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Summary

Robot-assisted minimally invasive surgical procedure (RAMIS) is a subfield of minimally inva-
sive surgeries with enhanced manual dexterity, manipulability, and intraoperative image guid-
ance. In typical robotic surgeries, it is common to use rigid instruments with functional articulat-
ing tips. However, in some operations where no adequate and direct access to target anatomies
is available, continuum robots can be more practical, as they provide curvilinear and flexible
access. However, their inherent deformable design makes it difficult to accurately estimate their
3D shape during the operation in real-time. Despite extensive model-based research that relies
on kinematics and mechanics, accurate shape sensing of continuum robots remains challeng-
ing. The state-of-the-art tracking technologies, including optical trackers, electromagnetic (EM)
tracking systems, and intraoperative imaging modalities, are also unsuitable for this task, as they
all have shortcomings. Optical fiber shape sensing solutions offer various advantages compared
to other tracking modalities and can provide high-resolution shape measurements in real-time.
However, commercially available fiber shape sensors are expensive and have limited accuracy.

In this thesis, we propose two cost-effective fiber shape sensing solutions based on multi-
ple single-mode fibers with FBG (fiber Bragg grating) arrays and eccentric FBGs. First, we
present the fabrication and calibration process of two shape sensing prototypes based on mul-
tiple single-mode fibers with semi-rigid and super-elastic substrates. Then, we investigate the
sensing mechanism of edge-FBGs, which are eccentric Bragg gratings inscribed off-axis in the
fiber’s core. Finally, we present a deep learning algorithm to model edge-FBG sensors that can
directly predict the sensor’s shape from its signal and does not require any calibration or shape
reconstruction steps.

In general, depending on the target application, each of the presented fiber shape sensing
solutions can be used as a suitable tracking device. The developed fiber sensor with the semi-
rigid substrate has a working channel in the middle and can accurately measure small deflections
with an average tip error of 2.7mm. The super-elastic sensor is suitable for measuring medium
to large deflections, where a centimeter range tip error is still acceptable. The tip error in such
super-elastic sensors is higher compared to semi-rigid sensors (9.9mm to 16.2mm in medium
and large deflections, respectively), as there is a trade-off between accuracy and flexibility in
substrate-based fiber sensors. Edge-FBG sensor, as the best performing sensing mechanism
among the investigated fiber shape sensors, can achieve a tip accuracy of around 2mm in com-
plex shapes, where the fiber is heavily deflected. The developed edge-FBG shape sensing so-
lution can compete with the state-of-the-art distributed fiber shape sensors that cost 30 times
more.
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Zusammenfassung

Robotergestützte minimalinvasive chirurgische Eingriffe sind ein Teilbereich der minimalinva-
siven Chirurgie mit verbesserter manueller Geschicklichkeit, Manipulierbarkeit und intraope-
rativer Bildführung. Bei typischen Roboteroperationen werden in der Regel starre Instrumente
mit funktionalen Gelenkspitzen verwendet. Bei einigen Operationen, bei denen kein adäquater
und direkter Zugang zur Zielanatomie möglich ist, können jedoch Kontinuumsroboter prakti-
scher sein, da sie einen gekrümmten und flexiblen Zugang bieten. Aufgrund ihrer verformbaren
Konstruktion ist es jedoch schwierig, ihre 3D Form während des Eingriffs in Echtzeit genau
abzuschätzen. Trotz umfangreicher Forschung modellbasierter Ansätze, die sich auf Kinematik
und Mechanik stützt, bleibt die genaue Formerfassung von Kontinuumsrobotern eine Heraus-
forderung. Die modernsten Tracking-Technologien wie optische Tracker, elektromagnetische
Trackingsysteme oder intraoperative Bildgebungsmodalitäten sind für diese Aufgabe ebenfalls
ungeeignet, da sie alle Mängel aufweisen. Faseroptische Formerfassungslösungen sind vielver-
sprechend, und bieten im Vergleich zu anderen Verfolgungsmodalitäten verschiedene Vorteile
und können hochauflösende Formmessungen in Echtzeit liefern. Kommerziell erhältliche Faser-
formsensoren sind jedoch teuer und haben eine begrenzte Genauigkeit.

In dieser Arbeit schlagen wir zwei kostengünstige Lösungen für Faserformsensoren vor, die
auf mehreren Singlemode Fasern mit FBG Arrays und exzentrischen FBGs basieren. Zunächst
stellen wir den Herstellungs- und Kalibrierungsprozess von zwei Prototypen zur Formerfassung
vor, die auf mehreren Singlemode Fasern mit halbstarren und superelastischen Substraten ba-
sieren. Im zweiten Schritt, untersuchen wir den Erfassungsmechanismus von Edge-FBGs, bei
denen es sich um exzentrische Bragg Gitter handelt, die aussermittig in den Kern der Faser
eingeschrieben sind. Wir stellen einen Deep Learning Algorithmus zur Modellierung von Edge-
FBG Sensoren vor, der die Form des Sensors direkt aus dem Signal vorhersagen kann, ohne dass
Kalibrierungs oder Formrekonstruktionsschritte erforderlich sind.

Im Allgemeinen kann jede der vorgestellten Lösungen für Faserformsensoren je nach Zielan-
wendung als geeignetes Trackinggerät verwendet werden. Der entwickelte Fasersensor mit dem
halbstarren Substrat hat einen Arbeitskanal in der Mitte und kann kleine Auslenkungen mit ei-
nem durchschnittlichen Spitzenfehler von 2.7mm genau messen. Der superelastische Sensor ist
für die Messung mittlerer bis grosser Auslenkungen geeignet, bei denen ein Spitzenfehler im
Zentimeterbereich noch akzeptabel ist. Der Spitzenfehler ist bei solchen superelastischen Sen-
soren höher als bei halbstarren Sensoren (9.9mm bis 16.2mm bei mittleren bzw. grossen Aus-
lenkungen), da es bei substratbasierten Fasersensoren einen Kompromiss zwischen Genauigkeit
und Flexibilität gibt. Der Edge-FBG Sensor, der leistungsfähigste Sensormechanismus unter
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den untersuchten Faserformsensoren, kann bei komplexen Formen, bei denen die Faser stark
ausgelenkt wird, eine Spitzengenauigkeit von etwa 2mm erreichen. Die entwickelte Lösung zur
Erfassung der Kantenform kann mit den modernsten verteilten Faserformsensoren konkurrieren,
die 30 mal mehr kosten.



Chapter 1

Introduction

1.1 Motivation

Minimally invasive surgical procedures (MIS) are delicate operations performed through small
incisions or natural openings in the human body. Compared to conventional open surgeries,
which require large incisions to provide a full view of the structures or organs involved, MIS are
often preferable and offer various benefits. Their key advantages are less trauma, lower risk of
infection, and shorter hospital stay and wound healing time [10, 70].

The downside of such procedures includes the restricted workspace, the limited field-of-
view, and an excess burden on surgeons’ manual dexterity and visuomotor control [70]. With
the advent of robot-assisted minimally invasive surgical procedures (RAMIS), manual dexterity,
manipulability, and intraoperative image guidance are enhanced, permitting improved clinical
uptake of the technology and ensuring better operative safety and consistency [70]. Typical
surgical robots, which have enabled enhanced performance in minimally invasive abdominal
surgeries, consist of rigid instruments that are straight with a functional articulating tip [38].
Still, specific procedures in areas with no adequate and direct access through tiny incisions to
target anatomies are performed using more invasive open approaches [7, 75]. Thus, having
small, flexible, strong manipulators that can reach difficult-to-access surgical sites via nonlinear
pathways and complete the surgical task with dexterity are greatly beneficial. Such a category
of robots is called continuum or snake-like robot [10].

The present work was conducted in the framework of the flagship project MIRACLE (Mini-
mally Invasive Robot-Assisted Computer-guided LaserosteotomE), that aims to develop a robotic
endoscope for cutting bones with laser light. The main applications would be in orthopedics,
craniomaxillofacial surgery, neurosurgery, otolaryngology, traumatology, and spine surgery. De-
pending on the target application, the envisioned endoscopic device could be based on contin-
uum or articulated robots. The focus of this PhD project was on continuum robotic tools only.

Continuum robots provide not only curvilinear and flexible access through small incisions,
but are also capable of generating large forces at the distal ends to support various operations [10,
24, 56, 77]. They are defined as actuatable structures whose constitutive materials form curves
with continuous tangent vectors [10], and include concentric tube robots, active cable/tendon-
driven catheters and needles[73], single-backbone and multi-backbone continuum robots, and

1



2 Chapter 1. Introduction

pneumatically and hydraulically driven continuum manipulators [54, 79].
However, the inherent deformable and snake-like designs of continuum robots make it diffi-

cult to accurately estimate their 3D shape during the operation in real-time. Precise, reliable, and
closed-loop motion control of continuum robots would make path planning possible and allevi-
ates manipulation safety concerns [81, 85]. Despite extensive model-based research that relies
on kinematics and mechanics, accurate shape estimation of continuum robots remains challeng-
ing [14, 24, 31, 37, 81]. Alternative emerging techniques in this field for 3D shape reconstruction
include optical tracking [1, 2], electromagnetic (EM) tracking [1], intraoperative imaging[76],
and fiber optic shape sensing.

Optical trackers are state-of-the-art technology for tracking medical tools and patients inside
the operation room (OR). Wireless tracking, reliable measurement, and stable performance are
the key advantages of this technology. However, they require a line-of-sight and are best suited
to use with large, rigid tools. These limitations make optical trackers unsuitable for navigating
continuum robots inside the patient’s body.

EM sensors allow intracorporeal tracking, as they do not require a line-of-sight and can be
embedded or placed at the tip of flexible tools. EM tracking systems are less accurate than op-
tical trackers and have a smaller working volume. Multiple sensors along the object of interest
are often impossible, as the sensors must be wired. Furthermore, they are sensitive to environ-
mental EM interferences (e.g., the EM field of the robot) and to the presence of conductive or
ferromagnetic metals.

Intraoperative imaging modalities, including fluoroscopy, cone-beam CT, and ultrasound,
can be an alternative to EM sensors for intracorporeal tracking. Some imaging modalities like
biplane fluoroscopy achieve even higher accuracy than EM sensors, but are challenging to per-
form in crowded OR settings. In addition, they have limitations such as high doses of radiation
(e.g., X-ray-based imaging) and high computational cost (e.g., cone-beam CT). Although ultra-
sound imaging tools are safe and less expensive, they have poor resolution and cannot penetrate
through air or bone.

Fiber optic shape sensors are a game-changing technology with many advantages over other
tracking modalities. They are immune to EM fields and require no line-of-site. Fiber shape
sensors are small in diameter, easily integrable into flexible instruments, biocompatible, highly
flexible, and can provide high-resolution shape measurements in real-time. Shape sensors based
on multicore fibers have been on the cutting edge of fiber shape sensing and are commercially
available. They can measure quasi-distributed or distributed off-axis strain, which is then used
for reconstructing the fiber’s shape [12].

In quasi-distributed fiber sensors [35], arrays of co-located sensing elements like fiber Bragg
grating (FBG) are inscribed inside the cores of a multicore fiber. These sensors require a fan-out
device for reading the signal from the cores and a multichannel FBG interrogator for monitoring
the Bragg wavelength, making them expensive navigation solutions. Another limitation is the
shape reconstruction algorithms that calculate the fiber’s 3D shape from the measured strain
at discrete points. Low spatial resolution (usually around 1 cm [6]) and inaccuracies in strain
measurement cause an accumulative error in shape reconstruction.

