

client. In the next subsection we discuss the reasons for this.

6.2.2 Specificities of Opportunistic Application Security

One of the major differences between a traditional (always connected) mobile client appli-

cation and an opportunistic client application (with only occasional access to the Internet) is

in the way data is forwarded. As discussed in the previous section, providing security for a

client that can establish a connection with a server on the Internet at all times (by means of 3G,

Wi-Fi, etc.) implies securing an end-to-end session. Data exchange is end-to-end, without par-

ticipation of third-party entities in the middle. Encryption, authentication and protection from

the man-in-the-middle attacks can be ensured using some standard solutions, such as Hypertext

Transfer Protocol Secure (HTTPS). On the other hand, an intermittently connected opportunis-

tic client often has to rely on other users (nodes) and epidemic (multi-hop) forwarding in order

to exchange data with servers on the Internet.

Let us consider our opportunistic Twitter application described in Chapter 5 again. A user

of this application has only occasional Internet connectivity, when direct communication with

Twitter servers is possible. Most of the time, tweets created by the user are forwarded in oppor-

tunistic fashion, by other users, until they eventually reach a node with the Internet connectivity.

Thus, the use of OAuth, such as described in Section 6.2.1, is impossible.

The problem is in the fact that most of the tweets get delivered to the Internet, not by their

original creators, but by other users that participate in the process of forwarding. As Twitter’s

OAuth authorization requires creator’s tokens (AccessToken and AccessTokenSecret) in order

for a tweet to be published, these tokens would have to be attached to each opportunistically

forwarded tweet. However, this is unacceptable, as allowing public access to users’ private

tokens creates serious security risks. Any user with access to private tokens of other users

would be able to compromise the integrity of their tweets or to publish tweets on their behalf.

In addition to this, such a user would be able to bypass any fairness scheme put in place and

inject large number of junk messages in the opportunistic network on behalf of other users. This

could lead to a full fledged Denial of Service (DoS) attack and reduced network performance.
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6.3 Securing Applications with Intermittent Connectivity

6.3.1 Introducing a Trusted Location on the Internet

To address the aforementioned security and performance threats, a proxy server is added to

our architecture (Figure 6.2). The place of the proxy server in the system and its non-security

related roles are described in Section 5.2.5. As mentioned in the same section, it also has an

important security role. This role stems from the following idea: Although an opportunistic

user cannot share his private tokens with other users that participate in the forwarding process,

he can make use of a trusted location on the Internet that is allowed to store his tokens and

publish tweets on his behalf. Given that the Twitter API was designed with continuously con-

nected users in mind, this trusted location (i.e., our proxy server) serves as a buffer between the

intermittently connected opportunistic clients and Twitter API. The proxy stores the tokens and

keys of opportunistic users and publishes the arriving tweets on their behalf (see Figure 6.2).

By introducing the proxy server, we reduce the problem of secure publishing of oppor-

tunistic users’ tweets to the problem of their uncompromised delivery to a trusted location on

the Internet, by means of secure multi-hop forwarding. Security in this case means preserv-

ing message integrity, authenticity and possibly the ability to hide its content. These security

issues, associated with the multi-hop context, have been addressed by the area of vehicular

networks security [66, 68, 67]. Multi-hop vehicular communication is considered in the case

of several transportation safety and efficiency applications, in particular congestion notification

and environmental hazard notification applications [109, 71, 110]. As a result, suitable security

frameworks were proposed. In the next section, we explain how we leverage on certain ele-

ments of these proposals [111], in order to adapt the PKI-based security solution to the needs

of our application.

6.3.2 Securing Opportunistic Forwarding Using PKI

Like in the case of our opportunistic Twitter application, secure multi-hop communication

in a vehicular network has to ensure the integrity of the forwarded messages and it has to

provide a mechanism for user authentication. In other words, messages can be created only

by legitimate users and their content should remain unchanged in the process of multi-hop

(epidemic) forwarding. In order to secure these requirements, the architects of vehicular net-

work security resort to some well established security building blocks, namely, Public Key

Infrastructure (PKI). In the paragraphs that follow, we first discuss these building blocks in the
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Figure 6.2: Security architecture for our opportunistic Twitter application.

context of vehicular networks security. We then explain their place in our opportunistic Twitter

application.

As proposed in [66, 68, 67], user identities in a vehicular network are managed by a Certi-

fication Authority (CA). Each user in the network is assigned a set of private/public key pairs,

with the latter being certified by a CA. Each legitimate user registered with the Certification

Authority can participate in Vehicular Communication (VC). Basically, a user uses his private

key to digitally sign a message he generates and the public key of the originator of a received

message to validate the originator’s signature. The state of the art in secure vehicular commu-

nication recommends the use of the fast Elliptic Curve Digital Signature Algorithm (EC-DSA)

for message signing [68], [67]. The certificate of the message creator is attached to the message

to enable validation of the message. The validation includes first the validation of the certificate

(by validating the CA’s signature), and then the validation of the creator’s signature.

The described security architecture resolves the issue of authentication of the creator of

a received message, as well as the problem of message integrity check, at each hop in the

network. Let’s see now how these different components of the public key infrastructure fit our



108 6. Security Architecture for Intermittently Connected Opportunistic Applications

opportunistic Twitter architecture.

