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ABSTRACT

SACHIN PATIL: Closed-Loop Planning and Control of Steerable Medical Needles
(Under the direction of Ron Alterovitz)

Steerable needles have the potential to increase the effectiveness of needle-based clinical proce-

dures such as biopsy, drug delivery, and radioactive seed implantation for cancer treatment. These

needles can trace curved paths when inserted into tissue, thereby increasing maneuverability and

targeting accuracy while reaching previously inaccessible targets that are behind sensitive or impene-

trable anatomical regions. Guiding these flexible needles along an intended path requires continuously

inserting and twisting the needle at its base, which is not intuitive for a human operator. In addition,

the needle often deviates from its intended trajectory due to factors such as tissue deformation,

needle-tissue interaction, noisy actuation and sensing, modeling errors, and involuntary patient

motions. These challenges can be addressed with the assistance of robotic systems that automatically

compensate for these perturbations by performing motion planning and feedback control of the

needle in a closed-loop fashion under sensory feedback.

We present two approaches for efficient closed-loop guidance of steerable needles to targets

within clinically acceptable accuracy while safely avoiding sensitive or impenetrable anatomical

structures. The first approach uses a fast motion planning algorithm that unifies planning and control

by continuously replanning, enabling correction for perturbations as they occur. We evaluate our

method using a needle steering system in phantom and ex vivo animal tissues. The second approach

integrates motion planning and feedback control of steerable needles in highly deformable environ-

ments. We demonstrate that this approach significantly improves the probability of success compared

to prior approaches that either consider uncertainty or deformations but not both simultaneously. We

also propose a data-driven method to estimate parameters of stochastic models of steerable needle

motion. These models can be used to create realistic medical simulators for clinicians wanting to

train for steerable needle procedures and to improve the effectiveness of existing planning and control

methods.
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This dissertation advances the state of the art in planning and control of steerable needles and is

an important step towards realizing needle steering in clinical practice. The methods developed in

this dissertation also generalize to important applications beyond medical needle steering, such as

manipulating deformable objects and control of mobile robots.
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CHAPTER 1

Introduction

Needles are widely used in many minimally invasive clinical procedures for diagnosis and

treatment, including retrieval of tissue samples for biopsies, and administering therapies such as

delivering drugs, implanting radioactive seeds for cancer treatment, and facilitating thermal ablation

of cancerous tissue. Once inserted, a needle can also serve as a guide for introduction of a sheath

through which catheters and other medical devices can be introduced to reach clinical targets deep

inside a patient’s anatomy. As sensors, manipulators, and other medical devices continue to become

smaller, applications for needle-based interventional procedures will continue to expand.

Currently, needle-based procedures are performed by clinicians using stiff needles under image

guidance provided by modalities such as ultrasound, computed tomography (CT), and magnetic

resonance imaging (MRI). Performing these procedures using stiff needles is limited to straight

line paths between the needle entry location and the desired target, which can cause puncturing of

sensitive tissues leading to increased patient trauma and recuperation times (Fig. 1.1a). Moreover,

the use of stiff needles can result in deviations from the straight line path due to factors such as

needle/tissue deformation, involuntary patient motions, and noisy actuation and imaging feedback,

with limited ability to correct for this error during insertion (Abolhassani et al., 2007).

As an alternative to stiff needles, we consider a new class of needles that can steer along

curved paths through soft tissues (Cowan et al., 2011). These steerable needles offer improved

maneuverability within tissue during insertion and greater targeting accuracy. They also facilitate

access to previously inaccessible clinical targets while avoiding puncturing sensitive anatomical

tissues such as vital organs and vessels and avoiding impenetrable structures such as bones (Fig. 1.1b).
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Figure 1.1: Anatomical scenario modeling the human male pelvic region for simulating delivery of
radioactive doses to targets within the prostate for cancer treatment [reproduced with permission
from (Chentanez et al., 2009)]. (a) Performing needle-based procedures using stiff needles can cause
puncturing of sensitive tissues (such as Cowper’s glands in this instance) leading to increased patient
trauma and recuperation times. (b) Using a steerable needle offers increased maneuverability while
enabling access to previously inaccessible clinical targets without puncturing sensitive tissues.

1.1 Steerable Needle Model

In this work, we consider steerable needles with a flexible needle shaft and a bevel-tip (see

Fig. 1.2a). Even though our emphasis is on bevel-tip steerable needles, the contributions of this

dissertation are also applicable to other asymmetric-tip steerable needles such as needles with stylet

tips (Okazawa et al., 2005) or programmable bevel-tips (Ko et al., 2011).

The needle is externally controlled by inserting and twisting the needle at its base. The needle is

maneuvered within tissue by reorienting the bevel-tip through twists applied to the needle base. The

flexible needle shaft bends due to reaction forces from the tissue on the bevel-tip, causing the needle

to follow constant curvature paths within tissue in the direction of the bevel (Webster III et al., 2006).

The natural curvature is dependent on the material properties of both the needle and the tissue.

The state of the needle tip is defined by the position and orientation as defined in a world

coordinate frame (see Fig. 1.2b). The forward motion of the needle is subject to nonholonomic

constraints, i.e., similar to a car or an airplane, the needle cannot instantaneously move in arbitrary

directions in its 6D state space. Since only two control inputs (insertions and twists) are available to

control the needle in its 6D state space, it is also an under-actuated system. In fact, the needle is not
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Figure 1.2: (a) Steerable needle with a pre-bent bevel-tip. The shaft of the needle is flexible and the
reaction forces from the tissue cause the needle to follow curved paths when inserted. The needle
tip can be reoriented by applying twists to the base of the needle. (b) The state of the needle tip is
defined by the position of the needle tip [x, y, z]T ∈ R3 and the orientation defined in terms of the
[x,y, z]-axes of the local coordinate frame attached to the tip of the needle. The needle is actuated
by insertions and twists applied to the base of the needle.

small-time locally controllable, i.e., any state close to the current state is not reachable in arbitrarily

small amounts of time by paths close to the current state (Murray et al., 1994; Kallem, 2008).

As with all real world robotic systems, there is uncertainty involved with steerable needle

procedures and it causes the needle to deviate from its intended trajectory. This uncertainty can arise

from several factors such as unpredictable actuation, noisy and partial measurements from sensors,

unpredictable needle-tissue interaction, and involuntary patient motions.

In addition, the mechanics of steerable needle insertion into soft tissue depends on the interaction

between the needle and the tissue and the deformations in both the flexible needle and tissue resulting

from these interactions (Chentanez et al., 2009). The coupling between the needle and tissue intro-

duces new complications which cause noisy needle behavior. For instance, tissue inhomogeneities

can cause the needle shaft to deflect during insertion, and friction between the needle and tissue

could cause torsional buildup along the needle shaft when twists are applied to the base.

Analyzing all aspects of steerable needle insertion and sources of uncertainty remains a chal-

lenging problem. For these reasons, guiding a steerable needle around anatomical obstacles to a

target region under image guidance is challenging for a human operator. Creating a needle steering

robotic system that assists clinicians and addresses these challenges could enable new needle-based

procedures and substantially improve the clinical outcomes of some existing needle-based procedures.
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Figure 1.3: Workflow for a clinically viable robotic system for steerable needle procedures. This
dissertation advances the state of the art in planning and control of steerable needles and is an
important step towards realizing needle steering in clinical practice. The clinician, who is responsible
for the procedure, receives feedback from all components of the system, although these edges are
omitted for succinctness.

1.2 Robotic Needle Steering

Several image-guided needle placement and insertion systems have been developed for stiff

needles, including commercial systems (Philips Healthcare, 2012; General Electric (GE) Healthcare,

2012; InnerOptic Inc., 2012) and clinically viable academic prototypes (Fichtinger et al., 2008; Long

et al., 2012; Hungr et al., 2012; Seifabadi et al., 2012). However, these systems are currently limited

to stiff needles and optimize straight line paths between the insertion location and the target, which

can potentially result in damage to sensitive tissues. Robotic needle steering systems for performing

steerable needle procedures can help overcome these deficiencies.

Fig. 1.3 shows the workflow for a clinically viable robotic needle steering system. In the

preoperative stage, high resolution scans (e.g., preoperative sensing modalities such as CT or MRI)

of the anatomical region of interest in the patient are acquired. In the modeling phase, the clinician

identifies sensitive structures such as glands or blood vessels and other obstacles such as bones. The

clinician also specifies the insertion location of the needle, the clinical target, a clinically motivated

optimization criteria, and a characterization of the steerable needle’s curvature. In the intraoperative

stage, the planning and control system plans and controls the motion of the needle in a closed-loop
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fashion using measurements of the state of the system (both needle and tissue) obtained from low

resolution sensing devices such as ultrasound or electromagnetic tracking. The system is either fully

autonomous or semi-autonomous with a clinician in the loop to adjust execution as needed.

1.3 Challenges for Closed-Loop Planning and Control

The planning and control system is an important part of the robotic needle steering system. We

discuss the challenges associated with closed-loop planning and control of steerable needles below.

As discussed in Sec. 1.1, the needle is an under-actuated nonholonomic system. Motion planning

and control for such systems is challenging. Since deformable objects have possibly infinite degrees

of freedom, planning and control of a very high-dimensional, coupled system comprising of the needle

and tissue is a hard problem. In addition, steerable needle procedures are subject to considerable

deformations and uncertainty which are responsible for large deviations in the motion of the needle,

anatomical structures, and clinical targets within the tissue.

A highly accurate, deterministic model of steerable needle motion in human tissues would make

motion planning and control less challenging. In spite of many prior efforts (Cowan et al., 2011),

modeling all aspects of steerable needle insertion remains challenging to accomplish efficiently and

accurately because of the complexity of modeling deformation behaviors, modeling the interaction

of the needle with the deformable object, and incorporating uncertainty from several sources. As a

consequence, the model is often deliberately chosen to be a simplification. The mismatch between

modeling and reality is treated as an additional source of uncertainty and is addressed using closed-

loop planning and control techniques.

For computational tractability, we begin by using a simplified model for planning and control

that assumes that the needle bends to follow the needle tip exactly, i.e., the tissue does not deform the

needle shaft. We also assume that the insertions and twists applied to the needle base are directly and

exactly transmitted to the needle tip, i.e., there is no buckling or torsion along the needle shaft. This

implies that the motion of the needle is fully determined by the motion of the needle tip. Instead of

dealing with a high-dimensional coupled system, we then consider the planning and control problem

in a reduced 6D state space of the needle tip. Our objective is to address the uncertainty in steerable

needle motion in soft tissue, which includes accounting for mismatch between modeling and reality.
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It is also important to evaluate how good any planning and control approach is for steerable

needle procedures because some executions are significantly better than others. There are three key

clinically motivated criteria for evaluating an approach:

1. Accuracy: The success of any needle-based procedure depends on the targeting accuracy.

Large errors between the final position of the needle tip and the desired clinical target can have

undesirable consequences. For example, poor placement during biopses leads to false negatives

and inaccurate placement of radioactive seeds for cancer treatment destroys healthy instead of

cancerous tissue (Bogdanich, 2009). Accurate needle insertion is sufficiently difficult that poor

accuracy is common in practice. For example, experienced clinicians inserting radioactive

seeds into the prostate gland for brachytherapy prostate cancer treatment experience average

placement errors of 6.3 mm, about 15% of the prostates diameter (Taschereau et al., 2000).

Other studies have found that the targeting errors for biopsies performed by experienced

clinicians averages between 5.5–6.5 mm when performing procedures using rigid needles (Blu-

menfeld et al., 2007; Schouten et al., 2012). Robotic systems for placement and insertion of

stiff needles achieve targeting errors to the order of ≈1–4 mm (Fichtinger et al., 2008; Xu

et al., 2010; Long et al., 2012; Seifabadi et al., 2012; Hungr et al., 2012).

2. Safety: It is crucial that the needle avoids impenetrable anatomical structures such as bones

and sensitive structures such as glands and vessels. For instance, damage to glands during

prostate biopsies can cause problems such as incontinence (Wilt et al., 2008). Another aspect

of safety deals with minimizing the amount of tissue cut during a procedure. This might be

important for procedures being performed in critical organs such as the brain (Field et al.,

2001). Trajectories that maximize safety are less likely to cause collisions with anatomical

structures when deviations occur, but these trajectories tend to be longer, thereby increasing

the amount of tissue cut during the procedure. It is important to consider the trade-off between

avoiding specified structures and tissue cut during a procedure.

3. Efficiency: It is also important to consider the total procedure time for steerable needle

procedures. A 2005 study of U.S. hospitals found that operating room charges averaged $62

per minute (range: $22 to $133 per minute) (Shippert, 2005). For a needle steering robotic
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system to be clinically viable, it would need to efficiently perform procedures within a few

minutes to minimize risk to the patient and operating costs.

Considering these statistics, a robotic needle steering system that achieves mean targeting errors

that are lower than current clinical practice, is capable of safely avoiding sensitive anatomical

structures, and can facilitate efficient execution of procedures could improve patient care. It would

have the added advantage of enabling clinicians to avoid anatomical obstacles and minimize tissue

damage and patient trauma as compared to traditional stiff needles.

1.4 Thesis Statement

In this dissertation, we present approaches for closed-loop motion planning and control (or

steering) of steerable needles under sensory feedback. The objective of planning and control can be

stated as follows. Given the initial position and orientation of the needle tip, the target region, and a

specification of the anatomy and characterization of the steerable needle’s properties, the objective is

to steer the needle to clinical targets under sensory feedback while avoiding anatomical structures

and optimizing clinically relevant criteria.

My thesis is as follows:

Efficient motion planning and control techniques that consider uncertainty and deformations can

facilitate closed-loop guidance of steerable needles to targets within clinically acceptable targeting

accuracy while safely avoiding clinician-specified anatomical structures.

1.5 Main Results

In support of my thesis, I will present several results relating to efficient closed-loop planning

and control of steerable needles.

1.5.1 Needle Steering in 3D via Rapid Replanning

In this work, we present a new approach for automatically guiding the steerable needle to targets

in 3D environments while avoiding obstacles and compensating for real-world uncertainties. We

unify planning and control using a new, fast algorithm that continuously replans the needle motion to
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handle unexpected perturbations. In contrast to the standard practice of planning a feasible trajectory

and then using a feedback controller for correcting uncertain perturbations, our motion planner is

sufficiently fast enough to correct for perturbations in needle, obstacle, or target motion as they occur.

Our rapid replanning approach is enabled by an efficient sampling-based rapidly exploring random

tree (RRT) planner that achieves orders of magnitude reduction in computation time compared to

prior 3D approaches by incorporating variable curvature kinematics and a novel distance metric

for planning. We also consider two clinically motivated criteria for planning: minimizing insertion

length (minimizing tissue cut) and maximizing clearance (safety) from critical anatomical structures.

We integrated our algorithm with a needle steering system consisting of a bevel-tip steerable

needle, a needle steering robot, and an electromagnetic tracker for estimating the needle tip pose in

tissue. Given preoperative medical images, the clinician specifies the insertion location and target

region as well as obstacles comprising of sensitive structures such as glands or blood vessels and

impenetrable structures such as bones. Our rapid replanner then automatically guides the needle

around anatomical obstacles to the target region with high accuracy. We provide experimental

results to demonstrate that the approach can work in a practical clinically-inspired scenario. In our

experiments, the system guided the needle tip in 3D to targets in phantom and ex vivo animal tissues

with obstacles and achieved targeting errors averaging below 3 mm. In achieving these low targeting

errors, our rapid re-planning approach overcame substantial uncertainty: open-loop needle steering

resulted in errors exceeding 1 cm. Our experiments demonstrate that our system can achieve targeting

accuracy that exceeds current clinical practice while simultaneously enabling avoidance of obstacles.

A preliminary version of this work was published in (Patil and Alterovitz, 2010a).

1.5.2 Data-Driven Stochastic Models for Simulating Steerable Needle Procedures

The goal of this work is to create a stochastic model that captures needle behavior. We present a

data-driven method for estimating the parameters of a stochastic model of the needle motion. This

stochastic model can be used to create realistic medical simulators for clinicians to train for steerable

needle procedures and to improve the effectiveness of existing planning and control methods.

Since it is difficult to efficiently and accurately model the needle motion and its behavior within

tissue and the model would vary on a per-patient basis, we instead use a simplified model of the

needle tip motion and add stochasticity to the model to account for real-world perturbations occurring
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during procedures. We also consider stochastic models to account for noisy and partial measurements

obtained during intraoperative sensing. We use the expectation-maximization (EM) algorithm to

estimate the parameters of this stochastic model using data gathered from prior experiments and

procedures. We present simulation results to validate our stochastic model.

1.5.3 Unified Framework for Planning and Control in Deformable Environments

In this work, we present a unified framework for planning and control of steerable needles in

deformable environments that simultaneously considers large deformations and substantial uncer-

tainty. Prior motion planning methods for deformable environments either assume deterministic

deformations, which may result in unsafe paths, or compute plans in a static world and consider

deformations as a type of perturbation, which neglects the large time-dependent motions of the

obstacles and target. Our unified framework, which simultaneously accounts for both uncertainty

and deformations, results in a significantly higher probability of success in plan execution.

Our method requires a simulator of steerable needle procedures. We use a sampling-based motion

planner based on the simulator to generate a set of candidate motion plans that assume expected

deformations. We then use the simulator and optimal control to numerically estimate time-dependent

state distributions based on uncertain parameters (e.g. deformable material properties or actuation

and sensing errors). We use this information to generate an optimal linear-quadratic (LQG) feedback

controller for each candidate plan to mitigate any uncertainty in the expected deformations that

occur during the actual execution of the plan. Since computing an optimal controller using the full

deformable system state is computationally prohibitive, we observe that it is possible to formulate the

optimal control problem using a subset of the full state space. We then present an efficient method

to select the plan with the highest estimated probability of successfully avoiding obstacles and

reaching the goal region. Using FEM-based simulation of deformable tissues, we demonstrate that

our method can generate high quality plans for guiding steerable needles around obstacles to clinical

targets under 2D image guidance in the presence of considerable deformations and uncertainty. We

demonstrate that our approach significantly improves the probability of success compared to prior

approaches based on standard feedback controllers or motion planners that do not simultaneously

consider deformations and uncertainty. Results from this work were published in (Patil et al., 2011)

and (Patil et al., 2012).
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1.6 Organization

The rest of this dissertation is organized as follows. Chapter 2 presents the rapid replanning

algorithm for closed-loop needle steering in 3D environments with obstacles. It also provides details

about our needle steering system and presents experimental results for needle steering in phantom and

ex vivo tissues. Chapter 3 describes a data-driven method for estimating parameters of a stochastic

model of the needle behavior in tissue. Chapter 4 presents a unified planning framework that takes

into account both uncertainty and deformations, by combining sampling-based motion planning in

deformable environments with feedback control techniques. Finally, Chapter 5 presents a summary

of our contributions and presents avenues for future work.
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CHAPTER 2

Needle Steering in 3D via Rapid Replanning

In this chapter, we present a new approach for automatically guiding steerable needles to

targets in 3D environments while avoiding obstacles and compensating for real-world perturbations.

We unify planning and control using a new, fast algorithm that continuously replans the needle

motion while optimizing clinically motivated criteria. Our rapid replanning approach is enabled

by an efficient sampling-based rapidly exploring random tree (RRT) planner that achieves orders

of magnitude reduction in computation time compared to prior 3D approaches by incorporating

variable curvature kinematics and a novel distance metric for planning. We experimentally evaluate

our approach for needle steering using tissue phantoms and ex vivo animal tissue. We demonstrate

that our rapid replanning strategy successfully guides the needle around obstacles to desired 3D

targets with an average error of less than 3 mm, which exceeds the current standard for clinical care.

2.1 Rapid Replanning

We present a novel approach for closed-loop needle steering in 3D environments with obstacles

that unifies motion and planning and control. In contrast to the standard practice of planning a

feasible trajectory and then using a feedback controller for correcting uncertain perturbations, our

motion planner is fast enough to correct for perturbations in needle, obstacle, or target motion as they

occur. This eliminates the need for a separate feedback controller, which can be difficult to create

and tune for nonholonomic robots like steerable needles. Moreover, such controllers do not provide

obstacle avoidance guarantees, which is critical for many steerable needle procedures. Another

advantage of our approach is that the planner considers the global state of the system at each time

step, rather than just locally correcting for perturbations. This could account for displacements of the

target region and obstacles due to tissue deformation during the procedure.
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Figure 2.1: Closed-loop needle steering via rapid replanning. Given the current needle tip state,
target region, a specification of the anatomy, and characterization of the steerable needle’s properties,
our approach uses a fast, randomized motion planner to compute in the available time many feasible
motion plans across homotopy classes (top left). The method selects the best plan based on optimiza-
tion criteria such as minimizing path length or maximizing clearance from obstacles (top right). We
execute the first control input of the plan and measure the state of the needle tip (bottom). The actual
state of the needle tip deviates from the model predicted state because of uncertainty. We repeat the
planning process, hence replanning, starting from the actual needle tip state. This approach is made
possible by a new, fast planner capable of computing hundreds of feasible plans per second.

Our new rapid replanning approach uses a customized, sampling-based motion planner that

speeds up motion planning for steerable needles to the point that it can be done in real time with

typical needle insertion velocities. To enable sub-second planning times, we leverage several

observations and algorithmic advances. First, in contrast to prior motion planning approaches for

needle steering, we relax the constant curvature path assumption by planning variable curvature paths

and using duty cycled spinning during insertion (Minhas et al., 2007; Engh et al., 2010) to adjust the

needle’s net curvature. Second, we propose a new distance metric for incremental expansion of the

rapidly-exploring search tree to significantly improve planner performance. These help us achieve

orders of magnitude reduction in computation time compared to prior sampling-based planners (Xu

et al., 2009) and make the planner suitable for closed-loop needle steering. We also use the fast

performance to enable us to consider two clinically motivated optimization criteria: minimizing

insertion length and maximizing clearance from critical anatomical structures.

We present a complete needle steering system capable of automatically reaching targets in 3D

environments while avoiding obstacles and compensating for real-world uncertainties. Our system
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consists of a bevel-tip steerable needle, a needle steering robot, and an electromagnetic tracker for

estimating the needle tip pose in tissue. Given preoperative medical images, the clinician can specify

the insertion location and target region as well as sensitive structures such as glands or blood vessels

and other obstacles such as bones. Our rapid replanner then automatically guides the needle around

anatomical obstacles to the target region with high accuracy.

We provide experimental results to demonstrate that the approach can work in a practical clinical

scenario. In our experiments, the system guided the needle tip in 3D to targets in phantom and ex vivo

animal tissues with obstacles and achieved targeting errors averaging below 3 mm. In achieving these

low targeting errors, our rapid re-planning approach overcame substantial uncertainty: open-loop

needle steering resulted in errors exceeding 1 cm. In comparison to current standards for clinical

needle procedures, experienced physicians achieved targeting errors averaging 5.5–6.5 mm when

performing procedures using stiff needles (Taschereau et al., 2000; Blumenfeld et al., 2007; Schouten

et al., 2012). Our experiments demonstrate that our system can achieve targeting accuracy that

exceeds current clinical practice while simultaneously enabling avoidance of obstacles.

The rest of this chapter is organized as follows: Sec. 2.2 provides a survey of previous work on

planning and control for steerable needles. Sec. 2.3 summarizes the objective of our rapid replanning

framework and Sec. 2.4 presents details of the variable curvature kinematic model of the motion of

the needle tip used in this work. We provide details of our approach in Sec. 2.5 and describe our

needle steering system used in our experiments in Sec. 2.6. Finally, Sec. 2.7 presents experimental

results of needle steering in 3D environments with obstacles in phantom and ex vivo animal tissues

and we present a discussion of our approach and directions for future work in this regard in Sec. 2.8.

2.2 Related Work

Several needle steering techniques have been developed that allow clinicians to adjust the needle

path within tissue to improve targeting accuracy. These include bevel-tip flexible needles (Webster

III et al., 2006), symmetric-tip needles that can be steered by applying forces at the base (DiMaio and

Salcudean, 2003; Glozman and Shoham, 2007), stylet tips (Okazawa et al., 2005), programmable

bevel-tip needles (Ko et al., 2011), and pre-bent concentric tubes (Webster III and Jones, 2010). Our
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emphasis is on bevel-tip flexible needles, but our approach is also applicable to planning and control

of needles with stylets and programmable bevel-tip needles.

Significant advancements have been made in modeling, motion planning, and controlling bevel-

tip steerable needles (Cowan et al., 2011). A kinematic model generalizing a unicycle was experi-

mentally validated by Webster et al. (Webster III et al., 2006). This model was augmented to include

the effects of torsional friction along the needle shaft (Reed et al., 2009; Swensen and Cowan, 2012).

Minhas et al. (Minhas et al., 2007; Engh et al., 2010) showed that in addition to insertion speed

and rotation speed as control inputs, the curvature of the needle path can be controlled through

duty cycled spinning of the needle during insertion. The mechanics and characteristics of steerable

needles have been modeled for ex vivo tissue (Okamura et al., 2004; Misra et al., 2010), and in vivo

tissue (Majewicz et al., 2012). Chentanez et al. (Chentanez et al., 2009) created a physically-based

3D simulation that uses nonlinear FEM for modeling needle and tissue deformations and accounts

for topological changes occurring in the tissue mesh during needle insertion.

Motion planning for steerable needles in a plane (2D) has been extensively studied. Alterovitz et

al. (Alterovitz et al., 2007) developed a planner for planar needle steering that addresses the issue

of motion uncertainty by solving a Markov decision process (MDP) over a discretized state space

and assuming full state observations. Kallem et al. (Kallem and Cowan, 2009; Kallem et al., 2010)

developed a controller that stabilizes the needle to a desired plane. Reed et al. (Reed et al., 2011)

coupled the controller to the planar planner (Alterovitz et al., 2007) to create an image-guided needle

steering planning/control system and validated the approach in phantom tissues. These planning

and control strategies do not generalize to 6D state spaces encountered in needle steering in 3D

environments. Alterovitz et al. (Alterovitz et al., 2005) also take into account tissue deformations

during needle insertion but this work does not address the issue of uncertainty due to noisy actuation,

sensing, or errors in deformation modeling and simulation. Recently, Bernardes et al. (Bernardes

et al., 2012) presented a semi-automated planar needle steering system that uses an adaptive path

planning strategy to compensate for system uncertainties.

Motion planners for needle steering in 3D environments with obstacles have been proposed by

Duindam et al. based on optimization (Duindam et al., 2008) and inverse kinematics (Duindam et al.,

2010). Rapidly-exploring random trees (RRT) have been used in (Xu et al., 2009) to explore the full

6D state space of the needle tip to search for a feasible motion plan. Lobaton et al. (Lobaton et al.,
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2011) compute motion plans for the steerable needle by using an approach based on sampling spheres

of constant radii in the environment and concatenating trajectory segments on the surfaces of these

spheres. Sampling-based motion planners for needle steering in 3D environments are computationally

very expensive and not suitable for real-time operation. These planners also do not address the issue

of uncertainty. A path-of-probability algorithm based on diffusion-based error propagation was

developed by Park et al. (Park et al., 2010b), but this work does not take into account obstacles or

noisy sensory feedback. Open-loop execution of motion plans result in large targeting errors due to

deformation of the workspace and system uncertainties.