In distributed sensors, off-axis strain is measured from Rayleigh scatterings that naturally
occur in optical fibers and are caused by refractive index fluctuations. Multicore distributed
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sensors are intensity-based and need a complex optical reflectometer for analyzing their signal.
Although such sensors can perform high-resolution strain measurements, their overall cost is
high and yet are limited by the accumulative error in shape reconstruction.

In light of the former considerations, no comprehensive technology is available for tracking
continuum robots in RAMIS. Therefore, there is still room for developing cost-effective and
accurate shape sensing solutions based on optical fibers.

1.2 Contribution

Within the scope of this thesis, we investigated two cost-effective fiber shape sensing solutions
based on multiple single-mode fibers with FBG arrays and eccentric FBGs and evaluated their
benefits and limitations.

In the multiple single-mode fiber design, the sensor probe consists of three single-mode
fibers with FBG arrays, which are attached on the surface of a cylindrical substrate. We made two
prototypes with semi-rigid and super-elastic substrates and evaluated the sensors’ performance
in small and large deformation conditions.

The second sensing mechanism is based on eccentric FBGs that are localized fiber Bragg
gratings inscribed off-axis in the fiber’s core. Edge-FBGs, designed by our collaborators at the
Fiber Optical Sensor Systems department in Fraunhofer HHI in Germany, are specific types of
eccentric FBG sensors with great potential for shape sensing applications. These sensors can be
categorized as intensity-based shape sensors that do not require expensive and complex interro-
gation systems. Although edge-FBG sensors offer many advantages, accurate shape estimation
in such sensors is still an open question, which we have addressed in this thesis. We developed
a deep learning algorithm that directly estimates the sensor’s shape given the full spectrum of
the edge-FBG array. We designed a data acquisition setup to provide the deep neural networks
with training samples. We investigated various network architecture designs for the deep learn-
ing algorithm and achieved a shape prediction accuracy that competes with the state-of-the-art
distributed fiber shape sensors that cost 30 times more.

1.3 Outline

In Chapter 2, the essential scientific background in optical fiber sensors and deep learning tech-
niques is provided for the reader to understand the main concept of this thesis. Subsequently,
research publications emerging from this project are presented in Chapters 3 to 7. Chapters 3
and 4 present the working principle, fabrication, and characterization of the first shape sens-
ing solution based on multiple single-mode fibers with semi-rigid and super-elastic substrates.
Chapter 5 presents a feasibility study on using a low-cost interrogation system and deep learn-
ing techniques for edge-FBG shape sensing. Chapter 6 states a more thorough investigation of
using deep learning models with a focus on optimizing the network architecture design and data
preprocessing steps. Chapter 7, as the highlight of this thesis, describes the beneficial role of
disturbing physical effects in bent optical fibers and investigates how deep neural networks ben-
efit from such effects in edge-FBG sensors and use them as additional sources of information
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to provide higher spatial resolution shape prediction. Chapter 8 concludes this thesis with an
overall discussion of the findings, current limitations, and possible future developments.



Chapter 2

Scientific Background

2.1 Fiber Optic Shape Sensor

2.1.1 Optical Fiber

An optical fiber is a circular waveguide made from dielectric materials with a low optical loss for
transmitting guided optical waves. It consists of a central part, the core, surrounded by cladding
material. The cladding is covered with a protective layer called coating. The refractive index of
the core, which is a number expressing the interaction between the EM wave and the medium,
is higher than the cladding, allowing total reflection of most optical rays in the core. Based on
Snell’s law, the total reflection of light at the interface of two media occurs if the incident angle
is greater than the critical angle [25].

The modes of an optical fiber are the possible solutions to Maxwell’s equations that satisfy
the boundary conditions imposed by the fiber. The general solution form for a monochromatic
transverse, propagating wave in a lossless fiber is given by

E(x, y, z, t) = E0(x, y) cos(βz − ωt), (2.1)

where,

β =
2πneff
λ

,

ω = 2πf.

In this equation, E0(x, y) is the field amplitude distribution in the transverse plane, β is the
propagation constant, λ is the optical wavelength, and f is the optical frequency. Depending
on the transverse intensity distribution, guided fiber modes can be categorized into the core
and cladding modes [65]. Core modes are radiation fields in the core region guided by total
internal reflections at the core-cladding interface, and can propagate indefinitely in a lossless
fiber. Cladding modes are a portion of the radiation field propagating through the cladding,
bounded between the core and the coating [28].
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6 Chapter 2. Scientific Background

FBG

cladding

core

substrate

Figure 2.1: A three-core MCF (left) and a multi-fiber shape sensor (right) with one sensing
plane.

2.1.2 Optical Fiber Shape Sensing

Fiber optic shape sensors (FOSS) can be categorized into two main groups, multicore fiber
(MCF) and multi-fiber sensors [21], shown in Figure 2.1. An MCF is an optical fiber containing
more than one fiber core. The FOSSs based on MCFs have very diverse configurations with
different angular spacing and number of cores. The most widely used configurations are the
MCFs with three [40, 51], four [5, 20] and seven cores [13, 82–84, 90, 91] with constant
core spacing. In a multi-fiber sensor, multiple single-mode fibers are epoxy-molded [50] or
attached on a cylindrical substrate [36, 40, 42, 57, 80]. Single-mode fibers are specific types
of optical fibers in which the core size is small and only one core mode of EM radiation can
propagate [25]. When a FOSS is bent, the curvature induces longitudinal strain in the off-axis
fiber cores. The generated strain has a linear relationship with the distance between the fiber
cores and the sensor’s neutral axis. Therefore, the cross-section characteristics of the FOSS
dramatically impact the accuracy and the sensitivity of the strain measurement. In FOSS, the
shape tracking process consists of three steps: strain measurement, curvature calculation, and
3D shape reconstruction. Commonly used strain measurement technologies in FOSS are based
on fiber Bragg grating (FBG) and light scattering, which are briefly explained in Sections 2.1.3
and 2.1.4. Curvature calculation and 3D shape reconstruction are described in detail in Section
II of Chapter 4.

2.1.3 Fiber Bragg Grating Sensors

FBG Theory An FBG is a short section of a single-mode optical fiber in which the core refrac-
tive index is periodically modulated. Such a structure acts as a wavelength-selective reflection
filter, where the peak reflectivity is determined by the phase matching condition (also known as
the Bragg condition)

λB = 2neffΛ, (2.2)

where λB is the Bragg wavelength, neff is the effective refractive index of the guided mode,
and Λ is the period length of the refractive index modulation. Such periodical index-modulated
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Figure 2.2: FBG working principle. When an FBG structure is under tensile or compression
force, the period length of the grating changes, leading to a shift in the reflected Bragg signal.

structures can be achieved by exposing a photosensitive core to intense ultraviolet (UV) interfer-
ence fringe patterns [87] or by the point-by-point (PbP) inscription using femtosecond (fs) laser
pulses [46] (explained in Section 2.2). Typical FBGs, used as strain or temperature sensors, are
a few millimeters long and can provide up to 100% peak reflectivity with a reflection bandwidth
of <0.5 nm [87].

Strain and Temperature Sensitivity of FBGs According to the Bragg condition (Eq. 2.2),
the reflecting response of FBGs depends on the grating period (Λ) and the effective refractive
index (neff ) that are sensitive to external mechanical or thermal perturbations [87]. Figure 2.2
illustrates the working principle of FBGs. The Bragg wavelength shift ∆λB due to strain ε and
temperature change ∆T is given by [58, 74]

∆λB
λB

= (1 − Pe) ε + (αΛ + αn)∆T. (2.3)

In this equation, Pe is the strain-optic coefficient, that is, the strain-induced modification of the
refractive index. αΛ is the thermal expansion coefficient, showing the changes in the grating
period due to the temperature. αn is the thermo-optic coefficient, indicating the thermally-
induced refractive index changes.

Interrogation Techniques A sequential array of FBGs can be inscribed in the length of one
optical fiber, forming multiple sensing planes [32]. An array of FBG sensors can be interrogated
by applying a multiplexing technique. The most common interrogation techniques are the time-
division-multiplexing (TDM) (Figure 2.3 (a)) and the wavelength-division-multiplexing (WDM)
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broadband laser
fiber coupler

spectrometer

A

B

C

�A �B �C

wavelength

b) WDM Technique

pulsed laser
fiber coupler

detector

time
τCτBτA

A

B

C

a) TDM Technique

Figure 2.3: The schematics of TDM and WDM techniques are shown in (a) and (b), respec-
tively. Laser pulses in TDM are sent to multiple FBG sensors via a fiber coupler (or an optical
switch). All FBGs have the same wavelength, inscribed at fiber locations with different optical
path lengths. The reflected Bragg signals from the FBGs have different time delays and can be
measured with a fast detector. In WDM, a continuous wave (CW) broadband laser system that
covers the Bragg wavelengths of all the FBGs in the fiber sensor is used. The reflected spectrum
can be measured using a spectrometer. Alternatively, a swept laser and a fast detector combina-
tion is also suitable in the WDM technique.
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[12] (Figure 2.3 (b)). In TDM, each FBG has the same Bragg wavelength with low reflectivity,
identified by temporal gating of the reflected signals. In the second approach, WDM, each sensor
is identified by a unique reflection peak.

FBGs are well-established single-point strain sensors with high sensitivity and accuracy.
FBG based strain sensors are low cost and can perform high-frequency data acquisition (∼ kHz)
over kilometer range optical fibers. FBGs are considered as quasi-distributed strain sensors, as
at least 1 cm distance is needed between the sensing planes. Such sensors are unsuitable for
detecting complex shape deformations requiring high spatial resolution strain measurement.

2.1.4 Scattering-based Strain Measurement

Light scattering is a physical process that describes how localized non-uniformities force the
propagating light in a medium to deviate from a straight trajectory into a new direction with
a different intensity. Rayleigh and Brillouin scatterings are two kinds of scattering effects that
show strain sensitivity. Brillouin scattering is inelastic scattering of the incident light, caused
by thermally generated acoustic vibrations [92] or excited vibrational modes [9]. In Rayleigh
scattering, local fluctuations in the effective refractive index of the optical fiber scatter the EM
waves in all directions [9]. The Rayleigh signal can be enhanced by exposing the optical fiber to
UV laser [43] or inscribing a continuous grating into the fiber’s cores [82, 83]. Scattering-based
fiber sensors are considered as distributed sensors with thousands of continuous sensing points
along the fiber. Compared to FBG-based strain sensors, distributed sensors have a considerably
lower data acquisition rate (an indicative value could be ∼mHz/Hz). Depending on the optical
reflectometry technique used to analyze the sensor’s returning light, spatial resolution, strain
accuracy, and the sensing range can vary.

Optical Reflectometry It is a method for analyzing the optical light paths and reflection char-
acteristics in optical fibers. Optical time domain reflectometry (OTDR), and optical frequency
domain reflectometry (OFDR) are two common optical reflectometry techniques used in dis-
tributes fiber sensors.

In OTDR (shown in Figure 2.4), a laser pulse is launched into the optical fiber, and the
returning light is analyzed in the time domain. The power changes in the detected signal provide
information on the position and magnitude of the strain along the fiber length. Both Rayleigh and
Brillouin signals can be analyzed using the OTDR technique, resulting in a large sensing range
(up to tens of kilometers) with an accuracy of tens of µϵ and spatial resolution of a few meters [4,
49, 61]. In the OFDR technique [17] (shown in Figure 2.5), a CW laser beam, whose optical
frequency is linearly tuned, is coupled to an optical interferometer, consisting of the reference
and the measurement arms. The interference between the scattered light from the measurement
arm and the reference arm is recorded using optical detectors [34]. These interference fringes
are processed using the Fourier transform into the time domain, in which a map of the reflections
as a function of the fiber sensor’s length is constructed [66]. This technique provides accurate
strain measurements (∼µϵ) with high spatial resolution (millimeter scale) [4] in the range of
10m to 35m [4, 49, 88].
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50:50

fiber couplermodulated laser

sensing fiber

fast detector

Figure 2.4: Operating principle of OTDR. laser pulses from a modulated laser are sent to the
sensing fiber, and the reflected signal’s power is measured with a fast detector. Changes in the
measured power provide the strain along the fiber length.