In the context of our opportunistic Twitter application, the role of the Certification Author-

ity is naturally assumed by the proxy server. In our experiment, the proxy server is under our

control, but in reality it can be controlled by Twitter itself or by a trusted third party that offers

an interface to Twitter for users with opportunistic application clients. The proxy provides op-

portunistic Twitter users with public/private key pairs. The public key is certified by the proxy

(the CA). The keys can be delivered to users following the procedure that is used in the case of

OAuth token delivery. In other words, a mobile web browser and HTTPS can be utilized for

the secure key delivery. In this process the users use their tokens (AccessToken and AccessTo-

kenSecret) obtained from Twitter and the keys (ConsumerKey and ConsumerSecret) provided

by the application developer (that he also obtained from Twitter) to identify themselves to the

proxy.

Note that there is no need for users to share their Twitter passwords with the proxy server, as

the proxy can exchange data with Twitter using only OAuth keys and tokens. In order to enable

users to authenticate the proxy, the proxy’s root certificate can be delivered to the application

client developer prior to the application launch, following the method used for the OAuth key

delivery (ConsumerKey and ConsumerSecret). Just like the OAuth keys and tokens, a user’s

private key can be stored in a shared preferences file, access to which is restricted to a single

application.

6.3.3 Possible Implications on Network Performance

At the time of our experiment (the end of 2009) OAuth authorization was still not deployed

by Twitter. Users’ usernames and passwords were used for authentication with Twitter, instead

of OAuth keys and tokens. From the aspect of the proposed security architecture, this meant that

the proxy server stored users’ passwords instead of OAuth keys and tokens. Proxy had the same

role, but it used a user’s password to exchange data with Twitter on his behalf. Nevertheless,

the PKI part of the proposed security framework is not affected by this difference in Twitter

API.

However, during the experiment, the focus was on the performance evaluation of a live op-

portunistic application and comparison with the performance obtained from the contact based

simulations. Thus, given the limited processing power of our Windows Mobile phones and the

performance footprint introduced by asymmetric key cryptography [112], the PKI support of-

fered by Haggle [58] was switched off, for the whole duration of the experiment. Nonetheless,
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the proxy was the only entity with the access to users’ credentials, which were never included

in the exchanged messages. This was, of course, not sufficient to fully meet the discussed secu-

rity requirements, as the messages were not signed or validated. This means that tweets could

have been modified in the process of opportunistic multi-hop forwarding. Also, the application

users could have been impersonated with some application client tampering. In spite of this

(perhaps due to the fact that the experiment participants did not have access to the application

source code), no such cases were detected.

The results of our comparison between the experiment and contact-based simulations pre-

sented in Chapter 5 show that even without the additional security load on performance (added

by the use of asymmetric cryptography), data exchange opportunities that appear during the

opportunistic contacts are often missed. Thus, an interesting question arises: Should we expect

further performance deterioration, once the security footprint is added?

Network simulators that model all network layers and go beyond simple contact-based sim-

ulations [113], [114], in combination with the plugins developed for vehicular networks [115],

offer a good environment to study this problem. Given the similarity between a system with

vehicular nodes that participate in multi-hop forwarding and a setup with an opportunistic ap-

plication (also based on multi-hop forwarding), in Chapter 7, we try to model the problem in

a way that covers both scenarios. Using the results of previous measurements and extensive

simulation, we show that the problem of reduced network performance (i.e., reduced relaying

capacity), due to the additional security-related processing load, effectively exists. For this

reason, we design and evaluate an adaptive scheme that complements the proposed security

framework and protects the relaying capacity in the network.

6.4 Conclusion

Hybrid opportunistic application clients that occasionally access resources on the Internet

(that are designed primarily for the access by traditional always-connected clients), impose

highly specific security requirements. On one hand, as they rely on epidemic forwarding,

authenticity and integrity of the content, which is often forwarded over multiple hops, has to

be ensured. On the other hand, interfacing with the web services (resources) in question and

adherence to their security APIs has to be secured. For these reasons, neither the proposals

for securing the autonomous opportunistic communication, nor the existing security solutions

for the always-connected application clients can be used, as are, to secure this class of hybrid

applications.
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Thus, we propose a security framework for opportunistic application clients with inter-

mittent access to the Internet, which is based on existing security building blocks and which

addresses both sets of requirements. To manage the communication with the security API of the

web service in question, we introduce a trusted entity on the Internet (our proxy server). This

trusted location is designed in a way that allows asynchronous access to intermittently con-

nected opportunistic clients. It also serves as a trusted certification authority, enabling secure

exchanges among opportunistic clients.



Chapter 7

An Adaptive Method for the Optimization

of Security Performance

Recent benchmarks indicate that the use of public key cryptography results in non-negligible

verification times on a variety of platforms [112]. Complex cryptographic operations, such as

signature verification, introduce non-negligible processing delays. In this chapter, we focus

on multi-hop communication in opportunistic and vehicular environments and we show that

the increase in message processing time in mobile nodes degrades network performance, by

decreasing the number of messages that reach destinations. Nevertheless, ignoring security

can lead to DoS attacks and an even more severe decrease in network performance [55]. As

a solution to this problem, we design Adaptive Message Authentication (AMA), a lightweight

filtering scheme that addresses the problem of security footprint (introduced by the security

framework proposed in Chapter 6) and protects the threatened relaying capacity. Although

based on local observations and without any additional communication channel between the

nodes, our scheme achieves global improvement of network performance. We perform exten-

sive simulations and show that the scheme resists DoS attacks even against a substantial number

of adversaries in the network.

In Chapter 6, we have discussed the similarities in security requirements, in the cases of op-

portunistic applications that require multi-hop forwarding and vehicular applications that rely

on inter-vehicle communication (IVC). These similarities led us to import certain elements of

the PKI-based security solution, proposed in the vehicular context, into our security framework

for intermittently connected opportunistic applications. Both security architectures advocate an

authentication and integrity check of each relayed message as a necessary condition for secure

111



112 7. An Adaptive Method for the Optimization of Security Performance

multi-hop communication. In this chapter we revisit this requirement, in order to explore if it

is possible to reduce the security footprint on performance and optimize the relaying capacity

in multi-hop applications, without affecting the level of security.

