544 research outputs found

    Needle Steering in 3-D Via Rapid Replanning

    Get PDF
    Steerable needles have the potential to improve the effectiveness of needle-based clinical procedures such as biopsy and drug delivery by improving targeting accuracy and reaching previously inaccessible targets that are behind sensitive or impenetrable anatomical regions. We present a new needle steering system capable of automatically reaching targets in 3-D environments while avoiding obstacles and compensating for real-world uncertainties. Given a specification of anatomical obstacles and a clinical target (e.g., from preoperative medical images), our system plans and controls needle motion in a closed-loop fashion under sensory feedback to optimize a clinical metric. We unify planning and control using a new fast algorithm that continuously replans the needle motion. Our rapid replanning approach is enabled by an efficient sampling-based rapidly exploring random tree (RRT) planner that achieves orders-of-magnitude reduction in computation time compared with prior 3-D approaches by incorporating variable curvature kinematics and a novel distance metric for planning. Our system uses an electromagnetic tracking system to sense the state of the needle tip during the procedure. We experimentally evaluate our needle steering system using tissue phantoms and animal tissue ex vivo. We demonstrate that our rapid replanning strategy successfully guides the needle around obstacles to desired 3-D targets with an average error of less than 3 mm

    Improving Suturing Skills for Surgical Residents and Advancing Prosthesis Control for Amputees.

    Full text link
    Proper suturing technique is one of the most important skills a surgical resident should acquire. However, current methods for teaching it rely on subjective performance evaluations. An instrumented training apparatus for abdominal closure could be used to define objective assessments that directly relate to closure quality. I identify a synthetic material that models abdominal fascia using porcine and cadaveric data and design a means to mount the material so that it mimics abdominal closure. Digital images are used to quantify material deformations and provide real-time objective measures regarding the effect of suture placement and tension in the abdominal tissue. In parallel, I develop a finite element model of abdominal fascia and its closure with suture to deduce stresses in the material and forces in the sutures. I find that despite uniform suture spacing, the forces in suture are unevenly distributed along the closure. These findings motivate the development of a surgical learning tool that objectively relays information about suture placement and tension. In a second body of work, I address the development of a novel interface between an amputee’s peripheral nervous system and a motorized prosthetic device. Conventional myoelectric control cannot produce a sufficient number of independent signals for actuation of modern computerized upper limb prostheses. A compact construct involving grafted muscle surgically prepared at the end of a transected peripheral nerve is envisioned for transducing a nervous signal with fine specificity and sensitivity. Up to 20 such constructs can be prepared in a human arm, and epimysial electrodes on each construct can be used to relay signals encoding 20 independent channels of motor intent. I develop a means of evaluating this construct in awake rats, and demonstrate that the transduced signals suffer minimal crosstalk and are correlated with gait. A decoder is able to reconstruct data produced by motion tracking, and I show that adjacent constructs placed proximal to one another provide the same signals as anatomically intact muscle-nerve antagonist-pair analogs. The correlation between the signals transduced, the walking kinematics, and analogous out of phase activation obtained from adjacent constructs indicates that this technology holds promise for human translation.PHDMechanical EngineeringUniversity of Michigan, Horace H. Rackham School of Graduate Studieshttps://deepblue.lib.umich.edu/bitstream/2027.42/147635/1/danursu_1.pd

