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Abstract 

 

An Investigation of Kinetic Visual Biofeedback on Dynamic Stance Symmetry 

 

By Trisha J. Massenzo, PhD 

 

A dissertation submitted in partial fulfillment of the requirements for the degree of Doctor of 

Philosophy at Virginia Commonwealth University. 

 

Virginia Commonwealth University, 2016. 

 

Major Director: Peter E. Pidcoe, PT, DPT, PhD, Associate Professor, Department of Physical 

Therapy 

 

 The intent of the following research is to utilize task-specific, constraint-induced 

therapies and apply towards dynamic training for symmetrical balance. Modifications to an 

elliptical trainer were made to both measure weight distributions during dynamic stance as well 

as provide kinetic biofeedback through a man-machine interface.  Following a review of the 

background, which includes research from several decades that are seminal to current studies, a 

design review is discussed to cover the design of the modified elliptical (Chapter 2).  

 An initial study was conducted in a healthy sample population in order to determine the 

best visual biofeedback representation by comparing different man-machine interfaces (Chapter 

3). Index of gait symmetry measures indicated that one display interface optimized participant 

performance during activity with the modified elliptical trainer.  



 

x 
 

 A second study was designed to determine the effects of manipulating the gain of the 

signal to encourage increased distribution towards the non-dominant weight bearing limb. The 

purpose of the second study was to better understand the threshold value of gain manipulation in 

a healthy sample set. Results analyzing percentage error as a measure of performance show that a 

range between 5-10% allows for a suitable threshold value to be applied for participants who 

have suffered a stroke.  

 A final study was conducted to apply results/knowledge from the previous two studies to 

a stroke cohort to determine short-term carryover following training with the modified elliptical 

trainer. Data taken from force measurements on the elliptical trainer suggest that there was 

carryover with decreased error from pre to post training. For one participant GaitRite® data 

show a significant difference from pre to post measurements in single limb support.  

 The results of the research suggest that visual biofeedback can improve symmetrical 

performance during dynamic patterns. For a better understanding of visual biofeedback delivery, 

one display representation proved to be beneficial compared to the others which resulted in 

improved performance. Results show that healthy human participants can minimize error with 

visual biofeedback and continue minimizing error until a threshold value of 10%. Finally, results 

have shown promise towards applying such a system for kinetic gait rehabilitation.  
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Chapter 1 
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Chapter 1:  Introduction 

 

 

 

Problem and study significance 

 

Epidemiology 

Stroke is one of the leading causes of death in the United States as well as the leading 

cause of prolonged disability (Go et al., 2012, Jackson et al., 2010, Go et al., 2014). 

Approximately 795,000 people in the United States experience a stroke each year (Go et al., 

2012). On a global scale, in 2010 alone, 33 million people recorded having a stroke and of that 

population 16.9 million were noted for first occurrence (Mozaffarian et al., 2015). Total direct 

stroke-related medical costs between the years 2012 to 2030 have been projected to triple, 

amounting to $184.1 billion (Mozaffarian et al., 2015). In a study by Godwin et al., 

measurements from 2001 to 2005 were made to determine associated costs with outpatient 

rehabilitative services and medications. This group found that the average yearly cost for 

services and medications ranged based on the level of dependence upon inpatient discharge. For 

independent patients the total average cost was $15,624, where 66.7% of the cost went towards 

outpatient rehabilitation services. For modified dependence the total average cost was $21,691, 

72.5% towards outpatient rehabilitation services. Finally, for dependent patients the total average 

cost was $18,574, 69.7% for outpatient rehabilitation services (Godwin et al., 2011).  Of the U.S. 

stroke population, 65-85% is able to walk independently six months post stroke (Eng et al., 
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2007).  Although this percentage is high, most individuals often experience complications with 

gait parameters such as balance, motor control, and speed.  Walking independently is an 

important goal with rehabilitation, due to an early predictor linking dependence in walking to 

increased likelihood of entering nursing homes and increased probability of death (Eng et al., 

2007). Although significant improvements in gait appear to occur within the first 6 months post-

stroke, studies such as those by Edward Taub have shown that improvements can occur in the 

chronic phase as a result of constraint-induced training techniques (Taub, 2014). With constraint-

induced training, many individuals can learn to independently walk either with or without 

assistive devices, therefore improving quality of life and life expectancy.  

Posture 

 Postural control of the lower extremities is dependent on a combination of sensory 

processes in order to maintain balance during static and dynamic stances (Horak, 2006). Human 

sensory elements (e.g. somatosensory, visual and vestibular) interpret and react to complex 

environments by functioning together. Postural orientation, which is defined as a combination of 

body alignment and tone, and postural equilibrium, which is defined as an ability to stabilize the 

body’s center of mass (COM), are two essential functional goals in maintaining postural control 

(Horak, 2006). Both can be influenced by sensorimotor functions reacting to features of the 

environment. For example, postural orientation can be altered by changing the compliance of a 

surface during static stance. With the uncertainty of somatosensory inputs, the visual and 

vestibular systems begin to override inputs for cognitive processing.   

 During static stance, postural control is maintained through stable positions of the body’s 

COM. Although complete erect orientation is not possible, acceptable postural coordination of 

lower limb segments is achieved by small variations in postural sway during quiet standing 
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(Strang et al., 2011).  Transitioning from static stance to walking, the goal of dynamic stance is 

to prevent falling while transitioning the COM out of the base of support for forward progression 

(Winter, 1995).   

Healthy Gait 

 Normal, healthy gait can be defined as a rhythmic, symmetrical pattern of weight 

acceptance and unloading between each limb. Generally, each gait cycle can be divided into two 

phases: stance and swing. Approximately 60% of the cycle is spent in the stance phase and 40% 

of the cycle is spent in swing (Perry, 1992). Although healthy gait can be easily and quickly 

characterized by these two phases, gait is often divided into eight phases for a more detailed 

description. These phases include the following: initial contact, loading response, mid-stance, 

terminal stance, pre-swing, initial swing, mid-swing and terminal swing (Figure 1) (Perry, 1992).  

 

Figure 1.  Eight phases of gait cycle.  Four phases of gait in stance transitioning into weight acceptance and single 

limb support (a). Swing phases of gait allowing limb progression (b) (Liu et al., 2009).  
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 These phases are often grouped as 3 separate tasks, namely weight acceptance, single 

limb support and limb advancement. Initial contact and loading response are grouped into weight 

acceptance, since in these phases weight begins loading with initial contact and the percent of 

loading increases as the limb prepares for 100% loading. Initial contact occurs when the foot 

initially contacts the ground. In this phase, the heel is flexed, ankle is dorsiflexed and the knee is 

extended. Following this phase is the loading response which accounts for shock absorption, due 

to knee flexion, and weight-bearing stability.  During the loading response the heel is used as a 

rocker and limited by the ankle in plantar flexion to begin progression of weight acceptance. 

Following weight acceptance, single limb support occurs including both mid stance and terminal 

stance. Mid-stance then begins when the contralateral foot initiates toe-off and continues until 

the total body weight is aligned over the forefoot. In this first half of single support, the goal is 

for progression of the planted foot as well as limb and trunk stability. Single limb support is 

completed during terminal stance, which begins with heel rise and proceeds until the 

contralateral foot begins initial contact. The final task is limb advancement which is initiated in 

the final phase of stance, pre-swing, and continuing until terminal swing. During the final phase 

of stance, pre-swing occurs when the contralateral limb enters initial contact, while the ipsilateral 

limb increases ankle plantar flexion and decreases hip extension, and ends when the contralateral 

limb begins the loading response, as the ipsilateral limb finalizes toe-off. The first phase of 

swing begins with initial swing, as the foot is lifted from the ground (ankle is in dorsiflexion for 

toe-clearance) with progression controlled by hip flexion and knee flexion. Mid-swing occurs as 

the ankle continues dorsiflexion, knee extends in response to gravity and the hip flexes. The final 

phase of gait, terminal swing, continues ankle dorsiflexion, knee extension and hip flexion to 

prepare for initial contact with the ground (Perry, 1992).  
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 In describing gait, the body can be divided into two units: the passenger and locomotor 

units (Perry, 1992). The passenger unit includes the head, neck, trunk and arms. This unit doesn’t 

directly contribute to walking; instead it is viewed as a mass that sits on top of the locomotor 

unit. The passenger unit accounts for 70% of the body mass. The locomotor unit contributes to 

mobility and the following functions: propulsion, stance stability, shock absorption, and energy 

conservation. Orientation of the locomotor unit can be modified based on inputs from visual 

elements, vestibular functions and somatosensory cues. Visual inputs give way to navigation 

through a space and correct locomotor orientation for obstacle avoidance. The vestibular system 

accounts for both linear velocity and angular acceleration to provide feedback about spatial 

orientation. Lastly, somatosensory inputs sense the position of body segments relative to each 

other and with objects in which the body is in contact. To further describe the visual component 

of locomotor orientation, several studies have tested reduced vision during static and dynamic 

stance in addition to measuring the response to alterations in environmental optical flow patterns 

(Strang et al., 2011).  

Postural sway during static stance increases drastically when vision is restricted often 

leading to decreased postural control of the locomotor unit (Strang et al., 2011). Strang et al. 

measured center of pressure (COP), the elliptical area (EA) containing the COP, and the path 

length (PL) the COP traversed during static stance in twenty-six healthy participants while 

altering visual and somatosensory inputs. Their results were consistent with previous research in 

finding that the amount and area of postural sway increased with restricted vision and more 

compliant surfaces. Strang et al. suggested that with the removal of visual and somatosensory 

inputs, the vestibular system compensates by increasing sway to receive feedback on spatial 
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orientation. This compensatory activity ultimately leads to a decrease in postural control during 

static stance, often resulting in drastic variations during gait.  

During dynamic stance, locomotion and navigation is accomplished by interpreting both 

optical flow stimuli and egocentric orientation (Warren et al., 2001, Pailhous et al., 1990, 

Konczak et al., 1994, Schmuckler et al., 1989, Warren et al., 1988, Rushton et al., 1998). Warren 

et al. studied the effects of both optical flow and egocentric orientation during path navigation. 

Results from this study displayed the importance of incorporating both features. During an initial 

egocentric view of an object, the participants were able to determine their own orientation within 

the space and navigate to the object, although the path of pursuit was curved. With the addition 

of optical flow patterns, the path of pursuit began to straighten towards the object leading to 

improved path navigation by decreasing time and length of pursuit (Warren et al., 2001).  

Gait of Hemiplegic Stroke Patients 

One of the most common limitations following stroke is gait dysfunction and an inability 

to ambulate efficiently, especially within an obstacle-driven environment. Imbalance often 

occurs due to a distortion in the patient’s body image. This can be the result of a brain lesion 

reducing the patient’s awareness of body position and weight (Perry, 1969). With this distortion 

the patient may no longer make adjustments in weight or brace to prevent a fall towards the 

involved side.  Patients often experience an asymmetric limp and have slower and more abrupt 

gait patterns (Perry, 1969). Hemiplegic patients are dependent on non-reflexive primitive gait 

patterns that involve voluntary action and demonstrate weak and incomplete movements.  



 

8 
 

 

Figure 2. Comparison of kinetic energy during gait for hemiparetic vs. non-disabled control. Notice increased single 

stance in the non-paretic limb compared to the paretic, with an increase in kinetic energy for limb propulsion in the 

non-paretic limb. Circles indicate initiation of swing phases with toe-off. Kinetic energy during toe-off for the 

paretic limb is lower than both the non-paretic limb and the non-disabled control. This indicates a decrease in knee 

flexion corresponding to lack of propulsion in the paretic limb (Chen et al., 2005). 

 

Incomplete movements are often evidenced by an inability to maintain flexion in the hip 

while extending the knee during initial contact in the stance phase, forward reaching is limited 

with the affected limb (Perry, 1969). Knee flexion is restricted corresponding to a lack of 

propulsion in the paretic limb during pre-swing (Figure 2) (Chen et al., 2005). This limitation in 

forward progression of the limb and the inability to shift weight onto the affected limb causes a 

decrease in the stance period of each gait cycle. One study in particular noted limitations in 

cadence and weight shifts in patients who were on average 43.4 months post stroke 

(vonSchroeder et al., 1995). Although cadence improved with rehabilitation, weight shifting onto 

the affected limb was still compromised (Figure 3). The vonSchroeder study found that cadence 

improved with rehabilitation but concluded that this improvement came as a result in 

compensating for gait abnormalities. As a consequence, stance phases on the affected limb 

remained the same, reflecting decreased stance on the affected limb compared to the unaffected. 

This result raised the issue that, although patients can alter their gait to improve cadence, 
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asymmetries in weight bearing can still exist even if cadence has improved over time. Weight-

bearing activities during rehabilitation are expected to provide a substantial influence to increase 

symmetrical performance during gait (Nugent, 1994).  

 

Figure 3. Stance Comparison of Affected vs. Unaffected Limb. Stance asymmetries were present in a study 

measuring stance characteristics between affected limb and unaffected limb in a sample set of 46 stroke participants. 

Participants tended to spend more time in stance and less in swing for the unaffected limb, even with rehabilitation 

experience (vonSchroeder et al., 1995).  

 

Hemiparetic patients often develop a compensatory pattern in gait consistent with pelvic 

hiking and lateral displacement of the foot to compensate for reduced knee flexion during swing, 

thereby allowing limb clearance of the ground (Chen et al., 2005). This results in an increased 

mechanical energetic cost during walking (Figure 2) Percent weight loading on the unaffected 

limb can range from 57% to 70%, as opposed to a 50/50 distribution between both limbs, 

depending on the severity of the stroke and the length of physical therapy (Adegoke et al., 2012). 

Even with months of physical therapy, stance asymmetries during gait can still exist (Figure 3) 

(vonSchroeder et al., 1995). With the increase of disproportionate loading comes the increased 
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risk of falling as well as difficulty with certain tasks such as walking through obstacles and 

ascending/descending stairs. Adegoke noted that with these more difficult tasks of obstacle 

avoidance and ambulating stairs, post-stroke patients tend to displace even more weight towards 

the unaffected limb therefore increasing the risk of fall (Adegoke et al., 2012). Along with 

asymmetrical weight distribution, sway tends to increase during static and dynamic stance which 

is related to greater postural unsteadiness (Nichols, 1997).  

After a stroke, one primary goal with rehabilitation is the restoration of walking to an 

independent community ambulating level. A study conducted by Perry et al. looked at 

differences in community-dwelling individuals compared to those confined to the house and 

developed 6 levels of functional walking to establish a quantifiable assessment between 

independent and dependent walkers (Perry et al., 1995). In this study, the control of knee flexion 

and extension, as well as velocity, was a key indicator that differentiated between household and 

community ambulators. The ability to predict outcomes based on these variables allows 

clinicians to administer rehabilitation techniques specific to outcome goals to increase the 

probability of developing appropriate gait-like parameters thereby promoting independence in 

daily activities of life. Such rehabilitation techniques are focused on constraint-induced task-

specific activities specifically related to real-world applications. 

 

 

Theoretical framework 

 

Constraint Induced Therapy 

 Following stroke, several neurological functions are impacted based on the infarcted area. 

Often internal recovery occurs in three phases within the first few weeks after incidence 

(Wieloch et al., 2006). The first phase is the activation of cell repair in both the affected area and 
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diaschisis. Functional cell plasticity follows with axonal sprouting of existing pathways due to an 

increase in potentiation, and finally neurogenesis occurs, resulting in new pathways for 

connections (Wieloch et al., 2006). External events, through physical therapy, also promote 

cortical reorganization (Harvey, 2009). Previously, physical therapy was focused on teaching 

compensatory actions, therefore constricting patients to only involve the non-affected side to 

perform daily activities of life. Although these techniques are still applied on occasion, there is 

an increasing trend towards utilizing the model of constraint-induced movement therapy to 

promote cortical remapping (Harvey, 2009).  Such techniques encourage patients to increase use 

of the affected side to perform specific tasks in and outside the clinic. Originally proposed by 

Donald O. Hebb in 1949, the activation of one cell and subsequent assistive stimulation of a 

secondary cell will promote axonal and dendritic sprouting to synaptically connect the two cells 

together, which is the basis of cortical remapping (Harvey, 2009). Promoting reorganization of 

neuronal connections can be achieved from constraining activities that force/encourage use of the 

impaired limb.  

 The principle of constraint-induced movement therapy was originally developed by 

Edward Taub at the University of Alabama at Birmingham, based on previous studies testing 

learned non-use in somatosensory deafferentated monkeys (Taub, 1993, Taub, 2014, Morris, 

2006). Constraint-induced therapy not only involves the restriction of non-affected limb use, but 

also additional components in the model to encourage and monitor use of the affected limb in 

and outside the clinic (Taub, 2014). This rehabilitation protocol involves four basic components: 

(1) intensive training of affected limb; (2) implementing the shaping technique during therapy; 

(3) the transfer package; (4) discouraging compensation that leads to learned nonuse (Taub, 

2014). The first component of therapy is achieved typically by restricting use of the non-affected 
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limb during activity (most commonly by using a padded mit or sling for upper extremity 

training). In order to accomplish a specific task during therapy, patients are forced to use their 

affected limb. The second component is shaping, which adds incrementing levels of difficulty 

throughout training and provides feedback related to the quality of movement patterns. The 

transfer package (third component) is an approach to therapy outside the clinic by the use of such 

techniques as behavioral contracts and daily activity logs. This approach sets the patient 

accountable for using his or her paretic limb outside the limitations of the clinic. The final 

component encourages steady use of the paretic limb as opposed to compensating towards the 

unaffected side, which leads to learned non-use. Learned non-use is thought to occur over time 

when individuals begin compensating for deficits to perform daily activities of life. This results 

in forming habits of using the non-affected limb for daily tasks. The time frame of constraint-

induced therapy occurs over several weeks to ensure that strength of the affected limb is 

comparable to the non-affected to allow coordinated movements during daily activities.   

Although each component separately contributes to overall use of the affected limb 

during training, the protocol as an entirety results in longitudinal use once treatment duration is 

completed. Not only is constraint-induced therapy dependent on the treatment administered in 

the clinic, but also the patient’s willingness to implement such methodologies outside the clinic 

as prescriptions for mobility.  

Current Techniques for Gait Training 

For gait rehabilitation, the first component of constraint-induced therapy is achieved by 

constraining the affected limb to progress forward and bear weight in normal patterns. Body-

weight supported treadmill training (BWSTT) is one technique that promotes constrained task-



 

13 
 

oriented activity. During early-stage BWSTT, partial body weight is supported by a harness and 

two physical therapists assist the patient while walking on a treadmill (Figure 4) (Harvey, 2009, 

Werner et al., 2002). One therapist assists in the progression of the limb in correct alignment, 

while the other stands behind the patient shifting his or her pelvis to force them to bear weight 

equally on both sides. Although this technique is beneficial in promoting use of the paretic limb, 

activity is heavily dependent on therapist’s fatigue, where therapists can last on average 15-20 

minutes (Harvey, 2009, Jackson et al., 2010, Hidler et al., 2009). Due to fatigue, the therapist 

may guide the patient’s limb in diverse range of motions throughout the treatment (Hidler et al., 

2009). With ranging patterns throughout treatment, the patient is no longer consistent with motor 

control of the affected limb. Physical therapists are also susceptible to injury due to the physical 

demand and misalignment of body positioning in order to complete the task required during gait 

rehabilitation (Hidler et al., 2005). Another disadvantage of this technique is that it employs a 

subjective measure for gait parameters as opposed to an objective quantification of kinetic and 

kinematic patterns for accurate gait training. 

 

Figure 4. Current dynamic gait rehabilitation technique for patients. Two physical therapists assist both 

progressions of the limb and weight shifts while the patient is walking on a treadmill (Werner et al., 2002). 
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 Split-belt treadmills have also been implemented during gait rehabilitation to increase the 

speed of the paretic limb. In split-belt designs, the treadmill belt is “split” and the speed of each 

side can be independently controlled. During therapy, the physical therapist sets parameters to 

vary the speed of the belt on the side of the paretic limb. Often, the adjusted speed of the belt is 

slightly faster than the non-paretic side. This constrains the patient to progress the paretic limb 

faster, resulting in an increase of overall cadence and step length of the paretic limb (Reisman et 

al., 2013, Reisman et al., 2007).  Although this tends to improve the cadence and step length of 

the patient, often this can lead to injury due to overuse and disproportionate loading in the joints 

(Kaplan et al., 2014). Another interesting note from split-belt training is that the results from 

increased step length do not correlate with increased stance time (Reisman et al., 2013). This 

might be due to the compensatory pattern that the patient chooses in order to match the adjusted 

belt speed.  

In an effort to improve consistency and duration in treatment, robotic devices have been 

constructed to promote accurate alignment of the limb without the need of a therapist during 

limb progression (Hidler et al., 2009). The Lokomat® (Figure 5) is such a device that constrains 

the limb to a specific pattern. It controls both knee and hip kinematics and the amount of 

assistance it provides to the patient. Its components include a treadmill, robotic exoskeleton 

attachments for the legs, a body-weight support system and a control/biofeedback system to 

program speed and provide biofeedback to patients (Hidler, 2005). Although the Lokomat® 

solves the problem of consistency and duration, little evidence suggests that this device is a 

suitable alternative to conventional therapy. First, the Lokomat® restricts movement of the 

pelvis, thereby hampering weight shifting and loading between limbs. It also lacks variability in 
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the gait profile that would allow modulation in parameters from the patient, therefore impeding 

carry-over from training to real-world applications. Often BWSTT produces a more favorable 

outcome in training compared to the Lokomat®, due to the amount of variability during 

therapist-assisted training (Harvey, 2009, Hornby et al., 2008).  

 

Figure 5. Lokomat® system for gait rehabilitation. The Lokomat® provides assistance to the patient during gait 

rehabilitation by controlling hip and knee kinematics (Hidler et al., 2005). 