There is also prior work on controlling steerable needles in 3D environments to compensate for

errors during insertion. Hauser et al. (Hauser et al., 2009) propose a real-time feedback controller

which plans helical paths for 3D needle steering and experimentally demonstrate in simulation that

the controller is robust to motion deviation and noisy sensing, even for a greedy control selection

policy. Seiler et al. (Seiler et al., 2012) propose a fast trajectory correction method to compensate for

uncertainty and deformations in the environment during needle insertion. These controllers either

do not address the issue of obstacle avoidance or only propose a provisional solution and do not

provide any guarantees on safety and performance in the presence of obstacles. Van den Berg et

al. (van den Berg et al., 2010) propose a framework for planning and LQG-based feedback control of

a steerable needle under motion and sensing uncertainty. This framework was extended by Patil et

al. (Patil et al., 2011) for deformable environments. The LQG framework for estimation and control

used in this approach does not address the issue of control saturation, which is a practical concern

for needle steering. Prior LQG-based methods may fail due to control input saturation, which is a

practical concern for needle steering, and cannot respond in real-time to significant perturbations not

accounted for by the a priori model.

A core concept of this work involves the use of fast motion planning for obstacle avoidance

and correcting the needle trajectory to account for uncertainties. There is considerable prior work

in real-time replanning for dynamic environments using sampling-based planners and some of

these techniques can also be applied to robots navigating in deformable environments under uncer-

tainty (Frazzoli et al., 2002; Zucker et al., 2007). Some replanning approaches deal with discretized

state spaces and propose efficient implementations of replanning algorithms that include D* and

anytime A* algorithms based on classical heuristic search (van den Berg et al., 2006). Other methods
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have been proposed to address the issue of safety in replanning in dynamic environments (Frazzoli

et al., 2002). Model predictive control (MPC), also known as receding horizon control, is a form of

replanning at each time step that formulates an optimal control problem truncated at some predeter-

mined finite time horizon. Such techniques have been successfully applied to robot navigation (du

Toit and Burdick, 2010). These methods address the issue of optimality of the computed motion

plans but are difficult to scale to higher dimensional configuration spaces and continuous dynamical

systems. Many approaches have sought to reduce the planning time to facilitate real-time replanning

by reusing information from prior plans (Kuwata et al., 2009), using pre-computed coarse global

plans to reduce planning workload (Zucker et al., 2007), or harness the computational power of

modern hardware for efficient parallel planner implementations (Pan et al., 2010). Sampling-based

planners can be practically applied to higher dimensional state spaces but the completeness of such

methods has still not been fully explored (Hauser, 2012).

Several robot-assisted needle placement and insertion systems have been proposed for stiff nee-

dles, including systems that use either ultrasound or magnetic resonance tracking for biopsies (Hata

et al., 2006; Boctor et al., 2008; Xu et al., 2010; Long et al., 2012; Seifabadi et al., 2012) and prostate

high-dose rate brachytherapy (Susil et al., 2004; Fichtinger et al., 2008; Mozer et al., 2009; Hungr

et al., 2012). These systems achieve targeting errors that are in the range of ≈ 1–4 mm. Experimental

studies that compare the targeting error achieved by robotic needle insertion systems versus trained

clinicians (Maier-Hein et al., 2009; Schouten et al., 2012) also report targeting errors of the same

magnitude. The targeting accuracy of our system is within clinically acceptable thresholds with

the added advantage of using steerable needles which allows us to avoid anatomical obstacles and

minimize tissue damage and patient trauma.

Our sampling-based planner is customized for steerable needles (Patil and Alterovitz, 2010a;

Patil et al., 2013) and we experimentally demonstrate in phantom and ex vivo animal tissues that our

rapid replanning approach can be used for closed-loop needle steering in 3D environments. We have

also integrated the planning approach with a robotic needle steering system to create the first fully

integrated system that is capable of avoiding obstacles in 3D environments.
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Figure 2.2: Overview of our rapid replanning paradigm which relies on a fast sampling-based motion
planner for closed-loop steering of the needle to the desired target region while avoiding anatomical
obstacles. We present details of the individual components of our approach in Sec. 2.5.

2.3 Objective

We specifically focus on bevel-tip steerable needles (Cowan et al., 2011), which move along an

approximately circular arc of constant curvature κ0 in the direction of the bevel when inserted into a

tissue medium. The needle is controlled by two control inputs: insertion speed v used to insert the

needle and twist speed ω applied at the needle base used to reorient the bevel-tip.

To enable automatic needle steering, our system requires as input a specification of the anatomy.

Given registered preoperative volumetric medical images that are standard in clinical care (e.g., CT

scans or MRI), the clinician can specify the initial state of the needle tip X0 ∈ SE(3), a volumetric

target region Pgoal ⊂ R3, and obstacles oi ∈ O that include sensitive structures such as glands or

blood vessels and other obstacles such as bones that are represented as segmented volumes in the

images. Our system also requires characterization of the steerable needle, including the natural

maximum curvature of the needle κ0 and the empirical relationship α = h[κ], 0 ≤ κ ≤ κ0 that

relates the needle’s curvature to the duty cycling factor α (defined in Sec. 2.4).

The objective is to automatically steer the needle around clinician-specified anatomical obstacles

while optimizing a clinician-specified clinical criteria. The criteria can include metrics such as

minimizing insertion length (i.e., minimizing tissue damage) or maximizing clearance from obstacles

(i.e., maximizing safety). Our approach, shown in Fig. 2.2, uses rapid replanning. Given the inputs

specified above, the fast planner computes a large number of randomized plans, each defined as
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a sequence of discrete controls that will steer the needle tip to the target region while avoiding

anatomical obstacles. From the computed set of plans, the planner selects the plan that optimizes

the clinical criteria. At the core of our rapid replanning approach is a fast motion planner for needle

steering based on a customized rapidly exploring random tree (RRT) planner that incorporates

variable curvature kinematics and a novel distance measure for planning (described in Sec. 2.5). To

compensate for uncertain perturbations that occur during needle steering in tissues, the planning

process is repeated at frequent intervals in a closed loop fashion using feedback from the electro-

magnetic tracking system to sense the needle tip pose at the beginning of each interval and replan a

control sequence to reach the target region.

2.4 Variable Curvature Needle Kinematic Model

Our planner uses a variable curvature kinematic model of the motion of the needle tip’s trajectory

as the needle is inserted in tissue. The kinematic model is deterministic and does not explicitly

consider errors arising from factors such as tissue deformations, actuation errors, and noisy sensing.

Our rapid replanning approach allows us to correct for these errors as they occur during the procedure.

We assume that the needle is flexurally flexible and torsionally stiff, i.e., the shaft exactly follows

the needle tip, and the insertions and twists applied to the needle base are directly transmitted to

the tip. The motion of the needle is then fully determined by the motion of the needle tip. The

state of the entire needle is then described by the needle tip pose, represented as a 4 × 4 matrix

X =
[
R p
0 1

]
∈ SE(3), where p ∈ R3 is the position of the needle tip and R ∈ SO(3) is the rotation

matrix that encodes the needle tip orientation relative to a world coordinate frame.

We extend the constant curvature unicycle kinematic model of the needle tip proposed by Webster

et al. (Webster III et al., 2006) to consider the curvature κ (0 ≤ κ ≤ κ0) to be an additional control

input parameter. Let v be the insertion speed and ω̂ be the twist speed of the needle. Physically

realizing the variable curvature model requires that the curvature κ be realizable in terms of insertion

speed v and twist speed ω, which are the only two physical control inputs to the system. We later

show how the twist speed ω̂ can be converted to the physical twist speed ω using duty cycled spinning

of the needle during insertion (Minhas et al., 2007).
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Figure 2.3: (a) Local coordinate frame Xt attached to the needle tip and a point in R3 : [x, y, z]T

defined in the local coordinate frame. The needle is inserted along the z-axis, and the needle rotates
around a line parallel to the x-axis and passing through the point [0,−r, 0]T . The circular arc traced
out by the needle (shown in orange) is parameterized as a triplet [l, φ, r]. (b) Needle plan composed
of circular arcs of bounded curvature (κ = 1/r, 0 ≤ κ ≤ κ0) connects initial state X0 and target
region Pgoal while avoiding obstacles O.

Given the control input vector u = [v, ω̂, κ]T ∈ R3, it is convenient to describe the kinematics

in terms of the instantaneous twist U ∈ se(3) expressed in the local coordinate frame attached to the

needle tip (Fig. 2.3a), given by (Webster III et al., 2006; van den Berg et al., 2010):

U =




[ω̂] v

0 0


 , ω̂ =

[
vκ 0 ω̂

]T
, v =

[
0 0 v

]T
. (2.1)

where the notation [s] for a vector s ∈ R3 refers to the 3× 3 skew-symmetric cross-product matrix.

The discrete-time kinematics evolves over time interval t as:

Xt+1 = f [Xt,u, t] = Xt exp(Ut). (2.2)

where exp(·) denotes the matrix exponential operator. Note that for the special case of κ = κ0,

ω̂ = ω and Eqn. (2.2) reduces to the constant curvature kinematic model (Webster III et al., 2006).
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Prior work on motion planning for steerable needles in 3D (Xu et al., 2009; Duindam et al., 2008,

2010; Park et al., 2010b) assumes κ is a constant, which severely restricts the range of motion of the

needle tip. This makes it difficult for planners to compute a feasible motion plan in 3D environments

with obstacles, thus sacrificing optimality or completeness. In contrast, our motion planning method

assumes a variable curvature kinematic model that allows us to compute trajectories composed of

circular arcs of bounded curvature (0 ≤ κ ≤ κ0) (as shown in Fig. 2.3b). This helps us to compute

feasible motion plans with sub-second computation time.

We use results from Minhas et al. (Minhas et al., 2007), who demonstrated that any curvature

0 ≤ κ ≤ κ0 can be approximated by duty cycling the rotation of the needle, i.e., by alternating

between (i) insertion without rotation, in which the needle follows a path of maximum curvature

(κ = κ0), and (ii) insertion with rotation, in which the needle moves straight (κ = 0) by spinning

at a constant rate and stopping the spinning such that the tip is at the same axial angle every time.

Duty cycling of steerable needles was successfully demonstrated in cadaver brains for neurosurgical

procedures (Engh et al., 2010).

Let the control input u = [v, ω̂, κ]T be applied over a time duration ∆. Let δ be the duration

of each duty cycling interval, which is composed of an insertion interval of duration δins and a spin

interval of duration δspin, as illustrated in Fig. 2.4. Let α (0 ≤ α ≤ 1) be the proportion of the time

spent in spin intervals, i.e., α = δspin/δ, where δ = δins + δspin. The empirical relationship between

κ and α is expressed as:

α = h[κ], 0 ≤ κ ≤ κ0, (2.3)

where h[κ] is dependent on the mechanical properties of the needle and tissue and is determined

by fitting a polynomial function to the empirical data gathered during preoperative characterization

experiments (as described in Sec. 2.4).

Duty cycling is implemented for needle steering by moving a fixed distance each cycle and

spinning with a fixed twist speed ωspin. Given κ, we use Eqn. (2.3) to determine α. Since the needle

tip arrives at the same axial angle at the end of each spin interval, the duration of the spin interval

δspin = (2kπ/ωspin), k ∈ Z. We then compute the quantities δ = (δspin/α) and δins = (δ − δspin).
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Figure 2.4: The time duration ∆ is split into three intervals of duration δ each for α = h[κ] =
1/3. Each interval is then composed of two intervals: (i) a spin interval of duration δspin =
(2kπ/ωspin), k ∈ Z in which the needle is both inserted and rotated, and (ii) an insertion interval of
duration δins in which the needle is only inserted without any rotation.

The low level control inputs during a duty cycle interval are given by:

v(t) = v, 0 ≤ t ≤ ∆/δ (2.4)

ω(t) =





ω̂ + ωspin if jδ < t ≤ jδ + δspin

ω̂ if jδ + δspin < t ≤ (j + 1)δ
, (2.5)

where j ∈ {0, 1, . . . ,∆/δ} and ∆/δ is the total number of duty cycle intervals required to span the

duration ∆.

2.5 Rapid Replanning Approach

In this section, we present details of the individual components involved in our rapid replanning

approach (Fig. 2.2) for closed-loop needle steering in 3D environments with obstacles.

2.5.1 Motion Planning

To enable motion planning for a rapid replanning approach, we create a fast motion planner

for the steerable needle. We based our planner on a sampling-based rapidly exploring random tree

(RRT) (LaValle, 2006), which is well suited for the under-actuated, nonholonomic steerable needle

and also provides completeness guarantees, i.e., the probability of finding a solution converges to

one, if a solution exists, as the number of samples approaches infinity.

The input to the planner is an initial state X0, a target region Pgoal, and the computation time

available for planning Γ. Our algorithm is based on the classic RRT, which proceeds as follows. The

planner incrementally builds a tree T over the state space, while satisfying nonholonomic motion
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constraints of the system and avoiding obstacles in the environment. To expand the tree T , a random

state Xrand is sampled from the state space. The algorithm identifies a node in the tree Xnear, that is

closest to the sample Xrand, as defined by a specified distance metric ρ[·]. The algorithm attempts to

expand T towards Xrand based upon the best control input u and the resulting state Xnew is added

to the tree. This process is repeated until either the tree T connects X0 and Pgoal or the available

computation time is exceeded, in which case the algorithm reports that a solution cannot be found. A

feasible plan Ψ is extracted from the tree by traversing it backwards from the goal node to the root.

For a nonholonomic system like the steerable needle, finding the best control input to a sampled

state requires solving a difficult two-point boundary value problem of connecting two states in SE(3).

Prior RRT-based needle steering planners (Xu et al., 2009) avoid this by performing deterministic

or uniform random sampling of control inputs to determine the best control input [v, ω]T ∈ R2

that leads the needle tip to a new state Xnew closest to Xrand. Since these methods also assume

the constant curvature kinematic model, the limited range of motion of the needle tip requires a

large number of control samples to make progress towards the sampled state. This results in wasted

computational effort and is a major computational bottleneck.

To enable efficient planning, we customize the classic RRT algorithm for steerable needles

by leveraging several observations and algorithmic improvements. We consider variable curvature

kinematics (Sec. 2.4) and introduce a new distance metric ρ[·]. We present each step of the algorithm

(outlined in Alg. 1) in detail below. In the available computation time, we compute many feasible

bounded curvature (0 ≤ κ ≤ κ0) trajectories through 3D environments with obstacles.

The individual function definitions in Alg. 1 are as follows:

random point in R3(): To avoid solving the SE(3) two-point boundary value problem

or performing random sampling of control inputs, we sample a random point prand ∈ R3 in the

workspace as opposed to sampling a random state in SE(3). The sampled point can then be connected

to a given state Xnear =
[
Rnear pnear
0 1

]
directly using a circular arc parameterized by [l, φ, r]T , where l

is the arc length, φ is the change in orientation of the needle tip coordinate frame Xnear around the

znear-axis, and r is the arc radius (Fig. 2.3a). Let [x, y, z]T = RTnear(prand − pnear) be the coordinates
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Algorithm 1 Ψ← needle RRT planner(X0,Pgoal,Γ)

1: T ← initialize tree(X0)
2: τ ← 0
3: while (T ∩ Pgoal = ∅ ∧ τ < Γ) do
4: prand ← random point in R3()
5: Xnear ← nearest neighbor(prand, T )
6: u← control inputs(Xnear,prand,∆)
7: Xnew ← f [Xnear,u,∆]
8: if collision free(Xnear, Xnew,u,∆) then
9: T ← add vertex(Xnew)

10: T ← add edge(Xnear, Xnew,u,∆)
11: end if
12: if pnew ∈ Pgoal then
13: Ψ← extract plan(T , Xnew)
14: end if
15: τ ← update time()
16: end while
17: return Ψ

of prand in the local coordinate frame of Xnear. The parameters of the circular arc are then given by:

r =
x2 + y2 + z2

2
√
x2 + y2

(2.6)

φ = arctan(x,−y) (2.7)

l = rθ = r arctan(z, r −
√
x2 + y2). (2.8)

To accelerate motion planning for steerable needles, we incorporate two forms of biasing that

empirically result in significant performance gains. First, we bias the growth of the tree T towards the

target region Pgoal by sampling from Pgoal with a higher probability than the rest of the workspace.

Second, whenever a new node Xnew is added to the tree, the planner attempts to connect Xnew to a

randomly sampled point in Pgoal.

control inputs(·): Given a circular arc parameterized as [l, φ, r] and a given time interval

∆, we derive the augmented control input vector required to compute the new state of the needle

tip Xnew. First, we reorient the needle tip by φ radians such that the circular arc is contained in the

plane defined by the y-z axes in the reoriented local coordinate frame Xr
near, which is obtained by

applying a rotation of φ radians around the z-axis to the current state Xnear. We then compute the

augmented control input u = [v, ω̂, κ]T that steers the needle tip along a circular arc of length l and
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radius r using the relations: v = l/∆, ω̂ = 0, and κ = 1/r. We compute Xnew by applying u to the

reoriented frame Xr
near for a time duration ∆ according to Eqns. (2.1) and (2.2).

nearest neighbor(·): The efficiency with which the RRT algorithm is able to explore the

state space is highly sensitive to the distance metric ρ[·] used to compute the nearest node in the tree.

In the presence of nonholonomic constraints, widely used metrics like the Euclidean distance are

a very poor approximation of the true distance between points in the constrained state space. The

performance of the RRT planner degrades as a result of repeated attempts at extending the same

nodes in the tree without making sufficient progress (Shkolnik et al., 2009).

We introduce a new distance metric customized for steerable needles that accounts for the

needle’s nonholonomic constraint as well as the buckling of the needle in soft tissue. Since the needle

has a maximum curvature κ0, not all sampled points will be reachable from a given state because

of the nonholonomic constraints of the needle. The reachable set from a state Xnear =
[
Rnear pnear
0 1

]

consists of all points that can be connected to pnear by a circular arc that has a radius r ≥ 1/κ0

and is tangent to the znear-axis of the local coordinate frame. This definition of the reachable set

also directly relates to the distance metric ρ[·] that is used to select the tree node that is nearest to

the sampled point prand. Accordingly, we define the distance metric ρ[Xrand,prand] as the length of

such a circular arc connecting prand and Xnear if prand is in the reachable set of Xnear, and infinity

otherwise, i.e.,

ρ[Xrand,prand] =





l(≡ rθ) if r ≥ 1/κ0 ∧ θ ≥ 0

∞ otherwise
. (2.9)

This strategy restricts the search domain to only those nodes that are within the reachable set of the

nearest node Xnear, thus increasing the likelihood of state space coverage (Shkolnik et al., 2009).

It is important to prevent buckling of the needle shaft, which may occur during insertion because

of reaction forces from the tissue. This implies that not all points in the reachable set can be physically

accessed by the steerable needle from some poses. In our experiments, we have observed that the

needle starts to buckle roughly when the needle tip heading is greater than π/2 radians from its initial

orientation. Formally stating, given the current state Xnear and a sampled point prand and zrand is

the insertion z-axis tangent to the circular arc connecting Xnear and prand at prand, the needle would

buckle if Rnearzrand · z0 ≤ 0, where z0 is the insertion z-axis at the initial state X0 in the world
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coordinate frame. We preclude such points from being added to the tree by setting the distance to

these points to infinity.

To efficiently search for the nearest node in the tree to a sampled point prand according to this

distance measure, we use the fact that the needle will not traverse a circular arc spanning more than

π/2 radians due to buckling considerations and it follows that if the point is unreachable from a

state Xnear, i.e., ρ[Xnear,prand] = ∞, then prand is unreachable from all descendant nodes in the

sub-tree of the node corresponding to state Xnear. Hence, the nearest node can be found using a

depth-first traversal of the tree, pruning parts of the tree if a node is encountered from which prand is

not reachable. Even though the worst case complexity of the nearest neighbor search is still linear

in the number of nodes in the tree, pruning away parts of the tree in practice results in a significant

performance improvement, especially as the tree grows larger.

collision free(·): To enable obstacle avoidance, only collision free arcs are added to the

tree. We check if the circular arc connecting Xnear and prand is collision free by approximating

it as a sequence of line segments and checking if all the segments are collision free. Since the

obstacle definitions are obtained from segmentation of 3D scans, the obstacle meshes are likely to

be non-manifold. We use the SOLID library (van den Bergen, 2004) for detecting collisions with

arbitrary, polyhedral obstacles at interactive rates.

extract plan(·): When the position pnew of a newly added state Xnew is found to lie in

the target region Pgoal, the planner terminates. By traversing the tree T backwards from the goal

state to the root, we obtain a trajectory composed of piecewise circular arcs of bounded curvature

(0 ≤ κ ≤ κ0). We extract a motion plan Ψ comprised of a discrete sequence of control inputs, in

terms of the insertion speed v(t) and twist speed ω(t), that guide the needle to the target along the

computed trajectory. For each circular arc parameterized by a triplet [l, φ, r] in the trajectory, we first

reorient the needle tip by φ radians by applying a control input ω = ωspin for a duration of φ/ωspin.

We then compute the factor α based on the curvature κ = 1/r using Eqn. (2.3). Given the control

input u = [l/∆, 0, 1/r]T , we compute the controls [v(t), ω(t)]T for traversing the circular arc in a

plane using Eqns. (2.4) and (2.5).

2.5.2 Optimizing Clinical Metrics

We consider the following clinically motivated criteria c[Ψ] for quantifying plan optimality:
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• Minimizing the total needle insertion length (shortest path), i.e., minimizing c[Ψ] =
∫ T

0 v(t)dt. This metric is relevant to procedures in vital organs such as the brain where limiting

tissue damage is important (Field et al., 2001). Shortest trajectories, however, often pass in

close proximity to obstacles, thereby increasing the likelihood of collisions. Since it is also

important to avoid critical structures, we artificially enlarge all obstacles by a predefined safety

buffer ε using Minkowski sums (van den Bergen, 2004).

• Maximizing the minimum clearance from obstacles (maximum clearance), i.e., maximiz-

ing c[Ψ] = max
0<t≤T

min
∀oi∈O

d[pt, oi], where d[pt, oi] is the distance of the needle tip pt from

obstacle oi ∈ O. Trajectories that have a greater minimum clearance from obstacles are safer

because they are less likely to collide with anatomical obstacles when deviations occur. Such

trajectories, however, tend to be longer, thereby increasing the amount of tissue cut during the

procedure. This metric could be useful when obstacle avoidance is critical but other tissue

damage is manageable, e.g., in liver or muscular tissue.

The correct choice of the optimization criterion will vary by specific procedure, and we will

assume that the clinician will select c[Ψ] based on the requirements of the procedure. To compute

a plan that optimizes c[Ψ] as best as possible in the allowable computation time, we use our fast,

randomized planning algorithm to compute hundreds of different feasible motion plans in a second

and then select the plan that performs best under the selected criterion.

We note that any sampling-based motion planner, including our method, cannot guarantee that

a globally optimal solution will be found in a finite time interval. Methods like RRT* (Karaman

and Frazzoli, 2010) can compute optimal motion plans as computation time is allowed to increase,

but cannot guarantee optimality in finite time and will not be efficient for needle steering due to

their requirement of a solver for two-point boundary value problems. Our method will explore the

steerable needle’s state space and repeatedly generate independent paths in search of a higher quality

solution, and the best found path will progressively improve over the duration of the time interval.

A further advantage of our approach is that it is trivially parallelizable, allowing for plan quality to

improve as the number of cores in modern multi-core architectures increases.
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2.5.3 Fault Tolerance

We empirically observed that for larger insertion lengths, the cumulative uncertainty can cause

the target region to fall outside the reachable set of the steerable needle. We handle such situations

gracefully by using fault tolerant heuristics to improve targeting accuracy.

When the target region is unreachable, we artificially enlarge the target region to include points

in the workspace that are still reachable from the current state of the needle tip. This allows us to

use the planner to compute a feasible plan. If the target is still unreachable, we modify the existing

plan by optimizing over a discretized set of possible twists [0 ≤ φ < 2π] to select the best twist that

would guide the needle tip closest to the target region. We continue execution until we either reach

the target region or insert the needle tip past the target region, in which case we terminate execution.

We plan to investigate the use of advanced trajectory optimization approaches (Seiler et al., 2012) in

future work to further improve targeting accuracy when the target falls outside the reachable set.

2.6 Experimental Setup

We describe our needle steering system, shown in Fig. 2.5, and our experimental setup.

2.6.1 System Components

Bevel-tip steerable needle: We use needles fabricated from nitinol. In our experiments, we used

two needles with tube outer diameters of 0.92 mm and 0.88 mm, henceforth referred to as Needle

1 and Needle 2, respectively. To enable steering at tight curvatures, the needles (1) incorporate a

hand-machined bevel tip, and (2) are pre-bent just behind the bevel tip (Reed et al., 2011).

Needle steering robot: The robotic actuation unit contains a single carriage actuated by a lead

screw. The needle is gripped by a custom brass collet, which is housed in a rotary bearing attached to

the carriage and is fixed to a toothed pulley via two set screws. The pulley is actuated via a belt drive

by motors attached to the carriage. The needle is inserted through a hole in the front plate of the robot.

Buckling of the needle during insertion is prevented using an external telescoping sheath (Webster III

et al., 2006). The robot controls both needle insertion and axial twists via Maxon DC motors, with

low-level PID control implemented using a Galil DMC 4080 Motion Control unit. Additional details
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Figure 2.5: Our needle steering system consists of a needle steering robot, a pre-bent, bevel-tip
steerable needle, and an electromagnetic tracking system. We present details of the hardware system
in Sec. 2.6. We performed experiments using phantom tissue (shown here) and ex vivo porcine tissue.

of the needle steering system are available in (Das et al., 2010). Our planner, implemented in C++,

runs on a PC and sends the control inputs to the robot controller via PCI bus.

Electromagnetic tracking system: Accurate needle steering requires sensing the state of the

needle tip position and orientation. Highly accurate approaches for state estimation include using

stereo cameras (Webster III et al., 2006; Reed et al., 2011) or fluoroscopic images (Majewicz et al.,

2012), but these approaches either cannot be used in opaque media such as the human body or can

result in high radiation exposure to the patient for longer procedures.

We use an electromagnetic tracking system (Aurora® v1, Northern Digital Inc., Canada) (North-

ern Digital Inc., 2012) for tracking the needle tip pose. Embedded within the tip of the tube is a

5-DOF magnetic tracking coil, the position and orientation of which (other than the roll about the

needle axis) can be measured by the system. We estimate the roll of the needle using encoders

on the servo motor that applies axial twists at the needle base. Electromagnetic tracking is a cost

effective and non-invasive method for reliably sensing the state of the needle tip in opaque tissue.

The manufacturer specifications for the standard deviation of the error in sensing the position along

any given axis is 0.7 mm and in sensing an angle is 0.2◦ (Northern Digital Inc., 2012).
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Figure 2.6: (Left) Sim-Test tissue phantom. (Right) Ex vivo porcine loin tissue.

2.6.2 Tissue Sample Materials

Tissue phantom: We first evaluate our system using a tissue phantom composed of an animal-

protein-based gel marketed as the Simulated Muscle Tissue Ballistic Test Media (Sim-Test) from

Corbin™, Inc (Corbin Manufacturing and Supply, Inc., 2012). This material, which was used in prior

needle steering experiments (Webster III et al., 2006), is a close match to muscle tissue in terms of

density and elasticity. This material can be used consistently without refrigeration, unlike water-based

or gelatin-based gels. It is also water-soluble and can be diluted and cast into desired shapes for

experiments. We cast the Sim-Test material into a cuboidal block of approximate dimensions 11 cm

× 7 cm × 15 cm for our experiments (Fig. 2.6).