    Closed-Loop Planning and Control of Steerable Medical Needles

    Get PDF
    Steerable needles have the potential to increase the effectiveness of needle-based clinical procedures such as biopsy, drug delivery, and radioactive seed implantation for cancer treatment. These needles can trace curved paths when inserted into tissue, thereby increasing maneuverability and targeting accuracy while reaching previously inaccessible targets that are behind sensitive or impenetrable anatomical regions. Guiding these flexible needles along an intended path requires continuously inserting and twisting the needle at its base, which is not intuitive for a human operator. In addition, the needle often deviates from its intended trajectory due to factors such as tissue deformation, needle-tissue interaction, noisy actuation and sensing, modeling errors, and involuntary patient motions. These challenges can be addressed with the assistance of robotic systems that automatically compensate for these perturbations by performing motion planning and feedback control of the needle in a closed-loop fashion under sensory feedback. We present two approaches for efficient closed-loop guidance of steerable needles to targets within clinically acceptable accuracy while safely avoiding sensitive or impenetrable anatomical structures. The first approach uses a fast motion planning algorithm that unifies planning and control by continuously replanning, enabling correction for perturbations as they occur. We evaluate our method using a needle steering system in phantom and ex vivo animal tissues. The second approach integrates motion planning and feedback control of steerable needles in highly deformable environments. We demonstrate that this approach significantly improves the probability of success compared to prior approaches that either consider uncertainty or deformations but not both simultaneously. We also propose a data-driven method to estimate parameters of stochastic models of steerable needle motion. These models can be used to create realistic medical simulators for clinicians wanting to train for steerable needle procedures and to improve the effectiveness of existing planning and control methods. This dissertation advances the state of the art in planning and control of steerable needles and is an important step towards realizing needle steering in clinical practice. The methods developed in this dissertation also generalize to important applications beyond medical needle steering, such as manipulating deformable objects and control of mobile robots.Doctor of Philosoph

    An Investigation of Kinetic Visual Biofeedback on Dynamic Stance Symmetry

    Get PDF
    The intent of the following research is to utilize task-specific, constraint-induced therapies and apply towards dynamic training for symmetrical balance. Modifications to an elliptical trainer were made to both measure weight distributions during dynamic stance as well as provide kinetic biofeedback through a man-machine interface. Following a review of the background, which includes research from several decades that are seminal to current studies, a design review is discussed to cover the design of the modified elliptical (Chapter 2). An initial study was conducted in a healthy sample population in order to determine the best visual biofeedback representation by comparing different man-machine interfaces (Chapter 3). Index of gait symmetry measures indicated that one display interface optimized participant performance during activity with the modified elliptical trainer. A second study was designed to determine the effects of manipulating the gain of the signal to encourage increased distribution towards the non-dominant weight bearing limb. The purpose of the second study was to better understand the threshold value of gain manipulation in a healthy sample set. Results analyzing percentage error as a measure of performance show that a range between 5-10% allows for a suitable threshold value to be applied for participants who have suffered a stroke. A final study was conducted to apply results/knowledge from the previous two studies to a stroke cohort to determine short-term carryover following training with the modified elliptical trainer. Data taken from force measurements on the elliptical trainer suggest that there was carryover with decreased error from pre to post training. For one participant GaitRite® data show a significant difference from pre to post measurements in single limb support. The results of the research suggest that visual biofeedback can improve symmetrical performance during dynamic patterns. For a better understanding of visual biofeedback delivery, one display representation proved to be beneficial compared to the others which resulted in improved performance. Results show that healthy human participants can minimize error with visual biofeedback and continue minimizing error until a threshold value of 10%. Finally, results have shown promise towards applying such a system for kinetic gait rehabilitation