The rest of this chapter is organized as follows. After presenting the related work in Section

7.1, we explain the system assumptions (considered applications, forwarding, security assump-

tions) and the adversary model in Section 7.2. We discuss the impact of security footprint on

performance in Section 7.3. In Section 7.4, we introduce our scheme for security footprint

reduction, which we dub Adaptive Message Authentication (AMA). Finally, in Section 7.5, we

show how our scheme can be configured to protect the optimal relaying capacity and to account

for the possible security threats. We conclude the chapter in Section 7.6.

7.1 Related Work

On one hand, the toll of operations associated with public key security is well illustrated

in [112], where durations of different cryptographic operations on a variety of platforms are

measured. On the other hand, the simulation study in [55] shows the effects of denial of service

attacks on epidemic forwarding protocols, when no security solutions are deployed.

The proposals for security footprint reduction in opportunistic or vehicular networks are

typically coupled with the proposals that offer security solutions for these networks. After de-

scribing a method for establishing an initial security context in an autonomous opportunistic

network, using social contact information, Solis et al. [59, 60, 61] relax the authentication re-

quirements in order to reduce security overhead. In [72], symmetric key cryptography comple-

ments the public key operations, as a part of the effort to reduce security footprint in vehicular

networks. In [73], the authors use group signatures and simple, context-agnostic overhead re-

duction schemes, to complement public key cryptography. Investigating these variants, which

result in somewhat different processing loads, (in the context of the scheme we propose in this

chapter) would be an interesting point for future work. At this point our scheme is evaluated

only in the case of security solutions that are based exclusively on public key cryptography, i.e.,

the framework proposed in Chapter 6. However, we note that the scheme is oblivious to the

exact use of certificates and public keys. As a result, AMA can remain fully operational and ef-

fective even if privacy enhancing algorithms with multiple certified public keys (pseudonyms)

are implemented.

In [74, 75], the authors propose context-specific strategies for security footprint reduction.

The investigation of the vehicular communications security footprint and its effects on sys-
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tem/application performance is further extended in [76], where both safety and efficiency ap-

plications and additional security mechanisms are considered. These works are complementary

to the security footprint reduction scheme that we propose and their joint investigation with

AMA (our scheme) would be another interesting point for future work.

Regarding the geographic routing protocols that are used in this chapter (and that represent

a special case of epidemic forwarding), a good survey can be found in [116]. The security

aspects of these protocols are explored in [117] and [118].

7.2 System and Adversary Model

7.2.1 Considered Applications

We consider a system with mobile nodes that represent either: (i) a population of mobile

users with an opportunistic smartphone application that relies on multi-hop forwarding or (ii)

a population of vehicles (equipped with a variant of IEEE 802.11, on-board sensors, and a

computing platform) that participate in inter-vehicle communication.

The considered smartphone application is similar to our opportunistic Twitter application,

discussed in Chapters 5 and 6. It allows mobile users to create their messages (tweets for

example) and to have them forwarded in the direction of recipients or data sinks (i.e., other

mobile users with an Internet connection). The only difference with respect to our opportunistic

Twitter application is that here it is assumed that each message contains coarse destination

regions or target areas where the recipients (or data sinks) can be found. This assumption

allows us to perform our analysis using more comprehensive routing protocols, suitable for this

kind of environment, which introduce less overhead than simple epidemic forwarding.

Regarding the second scenario, multi-hop vehicular communication is often considered in

the context of congestion notification [119, 120] and environmental hazard notification appli-

cations [110, 109, 71]. These applications exploit the inter-vehicle communication, which will

be based on a variant of the currently widely used IEEE 802.11 protocol. The IEEE 1609.x

protocol suite, also known as the WAVE technology [67] developed for the U.S. Department of

Transportation (DOT), is already in the stage of a trial-use standard. Vehicles will communi-

cate with other vehicles within range, but, equally important, they will cooperate in forwarding

messages of their neighbors, other vehicles or road-side units (RSUs), across multiple hops.
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7.2.2 Position-Based Routing

The type of routing that is shown to be efficient in the case of multi-hop forwarding with

known destination regions is position-based routing [116]. These routing algorithms, often

termed GeoCast protocols, are currently under consideration towards standardization [71]. The

messages forwarded using GeoCast routing contain the destination or target geographic areas.

Position-based routing protocols appear as a natural choice for multi-hop communication, as

nodes are expected to be aware of their own location (through GPS, or other localization tech-

niques with respect to terrestrial infrastructure). In such a setting, the highly volatile topology

makes these protocols more efficient than the other mobile ad hoc routing protocols [121].

In the case of vehicular communication (VC), multi-hop forwarding serves, in general, less

time-critical applications. In addition to the multi-hop communication, VC-enabled applica-

tions entail one-hop high-rate safety messaging (beaconing), with messages bearing informa-

tion on the location, speed, acceleration and heading of the sender. Beacons are transmitted at

a rate of 3 to 10 beacons per second. Safety beaconing rates are specified by standards, and the

processing of the beacons is obligatory. It allows a node to maintain a fine-grained knowledge

of the motion dynamics of other vehicles in its vicinity.

In order to account for these differences between the observed opportunistic applications

(that rely exclusively on multi-hop forwarding) and vehicular applications (that also involve

one-hop beaconing), we consider two essentially different position-based algorithms.