Ex vivo porcine loin tissue: We also evaluate our system in fresh ex vivo porcine loin tissue.

This particular tissue is from the central spine of the animal and is tender because it is primarily

comprised of muscles that are used for posture rather than locomotion. The portion of porcine

loin used in our experiments had approximate dimensions of 10 cm × 5 cm × 19 cm. It was

inhomogeneous and comprised of both muscular and fatty tissue types (Fig. 2.6).

2.6.3 Needle Characterization

The approach presented in Sec. 2.5 requires that we characterize the maximum curvature of the

needle κ0 and the empirical relationship h[κ] between the curvature κ and the duty cycling factor α.

We empirically determined that h[κ] is dependent on the mechanical properties of the needle and the

tissue and is not necessarily linear as demonstrated by prior work with duty cycled needle steering in

a gelatinous phantom (Minhas et al., 2007).

To construct the relationship h[κ], we varied the value of α between 0 and 1 in increments of 0.1.

We then computed the duration of the duty cycling interval δ for a time interval ∆ = 1 sec (Sec. 2.4).
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Figure 2.7: Characterization of the relationship α = h[κ] (Eqn. (2.3)) for Needle1 and Needle 2 in
Sim-Test tissue phantom and ex vivo porcine loin tissue.

Given a fixed insertion speed vins and twist speed ωspin, we commanded the actuators during each

duty cycling interval with control inputs computed by substituting v = vins in Eqn. (2.4) and ω̂ = 0

in Eqn. (2.5).

The application of these controls causes the needle tip to traverse a circular arc of variable

curvature κ in a plane. We performed repeated insertions of both needles for up to 10 cm in both

the Sim-Test tissue phantom and ex vivo porcine loin tissue. We computed a best-fit polynomial

curve with a fixed maximum degree (= 3) that minimized the sum of the squared errors of the data

points from the curve. This curve defines the relationship α = h[κ]. An important point to note is

that the smaller the distance vinsδ traveled by the needle tip in every duty cycling interval, the better

the approximation of κ. However, we empirically observed that for an insertion distance per duty

cycling interval of less than 0.5 cm, the effect of inserting the needle without spinning was negligible,

i.e., the effective curvature was close to 0. This is important because it physically limited the interval

lengths at which we could replan during closed-loop steering to at least 0.5 cm.
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To determine the effective curvature κ of the planar arc, we recorded the state of the needle tip

Xt =
[
Rt pt
0 1

]
after the end of each duty cycling interval for N such intervals. We observed that the

needle tip deviated from the plane because of initialization errors and other sources of uncertainty.

To robustly estimate κ, we fit a circle to the set of 3D points given by pt ∈ R3, t = 0, . . . , N .

We accomplished this by first computing a best-fit plane that minimized the sum of the squared

orthogonal distances from each point to the plane by performing principal component analysis (PCA)

on the set of points. We then projected the points onto the first two principal components that

span the plane and then fitted a circle to the set of projected 2D points using a robust circle fitting

algorithm (Taubin, 1991). The curvature κ was obtained by taking the reciprocal of the radius of this

fitted circle. Fig. 2.7 shows the relationship α = h[κ] for Needle 1 and Needle 2 in Sim-Test tissue

phantom and ex vivo porcine loin tissue. Needle 1 achieved a maximum curvature κ0 = 0.11 cm−1

in Sim-Test (Fig. 2.7a). Needle 2 had a lesser outer diameter (0.88 mm) and achieved a maximum

curvature of κ0 = 0.15 cm−1 in Sim-Test and a maximum curvature of κ0 = 0.073 cm−1 in porcine

loin tissue (Figs. 2.7b and 2.7c). Fig. 2.7 also shows the best-fit curves for h[κ] for each of the

needle-tissue combinations considered. In particular, we found that any value of α > 0.5 for duty

cycled insertion in ex vivo porcine loin tissue resulted in a 0 effective curvature, which explains the

lack of empirical data points in Fig. 2.7c.

2.7 Experimental Evaluation

We evaluate our new needle steering system in tissue phantoms and ex vivo porcine loin tissue to

demonstrate the ability to steer needles to targets with clinically acceptable accuracy while avoiding

obstacles. For all the experiments described below, we consider a spherical target region of 1 mm

and measure the targeting accuracy of the needle tip by computing the distance between the center

of this spherical target region and the final needle tip position after insertion. We executed the

motion planner on an Intel® i7 3.33 Ghz PC. We set the replanning interval ∆ to 1 sec and allocated

1 sec of computation time per replanning step, which is a sufficiently short time interval for clinical

applications that require needle insertion depths of ≈ 10–15 cm.
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(a) Tissue Phantom Scene #1 (b) Tissue Phantom Scene #2

(c) Tissue Phantom Scene #3 (d) Tissue Phantom Scene #4

Figure 2.8: We perform experiments in a cuboidal shaped Sim-Test tissue phantom (see Fig. 2.6). We
assume that the workspace contains obstacles (shown in yellow) for planning purposes. We selected
10 randomly chosen targets (shown in red) in the workspace that are are located at insertion depths
ranging from 9 cm to 11.5 cm from the face of the cuboidal block. The insertion location of the
needle is marked in green and the needle is inserted into a face of the cuboidal block.

2.7.1 Evaluation in Tissue Phantoms

We first evaluated our needle steering system in the Sim-Test tissue phantom described in

Sec. 2.6.2. We chose 10 random target regions in the workspace at distances ranging from 9 cm to

11.5 cm from the face of the cuboidal block through which the needle is inserted as shown in Fig. 2.8.

To evaluate the accuracy of the proposed system, we performed 3 insertions for each of the 10 targets

under closed-loop rapid replanning using Needle 1 (0.92 mm diameter) and the shortest path metric.

We achieved a mean targeting error of 1.07 mm (± 0.59 mm).

To assess the impact of uncertainty, we also performed an open-loop execution for each target

and achieved an average error of 9.57 mm (± 2.95 mm). The open-loop execution results show that,

even for homogeneous tissue phantoms, perturbations due to uncertainty can lead to large errors if

not corrected. The open-loop execution results show that, even for homogeneous tissue phantoms,

perturbations due to uncertainty can lead to large errors if not corrected. Our rapid replanning
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approach significantly improves the targeting accuracy by accounting for errors and perturbations as

they occur.

2.7.2 Evaluation in Tissue Phantoms with Obstacles

We next evaluated the needle steering system in the Sim-Test tissue phantom with virtual (not

physically embedded) obstacles. We created four scenes, shown in Fig. 2.8, with virtual obstacles.

Scenes #1 and #2 contain spherical obstacles which obstruct the path to some of the considered

targets. Scene #3 contains two box-like obstacles that create a narrow passage that the needle must

go through before reaching the targets. Scene #4 is challenging since the obstacles create a narrow

passage that force the needle to traverse two-bend trajectories around obstacles to reach the targets.

We first evaluated our approach using 3 insertions for each of the 10 targets in each scene. We

used Needle 1 and the maximum clearance metric for these insertions. The mean targeting error

for each of the scenes was 1.24 mm (± 0.71 mm), 1.29 mm (± 0.79 mm), 1.12 mm (± 0.9 mm), and

1.25 mm (± 0.84 mm), respectively. Even with obstacles that restrict the navigable space in the

environment, our approach successfully steered the needle to the target without collisions in any of

the insertions.

We also evaluated the impact of optimization criteria (i.e., shortest path or maximum clearance)

on target accuracy and obstacle avoidance for each scene. We used Needle 2 and chose 3 out of

the 10 target regions in the workspace. For the shortest path criterion, we enlarged all obstacles

by a safety buffer of 5 mm. We performed 3 insertions for each of the two criteria using our rapid

replanning approach. Fig. 2.9 shows the means and standard deviations of the targeting error for

each optimization criteria. The maximum mean closed-loop rapid replanning targeting error was

1.7 mm for the shortest path criterion and 1.66 mm for the clearance criterion. To illustrate the

impact of uncertainty, we also ran the system using an open-loop plan for each target and scene.

For the open-loop insertions, the mean targeting errors were as high as 10 mm for the shortest

path criterion and 9.1 cm for the clearance criterion. Our closed-loop, rapid replanning approach

significantly reduces targeting errors compared to open-loop execution of motion plans. In terms

of the optimization criteria, we found that both the shortest path and maximum clearance criteria

perform equally well. It is important to note that the shortest path criterion requires the clinician
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Figure 2.9: We compare the targeting error using closed-loop steering and open-loop execution for
each of the two optimization criteria. Our replanning approach significantly outperforms open-loop
plan execution. Error bars indicate one standard deviation of targeting error over repeated trials.

to specify the safety buffer around obstacles whereas the clearance criterion does not require any

specification of parameters. We used a safety buffer of 5 mm for the shortest path experiments.

2.7.3 Evaluation in Ex Vivo Porcine Loin Tissue

We also evaluate our rapid replanning approach in ex vivo porcine loin tissue samples as shown

in Fig. 2.6. We created two scenes with virtual obstacles (shown in Fig. 2.10). The two scenes are

similar to scenes constructed earlier (Fig. 2.8) and are modified to take into account the different

dimensions of the workspace. We use two cylindrical obstacles in Scene #1 and two box-like

obstacles in Scene #2, which create a narrow passage and require the needle to traverse two-bend

trajectories around the obstacles to reach the target regions.

We used Needle 2 for this set of experiments and considered 3 randomly chosen targets in the

workspace shown in Fig. 2.10. We evaluated the system for both the shortest path and maximum

clearance criteria in each of these scenes using 3 insertions per target for each criterion. For the

shortest path criterion, we enlarged all obstacles by a safety buffer of 5 mm. As before, we also

execute the system using an open-loop motion plan for each target for comparison.

Fig. 2.11 shows the mean targeting error and standard deviations of the targeting error for each

of the two criteria for steering using our closed-loop rapid replanner and using an open-loop plan.

The mean targeting error for the shortest path criterion for both scenes was 3.6 mm (± 1.85 mm) for
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(a) Porcine Loin Scene #1 (b) Porcine Loin Scene #2

Figure 2.10: We perform targeting experiments in an ex vivo porcine loin tissue sample. We assume
that the approximately cuboidal workspace contains virtual obstacles (shown in yellow) for planning
purposes. The insertion location of the needle is marked in green and the needle is inserted into the
face of the tissue sample. We selected 3 randomly chosen targets (shown in red) in the workspace
that are are located at insertion depths ranging from 10 cm to 11 cm from the insertion face.

our closed-loop rapid replanner and 10 mm (± 2.6 mm) for open-loop steering. The targeting errors

are larger than in Sim-Test phantom tissue because of the anisotropic nature of interaction between

needle and tissue and heterogeneity of the tissue sample. In spite of the slightly larger errors, the

targeting errors using our approach are within clinically acceptable thresholds and are significantly

smaller than open-loop steering. The mean targeting error for the clearance criterion for both scenes

was 2.6 mm (± 1.2 mm) for our closed-loop rapid replanner and 15.6 mm (± 3 mm) for open-loop

steering. Two of the open-loop insertions collided with the virtual obstacles. In contrast, our rapid

replanning approach steered the needle safely to the target region. In terms of the optimization

criteria, we found that the maximum clearance criterion worked better than the shortest path criterion

because of the narrow passage in the environment, which is further constricted by imposing an

artificial safety buffer in case of the shortest path criterion.

2.7.4 Evaluation in Anthropomorphic Liver Phantom

We apply our needle steering system to a scenario motivated by the clinical task of ablating a

tumor in the liver while avoiding the hepatic veins. We built the anthropomorphic liver phantom

that models the hepatic veins based on the hepatic vein anatomical model provided by Desser et

al. (Desser et al., 2003). In this experiment, the obstacles are physically embedded in a tissue

phantom. We modeled the major hepatic veins (middle, left, and right) and the inferior vena cava

using hollow tubing (see Fig. 2.12) so that the veins would be visible on preoperative CT images. We

constructed a tumor from plastic that was roughly spherical and 5 mm in diameter. The tumor model
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Table 2.1: Comparing cost metrics for needle insertion in Sim-test phantom tissues and ex vivo
porcine loin tissue with virtual obstacles. Target coordinates used for these experiments (in cm): 1)
[2.48,−0.6, 10.0], 2) [0.14,−0.1, 11.45], and 3) [1.27,−2.21, 11.17].

Closed-loop Steering Open-loop Steering
Scene Target # Shortest Path† Maximum Clearance Shortest Path† Maximum Clearance

Insertion Target Insertion Target Insertion Target Insertion Target
Length (cm) Error (mm) Length (cm) Error (mm) Len. (cm) Error (mm) Len. (cm) Error (mm)

1 10.66 0.54 10.83 1.82 9.97 12.22 9.96 12.23

SimTest #1 2 11.49 0.70 11.61 1.61 11.22 7.07 11.58 11.12

3 11.43 1.67 11.65 1.35 11.20 10.99 11.45 4.02

1 10.68 0.92 10.70 0.48 10.29 11.44 10.57 9.17

SimTest #2 2 11.51 0.68 11.57 0.27 11.19 5.43 11.57 7.74

3 11.57 0.38 11.66 0.89 11.25 9.78 11.31 6.86

1 10.36 0.31 10.70 0.83 10.05 5.85 10.41 7.41

SimTest #3 2 11.59 2.60 11.54 1.26 10.40 12.84 11.24 8.67

3 11.64 2.39 11.66 2.72 11.34 4.02 11.36 9.96

1 10.57 0.85 10.64 1.56 10.24 4.65 10.23 9.98

SimTest #4 2 10.68 1.13 11.60 0.58 11.21 5.48 11.12 3.99

3 11.58 2.95 11.39 2.85 11.26 16.75 10.97 6.40

Mean Insertion Mean Target Mean Insertion Mean Target Insertion Target Insertion Target
Length (cm) Error (mm) Length (cm) Error (mm) Len. (cm) Error (mm) Len. (cm) Error (mm)

1 10.31(±0.11) 2.69(±1.95) 10.47(±0.24) 2.01(±1.64) 9.92 11.55 10.12 13.23

Porcine Loin #1 2 11.51(±0.36) 4.09(±1.39) 11.58(±0.16) 1.70(±0.37) 10.91 11.72 11.08 16.86

3 11.34(±0.03) 3.58(±1.04) 11.37(±0.04) 3.02(±1.16) 10.89 13.7 10.40 16.57

1 10.34(±0.04) 2.48(±2.06) 10.34(±0.07) 3.77(±0.47) 10.01 7.9 10.04 10.95?

Porcine Loin #2 2 11.69(±0.24) 6.07(±1.34) 11.47(±0.01) 1.78(±0.54) 10.96 7.29 11.01 16.65?

3 11.45(±0.05) 2.66(±1.49) 11.42(±0.08) 3.26(±1.13) 11.07 8.23 11.36 19.3

† Obstacles enlarged by a safety buffer of 0.5 cm
? Execution ended in a collision with virtual obstacle and terminated as a result.

was coated with calcium sulfate so that it would be visible in the CT images. We placed the model

veins, model tumor, and fiducial markers for registration in a box which we filled with Sim-Test to

create the anthropomorphic tissue phantom (see Fig. 2.12b).

After the phantom was constructed, we used a portable flat-panel CT scanner to obtain preopera-

tive images of the environment (see Fig. 2.12c). We specified 5 insertion locations on the surface of

the box and specified 5 different target sites on the tumor for ablation. We also segmented the major

vessels and the tumor from the CT scans to obtain obstacle meshes for planning. We used Needle

2 for this set of experiments. For each pair of insertion location and target region, we performed

closed-loop steering using our rapid replanning approach using the clearance optimization criterion.

We did not perform open-loop steering in this experiment to avoid damaging the needle in case it

collided with the model veins during the procedure.
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In each instance, our rapid replanning approach successfully steered the needle to the target

region on the tumor surface while avoiding the hepatic veins, with an average error of 2.38 mm (±

1.02 mm) over up to 15.5 cm insertion length. The targeting error was higher in this case as compared

to the targeting experiments in Sim-Test phantom tissue with virtual obstacles (see Fig. 2.9). We

suspect this is because the embedded physical obstacles, unlike the virtual obstacles, were rigid and

resulted in larger errors in the motion of the needle tip. We note that the rigid nature of out model

differs from actual anatomical vessels and organs, which would deform with the surrounding tissue

due to interaction forces between the needle and the tissue.

2.8 Discussion

We have presented a novel approach for unifying planning and control of steerable needles in

3D environments with obstacles and real-world perturbations. Our approach relies on a fast RRT

motion planner for steerable needles that uses variable curvature kinematics and a novel distance

measure for planning that speeds up motion planning to the point that it can be done in real time with

typical needle insertion velocities. We use the fast performance to enable us to consider two clinically

motivated optimization criteria: minimizing insertion length and maximizing clearance from critical

anatomical structures. Our approach accounts for perturbations as they occur, thus eliminating

0 2 4 6 8 10 12 14 16 18 20 
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Targeting Error (mm) 
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Figure 2.11: We compare the targeting error using closed-loop, rapid replanning steering and open-
loop execution for the two proposed optimization criteria in ex vivo porcine loin tissue. Our approach
significantly outperforms open-loop execution. Error bars indicate one standard deviation of the
targeting error over repeated trials. Detailed experimental results are available in Tab. 2.1.
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(a) Hepatic veins model (b) Hepatic veins model (c) Experimental setup

(d) Plans computed at time step 1 (e) CT Reconstructed needle path

Figure 2.12: We applied our needle steering system with rapid replanning to a scenario motivated by
the clinical task of ablating a tumor in the liver while avoiding the hepatic veins. (a) We constructed
an anthropomorphic liver phantom that includes the major hepatic veins in the liver (right) based on
an anatomical model provided by Desser et al. (Fig. 1 in (Desser et al., 2003)). The model was built
to scale to match human liver dimensions and is shown next to a geometrically correct human liver
model manufactured based on segmented CT images of a human patient. (b) We placed the model in
a container that was filled with Sim-Test material to create the liver phantom for experiments. The
hepatic vein model placed in a box along with fiducial markers for registration before it was cast in
Sim-Test phantom tissue material. (c) We used a portable flat-panel CT scanner to obtain preoperative
images of the environment while the electromagnetic tracking system provided measurements of the
position and orientation of the needle tip during the procedure. (d) We specified the insertion location
and target region and annotated segmented structures such as veins that needed to be avoided. We
illustrate feasible motion plans (shown in green) computed at time step 1. (e) Via rapid replanning,
our planner successfully guided the needle (reconstructed from CT scans after the procedure) between
the middle and left hepatic veins to reach the target on the surface of the tumor.

the need for modeling complex phenomena such as needle and tissue deformation, needle-tissue

interaction, and torsional build-up along the needle shaft. Our approach also eliminates the need for

designing complex feedback controllers that try to guide the needle tip along a pre-planned trajectory

by compensating for errors as they occur.
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We also presented the first fully integrated, automated needle steering system that is capable of

avoiding obstacles in 3D environments with real-world perturbations. We experimentally evaluated

our system by performing procedures in tissue phantoms and ex vivo porcine loin tissue. In our

anatomic liver scenario, we took steps toward demonstrating how this system could be used for

clinical steerable needle procedures. Our experimental results demonstrate that our rapid re-planning

strategy successfully guides the needle to desired targets while avoiding obstacles with an average

error of less than 3 mm, which is within clinically acceptable thresholds and better than the accuracy

achieved by trained clinicians. In addition to accuracy, our system offers the added advantage of

automatically avoiding sensitive structures.

This research is another step towards realizing needle steering in actual clinical practice. There

are several avenues for improving this work. First, tissue damage due to duty cycled spinning of the

needle is a clinically-relevant concern. Previous studies in phantom tissues (Reed et al., 2011) and in

vivo tissues (Engh et al., 2010) showed that duty cycled spinning can leave corkscrew trails within

the cut tissue. Recently, Swaney et al. (Swaney et al., 2012) showed that flexible joints can be used to

connect the bevel tip to minimize tissue damage during duty cycled spinning of the needle. Second, it

is possible to use ideas from Patil et al. (Patil et al., 2011) to plan in deformable environments instead

of quasi-static environments to increase the probability of successful plan execution in scenarios

with very large deformations. Third, we assume that the measurements of the state of the needle tip

obtained from the magnetic tracking system are accurate. Since the measurement noise (Northern

Digital Inc., 2012) is very low when compared to the errors in the needle tip motion, this is not a a

major concern. However, there is always a possibility of improving the quality of localization of the

needle tip and improve targeting accuracy by using a Kalman filter for state estimation (Kallem et al.,

2010; van den Berg et al., 2010).

Further, we plan to investigate methods to avoid detailed characterization of the needle in tissue

by estimating the curvature of the needle and estimate points on the calibration curve as the procedure

is being performed. Finally, we would like to evaluate our approach in in vivo tissues where accurate

needle characterization cannot always be performed and there are other sources of uncertainty such

as involuntary patient motions and unforeseen needle tip deflections due to tissue membranes.
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CHAPTER 3

Data-Driven Stochastic Models For Simulating
Steerable Needle Procedures

In this chapter, we present a data-driven stochastic model of steerable needle insertion for

simulating steerable needle procedures. We describe the need for a stochastic model of steerable

needle insertion and the challenges associated with constructing such a model. In this work, we

consider a model that incorporates a stochastic motion model of the needle tip pose and a stochastic

measurement model of the partial and possibly noisy measurements of the needle tip pose. We

describe an expectation maximization (EM) algorithm for estimating the parameters of the stochastic

model from data gathered from experiments and prior procedures. We validate the stochastic model by

comparing the targeting error achieved in simulated steerable needle procedures using our stochastic

model vis-a-vis targeting errors achieved in needle procedures performed in tissue phantoms and ex

vivo porcine loin tissue.

3.1 Simulating Steerable Needle Procedures

Computer simulations of surgical procedures could help clinicians to train in simulated en-

vironments constructed from preoperative imaging data without risks to patient safety. Studies

indicate that surgical skills learned using computational simulators directly improve operating room

performance by significantly decreasing procedure time and reducing the frequency of medical

errors by sixfold compared to traditional training (Seymour et al., 2002; Satava, 2005; Gallagher

et al., 2005). Simulations of surgical procedures have also been used for preoperative planning and

optimization (Alterovitz, 2006; Taylor, 2006).

In the context of steerable needle procedures, simulations could help clinicians to train on a

per-patient basis for semi-autonomous needle insertion procedures. Simulations could also be used



for preoperative planning such as optimizing the entry position and orientation of the needle tip to

maximize the chances of successful plan execution (Alterovitz, 2006; Dehghan and Salcudean, 2009),

or for optimizing the placement of sensors in the environment (van den Berg et al., 2010). Also, the

effectiveness of motion planning and control algorithms extensively relies on the underlying robot

motion model, which can take the form of a simulation.

For a simulation to be useful for the above applications, the simulation must be based on a model

of steerable needle motion in human tissues that is of sufficient accuracy. However, an accurate

model for simulation is difficult to specify and accurate simulation is difficult to achieve for several

reasons, as described in Chapter 1. Modeling and analyzing all aspects and sources of uncertainty

of steerable needle insertion remains a challenging problem in spite of many prior efforts (Cowan

et al., 2011; Okamura et al., 2010). A secondary consideration is computational complexity of the

model, which should be low for real-time interactive simulators and for simulators used by motion

planners. Prior work has investigated models of varying complexity, ranging from simple kinematic

models (Webster III et al., 2006) to complex finite element models (Chentanez et al., 2009) but fail

to account for uncertainty in needle motion.

Simulations could be made more useful if we had a motion model of the needle tip that not

only predicts the expected (mean) evolution of the needle tip as a function of the control inputs,

but also gives information about the distribution of the possible outcomes under perturbations. A

priori information about the distribution of possible needle states due to perturbations is important

for modeling variability and designing effective planning and control algorithms that take uncertainty

into account without the need to model all the factors responsible for this uncertainty. Also, any

motion model requires parameters, which can be estimated solely using means or by distributions.

To this end, we deliberately choose a simple kinematic model and use a data-driven approach to

learn time-dependent Gaussian distributions of pose uncertainty, which enables very fast simulation

and accurately models needle steering in representative tissues. The simplified kinematic model

describes the expected needle tip motion and we add stochasticity to the model to model the mismatch

between modeling and reality. Fig. 3.1 gives an overview of our proposed approach for estimating the

parameters of this stochastic model based on data collected from prior experiments and procedures.

For computational tractability, our simulation of needle steering begins by using a simplified

model of needle steering that assumes that the needle bends to follow the needle tip exactly, i.e., the
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Figure 3.1: Developing models for fast, yet accurate, simulations of steerable needle procedures is
challenging. We propose a simplified, stochastic model of steerable needle insertion and estimate the
parameters of this stochastic model from data obtained from prior experiments and procedures.

tissue does not deform the needle shaft. We also assume that the insertions and twists applied to the

needle base are directly and exactly transmitted to the needle tip, i.e., there is no buckling or torsion

along the needle shaft. This implies that the motion of the needle is fully determined by the motion of

the needle tip. Instead of dealing with a high-dimensional coupled system, we model needle motion

in a reduced 6D state space of the needle tip. Our objective is to address the uncertainty in steerable

needle motion in soft tissue, which includes accounting for mismatch between modeling and reality.

One of the challenges that is addressed in this work is to estimate the stochastic modeling

parameters in the presence of sensing uncertainty. This fact is overlooked by prior work in estimating

model parameters for steerable needles which assume perfect measurements. In reality, most imaging

and sensing modalities such as computed tomography (CT) imaging, 3D ultrasound tracking, or

electromagnetic tracking systems have errors associated with measurements. We use the expectation

maximization (EM) algorithm to alternate till convergence between Bayesian estimates of the needle

tip poses that best explain the observed data and maximum likelihood estimation of the model

parameters. The goal of our work is to create a stochastic model that captures needle behavior to

inform the design, motion planning, state estimation, and control for robotic needle steering systems.

The remainder of this chapter is organized as follows. We discuss previous work on modeling of

needle behavior and motion in soft tissue in Sec. 3.2, and formally state our objective for estimating

a stochastic model of needle motion in Sec. 3.3. Sec. 3.4 provides an overview of extended Kalman
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filtering and smoothing for steerable needles. We describe an expectation-maximization (EM)

algorithm for estimating the stochastic model parameters in Sec. 3.5 and present results of parameter

estimation from data gathered from multiple procedures performed in animal-protein-based gel and

ex vivo porcine loin tissue in Sec. 3.6. We present simulation results for validation of our method in

Sec. 3.7 and analyze our method and discuss future work in Sec. 3.8.

3.2 Related Work

Significant advancements have been made in modeling bevel-tip steerable needles (Cowan

et al., 2011). A kinematic model of the nonholonomic motion of the needle tip was proposed and

experimentally validated by Webster et al. (Webster III et al., 2006). The model was augmented

to include the effects of torsional friction along the needle shaft (Reed et al., 2009; Swensen and

Cowan, 2012). Okamura et al. (Okamura et al., 2004) identified interaction forces due to puncture,

cutting, and friction that develop during needle insertion through tissue. Minhas et al. showed that

the curvature of the needle path can be controlled through duty cycled spinning of the needle during

insertion (Minhas et al., 2007). The mechanics of steerable needles during insertion in ex vivo tissue

and in vivo tissue have been characterized by Majewicz et al. (Majewicz et al., 2012).