    Biomechanics of a parasitic wasp ovipositor : Probing for answers

    Get PDF
    Insects such as mosquitoes, true bugs, and parasitic wasps, probe for resources hidden in various substrates. The resources are often, located deep within the substrate and can only be reached with long and thin (slender) probes. Such probes can, however, easily bend or break (buckle) when pushed inside the substrate, which makes probing a challenging task. Nevertheless, the mentioned insects use their probes repeatedly throughout their lifetime without apparent damage. Furthermore, the probes are also used for sensing the targets, can be steered during insertion, and can transport both fluids (e.g. blood, phloem sap) and eggs. Insect probes seem highly versatile structures that satisfy many functional requirements, including buckling avoidance, steering, sensing, and transport. Similar requirements also hold for minimally invasive medical procedures, where slender tools are used to minimize damage to the patient. Understanding the probing process in insects can bring insights in the insect ecology and evolution and it may also help in the development of novel surgical tools. In this thesis, I focus on the mechanical and motor adaptations of insect probing, while other aspects are only briefly discussed. In chapter 2, we review the literature on the probing structures and their operating principles across mosquitoes, parasitic wasps, and hemipterans. Probes are either modified mouthparts (mosquitoes, true bugs) or special tubular outgrowths of the abdomen (parasitic wasps). Despite having different developmental origins, the probes share three major morphological characteristics, which may reflect the shared functional requirements of buckling avoidance and steering: (i) the probes consist of multiple, interconnected elements that can slide along each other, (ii) the probe diameters are very small, which leaves no space for internal musculature, and (iii) the distal ends (tips) of the probe elements are asymmetric and often bear various serrations, hooks, bulges, or notches. How such slender multi-element probes avoid buckling during insertion has been hypothesized in the so-called push–pull mechanism. According to this mechanism, the probe is inserted into the substrate by reciprocal movements of the elements. The insects therefore simultaneously push on some of the probe elements, while pulling on the others. The tip serrations are directed such, that they primarily increase the friction upon pulling of the elements. This puts the pulled elements under tension and makes them effectively stiffer in bending (like when pulling a rope). The elements under tension can serve as guides along which the other elements are pushed inside the substrate without the risk of buckling. The insect alternates the pushing and pulling between the elements to incrementally insert the probe in the substrate. This mechanism has, however, never been quantified in insects and it was hitherto unknown whether the animals rely on it during probing. The probe tip asymmetry presumably facilitates steering. The asymmetric tip geometry leads to asymmetric reaction forces from the substrate on the tip during insertion, which push the probe tip sideways into a curved path. Controlling the tip geometry therefore allows for control of probing direction. Although offsetting the elements by sliding already changes the shape of the probe tip, these changes might be too small to induce the necessary change of probing direction. A number of mechanisms that enhance the tip asymmetry during the sliding of the elements have been suggested. However, few mechanisms have been observed or studied in vivo, so it is not completely clear how insects steer with their probes. Additionally, the effect of the substrate on both the steering and insertion mechanisms is unknown. To understand the biomechanics of insect probing, we investigated the probing behaviour of the braconid parasitic wasp Diachasmimorpha longicaudata. This is an ideal species for studying the buckling avoidance and steering, because it: (i) possess a slender ovipositor several millimetres in length, (ii) probes into solid material (e.g. citrus fruits), and (iii) attack fruit-fly larvae that are freely moving within the substrate (i.e. steering can be expected). The ovipositor of D. longicaudata is similar to other hymenopterans and consists of three interconnected elements (valves), one dorsal and two ventral ones. The interconnection is a tongue-and-groove mechanism, which allows for sliding of the valves, but prevents their separation. The ovipositor has an asymmetric tip—the distal end of the dorsal valve is enlarged (bulge), while the ventral valve tips have harpoon-like serrations. Additionally, just proximal to the bulge of the dorsal valve, the ovipositor is characteristically bent in an S-shape. This seems to be a feature present only in D. longicaudata and closely related species. The wasps also possess a pair of sheaths that envelop the ovipositor at rest and throughout most of the probing process, but do not penetrate into the substrate. In chapter 3, we studied the kinematics of ovipositor insertion into translucent, artificial substrates of various stiffnesses. Ovipositor insertion was filmed in a three camera setup, which allowed us to reconstruct the ovipositor insertion in 3D, while also monitoring the orientation of the insect’s body. We discovered that the wasps can explore a wide range of the substrate by probing in any direction with respect to their body orientation from a single puncture point. Probing range and speed decreased with increasing substrate stiffness. Wasps used two strategies of ovipositor insertion. In soft substrates, all ovipositor valves were pushed inside the substrate at the same time. In stiff substrates, wasps always moved the valves alternatively, presumably employing the hypothesized push–pull mechanism. We observed that ovipositors can follow curved trajectories inside the substrate. Detailed kinematic analysis revealed that the ovipositors followed a curved path during probing with protracted ventral valve(s). In contrast, probing with protracted dorsal valve resulted in straight trajectories. We linked the changes in the probing direction to the shape changes in the ovipositor tip. When the ventral valves were protracted, they curved towards the dorsal valve, resulting in an enhanced bevel which