 

 Recent studies have incorporated other forms of training through biofeedback, 

specifically visual biofeedback, to encourage the participant to adjust postural orientation during 

therapy.  Transitioning from kinematic training, both research and clinical practices have 

implemented biofeedback devices for kinetic training. These forms of balance training include 

balance plates, i.e. SMART Balance Master (NeuroCom International, Inc., Clackamas, OR, 

USA), and the Wii balance board (Nintendo,  Kyoto, Kyoto Prefecture, Japan) which provide 

visual biofeedback to the user from vertical load measurements to adjust his or her weight on the 

measurement device (Barcala et al., 2013, Chen et al., 2002, Gil-Gómez et al., 2011, Goble et al., 

2014). In a study by Chen et al., an experimental group using the SMART Balance Master for 



 

16 
 

training was compared to a control group, in which both groups received the same therapeutic 

treatments outside of the scope of the study (Chen et al., 2002). The results of the study found 

that patients who used the SMART Balance Master in addition to conventional training 

performed significantly better in measurements of maximal stability, ankle strategy and center of 

gravity alignment. A study by Gil-Gomez et al. mirrors these results from the SMART Balance 

Master study. In this study, patients improved significantly in static balance when using the Wii 

balance board coupled with visual biofeedback compared to controls (Gil-Gómez et al., 2011). 

This study measured improvements through clinical-based tests, i.e. Berg Balance test, Brunel 

Balance assessment, timed stair test, to name a few. Participants also commented on increased 

motivation to perform this alternative treatment to conventional training. Although, static 

performance was improved through this training, when comparing these to dynamic 

measurements a need was proposed by the authors to produce such a device that would improve 

dynamic gait postural stability.  Although this study from Gil-Gomez et al. suggests that the Wii 

balance board provides adequate training compared to conventional techniques, a study from 

Barcala et al. suggests there is no significant difference between the two therapeutic paradigms 

(Barcala et al., 2013). Barcala et al. evaluated such quantifiable measures as the Berg Balance 

scale, timed up and go and functional independence measures to determine the effect of the Wii 

balance board. In this study, there were no significant differences between the experimental 

group and the control. An interesting note to consider between the two studies is that the visual 

representation of postural stability differed between the studies. Although both studies used the 

Wii balance board platform, Gil-Gomez et al. developed a visual biofeedback system to couple 

to the device, whereas Barcala et al. used the factory settings. The difference in these findings 



 

17 
 

suggests that user-centered biofeedback design is important and, as a result, interface design was 

initially investigated in the proposed research.  

Impact of Visual Biofeedback during Walking 

The rhythmic patterns of healthy gait primarily occur due to the combination of several 

senses delivering biofeedback to allow for adjustments. Of these senses, vision is a key 

component in maintaining appropriate postural static stance and path progression (Tcheang et al., 

2011, Wan et al., 2012, Khan et al., 2010). In a study performed by Strang et al., postural sway 

was tested when vision was restricted (Strang et al., 2011). They found that as vision was 

reduced, postural control decreased leading to increased sway during stance. Lishman and Lee 

found that they could control postural sway when altering optical flow patterns of subjects 

(Nardini et al., 2012, Lishman et al., 1973). Subjects stood in the middle of a dynamic room 

while the researchers would control whether the room would sway towards or away from a 

central position. As the room swayed towards the subject, they would counteract the motion and 

step backwards. Both these experiments suggest that postural control during static stance can be 

influenced by vision.  

Visual perception also contributes significantly in adjusting lower limb trajectories during 

ambulation. Studies implementing instrumented treadmills, such as the IVERT (Integrated 

Virtual Environment Rehabilitation Treadmill) system from Feasel et al., have proven that 

subjects can sense abnormalities in their gait based on visual biofeedback (Feasel et al., 2011). 

Taking this idea from perception to adjustments in gait, Dingwell et al. found that by visually 

displaying biofeedback from kinetic measurements subjects improved gait parameters in stance 

time, push-off forces and center of pressure (Dingwell et al., 1996, Dingwell et al., 1996). This 
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study applied different visual biofeedback displays that incorporated differential, temporal and 

comparison elements to deliver information on the aforementioned gait parameters. Crowell et 

al. also implemented visual biofeedback, read from a subject-mounted accelerometer, to improve 

running mechanics; specifically, to reduce impact loading (Crowell et al., 2010). They found that 

with the additional element of visual biofeedback, subjects reduced their impact peaks and 

amplitude of peak acceleration. These studies not only suggest that participants can perceive 

their own gait asymmetries, but also make adjustments to gradually improve performance.  

Implementation of visual displays to perform specific tasks serves to offload cognitive 

demand from the participant to optimally achieve the task. Employing visual representations of 

complex tasks/objects improve both the speed and accuracy of interpretation from the user. Often 

when applying a visual representation of non-visual information, patterns may develop that 

simplify interpretation of the non-visual information which allows the user to group objects for 

comparison rather than deciphering the individual objects themselves (Pomerantz et al., 1989, 

Hegarty et al., 2011). This action of pattern recognition significantly decreases the time of 

interpretation and increases accuracy through the implementation of visual representations. Kirsh 

and Maglio studied visual interactive systems and the effect on performance while a user 

interacted with the visual display (Kirsh et al., 1994, Kirsh, 1997). They subjectively measured 

performance of experienced Tetris players during the game and found that rotations of the 

objects were made more frequently than unexperienced players. Instead of making complicated 

internal calculations, these players manipulated the objects continuously until it matched the 

accurate placement. Kirsh later describes this method as complementary actions, actions that 

serve to decrease cognitive load (Hegarty et al., 2011, Kirsh, 1997). Applying these 

fundamentals from previous research to treatment of gait asymmetries, improved outcomes may 
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result from off-loading internal cognitive processes to pre-calculated external visual 

representations, thereby giving promise to improved prescribed treatment plans for dynamic 

postural control. This may be especially important for patients who have suffered stroke, since 

they may have additional processing difficulty. Systems that implement these design 

fundamentals can play an influential role in gait rehabilitation.  

In consideration of current rehabilitation techniques and their effectiveness, a low-cost 

system coupled to an elliptical trainer was developed that influences stability/balance during 

ambulation. This system was built based on two of the four principles of constraint-induced 

movement therapy developed by Edward Taub. It allows intensive training of the affected limb, 

while discouraging compensation since goals must be met by the affected limb independently. It 

also allows therapists to apply the shaping technique in constraint-induced movement therapy by 

modifying parameters within the visual biofeedback presented to the user.  

 

Purpose of research 

The purpose of this research was to determine the impact of training on a modified 

elliptical trainer that incorporated dynamic kinetic balance biofeedback via a visual interface in 

healthy and post-stroke individuals. Incorporating visual biofeedback has been viewed in 

previous research as a more intuitive approach when considering biomechanical variables. To 

understand both the cognitive demand and physical demand placed on the user during training, 

studies were conducted to test the effectiveness of the display and subsequent outcomes on 

dynamic postural stability. Biased weight-bearing approaches were tested that incorporate 

training while manipulating the gain of the left-right load signal to force the subject to increase 

the load on their non-dominant limb. When applied to a clinical population (e.g. stroke), this 
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would involve getting the patient to increase loads on their paretic side. Thus taking them beyond 

symmetric gait training and forcing them to be hyper-symmetric (or load-biased on their weaker 

side). This approach is often used in both constrain-induced therapy and split-belt treadmill 

training on this population.  

 

Specific Aims and Hypotheses 

H1 – Visual biofeedback will influence and improve kinetic (weight-bearing) symmetric 

performance. 

SA1.1 – To build a novel training device that employs kinetic biofeedback through a 

visual display. 

SA1.2 – To determine if kinetic visual biofeedback has an influence on symmetric weight 

distribution in a healthy population. 

H2 – One of the four display types will provide the best man-machine interface for improving 

symmetric and asymmetric weight bearing performance in a healthy population.  

SA2 – To determine which of four display types provides the best man-machine interface 

for improving symmetric and asymmetric weight-bearing performance in a healthy 

population. 

H3 – There is a relationship between asymmetric weight-bearing and performance in a healthy 

population (age 20-30).  

SA3 – To determine the relationship between asymmetric weight-bearing and 

performance in a healthy younger population (age 20-30).  
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H4 – There is a relationship between asymmetric weight-bearing and performance in a healthy 

population (age 35-60).  

SA4 – To determine the relationship between asymmetric weight-bearing and 

performance in a healthy older population (age 35-60).  

 

H5 – Individuals with gait impairments secondary to stroke will be able to train hyper-

symmetrically and will have a short term functional change in gait symmetry following visual 

biofeedback system training.  

SA5.1 – To determine if participants with gait impairments secondary to stroke can 

perform successfully at the pre-defined value of gain manipulation. 

SA5.2 – To determine if participants with gait impairments secondary to stroke will have 

a short-term functional change in gait symmetry post training with the visual biofeedback 

system. 
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Chapter 2:  Design Review 

 

 

 

Introduction 

 

 This chapter reviews the modifications that were made to an existing elliptical trainer in 

order to create a device that can provide kinetic biofeedback during dynamic stance. The design 

goals used during the development of the device were based on successes and failures of current 

systems and methods employed in the clinic and in research. This chapter will also describe the 

motivation for incorporating feedback from a single modality to assist in perceiving vertical load 

distribution during elliptical trainer use.  Features of the system will be highlighted and described 

to provide an understanding of the intention behind the research.  

 Recent techniques for gait rehabilitation training include body weight supported treadmill 

training (BWSTT), split-belt treadmill training, and robotic training (i.e. the Lokomat®) 

(Harvey, 2009). Each system has attributes and shortcomings that helped lead to the 

development of the system used in this research. In both BWSTT and split-belt training, a 

physical therapist is required to help progress the paretic limb through each gait cycle. Although 

this training technique has been proven effective, the training duration is often limited by 

therapist fatigue (Jackson et al., 2010). Another disadvantage of these systems is limited control 

of lower extremity joint loading.  Joint loads are dependent on initial contact and weight 

distribution. The patient may load his or her weight in an inappropriate fashion potentially 

leading to inaccurate training as well as increased susceptibility to injury (Patterson et al., 2008, 
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Lu et al., 2007). To reduce inappropriate loading and dependence of the therapist during training, 

robotic devices like the Lokomat® were invented to control limb progression and weight 

transfer. This system has been successful, but is costly. As a result, these systems only exist in 

larger, more profitable facilities. A disadvantage of the Lokomat® is that the patient’s 

independence during limb progression is limited. Specifically, system restraints control 100% of 

the movement patterns during rehabilitation (Harvey, 2009, Hidler et al., 2009). The patient is 

not challenged to accomplish the task at hand, therefore limiting his or her ability to 

independently ambulate during and post rehabilitation training in the transfer stage of 

rehabilitation. Increasing variability in training can be accomplished using split-belt treadmills.  

Although these systems again require therapist’s supervision, they allow independent control of 

paretic limb cadence. Cadence is increased sequentially in pre-defined belt speed changes of the 

overall gait speed and on the paretic limb side only. Although this form of rehabilitation has been 

shown to increase overall cadence, the load transfer control associate with the Lokomat is 

missing. There is an obvious void in systems design to control both the kinematic and kinetic 

load transfers elements of gait in a way that is conducive to effective rehabilitation of patients 

with limited lower extremity control (e.g. patients who have suffered stroke).  

 With technological advancements in the past decade leading to improved cost-effective 

solutions, the incorporation of biofeedback in the clinic has drastically increased. Such systems 

as the SMART Balance Master and the Wii balance board have improved kinetic asymmetries in 

static stance. Studies such as Gil-Gómez et al. have shown that following training on the Wii 

balance board with visual biofeedback many of the subjects had favorable outcomes during 

clinical-based tests such as the Berg Balance test and Brunel Balance assessment (Gil-Gómez et 
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al., 2011). Although these studies on static postural stability have shown drastic improvements in 

symmetry, static systems are often not transferable to dynamic stance such as walking.  

To better understand the impact of visual biofeedback in dynamic systems, several 

systems have been developed for either single or split-belt treadmills. Participants were able to 

perceive their own asymmetries in gait in a study by Feasel et al. In this study an interactive 

virtual reality environment was coupled to a split-belt treadmill to integrate path navigation into 

a synthetic environment (Feasel et al., 2011). Although participants were able to sense their own 

gait asymmetries, there wasn’t significant evidence to suggest that the system was suitable for 

short or long term adjustments. Dingwell and colleagues approached visual biofeedback in 

simplistic representations that captured and displayed the specific variable that the participant 

needed to adjust gait parameters to (Dingwell et al., 1996, Dingwell et al., 1996). Dingwell and 

colleagues employed three different displays representing separate variables, these displays 

having differential, temporal, and comparison elements. Results of this study showed improved 

stance time on the paretic limb, improved push-off forces and center of pressure. These studies 

suggest that participants not only perceive their asymmetries, but can adjust accordingly when 

specific variables are highlighted and enhanced during biofeedback delivery.  

 The device used in this research was designed and built to include kinematic control of 

lower extremity motion, kinetic feedback regarding weight distribution, and the ability to control 

gait symmetry via visual biofeedback. This novel gait training device was built with the intention 

to produce task-specific, constraint-induced training specifically for gait rehabilitation in a stroke 

population. Although this device can be used for multiple applications in gait rehabilitation, the 

system was developed to initially focus on a single population. It allows the user to 

independently control limb progression and weight distribution. Visual biofeedback was 
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incorporated to allow the user to determine his or her performance in real-time and make 

adjustments in the symmetry of their loading patterns.  

 Design Goals 

 Device needs to allow dynamic training for symmetrical balance. 

 Device needs to promote independence in training while fully supporting at least up to 

220lbs.  

 Device needs to be cost-effective and produce favorable patient outcomes. 

 Device needs to promote constraint-induced therapeutic techniques during training. 

 Device needs to include visual biofeedback that maximizes/optimizes subject performance. 

 

Device Design 

 

Choosing the elliptical trainer 

Although studies incorporating biofeedback in split-belt treadmills have shown some 

success in gait rehabilitation, there exists concern regarding the adequacy of control during joint 

loading. To improve control, an elliptical trainer was chosen as the foundation of the system. The 

gait cycle on an elliptical trainer has no swing phase. As a result, there is no heel strike or initial 

contact to initiate a stance phase. This decreases the chance of injury during training from impact 

loading (Lu et al., 2007). In addition, the kinematic pattern of ankle, knee, and hip motion is 

managed via distal control since the feet are always in contact with the elliptically moving 

pedals. This pattern has some cycle-to-cycle variation allowing the subject to respond to changes 
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in their fatigue and required performance.  Although treadmill training more closely simulates an 

overland gait pattern, suggesting that it is the best system for gait training, elliptical devices may 

be more useful in targeting specific gait variables (Damiano et al., 2011).  

Another benefit to elliptical training is its ability to increase knee flexion. As noted by 

Chen et al. in their study measuring gait kinematics of stroke patients, knee flexion is greatly 

limited during walking which affects limb progression and as a consequence results in a pelvic-

hiking action during swing (Chen et al., 2005). When measuring joint kinematics Lu et al. found 

that knee flexion was significantly greater during elliptical trainer use than overland walking, 

almost a 20⁰ increase respectively (Lu et al., 2007). Since knee flexion increases while training 

with an elliptical trainer, applying the trainer as the foundation of the system provided an added 

benefit during gait rehabilitation for stroke participants.  

Visual biofeedback 

Biofeedback can be delivered in multiple forms that include visual, audio and haptics 

either separately or in combination.  Visual biofeedback has been heavily researched in the past 

few years and has been found to be the most appropriate modality for mobility training when 

conveying spatial information within an environment (Sigrist et al., 2013).  Visual biofeedback 

allows a more intuitive approach to motor control.  Performance can also be enhanced by 

incorporating either audio and/or haptic biofeedback, but these systems require additional user 

training to be successful. Once an individual is able to associate audio or haptic feedback with 

performance, many studies have shown that outcomes can be similar to those outcomes with 

using visual biofeedback (Batavia et al., 2001, Fernery et al., 2004, Sigrist et al., 2013).  It is 

important to note though that when applying these modes of feedback success depends on the 
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ability of the individual to accurately decipher the meaning of the information presented. Often 

the delivery of audio, haptic or multi-modal feedback becomes too difficult for the user to 

understand in already complex mobility tasks which contributes to increased cognitive load. As a 

result, visual biofeedback was selected for this research with careful consideration given to the 

design that minimizes cognitive load.  

To decrease cognitive demand, biofeedback complexity is typically reduced. This 

however does not come without tradeoffs. Increasing the simplicity of the cognitive 

interpretation of an activity can result in the removal of essential elements. By reducing the 

complexity of the system there is an uncertainty if relevant aspects of the whole system have 

been captured for problem solving (Woods, 1995). Both elements of problem solving and the 

active association of components within the system can be lost when more complex situations 

are removed from motor performance biofeedback.  

In order to provide an effective system associating performance through computerized 

aiding interpretation there is a need to produce a system that delivers enriched information to the 

user. This information should reduce unnecessary details while enhancing integral elements to 

allow efficient problem solving during activity. Therefore it is essential to balance contrasting 

elements of simplicity and complexity for effective interpretation of performance during 

biofeedback activity.  

Although studies such as Huang et al. show that a multimodal approach applying visual-

auditory biofeedback produced an improvement in postural and mobility performance, there is 

still concern that multimodal systems may be too complicated in certain mobility tasks without 

extensive training (Huang et al., 2006, Sigrist et al., 2013, Woods, 1995). In order to deliver 
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enriched information about spatial elements while limiting the complex nature of the system, a 

single modality was chosen for this research to represent kinetic features during elliptical use. 

Visual biofeedback provides an intuitive method for understanding spatial representations and 

vertical load measurements (Sigrist et al., 2013). Positive impacts in lower limb rehabilitation 

have resulted from coupling visual biofeedback to postural balance training in elderly subjects, 

having either peripheral neuropathy or stroke, as well as younger subjects (Sihvonen et al., 2004, 

Wu, 1997, Shumway-Cook et al., 1988).  

Hardware modifications and implementation of biofeedback 

 A novel gait trainer for symmetric kinetic training was constructed by modifying an 

elliptical trainer (NordicTrack®, Logan, UT) to measure vertical pedal loads and display 

biofeedback through a visual display. To measure vertical load independently, both pedals were 

equipped with material-matched strain gages (350 Ω) built into a Wheatstone bridge 

configuration (Figure 1) to create left and right side load cells.  

 

Figure 1. Attachments to the elliptical trainer. Strain gages were attached to the top and bottom of each ski of the 

elliptical to measure vertical load. The inset is a picture of one side of one ski. A 200 point quadrature encoder was 

attached to the elliptical to determine position of the flywheel.  
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The load cell signal was low-pass filtered (@10Hz 4
th

 order Butterworth) to remove 

instrumentation noise and high frequency fluctuations in the load. Load cells were loaded and 

unloaded up to 140 pounds to determine hysteresis and linearity (Figure 2). Calibration equations 

were found for right and left load cells to convert voltage signals into real-world weight 

measurements (Table 1).   

 

Figure 2. Calibration curves of the left and right pedal load cells. The left and right pedals were loaded then 

unloaded at a single point to determine the calibration equation for weight measurements.  

 

 

Pedal  Hysteresis Linearity 

Right  3.37% 2.31% (+/-4.62 lbs.) 

Left  3.50% 2.35% (+/- 4.7 lbs.)  

Table 1. Hysteresis and linearity measurements. Hysteresis and linearity measurements to determine right and left 

load cell accuracy.  

 

Each display was created through LabVIEW software (National Instruments™, Austin, 

TX) and presented averaged weight measurements for each revolution on the elliptical trainer. 
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The system sampled load cell data at a rate of 3000Hz using a 12bit A/D interface. Load cell data 

from each gait cycle was measured at 200 discrete points using a 200 point encoder with 

quadrature and index outputs (Figure 1).  

 

 

Figure 3. Conditioning circuit for encoder z-signal. This is a “one-shot” circuit design to widen the z-signal to 

facilitate identifying the beginning and end of each gait cycle.  

 

The display was updated with each new data point as average gait cycle loads were 

computed from a circular buffer. Refresh rate of the monitor ran at 60Hz. Data was down-

sampled to 300Hz for data analysis. Beginning and ending of a cycle were determined by the z-

signal from the encoder. This signal was digitally widened by implementing a one-shot circuit 

configuration (tau = 0.002s) (Figure 3). Figure 4 show the general flow of the signal to produce 

the visual biofeedback presented to the user.  
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Figure 4. General flow diagram of the entire system. Vertical load was measured from the pedals of the elliptical. 

This signal was conditioned by a 10Hz low pass filter. A mounted quadrature encoder tracked flywheel positions to 

be used for averaging an array that used a circular buffer for load measurements based on flywheel position. The 

averaged array went through settings to control gain manipulation before being delivered as visual biofeedback to 

the user.  

 

Design and mechanism of visual representation  

Four independent visual displays were developed based on previous research that 

incorporated biofeedback into instrumented treadmill systems (Dingwell et al., 1996, Dingwell et 

al., 1996, Crowell et al., 2010).  These were then tested on healthy participants to characterize 

performance. Each display provided a spatial representation of left and right loads. These were 

named Tanks, Temporal, Differential, and Differential-Temporal.  Variable features of these 

displays include (1) the number display elements (number of objects capturing attention from the 

participant), (2) if they included a temporal history of past data samples, (3) if they presented 

pre-processed data, and (4) if they represented data from either both limbs or a single limb 

(Table 2).  Figure 5 shows each of the visual displays as presented to the participant, along with a 

simplified depiction of each display.  
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Display Display 

Elements  

Temporal 

History 

Pre-processing Displayed Data 

Tanks 4 No No Both limbs 

Temporal 2 Yes No Single limb (non-

dominant weight 

bearing limb) 

Differential  1 No Yes Both limbs 

Differential-

Temporal 

2 Yes  Yes Both limbs 

Table 2.  Display type characteristics.  Characteristics are as follows: display elements (number of objects to focus 

on), history (past data samples), pre-processing and the limb that data was delivered through the visual display 

(displaying either single limb or both limb data samples).  