The first algorithm, Cached Greedy GeoCast (CGGC) [122] belongs to the group of beacon-

based unicast routing algorithms. CGGC relies on beacons to discover the position of neigh-

boring nodes (within the communication range), and then forwards messages in the geographic

direction of the destination, picking the node whose coordinates are the closest to the destina-

tion. If a local optimum is reached, the message is added to the local cache, where it is kept

until a suitable next hop is found. As it includes the obligatory beaconing, this algorithm is

well suited for VC-enabled applications.

The second algorithm we consider is Contention-Based Forwarding (CBF) with the basic

suppression scheme based on timers [123]. Unlike CGGC, CBF is based on broadcast and

performs greedy forwarding without the help of beacons and neighbors’ tables. It leaves the

next hop selection and the forwarding decision to the neighbors in the transmission range. Thus,

it fits in the context of the mobile opportunistic applications discussed in Chapters 5 and 6.



System and Adversary Model 115

7.2.3 Goodput as the Performance Metric

Here we define the performance metric that is used in the rest of this chapter. Let us define

L as the set of legitimate users running applications enabled by multi-hop communication and

Ni as the number of legitimate messages received by destination i over the time period of

interest. We consider here multi-hop transmissions originating at each node at a constant rate

of rL messages per second. Then, in the presence of any communication impairments and

networking faults and delays, we define the goodput γL as:

γL =
1

|L|

∑

i∈L

Ni

total time
(7.1)

Goodput as a metric is more meaningful than delivery ratios in the context of the DoS

attacks that we consider in Section 7.2.4. In other words, it is often more meaningful to use

goodput as a metric in the scenarios that involve adversaries who inject forged messages in the

network. Unlike delivery ratios, goodput measures only the arrivals of legitimate messages at

their destinations. Thus, it can better capture the drop in performance caused by the injection

of forged messages.

7.2.4 Security Assumptions and the Adversary Model

We consider the security framework based on public key cryptography, presented in Chap-

ter 6. To summarize, user identities in such a setting are managed by a certification authority

(CA). Each user (node) in the network is assigned a set of private/public key pairs, with the

latter being certified by the CA. Users use their private keys to digitally sign the messages they

generate and the public key of the creator of a received message to validate the creator’s sig-

nature. To facilitate the process of message validation, the certificate of the message creator

is attached to each message. The validation includes first the validation of the certificate (by

verifying the CA’s signature), and then the verification of the creator’s signature.

We focus on the external adversaries, that is, adversarial users that do not have in their

possession system credentials (certificates issued by the CA). Each such adversarial node can

fabricate and inject messages, but cannot sign on behalf of a legitimate node. The direct goal

of adversaries is to reduce the goodput γL of legitimate nodes by injecting forged messages

and making legitimate nodes waste their processing time on forged message verification. All

adversarial nodes inject forged messages at a rate rA messages per second. We assume that

the adversaries are aware of their number in relation to the number of legitimate nodes in the
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network and we define a as the percentage of adversaries in the network. Knowing a, the

adversaries choose their sending rate rA in order to minimize γL.

We emphasize that none of the forged messages injected by an adversarial node can be

perceived as valid if it is checked by a legitimate node. Nonetheless, the overhead imposed

by the need to validate those messages is exactly what can lead to a DoS attack. For such an

attack, a smartphone or a laptop can be used, and no tampering with hardware that stores the

vehicle’s cryptographic keys [68, 70] and no cryptanalytic attack are necessary. By preventing

even a small fraction of legitimate traffic from reaching its destination, the adversary can pre-

vent reception of messages in an area within the necessary deadlines: For example, consider

road condition information that cannot be validated in the targeted geographical area, resulting

in traffic jams; or, consider increased loads from fabricated traffic that prevent a node from

performing safety related operations.

7.3 The Impact of Security Footprint on Performance

7.3.1 Delay Introduced by Message Validation

The message validation in a node is defined in Section 7.2.4. In the rest of this chapter, we

refer to the process of message validation as “message checking.” We denote the processing

delay needed for a message to be checked by tC . The value of this delay depends on the

selection and implementation of the algorithm used for message signing. The algorithm that is

typically considered, due to the fact that it introduces lower delay than the more famous RSA,

is the Elliptic Curve Digital Signature Algorithm (EC-DSA).

The processing delay also depends on the processing power of the device that performs

the validation. For platforms similar to those currently considered for the proof-of-concept

implementations of VC systems, characteristic delays are provided in [73, 118]. For platforms

based on PowerPC microprocessor (e.g., , DENSO platform [124]) the delays can be found in

the eCrypt project benchmarks [112]. For example, we can see that on 533MHz CPU Power

PC platform, signature verification for EC-DSA with 192-bit curve (nist-p-192), requires 9 ms

on average. The benchmarks for the widely used Crypto++ library [125] show that even on

Intel Core 2 1.83 GHz processor (under 32-bit Windows Vista) signature verification for EC-

DSA with 256-bit curve takes 8.53ms, while in the case of the 233-bit curve it takes 12.8ms.

Lastly, the IEEE 1609.2 efforts currently consider, for proof-of-concept purposes, hardware-

accelerated signature verification at several milliseconds. Even for the most powerful of these
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platforms, tC would be 7.2ms [73]; if we consider this value in a rather favorable environment,

with 20 neighbors beaconing at the lowest possible rate of 3 beacons/second, by multiplying the

three numbers, we obtain as a result that 43.2% of the CPU time would be devoted to message

checking.