presumably caused a change in insertion direction. In chapter 4, we investigated the above described steering mechanism by quantifying the bending stiffness (three point bend test) and the geometry (high-resolution computer tomography) of the ovipositor in D. longicaudata. Additionally, we qualitatively assessed the material composition of the valves using fluorescence imaging. The thick dorsal valve bulge might be stiff and could straighten the S-shaped region of the ovipositor during the valve offset, causing bending of the tip. We discovered that the S-shaped region of the ovipositor is significantly softer than its neighbouring regions, which is mostly due to the presence of resilin in the S-shaped region of the ventral valve. Resilin is a rubber-like protein and reduces the stiffness of the otherwise heavily sclerotized valves. Additionally, we showed that the ventral valves have a higher bending stiffness than the dorsal valve along most of their length. The exception is presumably the bulge on the dorsal valve—although we could not directly measure its bending stiffness, its geometrical properties show that it is the thickest (and therefore stiffest) region in the distal end of the ovipositor. Outside the substrate, offsetting of the valves in any direction (i.e. pro- or retraction of the ventral valves) caused a straightening of the S-shaped region of the ovipositor and a curving towards the dorsal side. However, during probing in a substrate, such curving was only observed upon protraction of the ventral valves. We hypothesize this is due to the interaction of the ovipositor with the substrate. Namely, the bevelled ventral valve tips generate substrate reaction forces that promote dorsal curving, while the bevelled tip of the dorsal valve generates substrate forces that promote ventral bending. The interaction between the ventral and dorsal valves straightens the S-shaped region of the ovipositor and enhances dorsal curving. This therefore facilitates strong shape changes of the tip only upon protraction of the ventral valves, while counteracting the ventral curving of the dorsal valve. These opposing mechanisms presumably result in an approximately straight protraction of the dorsal valve. In chapters 2 and 3 we describe how the wasps use the reciprocal valve movements when probing in stiff substrates. As such substrates presumably require strong forces during insertion, the reciprocal valve movements may indeed serve to avoid buckling. However, how the valves are actuated or the forces generated during probing have never been quantified. In chapter 5, we therefore investigated the ovipositor base and the muscles driving the movements of the valves. At the base, the valves attach to plate-like structures that are interconnected with a series of linkages. The muscles attach to these plates and can move them with respect to each other. Such movements also result in the movements of the valves. To analyse the mechanics of this linked system, we performed high-resolution computer tomography scans of wasps in different stages of the probing cycle. This allowed us to compare the configurational changes of the basal plates to the valve offset, and measure the muscle cross-sections and attachment sites. We also calculated the muscle moment arms and estimated the forces and moments of the most relevant musculature actuating the ovipositor movements, by assuming a tensile muscle stress previously reported for insect muscles. For the ventral valves only, we also calculated the forces the valves can exert onto the substrate. The dorsal valve can only be moved by moving the base that is linked inside the abdomen, and therefore force estimation could not be made. The displacement magnitude of the basal plates corresponded to the valve offset, indicating that the valves are indeed moved due to the changes in the arrangement of the basal plates. We also showed that the ventral valve plates move most during the probing cycle, while the magnitude of the dorsal valve plate movements is much smaller. This suggests that the ventral valves move along the dorsal valve, while the dorsal valve moves together with the abdomen during probing. Additionally, in the situation where the animal keeps its abdomen stationary, we estimated the maximal forces actuating the ventral valves. The estimated maximal pushing forces can be higher than the estimated buckling load of the unsupported ovipositor outside the substrate. Assuming the maximal pushing forces are required during probing, antibuckling mechanisms are needed to avoid damaging the ovipositor. Buckling can be limited (prevented) by either supporting the ovipositor outside the substrate with additional sheaths, employing the push–pull mechanism, or both. Subtracting the maximal estimated pushing and pulling forces on the ventral valves, results in a net pushing force that is very close to the buckling threshold of the ovipositor, albeit still slightly higher. The sheaths, although being flexible, might provide the additional support if needed. In this thesis, I show that multi-element probes are inserted into the substrate using reciprocal movements of the individual elements. These movements appear to be necessary in stiff substrates, which presumably require high pushing forces on a single element during probing. This is in accordance with the hypothesis that reciprocal valve movements serve as an anti-buckling mechanism. Additionally, such valve movements are also important for steering of the probe during insertion. The valve offset controls the shape of the probe tip and therefore the net substrate reaction forces that result in bending of the probe. Wasps evolved special structures that enhance the shape changes of their ovipositor tips and facilitate steering. Our findings may be interesting for a broad range of audiences. Entomologists, evolutionary biologists, and ecologists may find them useful when studying the diversification of probing insects, their evolutionary success, or their ecological interactions (e.g. insect–plant, parasite–host). The anti-buckling and steering mechanisms may be helpful when developing novel, man-made probes. These mechanisms allow for minimization of the probe thickness and accurate steering control, which minimizes substrate damage during probing. Our findings may be particularly useful in the development of slender, steerable needles for minimally invasive surgery.</p