 

 Results of a comparison study for these four displays are presented in Chapter 3. The 

results revealed that one display resulted in superior performance.  This display was then used in 

all subsequent studies.  

 

Figure 5.  Visual displays of biofeedback.  This shows the four displays constructed to display vertical load 

measurements as visual biofeedback.  
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To further promote constraint-induced therapeutic approaches to increase the use of a 

paretic limb, an additional modification was made to the biofeedback software. This allowed left 

and right loads to be scaled to encourage participants to present more weight to their non-

dominant or paretic weight-bearing limb without their knowledge. This was accomplished by 

modifying the gain of the left and right load cell signals in the LabVIEW routine by a percent 

value. The method is similar to an approach by Ding et al., where changes the gain of the signal 

(from 0-25%) every two minutes were used to push the subject to distribute more weight to their 

non-dominant weight-bearing side. Ding et al. studied this approach with a force plate measuring 

weight distribution in static stance for chronic stroke participants (N=3) (Ding et al., 2012). In 

their study, they found that both weight distribution on the paretic limb and overall stance 

symmetry improved with the use of their system. The system used in the proposed research 

aimed to incorporate this methodology into a dynamic system that simulates a gait-like pattern.  

  

Discussion 

 

 Constraint-induced training is a widely accepted approach in the rehabilitation of patients 

who have suffered stroke in both the acute and chronic phases following onset. The challenge in 

implementing this technique in gait training is that it is designed to bias training to the involved 

side, yet gait requires both legs. Current approaches to promote task-specific, constraint-induced 

activities include the use of split belt treadmills and robotics. Although these two approaches 

have seen some success, there are disadvantages which limit the transfer of this training into 

daily activities of living (ADL).  
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Although single and split belt treadmill training is effective in increasing the use of the 

paretic limb, there are several disadvantages in training. Training is heavily dependent on the 

physical therapist for weight shifts and limb progression (Jackson et al, 2010). This not only 

limits training duration due to therapist fatigue, but also lacks the quantitative assessment with 

each training session.  Another disadvantage is limited control of lower extremity joint loading. 

This can lead to inappropriate joint loading and subsequent injury. The proposed system removes 

the need for assisted control of limb progression and weight shifts. It provides quantitative 

measurements of vertical load that can track training with each session.  

The Lokomat® robotic is an attractive system for rehabilitation since it removes the need 

of multiple therapists to assist in gait training. The exoskeleton system controls limb progression, 

forcing the paretic limb to be involved during walking, and gathers objective measurements over 

the course of training. Although seemingly an impressive tool, the Lokomat® has failed to show 

significant improvements in gait (Harvey, 2009, Hornby et al., 2008, Cai et al., 2006). This could 

be attributed to the fact that it lacks the variability in training necessary for the patient to develop 

a motor plan to adjust for different variables when ambulating within a community (Cai et al., 

2006). Another disadvantage is its financial burden to rehabilitation centers, making it difficult 

for medium to smaller facilities to obtain. One benefit of the system is that it does allow accurate 

limb alignment during gait, but this comes as a cost as well. The system hampers weight shifting 

from one limb to the other. This limits a patient’s ability to shift his or her weight accurately 

during walking. The proposed system is low cost compared to the Lokomat® (Table 3) and 

focuses on weight shifts from one limb to the other during gait training. It also allows some 

variability in training with manipulating the gain of the signal to force patients to develop 

specific motor plans to account for changes in the vertical load representations.  
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Supplier Part No. Quantity Cost 

Omega® SGD-13/350-

LY11 

1 pack of 10 $67 

Interface SGA signal 

conditioner 

2 $345 ($690 total) 

NordicTrack CXT910 

(Elliptical 

Trainer) 

1 ~$600 

Sparkfun COM-10932 

(Rotary 

Encoder) 

1 $39.95 

National 

Instruments™ 

NI USB-6009 1 $335 

National 

Instruments™ 

Labview 8.5 1 $59 

Video Products 

Inc. 

VOPEX-xV-LC 

(VGA video 

splitter) 

1 $30 

Table 3. Parts and cost list of the system. 

The proposed system is a low-cost alternative to current techniques in gait rehabilitation 

that promotes task-specific, constraint-induced training. The patient is able to independently train 

with only minimal supervision, making it an attractive system to both clinics and patients. It 

allows training to be variable through manipulating the gain of the signal, which should lead to 

improved outcomes in walking through an obstacle enriched environment.  
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Appendix 
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Appendix A 

LabVIEW vi for acquiring vertical load and representing as visual biofeedback.  

 

While loop in LabVIEW vi to read encoder pulses as an external clock. This loop uses a shift register to determine 

changing positions in the flywheel (encoder pulses).  
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Component to LabVIEW vi that uses indicators from above (x3 and x4) to control when a weight measurement from 

either load cell enters the corresponding 200 point array. Weight measurements are acquired through the 12 bit DAQ 

card and scaled based on calibration curves.  

 

 

Mathscript code in LabVIEW vi that builds the Tanks display by inputting left and right weight measurements 

(averaged from 200 point array) to determine threshold values. Upper and lower thresholds for the display are found 

by calculating half of total body weight. These values are used as the blue target line on the Tanks display. Weight 

measurements are represented as the filler line in the corresponding tank. 
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Mathscript code in LabVIEW vi that builds the Differential-Temporal display by inputting left and right weight 

measurements (averaged from 200 point array) to calculate the difference between right and left weight 

measurements. This calculation is presented as a single data point on the graph and changes with each encoder 

pulse.  

 

Mathscript code in LabVIEW vi that builds the Differential display by inputting left and right weight measurements 

(averaged from 200 point array) to calculate the difference between right and left weight measurements. This 

calculation is presented as a single needle on a meter and changes with each encoder pulse.  
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Mathscript code in LabVIEW vi that builds the Temporal display by inputting left and right weight measurements 

(averaged from 200 point array) to determine the threshold value. Threshold for the display are found by calculating 

half of total body weight. These values are used as the blue target line on the Temporal display. Single-limb data are 

represented in the graph to compare with the target line.  
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Code to manipulate the gain of the vertical load signal. This is a portion of the LabVIEW vi that manipulates the 

gain of the load cell signal every 2 minute interval.  

 

 

 

 

 

 



 

52 
 

Chapter 3 
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Chapter 3:  Does visual biofeedback have an effect on symmetric performance? 

Abstract 

Vision is a key component in maintaining postural control during both static and dynamic 

stance. Several research studies have observed differences in postural control when vision is 

either limited or visual objects are manipulated (Strang et al., 2011, Nardini et al., 2012, Lishman 

et al., 1973). These studies suggest that symmetry patterns in both static and dynamic stance can 

be manipulated through visual biofeedback. Recently, there has been an increasing trend of 

studying the effects of virtual based training for modifying mobility patterns (Tirosh et al., 2013, 

Hirokawa et al., 1989, Feasel et al., 2011, Dingwell et al., 1996, Dingwell et al., 1996).  Due to 

increasing evidence supporting this technique in training, more visual systems are being 

developed and implemented as goal-based rehabilitation techniques. The goal of this study was 

to determine the effect of visual biofeedback on weight distribution during elliptical trainer use. 

An elliptical trainer was modified to measure vertical pedal load and to deliver visual 

biofeedback based on that load measurement. Four visual displays were constructed and tested to 

determine which man-machine interface optimized performance when attempting to produce 

symmetric left/right kinetics during exercise. These displays were constructed based on similar 

studies researching either gait kinematics or kinetics. An analysis of variance and student t-tests 

were performed to determine significant differences between the displays and baseline 

measurements. Correlation coefficients were also analyzed to determine if speed or day of 

performance influenced outcomes with each display type. Results of the study show that 

performance with all display representations was more favorable than in trials with no feedback. 

One display type (Differential-Temporal) outperformed other display types for the training 

duration. Based on correlation coefficients, speed and day of performance did not influence 
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outcomes. Future directions of the research will include the Differential-Temporal display for 

biofeedback delivery while modifying the load cell signals to encourage increased use of the 

non-dominant weight-bearing limb in healthy and stroke sample groups.  
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Introduction 

The combination of inputs from multiple sensory systems provides the feedback required 

to maintain postural control in both static and dynamic situations. Receptors associated with 

processing visual, somatosensory, vestibular, and auditory stimuli provide information that 

allows us to maintain spatial awareness within a static or dynamic environment. Sensory 

integration provides movement cues that allow the orientation updates required for obstacle 

avoidance during path navigation (Tcheang et al., 2011, Wan et al., 2012, Khan et al., 2010).  

Although human movement and control is achieved through the combined use of 

information from all senses, vision plays a significant role when attempting to efficiently 

ambulate and navigate through an environment rich with obstacles (Tcheang et al., 2011). As a 

result, vision is believed to be the best portal through which to introduce environmental cues (or 

biofeedback) to modify or control postural movements.  The goal during this study was to 

determine the best man-machine interface for presenting visual biofeedback during elliptical 

trainer exercise where that information was designed to promote left/right weight bearing 

symmetry. The manipulation of spatial and temporal information via four different displays was 

used to determine if weight bearing performance could be influenced using visual feedback and 

if pre-processing the data stream (reducing cognitive load on the subject) had any impact.  

Studies conducted to test the correlation between visual/proprioceptive feedback and 

postural control suggest vision/proprioception play a significant role in postural control (Strang 

et al., 2011, Jeka et al., 2000, Riley et al., 1997, Barcala et al., 2013). Specifically, Strang et al. 

found that postural sway increased during stance as vision was restricted and as the surface 

became more compliant, giving rise to decreased postural control during static stance (Strang et 
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al., 2011).  In a study by Lishman and Lee, balance responses were investigated when 

participants stood in the middle of a swaying room (Nardini et al., 2012, Lishman et al., 1973). 

In their research, they found that as the room swayed toward the participant, the participant 

would sway backwards to counteract the motion due to the perception that they were moving 

forward. This perception resulted since the image of the space appeared to enlarge or expand as 

it swayed towards the participants. As it expanded, the participants did not perceive movement of 

the room but instead egocentric movement forward.  The reaction of participants to the swaying 

room suggests that by implementing different optical flow patterns, a person’s postural control 

during static stance can be manipulated. Also it can be concluded that visual stimuli often 

overrides other sensory information for spatial orientation.  

Transitioning from static stance to walking, current research in gait suggests that vision 

greatly influences movement patterns during walking to allow obstacle avoidance in enriched 

environments and that gait parameters can be altered due to changing characteristics of an 

environment and optical flow patterns (Pailhous et al., 1990, Warren et al., 2001, Konczak, 1994, 

Schmuckler et al., 1989).  Two hypotheses have been proposed that dictate how a person steers 

to a goal based on visual stimuli. The first of these hypotheses is based on egocentric direction, 

which involves steering towards an object based on direction, with respect to the body’s 

orientation in space with no influence of optic flow (Warren et al., 1988, Rushton et al., 1998, 

Tirosh et al., 2013). The second hypothesis involves optical flow for path navigation, which is 

used to reduce the error between the goal and the heading (Warren et al., 2001, Warren et al., 

1988, Rushton et al., 1998).  A study performed by Warren et al. found that in order to navigate 

towards a designated goal both the hypotheses of egocentric direction and optical flow applied 

(Warren et al., 2001). They found that optic flow increasingly dominated performance when it 
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was introduced to an egocentric virtual representation. Where participants had curved paths with 

egocentric virtual representation, their paths began to straighten towards the object with addition 

of optical flow patterns (Warren et al., 2001).  Therefore humans change path navigation based 

on both inputs from directional cues and optical flow, and the combination of both directional 

cues and optic flow improve path navigation significantly.  

Delivery of biofeedback during overland and treadmill exercise has been studied 

extensively in the past few decades, with a general trend showing that gait parameters can be 

influenced with visual stimuli (Tirosh et al., 2013, Hirokawa et al., 1989, Feasel et al., 2011, 

Dingwell et al., 1996, Dingwell et al., 1996). In normal, healthy gait the limbs act as reciprocal 

pendulums switching between stance and swing phases for limb progression (Perry, 1992). This 

cyclic pattern allows for controlled progression along with appropriate weight acceptance and toe 

clearance. Studies such as Tirosh et al. have found that these controlled patterns can be 

influenced by visual stimuli. Specific to Tirosh et al., visual stimuli could alter toe clearance in 

healthy participants (Tirosh et al., 2013).  In this study, they compared baseline activity (activity 

with no visual biofeedback) to biofeedback activity and found that the mean and median 

minimum toe clearance increased with the presence of the biofeedback. Participants became 

more aware of the target range for toe height than concern of striking the ground, leading to 

unconscious training of the overall goal.  

By understanding how visual biofeedback systems can alter normal, pathological gait 

during treadmill training, similar techniques can be applied to rehabilitation training for lower 

limb injuries and neurological impairments. With the incorporation of visual stimuli, patients can 

easily decipher gait asymmetries while training and make adjustments accordingly. The IVERT 

(Integrated Virtual Environment Rehabilitation Treadmill) system, comprised of a virtual 
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environment for path progression and a split-belt treadmill that adjusted speed based on ground 

reaction forces, has been tested on hemi-paretic patients and it was found that patients could 

easily perceive their own asymmetries based on the visual biofeedback alone (Feasel et al., 

2011). Based on these results, it is evident that visual biofeedback can be used as an 

encouragement tool to allow immediate adjustments in gait. This idea was demonstrated in a 

comparison experiment between normal and trans-tibial amputee subjects (Dingwell et al., 

1996). In this study, trans-tibial amputee subjects were on average 4.6 times more asymmetric 

than normal subjects. Although there was a significant difference between groups, there was an 

apparent decrease of asymmetries from pre to post training in amputee subjects. Asymmetries in 

stance time decreased by 26% from 7.53% to 5.18% in five minutes, and push-off forces and 

center of pressure improved from 2.47% to 1.38% and -1.58% to 0.56%, respectively.  

Studies such as Dingwell et al. (1996) and Crowell et al. (2010) provided kinetic 

biofeedback through visual displays and found success from pre to post training (Dingwell et al., 

1996, Crowell et al., 2010). Both studies incorporated features of either differential, temporal or 

comparison visual displays for kinetic feedback. Although comparisons were not made between 

each display, they were able to determine that visual biofeedback had an effect. Dingwell et al. 

found that trans-tibial amputees reduced asymmetries in gait (center of pressure, stance times, 

and push off forces) from baseline to post training by employing differential, temporal and 

comparison visual displays for biofeedback (Dingwell et al., 1996). In Crowell et al (2010) 

running mechanics were monitored with an accelerometer and subjects received visual 

biofeedback to reduce impact loading through a temporal display (Crowell et al., 2010). They 

found that with visual feedback most of the participants reduced the amplitude of peak 

acceleration, impact peaks, average loading rates and instantaneous loading rates when training 
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and maintained this reduction ten minutes after the removal of the feedback. Although these 

studies did not look closely at differences between varying displays, they show that gait can be 

influenced by each type of display. These studies not only suggest that patients with 

asymmetrical gait can perceive asymmetries, but also can adjust and improve gait to produce 

symmetric performance with the incorporation of visual biofeedback.  Our study aimed to 

determine the differences among various versions of visual displays adapted from these previous 

studies and to decipher which display produced the optimal man-machine interface. The purpose 

of applying visual displays was to supplement user internal memory for an external 

representation of the task at hand, thereby offloading memory storage onto perceptual processes 

(Hegarty, 2011, Card et al., 1999). Four different visual displays were designed that delivered 

kinetic biofeedback from weight distribution measurements between both left and right pedals. 

The study aimed to prove that visual displays could influence performance and that performance 

could be optimized with pre-processing the data.  

To implement the findings from previous research, the study applied a visual biofeedback 

system to an elliptical trainer for symmetry training. An elliptical trainer was chosen as the base 

unit for two reasons. First, both pedals are isolated for single limb vertical force measurements. 

Second, ground/pedal reaction forces are much lower than treadmill use due to the removal of 

the impact phase with the ground (Lu et al., 2007).  
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Methods 

Participants 

 This preliminary study was approved through Virginia Commonwealth 

University’s institutional review board. Prior to entering the study all participants provided 

written informed consent. Fifteen subjects (7 male and 8 female, average age= 25.47 ± 4.88) 

were recruited based on a sample of convenience in the Richmond area. Healthy without injury 

to lower limbs within the past year with no cardiovascular complications was the inclusion 

criteria when recruiting for this study.  

Device Design 

 A modified elliptical trainer (NordicTrack®, Logan, UT) was used to measure 

vertical loads as visual biofeedback (Chapter 2). Kinetic visual biofeedback was provided via 

computer monitor displaying representations of vertical load (Massenzo et al., 2015). The 

instrumentation associated with the modified elliptical trainer was explained in Chapter 2 of this 

document.  

Four different feedback displays (Figure 1) were developed; these were labeled (1) tanks, 

(2) temporal, (3) differential and (4) differential-temporal and differed in the amount of data pre-

processing performed prior to display. Display differences include display elements (number of 

objects that the participant had to focus on), history of past data samples, pre-processing the data, 

and whether data was projected for both limbs or for a single limb (Table 1).  
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Figure 1.  Visual displays of biofeedback.  This shows the four displays constructed to display vertical load 

measurements as visual biofeedback.  

 

(1) Tanks – The force data was presented as two moving vertical bars that changed their 

vertical dimension as a function of pedal load. The left bar denoted the left pedal forces 

and the right denoted the right pedal forces. Each bar had a horizontal target line for user 

reference. No temporal load history was provided. Since the display had a moving bar 

and static target line for both left and right sides, it was considered to have 4 display 

elements.  

 

(2) Temporal – This display only utilizes a data stream from the subject’s non-dominant 

limb. Temporal history was provided in the form of an x-y graph, where the y-axis 

represented averaged weight of each cycle and the x-axis represented number of pulses 
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from the encoder. Force data were represented as a white dot with a red line connecting 

each consecutive sample. The x-y graph had a solid blue line that remained static to 

represent the target line. Display elements were set at 2, since the display implemented 

both data points represented as dots and a static target line for a single limb. 

 

 

(3) Differential- Force data was represented on a numberless gauge by a pointer. Presented 

data represented the difference between the right and left limb vertical load. Neither the 

temporal history nor a target line was provided. The user was instructed to maintain the 

pointer in the middle of the gauge. Since the display only employed a single pointer, the 

number of display elements was set at 1. 

 

(4) Differential-Temporal- Force data was represented as a white dot with a red line 

connecting the consecutive data samples, displaying both the present data and the 

temporal history. The data was displayed through an x-y graph, with the y-axis 

representing encoder pulses and the x-axis representing values from the comparison 

equation. Presented data represented the difference between the right and left limb 

vertical load. A single target line was placed directly in the middle of the display. The 

amount of display elements was set at 2, since this display implemented single data 

points to represent the value from the comparison equation and a single static target line. 
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Display Display 

Elements  

Temporal 

History 

Pre-processing Displayed Data 

Tanks 4 No No Both limbs 

Temporal 2 Yes No Single limb (non-

dominant weight 

bearing limb) 

Differential  1 No Yes Both limbs 

Differential-

Temporal 

2 Yes  Yes Both limbs 

 

Table 1.  Display type characteristics.  Characteristics are as follows: display elements (number of objects to focus 

on), history (past data samples), pre-processing and the limb that data was delivered through the visual display 

(displaying either single limb or both limb data samples).  

 

                

At each encoder pulse, data accumulated from the previous encoder pulse were averaged 

and displayed. Each display incorporated the average values from the biofeedback but differed 

based on presentation.  

Procedures 

Each visual feedback display was tested separate from the other feedback displays in a 

random order with at least 24 hours in between sessions. During each session, participants 

warmed up on the elliptical trainer for five minutes with no visual display. They were then 

provided instructions on how to interpret the data presented on the display they were going to see 

that session.  This was followed by a five minutes of activity with visual feedback and data 

collection. 

Data Analysis 

Vertical load was measured and later analyzed during use with each display. Data 

analysis was performed using both MATLAB (The MathWorks,Inc., Natick, MA) along with 
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Excel (Microsoft, Redmund, WA) and R (R Core Team, Vienna, Austria).  Robinson’s Index of 

Symmetry (IOS) was implemented for post-analysis data comparison for baseline and visual 

feedback measurements (Equation 1) (Herzog et al., 1989).  

    

|            |

            

 
                   (1) 

 

 Perfect symmetry correlated to an IOS value of 0%, whereas anything above represented 

asymmetrical weight distribution. Weight-bearing dominance was found through baseline 

measurements as the limb that had the largest load values. An analysis of variance was 

performed with subsequent student t-tests, α=0.05, to determine significant differences of IOS 

values among the displays and the baseline measurement. The coefficient of variation (COV) of 

IOS values was also measured to determine amount of variation among the displays. Correlation 

coefficients were also measured to determine if speed and order of display biofeedback had an 

impact on performance as well.  

 

Results 

None of the participants had prior experience using the visual biofeedback system that 

was developed for the study, yet all participants appeared to easily adapt to the system, 

regardless of the display being presented. After recording baseline force measurements during 

the warm up period, all participants, except one, presented more weight on their left lower limb 

as compared to their right limb (Table 2). Participant 13 was identified as nearly symmetric 
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compared to others, with a slight increase in load to the right limb. Overall, the sample group had 

an average Baseline Index of Symmetry (IOS) of 9.63.  

Subject Dominant 
weight-bearing 

side 

Baseline IOS (%) 

P1 Left 11.79 
P2 Left 11.38 
P3 Left 11.98 
P4 Left 11.13 
P5 Left 8.82 
P6 Left 5.52 
P7 Left 12.67 
P8 Left 6.18 
P9 Left 8.71 

P10 Left 9.58 
P11 Left 6.14 
P12 Left 9.78 
P13 Right 1.21 
P14 Left 14.99 

 

Table 2. Baseline Index of Symmetry (IOS) values. Baseline values for preferred leg for balance and Robinson’s 

IOS for all participants. This table displays baseline values for all participants. All, except one, participants 

distributed more weight to the left limb compared to the right.  