Motion planning and control for steerable needles in a plane (2D) has been extensively stud-

ied (Alterovitz, 2006; Bernardes et al., 2012; Kallem et al., 2010; Ko et al., 2011). Kallem (Kallem

and Cowan, 2009) developed a controller that stabilizes the needle to a desired plane. Reed et

al. (Reed et al., 2011) coupled this controller to a planar planner (Alterovitz et al., 2007) to create an

integrated needle steering system. Motion planners have also been developed for needle steering in

3D environments with obstacles (Hauser et al., 2009; Xu et al., 2009; Duindam et al., 2010; Patil

and Alterovitz, 2010a; Seiler et al., 2012). These planners and controllers require a model of the

kinematics of needle tip and all the above works are based on the deterministic kinematic model

proposed by Webster et al. (Webster III et al., 2006). A planning and control framework based on

LQG control has been proposed for planning and control of steerable needles that consider the effect

of uncertainty during insertion in static environments (van den Berg et al., 2010) and deformable

tissue (Patil et al., 2011). This approach assumes a stochastic model of needle insertion but do not

address the issue of characterization of the stochastic modeling parameters. Park et al. (Park et al.,
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2010b) proposed a path-of-probability algorithm based on diffusion-based error propagation that

considers uncertainty characterized using data-driven models (Park et al., 2010a) but this work only

considers uncertainty in the control inputs, only considers data based on inserting the needle without

any twists, and does not consider sensing uncertainty or a variable curvature kinematic model.

The challenge in coming up with stochastic models for steerable needle procedures is that

we cannot learn patient-specific models because of lack of availability of data till the procedure

is actually performed. Webster et al. (Webster III et al., 2006) fit empirical model parameters to

a deterministic kinematic model of the needle tip motion based on data gathered from repeated

insertions within phantom tissue. Since this is not feasible for clinical procedures, Misra et al. (Misra

et al., 2010) proposed a mechanics-based model parametric model of needle-tissue interaction for

asymmetric-tip steering that captures the salient behavior of needle-tissue interaction but such a

model is computationally complex and is not suitable for fast planning and control of needles.

Chentanez et al. (Chentanez et al., 2009) created a physically-based 3D simulation that uses nonlinear

FEM for modeling needle and tissue deformations but this model is also computationally expensive

and numerical stability is an issue with full-blown physically-based simulation.

Since it is difficult to develop an accurate model of needle motion in soft tissue, we instead

use a generalized kinematic motion model and add stochasticity to the model to subsume the

mismatch between modeling and reality. We then refine the parameters of our stochastic model to

incorporate data from experiments and actual procedures as it is made available. Our expectation-

maximization (EM) (Dempster et al., 1977) approach is very similar for estimating parameters of a

stochastic model for training Kalman filters (Abbeel et al., 2005), system identification of dynamic

systems (Ghahramani and Hinton, 1996), and quantifying statistical similarity between simulation

models and real-world data for complex, aggregate systems like human crowds (Guy et al., 2012).

We propose a stochastic model specific to steerable needle insertion for the purposes of simulation

for facilitating preoperative optimization of clinical procedures and motion planning and control

of steerable needles in soft tissue without having to model all the complex phenomena that govern

steerable needle insertion.
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3.3 Preliminaries and Objective

We next formally define our stochastic kinematic model and establish the objective of our work.

3.3.1 State Representation

The complete state of the steerable needle during the procedure is completely characterized by

the high-dimensional coupled system comprising of both the needle and the tissue. To make the

problem tractable, we assume that the state of the needle is completely described by the needle tip

pose (as described in Chapter 1). The pose can be represented as a 4×4 matrixX =
[
R p
0 1

]
∈ SE(3),

where p ∈ R3 is the position of the needle tip and R ∈ SO(3) is the rotation matrix that encodes the

needle tip orientation relative to a world coordinate frame.

State estimation and control in the SE(3) group is a hard problem (Park et al., 2008) because it

is difficult to preserve the orthogonality constraint on the rotation matrix R. We choose an equivalent,

alternate representation of the pose for the sake of convenience. The pose can also be represented

by a vector x = [ pr ] ∈ R6, comprising of the position p ∈ R3 and the orientation is described as a

rotation of angle ||r|| about axis r ∈ R3.

The X ∈ SE(3) representation is convenient for kinematic modeling and motion planning

purposes but the x ∈ R6 is convenient for state estimation and control purposes. We can conveniently

transform between the two state representations. Given a state X =
[
R p
0 1

]
, the equivalent state

x ∈ R6 is given by

x =



p

r


 , where




[r] p

0 1


 = log(X), (3.1)

where log(·) is the matrix logarithm that defines a mapping from SE(3) → se(3) (Murray et al.,

1994) and the notation [r] for a vector r = [rx, ry, rz]
T ∈ R3 refers to the 3 × 3 skew-symmetric

cross-product matrix

[r] =




0 −rz ry

rz 0 −rx

−ry rx 0



. (3.2)
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Conversely, given a state x = [ pr ], the equivalent state X ∈ SE(3) is given by

X = exp
(



[r] p

0 1



)
, (3.3)

where exp(·) is the matrix exponential that defines a mapping from se(3) → SE(3) and has a

convenient closed-form analytical expression (Murray et al., 1994).

3.3.2 Stochastic Kinematic Model

As described in Chapter 2, using a variable curvature kinematic model for describing the needle

tip motion has several advantages over prior approaches that used a constant curvature kinematic

model that severely restricts the range of motion of the needle tip.

Let v be the insertion speed and ω̂ be the twist speed of the needle. We extend the constant

curvature model proposed by Webster et al. (Webster III et al., 2006) to consider the curvature

κ (0 ≤ κ ≤ κ0) as an additional control input parameter. The control input vector to the variable

curvature model is denoted as u = [v, ω̂, κ]T ∈ R3. The variable curvature κ can be realized by duty

cycled rotation of the needle (as described in Chapter 2).

Since it is challenging to develop accurate models of the kinematics of the needle tip, we

deliberately use a simplified model for the expected motion of the needle tip and represent the

cumulative effect of all the sources of uncertainty, including the mismatch between modeling and

reality, using an additive stochastic error term. The central limit theorem (CLT), loosely speaking,

suggests that the resultant distribution arising from the combination of several independent sources

of error can be well modeled as a Gaussian. We therefore represent the error term to be drawn from a

Gaussian distribution with mean µt and variance Mt at each time t.

Formally stating, we represent the discretized stochastic kinematics of the needle tip in terms of

the needle tip pose xt ∈ R6 and the control input ut ∈ R3 applied at time t, as:

xt+1 = f [xt,ut] + mt, mt ∼ N [µt,Mt], (3.4)
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where mt ∈ R6 represents the cumulative error between the true state at the next time step xt+1

and the state estimated by the function f and is assumed to be drawn from a Gaussian distribution.

Eqn. (3.4) can be equivalently expressed as

xt+1 ∼ N [f [xt,ut] + µt,Mt] (3.5)

We base our function f on the idealized kinematic model proposed by Webster et al. (Webster

III et al., 2006). This is the same variable curvature kinematic model considered in Chapter 2 and

is provided here for the sake of completeness. Given the control input vector u = [v, ω̂, κ]T , it is

convenient to describe the kinematics in terms of the instantaneous twist U ∈ se(3) expressed in a

local coordinate frame attached to the needle tip, given by (van den Berg et al., 2010):

U =




[ω̂] v

0 0


 , ω̂ =

[
vκ 0 ω̂

]T
, v =

[
0 0 v

]T
. (3.6)

where the notation [s] for a vector s ∈ R3 refers to the 3× 3 skew-symmetric cross-product matrix.

The discrete-time kinematics evolves over time interval t as:

Xt+1 = f [Xt,u, t] = Xt exp(Ut). (3.7)

where exp(·) denotes the matrix exponential operator. In this case, exp : se(3)→ SE(3) denotes

the exponential map (Murray et al., 1994).

3.3.3 Stochastic Measurement Model

As the steerable needle is inserted into tissue, noisy and possibly partial sensor measurements of

the needle tip state are obtained according to a known stochastic measurement model:

zt = h[xt] + nt, nt ∼ N [0, Nt], (3.8)

where zt is the measurement obtained at time t and nt is the zero-mean Gaussian noise with

variance N that models the sensing uncertainty, which is usually made available from manufacturer
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specifications or can be estimated using system identification. Eqn. (3.8) can also be expressed as:

zt ∼ N [h[xt], Nt]. (3.9)

For instance, if we use a 5DOF sensor of an electromagnetic tracking system (Northern Digital

Inc., 2012), we might obtain measurements of 5 of the 6 degrees of freedom and the sixth degree of

freedom, which is the needle twist, will have to be estimated. Similarly, if we use 3D ultrasound to

track the needle tip, we can only measure the position of the needle tip and the orientation of the tip

has to be estimated.

3.3.4 Problem Definition

The problem can now be formally defined as follows:

Input: We are given a set of K needle trajectories Γ = {γ1, . . . , γK}, obtained from executing

steerable needle motion plans within tissue. Each trajectory γk comprises of a series of measurements

zk0:Tk
= {zk0, . . . , zkTk} that provide a noisy (and potentially partial) measurement corresponding to

the (unknown) true state of the needle tip xk0:Tk
= {xk0, . . . ,xkTk} at the corresponding time step. We

assume that the given trajectories are representative of the errors encountered during steerable needle

procedures and span the space of all control input and state output responses. We are also given the

sequence of control inputs uk0:Tk−1
= {uk0, . . . ,ukTk−1

} that are applied to the base of the steerable

needle at the corresponding time steps.

Output: The objective is to estimate the means µt and the variances Mt of the error distribution

(Eqn. (3.4)) that best explain the series of measurements {z1
0:T1

, . . . , zK0:Tk
} obtained from the K

trajectories. The goal is to estimate the parameters of the stochastic model for simulating steerable

needle procedures for preoperative procedure optimization, motion planning, state estimation, and

control of steerable needles.

3.4 State Estimation

We provide details of our state estimation framework for estimating the pose of the needle tip,

which is later used for estimating the stochastic model parameters. We use an extended Kalman
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smoother (Simon, 2006) for state estimation, which requires linear(ized) kinematics and measurement

models. It is also important to account for the non-zero mean of the error term µt. We use estimates

of µt and Mt for estimating the state distributions and we assume that the measurement noise

variances Nt are known. We will later show how the estimates of µt and Mt are revised.

3.4.1 Extended Kalman Filter

Given a trajectory γ, we first need to estimate the most likely true states of the needle tip x0:T

given the set of noisy measurements z0:T . This estimation can be performed using Bayesian inference

and we use the extended Kalman filter (EKF) for this purpose. The EKF keeps track of the estimate

x̂t of the state xt and variance Pt of the true state xt (which is assumed to be Gaussian) during

execution. It continually performs two steps; a control update to propagate the applied control input

ut, and a measurement update to incorporate the measurement zt.

We will use the following notation (where E[·|·] is the conditional expectation):

x̂t|t = E[xt|z0:t], Pt|t = E[(xt − x̂t|t)(xt − x̂t|t)
T |z0:t],

x̂t+1|t = E[xt+1|z0:t], Pt+1|t = E[(xt+1 − x̂t+1|t)(xt+1 − x̂t+1|t)
T |z0:t]. (3.10)

We assume that the distribution of the initial state is known, i.e., x0 ∼ N [x̂0|−1, P0|−1] is given.

Given Eqns. (3.4) and (3.8), the control and measurement updates proceed as follows:

Control update step:

x̂t+1|t = f [x̂t|t,ut] + µt, (3.11)

Pt+1|t = AtPt|tA
T
t +Mt, (3.12)

where At is the Jacobian matrix given by
∂f

∂x
[x̂t|t,ut].

Measurement update step:

Kt+1 = Pt+1|tH
T
t+1(Ht+1Pt+1|tH

T
t+1 +Nt)

−1, (3.13)

x̂t+1|t+1 = x̂t+1|t +Kt+1(zt+1 − h[x̂t+1|t]), (3.14)

Pt+1|t+1 = (I −Kt+1Ht+1)Pt+1|t, (3.15)
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where Ht+1 is the Jacobian matrix given by
∂h

∂x
[x̂t+1|t].

The Jacobian matrices can either be computed by numerical finite differences or by using the

analytical expressions for the Jacobians provided by (van den Berg et al., 2010), which are exact and

do not suffer from numerical errors.

3.4.2 Extended Kalman Smoother

The Kalman filter iteratively estimates the state distributionsN [x̂t|t, Pt|t] based on measurements

received in the past relative to time step t. However, once execution finishes, we can incorporate

measurements received in the future relative to time t to obtain a more refined estimate.

Estimators that take into account both past and future are often called smoothers. The Kalman

smoother estimates the distribution N [x̂t|T , Pt|T ] by first performing a forward pass of the Kalman

filter in time. That allows us to compute the distributionsN [x̂t+1|t, Pt+1|t] andN [x̂t+1|t+1, Pt+1|t+1]

for time 0 ≤ t < T . We then perform a backward pass in time that updates the estimates of the state

distributions as follows:

Kalman smoothing backward step:

Lt = Pt|tA
T
t P
−1
t+1|t, (3.16)

x̂t|T = x̂t|t + Lt(x̂t+1|T − x̂t+1|t), (3.17)

Pt|T = Pt|t + Lt(Pt+1|T − Pt+1|t)L
T
t . (3.18)

Note that (Pt+1|T − Pt+1|t) < 0 as the uncertainty over x̂t+1 is smaller when conditioned on all

observations, than when only conditioned only on past observations. The Kalman smoother is used

in the post-processing step to yield x̂t|T as the optimal estimate of the state at time t and the variance

Pt|T serves as a measure of uncertainty around the state estimate.

3.5 Expectation Maximization for Parameter Estimation

For the sake of brevity, we only consider a single trajectory γ composed of T time steps and we

will later generalize to a set of trajectories Γ = {γ1, . . . , γK}. Given a set of measurements z0:T ,

the objective is to estimate the parameters of the stochastic model µt and Mt, t ∈ {0, . . . , T}, such
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that the measurements become as likely as possible. This can be formally stated as follows:

{µ0:T ,M0:T } = arg max
µt∈R6,Mt∈M6

L[µ0:T ,M0:T |z0:T ] = arg max
µt∈R6,Mt∈M6

p[z0:T |µ0:T ,M0:T ], (3.19)

where the likelihood L[·] is a function of the parameters of a statistical model and the likelihood of a

set of parameter values µ0:T ,M0:T , given measurements z0:T , is equal to the probability of those

measurements given those parameter values. Also, M6 is the set of all 6 × 6 symmetric positive

definite matrices.

We use the expectation-maximization (EM) algorithm (Dempster et al., 1977) to find the maxi-

mum likelihood estimates of the parameters µ0:T and M0:T . The principal idea of the EM algorithm

is to find the maximum likelihood estimates of parameters of a model, where the model depends

on unobserved latent variables in addition to unknown parameters and known data observations.

It is mathematically convenient to maximize the log-likelihood instead of the likelihood since the

logarithm cancels against the exponent in the probability density function of a Gaussian distribution,

which is equivalent since the logarithm is a monotonic function. The EM iteration alternates between

performing an expectation (E) step, which creates a function for the expectation of the log-likelihood

evaluated using the current estimate for the parameters, and a maximization (M) step, which computes

parameters maximizing the expected log-likelihood found on the E step. These parameter-estimates

are then used to determine the distribution of the latent variables in the next E step.

Instead of directly maximizing the joint log-likelihood of the measurements, we first infer the

distributions of true states N [x̂t+1|T , Pt+1|T ] using our best guesses of µt and Mt, and then use

these distributions to estimate µ0:T and M0:T by maximizing the joint log-likelihood. This iterative

approach to estimation is guaranteed to converge in a coordinate-ascent manner to a locally optimal

estimate of the distributions of the true states and the stochastic model parameters µ0:T and M0:T .

The objective now is to maximize the joint log-likelihood LL[µ0:T ,M0:T |x0:T , z0:T ] given by:

log p[x0:T , z0:T |µ0:T ,M0:T ] = log
( T∏

t=0

p(xt|xt−1)p(zt|xt)
)

=
T∑

t=0

log p[xt|xt−1] +
T∑

t=0

log p[zt|xt]. (3.20)
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E step: Using the relation xt ∼ N [f [xt−1,ut−1] + µt,Mt] from Eqn. (3.5), the first term in

Eqn. (3.20) evaluates to:

T∑

t=0

log p[xt|xt−1] =
T∑

t=0

e−
1
2

(xt−f [xt−1,ut−1]−µt)
TM−1

t (xt−f [xt−1,ut−1]−µt)

(2π)6/2|Mt|1/2

=

T∑

t=0

(
− 3 log(2π) +

1

2
log |M−1

t |

− 1

2
(xt − f [xt−1,ut−1]− µt)TM−1

t (xt − f [xt−1,ut−1]− µt)
)
. (3.21)

Similarly, using zt ∼ N [h[xt], N ] from Eqn. (3.9), the second term in Eqn. (3.20) evaluates to:

T∑

t=0

log p[zt|xt] =
T∑

t=0

e−
1
2

(zt−h[xt])TN
−1
t (zt−h[xt])

(2π)dim[z]/2|Nt|1/2

=
T∑

t=0

(
− dim[z]

2
log(2π) +

log |N−1
t |

2
− 1

2
(zt − h[xt])

TN−1
t (zt − h[xt])

)

(3.22)

Since Eqn. (3.22) does not contain µ0:T or M0:T , we ignore this term henceforth because it does not

contribute to the maximization of the log-likelihood. Hence, the log-likelihood is now given by:

LL[µ0:T ,M0:T |x0:T , z0:T ]

=

T∑

t=0

( log |M−1
t |

2
− 1

2
(xt − f [xt−1,ut−1]− µt)TM−1

t (xt − f [xt−1,ut−1]− µt)
)

+ Φ

=
T∑

t=0

log |M−1
t |

2
− Tr

2

( T∑

t=0

M−1
t (xt − f [xt−1,ut−1]− µt)(xt − f [xt−1,ut−1]− µt)T

)
+ Φ.

(3.23)

where Φ is an expression independent of both µ0:T and M0:T , and we use the identities a = Tr(a) if

a is a scalar, Tr(A+B) = Tr(A) + Tr(B) and Tr(AB) = Tr(BA) for matrices A and B.

Since this expression cannot be directly evaluated since the true states x0:T are unknown,

we compute the expectation of the joint log-likelihood conditioned on the set of measurements

z0:T , i.e., E[LL[µ0:T ,M0:T |x0:T , z0:T ]|z0:T ] using an extended Kalman smoother (Sec. 3.4.2). The
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expectation of the log-likelihood is given by:

E[LL[µ0:T ,M0:T |x0:T , z0:T ]|z0:T ]

=
T∑

t=0

log |M−1
t |

2

− 1

2
Tr
( T∑

t=0

M−1
t E[(xt − f [xt−1,ut−1]− µt)(xt − f [xt−1,ut−1]− µt)T |z0:T ]

)
. (3.24)

We use the first order Taylor series approximation for f [xt−1,ut−1] by linearizing around x̂t−1|T

to obtain the approximation f [xt−1,ut−1] ≈ f [x̂t−1|T ,ut−1] + At−1(xt−1 − x̂t−1|T ), where At−1

is the Jacobian matrix given by
∂f

∂x
[x̂t−1|T ,ut−1]. Substituting these terms in the expectation term

of Eqn. (3.24), the expectation term simplifies to (van den Berg, 2010):

E[(xt − f [xt−1,ut−1]− µt)(xt − f [xt−1,ut−1]− µt)T |z0:T ]

=Pt|T +At−1Pt−1|TA
T
t−1 − Pt|TLTt−1A

T
t−1 −At−1Lt−1Pt|T

+ (x̂t|T − f [x̂t−1|T ,ut−1]− µt)(x̂t|T − f [x̂t−1|T ,ut−1]− µt)T . (3.25)

The expectation of the log-likelihood E[LL[µ0:T ,M0:T |x0:T , z0:T ]|z0:T ] is now completely

given by Eqns. (3.24) and (3.25).

M step: We then determine µ0:T that maximizes the expectation of the log-likelihood by

individually taking the derivatives of the expression in Eqn. (3.24) with respect to µt, t ∈ {0, . . . , T}

and equating it to zero to give:

µt = (x̂t|T − f [x̂t−1|T ,ut−1]). (3.26)

Similarly, we can find M0:T that maximizes the log-likelihood by taking the derivative of the

expression in Eqn. (3.24) individually with respect to M−1
t (which is equivalent to maximizing with

respect to Mt) and equating it to zero to give:

Mt = E[(xt − f [xt−1,ut−1]− µt)(xt − f [xt−1,ut−1]− µt)T |z0:T ], (3.27)

where the expectation term is evaluated using Eqn. (3.25).
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We generalize this to estimate µ0:T and M0:T across the set of trajectories Γ = {γ1, . . . , γK}

by summing the expectation terms over all trajectories to compute the following solution:

µt =
1

K

K∑

k=1

(x̂kt|Tk − f [x̂kt−1|Tk ,u
k
t−1]), (3.28)

Mt =
1

K

K∑

k=1

E[(xkt − f [xkt−1,u
k
t−1]− µt)(xkt − f [xkt−1,u

k
t−1]− µt)T |z0:Tk ]. (3.29)

The EM algorithm can be summarized as follows. We select initial values of µt = µ0
t and

Mt = M0
t to begin the iterative process. At each iteration j, we use estimates of µt and Mt from

the previous iteration, µj−1
t and M j−1

t , to compute the expectation of the log-likelihood (E step)

and then compute revised estimates of the parameters. This iterative process is repeated till the

convergence criterion is met.

We consider the means µt to have converged when the difference in the norm of each of the

individual µjt and the previous estimate µj−1
t is below a user defined threshold εµ. As for M , there

are several choices for the convergence criterion, including the determinant |M |, the maximum

eigenvalue, or the trace Tr(M). The main disadvantage of the determinant is that a small determinant

can correspond to a very elongated ellipse. As opposed to the maximum of the eigenvalues, the trace

(which equals the sum of all eigenvalues) represents the uncertainty in all directions equally. We

consider the covariances Mt to have converged when the difference in the Frobenius norm (based

on the trace criterion) of each of the individual M j
t and the previous estimate M j−1

t is below a user

defined threshold εM . We use a threshold value of εµ = εM = 1e−4 in our experiments.

3.6 Parameter Estimation

3.6.1 Data Collection

We gathered data from multiple procedures performed in two kinds of materials (as outlined in

Sec. 2.6): (i) animal-protein-based gel marketed as Simulated Muscle Tissue Ballistic Test Media

(Sim-Test) (Corbin Manufacturing and Supply, Inc., 2012), and (ii) ex vivo porcine loin tissue.

We recorded measurements of the state of the needle tip using an electromagnetic tracking

system (Northern Digital Inc., 2012) (Sec. 2.6) at 1 cm intervals ranging up to 10 cm of needle
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insertion length for 200 trajectories in Sim-Test material and 50 trajectories in porcine loin tissue.

We obtained measurements of 5 of the 6 degrees of freedom from the tracking system and the sixth

degree of freedom, which is the needle twist, was measured using the encoders on the motor used for

applying twists to the needle base. Since the state of the needle tip was recorded as a 4× 4 matrix

Xt =
[
Rt pt
0 1

]
∈ SE(3) at each time step t, we used Eqn. 3.1 to convert to the state representation

xt = [ pt
rt ] ∈ R6 required for our method. This gives the following stochastic measurement model

using Eqn. (3.8):

zt = xt + nt, nt ∼ N [0, Nt]. (3.30)

For the electromagnetic tracking system, the manufacturer specifications for the standard de-

viation of the error in estimating the position along any given axis is 0.07 cm and the angle is 0.2◦

(or equivalently 0.0035 radians) (Northern Digital Inc., 2012). We assume the rotary encoders on

the motor used to determine the twist angle around the insertion axis to be accurate, and assume the

standard deviation to be 0.0035 radians. This gives us the following constant covariance matrix Nt:

Nt =




(0.07)2I3×3 0

0 (0.0035)2I3×3


 , (3.31)

where I3×3 is the 3× 3 identity matrix. We also recorded the control inputs applied for actuation of

the needle at each time step t in terms of the insertion speed vt and twist speed ωt. It is important to

note here that we have assumed the torsion along the needle shaft to be negligible but studies have

shown that this might not always be case (Reed et al., 2009; Swensen and Cowan, 2012). We could

also use data from prior papers on torsion compensation to compute more accurate results and we

leave this as a topic for future work.

3.6.2 Estimated Error Parameters: Sim-Test

We considered 200 trajectories performed in the Sim-Test medium of up to 10 cm of insertion

length, with measurements taken at 1 cm intervals. We initialized the expectation-maximization (EM)

algorithm with the following parameters:

µ0
t = [0, 0, 0, 0, 0, 0]T , M0

t = 10−4I6×6, (3.32)
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where I6×6 is the 6× 6 identity matrix.