50:50

fiber couplerswept wavelength laser

reference arm

mirror

sensing fiber

resulting intensity on detector

Figure 2.5: Operating principle of OFDR. The beam of a swept wavelength laser is coupled to
an optical interferometer, consisting of the reference and the measurement arms. The resulting
interference fringes are measured using a fast detector and processed for calculating strain in-
formation along the fiber.

2.2 Eccentric FBG Bend Sensors

The advent of PbP FBG inscription using fs infrared laser pulses made it possible to fabricate
Bragg gratings in standard optical fibers directly through their coating. This relatively new tech-
nology, demonstrated in 2004 [47] for the first time, allows inscribing several highly localized
FBGs at any place in the cross-section of an optical fiber. In this technique (Figure 2.6), the
optical fiber is illuminated with laser pulses focused at the planned FBG location inside the op-
tical fiber. The induced variations on the refractive index will be periodical when the fiber is
moved at a constant speed along its optical axis, and the laser pulses are repeated at a constant
rate. Benefiting from such remarkable technological flexibility, Martinez et al., in 2005 [48],
developed an optical fiber bend sensor based on eccentric FBG, a localized Bragg grating in-
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Figure 2.6: A schematic of PbP technique. The fs laser pulses, repeated at a constant rate, are
focused at the planned FBG location inside the optical fiber with an objective lens. The fiber is
moved constantly using an XYZ translation stage for periodic variations on the refractive index.

scribed off-axis in a fiber’s core. However, only the wavelength shift of the designed eccentric
FBG was studied during bending. In recent years, the intensity of eccentric FBGs, written in
depressed cladding [3] and multi-cladding fibers [11] has also been investigated. The FBGs
were inscribed at the core/cladding interface, and the bending sensitivity of coupling from core
mode to higher order modes [3] and cladding modes [11] has been studied. These modes are
highly sensitive to environmental perturbations and are explained in Section 2.2.3. Waltermann
et al., in 2018 [78], proposed a novel curvature sensor based on three co-located FBGs, writ-
ten around the core of a standard single-mode fiber (shown in Figure 2.7). In this sensor, the
curvature and the bending direction are calculated by estimating the centroid of the mode field
profile based on the intensity ratio of the reflection peaks from co-located FBGs. This approach
is described in more detail in Sections 2.2.1 and 2.2.2. In a curved optical fiber, other effects,
including cladding mode coupling, polarization mode dispersion, and bending loss, also modify
the intensities at the Bragg peaks. These effects are explained in Sections 2.2.3, 2.2.4, and 2.2.5.

2.2.1 Mode Field Dislocation

The fundamental mode is the main, guided field in single-mode fibers. Considering the propa-
gating wave equation of Eq. 2.1, the fundamental mode has the following field amplitude distri-
bution in the transverse plane,

E0(r) = E0


J0(ur/a)
J0(u)

0 ⩽ r ⩽ a,

K0(vr/a)
K0(v)

r ⩾ a.

(2.4)

Where, u and v are the propagation and exponential decay constants [30], and J0 and K0 are the
Bessel and the modified Bessel functions. Due to the similarity between the shape of the guided
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edge-FBG

cross-section

refractive index modulations

Figure 2.7: An eccentric FBG bend sensor with one sensing plane. Three co-located, highly
localized FBGs are inscribed around the core of a standard single-mode fiber.

intensity in the fundamental mode to Gaussian, the field distribution of this mode can also be
approximated by a Gaussian function [30, 78]. The field distribution of guided modes changes in
curved optical fibers, which can be simulated using the beam propagation method (BPM) [60] in
combination with conformal mapping technique [27] (see Figure 2.8). The conformal mapping
is a technique for representing a circularly curved fiber by an equivalent straight fiber with
modified refractive index distribution [62],

ń = nstressed exp (
x

R
) ≈ nstressed (1 +

x

R
), (2.5)

where the exp ( xR) accounts for the optical path length increase along the fiber with a distance
of x from the curvature’s center. The bending is assumed to be relatively small (x << R). The
nstressed is the refractive index of the bent fiber, which can be calculated through stress-optic
effect [33, 71].

nstressed = n(1− εPe), (2.6)

Where ε is the bending induced strain that can be calculated by x
R [23]. The fiber is compressed

along its inner layer (x < 0) and under tensile stress along the outer layers (x > 0). Substituting
Eq. 2.6 into Eq. 2.5 gives

ń = n(1 +
x

Reff
),

Reff =
R

1− Pe
.

(2.7)

Solving the wave equation, adapted according to the modified refractive index distribution, gives
the dislocated mode field distribution in the curved area. The mode field dislocation is in the
opposite direction of bending (shown in Figure 2.9).
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Figure 2.8: Schematic diagram of an unstressed circularly bent fiber (a) and its refractive index
distribution (b). The equivalent, straight fiber after conformal mapping (c). The refractive index
of the conformal mapped fiber, shown in (d), increases away from the center of curvature. n1
and n2 are the refractive indices of the core and the cladding, respectively.

bending direction

Figure 2.9: The mode field distribution in a straight (left) and bent (right) single-mode fiber. The
fiber core is depicted with a white circle.
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2.2.2 Shape Sensing Based on Mode Field Dislocation

As mentioned earlier, the field profile of the fundamental mode in a standard single-mode fiber
can be mathematically described by a Gaussian distribution with a wavelength-dependent diam-
eter of ωm. An optimized empiric solution for this approximation is given by [78, 86]

ωm = a(172.04e
(−V +3.412)2

2.1412 + 1), (2.8)

In a curved optical fiber, the centroid of the approximated intensity distribution moves in the
opposite direction of bending. This shift can be estimated using ∆r = D/R, where D is a
fiber-specific constant that translates the shape deformation to the mode field shift. In edge-
FBG sensors, three co-located FBGs measure the intensity of the mode field distribution at three
different positions inside the fiber’s core. Assuming that the co-located FBGs have the same
reflectivity and the incident light has a flat top spectrum profile, the back reflected intensity from
the FBGs in a curved fiber can be calculated by

In = I0 e
−[(xn−∆x)2+ (yn−∆y)2]

2ωm (2.9)

where, xn and yn (with n = 1, 2, 3) show the position of the co-located edge-FBGs in the core
region. ∆x and ∆y are the x and y components of the field displacement ∆r. Together with
Eq. 2.8, the field displacement can be computed

∆y =
A1,2 −A2,3

C1,2 − C2,3

∆x = A1,2 + C1,2∆y

(2.10)

with

Ai,j =
2ω2

mln(
Ii
Ij
) + x2i + y2i − x2j − y2j

2(xi − xj)

Ci,j =
yi − yj
xi − xj

; i, j = 1, 2, 3.

(2.11)

The bending direction ϕ and radius of curvature R can be estimated using the calculated field
displacement

R =
D√

∆x2 +∆y2
,

ϕ = tan−1(
∆y

∆x
).

(2.12)

Similar to the aforementioned FOSS, the 3D shape of the edge-FBG sensors can then be recon-
structed using the methods described in Section II of Chapter 4.
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2.2.3 Cladding Modes

Cladding modes are 3D field patterns of propagating waves in the core/cladding regions of an
optical fiber. In cylindrical coordinate system (r, ϕ, z), the electric fieldE of the cladding modes
inside the core are expressed in terms of the Bessel functions Jn [68]:

Ez = Elm
u21
β
P Jl(u1r) sin(lϕ+ ϕ) ei(βz−ωt),

Er = iElm
u1
2

[(1− P ) Jl−1(u1r) + (1 + P ) Jl+1(u1r)] sin(lϕ + ϕ) ei(βz−ωt),

Eϕ = iElm
u1
2

[(1− P ) Jl−1(u1r) + (1 + P ) Jl+1(u1r)] cos(lϕ + ϕ) ei(βz−ωt),

(2.13)

In these equations, l andm are the azimuthal and radial integer indices, n1 is the refractive index
of the core, u1 = (2π/λ)

√
n21 − n2eff is the transverse wave vector, Z0 is the EM impedance

in vacuum, and P is the mode parameter. Cladding modes can get excited using fiber gratings
that provide inter-mode coupling and convert the core mode energy into cladding modes. In
conventional FBGs, with uniformly modified core’s cross-section, only the lowest azimuthal
order of cladding modes is excited [18]. Higher azimuthal orders, that are more sensitive to
directional bending, can be excited with tilted [39] or highly localized eccentric [68, 69] FBGs.
In PbP written eccentric FBGs, the induced refractive index change is determined solely by
the focusing geometry of the fs laser pulses. These types of FBGs can create very strong (up
to 25dB) cladding mode coupling [68]. An example of strong cladding mode resonances in
eccentric FBGs is shown in Figure 2.10). More information on modeling spectral properties of
localized (eccentric) FBGs can be found in [69].

Using the coupled mode equations, adapted for FBGs [18], the coupling constants between
the fundamental mode and the cladding modes can be computed. These equations evaluate an
overlap integral between the interacting modes with the FBG. In case of Bragg grating perturba-
tions, the coupling associated with longitudinal field components is negligible. The transverse
coupling constant, determining the coupling of the incoming fundamental mode to reflected

Figure 2.10: Transmission spectrum of a PbP-written grating at 1540 nm that shows strong
cladding mode resonances. The colored dots indicate the envelopes of three resonances, HEl=1

(red), EHl=1 (blue), and HEl=2 (green). Courtesy of [68], reprinted and modified with permis-
sion of the author, © [2011] Optics Express
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modes, is calculated by [68]

κlm =
4

πν

ω

4

∫ 2π

0
dϕ

∫ inf

0
dr r ∆ε(r, ϕ) E11(r, ϕ)

T . Elm(r, ϕ)T∗, (2.14)

where E11(r, ϕ)
T is the transverse electric field of the fundamental mode that can be approx-

imated by a Gaussian function [25, 30], ET
lm indicates the transverse electric field of the re-

flected mode (Eq. 2.13), and ν is the FBG reflection order. The perturbation dielectric constant
∆ε(r, ϕ) is induced by refractive index modifications of the FBG. The coupling strength highly
depends on the overlap integral in Eq. 2.14 and can be enhanced or reduced as the optical fiber is
bent [15, 28, 89]. This is due to bending-induced modifications in the effective refractive index
and the overlapping changes between core and cladding mode fields [3, 63].

2.2.4 Polarization of Light

The polarization of the transverse EM wave indicates the oscillation orientation of its electric
field component. Considering a monochromatic plane wave with an angular frequency of ω
propagating in the z direction, a general expression of the electric field is given by [59]

E(z, t) = Exx̂+ Eyŷ, (2.15)

where Ex and Ey are the x and y components of the electric field vector [16, 59]:

Ex(z, t) = E0,x cos[ωt− kz + φx],

Ey(z, t) = E0,y cos[ωt− kz + φy].
(2.16)

The amplitudes ratio of E0,y and E0,x, and the phase difference ∆φ = φx − φy determine the
light polarization state. For instance, if the phase difference is 0 or π the light is considered
linearly polarized in the direction of tan−1(E0,y/E0,x).