7.3.2 Security Footprint of Multi-Hop Forwarding

The use of multi-hop forwarding by opportunistic and vehicular applications implies that

messages can traverse several intermediate hops before reaching the destination. Given the

message validation delays described in Section 7.3.1, a question arises: What strategy should

an intermediate node adopt with regard to checking the messages that are only relayed by that

node? It is not a priori clear whether a message that requires relaying should be checked by an

intermediate node or just resent without any prior validation.

We define “check-all” and “check-nothing” as two extreme approaches that can be applied

to relayed messages. “Check-all” is the default strategy in the existing proposals [111] and it

assumes checking of each relayed message, whereas “check-nothing” assumes that none of the

relayed messages are checked. Both approaches perform well under certain circumstances, but

underperform in other cases.

The “check-all” strategy guarantees the fewest forged messages in the network, as it con-

tains them locally and prevents their propagation. Given unlimited processing power in each

node (implying a negligible checking time tC), checking each relayed message would be the

best strategy. In this case, less time would be spent forwarding the forged messages and the

limited wireless capacity would be used only for forwarding the valid messages.

The “check-nothing” strategy promises good results with few adversaries in the network, or

with few injected forged messages in the network. This is shown in Figure 7.1, which contains

a snapshot of our performance evaluation results provided in Section 7.5.3. In this case, not

checking any relayed traffic guarantees that no time is wasted on signature verifications in

intermediate nodes and the goodput γL of legitimate users is improved. However, an increase

in the number of adversaries in the network quickly makes this strategy inferior to “check-all”.

In conclusion, “check-all” is not the best approach for networks with few adversaries and

“check-nothing” gets worse as the number of adversaries increases. We want a scheme that

performs well in both cases. It should contain the forged messages locally (as “check-all”) in

the presence of adversaries and behave as “check-nothing” with no adversaries around.
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Figure 7.1: The performance of “check-all” vs. “check-nothing” algorithm obtained for CBF
geocast routing algorithm.

7.4 AMA-Adaptive Message Authentication

As explained in Section 7.2.4, the adversaries can try to degrade the performance of a

system that involves multi-hop forwarding, by creating forged messages. In principle, the

danger can be twofold: (i) the use of forged messages at destinations and (ii) the reduction in

goodput caused by flooding of the network with forged messages. The first risk is not really

a concern, as all solutions require nodes to check each message at destination, prior to its use.

The impact of the second threat depends critically on the ability of the security solution to

prevent the spatial propagation of forged messages.

The existing solution (“check-all”) is very restrictive with respect to this issue. Messages

are checked at each hop, which prevents forged messages from propagating in the network.

However, in the absence of adversaries, this results in many redundant checks that consume

processing time and reduce performance. Indeed, in Figure 7.1 (where “check-all” and “check-

nothing” strategies are simulated for different fractions of adversaries in the network), we
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Figure 7.2: A few regions in the city are under attack (shaded areas) and nodes in these regions
actively defend. Nodes in the rest of the city, where the presence of the adversaries is not felt,
can relax their security. We use this road map in all of our simulations.

observe that “check-nothing” performs significantly better in terms of goodput without ad-

versaries in the network. Thus, our goal is to provide a solution that takes the best of both

strategies. The aim is to make nodes perform only the necessary number of cryptographic op-

erations while skipping the redundant message checks and improving the overall performance

of the network.

The basic idea that we exploit is based on the observation that the adversaries are limited

in scope and that they cannot keep the whole network under attack at all times [126, 70].

Figure 7.2 illustrates this; it contains the street grid used in our simulations; the regions under

attack at time t are marked as shaded areas. So, if the security conditions in different parts of the

network significantly differ, why would the nodes in these areas behave in the same manner?

In other words, we argue that in this case nodes should take reactive, rather than proactive

approach to security. A node should respond to a threat only when it is affected by an attack

and it should reduce its security-related activities when the threat is not present (knowing that

these activities consume resources and reduce performance).

The solution we propose is an adaptive scheme that is shown in Figure 7.3. We call it AMA

(Adaptive Message Authentication). When no threat is present, our scheme relaxes security

and avoids the unnecessary processing load. Nevertheless, it maintains the ability to discover

a threat and it becomes very conservative as soon as it is detected. AMA has two modes of
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Figure 7.3: AMA - the scheme for adaptive authentication and integrity checking of messages
exchanged between vehicles. Briefly, an AMA node can be in one of two modes: “check-all”
and “relaxed.” A node starts in “relaxed” mode. In this mode, a node checks with probability
1 the messages destined for itself, but only with probability p the messages destined for other
nodes. If it detects a forgery, the node switches to the “check-all” mode. In the “check-all”
mode, a node checks all messages with probability 1, and switches to “relaxed” mode only if c
consecutive legitimate messages are received.
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operation. We call them “check-all” and “relaxed”.

The “relaxed” mode allows nodes to spend less processing power on defensive measures.

All the legitimate nodes are initially in the “relaxed” mode. It is this mode that is expected to

improve the performance of the scheme, as only a fraction of received messages are checked

by a node in the “relaxed mode”. Nodes distinguish between the messages that have the current

location of the node as the destination zone and those that only have to be relayed to others.

Each message in the first group is checked with probability 1 and each message in the second

group with probability p. If they happen to check a forged message, the forgery is always

detected and it forces the node to switch its mode of operation to “check-all”.

The “check-all” mode is conservative and it mandates checking each received message. A

legitimate node is expected to be in this mode when there are adversarial nodes nearby. A

node stays in the “check-all” mode until it receives c consecutive legitimate messages. Then, it

switches back to the “relaxed” mode.