    Macro-continuous dynamics for hyper-redundant robots: application to locomotion bio-inspired by elongated animals

    Get PDF
    International audienceThis article presents a unified dynamic modeling approach of continuum robots. The robot is modeled as a geometrically exact beam continuously actuated through an active strain law. Once included into the geometric mechanics of locomotion, the approach applies to any hyper-redundant or continuous robot devoted to manipulation and/or locomotion. Furthermore, exploiting the nature of the resulting models as being a continuous version of the Newton-Euler models of discrete robots, an algorithm is proposed which is capable of computing the internal control torques (and/or forces) as well as the rigid overall motions of the locomotor robot. The efficiency of the approach is finally illustrated through many examples directly related to the terrestrial locomotion of elongated animals as snakes, worms or caterpillars and their associated bio-mimetic artifacts

    Development of a fiber-based shape sensor for navigating flexible medical tools

    Get PDF
    Robot-assisted minimally invasive surgical procedure (RAMIS) is a subfield of minimally invasive surgeries with enhanced manual dexterity, manipulability, and intraoperative image guidance. In typical robotic surgeries, it is common to use rigid instruments with functional articulating tips. However, in some operations where no adequate and direct access to target anatomies is available, continuum robots can be more practical, as they provide curvilinear and flexible access. However, their inherent deformable design makes it difficult to accurately estimate their 3D shape during the operation in real-time. Despite extensive model-based research that relies on kinematics and mechanics, accurate shape sensing of continuum robots remains challenging. The state-of-the-art tracking technologies, including optical trackers, EM tracking systems, and intraoperative imaging modalities, are also unsuitable for this task, as they all have shortcomings. Optical fiber shape sensing solutions offer various advantages compared to other tracking modalities and can provide high-resolution shape measurements in real-time. However, commercially available fiber shape sensors are expensive and have limited accuracy. In this thesis, we propose two cost-effective fiber shape sensing solutions based on multiple single-mode fibers with FBG (fiber Bragg grating) arrays and eccentric FBGs. First, we present the fabrication and calibration process of two shape sensing prototypes based on multiple single-mode fibers with semi-rigid and super-elastic substrates. Then, we investigate the sensing mechanism of edge-FBGs, which are eccentric Bragg gratings inscribed off-axis in the fiber's core. Finally, we present a deep learning algorithm to model edge-FBG sensors that can directly predict the sensor's shape from its signal and does not require any calibration or shape reconstruction steps. In general, depending on the target application, each of the presented fiber shape sensing solutions can be used as a suitable tracking device. The developed fiber sensor with the semi-rigid substrate has a working channel in the middle and can accurately measure small deflections with an average tip error of 2.7 mm. The super-elastic sensor is suitable for measuring medium to large deflections, where a centimeter range tip error is still acceptable. The tip error in such super-elastic sensors is higher compared to semi-rigid sensors (9.9-16.2 mm in medium and large deflections, respectively), as there is a trade-off between accuracy and flexibility in substrate-based fiber sensors. Edge-FBG sensor, as the best performing sensing mechanism among the investigated fiber shape sensors, can achieve a tip accuracy of around 2 mm in complex shapes, where the fiber is heavily deflected. The developed edge-FBG shape sensing solution can compete with the state-of-the-art distributed fiber shape sensors that cost 30 times more