When a light wave propagates in a birefringent medium, where the refractive index is orientation-
dependent, the light propagation velocity is different in each traveling direction. This means that
the phase difference between the electric field components changes as the EM wave passes
through the birefringent medium, modifying its polarization state accordingly [16],

∆φ =
2π

λ
∆neff , (2.17)

where ∆neff is the difference between the effective refractive indices in x- and y-directions.
Figure 2.11 illustrates how the polarization state changes in a birefringent medium.

An ideal optical fiber is a homogeneous isotropic medium exhibiting the same refractive in-
dex for both electric field components (Ex and Ey). However, in reality, optical fibers do not
have a constant circular cross-section and exhibit anisotropy under mechanical stress. Conse-
quently, optical fibers behave as a birefringent medium with different refractive indices in x-
and y-directions. Bending an optical fiber induces linear birefringence, caused by mechanical
stress on the cladding (illustrated in Figure 2.12). Due to the photo-elastic effect [8, 33, 64, 71],
the bending-induced pressure, imposed on the core, increases the refractive index in the bending
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Figure 2.11: Linearly polarized electric field component E0 passes through a birefringent
medium. The resulting phase shift modifies its polarization state.
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Figure 2.12: Bending-induced mechanical stress on the cladding region imposes pressure on the
fiber’s core and increases the refractive index in the bending direction (the X-axis).

direction, resulting in a change of ∆neff = εPe in the effective refractive index (using Eq. 2.6).
This phase shift ∆ϕ is wavelength-dependent, consequently, the polarization state changes dif-
ferently at each wavelength. This effect is known as polarization mode dispersion (PMD) [22].

2.2.5 Bending Loss

As mentioned, bending an optical fiber changes its guiding properties by modifying the refrac-
tive index and reshaping the guided field. When the optical fiber is bent, the guided field moves
in the opposite direction of bending and can escape the fiber. This attenuation is known as bend
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Figure 2.13: Spectral bend losses of a standard optical fiber (York LB800), curved at a curvature
radius of 21.5mm with bend arc of 18◦. Courtesy of [19], reprinted with permission of the
author, © [1997] IEEE.

loss. Such bending-induced perturbations in the mode field distribution can excite leaky modes
that are propagating-radiating fields reflected by cladding-coating or coating-air interfaces [19].
These coherent couplings between the core and leaky modes appear like modulation patterns in
the spectral bend loss [19]. A typical trend of spectral losses showing the bending loss oscilla-
tions is shown in Figure 2.13. The short-period modulation is due to the reflected field at the
coating-air interface, while the long-period one is caused by reflections at the cladding-coating
interface [26, 52, 53, 67].

In the literature, different models have been proposed for evaluation of bend loss oscilla-
tions [26, 53, 55, 72]. However, the most general expression explaining such spectral attenuation
is reported by Faustini et al., [19]. Following the same conformal mapping, explained in Section
2.2.1, the scalar wave equation is transformed to the local Cartesian coordinate with the equiva-
lent straight fiber. Neglecting the coating-air interface, the transformed scalar wave equation in
the cladding and coating regions is given by [19]

d2ψ̃q(x, ζ)

dx2
+
[
k2ń2q − β20 − ζ2

]
ψ̃q(x, ζ) = 0, (2.18)

where ψ̃q(x, ζ) is the Fourier transform of the transverse field component ψq(x, y) in core and
cladding regions (with q = 2, 3, respectively). ńq is the modified refractive index distribution
(from Eq. 2.5), assuming that the stress-optic effect is negligible. k is the vacuum wavenum-
ber, given by 2π/λ, and β0 in the unperturbed propagation constant of the fundamental mode
in straight fiber. The solution of Eq. 2.18 gives the evanescent field in cladding and coating
regions. The bend loss coefficient can be computed once the bending-induced variation of the
propagation constant (δβ) is calculated using the interaction of the unperturbed incident field
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with the evanescent field,

2α = −2 Im(δβ)

= −2
k2

β V 2 K2
1 (αγ)

Im(ρ).
(2.19)

V = ka
√
n11 − n22 is the normalized frequency in which, a is the core radius and n1 and n2

are the core and cladding refractive indices, respectively. ρ is the amplitude of the backward
evanescent field. The reader is referred to [19] for more details.

2.3 Deep Learning

2.3.1 Neural Network

Deep learning is a practice of using algorithms that are inspired by biological neural networks
to analyze nonlinearly separable data. Such structures are called artificial neural networks and,
similar to the nervous system of the human brain, consist of neurons (also known as percep-
trons) that are arranged into various layers. These algorithms are trained using large datasets
containing a pair of input and corresponding output data to perform a specific task. Feedforward
neural networks are popular types of neural network in which the information moves in one di-
rection, and the output of each layer serves as the input for the next layer(s). The first layer in
a feedforward neural network is the input layer that receives the data (depicted in Figure. 2.14).
The last layer is the output layer that gives the problem solution. The intermediate layer(s) are
called hidden layers that receive raw information from the input layer and process them before
sending them to the output layer. The number of hidden layers defines the networks’ depth.
A deep neural network is a many-layered network that can learn higher-level features from the
input data and perform better than traditional machine learning techniques. A convolutional
neural network (CNN) is a feedforward deep neural network class that is quite effective in de-
tecting objects and recognizing patterns in image and non-image data, such as audio and signal
data. The hidden layers in the architecture of a CNN include convolutional layers that perform
convolution operations on each subset of neurons.

2.3.2 Hyperparameter Tuning

In deep learning problems, the learning process is controlled by hyperparameters. The val-
ues of these parameters are not learned during training and impact the model architecture, the
amount of regularization, and the learning rate. Hyperparameters must be set by optimization
techniques such that the algorithm’s performance generalizes to new, unseen data. Search meth-
ods for hyperparameter optimization problems include two main steps, hyperparameter config-
uration selection, and configuration evaluation. Hyperband [41] is a well-known optimization
algorithm that randomly samples hyperparameter configurations, adaptively allocates resources
(e.g., number of iterations, or size of the training set), and invokes Successive Halving [29]. In
the Successive Halving algorithm, resources are uniformly allocated to a set of hyperparameter
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Figure 2.14: A neural network consists of three types of layers, input, hidden, and output layers.
The input layer receives the input data and transfers it to the hidden layer/s for feature extraction.
The output layer maps the extracted feature to the desired output.

configurations, and after performance evaluation, the worst half of the configurations are thrown
out. This process is repeated until one configuration remains.

The Hyperband algorithm consists of two loops; the inner loop applies extended Successive
Halving for a fixed number of configurations and minimum resource allocation, and the outer
loop iterates over different combinations of the number of configurations and the resources.
Compared to the original Successive Halving algorithm, in the inner loop of the Hyperband,
the proportion of configurations discarded in each round is three by default and can be adjusted
to the desired value. Hyperband can evaluate an order-of-magnitude more configurations in a
shorter time compared to black-box procedures (e.g., Bayesian optimization algorithms)



Chapter 3

Temperature-Compensated
FBG-Based 3D Shape Sensor Using
Single-Mode Fibers

The publication presented in this chapter briefly describes the fabrication, calibration, and eval-
uation of an FBG-based multi-fiber shape sensor. The substrate used in the presented shape
sensing solution is semi-rigid, suitable for shape measurement in small deformation conditions
with curvature levels of 0.7m−1 to 2.5m−1. The average positioning error is 1.4% per unit
length of a 20 cm long sensor, which is equivalent to ∼ 2.7mm.

Publication. The proposed shape sensing solution was presented in the form of an oral pre-
sentation at the Advanced Photonics conference, in July 2018, in Zurich, Switzerland. The
following manuscript was published as part of the conference proceedings [45].
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Abstract: We report a temperature-compensated FBG-based 3D shape sensor with an average 

positioning error of 1.4 %. The sensor consists of three single-mode fibers with four arrays of 

FBGs, which are glued on a substrate.  
OCIS codes: (130.6010) Sensors; (060.2370) Fiber optics sensors; (060.2430) Fibers, single-mode; (060.3735) Fiber 

Bragg gratings; (280.4788) Optical sensing and sensors. 

 

1. Introduction 

Laser osteotomy has shown to have several advantages over conventional bone surgery, such as the possibility 

of making smart cuts and the faster healing time [1]. The MIRACLE project (funded by the Werner Siemens 

Foundation, Zug, Switzerland) aims to combine laser osteotomy and endoscopy to improve the benefits for the 

patient even more. One of the challenges in this project is to have real-time feedback on the exact shape and 

position of the flexible endoscope inside the body. Shape sensing based on Fiber Bragg Gratings (FBG) has shown 

to be a promising approach for this task [2], since FBGs are small, immune to electromagnetic noise, easy to 

replace, and can provide position and shape information along the entire sensor length. 

This paper describes the calibration process developed for an FBG-based shape sensor in order to improve the 

positioning accuracy. In Section 2, the design of the sensor probe and the principle of the shape reconstruction 

process is presented. Section 3 describes the calibration method and at the end of this paper, the tip accuracy of 

the fabricated sensor is estimated. 

2. Method 

The shape sensor is composed of three single-mode fibers with four arrays of FBGs within each. The FBGs 

were 5 cm apart and attached to a wire-braided Polyimide tube with outer diameter of 1.05 mm at 120 degrees 

using a highly flexible glue. A broadband light source is used to cover the Bragg wavelength of all the FBGs from 

1515 nm to 1585 nm. The reflected signal is then detected with a fast spectrometer (I-MON 512, Ibsen) for further 

analysis. 

The strain Ei in fiber i as a function of the bending angle θ and the curvature k is described by the following 

equation system: 

where Et is the strain due to temperature, θij is the angle between the fiber i and j, and di is the distance between 

the fiber and the neutral axis. The 3D shape information can be provided along the sensor, by numerically solving 

the Frenet-Serret equations using the Runge-Kutta method. 

3. Calibration and Characterization 

Since changes in temperature, curvature, and bending angle will all lead to a shift of the Bragg wavelength, a 

calibration was done separately for all these parameters. For the temperature calibration, the sensor was placed 

inside a temperature-controlled enclosure without being bent. The time-dependent temperature and the 

wavelength shifts were studied in the frequency domain which helped to improve the reliability of the calibration 

procedure even if the data acquisition was not synchronized or the thermocouples were not attached to the FBGs 

properly. The calibration has shown that the glue had a large effect on the thermal sensitivity of the sensor in such 

a way that in 1550 nm-FBG for instance, the thermal sensitivity increased from 14.18 pm/°C to 48.62 pm/°C after 

gluing. The thermal sensitivity was also seen to vary depending on the amount of glue used. 

E1 = Et + kd1 sin θ (1) 

E2 = Et + kd2 sin(θ + θ12) (2) 

E3 = Et + kd3 sin(θ + θ13) (3) 

Ei =
1

α

∆λi
λi

 (4) 
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The calibration setup is shown in Fig. 1 on the left-hand side. The sensor was mounted on two rotating holders, 

which were attached to 3D-printed hinges. The inlet of the sensor was fixed to the table while the tip was placed 

on a motorized linear stage. In order to obtain the exact mounting angles θij between the fibers (due to the gluing 

process there was a deviation from the designed 120 degrees), the sensor was positioned at a fixed curvature in 

the setup and the Bragg wavelength shifts were measured for different bending directions by rotating the sensor 

holder in steps of 10 degrees. The resulting sinusoidal dependency of the relative wavelength shift in the first 

sensor plane to the bending angle is shown in Fig. 1 on the right-hand side. The mounting angles θij were directly 

deduced from the phase shifts between these curves. The same measurement was repeated for different bending 

radii and the amplitude of the sine wave was extracted for each FBG. The resulting calibration curve for the FBG 

at 1515 nm is shown in Fig. 2 (left) together with a linear fit.  The slope of this line is related to the strain-optic 

coefficient, the strain transfer, and the distance between the fiber core and the neutral axis (αdi). As the Bragg 

wavelength changes with room temperature, one should first correct the measured wavelength using the thermal 

sensitivity coefficient, and then use it for shape reconstruction. 