 

An analysis of variance was performed to find any differences in speed 

(average=0.83±0.14 cycles/sec) among the four displays. There were no significant differences 

in speed from one display to another (p-value>0.05). Correlation coefficients were also found to 

determine if speed correlated to performance among the displays (Figure 2). No correlation was 

found for speed (R
2 
<0.20). Correlation tests were performed to see if the order of display use 

correlated with performance (Figure 3). There was no correlation between performance and the 

day in which a visual display was applied (R
2 
<0.1). 
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Figure 2. Correlation graphs for Speed. All correlation graphs show poor correlation between speed during activity 

and Index of Symmetry (IOS) values.  

 

Figure 3. Correlation graphs for Day of Performance. All correlation graphs show poor correlation between day of 

performance and Index of Symmetry (IOS) values. 
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An analysis of variance indicated a significant difference in the dataset when analyzing 

for all groups (p-value<0.05). IOS values for Baseline measurements were significantly larger 

than measurements from all displays (Figure 4). The Differential-Temporal (0.90±0.67) had an 

IOS value significantly less than all other displays. Whereas, the Temporal (3.77±3.16) display 

had the largest IOS value, though only significant between the Differential-Temporal display. 

Although only a slight difference, the Temporal (8.78) display had a larger COV than all other 

displays (Figure 5). 

 

Figure 4. Baseline and display type Robinson’s Index of Symmetry (IOS) values. Index of Symmetry (IOS) values 

averaged across the sample set for all displays and Baseline. Error bars indicate standard deviation of IOS values 

within the dataset. The sample set improved symmetry with the addition of visual biofeedback, and further improved 

symmetry with the incorporation of the Differential-Temporal display.  
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Figure 5. Coefficient of Variation among all displays. The Temporal display has a slightly larger COV as compared 

to the other displays but this is not significant. 

 

 

Discussion 

The goal of this study was to determine if visual biofeedback had an effect on 

performance and postural control during elliptical trainer use. A secondary goal was to determine 

which visual display was the optimal man-machine interface to promote symmetric performance.  

We also aimed to determine the differences among the displays, which were adapted from 

previous studies. All participants demonstrated an improvement from measurements in baseline 

to biofeedback activity, and we found that participants performed best with the Differential-

Temporal visual display.  

Most subjects appeared to present more weight on their left lower limb compared to their 

right, with an exception of one subject. This can be explained through studies testing 

asymmetries in lower limbs during static stance and walking (Sadeghi et al., 2000, Gentry et al., 
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1995, Grouios et al., 2009). Specifically, it was evident in these studies that humans 

predominantly used their left leg for balance/stability and right leg for fine motor mobilization. 

Taking this idea further, researchers such as Ingelmark and Chibber & Singh reported physical 

attributes that varied between legs. Ingelmark found that as humans developed to adulthood the 

leg contralateral to their dominant writing hand was much longer (Sadeghi et al., 2000, Peters, 

1988). Chibber & Singh found that the left lower limb was significantly heavier than the right 

(Sadeghi et al., 2000, Peters, 1988, Chibbers et al., 1970). Since the training task of the current 

work incorporated a component of balance, it seemed plausible that participants would favor 

their predominant leg for balance.  

We found that participants improved significantly from baseline measurements to visual 

feedback training (average p-value<= 6.632*10^-5 with 95% confidence). This suggests that 

visual biofeedback improves performance during symmetric kinetic training on an elliptical 

trainer. This idea is also supported in other works such as Tirosh et al. resulting in increased toe 

clearance due to visual biofeedback treadmill training. Similar to Tirosh’s findings, we also 

observed that visual biofeedback during training influenced gait performance, with a drastic 

difference from baseline asymmetries to near symmetries with the visual displays.  

We also found differences among the four displays, explicitly that the Differential-

Temporal display had significantly smaller IOS values than the other displays, where the 

Temporal display had the largest values. The differences in IOS values may have resulted due to 

ranging complexities with each display causing an increase in the cognitive load of the user. The 

purpose of applying visual displays is to supplement user internal memory for an external 

representation of the task at hand, thereby offloading memory storage onto perceptual processes 

(Hegarty, 2011, Card et al., 1999). Often, complicated nonvisual data can be expressed through 
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visual displays and easily interpreted due to pattern recognition (Hegarty, 2011, Pomerantz et al., 

1989). If a misunderstanding occurs, often the visual display either includes or omits features 

that disrupt the attention or perceptual processes of the user. If the display includes too many 

features, causing a distraction, then the user may not focus on the key elements to accomplish the 

task; whereas, if the display omits crucial elements then the user is not given enough information 

to accomplish the task efficiently. Regarding our results, each display differs based on either the 

amount of information (e.g. goals or past data samples) or representation of the kinetic 

information (e.g. data points represented as either lines or shapes). The Differential-Temporal 

display may have had the lowest IOS score since it employed both a goal line and past data 

samples as well as displaying comparisons between both lower limbs through a series of 

connected line graphs.  Although the design of the Temporal display aimed to simplify load 

representation for interpretation by showing information from a single limb, results show that it 

performed worse than all other display types. Instead of simplifying the load representation, the 

Temporal display may have increased cognitive load of the user since it only displayed data from 

a single limb. Redesigning the feedback system by implementing a multimodal approach may 

improve performance. Samman et al. noted that human performance could improve by utilizing 

additional modalities to recruit capacity from other senses (Samman et al., 2006). Another 

approach to improve user performance in the Temporal display could be to adjust scaling to 

zoom in on the displayed data. This approach may increase discriminability of the displayed 

data, thereby improving performance in highlighting the distance to the goal line (Garner, 1974). 

Alternatively, the Tanks display was initially viewed more challenging to the user to adequately 

interpret the differences between each limb, due to greater number of objects that required 
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attention. Our initial thought was consistent with the results, where the Tanks had the second 

largest IOS value.  

To determine if both speed and day of performance influenced IOS values, we also 

computed the correlation coefficients for both variables versus IOS values. The results showed 

that neither variable statistically correlated to the resulting IOS value. Therefore, neither speed 

nor day of performance influenced IOS outcomes. 

Based on these results, we concluded that both the Differential and Differential-Temporal 

displays were more favorable for performance than the Temporal and Tanks displays. The 

Differential-Temporal average IOS value was significantly less than all other visual displays, 

therefore providing evidence that this display was best for human performance. Also, the results 

displayed that there was a significant difference between all displays and the baseline IOS 

values, confirming that visual biofeedback has an effect on weight-bearing symmetry during 

elliptical trainer use. Coefficient of Variation between all displays was also measured and 

reflected the greatest variation within the sample set in the Temporal display with the lowest 

value in the Differential. The Temporal display may have had the largest variation in the sample 

set due to the increased demand on the user to interpret bilateral results from a unilateral 

representation. 

 

Conclusion 

Comparing visual biofeedback training to baseline measurements, we saw a significant 

improvement in symmetry with the introduction of biofeedback. This suggests that visual 

biofeedback during kinetic symmetry training can influence gait patterns. We found that the 
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Differential and Differential-Temporal IOS scores were much less than the other two displays. 

We concluded that this came as a result due to the complexity of the display and pre-processing 

the data before it was displayed to the participants.  These pre-processing techniques help to 

reduce the cognitive load required to interpret vertical load comparisons of both lower limbs that 

would be placed on the user during training.  

Although the Differential display was consistently voted, through subjective 

measurements, the easiest display to interpret, the Differential-Temporal display performed 

significantly better than the Differential display. We deduced that this might be due to the clear 

differentiation between left, right and the goal for the Differential-Temporal display. The 

Differential-Temporal display has specific targets that the user can aim for, whereas the 

Differential has none. Also the representation of the data stream for the Differential-Temporal 

(connected line graphs) served as a better comparison between the left and right limbs for 

perceptual processes, as compared to the single needle dividing between the gauge in the 

Differential display. The best display for this particular training was the Differential-Temporal 

since it provided the same information as the other displays in an appropriate representation for 

effective interpretation by the user.  
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Appendix 
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Appendix A 

LabVIEW vi for acquiring vertical load and representing as visual biofeedback.  

 

While loop in LabVIEW vi to read encoder pulses as an external clock. This loop uses a shift register to determine 

changing positions in the flywheel (encoder pulses).  
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Component to LabVIEW vi that uses indicators from above (x3 and x4) to control when a weight measurement from 

either load cell enters the corresponding 200 point array. Weight measurements are acquired through the 12 bit DAQ 

card and scaled based on calibration curves.  

 

 

Mathscript code in LabVIEW vi that builds the Tanks display by inputting left and right weight measurements 

(averaged from 200 point array) to determine threshold values. Upper and lower thresholds for the display are found 

by calculating half of total body weight. These values are used as the blue target line on the Tanks display. Weight 

measurements are represented as the filler line in the corresponding tank. 
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Mathscript code in LabVIEW vi that builds the Differential-Temporal display by inputting left and right weight 

measurements (averaged from 200 point array) to calculate the difference between right and left weight 

measurements. This calculation is presented as a single data point on the graph and changes with each encoder 

pulse.  

 

Mathscript code in LabVIEW vi that builds the Differential display by inputting left and right weight measurements 

(averaged from 200 point array) to calculate the difference between right and left weight measurements. This 

calculation is presented as a single needle on a meter and changes with each encoder pulse.  
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Mathscript code in LabVIEW vi that builds the Temporal display by inputting left and right weight measurements 

(averaged from 200 point array) to determine the threshold value. Threshold for the display are found by calculating 

half of total body weight. These values are used as the blue target line on the Temporal display. Single-limb data are 

represented in the graph to compare with the target line.  
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Code to manipulate the gain of the vertical load signal. This is a portion of the LabVIEW vi that manipulates the 

gain of the load cell signal every 2 minute interval.  
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Appendix B 

Matlab code to analyze the data. 

%determining start and stop of each cycle from the index signal 
fflag=0; 
k=1; 
cnt=1; 
for i=1:length(Index) 
    if Index(i)>4.1 & fflag==0 
        P(k)=i; 
        fflag=1; 
        k=k+1; 
    else  
        cnt=cnt+1; 
    end  
    if cnt==200 
        cnt=0; 
        fflag=0; 
    end  
end 
I=transpose(P); 

  
Test(1:length(P)+1)=[0 P]; 
Test_2=[P 0]; 
Test_3=Test_2-Test; 
Test_4=find(Test_3<100); 

  
F=Test_2; 
F(Test_4)=[]; 
clear I; 
FF=transpose(F); 
I=FF; 

  
%to get Time from one cycle to the next-helping to determine speed 
for jj=1:length(I)+100 
      H(jj)=mean(Time(I(jj):I(jj+1))); 
end 

  
T=transpose(H); 

  
%to get average Right load values from one cycle to the next  
for jj=1:length(I) 
      P(jj)=mean(Right(I(jj):I(jj+1))); 
end 

  
R=transpose(P); 

  
%to get average Left load values from one cycle to the next 
for jj=1:length(I) 
      Y(jj)=mean(Left(I(jj):I(jj+1))); 
end 

  
L=transpose(Y); 
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%Once you open the array in matlab copy and paste into an excel file to 
%store 
%From excel look at the total average (removing the first and last 
%minute) 
% Use Rob IOS equation to determine any differences 
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Appendix C 

R code to statistically evaluate the data.  

data1<-read.csv(file.choose(), header=TRUE) 

 hist(data1[,1],xlab="Diff",ylab="frequency") 

 hist(data1[,2],xlab="Diff-Temp",ylab="frequency") 

 hist(data1[,3],xlab="Temp",ylab="frequency") 

 hist(data1[,4],xlab="Tanks",ylab="frequency") 

 hist(data1[,5],xlab="Baseline",ylab="frequency") 

 

 

//For non-parametric 

wilcox.test(data1$D.T,data1$Tanks) 

wilcox.test(data1$D.T,data1$Temp) 

wilcox.test(data1$D.T,data1$Diff) 

wilcox.test(data1$D.T,data1$Baseline) 

wilcox.test(data1$Temp,data1$Diff) 

wilcox.test(data1$Temp,data1$Baseline) 

wilcox.test(data1$Tanks,data1$Diff) 

wilcox.test(data1$Tanks,data1$Temp) 

wilcox.test(data1$Tanks,data1$Baseline) 

wilcox.test(data1$Diff,data1$Baseline) 

 

//t tests 

t.test(data1$D.T,data1$Temp) 

t.test(data1$D.T,data1$Diff) 

t.test(data1$D.T,data1$Baseline) 

t.test(data1$Temp,data1$Diff) 

t.test(data1$Temp,data1$Baseline) 

t.test(data1$Tanks,data1$Diff) 

t.test(data1$Tanks,data1$Temp) 

t.test(data1$Tanks,data1$Baseline) 

t.test(data1$Diff,data1$Baseline) 

 

//anova 
Stacked_Groups<-stack(data1) 

Anova_Results<-aov(values~ind,data=Stacked_Groups) 

summary(Anova_Results) 

TukeyHSD(Anova_Results) 

 

//chi square test 

Stacked_Groups<-stack(data1) 

chisq.test(Stacked_Groups$values) 
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Chapter 4  
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Chapter 4: Asymmetric ambulation: At what percent gain manipulation does individual 

performance begin to fail?  

 

 

Abstract 

 Incorporating biofeedback into rehabilitation has been an increasing trend in physical 

therapy over the past decade with vast advancements in technology. Systems such as the Wii 

Balance Board and the SMART Balance Master have paved a way for visual biofeedback 

training focused on postural control in static stance. Although these systems are promising for 

static stance, there still exists a need to develop a system to promote adequate postural control in 

dynamic movements such as walking. Focusing on cadence, dynamic systems such as split-belt 

treadmills have been employed to increase speed of the affected limb. Although speed of the 

affected limb, as well as overall speed, is increased, vertical load is still a concern during 

training. The following work tests the consistency and performance of individuals running on an 

elliptical trainer that incorporates visual biofeedback. The system was developed based on a 

similar technique to split-belt treadmill training, although focusing on vertical load rather than 

speed, in which the gain of the signal was modulated to encourage more weight to be shifted to 

the non-dominant weight bearing side. The following study measured variables, such as 

variance, mean index of symmetry, percentage error, speed and weight offloaded, to determine 

performance at ranging percentages, from 0% to 25%, used to modify the signal of the load cells. 

The load cell signal from the non-dominant weight bearing limb was decreased to encourage 

weight distribution towards this side. Healthy participants were recruited and divided into two 
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separate groups based on age (younger=18 to 30 and older=35 to 60) to determine age-related 

differences when applying visual biofeedback. Each participant had a separate and independent 

routine that was randomly assigned. Following training, the NASA TLX was administered to 

determine workload during the activity. A non-parametric analysis of variance was conducted as 

well as Man Whitney tests to determine significant differences in percentage error values. 

Although qualitative differences existed between the younger and older groups, the results of the 

study showed that participants were able to increase the load on their non-dominant side in some 

cases up to 25%, but performance typically degraded after a 10% load bias. Since this training 

technique place a larger load on their non-dominant side, the method was define as hyper-

symmetric training. Hyper-symmetric training was achieved by assigning less weighting to the 

non-dominant weight-bearing limb to encourage increased weight shifts. Based on significance 

testing with percentage error, a threshold value between 5-10% was found for a suitable ceiling 

for hyper-symmetric training.  
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Introduction 

 

 Constraint-induced training, developed by Edward Taub, is a popular technique in stroke 

rehabilitation which often leads to neural remapping in order to achieve certain tasks. This 

technique is composed of 4 principles to guide treatment that can be applied either in or outside 

the clinic. These principles include the following: (1) intensive training of the affected limb, (2) 

shaping technique, (3) implementing the transfer package for accountability outside the clinic, 

and (4) discouraging compensation towards the unaffected side (Taub, 1993, Taub, 2014, Morris, 

2006). Although effective for upper extremity rehabilitation, this form of training can be difficult 

to apply for lower extremity training since bipedal mobility is dependent on both limbs. In order 

to force use of the paretic/affected limb or increase the lad on that side, certain training 

techniques have been applied such as body weight supported treadmill training (BWSTT) and 

robotics.  

 Both rehabilitation techniques have been widely implemented in clinics as training 

paradigms that aim to encourage use of the paretic/affected limb. BWSTT employs an overhead 

harness system to offload a certain percentage of body weight and often requires two physical 

therapists to assist in limb progression and weight shifting (Harvey, 2009, Werner et al., 2002). 

This training technique has shown much success both in the clinic and research by forcing the 

use of the paretic limb and through a key element of variability (Hidler et al., 2009). The 

variability of the path of limb progression and degree of weight shifting allows patients to 

develop multiple motor patterns that can transfer to a real world environment (Hornby et al., 
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2008). Although variability is an advantage to training, with ranging patterns and no way to 

objectively measure metrics there is a limitation of quantifying treatment over the course of 

rehabilitation. Another disadvantage of this training technique is the physical demand placed on 

the therapists (Harvey, 2009, Jackson et al., 2010, Hidler et al., 2009). Therapists are often 

susceptible to injury due to improper ergonomics while assisting in limb progression and weight 

shifting over the course of training. Overtime this activity can lead to injury due to overuse 

(Hidler et al., 2005).  

 To remove physical demand of the therapist, robotics such as the Lokomat® have been 

developed and substituted in the clinic (Hidler et al., 2009). The Lokomat® incorporates an 

exoskeleton with a treadmill system and overhead harness (Hidler, 2005). Instead of the therapist 

guiding limb progression, the exoskeleton guides the limb in a pattern that simulates overland 

walking. This allows training duration to be dependent on the patient as opposed to both patient 

and therapist endurance. Although this system removes the therapist’s susceptibility to injury, it 

lacks the variability in training required for real world applications by constraining the limb to 

preset kinematics (Hornby et al., 2008, Cai et al., 2006). Another disadvantage is the limitation 

of weight shifting since the harness and exoskeleton limit significant shifting from one limb to 

another. The benefits to the Lokomat® system often do not outweigh the disadvantages in 

training as well as the cost to implement, on the order of $100,000 to $200,000 (Harvey, 2009, 

Hornby et al., 2008).  

 As patients become more independent in training, other systems can be implemented to 

train different characteristics of gait. One such characteristic is cadence of the paretic limb. Split-

belt treadmill training controls speed of the paretic limb during training by providing controls for 

the separated belts. To increase both paretic limb and overall speed after training, therapists 
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incrementally increase the speed of the belt of the paretic limb. Studies by Reisman et al. have 

shown that this significantly increases the cadence of the paretic limb and overall cadence 

(Reisman et al., 2013, Reisman et al., 2007). Although this is a positive outcome, training can 

lead to disproportionate loading on the paretic limb (Kaplan et al., 2014). As a side note, 

Reisman et al. noted that although there was an increase in step length this did not correlate to 

increased stance time (Reisman et al., 2013). This could be a result of the patient/participant 

adopting a compensated pattern to allow increased cadence without adequately shifting weight to 

the paretic side.  

 To offer independence in training while forcing use of the paretic limb, biofeedback 

systems have been implemented with balance training. Since visual systems tend to provide an 

intuitive approach to biofeedback interpretation, often vision is the most widely accepted 

approach to delivery of biofeedback. Systems such as the SMART Balance Master and the Wii 

Balance Board have been implemented in the clinic to train patients to shift weight towards their 

paretic limb (Barcala et al., 2013, Chen et al., 2002, Gil-Gómez et al., 2011, Goble et al., 2014). 

These systems couple vertical load measurement devices to software that displays weight 

measurements through visual biofeedback. From the biofeedback, patients adjust accordingly to 

produce symmetric distribution of weight. Studies such as those by Chen et al. and Gil-Gómez et 

al. have shown positive results when using these systems (Chen et al., 2002, Gil-Gómez et al., 

2011). Not only did participants distribute their weight symmetrically in Chen et al., but 

improvements occurred in maximal stability, ankle strategy and center of gravity alignment 

(Chen et al., 2002). These studies give promise to visual biofeedback training related to 

improvements in postural control, but these systems were developed for quiet stance which is not 

commonly transferrable to dynamic stance. Several studies have looked at applying visual 
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biofeedback to parameters in dynamic stance (Feasel et al., 2011, Dingwell et al., 1996, Dingwell 

et al., 1996, Crowell et al., 2010). For example, Dingwell et al. developed a system coupled to a 

treadmill that displayed variables in gait such as stance time, push-off forces and center of 

pressure. Researchers from this study found positive results when incorporating visual 

biofeedback for all 3 variables.  

 Although coupling visual biofeedback to systems for postural control has been utilized 

frequently, there still exists a question as to which representation offers the optimal interface for 

interpretation. To better understand if the design of the visual representation plays an effect on 

performance, a study by Massenzo et al. looked at four different visual representations that 

displayed vertical load measurements during elliptical trainer use (Massenzo et al., 2015). In this 

study, four display types were constructed, based on previous research, and used as visual 

biofeedback during elliptical trainer use. Participants used each display separately to distribute 

their weight across both pedals according to the information presented. Results of this study 

suggest that one display type performed the best over all others and all visual biofeedback 

displays resulted in better performance than no biofeedback. This study raises the concern of 

designing display representations in a manner that is intuitive to the user while presenting 

essential information to improve performance.  

 Another variable in biofeedback delivery to consider is the augmentation of the 

information/signal before it is displayed. A study by Ding et al. looked at adjusting the gain of 

the vertical load signal in a static system (Ding et al., 2012). Separate force plates were utilized 

to determine weight symmetry between left and right lower limbs. Researchers then modified the 

signal from the balance boards to encourage shifting onto the paretic limb by assigning less 

weighting to signals from the paretic limb. Results of this study showed that participants had an 
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overall improvement in stance symmetry during quiet stance with an increase of weight bearing 

on the paretic limb. From the success of this study, poses the need to develop a system that 

adopts a similar technique applied to dynamic stance.  