We then applied the EM algorithm to the empirical data by alternating between Bayesian

estimates of the needle tip state obtained using the extended Kalman smoother (Sec. 3.4) and

maximum likelihood estimation of the parameters µ0:9 and M0:9. The parameters obtained after

convergence of the EM algorithm are given below:

µ0 = 10−3 ·


14.64
−56.24
−124.48
−1.92
2.00
−0.05

 M0 = 10−4 ·


28.55 3.15 5.89 −0.09 4.44 −0.15
3.15 31.05 5.18 −4.60 −3.87 0.22
5.89 5.18 9.33 −0.42 −0.48 0.04
−0.09 −4.60 −0.42 5.87 −1.81 0.10
4.44 −3.87 −0.48 −1.81 11.97 −0.56
−0.15 0.22 0.04 0.10 −0.56 0.03

 (3.33)

µ1 = 10−3 ·


6.72
−52.49
−69.64
−3.39
8.95
−0.56

 M1 = 10−4 ·


20.13 1.20 −1.60 0.17 −1.06 −0.28
1.20 23.96 0.40 −2.70 −2.07 −0.03
−1.60 0.40 8.81 −1.02 1.01 0.03
0.17 −2.70 −1.02 4.64 −1.49 0.09
−1.06 −2.07 1.01 −1.49 9.64 −0.67
−0.28 −0.03 0.03 0.09 −0.67 0.18

 (3.34)

µ2 = 10−3 ·


4.65
−44.52
−43.79
−3.69
5.75
−0.53

 M2 = 10−4 ·


11.35 3.01 0.51 −0.15 2.77 −0.81
3.01 11.15 −0.43 −2.27 0.96 −0.05
0.51 −0.43 7.33 −0.67 2.58 0.06
−0.15 −2.27 −0.67 4.49 −1.74 0.18
2.77 0.96 2.58 −1.74 8.14 −0.46
−0.81 −0.05 0.06 0.18 −0.46 0.30

 (3.35)

µ3 = 10−3 ·


6.12
−42.29
−26.20
−7.35
7.15
−0.14

 M3 = 10−4 ·


9.73 0.64 −1.37 0.37 1.86 −0.84
0.64 14.48 −0.32 −3.06 0.35 −0.02
−1.37 −0.32 6.53 −0.53 1.38 0.15
0.37 −3.06 −0.53 4.41 −0.45 0.13
1.86 0.35 1.38 −0.45 6.24 −0.45
−0.84 −0.02 0.15 0.13 −0.45 0.50

 (3.36)

µ4 = 10−3 ·


5.87
−44.26
−17.39
−7.75
7.05
−0.20

 M4 = 10−4 ·


9.82 −0.56 −1.26 0.01 1.61 −0.85
−0.56 14.97 2.61 −3.62 −0.52 −0.18
−1.26 2.61 6.24 −0.82 0.53 0.30
0.01 −3.62 −0.82 4.10 −0.23 0.10
1.61 −0.52 0.53 −0.23 5.36 −0.36
−0.85 −0.18 0.30 0.10 −0.36 0.62

 (3.37)

µ5 = 10−3 ·


10.97
−44.74
−12.62
−7.75
9.38
0.27

 M5 = 10−4 ·


12.29 1.02 −1.37 0.43 2.91 −0.86
1.02 16.12 2.48 −3.84 −0.48 −0.09
−1.37 2.48 6.45 −0.96 0.54 0.28
0.43 −3.84 −0.96 3.81 −0.21 0.13
2.91 −0.48 0.54 −0.21 6.64 −0.31
−0.86 −0.09 0.28 0.13 −0.31 0.89

 (3.38)

µ6 = 10−3 ·


17.65
−48.16
−8.46
−9.29
10.28
−0.88

 M6 = 10−4 ·


19.73 −0.88 −1.73 0.56 3.29 0.19
−0.88 18.10 0.81 −5.13 1.05 0.70
−1.73 0.81 4.65 −0.16 −0.27 −0.14
0.56 −5.13 −0.16 4.25 −0.28 −0.22
3.29 1.05 −0.27 −0.28 5.75 −0.24
0.19 0.70 −0.14 −0.22 −0.24 1.19

 (3.39)

µ7 = 10−3 ·


18.56
−47.77
−8.55
−11.95
11.54
0.18

 M7 = 10−4 ·


19.67 −0.77 −1.80 0.47 4.66 −0.07
−0.77 22.09 −0.39 −3.76 0.91 0.88
−1.80 −0.39 5.34 0.38 −0.88 0.26
0.47 −3.76 0.38 3.88 −0.16 −0.10
4.66 0.91 −0.88 −0.16 6.05 0.21
−0.07 0.88 0.26 −0.10 0.21 1.21

 (3.40)
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µ8 = 10−3 ·


16.23
−45.17
−1.53
−9.65
7.98
2.20

 M8 = 10−4 ·


26.94 −0.74 −0.83 1.41 3.86 0.75
−0.74 24.95 −0.53 −3.97 −0.01 0.62
−0.83 −0.53 6.33 −0.39 0.18 0.47
1.41 −3.97 −0.39 3.99 0.05 −0.33
3.86 −0.01 0.18 0.05 5.43 0.18
0.75 0.62 0.47 −0.33 0.18 1.60

 (3.41)

µ9 = 10−3 ·


16.13
−35.64

3.78
−13.27

8.80
3.33

 M9 = 10−4 ·


17.51 −1.65 1.60 0.63 2.72 0.87
−1.65 22.10 1.76 −3.63 0.80 0.70
1.60 1.76 7.42 −0.53 0.63 0.20
0.63 −3.63 −0.53 3.68 0.39 −0.27
2.72 0.80 0.63 0.39 5.88 0.65
0.87 0.70 0.20 −0.27 0.65 1.56

 (3.42)

where the units of the dimensions of the state pertaining to the position of the needle tip are in cm

and the units pertaining to the orientation are in radians.

In contrast to prior work that characterizes noise models for needle insertion in terms of stochastic

control inputs (Park et al., 2010a), our data-driven noise model directly operates on the needle tip

pose. It is important to note that the error parameters estimated using our method also have a non-zero

mean (Eqns. (3.33) - (3.42)). The mean of the deviation in position along the insertion axis (z-axis)

is negative – in particular, the value is -0.125 cm for the first time step (Eqn. (3.33), and then it

consistently decreases to near zero (Eqn. (3.42)). This indicates that the predicted position of the

needle tip along the insertion axis overshoots the actual needle tip position, which can be attributed

to the fact that the needle buckles slightly outside the tissue inside the robot’s telescoping shaft when

initially inserted into tissue and the needle tip does not move as far as predicted by the kinematic

model. After the needle is within the tissue, the deterministic kinematic model does a better job of

predicting the position of the needle tip along the insertion axis.

We compared the computed distribution of position and orientation errors along each of the

x,y, and z− axes to the distribution of the errors as computed by the deterministic motion model

given by Eqn. (2.2) as applied to the smoothed state estimates x̂it|Ti . In particular, we considered the

distribution of the error x̄it|Ti between the smoothed state estimate x̂it|Ti and the state predicted by

the deterministic kinematic model based on the smoothed state estimate x̂it−1|Ti and control input

uit−1 at each time step t for each i = 1, . . . ,K trajectories as given by:

x̄it|Ti = (x̂it|Ti − f [x̂it−1|Ti ,u
i
t−1]), 1 ≤ i ≤ K (3.43)
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Figure 3.2: Experimental data in Sim-Test: Normalized histograms showing the distribution of
position and orientation errors along each of the x, y, z-axes obtained by computing x̄i1 = (x̂i1|9 −
f [x̂i0|9,u

i
0]), 1 ≤ i ≤ K using the smoothed estimates of the needle tip state for each of the K

trajectories. The normal distribution N [µ0,M0] based on the estimated parameters of our stochastic
model and marginalized over each of the individual dimensions of the state is shown in red.

According to the stochastic kinematic model in Eqn. (3.4), the residual error x̄it|Ti at each time

step t for the ith trajectory is a sample from the distribution N [µt,Mt]. Fig. 3.2 shows the normal

error distribution N [µ0,M0] for the first time step estimated using our method and the normalized

histogram of the distribution of position and orientation errors along each of the axes obtained by

computing x̄i1 = (x̂i1|9 − f [x̂i0|9,u
i
0]), 1 ≤ i ≤ K. The number of histogram bins is computed

according to the Freedman-Diaconis rule (Freedman and Diaconis, 1981) for computing histograms

for density estimation. Notice that the mean of the position error along the insertion axis (z-axis)

is negative, which implies that the deterministic kinematic model overpredicts the actual needle tip

position along the insertion axis.

We also estimated a single mean µ and covariance M for the error distribution based on the data

collected in Sim-Test by summing the relevant expectation terms over all time steps {0 : T} and
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across the set of trajectories Γ given by the following:

µ =
1

K

K∑

k=1

( 1

Tk

Tk∑

t=0

(x̂kt|Tk − f [x̂kt−1|Tk ,u
k
t−1])

)
, (3.44)

M =
1

K

K∑

k=1

( 1

Tk

Tk∑

t=0

E[(xkt − f [xkt−1,u
k
t−1]− µt)(xkt − f [xkt−1,u

k
t−1]− µt)T |z0:Tk ]

)
. (3.45)

The parameters µ and M estimated using our method are given below:

µ = 10−3 ·


11.56
−46.26
−32.18
−7.43
7.83
0.32

 M = 10−4 ·


17.70 0.47 0.25 0.27 2.68 −0.20
0.47 20.07 2.77 −3.77 −0.28 0.30
0.25 2.77 21.24 −1.68 1.28 0.35
0.27 −3.77 −1.68 4.44 −0.68 −0.04
2.68 −0.28 1.28 −0.68 7.21 −0.22
−0.20 0.30 0.35 −0.04 −0.22 0.80

 (3.46)

3.6.3 Estimated Error Parameters: Ex-vivo Porcine Loin Tissue

We considered 50 trajectories performed in ex-vivo porcine loin tissue of up to 10 cm of insertion

length, with measurements taken at 1 cm intervals. We initialized the expectation-maximization (EM)

algorithm with the following parameters:

µ0
t = [0, 0, 0, 0, 0, 0]T , M0

t = 10−4I6×6, (3.47)

where I6×6 is the 6× 6 identity matrix. The estimated means µ0:9 and covariances M0:9 of the error
distributions are given below:

µ0 = 10−3 ·


−28.96
−26.92
−152.02
−26.21
−0.16
0.22

 M0 = 10−4 ·


69.48 12.50 −1.92 −11.85 37.46 −1.30
12.50 60.90 3.54 −35.69 20.10 −0.73
−1.92 3.54 7.82 −0.22 −1.84 0.09
−11.85 −35.69 −0.22 36.09 −19.41 0.65
37.46 20.10 −1.84 −19.41 45.47 −1.58
−1.30 −0.73 0.09 0.65 −1.58 0.06

 (3.48)

µ1 = 10−3 ·


−15.14
−20.59
−102.82
−8.34
19.92
−0.68

 M1 = 10−4 ·


42.80 4.07 −0.88 −2.20 8.99 0.49
4.07 97.26 6.32 −18.40 6.08 −1.32
−0.88 6.32 24.08 0.58 0.56 −0.16
−2.20 −18.40 0.58 10.76 0.34 0.06
8.99 6.08 0.56 0.34 6.72 −0.11
0.49 −1.32 −0.16 0.06 −0.11 0.11

 (3.49)

µ2 = 10−3 ·


3.52
−23.24
−65.64
−3.88
28.73
−0.86

 M2 = 10−4 ·


43.94 −2.24 −4.53 3.99 8.97 −0.63
−2.24 25.74 1.46 −8.21 −2.11 −0.19
−4.53 1.46 23.32 −4.34 −1.82 −0.58
3.99 −8.21 −4.34 7.88 2.44 0.06
8.97 −2.11 −1.82 2.44 8.23 −0.10
−0.63 −0.19 −0.58 0.06 −0.10 0.13

 (3.50)
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µ3 = 10−3 ·


−16.53
−27.05
−41.92
−12.13
11.79
0.15

 M3 = 10−4 ·


42.36 8.65 3.21 −1.65 5.85 0.44
8.65 46.63 −6.48 −7.18 1.54 −0.31
3.21 −6.48 7.01 −0.37 −0.14 0.23
−1.65 −7.18 −0.37 5.11 0.22 0.08
5.85 1.54 −0.14 0.22 3.35 0.01
0.44 −0.31 0.23 0.08 0.01 0.09

 (3.51)

µ4 = 10−3 ·


−9.02
−19.05
−26.62
−12.28
18.63
−0.94

 M4 = 10−4 ·


29.49 −2.72 −1.43 1.63 3.75 −0.37
−2.72 58.44 −7.03 −8.61 3.89 0.21
−1.43 −7.03 17.47 1.13 0.77 −0.33
1.63 −8.61 1.13 7.10 0.24 −0.00
3.75 3.89 0.77 0.24 4.34 −0.21
−0.37 0.21 −0.33 −0.00 −0.21 0.20

 (3.52)

µ5 = 10−3 ·


−9.26
−25.40
−27.11
−7.74
17.19
0.17

 M5 = 10−4 ·


24.20 4.55 1.16 2.24 1.06 0.22
4.55 36.29 −3.11 −6.26 2.48 −0.02
1.16 −3.11 12.50 0.99 −1.98 −0.27
2.24 −6.26 0.99 6.67 −0.52 0.13
1.06 2.48 −1.98 −0.52 3.75 0.06
0.22 −0.02 −0.27 0.13 0.06 0.21

 (3.53)

µ6 = 10−3 ·


−2.85
−19.56
−27.81
−10.30
18.58
0.69

 M6 = 10−4 ·


42.35 −0.70 6.65 −1.38 0.45 0.61
−0.70 26.52 −4.75 −6.93 −0.00 −0.04
6.65 −4.75 7.25 1.49 1.74 −0.06
−1.38 −6.93 1.49 8.18 1.56 0.16
0.45 −0.00 1.74 1.56 6.60 0.01
0.61 −0.04 −0.06 0.16 0.01 0.24

 (3.54)

µ7 = 10−3 ·


−2.30
−10.48
−35.55
−18.32
17.07
−0.64

 M7 = 10−4 ·


37.52 4.03 1.34 0.63 8.15 −0.47
4.03 35.27 −4.55 −9.45 −1.68 0.43
1.34 −4.55 15.75 2.30 0.26 −0.26
0.63 −9.45 2.30 7.82 0.31 −0.03
8.15 −1.68 0.26 0.31 6.22 −0.91
−0.47 0.43 −0.26 −0.03 −0.91 0.40

 (3.55)

µ8 = 10−3 ·


16.99
−18.69
−24.64
−23.77
18.11
0.01

 M8 = 10−4 ·


104.10 12.64 −3.50 1.05 11.96 −1.69
12.64 86.59 −13.31 −8.89 −2.76 0.47
−3.50 −13.31 20.70 −2.40 0.80 −0.56
1.05 −8.89 −2.40 8.62 0.35 0.65
11.96 −2.76 0.80 0.35 8.04 −0.77
−1.69 0.47 −0.56 0.65 −0.77 0.27

 (3.56)

µ9 = 10−3 ·


−0.97
7.08
−28.01
−30.62
10.66
0.41

 M9 = 10−4 ·


50.34 11.28 8.27 −6.30 5.82 −0.87
11.28 28.33 1.51 −6.31 0.82 0.09
8.27 1.51 13.92 −3.36 2.67 −0.57
−6.30 −6.31 −3.36 7.70 −0.17 0.55
5.82 0.82 2.67 −0.17 4.46 −0.39
−0.87 0.09 −0.57 0.55 −0.39 0.20

 (3.57)

It is important to note that the error parameters estimated using our method also have a non-zero

mean in ex vivo porcine loin tissue (Eqns. (3.48) - (3.57)). The mean of the deviation in position

along the insertion axis (z-axis) is negative – in particular, the value is -0.152 cm for the first time

step (Eqn. (3.48), and then it decreases to ≈ -0.03 cm towards the last time step (Eqn. (3.57)). This

implies that the deterministic kinematic model overpredicts the actual needle tip position along the

insertion axis in porcine tissue.

Fig. 3.3 shows the normal error distribution N [µ0,M0] for the first time step estimated using

our method and the normalized histogram of the distribution of position and orientation errors along
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Figure 3.3: Experimental data in ex vivo porcine loin tissue: Normalized histograms showing the
distribution of position and orientation errors along each of the x, y, z-axes obtained by computing
x̄i1 = (x̂i1|9 − f [x̂i0|9,u

i
0]), 1 ≤ i ≤ K using the smoothed estimates of the needle tip state for each

of the K trajectories. The normal distribution N [µ0,M0] based on the estimated parameters of our
stochastic model and marginalized over each of the individual state dimensions is shown in red.

each of the axes obtained by computing x̄i1 = (x̂i1|9− f [x̂i0|9,u
i
0]), 1 ≤ i ≤ K. Notice that the mean

of the position error along the insertion axis (z-axis) is negative, which implies that the deterministic

kinematic model overpredicts the actual needle tip position along the insertion axis.

We also estimated a single mean µ and covariance M for the error distribution based on the data

collected in Sim-Test by summing the relevant expectation terms over all time steps {0 : T} and

across the set of trajectories Γ using Eqns. (3.44) and (3.45). The parameters µ and M estimated

using our method are given below:

µ = 10−3 ·


−6.40
−14.58
−53.78
−15.39
16.08
−0.14

 M = 10−4 ·


49.50 5.38 4.08 −1.38 9.71 −0.35
5.38 51.84 −0.07 −11.87 2.86 −0.15
4.08 −0.07 31.44 −0.05 1.45 −0.22
−1.38 −11.87 −0.05 11.25 −1.03 0.21
9.71 2.86 1.45 −1.03 10.21 −0.40
−0.35 −0.15 −0.22 0.21 −0.40 0.18

 (3.58)

3.7 Evaluation

Given this stochastic model of needle insertion, we can simulate perturbations during steerable

needle procedures by adding simulated noise to the needle tip pose at each time step based on the
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(a) Sim-Test Scene #1 (b) Sim-Test Scene #2 (c) Sim-Test Scene #3

(d) Sim-Test Scene #4 (e) Porcine Loin Scene #1 (f) Porcine Loin Scene #2

Figure 3.4: We simulated steerable needle procedures with simulated noise based on our estimated
error parameters in a cuboidal shaped Sim-Test tissue phantom [(a) - (d)] and in an ex vivo porcine
loin tissue sample [(e) - (f)]. These are the same environments used to gather experimental data
for estimating the parameters of the error distribution (Sec. 2.7). The workspace contains obstacles
(shown in yellow) in each of the cases. The insertion location of the needle is marked in green and
the needle is inserted into a face of the cuboidal block.

error parameters estimated using our method. Given the state of the needle tip xt at time t and

applied control input ut, the state is propagated forward in simulation according to Eqn. (3.5) as

xt+1 ∼ N [f [xt,ut]+µt,Mt]. Since the kinematic model of the motion of the needle tip (Eqn. (2.2))

uses the SE(3) representation of the state, we use Eqns. (3.3) and (3.1) to transform between the

two equivalent state representations. Since the real state of the needle tip is not known, we used an

extended Kalman filter (Sec. 3.4) to estimate the current state x̂t|t at time t.

To validate our stochastic model, we simulated steerable needle insertions in the same envi-

ronments used to gather empirical data provided as input to our method (see Fig. 3.4). We used

a curvature of κ0 = 0.15 cm−1 in Sim-Test and a curvature of κ0 = 0.073 cm−1, obtained by

characterizing the maximum curvature of the needle in these media (Sec. 2.6.3).
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3.7.1 Simulation Results: Sim-Test

We performed 10 simulation runs with simulated perturbations for each target location in

the environment starting from the same initial insertion location. We performed both open-loop

executions of feasible motion plans and closed-loop steering using our rapid replanning approach

(Chapter. 2). We also evaluated the impact of optimization criteria (i.e., shortest path or maximum

clearance). This is similar to the experiments conducted in the actual Sim-Test material (Sec. 2.7.1).

For the shortest path criterion, we enlarged all obstacles by a safety buffer of 5 mm.

Fig. 3.5b shows the mean targeting error and standard deviations across multiple simulated

insertions using the means µt and covariances Mt estimated using our method (Eqns. (3.33) - (3.42)).

For the sake of comparison, we also include the mean targeting error and corresponding standard

deviations for the actual experiments in Sim-Test as described in Sec. 2.7 (Fig. 3.5a) and when we

used a single estimated mean µ and covariance M as given by Eqn. (3.46) (Fig. 3.5c).

The mean targeting error of ≈ 8 mm for open-loop execution of motion plans for both the

shortest path criterion and maximum clearance for all the test scenes (Scene #1 - #4) are in close

agreement with the experimental data gathered from physical experiments in Sim-Test material

(Fig. 3.5a). We only have limited statistics for the physical experiments from 3 runs for each target

within the Sim-Test material. The mean targeting error for closed-loop execution of motion plans for

both criteria are slightly smaller than the errors encountered in practice. This can be attributed to the

fact that we have limited experimental data for each scenario for the physical experiments.

3.7.2 Simulation Results: ex vivo Porcine Loin Tissue

We performed 10 simulation runs with simulated perturbations for each target location in the

environment starting from the same initial insertion location. Similar to the Sim-Test material,

we performed both open-loop executions of feasible motion plans and closed-loop steering using

our rapid replanning approach (Chapter. 2) for both optimization criteria. This is similar to the

experiments conducted in the ex vivo porcine loin tissue sample (Sec. 2.7.3). For the shortest path

criterion, we enlarged all obstacles by a safety buffer of 5 mm.

Fig. 3.6b shows the mean targeting error and standard deviations across multiple simulated

insertions using the means µt and covariances Mt estimated using our method (Eqns. (3.48) - (3.57)).
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(a) Physical experiments in Sim-Test material
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(b) Simulations with estimated parameters (µt and Mt)
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(c) Simulations with single estimated mean µ and covariance M

Figure 3.5: We compare the targeting error using closed-loop, rapid replanning steering and open-
loop execution for the two proposed optimization criteria in simulation in Sim-Test material ((b)-(c)).
Error bars indicate one standard deviation of the targeting error over repeated trials. The errors, both
for open-loop execution and closed-loop steering using our rapid replanning approach are comparable
to the errors encountered in steerable needle insertions in actual Sim-Test material (a).
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(a) Physical experiments in ex vivo porcine loin tissue sample
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(b) Simulations with estimated parameters (µt and Mt)
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(c) Single

Figure 3.6: We compare the targeting error using closed-loop, rapid replanning steering and open-
loop execution for the two proposed optimization criteria in simulation in ex vivo porcine loin tissue.
Error bars indicate one standard deviation of the targeting error over repeated trials. The errors, both
for open-loop execution and closed-loop steering using our rapid replanning approach are comparable
to the errors encountered in steerable needle insertions in actual ex vivo porcine tissue.
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For comparison, we also include the mean targeting error and corresponding standard deviations for

the actual experiments in ex vivo porcine loin tissue sample as described in Sec. 2.7.3 (Fig. 3.6a) and

when we used a single estimated mean µ and covariance M as given by Eqn. (3.58) (Fig. 3.6c).

The mean targeting error for open-loop execution of motion plans for the maximum clearance

criterion for the two test scenes (Scene #1 and #2) are in close agreement. However, the mean targeting

error and standard deviation error for the shortest path criterion is overestimated in simulation. This

can be attributed to the fact that we only have limited statistics for the physical experiments from

3 runs for each target within the ex vivo porcine loin tissue sample. The mean targeting error for

closed-loop execution of motion plans for both criteria are comparable to the errors encountered in

practice (Fig. 3.6a).

3.8 Discussion

We presented a data-driven stochastic model of the motion of the needle tip. We use an

expectation maximization (EM) algorithm for estimating the parameters of this stochastic model

from data gathered from experiments and prior procedures. Since modeling all sources of error and

uncertainty during steerable needle procedures is challenging, our data-driven method provides an

alternate means of creating stochastic models that capture needle behavior to serve as a basis for

algorithms for preoperative procedure optimization, motion planning, state estimation, and control of

steerable needles. Since the objective is to capture the cumulative effects of all sources of error and

other unmodeled effects, we assume that the available data is representative of the errors encountered

during steerable needle procedures. The hypothesis is that the greater the amount of available data,

the better our understanding will be of uncertainty in steerable needle procedures. Our method

estimates different parameters µt and Mt for each time step t to better capture uncertainty due to

local effects by explicitly considering the impact of insertion depth on uncertainty.

Our approach has a few limitations. We are restricted by our assumption of a discrete time

kinematic motion model. Since the model parameters are estimated based on measurements that are

obtained at discrete time intervals and the number of time intervals in the procedures, our stochastic

model cannot be used to simulate needle procedures that might vary greatly in the time step or length

of the needle shaft inserted at every time step. Finally, we do not estimate the curvature of the needle,
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which is important from the perspective of state estimation, planning, and control. The dependence

of our method on the curvature occurs through the computation of the physical control inputs that

are applied to the needle during duty cycled rotation of the needle. However, our method is general

enough to work for needles with similar curvature characteristics.
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CHAPTER 4

Unified Framework for Planning and Control in
Deformable Environments

In this chapter, we present a unified framework for motion planning and feedback control for

closed-loop steering of steerable needles in deformable tissue. We use a sampling-based motion

planner based on a physically-based simulator of the deformable environment to generate a set

of candidate plans based on expected deformations. We use the simulator and optimal control

to numerically estimate time-dependent state distributions based on uncertain parameters (e.g.

deformable material properties, actuation errors, and noisy sensing) and then select the plan with

the highest estimated probability of successfully avoiding obstacles and reaching the target region.

Using FEM-based simulation of deformable tissues, we demonstrate that our method can generate

high quality plans for guiding steerable needles around obstacles to the desired target region under

considerable deformations and uncertainty under 2D image guidance.

4.1 Planning and Control in Deformable Environments

Motion planning for steerable needles in highly deformable environments is challenging because

it requires anticipation of deformations in the environment while simultaneously considering uncer-

tainty in those deformations and uncertainty in the sensing of the system state. Prior work in motion

planning has considered the effect of predictable deformations with no uncertainty. These methods

often use a physically-based simulation of deforming objects to generate feasible motion plans

(Lamiraux and Kavraki, 2001; Bayazit et al., 2002; Gayle et al., 2005; Rodriguez et al., 2006; Frank

et al., 2008). These planners assume that the simulator accurately predicts deformations of the objects

in the environment, which is seldom the case. Other prior work in motion planning has focused

on uncertainty and modeled deformations as a type of uncertain perturbation, enabling the use of



standard feedback controllers (Alterovitz et al., 2007; van den Berg et al., 2011). However, these

approaches will not work effectively for problems involving large, history-dependent deformations

that fall outside the realm of small perturbations. For example, steerable needle procedures involve

interaction between the needle and soft tissues that deform significantly and in a history-dependent

manner, and these large deformations cannot be predicted with high accuracy due to uncertainty in

the underlying tissue properties.

Our goal is to compute motion plans that maximize the probability of success in challenging

environments with uncertain deformations. In this work, the probability of success is defined as the

probability of successfully avoiding obstacles and reaching the desired target region. We present a

unified approach that combines motion planning with sensing and feedback control for generation

and execution of robust motion plans in deformable environments. We consider uncertainty due to

noise in actuation and sensor measurements, as well as uncertainty in deformations arising from

erroneous material model assumptions and inaccurate needle/tissue interaction models. To the best

of our knowledge, our method is the first framework that enables effective computation of motion

plans in environments with both large deformations and substantial uncertainty.

Our method requires a simulator of deformable objects. We use the finite element method

(FEM) for simulating deformations in our examples, but our approach is generally applicable to other

simulation techniques as well. We use a sampling-based motion planner in conjunction with the

simulator to generate a set of candidate motion plans that assume expected deformations. Our method

then uses the simulator and optimal control to numerically estimate time-dependent state distributions

based on uncertain parameters (e.g. deformable material properties or actuation errors). We use this

information to generate an optimal linear-quadratic (LQG) feedback controller (Bertsekas, 2007)

for each candidate plan to mitigate any uncertainty in the expected deformations that occur during

the actual execution of the plan. Since computing an optimal controller using the full deformable

system state is computationally prohibitive, we observe that it is possible to formulate the optimal

control problem using a subset of the full state space. We then use an extension of the LQG-MP

framework (van den Berg et al., 2011) to select the plan with the highest estimated probability of

successfully avoiding obstacles and reaching the target region.

We demonstrate the ability of our method to generate high quality plans for guiding steerable

needles in deformable tissue under 2D image guidance (as shown in Fig. 4.1). We show that our
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(a) Initial environment (b) RRT with deformations
(ps = 60%)

(c) LQG-MP only
(ps = 25%)

(d) Our method
(ps = 97%)

Figure 4.1: We illustrate plans for guiding steerable needles under 2D image guidance. Current
motion planning solutions for deformable environments either assume deterministic deformations
(b), which may result in paths through narrow passageways that are highly likely to result in obstacle
collision, or compute plans in a static world and consider deformations as a type of perturbation (c),
which neglects the large time-dependent motions of the obstacles and target. Our unified framework
(d), which accounts for uncertainty in deformation models, noisy sensing, and unpredictable actuation,
results in a significantly higher probability of success (ps) in plan execution.

method significantly improves the probability of success compared to prior approaches based on

standard feedback controllers or motion planners that do not simultaneously consider deformations

and uncertainty.

The rest of this chapter is organized as follows: Sec. 4.2 provides a survey of related work in

the relevant areas. Sec. 4.3 summarizes the objective and Sec. 4.4 presents details of our unified

framework for planning and control in deformable environments. Sec. 4.5 describes a fast, analytical

method to estimate the probability of success for a mobile robot such as a steerable needle executing a

given motion plan under Gaussian models of uncertainty. Finally, Sec. 4.6 presents simulation results

that demonstrate that our approach significantly improves the probability of success of procedures as

compared to prior work under a wide variety of simulated scenarios.