To evaluate the stability of the sensor when the applied mechanical strain is constant, the output signal was 

recorded for a few days. The reflected wavelength had some fluctuations, which are due to the temperature 

variations. There is also a trend in the output signal caused by the glue, as it keeps the heat for a longer time.  

4. Results 

Using the above obtained calibration parameters, the reconstructed 3D shape resulted in error of 1.4 % as shown 

in Fig. 3. We believe that this reconstruction quality is strongly limited by the calibration setup, and in the future 

work we will apply some optimization in the calibration process. 
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Fig. 2. Left: calibration curve of 1515 nm-FBG at 25.5°C. Right: the real shape (blue) and the reconstructed shape (green) of the sensor 
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Fig. 1. Left: calibration setup. Right: the sinusoidal dependency of the relative wavelength shift to the bending direction. 
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Chapter 4

Fabrication and Characterization of a
Flexible FBG-Based Shape Sensor
Using Single-Mode Fibers

The publication presented in this chapter describes the fabrication, calibration, and evaluation
of a 20 cm long shape sensor based on multi-fiber FBG arrays attached on a super-elastic sub-
strate. The presented shape sensing solution is able to detect medium to large deflections (in the
curvature range of 0.04m−1 to 8.7m−1) with a median tip error of 9.9mm to 16.2mm. Our
observations showed that, in such sensor configurations, there is a trade-off between the shape
prediction accuracy and the sensor’s flexibility. This is because the bending stiffness at the sen-
sor’s cross-section is no longer uniform, and random twisting effects can occur during bending.
We designed a generalized model for curvature and torsion prediction in such a non-uniform
sensor configuration. We also investigated two shape reconstruction methods, the Frenet-Serret
formula and the kinematic model, and believe that the latter approach is better suited for such
sensor design.

Publication. The following manuscript was published in the journal of IEEE Transactions on
Biomedical Engineering (IEEE TBME) on the 1st of February 2022 [58].
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Abstract— Minimally invasive surgical procedures have become 

the preferable option, as the recovery period and the risk of 

infections are significantly lower than traditional surgeries. 

However, the main challenge in using flexible tools for minimal 

surgical interventions is the lack of precise feedback on their shape 

and tip position inside the patient's body. Shape sensors based on 

fiber Bragg gratings (FBGs) can provide accurate shape 

information depending on their design. One of the most common 

configurations in FBG-based shape sensors is to attach three 

single-mode optical fibers with arrays of FBGs in a triangular 

fashion around a substrate. Usually, the selected substrates 

dominate the bending stiffness of the sensor probe, as they have a 

larger diameter and show less flexibility compared to the optical 

fibers. Although sensors with this configuration can accurately 

estimate the shape, they cannot be implemented in flexible 

endoscopes where large deflections are expected. 

This paper investigates the shape sensor's performance when 

using a superelastic substrate with a small diameter instead of a 

substrate with dominating bending stiffness. A generalized model 

is also designed for characterizing this type of flexible FBG-based 

shape sensor. Moreover, we evaluated the sensor in single and 

multi-bend deformations using two shape reconstruction methods. 

 
IndexTerms— Minimally invasive surgery, optical fiber shape 

sensing, sensors for flexible endoscope, fiber Bragg grating (FBG), 

fiber sensor characterization. 

 

I. INTRODUCTION 

aser osteotomy, compared to conventional mechanical 

bone surgery, allows small, functional, and precise cuts 

based on pre-operative planning. When laser osteotomy is 

combined with endoscopy (minimally invasive surgery), the 

healing process will be accelerated, and the risk of infection and 

trauma will be reduced for the patient [1], [2]. However, 

permanent damage may happen to patients if the shape or tip 

position of the endoscope is not estimated correctly. Many 

studies were reported in the literature on using different 

tracking technologies during the surgery [3]–[5]. Still, they all 

have shortcomings like electromagnetic (EM) sensitivity (EM 

sensors), limited resolution (ultrasound imaging), low speed 

(MRI), or require high doses of radiation (X-ray or CT imaging) 

[6]. FBG-based shape sensors have received considerable 

attention in recent years. These sensors are easily integrable 

into medical instruments as they are bio-compatible and have 

small diameters. Unlike EM sensors, FBG-based shape sensors 

are not sensitive to the presence of conductive or ferromagnetic 

materials and are immune to EM disturbances [7]. These 

advantages make FBG shape sensors ideal candidates for 

enabling a closed-loop control system when using elastic 

structures in clinical applications such as catheter navigation, 

surgical needle tracking, and medical robotic navigation.  

Commercially available FBG shape sensors are mainly based 

on multicore fibers. However, due to the short distance between 

the sensing elements and the neutral axis (often less than 

100 μm), the sensor can only detect deformations with bending 

radii below 10 cm [8], and therefore, are limited to the 

applications where only large deflections are expected. At the 

same time, the cost of such systems is high [9] due to the optical 

frequency domain reflectometer (OFDR) used for FBG 

interrogation [10] and a fan-out device to read out the signal 

from the cores [11]. 

Shape sensors made from multiple single-mode fibers are 

more cost-effective as expensive custom-made fan-out devices 

are replaced by standard fiber couplers. To create such a bundle, 

the optical fibers can either be directly glued together [12], 

embedded in a grooved cylindrical base [6], molded into 

flexible materials [13], or attached on a cylindrical substrate [7], 

[14], [15]. Shape sensors based on these different designs 

present various benefits and drawbacks and are a tradeoff 

between flexibility and accuracy. For instance, although gluing 

the optical fibers together is simple and straightforward, the 

middle area is filled with extra adhesive, which lowers the 

mechanical flexibility [12] and may increase the thermal 

sensitivity of the sensor. Moreover, these sensor structures have 

a non-circular cross-section with different bending stiffness for 

each direction, leading to preferred bending angles for the 

sensor. In embedded FBG arrays, the sensor has a circular 

cross-section, and therefore, the bending stiffness asymmetry is 

negligible, and the sensor is mechanically more stable. 

However, these sensors can only tolerate small tip deflections 
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[6], [16], or curvatures up to 2.8 m-1 [17] and are mainly used 

for needle tracking. Molded FBG sensors may improve the 

sensor's flexibility to detect up to 90° bending [18], but the self-

fabrication process is challenging. 

Compared to other methods, for optical fibers attached on a 

cylindrical substrate the maximum reachable curvature of the 

sensor can be defined based on the stiffness and the diameter of 

the substrate (usually > 1 mm) [12], [15], [18]–[21]. In our 

previous work [14], we designed a shape sensor by attaching 

three single-mode fibers on a wire-braided Polyimide tube with 

an outer diameter of 1.05 mm and Young's modulus of 

24.7 GPa [7]. This sensor was able to detect small deformations 

in the curvature level of 0.7 m−1 with a 1.4% positioning error 

per unit length of the sensor. Although this sensor had a 

triangular cross-section, the Polyimide substrate, which had 

higher stiffness than the optical fibers, protected the sensor 

from bending preferences. However, due to the low flexibility 

of the substrate, the sensor was mainly suitable for detecting 

small curvatures (below 2.5 m−1). 

In this contribution, we present a 3D shape sensor based on 

three single-mode fibers glued on a superelastic Nitinol wire. 

The small diameter of the substrate and its superelasticity 

enable achieving larger curvatures and increase the flexibility 

of the sensor. In this design, the bending stiffness of the sensor 

is no longer dominated by the substrate, which affects the 

angular behavior of the sensor. Therefore, standard calibration 

methods fail to model the sensor. Here we proposed a new 

technique to model asymmetric and highly flexible sensors, 

which improves the shape estimation accuracy in these types of 

sensors.  

II. FBG-BASED SHAPE SENSOR WORKING PRINCIPLE  

FBGs are periodic structures of different refractive indices 

inside the core of an optical fiber. They show large reflectivity 

around a specific wavelength, which fulfills the Bragg 

condition. The narrow reflected signal, known as the Bragg 

wavelength, is sensitive to environmental perturbations such as 

temperature variations and mechanical strain [22]. The Bragg 

wavelength can be calculated by 2 𝑛𝑒𝑓𝑓 𝛬, where 𝑛𝑒𝑓𝑓 is the 

effective refractive index and 𝛬 is the period length of the 

grating. As illustrated in Fig. 1, if the FBG is disturbed, the 

period length of the grating changes and causes shifts in the 

reflected signal. The relative Bragg wavelength shift changes 

linearly with respect to the mechanical strain and temperature 

variations [19] 

 

∆𝜆𝐵

𝜆𝐵
 =  (1 −  𝑃𝑒) 𝜀 +  (𝛼𝛬  +  𝛼𝑛) 𝛥𝑇.  (1) 

 

In this equation, 𝜀 is the relative longitudinal change in the 

Bragg grating caused by a mechanical strain, and 𝛥𝑇 indicates 

temperature variations. 𝑃𝑒, 𝛼𝛬, and 𝛼𝑛 are strain-optic, thermal 

expansion, and thermo-optic coefficients, respectively. FBG 

sensors can detect bending deflections if placed away from the 

centroid. In a beam under pure bending (shown in Fig. 2), where 

the bending moment is constant, the normal strain at a distance 

𝑥 from the neutral axis (or neutral plane) can be calculated using 

the following equation [23] 

 

𝜀𝑧 =  
𝑥

𝜌
 =  𝑘 𝑥, (2) 

 

where 𝜌 is the bending radius, and 𝑘 is the reciprocal of the 

bending radius, called curvature. The intensity of the applied 

force to the beam, called stress, holds the points above the 

neutral axis in tension, resulting in a positive strain. Points 

below the neutral axis are under compressive stress, and the 

strain is negative. In other words, depending on the sign of the 

strain, the curvature direction can be determined in the bending 

plane. Therefore, once the normal strain is calculated from the 

measured wavelength shift in the FBG sensor using (1), the 

curvature of the beam and the upward or downward direction 

of bending can be extracted from (2). 

Shape sensing using FBGs is based on multiple off-axis 

strain measurements at the cross-section during bending. At 

least two FBGs are required to determine the spatial curve of 

the sensor, assuming that 𝑧-information is already known by the 

position of the FBGs. A third FBG is further needed to 

compensate for the effect of temperature on the reflected signal. 

In the literature, placing three FBGs at each sensor plane was 

usually done by multicore fibers with FBG arrays [8] or 

embedded single-mode FBGs in a grooved cylindrical substrate 

[24]. It was assumed that the sensor probe behaves as a uniform, 

symmetric, linear Kirchhoff rod [8]. Therefore, considering the 

sensor probe as a beam under pure bending results in the 

following equations, which calculate the strain of three 

independent FBGs (also called FBG triplet) at each sensor 

plane, 

 

𝜀1 =  |𝑘| 𝑑 𝑠𝑖𝑛(𝜃)  + 𝜀𝑇 ,  
 

𝜀2 =  |𝑘| 𝑑 𝑠𝑖𝑛(𝜃 +  120°)  + 𝜀𝑇 ,  (3) 
 

𝜀3 =  |𝑘| 𝑑 𝑠𝑖𝑛(𝜃 +  240°)  + 𝜀𝑇 .  

 

In these equations, 𝑑 is the radial distance between the FBGs 

and the neutral axis of the sensor, and 𝜀𝑇 is the thermal strain. 

Fig. 1.  Working principle of fiber Bragg gratings.  