The rationale is that if a node senses that the current “temperature” of the neighborhood is

low (no adversaries in the neighborhood), a node can relay most of the messages without prior

authentication and integrity check, while checking only a small fraction of these messages in

order to ensure a timely detection of security threats. While the selected messages are being

checked, the other messages that need to be relayed do not have to wait before being forwarded.

It is possible, of course, to use a different function for the checking rate increase, not just

a step function. We show that even this simple scheme guarantees significant performance

gains, for an appropriate choice of the parameters p and c, under very realistic assumptions (the

scheme and both parameters p and c are known to the adversary).

7.5 Protecting the Optimal Relaying Capacity

7.5.1 Simulation Setup

To evaluate our scheme, we compare the goodput γL (as defined in Section 7.2.3) achieved

when AMA, “check-all,” and “check-nothing” strategies are used. The strategies are tested on

top of the two geocast algorithms described in Section 7.2.2 (Cached Greedy GeoCast (CGGC)

[122] and Contention Based Forwarding (CBF) with the basic suppression scheme based on

timers [123]). The broadcast based CBF algorithm covers the opportunistic application sce-

nario, while the CGGC algorithm that includes obligatory one-hop beacons covers the vehicular

scenario.



122 7. An Adaptive Method for the Optimization of Security Performance

In order to make the simulations as realistic as possible, we use a traffic simulator to simu-

late user mobility and a network simulator to capture the properties of the wireless environment.

For generating mobility traces, based on road network topologies obtained from the real maps,

we use the SUMO traffic simulator (v 0.9.8) [127] with the TraNS extension [128, 129]. User

speeds are limited by the legal speed limits in the part of the lower Manhattan that is used as

the road topology. This topology is shown in Figure 7.2. It covers about 6 sq. km and it is

populated by 600 nodes in our simulations.

The mobility traces generated for this road topology are passed to the SWANS network

simulator. SWANS is the ad hoc network simulator developed on top of the JiST discrete-event

simulator [114]. Unlike the contact-based simulations discussed in Chapter 5, SWANS allows

us to model the physical layer and signal propagation. We implemented the full TCP/IP stack

in each node, with the exception of the transport layer. At the physical layer we use the two-ray

pathloss model, which incorporates ground reflection. At the link layer, 802.11b is used. The

SWANS implementation of 802.11b includes the complete DCF function, with retransmission,

NAV and backoff functionality.

For the “check-all” and “check-nothing” strategies, we run 20 simulations with every com-

bination of the percentage of adversaries a ∈ {0, 5, 10, 30, 50} and the adversaries’ sending

rates rA ∈ {0, 1, 2, 5, 10} messages per second. For AMA we run 20 simulations for every

combination of the percentage of adversaries a%, the adversaries’ sending rates rA, and AMA

parameters p ∈ {0.05, 0.1, 0.2, 0.3, 0.5} and c ∈ {20, 40, 60, 80, 100}. For each run, we ran-

domly select a% adversaries out of the total set of nodes in the network. For each generated

message, a destination region is selected at random. The legitimate node sending rate rL is 1

message per second. The size of each geocast message is 300 bytes. The checking time tc is

10ms. Each simulation lasts for 500 seconds of simulation time.

The data traffic starts 5 seconds after the start of the simulation, giving the beacon-based

protocol enough time to exchange neighbor information and it ends 15 seconds before the end

of simulation, leaving enough time to nodes to deliver remaining messages that are waiting in

queues, before the simulation is terminated. Greedy forwarding with beacons is simulated with

the ability to re-route messages in case the link layer signals to routing that the next hop is not

reachable any more.

Beacon verification is extremely important for vehicular security. Thus, as explained in

Section 7.2.2, we assume that nodes check all received beacons in the simulated beaconing

based routing algorithm (CGGC). Since beacons make a large percentage of the total traffic in

all the beaconing-based routing algorithms, we want to simulate the load that beaconing traffic
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puts on the processor in a realistic way. For this reason, the CGGC beaconing rate that we use

in our simulations is 1 beacon/300ms, i.e., , the value likely to become a part of the standard.

7.5.2 Min-Max Parameter Selection

Having calculated, through the simulations, the goodput γL achieved under AMA for all

combinations of the parameters (p, c, a, rA), we now show how to preselect the parameters p

and c to maximize it. In making this selection, we have to keep in mind two things:

– The percentage a of adversaries is fixed, but may or may not be a priori known. Below,

we distinguish two cases according to whether it is known or not.

– The adversaries will learn the selected values of p and c, and choose their sending rate

rA to minimize the goodput.

In the first case, which we call the pessimistic case, we do not know the percentage of

adversaries a. So, we select the parameters p and c that maximize the resulting goodput γL

against the worst case combination of the percentage of adversaries a and their sending rate rA.

(p∗, c∗) = argmax(p,c) min
(a,rA)

γL (p, c, a, rA) (7.2)

To visualize this selection, consider Table 7.1, where each entry is equal to the goodput

achieved with the corresponding row-column combination of parameters.

(a1, r1A) (a1, r2A) . . . (a1, rkA) (a2, r1A) . . .
(p1, c1) γ1111

L γ1112
L . . . γ111k

L γ1121
L . . .

(p1, c2) γ1211
L γ1212

L . . . γ121k
L γ1221

L . . .
...

...
...

...
...

...
. . .

(p1, cm) γ1m11
L γ1m12

L . . . γ1m1k
L γ1m21

L . . .
(p2, c1) γ2111

L γ2112
L . . . γ211k

L γ2121
L . . .

...
...

...
...

...
...

. . .

Table 7.1: Maxmin selection of AMA parameters: We select the parameters p and c that max-
imize the resulting goodput γL against the worst case combination of the percentage of adver-
saries a and their sending rate rA.