4.2 Related Work

This section surveys prior work in related areas, including deformable modeling and simulation,

motion planning in deformable environments, and motion planning under uncertainty.
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4.2.1 Deformation Modeling and Simulation

Physically-based simulation of deformable objects is a well studied area in solid mechan-

ics (Zienkiewicz et al., 2005) and computer graphics (Nealen et al., 2006). Deformation simulation

techniques can be broadly classified into two categories: (i) mesh-based methods, and (ii) mesh-free

methods. Mass-spring systems, boundary element methods, and finite element methods (FEM) are

a few of the popular simulation techniques available. The choice of the simulation technique is

application-specific and influences the accuracy of the estimated deformations. Continuum mesh-

based methods such as finite-element method (FEM) simulate deformations accurately at increased

computational cost, and the model parameters for these methods are based on actual material prop-

erties such as Young’s modulus and Poisson’s ratio. Nonlinear finite element methods (FEM) are

preferred when it is important to simulate deformations accurately and have been successfully used

for simulating realistic deformations arising in surgical tissue simulations (Nienhuys, 2003; Chen-

tanez et al., 2009). We use a geometrically nonlinear FEM model for simulating object deformations

in this work, but the proposed approach is equally applicable to other simulation techniques as well.

4.2.2 Motion Planning in Deformable Environments

Robot motion planning is an active area of research and has historically focused on planning in

static environments with rigid objects (LaValle, 2006). Recent work has begun to explore motion

planning for deformable robots operating in possibly deforming environments. Bayazit et al. (Bayazit

et al., 2002) propose a two-tier approach based on probabilistic roadmaps (PRM) combined with

free-form deformations to plan paths for deformable robots. Rodriguez et al. (Rodriguez et al., 2006)

use rapidly exploring random trees (RRT) to plan for robots in completely deformable environments.

Gayle et al. (Gayle et al., 2005) and Moss et al. (Moss et al., 2008) propose a constraint based motion

planning method for deformable robots modeled as mass-spring systems and using finite element

methods, respectively. Frank et al. (Frank et al., 2009) use co-rotational FEM with a PRM planner to

achieve significant speedups for planning in deformable environments. Motion planning algorithms

have also been developed for clinical applications including deformable catheters traveling through

body cavities (Gayle et al., 2005), deformable linear objects such as sutures (Moll and Kavraki,

2006), flexible needle devices traveling through deformable tissue (Alterovitz et al., 2005), and
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automating atomic subtasks such as tissue retraction for robot-assisted surgery (Patil and Alterovitz,

2010b). All prior work on motion planning in deformable environments assume that deformations

are deterministic and do not consider uncertainty due to noisy actuation, noisy and partial sensing, or

deformation modeling and simulation errors.

A significant body of work exists on motion planning and control for bevel-tip steerable needles.

Tissue deformation (without uncertainty) has been taken into account using 2D FEM simulation of

soft tissue (Alterovitz et al., 2005). Motion uncertainty has been considered in 2D for cases with

negligible deformations (Alterovitz et al., 2007). Planners for static 3D environments with obstacles

have been proposed (Duindam et al., 2008; Patil and Alterovitz, 2010a). Hauser et al. (Hauser et al.,

2009) use a fast feedback controller for guiding steerable needles in deformable tissue but do not

address obstacle avoidance. Seiler et al. (Seiler et al., 2012) proposed a fast trajectory correction

method to compensate for uncertainty during needle insertion. These controllers either do not

consider obstacle avoidance or do not provide any guarantees on performance in the presence of

obstacles. Recently, Van den Berg et al. (van den Berg et al., 2010) proposed an LQG feedback

controller for addressing motion and sensing uncertainty in steerable needle insertion, but this work

does not take into account displacement of the target and obstacles due to tissue deformation and

uncertainty resulting from deformation. No prior work has successfully computed motion plans in

highly deformable environments with uncertainty and obstacles.

4.2.3 Motion Planning under Uncertainty

Motion planning under uncertainty has received considerable attention in the past decade because

uncertainty is an important concern when dealing with real-world robotic systems and environments.

The uncertainty typically originates from noisy actuation, noisy and partial sensor measurements, and

uncertainty about the environment. Sampling-based planners have been proposed to explicitly account

for motion uncertainty (Kewlani et al., 2009; Alterovitz et al., 2007). Another class of planners has

explicitly focused on uncertainty in the environment and obstacles contained therein (Burns and

Brock, 2007; Guibas et al., 2008). Motion planning under both motion and sensing uncertainty is

actually an instance of a partially observable Markov decision process (POMDP) (Roy et al., 1999),

which suffer from the curse of dimensionality. Efficient point-based value iteration methods have

proposed recently to compute approximate solutions to POMDP problems (Kurniawati et al., 2008)
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but these approaches are still computationally expensive and cannot be used for steerable needle

planning and control because of the discretization of the action and observation space.

A large body of work has appeared recently that assumes Gaussian models for motion and sensing

uncertainty. These approaches use a combination of a Kalman filter (Simon, 2006) for state estimation

and standard feedback control techniques (Bertsekas, 2007) to compensate for uncertainty. A few

approaches explicitly incorporate uncertainty in sampling-based motion planning to compute high

quality motion plans in terms of safety (Prentice and Roy, 2009; van den Berg et al., 2011; Bry and

Roy, 2011). (Platt et al., 2010; van den Berg et al., 2012) use iterative trajectory optimization methods

to efficiently solve for a locally optimal plan and an associated control policy. There have been

attempts to treat deformations as a sort of uncertain perturbation and compensating for deformations

using feedback controllers (van den Berg et al., 2010), but these methods do not explicitly account

for large deformations and displacement of the obstacles and the target configuration. To our best

knowledge, there is no prior work that offers a principled solution for the motion planning under

uncertainty problem in deformable environments with obstacles.

In the presence of uncertainty in planning and execution, it is important to compute motion

plans that optimize a user-specified objective to evaluate the quality of the motion plans. Prentice

and Roy (Prentice and Roy, 2009) compute plans that minimize the maximum uncertainty along the

motion plan. Van den Berg et al. (van den Berg et al., 2011) propose metrics to evaluate motion plans

based on the probability of collision and uncertainty at the target configuration. (Bry and Roy, 2011;

Vitus and Tomlin, 2011) also aim to minimize the probability of collision of the robot during runtime

execution. All these approaches characterize uncertainty in terms of a priori Gaussian distributions

of the robot state, but assume for the sake of simplicity that the distributions along the plan are

independent. This is an incorrect assumption because it does not account for possible collisions with

obstacles during plan execution (Greytak, 2009). It is important to be able to accurately compute

these metrics without relying on computationally expensive Monte-Carlo simulations to obtain a

good estimate (Lambert et al., 2008; du Toit and Burdick, 2011).
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4.3 Objective

We consider a steerable needle being inserted into deformable tissue. We assume that time is

discretized into stages of equal duration and a control ut from its control input space U = Rnu is

executed at each time step t. Our objective, formalized below, is to compute a motion plan and

associated feedback controller to maximize the probability of success.

Our planner requires as input a simulator of the coupled deformable system that models the

motion of the needle and deformations in the surrounding tissue (Sec. 1.3). Given a model of

anatomical structures such as glands, vessels, and bones in the environment, a set of simulation

parameters s, and a control input ut for the robot, the simulator g computes the expected motions of

the robot and deformations in the environment. We define the state space of the deformable system

to be Y . A deformable system state yt ∈ Y at time t encodes all necessary information to save the

state of the simulator and be able to restart it, including deformations, dynamics parameters, friction

states, configuration of the needle tip etc. Formally, the simulator g evolves as:

yt+1 = g[yt,ut, s]. (4.1)

The simulator g acts as a deterministic function, but the deformations and motions of the robot

and environment may be highly uncertain. The material properties of deformable objects (e.g.

Young’s modulus and Poisson’s ratio (Nealen et al., 2006)), interaction parameters such as friction,

and deviation from commanded actuation are all uncertain and can significantly affect the motion of

the needle tip and deformations in the environment. Due to this uncertainty, we assume s comes from

a known distribution S and we assume that the expected value of s is 0 for brevity. Selecting different

values of s ∼ S allows us to use the deterministic simulator to consider variations in outcome.

The dimension of the deformable system state space Y is very high, possibly containing thou-

sands of elements for large, complex meshes of deformable objects (Chentanez et al., 2009). Comput-

ing optimal control policies directly in this high-dimensional state space would be computationally

prohibitive. Furthermore, while the initial model of the environment may be known, it is unlikely

that it will be possible to sense and track the entire deformation over time when executing a plan.

Instead of working with the entire deformable state Y , we pose the control problem by considering
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a reduced-dimensional space X ∈ Rnx that only contains the attributes that define the state of the

needle (the position and orientation of the needle tip) and/or points in the deformable environment

that are necessary for collision detection.

We assume that X ⊂ Y . Given a state x?t ∈ X at time t and the applied control input u?t ∈ U ,

the expected state at time t+ 1, x?t+1 ∈ X , evolves as:

x?t+1 = f [x?t ,u
?
t , s], (4.2)

where f is based on the simulator g (Eqn. (4.1)). It is important to note that during the actual

execution of a given plan, the true (unknown) state xt departs from the expected output of the

deterministic simulation because of uncertainty arising from noisy control inputs and uncertainty

in the deformation models. The uncertainty in the true state xt is modeled by adding a stochastic

noise term mt, which is assumed to be zero-mean Gaussian with variance Mt. It is important to note

that in contrast to the kinematic models considered in Chapters 2 and 3, the function f is based on a

physically-based simulation and does not assume a base kinematic motion model for the needle tip.

During the actual plan execution, we also assume that sensors provide us with partial and noisy

information about the state according to a given stochastic observation model:

zt = h[xt,nt], nt ∼ N [0, Nt], (4.3)

where zt is the measurement obtained at time t that relates to the true state xt through function h,

and nt is the measurement noise that we assume is drawn from a zero-mean Gaussian distribution

with known variance Nt.

To account for uncertainty during the execution of a plan, we assume that the needle is controlled

in a closed-loop fashion using the linear quadratic Gaussian (LQG) feedback controller and state

estimator framework (Stengel, 1994). The LQG controller uses a linear quadratic regulator (LQR)

control law that operates on the estimate of the robot state and aims to keep the robot close to the

nominal plan and uses a Kalman filter for state estimation.

Our objective of planning and control for the needle in deformable environments can now be

formally stated as follows:
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LQG 
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quality plan
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Figure 4.2: Schematic overview of our method. The deformable simulator is used for motion
planning, model linearization and for selecting a plan that maximizes the probability of success.

Objective: Given a start state xstart ∈ X and a target region X target ⊂ X , generate a motion plan and

associated feedback controller that maximizes the probability of successfully avoiding obstacles and

reaching the target region.

Input: Deformable system simulator g, deformable system model parameters s and their distribution

S, sensor observation model, start state xstart, and target region X target ⊂ X .

Output: A motion plan composed of a series of states and corresponding control inputs, π :

(x?0,u
?
0, . . . ,x

?
t ,u

?
t , . . . ,x

?
` ), 0 ≤ t < ` where ` is the number of discrete stages in the plan and

x?t+1 = f [x?t ,u
?
t ,0]. Also, x?0 = xstart,x?` ∈ X target, and the associated feedback controller for

handling uncertainty arising from simulation errors, noisy sensing, and unpredictable actuation.

4.4 Approach

We provide a schematic overview of our method in Fig. 4.2. We use a simulation-based RRT

motion planner (LaValle, 2006) to generate a set of candidate plans based on expected deformations

computed using the simulator. We then use the simulator and numerical methods to linearize the

model around each computed plan to compute a linear-quadratic Gaussian (LQG) controller (Stengel,

1994). We use an extension of the LQG-MP framework (van den Berg et al., 2011; Patil et al., 2012)

to estimate time-dependent state distributions, which are used to select the plan with the highest

estimated probability of successfully avoiding obstacles and reaching the target region.

4.4.1 Motion Planning

Given a start state xstart ∈ X and a target region X target ⊂ X , we use the RRT motion planner

(LaValle, 2006) to generate a set of feasible motion plans Π that connect the start state and the
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target region and avoid obstacles in the environment. The plans are generated assuming expected

deformations (i.e. there is no uncertainty in the deformations).

The RRT algorithm incrementally builds a tree-like structure over the state space X . Each

node in the RRT tree stores the state x as well as the full deformable system state y ∈ Y to enable

continuation of the simulation if the node is expanded. At each iteration of the algorithm, we generate

a random state xsample ∈ X and use a nearest-neighbor algorithm to identify the node in the tree

closest to xsample. We then attempt to expand the tree towards xsample by choosing the best known

control input u ∈ U obtained by sampling. For each node expansion, we simulate the deformations

in the environment starting from the deformed system state stored at the node.

The RRT tree is grown until the maximum number of permissible iterations is exceeded. A nom-

inal plan composed of a sequence of states and corresponding control inputs π : (x?0,u
?
0, . . . ,x

?
` ,u

?
` )

can be extracted by traversing the tree from a node in the target region X target to the root of the tree

containing the start state xstart. Multiple such plans are extracted from the tree to generate a set

of candidate motion plans Π. It is important to note that the motion plan selected for execution is

selected from this set Π and may not necessarily be globally optimal.

4.4.2 Model Linearization

Executing a plan computed in the previous section in an open-loop manner is unlikely to reach

the target region in practice because of uncertainty due to several factors such as unpredictable

needle and tissue interaction, unpredictable actuation, noisy (and possibly) sensor measurements,

and uncertainty arising from the deformable object simulation itself. We create a feedback controller

to mitigate these uncertainties.

In general, physically-based deformable object simulations can be highly nonlinear, and system

identification for nonlinear control for such simulators can be difficult. However, since the deformable

system is controlled to stay close to the computed plan, we approximate these nonlinear models

by locally linearizing the model around the plan π. In essence, we consider uncertainty about the

expected deformation rather than taking the prior approach of considering the deformation itself to

be a type of uncertainty (as is described in Chapter 3).

It is convenient to express the control problem in terms of the deviation from the plan. By

defining the deviation in the state as x̄t = (xt − x?t ), deviation in control input as ūt = (ut − u?t ),
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and deviation from the actual measurement as z̄t = (zt − h[x?t ,0]), the dynamics and observation

models given by Eqns. (4.2) and (4.3) can be linearized as:

x̄t+1 = Atx̄t +Btūt + mt, mt ∼ N [0,Mt], (4.4)

z̄t = Htx̄t +Wtnt, nt ∼ N [0, Nt], (4.5)

where

At =
∂f

∂x
[x?t ,u

?
t ,0], Bt =

∂f

∂u
[x?t ,u

?
t ,0], (4.6)

Ht =
∂h

∂x
[x?t ,0], Wt =

∂h

∂n
[x?t ,0] (4.7)

are the Jacobian matrices of f and h along a given plan π.

If the dynamics model f is known, then the Jacobian matrices can be computed analytically. In

the case of physically-based simulators for deformable objects, it is typically difficult or impossible

to compute these Jacobian matrices analytically because the simulations in general cannot be

written using closed-form formulas and are not directly differentiable. Given a nominal plan

π : (. . . ,x?t−1,u
?
t−1,x

?
t ,u

?
t ,x

?
t+1,u

?
t+1, . . .), we numerically estimate the Jacobian matrices At and

Bt at each time-step along the plan. The Jacobian matrices of the given observation model h, Ht

and Wt, are computed analytically. The stochastic noise term mt models the uncertainty due to

simulation parameters s ∼ S and is assumed to be drawn from a zero-mean Gaussian distribution

with variance Mt, which is also numerically estimated as described below.

Numerical estimation of matrix At: In the absence of any deviation from the control input u?t , the

Jacobian matrix At ∈ Rnx×nx describes how the deviation in state evolves from x̄t to x̄t+1 when

the corresponding nominal control input u?t is applied to the perturbed state xt = (x?t + x̄t). This is

given by the relation x̄t+1 = Atx̄t. By performing K = nx independent simulation runs from states

(x?t + x̄kt ), k ∈ {1, 2, . . . ,K} to states (x?t+1 + x̄kt+1), we can appropriately assemble the deviations

in the consecutive states into matrices X̄t and X̄t+1 and estimate At numerically as At = X̄t+1X̄
−1
t .

It is not possible to perturb the nominal state x?t to (x?t+x̄t) within a physically-based deformable

simulator. For instance, in the case of a needle procedure, this would correspond to the displacement

and re-orientation of the tip, which is not possible without affecting the entire needle trajectory and
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(b) Numerical estimation of matrix At
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u?t + ê1 · ε

u?t + êK · ε
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Figure 4.3: Model linearization computed numerically using the simulator. (a) Nominal plan
π : (. . . ,x?t−1,u

?
t−1,x

?
t ,u

?
t ,x

?
t+1,u

?
t+1, . . .) computed using the motion planner. The Jacobian

matrices At and Bt are estimated separately using the simulator. (b) We perform K = 2nx
independent simulation runs from state x?t−1 where control input u?t−1 perturbed by Gaussian noise
wk, k ∈ {1, 2, . . . ,K} and record the deviation from state x̄kt = (xt − x?t ) for each run. We then
apply the nominal control input u?t to each of these perturbed states and record the deviation from the
subsequent state x̄kt+1. These deviations are used to solve a over-determined linear system to solve for
all elements of theAt matrix. (c) We performK = nu independent simulation runs from the nominal
state x?t by perturbing individual elements of the control input u?t by êk · ε, k ∈ {1, 2, . . . ,K},
where êk : (. . . , 0, 0, 1k, 0, 0, . . . ) and record the deviation from the subsequent state x̄kt+1. These
deviations are used to determine the individual columns of the matrix Bt.

adjusting needle/tissue interaction parameters. So instead we perform K independent simulation

runs from the previous state x?t−1, where each run k ∈ {1, 2, . . . ,K} involves the application of

control input u?t−1 perturbed by noise wk, where we assume that wk is drawn from a user-specified

zero-mean Gaussian with variance W . This generates a set of states (x?t + x̄kt ), k ∈ {1, 2, . . . ,K}

within the simulator, as shown in Fig. 4.3b. We then performK independent simulation runs from the

set of states (x?t + x̄kt ) by applying the nominal control input u?t to the robot to generate a set of states

(x?t+1 + x̄kt+1). We then assemble the deviations from the nominal state x̄kt+1 into a matrix X̄t+1. The

matrix At can then be estimated as described above. In practice, we found that performing K(> nx)

simulation runs and solving the resultant over-determined least-squares problem AtX̄t = X̄t+1

by taking the Moore-Penrose pseudo-inverse of matrix X̄t yielded better results at the expense of

computational overhead. We used K = 2nx simulation runs for all our experiments.

Numerical estimation of matrix Bt: In the absence of any deviation from the nominal state x?t , the

matrix Bt ∈ Rp×q describes the relationship between deviations in control input ūt and the deviation

in the subsequent state x̄t+1. This is given by the relation x̄t+1 = Btūt. We perform K = nu

independent simulation runs from the nominal state x?t by perturbing individual elements of the

control input u?t by êk·ε, k ∈ {1, 2, . . . ,K}, where êk is a unit vector given by (. . . , 0, 0, 1k, 0, 0, . . . )
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and ε is a user-defined perturbation constant. This generates a set of states (x?t+1 + x̄kt+1), as shown

in Fig. 4.3c. The deviations x̄kt+1, scaled by the ε, comprise the individual columns of the matrix Bt.

Numerical estimation of matrix Mt: The stochastic noise term mt models uncertainty in the

simulation parameters s ∼ S. It is reasonable to assume that the uncertainty arising from a large

number of sources can be modeled as a Gaussian distribution. Here, mt is assumed to be drawn from

a zero-mean Gaussian distribution with variance Mt. Since the uncertainty distributions modeling

the noise in control inputs and variance in simulation parameters S are supplied by the user, the

variance Mt can be estimated a priori by perturbing the simulation parameters s independently and

estimating the parameters of the Gaussian distribution that models the resulting uncertainty.

4.4.3 LQG Control

Given linear(ized) dynamics and observation models and a quadratic cost function, the optimal

approach for executing a plan is to use a linear-quadratic regulator (LQR) feedback controller in

combination with a Kalman filter for state estimation. This ensemble is called linear-quadratic

Gaussian (LQG) control (Stengel, 1994) and is provably optimal for state estimation and control for

linear systems. We use an extended Kalman filter (EKF) (Simon, 2006) for optimal state estimation

during actual execution of the plan. The Kalman filter keeps track of the estimate x̂t = E[x̄t] and

variance of the deviation in true state during control. The estimate x̂t evolves according to:

x̂t = Ktz̄t + (I −KtHt)(At−1x̂t−1 +Bt−1ūt−1), (4.8)

where Kt, 0 ≤ t ≤ ` are the Kalman gain matrices (Simon, 2006). Note that the Kalman-gain

matrices Kt can be computed in advance (i.e. before execution).

We compensate for uncertainty during plan execution by using an LQR feedback controller that

aims to keep the true state close to the corresponding nominal state in the plan. The LQR formulation

seeks the optimal control inputs by minimizing a quadratic cost function that seeks to simultaneously

minimize deviations from the plan and deviations from the control input. Solving the cost function

gives the control policy related to the state deviation estimate as:

ūt = Ltx̂t, (4.9)
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where Lt, 0 ≤ t < ` are the LQR control gains that are pre-computed using a standard recursive

procedure. We refer the reader to (Stengel, 1994; van den Berg et al., 2011) for additional details.

4.4.4 Selecting a High Quality Plan

We use an extension of the LQG-MP framework (van den Berg et al., 2011) to select a plan with

the highest estimated probability of successfully avoiding obstacles and reaching the target region.

Given the LQG controller for a plan π, we compute the a priori distributions of the deviation in the

true state x̄t and the estimated deviation x̂t. These distributions are used to estimate the probability

of success, which is given by the product of the probability of colliding with obstacles during plan

execution and the probability of reaching the target region, which is obtained by sampling the a priori

distribution at the final time-step and determining how many of those samples lie within the target

region. It is important to take into account the deformed configurations of the target and obstacles in

the environment at each time-step along the plan. The computation of the probability of success is

described in detail in the next section.

4.5 Estimating Probability of Success

For steerable needle procedures, the motion plan chosen for execution should be as safe as

possible such that there is minimal risk that the robot will collide with obstacles in the environment

and should lead the needle to the desired target region. The probability of success is computed as the

product of the probability of collision along a given plan and the probability of successfully reaching

the target region. Estimating the probability of success of a motion plan before actual execution is a

critical step in many motion planning algorithms that consider and compensate for uncertainty.

The challenge lies in effectively computing the probability of collision along a plan. Prior work

on motion planning under uncertainty has used both sampling-based and analytical approaches

to estimating probability of collision. Naı̈ve Monte Carlo sampling strategies can estimate the

probability of collision by computing the ratio of the number of simulated executions that are

collision free (Lambert et al., 2008; du Toit and Burdick, 2011). This approach requires a large

number of simulations to obtain a reliable estimate, which requires more computation time than

analytical approaches. Monte Carlo sampling also offers no guarantee that it will not underestimate
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Figure 4.4: We estimate the probability of success for a motion plan based on a priori probability
distributions of the robot state. The probability of success is given by the product of the probability of
collision along the plan and the probability of reaching the target region. The probability of collision
at each stage of the plan is conditioned on the previous stages being collision free. We compute
truncated a priori distributions that discount plan executions (black dots) that collide with obstacles.
Propagating the truncated distributions (black ellipses) accounts for only the collision free samples
(red dots), resulting in accurate estimation of the probability of collision. Prior methods that use the
unconditional distributions (gray ellipses) to estimate the collision probability result in an overly
conservative estimate.

the probability of collision, resulting in violation of safety requirements. Under the assumption of

Gaussian motion and sensing uncertainty, probability of collision can be estimated quickly based on

a priori probability distributions of the robot state (van den Berg et al., 2011; Bry and Roy, 2011;

Vitus and Tomlin, 2011). However, prior methods typically “approximate” the collision probability

of a plan by assuming the probabilities of collision at stages along the plan are independent. Formally

speaking, let xt ∈ X denote the state of the robot at stage t along the plan, and XF ⊂ X denote

the feasible space not occupied by obstacles. Prior methods assume that the probability that a plan

consisting of ` stages is collision free is given by p(
∧`
t=0 xt ∈ XF ) ≈ ∏`

t=0 p(xt ∈ XF ). This

yields an overly conservative estimate of the probability of collision (see Fig. 4.4), which might result

in overly conservative motion plans and, depending on the safety required by the motion planner,

may result in failure to find a feasible plan even if one exists.

In this work, we present a fast, analytical method to estimate the probability of collision, and

consequently, the probability of success for a mobile robot such as a steerable needle executing a

given motion plan under Gaussian models of motion and sensing uncertainty. Our approach for

estimating the probability of collision accounts for the fact that the distribution of the state at each
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stage along the plan is conditioned on the previous stages being collision free, i.e., the probability

that a plan is collision free is given by p(
∧`
t=0 xt ∈ XF ) =

∏`
t=0 p(xt ∈ XF |

∧t−1
i=0 xi ∈ XF ).

This amounts to propagating the a priori distributions forward in time in such a way that instances

that collide with obstacles are discounted from the propagation (Fig. 4.4). For this we propose a novel

method to truncate the a priori distributions with respect to obstacles, approximate the truncated

distributions by Gaussians, and propagate the truncated distributions forward in time. This results in

an accurate estimate of the conditional distributions, and consequently, enables accurate estimation of

the collision probability. Our algorithm also computes an estimate that is conservative; our goal is to

not underestimate the probability of success in order to ensure that safety requirements are satisfied.

The use of truncated Gaussian distributions (Johnson et al., 1994) has been previously explored

in the context of optimal state estimation with state constraints (Simon, 2006), but this work does

not consider motion uncertainty. Greytak (Greytak, 2009) provides an analytical method to compute

the probability of collision using truncated Gaussians but does not consider sensing uncertainty.

Toussaint (Toussaint, 2009b) uses truncated Gaussians in an expectation-propagation framework

for Bayesian inference, but the truncation result is dependent on the order in which constraints are

processed, which leads to problems with convergence of the algorithm (Toussaint, 2009a). In contrast,

we propose a novel order-independent algorithm for truncating Gaussian distributions with respect

to hard state constraints. Our method can be used to quantify the safety of a plan (van den Berg

et al., 2011; Patil et al., 2011), to improve quality of estimation of collision chance constraints (Bry

and Roy, 2011; Vitus and Tomlin, 2011), or to elegantly account for hard state constraints imposed

by obstacles in optimization based (Erez and Smart, 2010) or inference based (Toussaint, 2009b)

planning methods. Our truncation approach is also directly applicable to the important problem of

optimal state estimation with hard state constraints (Simon, 2006).

4.5.1 A Priori State Distributions

The objective of our method can be formally stated as follows. Given Gaussian models of motion

and sensing uncertainty, a description of the obstacles in the environment, a nominal motion plan,

and associated feedback controller and state estimator, the objective is to compute the probability of

collision, and consequently, the probability of success of a given plan.
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yit|t−1 = ãT
i yt|t−1

ãT
i yt|t−1 = b̃i

yit|t−1 ∼ N [ãT
i ŷt|t−1, ãT

i Rt|t−1ãi]

yit|t−1 = b̃i

N [ŷt|t−1, Rt|t−1]

yit|t ∼ N [µi, σ
2
i ]

N [ŷt|t−1 −∆yi
t|t, Rt|t−1 −∆Ri

t|t]

Figure 4.5: The joint conditional distribution yt|t−1 ∼ N [ŷt|t−1, Rt|t−1] (left), is truncated with
respect to the ith constraint ãTi yt|t−1 ≤ b̃i, in R2nx . Applying an affine transformation, yit|t−1 =

ãTi yt|t−1, transforms the distribution to a 1D Gaussian yit|t−1 ∼ N [ãTi ŷt|t−1, ã
T
i Rt|t−1ãi] (middle).