 To expand on our previous study as well as implementing the findings gained from the 

Ding et al. study, the following experiment was designed to measure performance when 

manipulating the gain of vertical load signals from an elliptical trainer. Routines were developed 

to study at which manipulation percentage participants began to decrease performance to a point 

of failure. Failure was established by measuring percentage error and comparing to routines of 

no manipulation and no feedback. The purpose of the following study was to determine an 

appropriate threshold for hyper-symmetric biased training in a healthy sample set with younger 

and older adult participants.  

 

Methods 

Participants 

This study was approved through Virginia Commonwealth University’s institutional 

review board. Prior to entering the study all participants provided written informed consent. 

Inclusion criteria for the study were the following: no lower limb injuries within the past year, no 

cardiovascular disease and not diabetic. Two groups were recruited for the study. The first group 

(labeled as younger) consisted of individuals who met the inclusion criteria and ranged in age 

from 18 to 30 years old. The second group (labeled as older) also met the inclusion criteria, but 

ranged in age from 35 to 60 years old. Twenty-one participants (6 Male, 15 Female, average 

age= 23 ±2.02) met the inclusion criteria and were recruited for the younger group. Two 
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participants were removed from the younger group since one noted lower back pain and could 

not complete the first session while the other was removed due to conflicts outside the control of 

the study. Fourteen participants (8 Male, 6 Female, average age=41±6.23) met the inclusion 

criteria and were recruited for the older group. One participant was removed from the study since 

they were unable to continue training over the three day period.   

Device Design 

 A modified elliptical trainer (NordicTrack®, Logan, UT) was used to measure vertical 

left-right loads (Chapter 2). Dynamic kinetic visual biofeedback was provided via a computer 

monitor displaying differential-temporal representations of vertical load (Chapter 3) (Massenzo 

et al., 2015). Similar to the Ding et al. study, the gain of the vertical load signal was manipulated 

to encourage weight displacement towards the non-dominant weight-bearing limb (Ding et al., 

2013). The manipulation of the gain ranged from 5 to 25% in 5% intervals and the gain 

manipulation sequences were randomized. Each routine had the following sequence: Baseline 

(no feedback), Zero_1 (feedback with zero gain manipulation), gain manipulation sequence, 

Zero_2 (feedback with zero gain manipulation), and Cooldown (no feedback) (Table 1).   

Label Sequence Feedback? Randomization? 

Warm up Warm up 
No Feedback 

 

Baseline Baseline  

Zero_1 Gain manipulation 0% 

Feedback 

 

Five 

 

Gain manipulation 

 (5%-25%) 

Order Randomized 

Ten 

Fifteen 

Twenty 

Twenty-five 

Zero_2 Gain manipulation 0%  

Cooldown Cooldown No Feedback  
Table 1. Modified elliptical trainer sequence. This categorizes the sequence of events for the modified elliptical. 

Participants started activity with the elliptical trainer using no feedback. After five minutes, participants transitioned 

into activity with visual biofeedback incorporating gain manipulation. Participants then transitioned into their 

Cooldown period with no visual biofeedback.  
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Procedures 

Order of the gain manipulations was block randomized, allowing the order of 

manipulating the gain of the signal to be different for each participant. Data were collected from 

each subject in three sessions across three days with at least 24 hours in between each session in 

a two week period. Instruction on the activity was provided at the beginning of the first session 

as well as instruction on the NASA TLX survey. The NASA TLX survey was implemented in 

order to determine differences in workload in six categories: mental demand, physical demand, 

temporal demand, performance, effort and frustration. Since this survey has had wide acceptance 

and application in workload studies, many incorporating biofeedback delivery, it was 

implemented as a workload measurement tool after training (Hart, 2006). Prior to training, 

participants were asked to indicate which leg they kick with in order to determine which side was 

their non-dominant weight-bearing limb. Once this was determined, the program was set to train 

their non-dominant weight-bearing limb. For all sessions, gain of the load cells was modified to 

encourage weight shifts to the non-dominant limb.  

 During each session, participants warmed up on the elliptical trainer for a period of three 

minutes with no visual display followed by a Baseline measurement phase of 2 minutes. After 

measuring Baseline, visual biofeedback incorporated a randomized sequence of gain 

manipulations for two minutes in each condition (total of 14 minutes). Finally, visual 

biofeedback was removed for a Cooldown period lasting two minutes. An ABA experimental 

design was used for each session by measuring performance in no feedback and feedback 

conditions. Following warm up, participants ran on the elliptical for two minutes at 0% 

manipulation to determine how they performed with the display. For the following ten minutes, 

participants were required to adjust their weight distribution every two minutes with a shift in the 
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percent manipulation. At the seventeen minute mark, the routine went back to 0% to determine 

how they performed with the display once the manipulation was removed. Finally, the display 

was turned off while the participant kept running on the elliptical for his or her cool down period 

of two minutes. During the manipulation phase, participants saw a shift depending on the 

magnitude of manipulation, but were not aware that the gain was manipulated the whole duration 

of the two minute period.  

Data Analysis 

 Vertical load was measured and stored in an Excel file format, processed using 

MATLAB (The MathWorks, Inc., Natick, MA), and statistically analyzed using SPSS (IBM 

Corporation, Armonk, NY). Percentage error for each condition was computed and used to 

compare routines (baseline and percent manipulations) during each session (Equation 1). These 

metrics were also used to compare performance difference between the younger and older 

groups. Percent error is a measure to compare the value obtained from gain manipulation of the 

signal (e.g. 5-25%) to the unmodified weight measured on the pedal.   

                 
|                 |

|     |
             (1) 

 The following secondary variables were analyzed: weight offloaded and speed. 

Comparisons were made between groups as well as within from day 1 to day 3 to determine if 

there was a learning effect from one session to the next. Correlation coefficients were found for 

each group to determine if manipulation of gain as well as speed and weight offloaded was 

correlated to percentage error. A non-parametric ANOVA (Kruskal Wallis test) and 

corresponding Mann-Whitney u tests were performed to determine if there were significant 

differences between routines across the subjects. Threshold values for gain manipulation were 
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determined by comparing percentage error of gain manipulations to inherent asymmetric error 

(Baseline percentage error). The gain manipulation value that had a percentage error below those 

found at Baseline was determined as the threshold value.  

 

Results 

 Statistical analyses were conducted to determine if significant differences exist within 

and between groups. Kruskal Wallis tests indicated a significant difference in the dataset (p-

value<0.05). Figures 1 and 2 represent stimulus-response error for Baseline (no feedback) and 

different levels of hyper-symmetric non-dominant biased training (via visual feedback) for 

normal subjects. Both groups demonstrate a baseline asymmetry with no visual feedback 

(labeled Baseline). Although both groups showed asymmetry, there was inherently greater 

asymmetry in the older group, where Baseline comparison showed statistical significance (Figure 

1). Both groups also demonstrate improved symmetry when visual biofeedback was provided 

(labeled Zero_1). Along with statistical differences between Baseline, the younger group proved 

to be better at utilizing visual feedback to reduce asymmetric errors (Zero_1 comparisons 

showing a statistical significance). Comparing Baseline to Zero_1 for both groups showed 

statistically significant differences; therefore displaying that subjects were able to decrease error 

with the inclusion of visual feedback.  
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Figure 1. Mean percentage error for older healthy sample set. Stimulus-response percentage error for Baseline (no 

feedback), and different levels of hyper-symmetric non-dominant biased training (via visual feedback) for healthy 

older subjects.  Error bars indicate standard deviation in the dataset. 

 

Figure 2. Mean percentage error for younger healthy sample set. Stimulus-response mean percentage error for 

Baseline (no feedback), and different levels of hyper-symmetric non-dominant biased training (via visual feedback) 

for healthy younger subjects. Error bars indicate standard deviation in the dataset.  

 

 When statistically comparing Zero_1 data (feedback with no gain manipulation) to all 

hyper-symmetric data, it was found that all hyper-symmetric trials were statistically different 
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than Zero_1. Correlation coefficients demonstrate that increased error correlated with increasing 

hyper-symmetric stimulus (R²=0.99 for Young and Older, Figures 3 and 4). This suggests that 

visual feedback had a limited impact on a subject’s ability to minimize error when increasing 

biased training. Comparing Baseline values to hyper-symmetric biased values, errors exceeded 

and became statistically different than Baseline values at a level between 5 and 15% hyper-

symmetry for the younger and older groups, respectively.  

 

Figure 3. Correlation coefficient: percent manipulation vs. percentage error in older population. Trend line shows a 

linear trend with a strong correlation between percent manipulation and mean percentage error (R² = 0.9861).   

y = 3.9709x - 3.498 
R² = 0.9861 
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Figure 4. Correlation coefficient: percent manipulation vs. percentage error in younger population. Trend line shows 

a linear trend with a strong correlation between percent manipulation and mean percentage error (R² = 0.9968).   

 

 Kruskal Wallis tests indicated a significant difference in the dataset for each training 

session (p-value<0.05). Comparing stimulus-response error in younger and older groups over 

multiple days result in minimal significant differences among the 3 trials for both groups; 

therefore demonstrating no or limited learning effect for both groups (Figures 5 and 6). 

Significance testing showed differences in data at Baseline from Day 2 to Day 3 in the older 

group and at Zero_2 from Day 2 to Day 3 in the younger group. For all other routines, there were 

no significant differences among the three days.  
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Figure 5. Learning effect (days 1, 2 and 3) for older sample set. Comparing percentage error over three sessions to 

determine if there was a learning effect from training in the older healthy group.  

 

Figure 6. Learning effect (days 1, 2 and 3) for younger sample set Comparing percentage error over three sessions 

to determine if there was carryover in the younger healthy group.  
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R²=0.07-Older) suggests that speed has a poor correlation to error with or without visual 

feedback. Neither group showed a statistical difference in offloading from Baseline to feedback 

conditions with hyper-symmetric stimuli. Correlation coefficients suggest that offloading has a 

poor correlation to error (R²=0.119-Younger and R²=0.06-Older).  

 A NASA TLX survey was conducted post-data collection to determine perception of 

workload for the overall task. Figure 7 represents a subjective assessment of perceived workload 

in six different categories. This graph represents a global view of a single training session. 

Kruskal Wallis tests indicated no significant difference in the dataset for NASA TLX ratings (p-

value>0.05).There is no statistical difference between groups (Younger vs. Older) for the 

perception of workload in any of the six categories.  

 

Figure 7.  Perceived workload comparing younger versus older healthy age groups.  
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Discussion 

 This study was conducted to determine appropriate hyper-symmetric biased training 

threshold values in a healthy sample set with younger and older adult participants. Additionally, 

performance was determined based on percentage error while using visual biofeedback to 

manipulate the gain of the left/right load-bearing signal to encourage weight shifts to the non-

dominant weight bearing side. Variables such as percentage error, speed and weight offloading 

were measured to assess the performance and efficacy of the system. The NASA TLX survey 

was implemented in order to determine differences in perceived workload in six categories: 

mental demand, physical demand, temporal demand, performance, effort and frustration. Since 

this survey has wide acceptance and application in workload studies, many incorporating 

biofeedback delivery, it was implemented as a workload measurement tool following elliptical 

training (Hart, 2006). 

 Asymmetric load percentages between 5% and 25%, were tested to determine a threshold 

value for both groups. Threshold values were determined by comparing percentage error values 

at gain manipulation to Baseline (inherent asymmetry). A ceiling value was found that showed 

minimized error compared to Baseline conditions. Similar to Ding et al. findings, participants 

who enrolled in this study were able to shift weight onto their non-dominant weight bearing limb 

during training. This suggests that participants are able to control weight shifts during use of both 

static and dynamic systems, even with manipulating the gain of the signal to encourage use of 

the non-dominant limb.  
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 When determining how participants perform without feedback compared to feedback, 

there is a threshold value between 5 to 15% gain manipulation for the older population where 

error exceeds no feedback conditions. For the older population, below 15% gain manipulation 

asymmetry is still below natural Baseline asymmetry of that group. Therefore, this provides a 

suitable upper threshold for training. As it relates to stroke populations, a lower percentage is 

anticipated for training in order to limit risk of falling while ensuring that users are still learning 

during the task.  

 Although the two groups show similar trends in percentage error measured during use of 

the modified elliptical trainer, the younger adult group seemed to be inherently more symmetric 

than the older group throughout training. Existing stability research show consistent findings of 

neuro-muscular decline in aging populations, leading towards decreased balance (da Silva et al., 

2013). Factors that influence stability due to aging include the following: a decrease in available 

fast twitch motor units, altered motor unit size and a decrease in alpha motor neurons within the 

spinal cord (Morrison et al., 2012, Orr, 2010). This decrease in alpha motor neurons reduces 

motor neuron excitability thereby slowing nerve discharge rates. As a consequence, aging 

populations exhibit slower reactions to an external stimulus and decreased magnitude of force 

generated. With these consequences balance both during quiet and dynamic stance is affected 

drastically,  

Cognitive decline in aging is expected to be another differentiating factor in performance 

differences between groups. Other studies such as those by Bruijin et al. and Hogan show that 

age-related cognitive deficits can contribute to performance differences between young and older 

adults (Bruijin et al., 2012, Hogan, 2004). Hogan refers to the effect of general slowing with 

aging on memory, attention and reasoning which causes a delay in the speed of processing 
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information not necessarily a change in the outcome produced (Hogan, 2004). Contributing this 

idea towards our outcomes, perhaps outcomes for both groups may have closely aligned if the 

older group was allotted more time for processing the information with each change in 

percentage. Perhaps the groups differed due to a higher cognitive load placed on the older adults 

attributed to a decline in executive function that affects both attention and planning processes 

(Greenwood, 2000). Not only do age-related deficits occur in the frontal cortex but also at the 

cerebellar level, which affects the integration of sensori-motor feedback for motor adaptability. 

Bruijin et al. concluded that gait adaptations differed between groups during split-belt treadmill 

activities with differing speeds on each belt due to age-related deficits within the cerebellum 

(Bruijin et al., 2012). Although this study had a greater gap between age groups compared to the 

present study, understanding the role of sensori-motor integration and age-related issues can lead 

to a better understanding in gait adaptations during particular tasks.  

 Although experience can contribute to improved performance in certain tasks, there exists 

some age-related cognitive decline in early adulthood that can contribute to decreased 

performance in cognitive testing and video gaming (Salthouse, 2009, Thompson et al., 2014). In 

determining age related differences in cognitive decline during video game applications, 

researchers from Simon Fraser University found that there is a steady decline after the age of 24 

(Thompson et al., 2014). Results of this study show an age-related slowing in looking-doing 

latency, which is the delay between looking at a section of the display (StarCraft 2 video game) 

and performing an action. Although the constructed display for the present research provided a 

more simplistic interface than the StarCraft 2 video game, complexity of the overall task may 

stem from incorporating such a display to a highly complex motor task such as walking. Age-

related factors involved in looking-doing latency may contribute to performance when 
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attempting to achieve the goal when manipulating the gain of the signal. Although cognitive 

demands can be offloaded to the display interface, there still exists the slowing of decision-

making due to increased age.  

 Other variables such speed and offloading were also evaluated to determine if additional 

factors influenced error. With minimal to no significance it can be concluded that these variables 

had no influence. For both groups, the ability to minimize error from one day to the next did not 

occur suggesting that there was no retention or learning effect from one session to the next. In 

relation to speed and offloading, participants were consistent with both variables for the duration 

of training. There were also no age-related differences to both selected pace and extent of 

offloading. Correlating speed to error (R²=0.21, Younger and R²=0.07, Older) suggests that error 

is not influenced by self-selected pace. There was no correlation for either group between 

offloading and error, therefore offloading did not affect performance with or without the visual 

display.  

 When viewing results of the NASA TLX survey, participants from both groups perceived 

workload similarly for each of the six categories. The largest contributor to workload was 

viewed as Effort (combination of Physical and Mental demands) for both groups, while 

Temporal (pace) was viewed to be the lowest contributor. Therefore, participants felt that they 

had to work both physically and mentally more in order to achieve the task. When comparing our 

results to another study by Caldwell et al., there appear to be differences in task load index 

rankings between our system and natural, unmodified gait on a standard treadmill; although no 

significance testing was performed since the raw data was unavailable (Caldwell et al., 2013). 

Due to directed visual biofeedback and knowledge of results, Mental, Performance and 

Frustration ratings increased with the modified elliptical. Since the protocol for the modified 



 

107 
 

elliptical allowed participants to self-select their pace, Temporal workload decreased drastically 

from natural gait. There were no apparent differences in Physical and Effort demands from 

natural gait to modified gait with the elliptical. We concluded that this occurred since both 

activities require physical effort in order to accomplish the task, contributing to workload in both 

categories of Physical and Effort demand.  

  

Conclusion 

Natural asymmetry decreased with the introduction of visual biofeedback for both 

groups, although the older group was inherently more asymmetric than the younger sample 

group. This suggests that visual biofeedback can serve to minimize percentage error in weight 

distribution. Additionally, threshold values were found when comparing Baseline error values to 

values at hyper-symmetric biased training. For the older population, below 15% gain 

manipulation asymmetry is still below natural asymmetric values with no feedback.  

Furthermore when deciding on threshold ranges, combining findings from our results and 

current literature lead towards a suitable protocol for additional studies with CVA participants.  

Adegoke et al. relate risk of falling in CVA populations to differentiated weight distributions 

between the paretic and non-paretic limbs. In this article, it was noted that patients could 

distribute weight between 7-20% more towards the non-paretic without falling (Adegoke et al., 

2012). Correlating this result to our current study, an upper range between 7%-10% sets a 

suitable threshold for CVA populations when biasing training towards the paretic limb to limit 

the risk of fall. As a result, 5 to 10% was selected as the upper level of training on the paretic 

side to carry over to CVA studies.  
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Appendix 
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Appendix A 

LabVIEW vi for acquiring vertical load and representing as visual biofeedback.  

 

While loop in LabVIEW vi to read encoder pulses as an external clock. This loop uses a shift register to determine 

changing positions in the flywheel (encoder pulses).  
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Component to LabVIEW vi that uses indicators from above (x3 and x4) to control when a weight measurement from 

either load cell enters the corresponding 200 point array. Weight measurements are acquired through the 12 bit DAQ 

card and scaled based on calibration curves.  

 

 

Mathscript code in LabVIEW vi that builds the Differential-Temporal display by inputting left and right weight 

measurements (averaged from 200 point array) to calculate the difference between right and left weight 

measurements. This calculation is presented as a single data point on the graph and changes with each encoder 

pulse.  
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Code to manipulate the gain of the vertical load signal. This is a portion of the LabVIEW vi that manipulates the 

gain of the load cell signal every 2 minute interval.  
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Appendix B 

 

R=Right; 
L=Left; 
T=X_Value; 

  

  

  

  
T_1=find(T>299 & T<300); %baseline 
T_2=find(T>419 & T<420); %0 percent 
T_3=find(T>539 & T<540); %2nd percentage 
T_4=find(T>659 & T<660); %3rd percentage %T_4=find(T>479 & T<480); 
T_5=find(T>779 & T<780); %4th percentage 
T_6=find(T>899 & T<900); %5th percentage  %T_6=find(T>719 & T<720); 
T_7=find(T>1019 & T<1020);  %6th percentage %T_7=find(T>839 & T<840); 

T_7=find(T>838 & T<840); 
T_8=find(T>1139 & T<1140); %2nd 0 percent 
T_9=find(T>1259 & T<1260); %cooldown 

  
R_baseline=[R(1:T_1)]; 
R_1=[R(T_1+1:T_2)]; 
R_2=[R(T_2+1:T_3)]; 
R_3=[R(T_3+1:T_4)]; 
R_4=[R(T_4+1:T_5)]; 
R_5=[R(T_5+1:T_6)]; 
R_6=[R(T_6+1:T_7)]; 
R_7=[R(T_7+1:T_8)]; 
R_cooldown=[R(T_8+1:T_9)]; 

  
L_baseline=[L(1:T_1)]; 
L_1=[L(T_1+1:T_2)]; 
L_2=[L(T_2+1:T_3)]; 
L_3=[L(T_3+1:T_4)]; 
L_4=[L(T_4+1:T_5)]; 
L_5=[L(T_5+1:T_6)]; 
L_6=[L(T_6+1:T_7)]; 
L_7=[L(T_7+1:T_8)]; 
L_cooldown=[L(T_8+1:T_9)]; 

  
TBW_baseline=R_baseline+L_baseline; 
TBW_1=R_1+L_1; 
TBW_2=R_2+L_2; 
TBW_3=R_3+L_3; 
TBW_4=R_4+L_4; 
TBW_5=R_5+L_5; 
TBW_6=R_6+L_6; 
TBW_7=R_7+L_7; 
TBW_cooldown=R_cooldown+L_cooldown; 

  
%difference equation 
Diff_baseline=(R_baseline-L_baseline)./2; 
Diff_1=(R_1-L_1)./2; 
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Diff_2=(R_2-L_2)./2; 
Diff_3=(R_3-L_3)./2; 
Diff_4=(R_4-L_4)./2; 
Diff_5=(R_5-L_5)./2; 
Diff_6=(R_6-L_6)./2; 
Diff_7=(R_7-L_7)./2; 
Diff_cooldown=(R_cooldown-L_cooldown)./2; 

  
ABS_Diff_baseline=abs((R_baseline-L_baseline)./2); 
ABS_Diff_1=abs((R_1-L_1)./2); 
ABS_Diff_2=abs((R_2-L_2)./2); 
ABS_Diff_3=abs((R_3-L_3)./2); 
ABS_Diff_4=abs((R_4-L_4)./2); 
ABS_Diff_5=abs((R_5-L_5)./2); 
ABS_Diff_6=abs((R_6-L_6)./2); 
ABS_Diff_7=abs((R_7-L_7)./2); 
ABS_Diff_cooldown=abs((R_cooldown-L_cooldown)./2); 

  
Variance_1=var(Diff_1); 