First, Eq. (7.2) selects the minimum element in each row. The minimum element in a

row is the goodput value that will be achieved if we select the (p, c) pair of that row, and the

adversaries’ percentage happens to be the one in the minimizing column. If the adversaries’

percentage is the right one (worst case scenario for the legitimate users), they can choose their

sending rate to achieve the worst case goodput.
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Then, among the minimum elements found, Eq. (7.2) chooses the largest one by selecting

the appropriate (p, c) pair. This way, we can guarantee the adversaries would not achieve a

lower goodput, even if they could change their percentage.

In the second case, which we call the optimistic case, we know a but not rA. So, for the

given value of a, we choose p and c that maximize γL against the worst case reply rA.

(p∗, c∗)(a) = argmax(p,c)min
rA

γL (p, c, a, rA) (7.3)

Referring to the previous explanatory table, Eq. (7.3) now does the same minimization-maximization

as Eq. (7.2), but operates on the columns corresponding to the known value of a. In either case,

the adversaries choose their sending rate rA to minimize γL, given the legitimate users’ choice

of p∗ and c∗:

r∗A(a) = argminrA
γL (p

∗, c∗, a, rA) (7.4)

r∗A(a) = argminrA
γL (p

∗(a), c∗(a), a, rA) (7.5)

Note that the adversaries do not optimize over the percentage a, as they cannot change it.

7.5.3 Performance Evaluation

We find that AMA outperforms “check-all” and “check-nothing” strategies for all the con-

sidered values of a, regardless of the routing algorithm. The goodput obtained with the CBF

routing algorithm is shown in Figure 7.4. The goodput obtained in the case of the CGGC

routing algorithm is shown in Figure 7.5.

The curves shown in the figures are the mean values of 20 simulations and the error bars

extend a standard deviation above and below the mean values. Note that the knowledge of the

percentage of adversaries a (which is not easy to obtain) guarantees only a slight performance

improvement (the pessimistic scheme performs almost as good as the optimistic).

As we can see from the figures, under pessimistic AMA, which assumes no knowledge

about the number of adversaries or their sending rate, the goodput of legitimate nodes γL im-

proves up to 30% for CBF and up to 33% for CGGC routing.

In the case of CBF, the performance gain is due to the reduction in the number of messages

checked in the intermediate nodes. Our simulation data shows that the number of checked

geocast messages drops up to 46% percent in this case.

Apart from the drop in the number of cryptographic operations, the performance of CGGC
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routing algorithm is affected by the beacon processing load. Geocast messages now share the

CPU time with beacons. Checking or not checking a geocast message or a group of messages

can make the difference between an immediate check of another arriving geocast message and

its prolonged stay in the intermediate node due to the CPU busy period introduced by beacons.

The same applies to forged messages, as their increased number in the incoming queue can

make valid messages wait for a period of time before being checked and relayed. This is the

main reason why the performance of “check-nothing” strategy drops with the increase in the

number of adversaries in the network.

Figure 7.4: Goodput γL obtained under (pessimistic and optimistic) AMA, “check-all”, and
“check-nothing” strategies for the CBF routing algorithm.

The introduction of other CPU tasks (not related to forwarding) would make this effect

even more visible. Since smartphones and vehicular security units have to share the CPU time

with other tasks, the moment when an incoming message receives its share of CPU becomes

extremely important. A single forged message or an unnecessary check of a legitimate message

can make the arriving geocast message wait for an additional few hundred milliseconds due to

the CPU multitasking.
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Figure 7.5: Goodput γL obtained under (pessimistic and optimistic) AMA, “check-all”, and
“check-nothing” strategies for the CGGC routing algorithm.

In the case of pessimistic AMA, the optimal values of p and c obtained using the described

maxmin approach are p = 0.2 and c = 40 for both CGGC and CBF routing algorithms. In the

optimistic case, the obtained values for p and c, for both considered algorithms, are shown in

Table 7.2.

Percentage of CBF CGGC
adversaries p c p c
a = 0 0.05 60 0.2 80
a = 5 0.05 20 0.05 80
a = 10 0.2 100 0.3 80
a = 30 0.3 100 0.2 40
a = 50 0.2 40 0.2 40

Table 7.2: The optimal parameters p and c for optimistic AMA.

If the adversaries have less knowledge than we assumed (i.e., if they do not know the p∗ and

c∗), they may choose a sending rate other than the computed optimal r∗A. In Figures 7.6 (for



Conclusion 127

Figure 7.6: Goodput γL obtained for various adversarial sending rates rA under pessimistic
AMA for CBF routing algorithm. The thick line corresponds to the optimal sending rate r∗A.

CBF) and 7.7 (for CGGC) we plot the resulting γL-a curves for different sending rates rA for

the pessimistic choice of p∗ and c∗. We see that a suboptimal selection of the sending rate by

the adversaries results in improved performance for our scheme. The thick line in the figures

corresponds to the optimal (for the adversaries) sending rate r∗A and represents the worst case

scenario (i.e., the lower bound for the goodput).

7.6 Conclusion

The security framework based on PKI fits well the security requirements of the opportunis-

tic mobile applications that rely on content forwarding over multiple hops. Hence, it can com-

plement the existing security mechanisms, used to secure traditional always-connected mobile

clients and provide a comparable level of security to opportunistic applications with the inter-

mittent connectivity. However, complex cryptographic operations that are a part of the PKI

based security, such as signature verifications, introduce non-negligible processing delays. We



128 7. An Adaptive Method for the Optimization of Security Performance

Figure 7.7: Goodput γL obtained for various adversarial sending rates rA under pessimistic
AMA for CGGC routing algorithm. The thick line corresponds to the optimal sending rate r∗A
selected by the adversaries.

show that the processing delays measured on the state-of-the-art platforms lead to performance

degradation of the considered vehicular and opportunistic applications. Nevertheless, we also

show that completely ignoring security verifications in favor of performance can lead to even a

more severe performance decrease, due to DoS attacks.