    A Novel Flexible and Steerable Probe for Minimally Invasive Soft Tissue Intervention

    No full text
    Current trends in surgical intervention favour a minimally invasive (MI) approach, in which complex procedures are performed through increasingly small incisions. Specifically, in neurosurgery, there is a need for minimally invasive keyhole access, which conflicts with the lack of maneuverability of conventional rigid instruments. In an attempt to address this fundamental shortcoming, this thesis describes the concept design, implementation and experimental validation of a novel flexible and steerable probe, named “STING” (Soft Tissue Intervention and Neurosurgical Guide), which is able to steer along curvilinear trajectories within a compliant medium. The underlying mechanism of motion of the flexible probe, based on the reciprocal movement of interlocked probe segments, is biologically inspired and was designed around the unique features of the ovipositor of certain parasitic wasps. Such insects are able to lay eggs by penetrating different kinds of “host” (e.g. wood, larva) with a very thin and flexible multi-part channel, thanks to a micro-toothed surface topography, coupled with a reciprocating “push and pull” motion of each segment. This thesis starts by exploring these foundations, where the “microtexturing” of the surface of a rigid probe prototype is shown to facilitate probe insertion into soft tissue (porcine brain), while gaining tissue purchase when the probe is tensioned outwards. Based on these findings, forward motion into soft tissue via a reciprocating mechanism is then demonstrated through a focused set of experimental trials in gelatine and agar gel. A flexible probe prototype (10 mm diameter), composed of four interconnected segments, is then presented and shown to be able to steer in a brain-like material along multiple curvilinear trajectories on a plane. The geometry and certain key features of the probe are optimised through finite element models, and a suitable actuation strategy is proposed, where the approach vector of the tip is found to be a function of the offset between interlocked segments. This concept of a “programmable bevel”, which enables the steering angle to be chosen with virtually infinite resolution, represents a world-first in percutaneous soft tissue surgery. The thesis concludes with a description of the integration and validation of a fully functional prototype within a larger neurosurgical robotic suite (EU FP7 ROBOCAST), which is followed by a summary of the corresponding implications for future work

    Proceedings of the ECCOMAS Thematic Conference on Multibody Dynamics 2015

    Get PDF
    This volume contains the full papers accepted for presentation at the ECCOMAS Thematic Conference on Multibody Dynamics 2015 held in the Barcelona School of Industrial Engineering, Universitat Politècnica de Catalunya, on June 29 - July 2, 2015. The ECCOMAS Thematic Conference on Multibody Dynamics is an international meeting held once every two years in a European country. Continuing the very successful series of past conferences that have been organized in Lisbon (2003), Madrid (2005), Milan (2007), Warsaw (2009), Brussels (2011) and Zagreb (2013); this edition will once again serve as a meeting point for the international researchers, scientists and experts from academia, research laboratories and industry working in the area of multibody dynamics. Applications are related to many fields of contemporary engineering, such as vehicle and railway systems, aeronautical and space vehicles, robotic manipulators, mechatronic and autonomous systems, smart structures, biomechanical systems and nanotechnologies. The topics of the conference include, but are not restricted to: ● Formulations and Numerical Methods ● Efficient Methods and Real-Time Applications ● Flexible Multibody Dynamics ● Contact Dynamics and Constraints ● Multiphysics and Coupled Problems ● Control and Optimization ● Software Development and Computer Technology ● Aerospace and Maritime Applications ● Biomechanics ● Railroad Vehicle Dynamics ● Road Vehicle Dynamics ● Robotics ● Benchmark ProblemsPostprint (published version
    • …
    corecore