  

  
xdiff_baseline=1:length(Diff_baseline); 
Goal_baseline(xdiff_baseline)=zeros; 
%Bound_baseline(xdiff_baseline)=boundary(xdiff_baseline,Diff_baseline); 
figure(1) 
plot(Diff_baseline,xdiff_baseline,'r',Goal_baseline,xdiff_baseline,'b') 
axis([-20,20,0,300]) 
title('Baseline-Difference Equation') 
xlabel('Difference ((R-L)/2))') 
ylabel('Time(s)') 
line('XData',[-Variance_1 -Variance_1],'YData',[0 300],'LineStyle', '-', 

'LineWidth',2,'Color','r') 
line('XData',[Variance_1 Variance_1],'YData',[0 300],'LineStyle', '-', 

'LineWidth',2,'Color','r') 

  
xdiff_1=1:length(Diff_1); 
Goal_1(xdiff_1)=zeros; 
figure(2) 
plot(Diff_1,xdiff_1,'r',Goal_1,xdiff_1,'b') 
axis([-20,20,0,120]) 
title('Round 1 (0%)-Difference Equation') 
xlabel('Difference ((R-L)/2))') 
ylabel('Time(s)') 
line('XData',[-Variance_1 -Variance_1],'YData',[0 300],'LineStyle', '-', 

'LineWidth',2,'Color','r') 
line('XData',[Variance_1 Variance_1],'YData',[0 300],'LineStyle', '-', 

'LineWidth',2,'Color','r') 

  

  
xdiff_2=1:length(Diff_2); 
Goal_2(xdiff_2)=zeros; 
figure(3) 
plot(Diff_2,xdiff_2,'r',Goal_2,xdiff_2,'b') 
axis([-20,20,0,120]) 
title('Round 2 (15%)-Difference Equation') 
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xlabel('Difference ((R-L)/2))') 
ylabel('Time(s)') 
line('XData',[-Variance_1 -Variance_1],'YData',[0 300],'LineStyle', '-', 

'LineWidth',2,'Color','r') 
line('XData',[Variance_1 Variance_1],'YData',[0 300],'LineStyle', '-', 

'LineWidth',2,'Color','r') 

  

  
xdiff_3=1:length(Diff_3); 
Goal_3(xdiff_3)=zeros; 
figure(4) 
plot(Diff_3,xdiff_3,'r',Goal_3,xdiff_3,'b') 
axis([-20,20,0,120]) 
title('Round 3 (25%)-Difference Equation') 
xlabel('Difference ((R-L)/2))') 
ylabel('Time(s)') 
line('XData',[-Variance_1 -Variance_1],'YData',[0 300],'LineStyle', '-', 

'LineWidth',2,'Color','r') 
line('XData',[Variance_1 Variance_1],'YData',[0 300],'LineStyle', '-', 

'LineWidth',2,'Color','r') 

  

  
xdiff_4=1:length(Diff_4); 
Goal_4(xdiff_4)=zeros; 
figure(5) 
plot(Diff_4,xdiff_4,'r',Goal_4,xdiff_4,'b') 
axis([-20,20,0,120]) 
title('Round 4 (5%)-Difference Equation') 
xlabel('Difference ((R-L)/2))') 
ylabel('Time(s)') 
line('XData',[-Variance_1 -Variance_1],'YData',[0 300],'LineStyle', '-', 

'LineWidth',2,'Color','r') 
line('XData',[Variance_1 Variance_1],'YData',[0 300],'LineStyle', '-', 

'LineWidth',2,'Color','r') 

  

  
xdiff_5=1:length(Diff_5); 
Goal_5(xdiff_5)=zeros; 
figure(6) 
plot(Diff_5,xdiff_5,'r',Goal_5,xdiff_5,'b') 
axis([-20,20,0,120]) 
title('Round 5 (10%)-Difference Equation') 
xlabel('Difference ((R-L)/2))') 
ylabel('Time(s)') 
line('XData',[-Variance_1 -Variance_1],'YData',[0 300],'LineStyle', '-', 

'LineWidth',2,'Color','r') 
line('XData',[Variance_1 Variance_1],'YData',[0 300],'LineStyle', '-', 

'LineWidth',2,'Color','r') 

  
xdiff_6=1:length(Diff_6); 
Goal_6(xdiff_6)=zeros; 
figure(7) 
plot(Diff_6,xdiff_6,'r',Goal_6,xdiff_6,'b') 
axis([-20,20,0,120]) 
title('Round 6 (20%)-Difference Equation') 
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xlabel('Difference ((R-L)/2))') 
ylabel('Time(s)') 
line('XData',[-Variance_1 -Variance_1],'YData',[0 300],'LineStyle', '-', 

'LineWidth',2,'Color','r') 
line('XData',[Variance_1 Variance_1],'YData',[0 300],'LineStyle', '-', 

'LineWidth',2,'Color','r') 

  
xdiff_7=1:length(Diff_7); 
Goal_7(xdiff_7)=zeros; 
figure(8) 
plot(Diff_7,xdiff_7,'r',Goal_7,xdiff_7,'b') 
axis([-20,20,0,120]) 
title('Round 7 (0%)-Difference Equation') 
xlabel('Difference ((R-L)/2))') 
ylabel('Time(s)') 
line('XData',[-Variance_1 -Variance_1],'YData',[0 300],'LineStyle', '-', 

'LineWidth',2,'Color','r') 
line('XData',[Variance_1 Variance_1],'YData',[0 300],'LineStyle', '-', 

'LineWidth',2,'Color','r') 

  

  

  
xdiff_cooldown=1:length(Diff_cooldown); 
Goal_cooldown(xdiff_cooldown)=zeros; 
%Bound_cooldown=boundary(Diff_cooldown); 
figure(9) 
plot(Diff_cooldown,xdiff_cooldown,'r',Goal_cooldown,xdiff_cooldown,'b') 
axis([-20,20,0,120]) 
title('Cooldown-Difference Equation') 
xlabel('Difference ((R-L)/2))') 
ylabel('Time(s)') 
line('XData',[-Variance_1 -Variance_1],'YData',[0 120],'LineStyle', '-', 

'LineWidth',2,'Color','r') 
line('XData',[Variance_1 Variance_1],'YData',[0 120],'LineStyle', '-', 

'LineWidth',2,'Color','r') 

  
%% 
n_1=90; 
n_2=90; 
n_3=21; 
n_4=90; 
n_5=12; 
n_6=27; 
n_7=10; 

  

  
T_interval_1=n_1:n_1+30; 
T_interval_2=n_2:n_2+30; 
T_interval_3=n_3:n_3+30; 
T_interval_4=n_4:n_4+30; 
T_interval_5=n_5:n_5+30; 
T_interval_6=n_6:n_6+30; 
T_interval_7=n_7:n_7+30; 
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%V_0_1=var(Diff_1(13:43)); 
%V_10=var(Diff_2(49:79)); 
%V_15=var(Diff_3(27:57)); 
%V_20=var(Diff_4(37:67)); 
%V_25=var(Diff_5(37:67)); 
%V_5=var(Diff_6(70:100)); 
%V_0_2=var(Diff_7(12:42)); 
%V_B=var(Diff_baseline(180:210)); 
%V_C=var(Diff_cooldown(30:60)); 

  
V_0_1_test=var(Diff_1(T_interval_1)); 
V_1_test=var(Diff_2(T_interval_2));  %first percentage 
V_2_test=var(Diff_3(T_interval_3));  %second percentage 
V_3_test=var(Diff_4(T_interval_4));  %third percentage 
V_4_test=var(Diff_5(T_interval_5));  %fourth percentage 
V_5_test=var(Diff_6(T_interval_6));  %Fifth percentage 
V_0_2_test=var(Diff_7(T_interval_7)); 
V_B=var(Diff_baseline(180:210)); 
%V_B=var(Diff_baseline(1:31)); 
V_C=var(Diff_cooldown(30:60)); 

  
V_total=[V_B V_0_1_test V_1_test V_2_test V_3_test V_4_test V_5_test 

V_0_2_test V_C]; 

  
M_0_1=mean(Diff_1(T_interval_1)); 
M_1=mean(Diff_2(T_interval_2)); 
M_2=mean(Diff_3(T_interval_3)); 
M_3=mean(Diff_4(T_interval_4)); 
M_4=mean(Diff_5(T_interval_5)); 
M_5=mean(Diff_6(T_interval_6)); 
M_0_2=mean(Diff_7(T_interval_7)); 
M_B=mean(Diff_baseline(180:210)); 
%M_B=mean(Diff_baseline(1:31)); 
M_C=mean(Diff_cooldown(30:60)); 

  
M_total=[M_B M_0_1 M_1 M_2 M_3 M_4 M_5 M_0_2 M_C]; 

  
ABS_M_0_1=mean(ABS_Diff_1(T_interval_1)); 
ABS_M_1=mean(ABS_Diff_2(T_interval_2)); 
ABS_M_2=mean(ABS_Diff_3(T_interval_3)); 
ABS_M_3=mean(ABS_Diff_4(T_interval_4)); 
ABS_M_4=mean(ABS_Diff_5(T_interval_5)); 
ABS_M_5=mean(ABS_Diff_6(T_interval_6)); 
ABS_M_0_2=mean(ABS_Diff_7(T_interval_7)); 
ABS_M_B=mean(ABS_Diff_baseline(180:210)); 
%ABS_M_B=mean(ABS_Diff_baseline(1:31)); 
ABS_M_C=mean(ABS_Diff_cooldown(30:60)); 

  

  
ABS_M_total=[ABS_M_B ABS_M_0_1 ABS_M_1 ABS_M_2 ABS_M_3 ABS_M_4 ABS_M_5 

ABS_M_0_2 ABS_M_C]; 

  
V_T=transpose(V_total); 
M_T=transpose(M_total); 
ABS_M_T=transpose(ABS_M_total); 
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%M_0_1=mean(Diff_1(13:43)); 
%M_10=mean(Diff_2(49:79)); 
%M_15=mean(Diff_3(27:57)); 
%M_20=mean(Diff_4(37:67)); 
%M_25=mean(Diff_5(37:67)); 
%M_5=mean(Diff_6(70:100)); 
%M_0_2=mean(Diff_7(12:42)); 
%M_B=mean(Diff_baseline(180:210)); 
%M_C=mean(Diff_cooldown(30:60)); 
%% 
%Getting AVG total body weight  

  
AvgTBW_0_1=mean(TBW_1(T_interval_1)); 
AvgTBW_1=mean(TBW_2(T_interval_2)); 
AvgTBW_2=mean(TBW_3(T_interval_3)); 
AvgTBW_3=mean(TBW_4(T_interval_4)); 
AvgTBW_4=mean(TBW_5(T_interval_5)); 
AvgTBW_5=mean(TBW_6(T_interval_6)); 
AvgTBW_0_2=mean(TBW_7(T_interval_7)); 
AvgTBW_B=mean(TBW_baseline(180:210)); 
%AvgTBW_B=mean(TBW_baseline(1:31)); 
AvgTBW_C=mean(TBW_cooldown(30:60)); 

  
AvgTBW_total=[AvgTBW_B AvgTBW_0_1 AvgTBW_1 AvgTBW_2 AvgTBW_3 AvgTBW_4 

AvgTBW_5 AvgTBW_0_2 AvgTBW_C]; 

  
AVGTBW_T=transpose(AvgTBW_total); 

  
%% 
%Getting speed  
fflag=0; 
k=1; 
cnt=1; 
for i=1:length(Index) 
    if Index(i)>4.1 & fflag==0 
        P(k)=i; 
        fflag=1; 
        k=k+1; 
    else  
        cnt=cnt+1; 
    end  
    if cnt==200 
        cnt=0; 
        fflag=0; 
    end  
end 
I=transpose(P); 

  
Test(1:length(P)+1)=[0 P]; 
Test_2=[P 0]; 
Test_3=Test_2-Test; 
Test_4=find(Test_3<100); 

  
F=Test_2; 



 

122 
 

F(Test_4)=[]; 
clear I; 
FF=transpose(F); 
I=FF; 

  
%for jj=1:length(I)+100 
 %     H(jj)=mean(Time(I(jj):I(jj+1))); 
%end 

  
%T=transpose(H); 

  

  
T_1=90000; %baseline 
T_2=126000; %0 percent 
T_3=162000; %2nd percentage 
T_4=198000; %3rd percentage %T_4=find(T>479 & T<480); 
T_5=234000; %4th percentage 
T_6=270000; %5th percentage  %T_6=find(T>719 & T<720); 
T_7=306000;  %6th percentage %T_7=find(T>839 & T<840); T_7=find(T>838 & 

T<840); 
T_8=342000; %2nd 0 percent 
T_9=378000; %cooldown 

  

  
I_baseline=find(FF>T_1-1000 & FF<T_1); 
I_1=find(FF>T_2-1000 & FF<T_2); 
I_2=find(FF>T_3-1000 & FF<T_3); 
I_3=find(FF>T_4-1000 & FF<T_4); 
I_4=find(FF>T_5-1000 & FF<T_5); 
I_5=find(FF>T_6-1000 & FF<T_6); 
I_6=find(FF>T_7-1000 & FF<T_7); 
I_7=find(FF>T_8-1000 & FF<T_8); 
I_cooldown=find(FF>T_9-1000 & FF<T_9); 

  
I_baseline=I_baseline(end); 
I_1=I_1(end); 
I_2=I_2(end); 
I_3=I_3(end); 
I_4=I_4(end); 
I_5=I_5(end); 
I_6=I_6(end); 
I_7=I_7(end); 
I_cooldown=I_cooldown(end); 
%delete the smaller number in the breakup of I 

  
%cycles-need to subtract each position to get number of cycles 
Cycles_baseline=I_baseline; 
Cycles_1=I_1-I_baseline; 
Cycles_2=I_2-I_1; 
Cycles_3=I_3-I_2; 
Cycles_4=I_4-I_3; 
Cycles_5=I_5-I_4; 
Cycles_6=I_6-I_5; 
Cycles_7=I_7-I_6; 
Cycles_cooldown=I_cooldown-I_7; 
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%Cycles_9=I_9-I_8; 

  
%Speed cycles/sec 
Speed_second_baseline=Cycles_baseline/300; 
Speed_second_1=Cycles_1/120; 
Speed_second_2=Cycles_2/120; 
Speed_second_3=Cycles_3/120; 
Speed_second_4=Cycles_4/120; 
Speed_second_5=Cycles_5/120; 
Speed_second_6=Cycles_6/120; 
Speed_second_7=Cycles_7/120; 
Speed_second_cooldown=Cycles_cooldown/120; 
%Speed_second_9=Cycles_9/120; 

  
Total_speed=[Speed_second_baseline Speed_second_1 Speed_second_2 

Speed_second_3 Speed_second_4 Speed_second_5 Speed_second_6 Speed_second_7 

Speed_second_cooldown]; 

  
T_speed=transpose(Total_speed); 
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Chapter 5 
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Chapter 5: Hyper-symmetric training and short term functional change in gait symmetry for 

stroke participants: A case report 

 

 

Abstract 

 Functional ambulation is a major goal in rehabilitation for stroke patients who have 

impaired gait. Often a person’s ability to effectively ambulate can determine outcomes related to 

independence in daily activities of life for the future. There are several techniques that have been 

applied in the clinic for gait restoration, for example the use of static balance platforms, single 

and split-belt treadmills and robotics in rehabilitation. Although these systems or techniques are 

widely used, there are some disadvantages with applying them such as the physical demand on 

the therapist and the limitation of variability in training. In order to reduce the physical demand 

on the therapist without using robotics that hamper weight shifting, a novel modification was 

made to an existing elliptical trainer to incorporate kinetic visual biofeedback during gait 

training.  The modified elliptical system mimics the approach used in split-belt treadmill 

training. That approach is designed to overload the paretic limb to provide a non-symmetric level 

of training. The modified elliptical system focuses on vertical load rather than speed. Overload 

bias is created by modulating the gain of the feedback signal to encourage more weight to be 

shifted to the paretic limb. Thirty participants were recruited, but only 4 enrolled into the study. 

Of the four, results of two participants were omitted secondary to their inability to consistently 

progress the pedals forward during. It was assumed that experimenter assistance to control the 

elliptical may have influenced subject performance. Based on previous studies, a Differential-
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Temporal display was used for visual biofeedback and gain was manipulated up to 10% to 

encourage increased weight distribution towards the paretic limb. Following training, the NASA 

TLX was administered to determine workload during the activity. An ANOVA was used to 

determine significant differences in the percentage error values from the elliptical trainer data 

and for GaitRite® metrics that included step length, H-H base support and single and double 

limb support. Results of the study show that participants were able to reduce percentage error 

with visual biofeedback and maintain a reduction of error during Cooldown (post-training with 

no visual biofeedback). Analyses of overland gait show no difference in step length, H-H base 

support, and double limb support. However, single limb support values show a significant 

difference from pre to post measurements in one participant.  
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Introduction 

 

 Causes of stroke occur due to either a blockage or hemorrhage that impedes blood flow to 

the brain. This interruption can result in damage to surrounding tissue and influence the “chain of 

command” throughout the central and peripheral nervous system. Different motor and sensory 

processes can be altered depending on the location of infarction. Loss of motor control is often a 

primary concern following stroke. This reduction in control can negatively influence daily 

activities of life (ADLs). Approximately 795,000 stroke incidents occur each year in the United 

States. In 2010 alone, 33 million incidents occurred globally (Go et al., 2012, Mozaffarian et al., 

2015). The leading cause of prolonged disability is thought to be a result of stroke (Go et al., 

2012, Jackson et al., 2010, Go et al., 2014). A primary goal in stroke rehabilitation for physical 

therapists is to train individuals to a functional level that allows them to independently perform 

ADLs. Current stroke rehabilitation practices focus on constraint-induced (CI) movement 

therapy for both upper and lower extremities (Taub et al., 1993, Taub, 2014, Morris et al., 2006, 

Wolf et al., 2008).  

 CI movement therapy and repetitive task oriented techniques have had significant success 

in promoting use of the paretic limb during and after rehabilitation (Taub et al., 1993, Taub, 

2014, Morris et al., 2006, Wolf et al., 2008). CI therapy incorporates four modes of training. 

These include: (1) intensive training of the affected limb, (2) shaping technique, (3) transfer 

package, and (4) discouraging compensation of the unaffected or lesser affected limb. Intensive 

training of the affected limb usually occurs in the clinic with forced use of the paretic limb to 

perform specific tasks. In this training the shaping technique can be applied by increasing the 
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difficulty of the task over time, for example decreasing the amount of assistance during the 

course of treatment. The transfer package is a method that holds patients accountable for using 

their paretic limb outside the clinic, usually implemented through daily logs. The last component, 

discouraging compensation of the unaffected limb, is achieved by forcing use of the paretic limb, 

for example by implementing a padded mitt for upper extremity training. Variability in training 

can also be an influential technique to increase activity of sensorimotor systems in order to 

transfer from clinical applications to real world interactions (Hornby et al., 2008, Cai et al., 

2006). 

 For gait rehabilitation, body weight supported treadmill training (BWSTT) is often 

utilized to force patients into a pattern that is similar to healthy gait (Harvey, 2009, Werner et al., 

2002). During this training, patients are stabilized over a treadmill system with an overhead 

harness to offload a certain percentage of body weight. Over the course of rehabilitation, this 

percentage of offloading is decreased until the patient can accept substantial weight onto either 

limb. Another component of this training is assistance from two to three physical therapists 

contributing both to weight transfers and limb progression. Although many studies have shown 

that this is a successful training technique for patients, there are a few disadvantages. The 

number of personnel required per patient increases health care costs and the added physical 

demand placed on therapists’ takes a toll (Harvey, 2009, Jackson et al., 2010, Hidler et al., 2009, 

Hidler et al., 2005). To decrease both the physical demand and health care costs, the Lokomat® 

system was developed (Hidler et al., 2009).  

 The Lokomat® employs a lower extremity exoskeleton to guide the limbs in correct 

kinematic alignment as well as applying both a treadmill and overhead harness system (Hidler et 

al., 2005). Although the Lokomat® was produced to decrease variability in kinematic alignment, 
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this can have a negative impact when transferring from clinic training to a real world 

environment (Harvey, 2009, Hornby et al., 2008). As noted by Cai et al., a fixed position robotic 

exoskeleton limits the degrees of freedom during limb progression (Cai et al., 2006). This 

limitation of movement patterns trains the patient to remap cortical synapses to a discrete pattern, 

which is often one component of a naturally occurring activation pattern. Fixed trajectory 

rehabilitation is often counterproductive for transferring to a real world environment since it 

decreases the activity of sensorimotor systems (Hornby et al., 2008, Cai et al., 2006).  

 To allow patients to independently manipulate both kinematic and kinetic parameters, 

biofeedback systems have been implemented in the clinic both with static balance platforms and 

on treadmill systems. Systems such as the Wii balance board and SMART Balance Master have 

been developed to deliver biofeedback to patients with weight-bearing asymmetries (Chen et al., 

2002, Gil-Gòmez et al., 2011, Barcala et al., 2013, Goble et al., 2014). Although there has been 

some success with these systems both in research and the clinic, often training does not transfer 

to weight bearing asymmetries in dynamic gait. Studies such as Dingwell et al. and Crowell et al. 

have produced such systems to deliver information on temporal, stance symmetry and kinematic 

variables (Dingwell et al., 1996, Dingwell et al., 1996, Crowell et al., 2010). These studies 

suggest that not only can patients interpret asymmetries in gait once training is complete, but 

they can adjust patterns to accomplish goals presented to them during training. Although these 

studies are promising, they do not account for weight bearing asymmetries. Previous studies by 

Massenzo et al. looked at displaying kinetic visual biofeedback to healthy populations and 

determining performance based on the displayed information (Massenzo et al., 2015). In this 

study, four different visual display types were constructed and tested to determine which 

produced the best performance for the cohort (Massenzo et al., 2015). One display resulted in the 
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best performance compared to the others and a no feedback baseline measurement. This display 

incorporated both temporal aspects of displaying past samples to the participant in order to 

determine their error in accomplishing the task as well as a differential element that decreased 

the cognitive load in interpreting by implementing a difference algorithm to display both right 

and left pedal measurements as a single element.  