The area under the 1D Gaussian that lies beyond the constraint yit|t−1 = b̃i (shaded in black),
gives the probability of collision of the robot with the ith constraint. We estimate the truncated
distribution in R2nx by conditioning on the truncated 1D Gaussian yit|t ∼ N [µi, σ

2
i ] (right). The

mean (ŷt|t−1 −∆yit|t), and variance (Rt|t−1 −∆Rit|t), of the distribution yt|t after truncation are
obtained by accumulating the effects of truncation with respect to all constraints (order independent).

Under the given assumptions, the probability distributions of the robot state can be characterized

a priori, i.e. before execution. Combining Eqns. (4.4), (4.5), (4.8), and (4.9), the true state deviation

x̄t, and the estimate x̂t, jointly evolve as (van den Berg et al., 2011):



x̄t

x̂t


 =




At−1 Bt−1Lt−1

KtHtAt−1 At−1 +Bt−1Lt−1 −KtHtAt−1






x̄t−1

x̂t−1


+ (4.10)




I 0

KtHt KtWt






mt−1

nt


 ,



mt−1

nt


 ∼ N [0,



Mt−1 0

0 Nt


].

We can write this equation in shorthand (for appropriate definitions of yt, qt, Ft, Gt, and Qt) as:

yt = Ftyt−1 +Gtqt, qt ∼ N [0, Qt]. (4.11)
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The mean ŷt ∈ R2nx and associated variance Rt = Var[yt], propagate according to:

ŷt = Ftŷt−1, ŷ0 = 0, (4.12)

Rt = FtRt−1F
T
t +GtQtG

T
t , R0 =




Var[x̄0] 0

0 0


 . (4.13)

The unconditional a priori distribution of the state xt at stage t is then given by the marginal

xt ∼ N [(x?t + Λŷt),ΛRtΛ
T ], where Λ = [I 0]. To accurately estimate the probability of collision,

we need to estimate the a priori state distributions at each stage along the plan that are conditioned

on the previous stages being collision free, i.e. the distributions (xt |
∧t−1
i=0 xi ∈ XF ). To this end,

we pursue a recursive approach similar as above to propagate the conditional distributions.

Let yt|s denote the joint distribution of the true state deviation and its estimate at time t condi-

tioned on the state being collision free for all stages 0, . . . , s:

yt|s = (



x̄t

x̂t


 |

s∧

i=0

xi ∈ XF ). (4.14)

We then repeatedly, for each stage t of the plan, carry out the following steps. Assume we are given

the joint conditional distribution yt|t−1 as approximated by a Gaussian distributionN [ŷt|t−1, Rt|t−1].

We then approximate the distribution yt|t ∼ N [ŷt|t, Rt|t] of all collision-free states at stage t by

truncating the distribution yt|t−1 against the obstacles in the environment. Truncating the distribution

effectively discounts all colliding states from the distribution (Fig. 4.4), and results in a shift of the

mean and variance by ∆yt and ∆Rt (as described in Sec. 4.5.2), respectively:

ŷt|t = ŷt|t−1 −∆yt (4.15)

Rt|t = Rt|t−1 −∆Rt (4.16)
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Using Eqns. (4.12) and (4.13), the conditional mean and variance are then propagated according to:

ŷt+1|t = Ft+1ŷt|t, (4.17)

Rt+1|t = Ft+1Rt|tF
T
t+1 +Gt+1Qt+1G

T
t+1. (4.18)

The recursion then continues. The initial conditions are set by defining ŷ0|−1 = ŷ0 = 0 and

R0|−1 = R0 =
[

Var[x̄0] 0
0 0

]
.

At each stage of the recursion, the marginal xt|t−1 ∼ N [(x?t + Λŷt|t−1),ΛRt|t−1ΛT ] of the

joint distribution yt|t−1 gives the a priori distribution of the robot state xt given that all the previous

states [x0, . . . ,xt−1] are collision free.

4.5.2 Truncating A Priori Distributions

At each stage t of the plan, we approximate the distribution of the feasible robot states with a

truncated Gaussian distribution (Johnson et al., 1994). For the sake of brevity, we assume that the

feasible region containing the state at each stage t is convex and is described by the conjunction

of k linear inequality constraints as
⋂k
i=0 aixt ≤ bi. We later extend this analysis in Sec. 4.5.3 to

non-convex regions by constructing a locally convex feasible region around the robot state.

Since the true state deviation and its estimate are correlated (Eqn. (4.10)), it is important to

truncate the joint conditional distributionN [ŷt|t−1, Rt|t−1] in R2nx , with respect to the k constraints.

The ith linear constraint is then represented in R2nx as ãTi yt|t−1 ≤ b̃i, where ãi = [ ai
0 ], and

b̃i = (bi − aTi x
?
t ). We truncate the joint conditional distribution with respect to each constraint in a

sequential manner and then accumulate the effect of truncation over all the constraints. We propose a

novel truncation method that does not depend on the order in which the constraints are processed.

Given the ith constraint ãTi yt|t−1 ≤ b̃i, we apply an affine transformation yit|t−1 = ãTi yt|t−1 to

transform the conditional distribution N [ŷt|t−1, Rt|t−1], to a 1D Gaussian N [ãTi ŷt|t−1, ã
T
i Rt|t−1ãi]

along an axis normal to the constraint (as shown in Fig. 4.5). The problem now simplifies to

truncating the 1D Gaussian distribution at a specified upper bound given by yit|t−1 = b̃i, which is

well-known from standard statistical literature (Johnson et al., 1994). The mean, µi and variance, σ2
i
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of the truncated 1D Gaussian yit|t is given by:

µi = ãTi ŷt|t−1 + λ(αi)
√
ãTi Rt|t−1ãi, (4.19)

σ2
i = ãTi Rt|t−1ãi(1− λ(αi)

2 + αiλ(αi)), (4.20)

where

αi =
(b̃i − ãTi ŷt|t−1)√

ãTi Rt|t−1ãi

, λ(αi) =
pdf(αi)
cdf(αi)

. (4.21)

Here, λ(αi) is the ratio of the standard Gaussian (mean 0 and variance 1) probability distribution

function and the standard Gaussian cumulative distribution function evaluated at αi. Note that

(1− cdf(αi)) is the area under the Gaussian that lies beyond the constraint (shaded in black in Fig.

4.5), and is the probability that the robot lies in the infeasible region of the ith constraint.

The mean and variance of the truncated distribution yt|t are found by conditioning the joint distri-

bution (yt|t−1, y
i
t|t−1), on the truncated 1D distribution yit|t: yt|t = (yt|t−1|yit|t−1 = yit|t) as follows.

We can construct the joint distribution of the conditional distribution yt|t−1 ∼ N [ŷt|t−1, Rt|t−1], and

the transformed 1D distribution yit|t−1 ∼ N [ãTi ŷt|t−1, ã
T
i Rt|t−1ãi] as:

(yt|t−1, y
i
t|t−1) ∼ N

[



ŷt|t−1

ãTi ŷt|t−1


 ,



Rt|t−1 Rt|t−1ãi

ãTi Rt|t−1 ãTi Rt|t−1ãi




]
. (4.22)

Using the law of iterated expectations and the law of total variances (Movellan, 2011), we

reconstruct the truncated mean and variance of the joint distribution by conditioning on the truncated

1D distribution yit|t ∼ N [µi, σ
2
i ] (Eqn. 4.19, 4.20), according to:

(yt|t−1|yit|t−1 = yit|t) ∼ N [ŷt|t−1 − L(ãTi ŷt|t−1 − µi), Rt|t−1 − L(ãTi Rt|t−1ãi − σ2
i )L

T ], (4.23)

where L =
Rt|t−1ãi

ãT
i Rt|t−1ãi

. The shift in the mean due to truncation due to the ith constraint is given by:

∆yit =
Rt|t−1ãi

ãTi Rt|t−1ãi
(ãTi ŷt|t−1 − µi), (4.24)
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and the shift in variance is given by:

∆Rit =
Rt|t−1ãi

ãTi Rt|t−1ãi
(ãTi Rt|t−1ãi − σ2

i )
ãTi Rt|t−1

ãTi Rt|t−1ãi
. (4.25)

The cumulative shift in the mean due to truncation due to k constraints is then ∆yt =
∑k

i=0 ∆yit,

and the cumulative change in variance is ∆Rt =
∑k

i=0 ∆Rit. The mean and variance of the truncated

conditional distributions are then propagated recursively using Eqns (4.17) and (4.18).

4.5.3 Estimating the Probability of Collision

We use the truncated conditional distributions to estimate the overall probability of collision of

the given plan, based on the conditional probabilities of collisions at each stage along the plan. Given

the joint conditional distribution at stage t, N [ŷt|t−1, Rt|t−1], and the set of k linear constraints that

define the locally convex region of free space containing the robot, we compute a lower bound for the

probability of the robot being collision free using Boole’s inequality, as (Vitus and Tomlin, 2011):

p(xt|t−1 ∈ XF ) ≥ 1− p
( k∨

i=0

ãTi ŷt|t−1 > b̃i
)

≥ 1−
k∑

i=0

(1− cdf(αi)). (4.26)

The overall probability that the robot does not collide with any obstacle for the duration ` of the

plan, is given by:

p(
∧̀

t=0

xt ∈ XF ) =
∏̀

t=0

p(xt|t−1 ∈ XF ), (4.27)

and the overall probability of collision is provided by the complement (1− p(∧`
t=0 xt ∈ XF )).

We extend our analysis to non-convex regions by truncating the joint conditional distributions

with respect to linear constraints that define a locally convex region of free space containing the

robot. For the sake of simplicity, we assume that only the robot position is relevant for collision

detection. At each stage t, we compute the marginal distribution N [p̂t|t−1,Σt|t−1] of the conditional

distribution N [ŷt|t−1 +
[ x?

t
x?
t

]
, Rt|t−1] over the dimensions of the robot state that describe the robot

position p̂t|t−1. We outline a greedy method that computes a locally convex region of free space such

that the probability that the distribution N [p̂t|t−1,Σt|t−1] lies beyond the convex region is minimal.
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U−1t

Figure 4.6: We transform the environment such that the distribution of the robot position (left) is
converted to a unit sphere (right). We then sequentially process the obstacle geometry in increasing
order of distance from the origin. The linear constraints that define a locally convex region of the
free space are determined by the normal to the vector of closest approach (shown in red). The
locally convex region constructed using our approach for this example is defined by three constraints
determined in order of their indices: C1, C2, and C3.

Adopting the approach suggested in (van den Berg et al., 2011), we linearly transform the

environment geometry by applying the transform U−1
t , where Σt|t−1 = UtU

T
t is the Cholesky

decomposition. This transforms the uncertainty distribution of the robot position to a Gaussian

distribution with zero mean and unit variance, which is a unit sphere in Euclidean space centered

at the origin. The spherical symmetry simplifies the task of constructing a nonconservative convex

region of free space around the distribution of the position of the robot (Fig. 4.6).

We construct the convex region using a sequential process. We consider the closest point on the

obstacle geometry from the origin. The linear truncation constraint aTi pt|t−1 ≤ bi, is defined by the

normal to the vector of closest approach to the obstacle. We then prune away all geometry that lies in

the infeasible half space aTi pt|t−1 > bi of the constraint, and continue the process by considering the

closest point on the remaining obstacle geometry to the origin. This procedure is repeated until all

geometry has been pruned away. It is important to note that our convexification method works in a

greedy fashion and is not guaranteed to find the least conservative convex bounding region.

4.5.4 Validation

We also apply our method for computing the probability of collision for a steerable needle

navigating in a 3D environment with obstacles (Fig. 4.7a) and stochastic dynamics and partial and

noisy sensing feedback. We initialize our method with a nominal plan computed using an RRT

planner (Sec. 4.4). We tested our C++ implementation on a 3.33 GHz Intel® i7TM PC.
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(a) 3D test case (b) Zoom into narrow corridor

0 500 1000 1500 2000 2500 3000

0.35

0.4

0.45

0.5

0.55

0.6

0.65

0.7

0.75

Computation Time (milliseconds)

C
ol

lis
io

n 
Pr

ob
ab

ili
ty

 

 
Ground Truth
Our Method (t = 7.4 ms)
Monte Carlo (t

mc
 = 0.69 ms)

tmc tmc tmc tmc tmc
tmc

(c) Comparison with Monte Carlo simulations

Figure 4.7: Nonholonomic bevel-tip steerable needle: (a) Unconditional distributions (solid gray
ellipsoids corresponding to 3 standard deviations) provide an overly conservative approximation of
the uncertainty. Our method computes conditional distributions (black wireframe ellipsoids), which
provide an accurate estimate of the probability distributions of the feasible robot states (shown in
red). The collision probability estimated by our method is 54.5%, while the ground truth probability
is 52.4%. (b) Zoomed in view of the conditional distributions in the narrow corridor. (c) Comparison
of our method to Monte Carlo simulations. (d) The probability of collision estimated by our method
for a second plan is 43.9%, while the ground truth probability is 42.2%.

We follow the variable curvature stochastic kinematic model (Chapter 3). We also assume that

we receive partial, noisy feedback on only the position of the needle tip p, and not its orientation.

This is a reasonable assumption since current medical imaging technologies such as ultrasound do

not allow for measuring the full state of the needle tip (as the imaging resolution is often too low

to infer its orientation). The noise in the sensor measurement is modeled as n ∼ N [0, N ]. This

gives the stochastic measurement model, h[x,n] = p + n. We follow the approach in (van den

Berg et al., 2010) to approximate the given nonlinear dynamics and measurement models with local

linearizations around the nominal plan.

We validate our method by comparing the estimated collision probability with the ground truth

probability computed using a million Monte Carlo simulations (considered as ground truth) of the

given motion plan and counting the ratio of collision free simulations. Each execution is simulated

in a closed-loop fashion using the given linear feedback controller and a Kalman filter, and with

artificially generated motion and measurement noise.

Fig. 4.7b shows the discrepancy between the unconditional and conditional distributions in the

presence of obstacles. The conditional distributions computed using our method provide an accurate

estimate of the distribution of the collision free robot states along the plan, thus providing an accurate

estimate of the probability of collision, and consequently, the probability of success.
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Our method Unconditional (Vitus and Tomlin, 2011) LQG-MP (van den Berg et al., 2011)

MAE (%) Avg. Time (ms) MAE (%) Avg. Time (ms) MAE (%) Avg. Time (ms)

5.0 (± 3) 14 20.7 (± 7) 12 61.7 (± 12) 10

Table 4.1: Comparison of our method with prior methods over 100 plans in terms of mean absolute
error (MAE) from ground truth probability. Standard deviations provided in parentheses.

Table 4.1 compares the probability of collision estimated by our method against the ground

truth probability computed using Monte Carlo simulations for the scenarios considered above. Our

estimate lies within 5% of the ground truth value. It is important to note that Monte Carlo simulations

provide an unbiased estimate of the probability of collision, and can underestimate the probability

if a sufficiently large number of samples are not considered. In contrast, our method provides a

conservative estimate of the probability. Each Monte Carlo simulation takes 0.69 milliseconds while

our method takes 7.4 milliseconds. It takes 2000 simulations to arrive within the accuracy bounds

of our method (Fig. 4.7c), which corresponds to 1.4 seconds of computation time. Even neglecting

the fact that Monte Carlo simulations underestimate the collision probability, it still takes 3000

simulations to arrive within the accuracy bounds of our method. This corresponds to over a second

of computation time just to estimate the collision probability, which is undesirable for real-time

motion planning under uncertainty. Our method provides accurate, yet conservative, estimates of the

collision probability while incurring negligible computational overhead. This makes it especially

suitable for online planning algorithms that explicitly consider uncertainty.

We compare our method to prior methods that rely on a priori state distributions to estimate

the collision probability. We generated a set of 100 plans using the RRT planner using randomly

initialized start states. For each plan, we estimated the collision probability using our method,

applying Boole’s inequality to the unconditional distributions (Vitus and Tomlin, 2011), and LQG-

MP (van den Berg et al., 2011). We use the mean error as a metric to compare the probability

estimates to the ground truth probability. As summarized in Table 4.1, the estimate computing using

our method reduces the estimation error by more than 25% as compared to the collision quality

metric provided by LQG-MP (van den Berg et al., 2011) and the collision probability computed

using the unconditional distributions directly (Vitus and Tomlin, 2011). It is important to note that all

these estimation methods, including ours, provide a conservative bound for the collision probability.
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4.5.5 Discussion

Our fast, analytical method is used to efficiently estimate the a priori probability of collision,

and consequently, the probability of success for a mobile robot such as a steerable needle operating

under Gaussian models of uncertainty. We consider the correlations between the a priori probability

distributions of the robot state, to accurately estimate the true distributions and consequently, the

probability of success. Our method is computationally fast, enabling its use in online motion planning,

and computes conservative estimates of the probability of success. We extend this framework to

motion planning under uncertainty in deformable environments by estimating the probability of

success based on the (expected) deformed configurations of the obstacles at each time instant along

the plan. This is used to select a high quality plan and its associated feedback controller for execution.

4.6 Results

We present simulation results for our approach to guide a steerable needle through a planar

deformable environment with obstacles to reach a desired target region. We use a kinematic model

for a simple car without reverse (LaValle, 2006) that traverses a planar deformable environment and

pushes the surface forward as it advances. This model is equivalent to a steerable needle moving

through deformable tissue under 2D image guidance. Inserting needles into tissues causes the

surrounding tissue to deform, thereby introducing a challenging planning problem. In addition,

factors such as tissue deformation, needle-tissue interaction uncertainty, actuation and sensing

uncertainty, and involuntary patient movements further complicate the task (Chap. 1).

We model the deformable environment as a unit square that is fixed at the four corners, as

shown in Fig. 4.1a. The state of the needle xt = [xt, yt, θt]
T ∈ R3 is a vector consisting of its

position [xt, yt]
T and its orientation θt at time t. We do not include any points from the deformable

environment in the definition of the state xt. The control input ut = [vt, φt]
T ∈ R2 consists of the

insertion speed of the needle vt ∈ [0, vmax] and the steering angle φt ∈ [−φmax, φmax]. For a bevel-tip

steerable needle, the continuous steering angle can be transformed into duty-cycling parameters for
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(a) (b) (c) (d)

Figure 4.8: (a) Actuation noise, in the absence of feedback, causes the needle to veer away from
the target region in the deformable environment. (b) Our feedback controller compensates for this
noise to guide the robot to the target region. (c) A much stiffer than expected material composing
the deformable environment causes the needle to miss the target region in the absence of feedback.
(d) Our controller guides the robot back to the target region even with high variance in material
parameters.

actuation at the needle base (Minhas et al., 2007). The state of the needle then evolves as:

xt+1 =




xt + tvtcosθt

yt + tvtsinθt

θ + tvttan(φt)/(rmintan(φmax))




where t is the duration of a time-step and rmin is the minimum turning radius of the nonholonomic

robot. In our experiments, we used vmax = 0.5, φmax = π/3, τ = 0.1, and rmin = 0.25 where all

quantities are expressed in appropriate units. We also assume that we only receive feedback on the

position of the needle and not its orientation, i.e. h[xt] =
[ x
y

]
. This is a reasonable assumption since

current medical imaging technologies such as ultrasound do not allow for measuring the full state of

the needle tip (as the imaging resolution is often too low to infer its orientation). The noise in the

sensor measurement is modeled as nt ∼ N (0, Nt), where the variance in sensing noise Nt is known.

The motion of the needle exerts an interaction force of magnitude f int = 1 in the direction of

its movement, thus deforming the environment. We model the environment as an isotropic, linearly

elastic material and use a linear FEM simulator to compute the deformations in the environment as a

result of the applied forces.

Given the initial state x0 of the needle and the target region Ptarget ⊂ R2, the planning objective

for the robot is to move to the target region without colliding with any obstacles (Fig. 4.1a). We used
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Figure 4.9: Percentage of successful plan executions. The plan chosen by our method consistently
outperforms plans that do not simultaneously account for both uncertainty and deformations.

the RRT algorithm as described in Sec. 4.4.1 to generate a set of 100 candidate motion plans, which

took 81 seconds. Fig. 4.1b shows one such plan. We executed the remainder of our method to select

a high quality plan, as shown in Fig. 4.1d. This process took 57 seconds. The output of our method

is the selected motion plan and the corresponding LQG controller.

To demonstrate the effectiveness of the controller computed by our method, we show actual plan

executions under actuation noise and varying material properties (Fig. 4.8). The controller computed

by our method is successfully able to correct for uncertainty in actuation and deformation modeling.

To evaluate our method, we simulated 1000 executions of the planner solution to evaluate the

percentage of successful plan executions. Execution of a plan is considered successful if the target

region is reached and obstacles are avoided. It is important to note that each simulated plan execution

assumes no knowledge of the internal deformable model being used. We considered the following

scenarios to model uncertainty in actuation, sensing, and deformation modeling:

1. Material properties (low variance): We model the environment to have Young’s modulus

E ∼ N (50.0, 5.0) and Poisson’s ratio ν ∼ N (0.4, 1e−04).

2. Material properties (high variance): We model the environment to have Young’s modulus

E ∼ N (50.0, 75.0) and Poisson’s ratio ν ∼ N (0.4, 4e−04).
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3. Actuation noise: The control inputs
[ vt
φt

]
are perturbed by noise drawn from a zero-mean

Gaussian distribution ∼ N (0,
[

0.005 0.0
0.0 0.025

]
).

4. Number of mesh elements: The number of elements in the discretized mesh of the environment

is uniformly distributed between 50 and 1000 elements, where the expected mesh contains 175

elements.

5. Interaction force: We model the interaction force f int to be uniformly distributed between 0

(no deformations) and 2 units.

We compared the results of our method to two existing approaches. First, we consider RRT

with deformations in which we use a RRT plan as computed in Sec. 4.4.1 but do not explicitly

consider uncertainty (i.e. no feedback control). Second, we consider LQG-MP only in which a plan

is selected by LQG-MP (van den Berg et al., 2011) from a set of candidate plans computed in a static

environment, which treats deformation as a source of uncertainty. For each approach, we simulate

plan execution 1000 times using the scenarios above.

As shown in Fig. 4.9, our method consistently yields a significantly higher probability of

success compared to existing approaches that plan in deterministic deformable environments without

uncertainty or consider deformation as a type of uncertain perturbation. The poor rate of success

of the RRT with deformations plan is due to the lack of any feedback control to compensate for

uncertainty due to actuation noise and deformation modeling errors. On the other hand, the LQG-MP

plan has a poor rate of success because it fails to account for large time-dependent motions of the

target and obstacles due to deformations. We also evaluated the impact of the LQG-MP plan selection

step of our method. Averaging across all the scenarios considered above, our method without the

LQG-MP step performed 34% better than RRT with deformations and 17% worse than our complete

method. The feedback controller significantly improves the rate of success by mitigating uncertainty

encountered during execution of the plan. The use of the LQG-MP step further improves the rate of

success at the expense of additional computation.

4.6.1 Clinical Scenario

We also evaluated our method in simulation in a clinical scenario involving planar needle steering

within the human liver for biopsy or drug delivery (as shown in Fig. 4.10). We obtained planar

95



(a) (b) (c)
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Figure 4.10: Simulation of needle steering in a plane in the human liver for biopsy or drug delivery.
(a) Planar imaging slices from scans of a human liver from the U.S. National Library of Medicine’s
Visible Human project. The initial state of the needle is specified (in red), the target region is marked
in green, and the vessels inside the liver are segmented and marked as obstacles (shown in orange). (b)
Ignoring uncertainty can lead to selection of a plan that goes through a very narrow passage between
the vessels, thereby considerably decreasing the probability of success, even when using a feedback
controller. (c) Consideration of uncertainty under the probability of success criterion efficiently
computed using our method selects a high quality plan that has sufficient clearance from the vessels,
thereby maximizing probability of successful plan execution. (d) Considerable uncertainty due to
actuation and sensing errors, and errors in estimating modeling parameters causes the needle to hit a
vessel in the absence of feedback. (e) Our deformation-aware controller guides the needle back to
the target region even under considerable uncertainty.

imaging slides from computed tomography (CT) scans of a human liver from the U.S. National

Library of Medicine’s Visible Human project database (U.S. National Library of Medicine, 2012). In

a clinical procedure, high resolution scans would typically be obtained in the preoperative stage of

the procedure. A clinician would specify the initial state of the needle (position and orientation), a

desired target region, and specify major blood vessels that must be avoided during the procedure to

prevent hemorrhaging during the procedure (Fig. 4.10a).

Figs. 4.10b and 4.10c demonstrate the importance of plan selection during preoperative opti-

mization (Sec. 4.5). Ignoring uncertainty can lead to selection of a plan that goes through a very
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narrow passage between the vessels (Fig. 4.10b), thereby considerably decreasing the probability

of success, even when using a feedback controller. On the other hand, if we choose a high quality

plan based on our probability of success criterion, we can compute safe plans that have sufficient

clearance from the blood vessels in case of unexpected deviation in the needle pose (Fig. 4.10c),

thereby maximizing the probability of successful plan execution.

We simulate actual execution of the procedure with the chosen high quality plan and LQG

feedback controller by considering uncertainty due to actuation and sensing errors, and modeling

errors due to improper initialization of material parameters. The needle hits the vessel while executing

the high quality plan without feedback in the presence of uncertainty (Fig. 4.10d). In contrast, our

deformation-aware controller guides the needle back to the target while safely avoiding obstacles

under considerable uncertainty (Fig. 4.10e).

4.7 Discussion

We have introduced a new, unified framework for planning and control under uncertainty in highly

deformable environments that maximizes the probability of success by accounting for uncertainty in

deformation models, noisy sensing, and unpredictable actuation. Unlike prior planners that assume

deterministic deformations or treat deformations as a disturbance, our method explicitly considers

uncertainty in large, time-dependent deformations. Although the method requires a simulator of

the deformable environment, we place no significant restrictions on the simulator used. We have

shown that our approach can generate high quality plans for guiding steerable needles through highly

deformable tissue under 2D image guidance.

Our approach has a few limitations. First, we operate under the assumption of Gaussian models

of uncertainty. This might not be an acceptable approximation in applications where multi-modal

beliefs are expected to appear. However, preliminary results from Chapter 3 indicate that the Gaussian

approximation is well founded for the problem of needle steering in soft tissue. Second, the feedback

controller used in this work does not take bounds on the physical control inputs that can be applied to

the system. This is a practical concern for needle steering, since curvature greater than the maximum

curvature of the needle cannot be realized. We plan to combine our approach with model predictive

control based methods that would use a fast planner (Chapter 2) to correct unexpected perturbations
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that cannot be effectively corrected by the LQG controller. Our analytical method for efficiently

estimating the probability of success works well for steerable needles but we plan to extend this

method to be applicable to non-point robots.

In future work, we plan to investigate improvements to each component in Fig. 4.2. Replacing the

standard LQR control framework with integrated approaches for planning and control that compute

an approximate solution to the POMDP problem (Platt et al., 2010; van den Berg et al., 2012) may

improve controller performance. Similarly, replacing the standard Kalman filter with variants such

as the unscented Kalman filter or a particle filter (Simon, 2006) may improve the quality of state

estimation during plan execution. Our approach also assumes that a simulator that computes the

expected deformations in the environment is available, but such simulators are difficult to construct

for general applications. We envision that advances in computational modeling and simulation will

further increase the applicability of our method. We also plan to investigate parallelizing the model

linearization, which involves multiple, independent simulation runs, to reduce computation times.
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CHAPTER 5

Conclusion and Future Work

Steerable medical needles have the potential to improve health care by improving the effective-

ness of needle-based clinical procedures such as biopsy, drug delivery, neurosurgery, and radioactive

seed implantation for cancer treatment. However, several hurdles need to be overcome before needle

steering can be realized in practice. A big part of the challenge stems from the difficulty involved in

accurately guiding these needles to clinical targets while safely avoiding sensitive and impenetrable

anatomical structures. Creating a needle steering robotic system that assists clinicians and addresses

these challenges could enable new needle-based procedures and substantially improve the clinical

outcomes of some existing needle-based procedures.