 

Undisturbed FBG

FBG under tensile force

Transmitted light

Reflected light
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Transmitted light Reflected light 

 

  

Fig. 2.  (a) Bending plane of the beam. (b) Deformation of the beam in pure 

bending, where 𝑑𝜑 is the angle of the selected segment. 
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As can be seen in Fig. 3, the sensor probe does not meet the 

homogeneity condition due to the presence of the optical fibers. 

However, this heterogeneous material density leads to minor 

inaccuracies when the sensor is not under tight bending [8].  

According to (3), the Bragg wavelength in these sensors 

changes linearly with respect to curvature and temperature 

variations. The first arguments on the right-hand side are the 

normal strain caused by the bending moment in which the 

distance between the FBGs and the neutral plane (orange lines 

in Fig. 3) changes sinusoidally depending on the bending 

direction.  Therefore, the sensor's angular behavior can be fitted 

with a sine function as long as the bending resistance remains 

the same in all possible directions. 

However, attaching the optical fibers to a small cylindrical 

substrate result in a triangular cross-section with considerable 

non-uniformity in the material density. Beams with non-

uniform bending resistance may twist during bending at 

specific directions, depending on the shape and density 

distribution at their cross-section. Therefore, the expression that 

describes the angular behavior of the sensor should include the 

effect of twisting at bending directions where material density 

changes significantly [25]. Consequently, the angular response 

of the sensor cannot be fitted with a sine wave anymore. 

Replacing the sine functions in (3) with a general angular 

function 𝐺(𝜃) and substituting it in (1) leads to the following 

equation system 

 
∆𝜆𝐵𝑗

𝜆𝐵𝑗
 = 𝐹𝑗(|𝑘|) 𝐺𝑗(𝜃) + (𝛼𝛬 + 𝛼𝑛) 𝛥𝑇 ;  𝑗 =  1, 2, 𝑎𝑛𝑑 3. (4) 

 

The function 𝐺(𝜃) should be obtained experimentally as 

there are many unknown factors related to the exact shape and 

density distribution in the cross-section of the fiber bundle after 

assembling the sensor. Therefore, a calibration setup should be 

designed such that enough data can be acquired to estimate 

𝐺(𝜃). The linear response of the sensor to the curvature 

variations 𝐹(|𝑘|) is equal to 𝜂 (1 −  𝑃𝑒) |𝑘| 𝑑𝑗 which includes 

a correction factor 𝜂 for strain transfer between the substrate 

and the FBGs. Solving the equation system (4) at each sensor 

plane provides the curvature and the bending direction, which 

are later used to reconstruct the 3D shape of the sensor. 

III. 3D SHAPE RECONSTRUCTION    

In this paper, we investigated two commonly used methods 

to reconstruct spatial curves from discrete 𝑘 and 𝜃 values, the 

Kinematic model [26] and Frenet-Serret formulas [24], [8], and 

compared the predicted shape and tip position of the sensor. For 

the kinematic model, we first linearly interpolated the measured 

𝑘 and 𝜃 to return values at arc elements with 1 mm length along 

the sensor. Then, each arc element's spatial coordinate was 

calculated in its local frame using the curvature and bending 

direction of that segment. Finally, the coordinates of the arc 

elements were transferred to a global frame to draw the spatial 

curve of the sensor. As shown in Fig. 4, the local coordinate 

system for each segment is defined, such that the arc element is 

tangent to the  -axis, and its beginning point coincides with the 

origin of the frame. Having the bending plane of the arc element 

at the angle of 𝜃 from the  -axis, the homogeneous coordinate 

of the segment's tip 𝑃 can be obtained 

 

𝑃 = [

∆𝑥
∆𝑦
∆𝑧
1

] =

[
 
 
 
 
 

1

𝑘
(1 –  𝑐𝑜𝑠𝜑) 𝑐𝑜𝑠𝜃

1

𝑘
 (1 –  𝑐𝑜𝑠𝜑) 𝑠𝑖𝑛𝜃

1

𝑘
 𝑠𝑖𝑛𝜑

1 ]
 
 
 
 
 

,  (5) 

 

where 𝜑 is the central angle of the arc, calculated from the 

curvature multiplied by the arc length 𝑑𝑠; 𝜑 =  𝑘 𝑑𝑠. 

The 3D shape of the sensor is reconstructed by transforming 

the coordinate of the arc elements from their local coordinate 

system to the global frame. The global frame 𝛹0 is defined at 

the base of the sensor, which coincides with the local coordinate 

system of the first arc element 𝛹1. Transforming 𝛹1 to the local 

frame of the second segment includes rotating the coordinate 

system using 𝑅1 (more detail is available in the Appendix) 

followed by translation 𝑇1 from 𝑂1 to 𝑂2, the origins of the 

coordinate systems  

 

𝑇1  = [

1 0 0 −∆𝑥1

0 1 0 −∆𝑦1

0 0 1 −∆𝑧1

0 0 0 1

].  (6) 

 

The local coordinate system of the second segment 𝛹2 is as 

follows 

 

Fig. 4.  The local coordinate system for each arc element. 

 

 

𝜑

 

 

 

∆𝑥

∆𝑦

∆𝑧

𝜃
𝜌

𝑑𝑠

Fig. 3.  Cross-section of a shape sensor based on multicore or 

embedded FBGs. The orange lines indicate the distance between the 

FBGs and the neutral plane. 
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𝛹2  = 𝑇1𝑅1 𝛹1.  (7) 

 

The transformation matrix from 𝛹1 to the desired local 

coordinate system 𝛹𝑡, where t shows the segment number, is a 

sequence of the transformation matrices from the previous 

segments 

 

𝛹𝑡  = 𝑇𝑡−1 𝑅𝑡−1 𝑇𝑡−2 𝑅𝑡−2 … 𝑇1 𝑅1 𝛹1,  (8) 

 

which can be reformulated as 

 

𝛹𝑡  = 𝑅𝑡−1 𝑇𝑡−1 𝛹𝑡−1.  (9) 

 

The spatial coordinate of each arc element in the global frame 

can be calculated by multiplying its local coordinates by the 

inverse of the transformation matrix 

 

[

 𝑡+1

 𝑡+1

 𝑡+1

1

 

] =  𝛹𝑡
−1 [

∆𝑥𝑡

∆𝑦𝑡

∆𝑧𝑡

1

].  (10) 

 

The second approach to reconstruct the 3D shape of the 

sensor is based on Frenet-Serret formulas that define the 

geometric properties of a curve in the Euclidean space. These 

formulas describe the derivatives of three unit-vectors in terms 

of each other  

 
𝑑𝑡

𝑑𝑠
= 𝑘 𝑛, 

 

𝑑𝑛

𝑑𝑠
= −𝑘 𝑡 + 𝜏 𝑏, 

 

𝑑𝑏

𝑑𝑠
= −𝜏 𝑛, 

 

The unit-vector 𝑡 is tangent to the curve, the bending 

direction is shown by the unit-vector 𝑛, and 𝑏 is the binormal 

unit-vector, perpendicular to the bending plane. The torsion, 

indicated by 𝜏, is the derivative of the bending direction 𝜃 with 

respect to the arc length 𝑠. Once the unit-vectors at each 

segment are obtained using the equation system (11), knowing 

the curvature and the torsion, the position vector 𝑟(𝑠) can be 

calculated 

 
𝑑𝑟 = 𝑇𝑑𝑠, 
𝑟(𝑠) = ∫ 𝑇𝑑𝑠.  (12) 
 

Consequently, the spatial coordinate of the segments in the 

global frame is obtained as a function of the arc length  

 

[

 (𝑠)
 (𝑠)
 (𝑠)

] =  𝑟(𝑠). (13) 

 

IV. SENSOR ASSEMBLY AND INTERROGATION SETUP 

The performance of the FBG shape sensors using single-

mode fibers highly depends on the characteristics of the 

substrate. In the current design, we replaced the wire-braided 

Polyimide substrate used in our previous work [14] with a 

superelastic Nitinol wire that offers higher flexibility and lower 

thermal sensitivity. The wire's diameter is 0.25 mm, similar to 

Acrylate coated optical fibers, making the outer diameter of the 

sensor 0.75 mm. The single-mode fibers with four FBGs 

separated by 5 cm were chosen to cover the entire length of a 

typical 20 cm long endoscope. The three fibers were attached to 

the substrate using a highly flexible UV-cured glue (LOCTITE 

AA 3926). Three laser-cut holders were designed to properly 

align the optical fibers in a 120° configuration on the substrate 

during the gluing process. Each holder, as shown in Fig. 5 (a), 

was made from three aluminum pieces that create a unique 

shape in the middle, fitting the triangular cross-section of the 

sensor (see Fig. 5 (b)). The main reason for using multipiece 

holders was to remove them easily from the fiber bundle once 

the glue was cured.  

The FBGs were interrogated using the wavelength division 

multiplexing (WDM) technique, as illustrated in Fig. 6. A 

superluminescent diode (SLED) with an integrated circulator 

was used to cover the Bragg wavelength of all 12 FBGs from 

1515 nm to 1570 nm. The Bragg wavelengths were then 

monitored using a fast spectrometer (I-MON 512, Ibsen) that 

was connected to the sensor via a fiber coupler. The measured 

relative wavelength shifts in the FBG triplets were then used to 

calculate the spatial coordinate of the arc segment at each sensor 

plane and to reconstruct the 3D shape of the sensor.  

 

V. CALIBRATION 

The most common characterization technique for FBG-based 

Fig. 5.  (a) Three-piece laser cut holder used for aligning the optical fibers 

on the Nitinol wire. (b) Cross-section of the sensor. 

 

Cylindrical
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Optical fiber 3

Optical fiber 1 

(reference) 

Optical fiber 2

(a) (b)

Fig. 6.  Schematic of the interrogation setup. 

SLED Fiber couplerCirculator

Spectrometer

Sensor plane

3D shape 

reconstruction
PC control

(11) 

30 Chapter 4. Flexible FBG-Based Shape Sensor Using Single-Mode Fibers



 

 

5 

shape sensors is to find the calibration curves by monitoring 

Bragg wavelength shifts in known 3D shapes, which is usually 

done by rotating the sensor in slots with different curvatures. 

However, the investigated design has an asymmetrical cross-

section with preferred bending directions that causes 

instabilities during axial rotations. Consequently, repeatable 

measurements cannot be achieved using calibration setups that 

include rotational movements. Therefore, we designed 3D 

curvature templates to acquire ground truth data for bending 

radii of 17 cm, 20 cm, 23 cm, and 26 cm at all possible 

directions without the need for rotating the sensor. Each 

template consisted of a two-piece curved aluminum bar creating 

a 0.9 mm cylindrical groove in the middle to guide the sensor. 

The templates were fixed on a precision rotary stage, as shown 

in Fig. 7, to tune the bending direction accurately. For each 

curvature, the corresponding template was rotated from 0 to 

360°, taking measurements every 20°. After each measurement, 

the sensor was carefully removed from the template and 

reinserted in the cylindrical groove at the desired angle using a 

slider. The Bragg wavelengths were recorded five minutes after 

sensor insertion for temperature settling, while the temperature 

was being monitored using a thermocouple attached to the 

template. Each measurement was repeated three times to reduce 

random angular deflection during sensor insertion into the 

template. 

Fig. 8 (a), (d), and (g) show the measured relative wavelength 

shifts of the FBGs in the first sensor plane at different bending 

angles and curvatures. Each data point is an average of three 

repeated measurements. The sensor warped slightly during 

bending at directions, where the material resistance varies 

significantly, resulting in sudden changes in the sensor's output. 