 To further explore the augmentation of visual biofeedback to users, a second study was 

conducted which manipulated the gain of the weight measurement signals to force users to 

distribute weight asymmetrically towards their non-dominant weight-bearing side. Ding et al. 

produced a similar algorithm applied to a Wii balance board and tested on a cohort of stroke 

patients with weight bearing asymmetries. In Ding et al. they found that weight bearing 

asymmetries diminished during and for a brief period after training (Ding et al., 2013). In this 

study, it was found that healthy participants were able to accomplish the task with up to a 5-10% 

asymmetry in left/right load. 

 This study applied the aforementioned system to stroke patients who have weight-bearing 

asymmetries to determine the system’s effectiveness implementing a gain manipulated training 

technique. Effectiveness of the training device was depicted as the individual’s ability to adjust 

distribution of weight on either pedal as well as measuring symmetry during overland gait post-

training.  
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Methods 

Participants 

 This study was approved through Virginia Commonwealth University’s institutional 

review board. Prior to entering the study, all participants provided written informed consent. 

Inclusion criteria for recruiting were the following: chronic phase of cerebrovascular incident 

with the ability to walk independently with or without an assistive device. Thirty participants 

were recruited, but only 4 enrolled. Of those four, two were unable to perform the training so as 

a result, only two participants were used for post-data analysis (1 Female, age=75, 1 Male, 

age=19).  

 Device Design 

 A modified elliptical trainer (NordicTrack®, Logan, UT) was used to measure vertical 

loads as visual biofeedback (Chapter 2). Kinetic visual biofeedback was provided via computer 

monitor displaying differential-temporal representations of vertical load (Chapter 3) (Massenzo 

et al., 2015). Gain of the load cell signal was manipulated for hyper-symmetric training purposes. 

A gain manipulation value of 10% was implemented as a threshold for training (Chapter 4).  

Procedures 

 Subjects were first instructed on the elliptical activity and asked to review and sign the 

informed consent documentation. Subjects were also instructed on the NASA TLX survey before 

training on the modified elliptical. The NASA TLX survey was implemented in order to 

determine differences in perceived workload in six categories: mental demand, physical demand, 

temporal demand, performance, effort and frustration. Since this survey has wide acceptance and 
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application in workload studies, many incorporating biofeedback delivery, it was implemented as 

a workload measurement tool following elliptical training (Hart, 2006). Prior to training, the 

Mini-Mental State Examination was conducted to determine cognitive impairment. Participants 

then walked across the GaitRite® (GaitRite®, Franklin, NJ) system for three pre-training tests. 

Table 1 displays sequence of training events from Baseline to Cooldown. Following pre-

tests for overland gait, participants warmed up on the elliptical trainer for a period of three 

minutes with no visual display (Warmup) and continued for another 2 minutes during Baseline 

measurements (Baseline). Participants then ran on the elliptical for two minutes at 0% 

manipulation to determine how they performed with the display with zero manipulation. Both 

participants ramped up to 5% for percent manipulation for a period of two minutes. Due to 

physical fatigue, the one of the two participants only reached 5% instead of the threshold value 

(10%). This participant went from percent manipulation biased training straight to Cooldown for 

a period of two minutes. The other participant was able to reach 10% manipulation. Following 

10% they reached a routine of 0% before Cooldown phase, where each condition lasted 2 

minutes each. Finally, the display was turned off while the participant kept running on the 

elliptical for his or her Cooldown period of two minutes. During the manipulation phase, 

participants saw a shift depending on the magnitude of manipulation, but were not aware that the 

gain was manipulated the whole duration of the two minute period. 

Following training, participants walked on the GaitRite® system for three post-training 

sets. At the end of the session participants completed the NASA TLX survey to determine 

perceived workload.  
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Data Analysis 

 Vertical load was measured continuously and stored in an Excel format. It was later 

analyzed using MATLAB (The MathWorks, Inc., Natick, MA) and statistically evaluated with 

SPSS (IBM Corporation, Armonk, NY). Percentage error was found to compare routines 

(baseline and percent manipulations) during the single session (Equation 1). Percentage error is a 

measure to compare the value obtained from gain manipulation of the signal (e.g. 5-10%) to the 

unmodified weight measured on the pedal.   

                 
|                 |

|     |
       (1) 

The following secondary variables were analyzed from a thirty second recording for each 

two minute increment during the routine: percent weight offloaded and speed. The variables 

were found to be non-normal, so a non-parametric analysis of variance (Kruskal Wallis test) and 

corresponding Mann-Whitney u tests were performed to determine if there were significant 

differences in the dataset All pre-post overland gait metrics (GaitRite® measured step length, % 

single stance, % double stance and H-H base support) were normally distributed, so an 

ANCOVA with velocity as a covariate and t-tests were conducted. Difference values between 

right versus left were compared for each GaitRite® metric from pre to post training. 

 

Results 

All participants enrolled in the study scored in between 24-30 in the Mini-Mental State 

Examination prior to training indicating no apparent cognitive deficits. Of the thirty participants 

recruited, only four were enrolled and two analyzed. Since Participants 2 and 3 required 
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continual assistance during training for knee flexion and propulsion of the pedal, the data was not 

evaluated. Figures 1 and 2 represent stimulus-response error for Participants 1 and 4, 

respectively. Both participants demonstrate baseline (no feedback) asymmetry, while minimizing 

error with the introduction of visual biofeedback. Statistical testing resulted in significant 

differences from pre to post training on the elliptical trainer (Baseline to Cooldown) as well as 

differences from Baseline to routines with visual biofeedback. Differences in pre to post training 

on the elliptical trainer suggest that hyper-symmetric biased training may contribute to improved 

performance when reducing error.  

 

Figure 1. Stimulus-response percentage error for Participant 1. Stimulus-response percentage error for Baseline (no 

feedback), and different levels of hyper-symmetric non-dominant biased training (via visual feedback) for 

Participant 1.  
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Figure 2. Stimulus-response percentage error for Participant 4. Stimulus-response percentage error for Baseline (no 

feedback), and different levels of hyper-symmetric non-dominant biased training (via visual feedback) for 

Participant 4.  

 

 Additionally, GaitRite® metrics were analyzed for Participants 1 and 4 to determine if 

there was carryover from training. Figures 3 and 4 represent step length and H-H base support 

over two tests for pre and post measurements, respectively. There were no significant differences 

between step length and H-H base support from pre to post training for either participant. Figures 

5 and 6 represent single and double limb support, respectively. Although there were no 

significant differences between pre to post measurements for double support, there were 

differences in single support for one of the two participants. For Participant 1 there were 

significant differences in right and left single limb support prior to training. This difference was 

minimized post training, suggesting that Participant 1 may have some carryover from training to 

overland walking. Figure 7 represents the difference between right versus left comparing pre to 

post training for H-H base support. For Participant 4 there was a significant difference from pre 
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to post, suggesting that H-H base support increased after activity with the modified elliptical 

trainer.  

 

Figure 3. Step length for participants 1 and 4.  

 

 

Figure 4. H-H base support for participants 1and 4.  
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Figure 5. Single limb support for participants 1 and 4.  

 

Figure 6. Double limb support for participants 1 and 4.  
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Figure 7.  Limb Difference for H-H Base Support in Participant 4. This figure displays the right and left difference 

comparing pre vs. post training in H-H Base Support showing a significant difference in pre vs. post training.  

 

 Perceived workload was found by administering the NASA TLX survey after training 

(Figure 8). Subjective ratings were found for the entire training session rather than in between 

routines to ensure that participants were unaware of the gain manipulation for biased training. 

Participants found that the activity placed a higher demand in both Physical and Effort categories 

with Mental, Temporal and Frustration being the lowest. Participants 1 and 4 differed in 

perceived workload in the Performance category, where Participant 4 rated it higher than 
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Figure 8. NASA TLX for perceived workload.  

 

Discussion 

 The aim of this study was to determine if hyper-symmetric biased training resulted in 

carryover from training to overland walking in a stroke cohort. A secondary aim was to 

determine if participants could minimize error in weight placement with the use of visual 

biofeedback.  

  Mini Mental State Examination tests showed no apparent cognitive deficits in any of the 

participants enrolled in the study. Therefore, participants were capable of understanding the 

visual representation presented to them.  

  One of two participants reached only 5%, while the other participant reached the full 

10%. This confirms that participants who have suffered a stroke have the capability of reaching 

hyper-symmetric routines in a range of 5-10%. However, physical endurance has the potential to 
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 Furthermore, both participants were able to minimize error with the introduction of visual 

biofeedback without assistance from lab personnel to propel the pedals forward. Similar to 

studies such as Mirelman et al. and Lewek et al., participants were able to utilize visual 

biofeedback during gait to improve performance (Mirelman et al., 2009 , Lewek et al., 2012 ). 

Mirelman et al. found that the incorporation of visual biofeedback to a robotic training device 

resulted in greater improvements rather than training solely with the robotic device. This group 

reasoned that this occurred since participants were engaged with visual biofeedback training and 

resulted in purposeful training leading towards neuro-plastic events (Mirelman et al., 2009). Our 

results mirror Mirelman’s study, suggesting that users can alter dynamic stance symmetry with 

visual biofeedback.  

  Participants were also able to adjust weight distribution according to gain manipulations. 

Ding et al. used a similar technique of gain manipulation to encourage weight distribution 

towards the paretic limb during static stance (Ding et al., 2013). Researchers from this study 

modified the standard Nintendo Wii Fit game system to control the gain ratio in the hopes of 

encouraging participants to lean more towards the paretic limb. The idea behind constructing this 

modification was to incorporate principles of constraint-induced movement therapy (CIMT) to 

lower limb balance rehabilitation. Much like our results, Ding et al. found that after intervention 

participants were able to adjust weight distributions while training, thereby increasing weight 

acceptance onto the paretic limb. Following the removal of visual biofeedback, participants were 

able to maintain decreased error compared to baseline measurements. Maintaining decreased 

error with the removal of visual biofeedback displays carryover from intervention in a single 

session while on an elliptical trainer.  
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 Measurements in overland gait metrics were acquired by the use of the GaitRite® system 

before and after training intervention. These metrics were analyzed to determine if training 

influenced overland gait. Although there were no significant differences in step length, H-H base 

support and double limb support from pre to post, there were differences in single limb support 

for one out of two participants. Participant one’s results suggest that training may have led to 

carryover in overland gait since asymmetries from single limb support were minimized. 

Alternatively, Participant four’s results suggest that there was no carryover once they stepped off 

the elliptical trainer since asymmetry in single limb support was consistent pre to post training. 

This could be the result of single day training. Perhaps Participant four required several training 

sessions in order to see an effect in overland gait.  Training duration could be another factor to 

differences in carryover as well. Participant one was only able to reach 5% gain manipulation, 

whereas Participant four reached 10%. This could have led to fatigue in the paretic limb post 

training, thereby leading to no differences in single limb support measurements for pre and post 

training.  

Based on NASA TLX findings, both Physical Demand and Effort contribute more 

towards perceived workload compared to the other categories. Both participants ranked these 

two categories high whereas Mental, Temporal and Frustration were low. Due to the nature of 

controlling the pedals of the elliptical especially with increased use of the paretic limb it is 

expected that physical demand and perceived effort would play a large part in the overall 

workload of the activity.  
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Conclusion 

 This case study shows the effect of visual biofeedback and hyper-symmetric biased 

training on modifying dynamic stance symmetry during elliptical trainer use. With the 

introduction of visual biofeedback, participants were able to minimize percentage error and 

maintained improved weight distribution patterns once feedback was removed. When comparing 

pre to post overland gait metrics, there were no significant changes in gait except in single limb 

support for one out of two participants. These findings lead into future directions in research with 

determining long-term effects of training over the course of several sessions. It is expected that 

with training participants can minimize error during training and tend towards symmetric gait 

metrics.  
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Appendix  
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Appendix A 

LabVIEW vi for acquiring vertical load and representing as visual biofeedback.  

 

While loop in LabVIEW vi to read encoder pulses as an external clock. This loop uses a shift register to determine 

changing positions in the flywheel (encoder pulses).  
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Component to LabVIEW vi that uses indicators from above (x3 and x4) to control when a weight measurement from 

either load cell enters the corresponding 200 point array. Weight measurements are acquired through the 12 bit DAQ 

card and scaled based on calibration curves.  

 

 

Mathscript code in LabVIEW vi that builds the Differential-Temporal display by inputting left and right weight 

measurements (averaged from 200 point array) to calculate the difference between right and left weight 

measurements. This calculation is presented as a single data point on the graph and changes with each encoder 

pulse.  
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Code to manipulate the gain of the vertical load signal. This is a portion of the LabVIEW vi that manipulates the 

gain of the load cell signal every 2 minute interval.  
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Appendix B 

%determining error 
 

R=Right; 
L=Left; 
T=X_Value; 

  
%T_1=find(T>149 & T<150); %baseline 
%T_2=find(T>319 & T<320); %0 percent 
%T_3=find(T>339 & T<340); %2nd p 

  

  
T_1=find(T>299 & T<300); %baseline 
T_2=find(T>419 & T<420); %0 percent 
T_3=find(T>539 & T<540); %2nd percentage 
T_4=find(T>659 & T<660); %3rd percentage %T_4=find(T>479 & T<480); 
T_5=find(T>779 & T<780); %4th percentage 
T_6=find(T>899 & T<900); %5th percentage  %T_6=find(T>719 & T<720); 
T_7=find(T>1019 & T<1020);  %6th percentage %T_7=find(T>839 & T<840); 

T_7=find(T>838 & T<840); 
T_8=find(T>1139 & T<1140); %2nd 0 percent 
T_9=find(T>1259 & T<1260); %cooldown 

  
R_baseline=[R(1:T_1)]; 
R_1=[R(T_1+1:T_2)]; 
R_2=[R(T_2+1:T_3)]; 
R_3=[R(T_3+1:T_4)]; 
R_4=[R(T_4+1:T_5)]; 
R_5=[R(T_5+1:T_6)]; 
R_6=[R(T_6+1:T_7)]; 
R_7=[R(T_7+1:T_8)]; 
R_cooldown=[R(T_8+1:T_9)]; 

  
L_baseline=[L(1:T_1)]; 
L_1=[L(T_1+1:T_2)]; 
L_2=[L(T_2+1:T_3)]; 
L_3=[L(T_3+1:T_4)]; 
L_4=[L(T_4+1:T_5)]; 
L_5=[L(T_5+1:T_6)]; 
L_6=[L(T_6+1:T_7)]; 
L_7=[L(T_7+1:T_8)]; 
L_cooldown=[L(T_8+1:T_9)]; 

  
TBW_baseline=R_baseline+L_baseline; 
TBW_1=R_1+L_1; 
TBW_2=R_2+L_2; 
TBW_3=R_3+L_3; 
TBW_4=R_4+L_4; 
TBW_5=R_5+L_5; 
TBW_6=R_6+L_6; 
TBW_7=R_7+L_7; 
TBW_cooldown=R_cooldown+L_cooldown; 

  
Half_TBW_baseline=0.5*(TBW_baseline); 
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Half_TBW_1=0.5*(TBW_1); 
Half_TBW_2=0.5*(TBW_2); 
Half_TBW_3=0.5*(TBW_3); 
Half_TBW_4=0.5*(TBW_4); 
Half_TBW_5=0.5*(TBW_5); 
Half_TBW_6=0.5*(TBW_6); 
Half_TBW_7=0.5*(TBW_7); 
Half_TBW_cooldown=0.5*(TBW_cooldown); 

  

  
prompt='What is the % value?'; 
First_percent=input(prompt); 
Second_percent=input(prompt); 
Third_percent=input(prompt); 
Fourth_percent=input(prompt); 
Fifth_percent=input(prompt); 

  

  
First=(First_percent)/100; 
Second=(Second_percent)/100; 
Third=(Third_percent)/100; 
Fourth=(Fourth_percent)/100; 
Fifth=(Fifth_percent)/100; 

  

  

  

  
%% 
%if worked the Right Side 
%for baseline 
for i=1:length(Half_TBW_baseline) 
    Percent_E_baseline=((abs(Half_TBW_baseline-R_baseline))./R_baseline)*100; 
end 

  
%for Zero_1 
for i=1:length(Half_TBW_1) 
    Percent_E_1=((abs(Half_TBW_1-R_1))./R_1)*100; 
end 

  
%for First percent manipulation 
for i=1:length(Half_TBW_2) 
    Value_1=Half_TBW_2*First; 
end 

  

  
for i=1:length(Half_TBW_2) 
    Adjusted_1=Value_1+Half_TBW_2; 
end  

  

  

  
for i=1:length(Half_TBW_2) 
    Percent_E_2=((abs(Adjusted_1-R_2))./R_2)*100; 
end 
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%for Second percent manipulation  
for i=1:length(Half_TBW_3) 
    Value_2=Half_TBW_3*Second; 
end 

  

  
for i=1:length(Half_TBW_3) 
    Adjusted_2=Value_2+Half_TBW_3; 
end  

  

  

  
for i=1:length(Half_TBW_3) 
    Percent_E_3=((abs(Adjusted_2-R_3))./R_3)*100; 
end 

  
%for Third percent manipulation 
for i=1:length(Half_TBW_4) 
    Value_3=Half_TBW_4*Third; 
end 

  

  
for i=1:length(Half_TBW_4) 
    Adjusted_3=Value_3+Half_TBW_4; 
end  

  

  

  
for i=1:length(Half_TBW_4) 
    Percent_E_4=((abs(Adjusted_3-R_4))./R_4)*100; 
end 

  

  

  
%for Fourth percent manipulation  

  
for i=1:length(Half_TBW_5) 
    Value_4=Half_TBW_5*Fourth; 
end 

  

  
for i=1:length(Half_TBW_5) 
    Adjusted_4=Value_4+Half_TBW_5; 
end  

  

  

  
for i=1:length(Half_TBW_5) 
    Percent_E_5=((abs(Adjusted_4-R_5))./R_5)*100; 
end 
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%for Fifth percent manipulation  

  
for i=1:length(Half_TBW_6) 
    Value_5=Half_TBW_6*Fifth; 
end 

  

  
for i=1:length(Half_TBW_6) 
    Adjusted_5=Value_5+Half_TBW_6; 
end  

  

  

  
for i=1:length(Half_TBW_6) 
    Percent_E_6=((abs(Adjusted_5-R_6))./R_6)*100; 
end 

  
%for Zero_2 
for i=1:length(Half_TBW_7) 
    Percent_E_7=((abs(Half_TBW_7-R_7))./R_7)*100; 
end 

  
%for Cooldown 
for i=1:length(Half_TBW_cooldown) 
    Percent_E_cooldown=((abs(Half_TBW_cooldown-R_cooldown))./R_cooldown)*100; 
end 

  
%% 
prompt='What is the Time value?'; 
n_1=input(prompt); 
n_2=input(prompt); 
n_3=input(prompt); 
n_4=input(prompt); 
n_5=input(prompt); 
n_6=input(prompt); 
n_7=input(prompt); 

  

  
%n_1=90; 
%n_2=90; 
%n_3=21; 
%n_4=90; 
%n_5=12; 
%n_6=27; 
%n_7=10; 

  

  
T_interval_1=n_1:n_1+30; 
T_interval_2=n_2:n_2+30; 
T_interval_3=n_3:n_3+30; 
T_interval_4=n_4:n_4+30; 
T_interval_5=n_5:n_5+30; 
T_interval_6=n_6:n_6+30; 
T_interval_7=n_7:n_7+30; 
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E_0_1_test=mean(Percent_E_1(T_interval_1)); 
E_1_test=mean(Percent_E_2(T_interval_2));  %first percentage 
E_2_test=mean(Percent_E_3(T_interval_3));  %second percentage 
E_3_test=mean(Percent_E_4(T_interval_4));  %third percentage 
E_4_test=mean(Percent_E_5(T_interval_5));  %fourth percentage 
E_5_test=mean(Percent_E_6(T_interval_6));  %Fifth percentage 
E_0_2_test=mean(Percent_E_7(T_interval_7)); 
E_B=mean(Percent_E_baseline(180:210)); 
%V_B=var(Diff_baseline(1:31)); 
E_C=mean(Percent_E_cooldown(30:60)); 

  
E_total=[E_B E_0_1_test E_1_test E_2_test E_3_test E_4_test E_5_test 

E_0_2_test E_C]; 

  
Error_B=Percent_E_baseline(180:210); 
Error_0_1=Percent_E_1(T_interval_1); 
Error_5=Percent_E_2(T_interval_2); 
Error_10=Percent_E_3(T_interval_3); 
Error_0_2=Percent_E_4(T_interval_4); 
Error_C=Percent_E_5(T_interval_5); 

  

  

  
E_0_1stdev=std(Percent_E_1(T_interval_1)); 
E_1_stdev=std(Percent_E_2(T_interval_2));  %first percentage 
E_2_stdev=std(Percent_E_3(T_interval_3));  %second percentage 
E_3_stdev=std(Percent_E_4(T_interval_4));  %third percentage 
E_4_stdev=std(Percent_E_5(T_interval_5));  %fourth percentage 
E_5_stdev=std(Percent_E_6(T_interval_6));  %Fifth percentage 
E_0_2_stdev=std(Percent_E_7(T_interval_7)); 
E_B_stdev=std(Percent_E_baseline(180:210)); 
%E_B_stdev=std(Percent_E_baseline(90:120)); 
%V_B=var(Diff_baseline(1:31)); 
E_C_stdev=std(Percent_E_cooldown(30:60)); 

  
E_total_stdev=[E_B_stdev E_0_1_stdev E_1_stdev E_2_stdev E_3_stdev E_4_stdev 

E_5_stdev E_0_2_stdev E_C_stdev]; 

  
%% 
%if worked the Left Side 
%for baseline 
for i=1:length(Half_TBW_baseline) 
    Percent_E_baseline=((abs(Half_TBW_baseline-L_baseline))./L_baseline)*100; 
end 

  
%for Zero_1 
for i=1:length(Half_TBW_1) 
    Percent_E_1=((abs(Half_TBW_1-L_1))./L_1)*100; 
end 