In this dissertation, we have addressed a number of issues related to planning and control

of steerable medical needles. We have demonstrated that efficient motion planning and control

approaches can facilitate closed-loop guidance of steerable needles to clinical targets within clinically

acceptable accuracy while avoiding sensitive and impenetrable anatomical structures. We have

proposed two approaches for closed-loop planning and control of steerable needles, overcoming

substantial deformations and uncertainty in the process. We have also proposed a data-driven method

for creating stochastic models of steerable needle insertion, which could be used to create realistic

medical training simulators of steerable needle procedures and to improve the effectiveness of

existing planning and control techniques.

Our results, albeit presented in the context of medical needle steering, could be adapted to a

number of applications, including manipulation of deformable objects and planning and control of

mobile robots.

The main results from this dissertation are summarized below.



5.1 Summary of Results

We revisit the thesis from Chapter 1:

Efficient motion planning and control techniques that consider uncertainty and deformations can

facilitate closed-loop guidance of steerable needles to targets within clinically acceptable targeting

accuracy while safely avoiding clinician-specified anatomical structures.

In support of this thesis, we presented two approaches for closed-loop planning and control

of steerable needles in soft tissue for automatically guiding the steerable needle to targets in 3D

environments while avoiding obstacles and compensating for real-world uncertainties. The first

approach uses a fast planner that can be used as a controller (Chapter 2). The second approach uses a

physically-based simulator to model expected deformations to compute a motion plan and correct

perturbations using a feedback controller (Chapter 4). We showed that the rapid replanning strategy

was able to efficiently guide the needle safely to targets in phantom and ex vivo animal tissue with

accuracy exceeding the accuracy of current clinical care. The unified planning and control framework

for steerable needle insertion in soft tissue was shown to be superior to prior approaches that consider

either uncertainty or deformations but not both simultaneously.

We also presented a data-driven method for creating stochastic models of needle insertion in

soft tissue (Chapter 3). This method relies on data gathered from prior experiments and procedures

and can be constantly refined as the availability of data from steerable needle procedures increases.

We envision that this method could be an integral component for modeling real-world perturbations

in simulations designed to help clinicians to train for steerable needle insertion procedures or for

designing efficient planning and control algorithms that maximize the chances of successful plan

execution. We created stochastic models for needle insertion for tissue phantoms and ex vivo porcine

tissue based on real data gathered from needle insertions in these tissue sample materials. We also

evaluated the accuracy of these models by simulating steerable needle insertions in these materials.

5.2 Limitations

For each of the techniques presented in this dissertation, we have discussed several limitations in

the corresponding chapters. Here, we summarize the key limitations of each.
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The rapid replanning approach described in Chapter 2 requires a detailed characterization of the

steerable needle’s curvature for best results. Since we cannot obtain a detailed characterization on a

per-patient basis before the procedure is performed, we could treat this as an additional source of

uncertainty and account for erroneous characterization during closed-loop planning and control. The

optimality and completeness of the rapid replanning approach is also an open area of research.

The data-driven method for estimating the parameters of a stochastic model of steerable needle

insertion was presented in Chapter 3. The method assumes a discrete time kinematic motion

model. Since the model parameters are estimated based on measurements that are obtained at

discrete intervals of needle insertion length, our stochastic model cannot be used to simulate needle

procedures that might vary greatly in the length of the needle shaft inserted at every insertion step.

Finally, we do not estimate the curvature of the needle, which is important from the perspective

of state estimation, planning, and control. The dependence of our method on the curvature occurs

through the computation of the physical control inputs that are applied to the needle during duty

cycled rotation of the needle. However, our method will likely work well for needles with similar

curvature characteristics.

The unified framework of planning and control in uncertain, deformable environments presented

in Chapter 3 constructs a feedback controller based on linearization of the physically-based de-

formable simulator. The linearization is only valid in regions close to the nominal trajectory of the

needle. In the case of large perturbations, this might lead to sub-optimal performance in terms of the

targeting accuracy and avoidance of critical anatomical structures. We plan to investigate refining the

controller as the procedure is being performed for improving the probability of success.

5.3 Future Work

There are many exciting areas for further work regarding medical needle steering, in terms of

developing its further applications and realizing it in actual clinical practice, and in formalizing its

theoretical basis. We have described in each chapter some of the avenues of future work with regards

to each specific application. Here, we discuss some of the broader possibilities and open problems.

Teleoperation of steerable needle procedures: A major challenge in using steerable needles

for clinical procedures is to involve a clinician in the loop for reasons of accountability and patient
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safety (Taylor, 2006; Okamura et al., 2010). Teleoperated robotic systems such as the da Vinci®

surgical system manufactured by Intuitive Surgical (Intuitive Surgical da Vinci® Surgical System,

2012) are extensively used for minimally invasive surgical procedures worldwide. We plan to explore

the use of our fast motion planning algorithm (Chapter 2) for clinician-teleoperated position control

of the needle tip.

Optimality and completeness of replanning: An important issue pertaining to replanning is

the completeness of the approach, i.e., to guarantee that a solution would be found if one exists. The

completeness properties of sampling-based motion planners such as the RRT algorithm has been

thoroughly investigated (LaValle, 2006). Since replanning involves using a sampling-based planning

to find a solution at each replanning step, it remains to be investigated if replanning for steerable

needles can be implemented in a manner that is fast in practice, is guaranteed to find a solution if one

exists, and provides some level of optimally guarantee.

Maximize probability of success in replanning : A naı̈ve strategy to ensure safe avoidance of

critical anatomical structures is to maximize clearance from the obstacles, but a more principled

approach would be to explicitly consider a stochastic model of the system dynamics (Chapter 3)

and select motion plans that would minimize the probability of collisions with obstacles. This

would involve extending the replanning technique presented in Chapter 2 to incorporate duty cycled

spinning of the needle, and efficiently computing the probability of collision, and consequently

the probability of success, using the method suggested in Chapter 4 (Patil et al., 2012). A motion

planner based on a metric that quantifies probability of collision could enable a principled approach

to maximizing probability of success.

Online estimation of model parameters: The unified planning and control framework pre-

sented in Chapter 4 deals with two fundamentally different kinds of uncertainty. The first kind deals

with uncertainty in modeling and simulation, which is a function of the model parameters such

as constituent material properties and friction and contact coefficients. Modeling errors can cause

large systemic changes that cannot be corrected using a static control policy, which is computed

a priori assuming a set of model parameter values. The second kind of uncertainty arises due to

temporally-varying factors such as actuation and sensing, which is a continuous random process. The

estimation process described in Chapter 3 can theoretically be used for online estimation of model
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parameters as well. These model parameters could be used to revise the feedback control policy,

resulting in a higher probability of success.

Integrated planning and control using approximate POMDP solvers: In the most general

setting, the planning and control problem is a partially observable Markov decision process (POMDP)

problem (Thrun et al., 2005). Recent results (Platt et al., 2010; van den Berg et al., 2012) have

proposed approaches for efficiently computing locally optimal solutions to the POMDP problem by

planing in an augmented state space called the belief space, which comprises of both the system state

and a parameterized representation of the uncertainty associated with the state. These approaches

yield control policies over the belief space, as opposed to control policies computed over the state

space (Bertsekas, 2007). It remains to be investigated if these approaches can be scaled and extended

to steerable needle insertion in soft tissue.

Simultaneous optimization of motion and sensor plans: An important aspect of motion

planning under uncertainty problems is to consider the effect of sensing modalities on the planning

and execution of motion plans. The type and placement of sensors in the environment can have

a major impact on the quality of the computed plans in terms of minimizing uncertainty, and the

ability of the robot to follow the computed motion plan. In recent work (van den Berg et al., 2010),

we proposed a naı̈ve sampling-based strategy to simultaneously compute motion and sensor plans.

Our method showed that such a strategy can improve the probability of success when compared to

prior approaches that either compute motion plans or sensor placements but not both simultaneously.

Designing algorithms for simultaneously planning needle steering motions and sensor placements

for a variety of clinically relevant sensors such as X-ray imaging devices or ultrasound probes is a

promising topic for future research.

103



BIBLIOGRAPHY

Abbeel, P., Coates, A., Montemerlo, M., Ng, A. Y., and Thrun, S. (2005). Discriminative training of
Kalman filters. In Proc. Robotics: Science and Systems (RSS).

Abolhassani, N., Patel, R., and Moallem, M. (2007). Needle insertion into soft tissue: a survey.
Medical Engineering & Physics, 29(4):413–31.

Alterovitz, R. (2006). Planning and Optimization Algorithms for Image-Guided Medical Procedures.
PhD thesis, University of California, Berkeley.

Alterovitz, R., Goldberg, K., and Okamura, A. M. (2005). Planning for steerable bevel-tip needle in-
sertion through 2D soft tissue with obstacles. In Proc. IEEE Int. Conf. Robotics and Automation
(ICRA), pages 1652–1657.

Alterovitz, R., Simeon, T., and Goldberg, K. (2007). The stochastic motion roadmap: A sampling
framework for planning with Markov motion uncertainty. In Proc. Robotics: Science and
Systems (RSS), pages 246–253.

Bayazit, O. B., Lien, J.-M., and Amato, N. M. (2002). Probabilistic roadmap motion planning
for deformable objects. In Proc. IEEE Int. Conf. Robotics and Automation (ICRA), pages
2126–2133.

Bernardes, M., Adorno, B., Poignet, P., and Borges, G. (2012). Semi-automatic needle steering
system with robotic manipulator. In IEEE International Conference on Robotics and Automation
(ICRA), pages 1595–1600.

Bertsekas, D. (2007). Dynamic programming and optimal control. Athena Scientic.

Blumenfeld, P., Hata, N., DiMaio, S., Zou, K., Haker, S., Fichtinger, G., and Tempany, C. (2007).
Transperineal prostate biopsy under magnetic resonance image guidance: a needle placement
accuracy study. Journal of Magnetic Resonance Imaging, 26(3):688–694.

Boctor, E., Choti, M., Burdette, E., and Webster III, R. (2008). Three-dimensional ultrasound-guided
robotic needle placement: an experimental evaluation. The International Journal of Medical
Robotics and Computer Assisted Surgery, 4(2):180–191.

Bogdanich, W. (2009). At V.A. Hospital, a rogue cancer unit. Available:
http://www.nytimes.com/2009/06/21/health/21radiation.html.

Bry, A. and Roy, N. (2011). Rapidly-exploring random belief trees for motion planning under
uncertainty. In Proc. IEEE Int. Conf. Robotics and Automation (ICRA).

Burns, B. and Brock, O. (2007). Sampling-based motion planning with sensing uncertainty. In Proc.
IEEE Int. Conf. Robotics and Automation (ICRA), pages 3313–3318.

Chentanez, N., Alterovitz, R., Ritchie, D., Cho, J., Hauser, K., Goldberg, K., Shewchuk, J. R., and
O’Brien, J. F. (2009). Interactive simulation of surgical needle insertion and steering. ACM
Transactions on Graphics (Proc. SIGGRAPH), 28(3):88:1–88:10.

Corbin Manufacturing and Supply, Inc. (2012). Sim-Test™ Ballistic Media. Available:
http://www.corbins.com/sim-test.htm.

104



Cowan, N. J., Goldberg, K., Chirikjian, G. S., Fichtinger, G., Alterovitz, R., Reed, K. B., Kallem, V.,
Park, W., Misra, S., and Okamura, A. M. (2011). Robotic needle steering: Design, modeling,
planning, and image guidance. In Rosen, J., Hannaford, B., and Satava, R. M., editors, Surgical
Robotics: System Applications and Visions, chapter 23, pages 557–582. Springer.

Das, J., Rucker, D. C., and Webster III, R. J. (2010). Testbed for multi-lumen steerable needle
experiments. In ASME Design of Medical Devices Conference.

Dehghan, E. and Salcudean, S. (2009). Needle insertion parameter optimization for brachytherapy.
Robotics, IEEE Transactions on, 25(2):303–315.

Dempster, A., Laird, N., and Rubin, D. (1977). Maximum likelihood from incomplete data via the
EM algorithm. Journal of the Royal Statistical Society. Series B (Methodological), pages 1–38.

Desser, T., Sze, D., and Jeffrey, R. (2003). Imaging and intervention in the hepatic veins. American
Journal of Roentgenology, 180(6):1583–1591.

DiMaio, S. and Salcudean, S. (2003). Needle insertion modeling and simulation. IEEE Transactions
on Robotics and Automation, 19(5):864–875.

du Toit, N. E. and Burdick, J. W. (2010). Robotic motion planning in dynamic, cluttered, uncertain
environments. In Proc. IEEE Int. Conf. Robotics and Automation (ICRA), pages 966–973.

du Toit, N. E. and Burdick, J. W. (2011). Probabilistic collision checking with chance constraints.
IEEE Trans. Robotics, 27:809–815.

Duindam, V., Alterovitz, R., Sastry, S., and Goldberg, K. (2008). Screw-based motion planning for
bevel-tip flexible needles in 3D environments with obstacles. In Proc. IEEE Int. Conf. Robotics
and Automation (ICRA), pages 2483–2488.

Duindam, V., Xu, J., Alterovitz, R., Sastry, S., and Goldberg, K. (2010). Three-dimensional motion
planning algorithms for steerable needles using inverse kinematics. The International Journal
of Robotics Research, 29(7):789–800.

Engh, J., Minhas, D., Kondziolka, D., and Riviere, C. (2010). Percutaneous intracerebral navigation
by duty-cycled spinning of flexible bevel-tipped needles. Neurosurgery, 67(4):1117–1122.

Erez, T. and Smart, W. D. (2010). A scalable method for solving high-dimensional continuous
POMDPs using local approximation. In Conf. on Uncertainty in Artificial Intelligence.

Fichtinger, G., Fiene, J., Kennedy, C., Kronreif, G., Iordachita, I., Song, D., Burdette, E., and
Kazanzides, P. (2008). Robotic assistance for ultrasound-guided prostate brachytherapy. Medical
image analysis, 12(5):535–545.

Field, M., Witham, T., Flickinger, J., Kondziolka, D., and Lunsford, L. (2001). Comprehensive
assessment of hemorrhage risks and outcomes after stereotactic brain biopsy. Journal of
Neurosurgery, 94(4):545–551.

Frank, B., Becker, M., Stachniss, C., Burgard, W., and Teschner, M. (2008). Efficient path planning
for mobile robots in environments with deformable objects. In Proc. IEEE Int. Conf. Robotics
and Automation (ICRA), pages 3737–3742.

105



Frank, B., Stachniss, C., Schmedding, R., Teschner, M., and Burgard, W. (2009). Real-world robot
navigation amongst deformable obstacles. In Proc. IEEE Int. Conf. Robotics and Automation
(ICRA), pages 1649–1654.

Frazzoli, E., Dahleh, M., and Feron, E. (2002). Real-time motion planning for agile autonomous
vehicles. Journal of Guidance Control and Dynamics, 25(1):116–129.

Freedman, D. and Diaconis, P. (1981). On the histogram as a density estimator: L2 theory. Probability
theory and related fields, 57(4):453–476.

Gallagher, A. G., Ritter, E. M., Champion, H., Higgins, G., Fried, M. P., Moses, G., Smith, C. D.,
and Satava, R. M. (2005). Virtual reality simulation for the operating room: Proficiency-based
training as a paradigm shift in surgical skills training. Annals of Surgery, 241(2):364–372.

Gayle, R., Segars, P., Lin, M. C., and Manocha, D. (2005). Path planning for deformable robots in
complex environments. In Proc. Robotics: Science and Systems (RSS), pages 225–232.

General Electric (GE) Healthcare (2012). GE Healthcare Innova TrackVision System. Available:
http://www.gehealthcare.com/aw/applications/innova-track-vision/.

Ghahramani, Z. and Hinton, G. (1996). Parameter estimation for linear dynamical systems. Technical
report, Technical Report CRG-TR-96-2, University of Totronto, Dept. of Computer Science.

Glozman, D. and Shoham, M. (2007). Image-guided robotic flexible needle steering. IEEE Transac-
tions on Robotics, 23(3):459–467.

Greytak, M. (2009). Integrated Motion Planning and Model Learning for Mobile Robots with
Application to Marine Vehicles. PhD thesis, Massachusetts Institute of Technology.

Guibas, L., Hsu, D., Kurniawati, H., and Rehman, E. (2008). Bounded uncertainty roadmaps for
path planning. In Proc. Workshop Algorithmic Foundations of Robotics (WAFR).

Guy, S. J., van den Berg, J., Liu, W., Lau, R., Lin, M. C., and Manocha, D. (2012). A statistical
similarity measure for aggregate crowd dynamics. To appear in ACM Transactions on Graphics
(Proc. SIGGRAPH Asia).

Hata, N., Blumenfeld, P., DiMaio, S., Zou, K., Haker, S., and Tempany, C. (2006). Needle placement
accuracy in mri-guided prostate biopsy of prostate cancer. In 14th Scientific Meeting, ISMRM
International Society for Magnetic Resonance in Medicine, volume 294.

Hauser, K. (2012). On responsiveness, safety, and completeness in real-time motion planning.
Autonomous Robotics, 21(1):35–48.

Hauser, K., Alterovitz, R., Chentanez, N., Okamura, A., and Goldberg, K. (2009). Feedback control
for steering needles through 3D deformable tissue using helical paths. In Proc. Robotics:
Science and Systems (RSS).

Hungr, N., Baumann, M., Long, J., and Troccaz, J. (2012). A 3D ultrasound robotic prostate
brachytherapy system with prostate motion tracking. tro, 28(6):1382–1397.

InnerOptic Inc. (2012). InnerOptic AIM 3D Targeting System. Available:
http://www.inneroptic.com/AIM.html.

Intuitive Surgical da Vinci® Surgical System (2012). http://www.intuitivesurgical.com/.

106



Johnson, N. L., Kotz, S., and Balakrishnan, N. (1994). Continuous univariate distributions, volume 1.
John Wiley & Sons.

Kallem, V. (2008). Vision-based control on lie groups with application to needle steering. PhD
thesis, Johns Hopkins University.

Kallem, V., Chang, D., and Cowan, N. (2010). Task-induced symmetry and reduction with application
to needle steering. IEEE Transactions on Automatic Control, 55(3):664–673.

Kallem, V. and Cowan, N. J. (2009). Image guidance of flexible tip-steerable needles. IEEE
transactions on robotics, 25(1):191–196.

Karaman, S. and Frazzoli, E. (2010). Incremental sampling-based algorithms for optimal motion
planning. In Proc. Robotics: Science and Systems (RSS).

Kewlani, G., Ishigami, G., and Iagnemma, K. (2009). Stochastic mobility-based path planning
in uncertain environments. In IEEE/RSJ Int. Conf. on Intelligent Robots and Systems, pages
1183–1189.

Ko, S., Frasson, L., and Rodriguez y Baena, F. (2011). Closed-loop planar motion control of a
steerable probe with a “programmable bevel” inspired by nature. IEEE Transactions on Robotics,
27(5):970–983.

Kurniawati, H., Hsu, D., and Lee, W. (2008). SARSOP: Efficient point-based POMDP planning
by approximating optimally reachable belief spaces. In Proc. Robotics: Science and Systems
(RSS).

Kuwata, Y., Karaman, S., Teo, J., Frazzoli, E., How, J., and Fiore, G. (2009). Real-time motion plan-
ning with applications to autonomous urban driving. IEEE Trans. Control Systems Technology,
17(5):1105–1118.

Lambert, A., Gruyer, D., and Pierre, G. S. (2008). A fast Monte Carlo algorithm for collision
probability estimation. In Int. Conf. on Control, Automation, Robotics and Vision (ICARV),
pages 406–411.

Lamiraux, F. and Kavraki, L. E. (2001). Planning paths for elastic objects under manipulation
constraints. Int. Journal of Robotics Research, 20(3):188–208.

LaValle, S. M. (2006). Planning Algorithms. Cambridge University Press, Cambridge, U.K. Available
at http://planning.cs.uiuc.edu.

Lobaton, E., Zhang, J., Patil, S., and Alterovitz, R. (2011). Planning curvature-constrained paths to
multiple goals using circle sampling. In Proc. IEEE Int. Conf. Robotics and Automation (ICRA),
pages 1463–1469.

Long, J., Hungr, N., Baumann, M., Descotes, J., Bolla, M., Giraud, J., Rambeaud, J., and Troccaz,
J. (2012). Development of a novel robot for transperineal needle based interventions: focal
therapy, brachytherapy and prostate biopsies. The Journal of Urology, 188(4):1369–1374.

Maier-Hein, L., Walsh, C., Seitel, A., Hanumara, N., Shepard, J., Franz, A., Pianka, F., Müller,
S., Schmied, B., Slocum, A., et al. (2009). Human vs. robot operator error in a needle-based
navigation system for percutaneous liver interventions. SPIE Medical Imaging: Visualization,
Image-Guided Procedure, and Modeling, 7261.

107



Majewicz, A., Marra, S. P., van Vledder, M. G., Lin, M., Choti, M. A., Song, D. Y., and Okamura,
A. M. (2012). Behavior of tip-steerable needles in ev vivo and in vivo tissue. IEEE Transactions
on Biomedical Engineering, 59(10):2705–2715.

Minhas, D., Engh, J. A., Fenske, M. M., and Riviere, C. (2007). Modeling of needle steering via
duty-cycled spinning. In Proc. Int. Conf. IEEE Eng. in Medicine and Biology Society, pages
2756–2759.

Misra, S., Reed, K. B., Schafer, B. W., Ramesh, K. T., and Okamura, A. M. (2010). Mechanics of
flexible needles robotically steered through soft tissue. The International Journal of Robotics
Research, 29(13):1640–1660.

Moll, M. and Kavraki, L. E. (2006). Path planning for deformable linear objects. IEEE Trans. on
Robotics, 22(4):625–636.

Moss, W., Lin, M. C., and Manocha, D. (2008). Constraint-based motion synthesis for deformable
models. Computer Animation and Virtual Worlds (Proc. of CASA 2008), 19(3):421–431.

Movellan, J. R. (2011). Discrete time Kalman filters and smoothers. MPLab Tutorials, Univ.
California at San Diego.

Mozer, P., Partin, A., and Stoianovici, D. (2009). Robotic image-guided needle interventions of the
prostate. Reviews in Urology, 11(1):7.

Murray, R., Li, Z. X., and Sastry, S. (1994). A Mathematical Introduction to Robotic Manipulation.
CRC Press.

Nealen, A., Müller, M., Keiser, R., Boxerman, E., and Carlson, M. (2006). Physically based
deformable models in computer graphics. Computer Graphics Forum, 25(4):809–836.

Nienhuys, H.-W. (2003). Cutting in deformable models. PhD thesis, Utrecht University.

Northern Digital Inc. (2012). Aurora® Electromagnetic Tracking System. Available:
http://www.ndigital.com/medical/aurora-techspecs.php.

Okamura, A., Mataric, M., and Christensen, H. (2010). Medical and health-care robotics. Robotics
& Automation Magazine, IEEE, 17(3):26–37.

Okamura, A., Simone, C., and O’Leary, M. (2004). Force modeling for needle insertion into soft
tissue. IEEE Transactions on Biomedical Engineering, 51:1707–1716.

Okazawa, S., Ebrahimi, R., Chuang, J., Salcudean, S., and Rohling, R. (2005). Hand-held steerable
needle device. IEEE/ASME Transactions on Mechatronics, 10(3):285–296.

Pan, J., Lauterbach, C., and Manocha, D. (2010). G-planner: Real-time motion planning and global
navigation using gpus. In AAAI Conf. on Artificial Intelligence, pages 1245–1251.

Park, W., Liu, Y., Zhou, Y., Moses, M., and Chirikjian, G. (2008). Kinematic state estimation and
motion planning for stochastic nonholonomic systems using the exponential map. Robotica,
26(4):419–434.

Park, W., Reed, K., Okamura, A., and Chirikjian, G. (2010a). Estimation of model parameters
for steerable needles. In IEEE International Conference on Robotics and Automation, pages
3703–3708.

108



Park, W., Wang, Y., and Chirikjian, G. (2010b). The path-of-probability algorithm for steering
and feedback control of flexible needles. The International Journal of Robotics Research,
29(7):813–830.

Patil, S. and Alterovitz, R. (2010a). Interactive motion planning for steerable needles in 3D environ-
ments with obstacles. In Int. Conf. Biomedical Robotics and Biomechatronics (BioRob), pages
893–899.

Patil, S. and Alterovitz, R. (2010b). Toward automated tissue retraction for robot-assisted surgery. In
Proc. IEEE Int. Conf. Robotics and Automation (ICRA), pages 2088–2094.

Patil, S., Burgner, J., Webster III, R. J., and Alterovitz, R. (2013). Needle steering in 3D via rapid
replanning. In review.

Patil, S., van den Berg, J., and Alterovitz, R. (2011). Motion planning under uncertainty in highly
deformable environments. In Proc. Robotics: Science and Systems (RSS).

Patil, S., van den Berg, J., and Alterovitz, R. (2012). Estimating probability of collision for safe
planning under Gaussian motion and sensing uncertainty. In Proc. IEEE Int. Conf. Robotics
and Automation (ICRA), pages 3238–3244.

Philips Healthcare (2012). Philips XperGuide Needle Guidance System. Available:
http://www.healthcare.philips.com/main/products/interventional xray/
product/interventional neuroradiology/interventional tools/intneuro xperguide.wpd.

Platt, R., Tedrake, R., Kaelbling, L., and Lozano-Perez, T. (2010). Belief space planning assuming
maximum likelihood observations. In Proc. Robotics: Science and Systems (RSS).

Prentice, S. and Roy, N. (2009). The belief roadmap: Efficient planning in belief space by factoring
the covariance. Int. Journal of Robotics Research, 28(11–12):1448–1465.

Reed, K. B., Majewicz, A., Kallem, V., Alterovitz, R., Goldberg, K., Cowan, N. J., and Okamura,
A. M. (2011). Robot-assisted needle steering. IEEE Robotics & Automation Magazine, 18(4):35–
46.

Reed, K. B., Okamura, A. M., and Cowan, N. J. (2009). Modeling and control of needles with
torsional friction. IEEE Transactions on Biomedical Engineering, 56(12):2905–16.

Rodriguez, S., Lien, J.-M., and Amato, N. M. (2006). Planning motion in completely deformable
environments. In Proc. IEEE Int. Conf. Robotics and Automation (ICRA), pages 2466–2471.

Roy, N., Burgard, W., Fox, D., and Thrun, S. (1999). Coastal navigation - mobile robot navigation
with uncertainty in dynamic environments. In Proc. IEEE Int. Conf. Robotics and Automation
(ICRA), pages 35–40.

Satava, R. M. (2005). Identification and reduction of surgical error using simulation. Minimally
Invasive Therapy & Allied Technologies, 14(4–5):257–261.

Schouten, M., Bomers, J., Yakar, D., Huisman, H., Rothgang, E., Bosboom, D., Scheenen, T., Misra,
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