Therefore, as mentioned in Section II, the sine function 

describing the angular behavior of the sensor should be replaced 

with a more general function 𝐺(  ) that includes the twisting 

effect during bending. To obtain the function 𝐺(𝜃) for each 

FBG, we first fitted the acquired relative wavelength shifts at 

different bending angles using a smoothing spline. For the fitted 

curves to have a continuous transition from 360° to 0° angles 

and vice versa, we repeated ten data points in the fitting data for 

bending angles 𝜃<0° and 𝜃>360°, which served as boundary 

conditions. Then, the normalized versions of the spline fitted 

curves were averaged to find the angular function 𝐺(  ) for the 

three FBGs in the first sensor plane, which are illustrated in Fig. 

8 (b), (e), and (h). The function 𝐹(|k|) that predicts the response 

of each FBG to different curvatures was obtained by linearly 

fitting the maximum relative wavelength shifts extracted from 

the spline fitted curves (see Fig. 8 (c), (f), and (i)). A similar 

method was used for all other FBG triplets. 

For testing the generality of the proposed model, a 10-fold 

cross-validation test has been carried out. The data collected 

from each template were shuffled randomly, then for each fold 

of cross-validation, 10% of them were left out for evaluation. 

The remaining data were used to find the function 𝐺 and linear 

fit parameters for co-located FBGs. The estimated values for 𝑘 

and 𝜃 were calculated by numerically solving the equation 

system (4). Table I shows the P-values of the one-way ANOVA 

test on the curvature and bending direction prediction error for 

all four FBG triplets. All P-values are higher than 0.05, the 

significance level, which indicates that differences between the 

means are not statistically significant. The box plot of the 

prediction error in curvature and bending direction for different 

folds at the first FBG triplet is illustrated in Fig. 9, which 

graphically shows that the median does not significantly change 

between the folds. Therefore, it can be concluded that the 

proposed model is general enough to describe asymmetric 

shape sensors that have bending preferences, and the fitting 

parameters do not change for different datasets. 
 

TABLE I 

  P-VALUES OF ONE-WAY ANOVA TEST ON THE PREDICTION ERROR IN 

THE CURVATURE AND BENDING DIRECTION AT FOUR FBG TRIPLETS. 

FBG triplet 1 2 3 4 

P-value 

(Curvature) 
0.9805 0.6700 0.3138 0.2459 

P-value  

(Bending direction) 

 

0.4525 0.3794 0.2375 0.2635 

 

VI.  SENSOR EVALUATION  

The shape prediction model for the fiber sensor can be 

selected from any fitting parameters calculated in each fold of 

the ANOVA test. We tested the sensor's performance, based on 

fold number 10, in two different situations, single-bend and 

multi-bend. In single-bend, also known as C-bend, all FBG 

triplets experienced the same curvature and bending direction, 

whereas, in multi-bend, various curve deformations existed 

throughout the sensor.  

For the single-bend test, 27 measurements at different 

curvatures and bending angles were acquired using the 3D 

templates. Fig. 10 (a) illustrates the 3D view of reconstructed 

shapes using the kinematic model and Frenet-Serret equations, 

as well as the real shape of the sensor, which is known from the 

curvature template. The top, side, and front views of all three 

curves can be seen in Fig. 10 (b). The residuals, calculated from 

the Euclidean distance between the predicted and the real 

Fig. 7.  Calibration setup, curvature template attached to a precision rotary 

stage. 

 

Rotary stage

Curvature template

Thermocouple

Slider
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coordinate values at FBG triplet locations, are shown in Fig. 

10 (c). It can be noticed that the residuals are accumulatively 

increasing when getting closer to the sensor's tip, which is due 

to the error in the predicted bending direction. We observed the 

ascending error in most testing data. In all testing examples, the 

reconstructed shape using the Frenet-Serret formula had a 

larger error than the kinematic model. We believe this larger 

error can be attributed to the adaptive arc elements' length in 

solving the differential Frenet-Serret equations. The arc lengths 

in this method depend on how the torsion and curvature values 

are changing along the spatial curve. The torsion and the 

curvature values for each arc element are calculated by 

interpolating predicted 𝑘 and 𝜃 at FBG triplets. Therefore, if the 

predicted values have an error, interpolating for small elements 

raises the inaccuracy of the predicted shape even further. 

 

Evaluating the sensor in a multi-bend case, when the sensor 

experienced larger deflections in arbitrary shapes, was 

performed using a motion capture system (MOCAP) (Qualisys 

AB, Sweden). The MOCAP system consists of five cameras to 

capture motions from different views, as shown in Fig. 11 (a). 

Five passive markers were attached to the sensor to monitor the 

real shape during data acquisition. The markers are 9.5 mm in 

diameter and have a 1 mm hole in the middle allowing the fiber 

sensor to pass through (Fig. 11 (b)).  

Fig. 8.  Measured relative wavelength shifts and the fitted curves for the first FBG triplet using four curvature templates (a, d, and g). The angular functions 

are displayed in graphs b, e, and h. The linear functions (also known as curvature sensitivity) for FBG numbers 1, 2, and 3 are shown in figures c, f, and i, 

respectively. 

 

(a) (b)

(c)

(d) (e)

(f)

(g)
(h)

(i)
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The local coordinate system of the sensor was realized by 

fixing the sensor's base on a reference plate. The reference plate 

was a rectangular Aluminum part with two circular grooves and 

one cylindrical groove for placing markers and the sensor in 

predefined locations. The   and  -axis of the reference plate 

were measured by placing two markers in the circular grooves 

and two markers in the cylindrical one, as shown in Fig. 12 (a). 

The location and orientation of the sensor's base were fixed 

during data acquisition (Fig. 12 (b)). The marker locations in 

the coordinate system, defined by the MOCAP managing 

software, were moved into the sensor's local frame using a 

transformation matrix. Finally, the spatial curve of the sensor's 

real shape with 1 mm resolution was estimated by interpolating 

the marker locations using the cubic Spline method [27].  

 

Collecting the testing data in the multi-bend case was 

(b)(a)

(c)

Fig. 10.  (a) 3D view, and (b) 2D views of the real and the predicted shapes in a single-bend deformation. (c) The absolute error between the predicted 

and the real coordinates at FBG triplets, where the circles show the base, the sensing spots, and the tip of the sensor. 

 

(a) (b)

Fig. 9.  Box plot of prediction error in (a) curvature and (b) bending direction for 10 folds, at the first sensor plane. On each box, the median is indicated 

with a central mark, and the 25th and 75th percentiles are indicated with the bottom and top edges of the box, respectively. The whiskers show the minimum 

and maximum values within each group not considered outliers, and the outliers are marked with the '+' symbol. 
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performed by moving the sensor's tip at different locations, 

allowing the sensor to be bent in various curvatures and bending 

directions from 0° to 180°. The experiment was repeated after 

rotating the sensor's base for 180° to cover the bending direction 

from 180° to 360°. To ensure that the tip of the sensor is free to 

rotate during shape manipulation, it was inserted into a Nitinol 

tube which was fixed in a moving holder.  

An example of the reconstructed shape in the multi-bend 

experiment is shown in Fig. 13. Similar to the single-bend test, 

the kinematic model performs better than the Frenet-Serret 

method. However, as the number of sensing planes was limited, 

the shape sensor was not able to detect the deformations 

happening between the sensor planes. In Fig. 13 (b), a zoomed 

view of the beginning part of the sensor in the  -  plane is 

shown. It can be noticed that the sensor did not see the 

deflection between its base and the first FBG triplet, and 

therefore, the false prediction in the bending direction resulted 

in a large error at the sensor's tip. Although this error can also 

happen in single-bend curves, the shape estimation is still more 

accurate because the curvature and bending direction are 

constant in C-bends. 

In order to compare the goodness of predicted shapes in 

single and multi-bend cases, the root mean square (RMS) of the 

Euclidean distance between the predicted and real coordinates 

was calculated. The box plot in Fig. 14 (a) shows the RMSE for 

single and multi-bend curves using both kinematic and Frenet-

Serret methods. Median values of the RMSE in reconstructed 

shapes using the kinematic model were 5 mm and 8.5 mm for 

single and multi-bend, respectively. These values increased up 

to 5.7 mm and 10.5 mm when Frenet-Serret equations were 

used for shape reconstruction. The median value for the tip 

positioning error in single and multi-bend deformations are 

9.9 mm and 16.2 mm using the kinematic model, and 12.7 mm 

and 21.3 mm in the Frenet-Serret method. The higher median 

values in multi-bend curves, using both kinematic and Frenet-

Serret formulas, can be explained by investigating the expected 

accuracy in marker-based curve estimations. The uncertainty in 

the estimated marker coordinates and the unknown distance 

between the centroid of the marker and the sensor's neutral axis 

are two possible error sources in this method. However, as 

mentioned earlier, the most important reason is the random 

twisting effect due to uneven force application during bending 

or the asymmetric cross-section of the sensor. The latter effect 

is stronger when the sensor is bent at smaller banding radii. 

Another vital parameter to investigate is the bonding strength 

between the fibers and the substrate, which can be affected by 

adhesive aging. To study the effect of glue aging on the 

prediction accuracy, the single-bend measurements were 

repeated after ten months. As can be seen in Fig. 14 (b), the 

median values of the RMSE were 5 mm and 5.2 mm in 

kinematic, and 5.7 mm and 5.9 mm in Frenet-Serret-based 

shape reconstructions before and after this period. No 

significant change in the median value was observed, meaning 

that the aging of the glue is negligible, and the designed sensor 

remained stable over this time under the lab condition.   

To see how the error changes with respect to the applied 

curvatures, the scatter plot of the estimated curvatures in the 

multi-bend experiment is shown in Fig. 15. The correlation 

coefficient for the predicted and the ground truth curvatures is 

0.73, suggesting that the proposed calibration method is indeed 

suitable for the designed sensor. It can also be noticed that the 

error increases at higher curvatures, which might be due to the 

random twisting effect. 

Fig. 11.  (a) Oqus camera setup in MOCAP software. (b) Marker attachment to the sensor. 

Motion capture camera

MOCAP frame

Marker locations Passive markers

Fiber bundle

(a) (b)

Fig. 12.  (a) The local frame realization of the reference plate. (b) Fixation of the sensor in the reference plate. 

Reference plate

Passive markers

Cylindrical groove

Circular groove

(a) (b)
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VII. CONCLUSION 

A suitable alternative to EM trackers or multicore fibers in 

medical tool navigation can be shape sensors composed of three 

single-mode fibers. In such sensors, the substrate plays a crucial 

role. If a semi-rigid substrate is used, like Nitinol needles or 

wire-braided polyimide tubes, an uncertainty of around 1 % at 

the sensor's tip (average error divided by the sensor length) can 

be reached [6], [14]. However, these sensors are only suitable 

for applications where small deflections are expected. For a 

sensor with the same level of flexibility as an optical fiber, a 

substrate with similar mechanical resistance must be used. 

Although such a sensor can reach higher curvature levels, 

bending stiffness at its cross-section is no longer uniform and 

can show bending preference and random twisting effect during 

(b)(a)

(c)

Fig. 13.  (a) 3D view, and (b) 2D views of the real and the predicted shapes in a multi-bend deformation. (c) The absolute error between the predicted and 

the real coordinates at FBG triplets, where the circles show the base, the sensing spots, and the tip of the sensor. 

(a) (b)

Fig. 14.  (a) RMSE of the Euclidean distance between the predicted and real coordinates in single-bend (SB.) and multi-bend (MB.) shapes, reconstructed 

using kinematic model (Kin.) and Frenet-Serret formula (FS.). (b) The effect of glue aging on the prediction accuracy in single-bend measurements. 
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bending. We observed that in such sensor configurations, the 

prediction accuracy of the bending direction is limited by the 

random twisting effect, which increases the uncertainty at the 

sensor's tip up to 5 % in medium and 10 % in large deflections. 