We demonstrate that a simple, yet adaptive, filtering scheme that allows nodes to judiciously

decide when to check the received messages that require further relaying, and when to simply

forward them without any delay, significantly improves the performance of the applications that

rely on multi-hop forwarding. The scheme, which we dub AMA, treats multi-hop messages in

a reactive rather than a proactive way and requires checking of the relayed messages only in

the presence of a threat. Our simulations with the state-of-the-art geocast routing algorithms

demonstrate that, as a result of this security footprint reduction, the goodput of legitimate users

increases up to 33%.
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Chapter 8

Conclusions

In this thesis we study the added value the opportunistic networks can bring to legacy net-

works in terms of content dissemination, but also with respect to energy saving and traffic

offloading during the peak usage hours. Additionally, we propose a security framework and a

security print reduction scheme for the class of opportunistic application clients that sporadi-

cally synchronize with existing web services. We base our findings on modeling, simulation

with large data sets and experiments with live users and real applications.

We show that performance in different parts of an opportunistic network can be captured

through a drift and jump model that takes into account a coarse-grained user mobility, contacts

with infrastructure and contacts among mobile users. We demonstrate how the approximation

of the model for large N can be used for optimal placement of infrastructure with respect to

different utility measures.

Further, we show how opportunistic bandwidth can be exploited in combination with cellu-

lar bandwidth to offload a part of delay-tolerant 3G traffic during the peak usage hours. Using

a large data set, we explore the roles of mobility prediction, opportunistic transfers and lim-

ited infrastructure placement. We reveal the relationship between delay and the amount of

infrastructure needed to offload a certain volume of traffic, and we quantify the energy savings

coming from the use of opportunistic bandwidth.

In addition to this, we demystify discrepancies in the conclusions of the previous studies

about the utility of infrastructure in an opportunistic network, i.e., we show that they are mostly

due to the unrealistic assumptions about the cache sizes in mobile nodes. For this purpose,

we implement a testbed with a real opportunistic application and live users. The experiment

we perform also allows us to explain the significant differences between network performance
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measured through simulation and the performance obtained experimentally. We show that a

range of typically ignored factors in the simulation studies of opportunistic networks (limited

contact duration, finite transmission bandwidth, finite cache sizes, interference and technology

limitations) can completely alter the conclusions about the performance of a network.

The experiment further allows us to demonstrate how a statistical treatment of contact data

sets using the weighted contact graph, offers a good prediction of certain performance measures

(namely delivery ratios). We expose a strong dependency between a user centrality measure in

this graph and the perceived delivery ratios and we fit a simple curve to this dependency, which

persists with and without infrastructure. This means that it can be used to estimate the effects

of adding infrastructure to an opportunistic network.

Finally, we design a security framework for the hybrid opportunistic applications that we

target and a complementary adaptive scheme that protects the optimal relaying capacity in the

opportunistic nodes. Using extensive simulations, we show that the scheme resists DoS attacks

and yields significant performance increase.



Publications

Published

• N. Ristanovic, G. Theodorakopoulos, and J.-Y. Le Boudec, Traps and Pitfalls of Us-

ing Contact Traces in Performance Studies of Opportunistic Networks, The 31st An-

nual IEEE International Conference on Computer Communications (IEEE INFOCOM

2012), Orlando, FL, USA, March 2012.

• N. Ristanovic, J.-Y. Le Boudec, A. Chaintreau, and V. Erramilli, Energy Efficient Of-

floading of 3G Networks, The 8th IEEE International Conference on Mobile Ad Hoc

and Sensor Systems (MASS 2011), Valencia, Spain, October 2011. (Best Student Paper

Award)

• N. Ristanovic, P. Papadimitratos, G. Theodorakopoulos, J.-P. Hubaux, and J.-Y. Le

Boudec, Adaptive Message Authentication for Multi-Hop Networks, The 8th Inter-

national Conference on Wireless On-demand Network Systems and Services (WONS

2011), Bardonecchia, Italy, January 2011.

• N. Ristanovic, D. K. Tran, and J.-Y. Le Boudec, Tracking of Mobile Devices Through

Bluetooth Contacts, ACM CoNEXT 2010 Student Workshop, Philadelphia, PA, USA,

November 30 - December 3 2010

• A. Chaintreau, J.-Y. Le Boudec, and N. Ristanovic, The Age of Gossip: Spatial Mean

Field Regime, The 11th International Joint Conference on Measurement and Modeling

of Computer Systems (SIGMETRICS/Performance 2009), Seattle, WA, USA, June 2009.

(Best Paper Award)

• N. Ristanovic, P. Papadimitratos, G. Theodorakopoulos, J.-P. Hubaux, and J.-Y. Le

Boudec, Adaptive Message Authentication for Vehicular Networks, The 6th ACM In-

ternational Workshop on Vehicular Inter-Networking (VANET 2009), Beijing, China,

September 2009.

133



134 Publications

In Preparation

• N. Ristanovic, and J.-Y. Le Boudec, Crowdsourcing Localization: Collaborative Track-

ing of Mobile Users Through Detectable Wireless Interfaces, to be submitted to IEEE

INFOCOM 2013.



Curriculum Vitæ

Nikodin Ristanović
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