  
%for i=1:length(Half_TBW_2) 
%    Percent_E_2=((abs(Half_TBW_2-L_2))./L_2)*100; 
%end 
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%for First percent manipulation 
for i=1:length(Half_TBW_2) 
    Value_1=Half_TBW_2*First; 
end 

  

  
for i=1:length(Half_TBW_2) 
    Adjusted_1=Value_1+Half_TBW_2; 
end  

  

  

  
for i=1:length(Half_TBW_2) 
    Percent_E_2=((abs(Adjusted_1-L_2))./L_2)*100; 
end 

  
%for Second percent manipulation  
for i=1:length(Half_TBW_3) 
    Value_2=Half_TBW_3*Second; 
end 

  

  
for i=1:length(Half_TBW_3) 
    Adjusted_2=Value_2+Half_TBW_3; 
end  

  

  

  
for i=1:length(Half_TBW_3) 
    Percent_E_3=((abs(Adjusted_2-L_3))./L_3)*100; 
end 

  
%for Third percent manipulation 
for i=1:length(Half_TBW_4) 
    Value_3=Half_TBW_4*Third; 
end 

  

  
for i=1:length(Half_TBW_4) 
    Adjusted_3=Value_3+Half_TBW_4; 
end  

  

  

  
for i=1:length(Half_TBW_4) 
    Percent_E_4=((abs(Adjusted_3-L_4))./L_4)*100; 
end 

  
%for Fourth percent manipulation  

  
for i=1:length(Half_TBW_5) 
    Value_4=Half_TBW_5*Fourth; 
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end 

  

  
for i=1:length(Half_TBW_5) 
    Adjusted_4=Value_4+Half_TBW_5; 
end  

  

  

  
for i=1:length(Half_TBW_5) 
    Percent_E_5=((abs(Adjusted_4-L_5))./L_5)*100; 
end 

  
%for Fifth percent manipulation  

  
for i=1:length(Half_TBW_6) 
    Value_5=Half_TBW_6*Fifth; 
end 

  

  
for i=1:length(Half_TBW_6) 
    Adjusted_5=Value_5+Half_TBW_6; 
end  

  

  

  
for i=1:length(Half_TBW_6) 
    Percent_E_6=((abs(Adjusted_5-L_6))./L_6)*100; 
end 

  
%for Zero_2 
for i=1:length(Half_TBW_7) 
    Percent_E_7=((abs(Half_TBW_7-L_7))./L_7)*100; 
end 

  
%for Cooldown 
for i=1:length(Half_TBW_cooldown) 
    Percent_E_cooldown=((abs(Half_TBW_cooldown-L_cooldown))./L_cooldown)*100; 
end 

  

 

 

 

 

%Separating into arrays 

R=Right; 
L=Left; 
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T=X_Value; 

  

  

  

  
T_1=find(T>299 & T<300); %baseline 
T_2=find(T>419 & T<420); %0 percent 
T_3=find(T>539 & T<540); %2nd percentage 
T_4=find(T>659 & T<660); %3rd percentage %T_4=find(T>479 & T<480); 
T_5=find(T>779 & T<780); %4th percentage 
T_6=find(T>899 & T<900); %5th percentage  %T_6=find(T>719 & T<720); 
T_7=find(T>1019 & T<1020);  %6th percentage %T_7=find(T>839 & T<840); 

T_7=find(T>838 & T<840); 
T_8=find(T>1139 & T<1140); %2nd 0 percent 
T_9=find(T>1259 & T<1260); %cooldown 

  
R_baseline=[R(1:T_1)]; 
R_1=[R(T_1+1:T_2)]; 
R_2=[R(T_2+1:T_3)]; 
R_3=[R(T_3+1:T_4)]; 
R_4=[R(T_4+1:T_5)]; 
R_5=[R(T_5+1:T_6)]; 
R_6=[R(T_6+1:T_7)]; 
R_7=[R(T_7+1:T_8)]; 
R_cooldown=[R(T_8+1:T_9)]; 

  
L_baseline=[L(1:T_1)]; 
L_1=[L(T_1+1:T_2)]; 
L_2=[L(T_2+1:T_3)]; 
L_3=[L(T_3+1:T_4)]; 
L_4=[L(T_4+1:T_5)]; 
L_5=[L(T_5+1:T_6)]; 
L_6=[L(T_6+1:T_7)]; 
L_7=[L(T_7+1:T_8)]; 
L_cooldown=[L(T_8+1:T_9)]; 

  
TBW_baseline=R_baseline+L_baseline; 
TBW_1=R_1+L_1; 
TBW_2=R_2+L_2; 
TBW_3=R_3+L_3; 
TBW_4=R_4+L_4; 
TBW_5=R_5+L_5; 
TBW_6=R_6+L_6; 
TBW_7=R_7+L_7; 
TBW_cooldown=R_cooldown+L_cooldown; 

  
%difference equation 
Diff_baseline=(R_baseline-L_baseline)./2; 
Diff_1=(R_1-L_1)./2; 
Diff_2=(R_2-L_2)./2; 
Diff_3=(R_3-L_3)./2; 
Diff_4=(R_4-L_4)./2; 
Diff_5=(R_5-L_5)./2; 
Diff_6=(R_6-L_6)./2; 
Diff_7=(R_7-L_7)./2; 
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Diff_cooldown=(R_cooldown-L_cooldown)./2; 

  
ABS_Diff_baseline=abs((R_baseline-L_baseline)./2); 
ABS_Diff_1=abs((R_1-L_1)./2); 
ABS_Diff_2=abs((R_2-L_2)./2); 
ABS_Diff_3=abs((R_3-L_3)./2); 
ABS_Diff_4=abs((R_4-L_4)./2); 
ABS_Diff_5=abs((R_5-L_5)./2); 
ABS_Diff_6=abs((R_6-L_6)./2); 
ABS_Diff_7=abs((R_7-L_7)./2); 
ABS_Diff_cooldown=abs((R_cooldown-L_cooldown)./2); 

  
Variance_1=var(Diff_1); 

  

  
xdiff_baseline=1:length(Diff_baseline); 
Goal_baseline(xdiff_baseline)=zeros; 
%Bound_baseline(xdiff_baseline)=boundary(xdiff_baseline,Diff_baseline); 
figure(1) 
plot(Diff_baseline,xdiff_baseline,'r',Goal_baseline,xdiff_baseline,'b') 
axis([-20,20,0,300]) 
title('Baseline-Difference Equation') 
xlabel('Difference ((R-L)/2))') 
ylabel('Time(s)') 
line('XData',[-Variance_1 -Variance_1],'YData',[0 300],'LineStyle', '-', 

'LineWidth',2,'Color','r') 
line('XData',[Variance_1 Variance_1],'YData',[0 300],'LineStyle', '-', 

'LineWidth',2,'Color','r') 

  
xdiff_1=1:length(Diff_1); 
Goal_1(xdiff_1)=zeros; 
figure(2) 
plot(Diff_1,xdiff_1,'r',Goal_1,xdiff_1,'b') 
axis([-20,20,0,120]) 
title('Round 1 (0%)-Difference Equation') 
xlabel('Difference ((R-L)/2))') 
ylabel('Time(s)') 
line('XData',[-Variance_1 -Variance_1],'YData',[0 300],'LineStyle', '-', 

'LineWidth',2,'Color','r') 
line('XData',[Variance_1 Variance_1],'YData',[0 300],'LineStyle', '-', 

'LineWidth',2,'Color','r') 

  

  
xdiff_2=1:length(Diff_2); 
Goal_2(xdiff_2)=zeros; 
figure(3) 
plot(Diff_2,xdiff_2,'r',Goal_2,xdiff_2,'b') 
axis([-20,20,0,120]) 
title('Round 2 (15%)-Difference Equation') 
xlabel('Difference ((R-L)/2))') 
ylabel('Time(s)') 
line('XData',[-Variance_1 -Variance_1],'YData',[0 300],'LineStyle', '-', 

'LineWidth',2,'Color','r') 
line('XData',[Variance_1 Variance_1],'YData',[0 300],'LineStyle', '-', 

'LineWidth',2,'Color','r') 
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xdiff_3=1:length(Diff_3); 
Goal_3(xdiff_3)=zeros; 
figure(4) 
plot(Diff_3,xdiff_3,'r',Goal_3,xdiff_3,'b') 
axis([-20,20,0,120]) 
title('Round 3 (25%)-Difference Equation') 
xlabel('Difference ((R-L)/2))') 
ylabel('Time(s)') 
line('XData',[-Variance_1 -Variance_1],'YData',[0 300],'LineStyle', '-', 

'LineWidth',2,'Color','r') 
line('XData',[Variance_1 Variance_1],'YData',[0 300],'LineStyle', '-', 

'LineWidth',2,'Color','r') 

  

  
xdiff_4=1:length(Diff_4); 
Goal_4(xdiff_4)=zeros; 
figure(5) 
plot(Diff_4,xdiff_4,'r',Goal_4,xdiff_4,'b') 
axis([-20,20,0,120]) 
title('Round 4 (5%)-Difference Equation') 
xlabel('Difference ((R-L)/2))') 
ylabel('Time(s)') 
line('XData',[-Variance_1 -Variance_1],'YData',[0 300],'LineStyle', '-', 

'LineWidth',2,'Color','r') 
line('XData',[Variance_1 Variance_1],'YData',[0 300],'LineStyle', '-', 

'LineWidth',2,'Color','r') 

  

  
xdiff_5=1:length(Diff_5); 
Goal_5(xdiff_5)=zeros; 
figure(6) 
plot(Diff_5,xdiff_5,'r',Goal_5,xdiff_5,'b') 
axis([-20,20,0,120]) 
title('Round 5 (10%)-Difference Equation') 
xlabel('Difference ((R-L)/2))') 
ylabel('Time(s)') 
line('XData',[-Variance_1 -Variance_1],'YData',[0 300],'LineStyle', '-', 

'LineWidth',2,'Color','r') 
line('XData',[Variance_1 Variance_1],'YData',[0 300],'LineStyle', '-', 

'LineWidth',2,'Color','r') 

  
xdiff_6=1:length(Diff_6); 
Goal_6(xdiff_6)=zeros; 
figure(7) 
plot(Diff_6,xdiff_6,'r',Goal_6,xdiff_6,'b') 
axis([-20,20,0,120]) 
title('Round 6 (20%)-Difference Equation') 
xlabel('Difference ((R-L)/2))') 
ylabel('Time(s)') 
line('XData',[-Variance_1 -Variance_1],'YData',[0 300],'LineStyle', '-', 

'LineWidth',2,'Color','r') 
line('XData',[Variance_1 Variance_1],'YData',[0 300],'LineStyle', '-', 

'LineWidth',2,'Color','r') 
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xdiff_7=1:length(Diff_7); 
Goal_7(xdiff_7)=zeros; 
figure(8) 
plot(Diff_7,xdiff_7,'r',Goal_7,xdiff_7,'b') 
axis([-20,20,0,120]) 
title('Round 7 (0%)-Difference Equation') 
xlabel('Difference ((R-L)/2))') 
ylabel('Time(s)') 
line('XData',[-Variance_1 -Variance_1],'YData',[0 300],'LineStyle', '-', 

'LineWidth',2,'Color','r') 
line('XData',[Variance_1 Variance_1],'YData',[0 300],'LineStyle', '-', 

'LineWidth',2,'Color','r') 

  

  

  
xdiff_cooldown=1:length(Diff_cooldown); 
Goal_cooldown(xdiff_cooldown)=zeros; 
%Bound_cooldown=boundary(Diff_cooldown); 
figure(9) 
plot(Diff_cooldown,xdiff_cooldown,'r',Goal_cooldown,xdiff_cooldown,'b') 
axis([-20,20,0,120]) 
title('Cooldown-Difference Equation') 
xlabel('Difference ((R-L)/2))') 
ylabel('Time(s)') 
line('XData',[-Variance_1 -Variance_1],'YData',[0 120],'LineStyle', '-', 

'LineWidth',2,'Color','r') 
line('XData',[Variance_1 Variance_1],'YData',[0 120],'LineStyle', '-', 

'LineWidth',2,'Color','r') 

  
%% 
prompt='What is the Time value?'; 
n_1=input(prompt); 
n_2=input(prompt); 
n_3=input(prompt); 
n_4=input(prompt); 
n_5=input(prompt); 
n_6=input(prompt); 
n_7=input(prompt); 

  

  
T_interval_1=n_1:n_1+30; 
T_interval_2=n_2:n_2+30; 
T_interval_3=n_3:n_3+30; 
T_interval_4=n_4:n_4+30; 
T_interval_5=n_5:n_5+30; 
T_interval_6=n_6:n_6+30; 
T_interval_7=n_7:n_7+30; 

  

  
%V_0_1=var(Diff_1(13:43)); 
%V_10=var(Diff_2(49:79)); 
%V_15=var(Diff_3(27:57)); 
%V_20=var(Diff_4(37:67)); 
%V_25=var(Diff_5(37:67)); 
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%V_5=var(Diff_6(70:100)); 
%V_0_2=var(Diff_7(12:42)); 
%V_B=var(Diff_baseline(180:210)); 
%V_C=var(Diff_cooldown(30:60)); 

  
V_0_1_test=var(Diff_1(T_interval_1)); 
V_1_test=var(Diff_2(T_interval_2));  %first percentage 
V_2_test=var(Diff_3(T_interval_3));  %second percentage 
V_3_test=var(Diff_4(T_interval_4));  %third percentage 
V_4_test=var(Diff_5(T_interval_5));  %fourth percentage 
V_5_test=var(Diff_6(T_interval_6));  %Fifth percentage 
V_0_2_test=var(Diff_7(T_interval_7)); 
V_B=var(Diff_baseline(180:210)); 
%V_B=var(Diff_baseline(1:31)); 
V_C=var(Diff_cooldown(30:60)); 

  
V_total=[V_B V_0_1_test V_1_test V_2_test V_3_test V_4_test V_5_test 

V_0_2_test V_C]; 

  
M_0_1=mean(Diff_1(T_interval_1)); 
M_1=mean(Diff_2(T_interval_2)); 
M_2=mean(Diff_3(T_interval_3)); 
M_3=mean(Diff_4(T_interval_4)); 
M_4=mean(Diff_5(T_interval_5)); 
M_5=mean(Diff_6(T_interval_6)); 
M_0_2=mean(Diff_7(T_interval_7)); 
M_B=mean(Diff_baseline(180:210)); 
%M_B=mean(Diff_baseline(1:31)); 
M_C=mean(Diff_cooldown(30:60)); 

  
M_total=[M_B M_0_1 M_1 M_2 M_3 M_4 M_5 M_0_2 M_C]; 

  
ABS_M_0_1=mean(ABS_Diff_1(T_interval_1)); 
ABS_M_1=mean(ABS_Diff_2(T_interval_2)); 
ABS_M_2=mean(ABS_Diff_3(T_interval_3)); 
ABS_M_3=mean(ABS_Diff_4(T_interval_4)); 
ABS_M_4=mean(ABS_Diff_5(T_interval_5)); 
ABS_M_5=mean(ABS_Diff_6(T_interval_6)); 
ABS_M_0_2=mean(ABS_Diff_7(T_interval_7)); 
ABS_M_B=mean(ABS_Diff_baseline(180:210)); 
%ABS_M_B=mean(ABS_Diff_baseline(1:31)); 
ABS_M_C=mean(ABS_Diff_cooldown(30:60)); 

  

  
ABS_M_total=[ABS_M_B ABS_M_0_1 ABS_M_1 ABS_M_2 ABS_M_3 ABS_M_4 ABS_M_5 

ABS_M_0_2 ABS_M_C]; 

  
V_T=transpose(V_total); 
M_T=transpose(M_total); 
ABS_M_T=transpose(ABS_M_total); 

  
%M_0_1=mean(Diff_1(13:43)); 
%M_10=mean(Diff_2(49:79)); 
%M_15=mean(Diff_3(27:57)); 
%M_20=mean(Diff_4(37:67)); 
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%M_25=mean(Diff_5(37:67)); 
%M_5=mean(Diff_6(70:100)); 
%M_0_2=mean(Diff_7(12:42)); 
%M_B=mean(Diff_baseline(180:210)); 
%M_C=mean(Diff_cooldown(30:60)); 
%% 
%Getting AVG total body weight  

  
AvgTBW_0_1=mean(TBW_1(T_interval_1)); 
AvgTBW_1=mean(TBW_2(T_interval_2)); 
AvgTBW_2=mean(TBW_3(T_interval_3)); 
AvgTBW_3=mean(TBW_4(T_interval_4)); 
AvgTBW_4=mean(TBW_5(T_interval_5)); 
AvgTBW_5=mean(TBW_6(T_interval_6)); 
AvgTBW_0_2=mean(TBW_7(T_interval_7)); 
AvgTBW_B=mean(TBW_baseline(180:210)); 
%AvgTBW_B=mean(TBW_baseline(1:31)); 
AvgTBW_C=mean(TBW_cooldown(30:60)); 

  
AvgTBW_total=[AvgTBW_B AvgTBW_0_1 AvgTBW_1 AvgTBW_2 AvgTBW_3 AvgTBW_4 

AvgTBW_5 AvgTBW_0_2 AvgTBW_C]; 

  
AVGTBW_T=transpose(AvgTBW_total); 

  
%% 
%Getting speed  
fflag=0; 
k=1; 
cnt=1; 
for i=1:length(Index) 
    if Index(i)>4.1 & fflag==0 
        P(k)=i; 
        fflag=1; 
        k=k+1; 
    else  
        cnt=cnt+1; 
    end  
    if cnt==200 
        cnt=0; 
        fflag=0; 
    end  
end 
I=transpose(P); 

  
Test(1:length(P)+1)=[0 P]; 
Test_2=[P 0]; 
Test_3=Test_2-Test; 
Test_4=find(Test_3<100); 

  
F=Test_2; 
F(Test_4)=[]; 
clear I; 
FF=transpose(F); 
I=FF; 
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%for jj=1:length(I)+100 
 %     H(jj)=mean(Time(I(jj):I(jj+1))); 
%end 

  
%T=transpose(H); 

  

  
T_1=90000; %baseline 
T_2=126000; %0 percent 
T_3=162000; %2nd percentage 
T_4=198000; %3rd percentage %T_4=find(T>479 & T<480); 
T_5=234000; %4th percentage 
T_6=270000; %5th percentage  %T_6=find(T>719 & T<720); 
T_7=306000;  %6th percentage %T_7=find(T>839 & T<840); T_7=find(T>838 & 

T<840); 
T_8=342000; %2nd 0 percent 
T_9=378000; %cooldown 

  

  
I_baseline=find(FF>T_1-1000 & FF<T_1); 
I_1=find(FF>T_2-1000 & FF<T_2); 
I_2=find(FF>T_3-1000 & FF<T_3); 
I_3=find(FF>T_4-1000 & FF<T_4); 
I_4=find(FF>T_5-1000 & FF<T_5); 
I_5=find(FF>T_6-1000 & FF<T_6); 
I_6=find(FF>T_7-1000 & FF<T_7); 
I_7=find(FF>T_8-1000 & FF<T_8); 
I_cooldown=find(FF>T_9-1000 & FF<T_9); 

  
I_baseline=I_baseline(end); 
I_1=I_1(end); 
I_2=I_2(end); 
I_3=I_3(end); 
I_4=I_4(end); 
I_5=I_5(end); 
I_6=I_6(end); 
I_7=I_7(end); 
I_cooldown=I_cooldown(end); 
%delete the smaller number in the breakup of I 

  
%cycles-need to subtract each position to get number of cycles 
Cycles_baseline=I_baseline; 
Cycles_1=I_1-I_baseline; 
Cycles_2=I_2-I_1; 
Cycles_3=I_3-I_2; 
Cycles_4=I_4-I_3; 
Cycles_5=I_5-I_4; 
Cycles_6=I_6-I_5; 
Cycles_7=I_7-I_6; 
Cycles_cooldown=I_cooldown-I_7; 
%Cycles_9=I_9-I_8; 

  
%Speed cycles/sec 
Speed_second_baseline=Cycles_baseline/300; 
Speed_second_1=Cycles_1/120; 
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Speed_second_2=Cycles_2/120; 
Speed_second_3=Cycles_3/120; 
Speed_second_4=Cycles_4/120; 
Speed_second_5=Cycles_5/120; 
Speed_second_6=Cycles_6/120; 
Speed_second_7=Cycles_7/120; 
Speed_second_cooldown=Cycles_cooldown/120; 
%Speed_second_9=Cycles_9/120; 

  
Total_speed=[Speed_second_baseline Speed_second_1 Speed_second_2 

Speed_second_3 Speed_second_4 Speed_second_5 Speed_second_6 Speed_second_7 

Speed_second_cooldown]; 

  
T_speed=transpose(Total_speed); 
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Chapter 6 
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Chapter 6: Conclusion of dissertation 

 

 The purpose of this dissertation research was to construct a low-cost system to encourage 

increased weight acceptance on the paretic limb while in dynamic stance. Although there exist 

devices aiming to improve gait symmetry, most focus on kinematics and velocity. Force platform 

devices coupled to visual biofeedback provide a promising technique, but training is often not 

transferrable to dynamic gait.. Kinetic visual biofeedback modifications were developed as an 

additional component to current training techniques.  

 This system is low-cost and provides real-time kinetic feedback during training (Chapters 

2 and 3) that encourages biased training towards the non-dominant weight bearing limb 

(Chapters 4 and 5). Chapter 5 of the dissertation shows promise towards incorporating this 

technique to improve gait symmetry post training.  

Future Research 

 Further research is needed to determine long-term effects of training with this system. A 

controlled trial with a large cohort of subjects who have suffered stroke is necessary to determine 

if such a device could improve current treatments in gait rehabilitation.  

 Further modifications can be made to the elliptical to improve ergonomics and assistance 

provided for patients who have had a stroke. One such modification would be an assist motor to 

help patients propel the pedals forward in a controlled fashion.  
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