Therefore, there is always a tradeoff between the accuracy of 

the sensor's shape prediction and flexibility. We studied two 

shape reconstruction methods, the kinematic model and the 

Frenet-Serret formula. We believe that the kinematic model is 

more suitable for such sensor design, as it shows higher shape 

prediction accuracy compared to the Frenet-Serret approach. 

We also demonstrated that our sensor shows no significant glue 

aging after ten months under lab conditions. 

For further development of this highly flexible shape sensor, 

we will use draw tower gratings with polymer coating as they 

offer higher mechanical strength compared to the currently used 

stripped FBGs. To compensate for the asymmetric cross-

section of the sensor, dummy fibers will be placed around the 

sensor probe, which may reduce the flexibility of the sensor yet 

increase the accuracy by limiting bending preferences. 
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VIII. APPENDIX 

Transforming the local frame of the arc element i (𝛹i) to the 

local frame of the next segment (𝛹i+1) includes rotating the 

coordinate system about an arbitrary axis called 𝐵 through the 

angle 𝜑𝑖 followed by translation 𝑇𝑖 from 𝑂𝑖 to 𝑂𝑖+1, the origins 

of the coordinate systems  

𝑇𝑖  = [

1 0 0 −∆𝑥𝑖

0 1 0 −∆𝑦𝑖

0 0 1 −∆𝑧𝑖

0 0 0 1

].  (14) 

 

As illustrated in Fig. 16, axis 𝐵 is perpendicular to the 

bending plane 𝜋𝑖, passing through the origin of the frame. A 

series of rotations are required to obtain the desired orientation 

of the local frame for the next segment [28]. First, the 

coordinate system 𝛹𝑖 ( ,  ,  ) is rotated through the angle 𝜃𝑖  

about the  -axis, such that axis 𝐵 lies in the  -axis, aligning the 

 -  plane with the bending plane 𝜋𝑖. The new frame ( ′,  ′,  ) 

is then rotated about the Y′-axis through the angle 𝜑𝑖, making 

the  ′-axis tangent to the tip of the next segment in the 

( ″,  ′,  ′) frame. Finally, step one should be reversed by 

rotating the ( ″,  ′,  ′) coordinate system about the  ′-axis 

through the angle – 𝜃𝑖 to obtain the local frame ( ‴,  ″,  ′) for 

the next segment. The total rotation matrix that includes the 

sequence of rotations is the following 

 

𝑅𝑖  
=  𝑅(𝑍′,−𝜃𝑖) 𝑅(𝑌′,𝜑𝑖) 𝑅(𝑍,𝜃𝑖) (15) 

 

where, 

 

𝑅(𝑍,𝜃𝑖) = [

𝑐𝑜𝑠𝜃𝑖 𝑠𝑖𝑛𝜃𝑖 0 0
−𝑠𝑖𝑛𝜃𝑖 𝑐𝑜𝑠𝜃𝑖 0 0

0 0 1 0
0 0 0 1

],  (16)  

 

𝑅(𝑌′,𝜑𝑖)  = [

𝑐𝑜𝑠𝜑𝑖 0 −𝑠𝑖𝑛𝜑𝑖 0
0 1 0 0

𝑠𝑖𝑛𝜑𝑖 0 𝑐𝑜𝑠𝜑𝑖 0
0 0 0 1

], (17) 

` 

𝑅(𝑍′,−𝜃𝑖) = [

𝑐𝑜𝑠𝜃𝑖 −𝑠𝑖𝑛𝜃𝑖 0 0
𝑠𝑖𝑛𝜃𝑖 𝑐𝑜𝑠𝜃𝑖 0 0

0 0 1 0
0 0 0 1

]. (1) 

 

 

Fig. 16.  The transformation steps from the global frame ( ,  ,  ) to the second local coordinate system ( ‴,  ″,  ′). (a) rotation through the angle 𝜃𝑖  about  -axis, 

(b) rotation about  ′-axis through the angle 𝜑𝑖, (c) rotation about  ′-axis through the angle – 𝜃𝑖 to align the  ‴- ″ plane with the bending plane 𝜋𝑖+1 followed by 

translation from 𝑂𝑖  to 𝑂𝑖+1. 
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Chapter 5

Feasibility Study on Using Deep
Learning to Model Edge-FBG Sensors

The next three chapters address the development process of a second sensing mechanism based
on edge-FBGs. This chapter presents a feasibility study on using deep learning for modeling
edge-FBG shape sensors. We designed a convolutional neural network optimized using hy-
perparameter tuning techniques that can learn to predict the sensor’s shape directly from the
edge-FBG spectra. The developed model can predict the shape of a 30 cm long sensor with
a median tip error of less than 6mm in a curvature range of 1.4m−1 to 35.3m−1 and does
not require any calibration or shape reconstruction steps. The key advantage of this modeling
technique compared to other intensity-based fiber shape sensing solutions is utilizing a low-cost
interrogation system for measuring the edge-FBGs spectra.

Publication. The proposed shape sensing solution was presented in the form of an oral pre-
sentation at the SPIE OPTICS + OPTOELECTRONICS conference, April 2021, Online Only,
in the Czech Republic. The following manuscript was published as part of the conference pro-
ceedings [44].
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ABSTRACT  

Continuum robots are snake-like elastic structures that can be bent anywhere along their length hence representing ideal 
tools for minimally invasive surgery. To accurately control these flexible manipulators, 3D shape sensors that are small, 
sterile, immune to electromagnetic noise, and easy to replace are required. Fiber Bragg Grating (FBG)-based shape sensing 
is a promising approach for this task. The recently proposed Edge-FBG based shape sensors are particularly promising due 
to their high flexibility and high spatial resolution. In Edge-FBGs, the amplitude change at the Bragg wavelengths contains 
the strain information at sensing nodes. However, such sensors are sensitive to changes in the spectrum profile caused by 
undesired bending-related phenomena. As the existing theories cannot accurately predict the spectrum profile in curved 
optical fibers, changes in the initial intensity that each Edge-FBG receives are not precisely known. These uncontrolled 
variations cause inaccuracies in shape predictions and make standard characterization techniques less suitable for Edge-
FBG sensors. Therefore, developing a model that distinguishes the strain signal from the changes in the spectrum profile 
is needed. Machine learning techniques are great tools for studying complex problems, making it possible to explore the 
full spectrum of the Edge-FBG sensor for identifying patterns caused by bending.  

In this paper, we studied the feasibility of using a low-cost interrogation system for the Edge-FBGs, considering the 
minimum required signal-to-noise ratio. We trained a neural network with supervised deep learning to directly extract the 
shape information from the Edge-FBG spectrum. The designed model can predict the shape of a fiber sensor consisting of 
five Edge-FBG triplets with less than 6 mm tip error.   

 

Keywords: Supervised deep learning, shape sensing, bending birefringence, bending loss, Edge-FBG, fiber sensor 

 

1. INTRODUCTION 

In recent years, the need for flexible robots and endoscopes has grown significantly, as they represent ideal tools for getting 
access to deep locations inside the patient’s body during minimally invasive surgeries. However, accurately controlling 
these flexible manipulators’ exact shape and tip position is a challenge that may result in irreversible damages to non-
targeted tissues. Therefore, a shape sensor is needed to provide real-time feedback for the surgeon to control the endoscope 
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during the surgical procedure safely. The integrated sensor needs to be small, biocompatible, easily replaceable, and 
immune to interferences with the robot’s electromagnetic field. Commonly used tracking technologies, such as 
electromagnetic sensors or intraoperative imaging technologies, are not ideal for controlling elastic structures during 
minimally invasive surgeries, as they all have shortcomings like electromagnetic sensitivity (electromagnetic sensors), 
limited resolution (ultrasound imaging), low speed (MRI), or high doses of radiation (X-ray or CT imaging) [1]. FBG-
based shape sensing, on the other hand, is considered the most promising approach regarding biosafety, high speed, and 
electromagnetic immunity [2]. 

Although different configurations for FBG sensors based on multicore fibers, cladding waveguides, and single-mode fiber 
bundles have been studied in recent years, accurate shape estimation is still challenging. Multicore FBG sensors are costly 
[3], as an optical frequency domain reflectometer (OFDR) is needed for interrogating the FBGs [4], plus a fan-out device 
for reading the signal from each core [5]. Cladding waveguide FBG sensors (CWG-FBG) work based on wavelength 
division multiplexing (WDM). Therefore, the number of sensing points is limited by the spectral bandwidth of the light 
source and the spectrometer. In addition, the power of the forward propagating light decreases every time that it couples 
into cladding waveguides, limiting the number of sensors even further. Although shape sensors which consist of multiple 
single-mode fibers [1], [2], [6, p. 242], [7], [8], also work based on WDM, they have limited flexibility and can only detect 
low to medium deflections.  

Edge-FBGs are a new generation of highly flexible fiber-based shape sensors, in which the FBGs are inscribed on the edge 
of the fiber’s core [9] (shown in Figure 1). Like other FBG-based shape sensors, the wavelength of the Edge-FBGs shifts 
slightly when bending-induced mechanical strain is applied to the Edge sensor. As these wavelength shifts are usually 
below 15 pm [9], an expensive interrogation system with high resolution would be needed. However, the amplitude of the 
Edge-FBGs also carries the strain information, which can be interrogated with simpler setups. As explained in [9], the 
mode field’s center moves toward the bending direction in a curved single-mode fiber. Therefore, the intensity ratio 
between the Edge-FBGs at each sensor plane changes according to the radial and angular distance between the dislocated 
mode field and the Edge-FBGs. However, bending-related phenomena that affect the spectrum profile of the light 
propagating in the single-mode fiber are not considered in this approach. Macro bending in optical fibers may cause 
oscillatory attenuation loss, as the core-propagating field can couple coherently with reinjected fields reflected by 
cladding/coating or by coating/air interfaces [10]. Moreover, bending an optical fiber disturbs the symmetricity of the 
refractive index in the cross-section of the optical fiber and induces birefringence. Consequently, the polarization-sensitive 
elements inside the interrogation system filter the spectrum profile and cause errors in amplitude measurements. In this 
paper, we propose to model the Edge sensors using deep learning to predict the sensor’s shape based on the full spectrum 
and not only the amplitude of the FBG peaks. This way, the effect of bending-related phenomena that influence the 
spectrum profile are also taken into account. 

 

2. METHODOLOGY 
2.1 Data acquisition setup 

The data acquisition setup used for collecting a set of data to develop our model is shown in Figure 2. The collected data 
contains the Edge-FBG spectrum and the sensor’s actual shape, measured at different curvatures and orientations. We used 
the MIOPAS FBG interrogator (MIOPAS GmbH, Goslar, Germany), which consists of an uncooled TOSA module SLED 

Figure 1. The structure of Edge-FBG sensors. At each sensing node, three FBGs are inscribed on the edge of the fiber’s core. 
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and a NIR micro-spectrometer with 0.5 nm resolution and a maximum update rate of 75 Hz, to measure the Edge-FBG 
spectrum during data collection. Simultaneously, a motion capture system (MOCAP) (Qualisys AB, Sweden) was used to 
monitor the actual shape of the Edge sensor. The shape sensor is an array of five Edge-FBG triplets from 815 nm to 885 nm, 
inscribed every 5 cm in an SM800P fiber. As the fiber’s outer diameter is only 155 µm, it was impossible to attach optical 
markers to the sensor directly. Therefore, the fiber was inserted into a Nitinol tube with an inner diameter of 320 µm and 
an outer diameter of 570 µm. For tracking the Nitinol tube, ten passive markers with an outer diameter of 9.5 mm were 
used. Each marker has a 1 mm hole in the middle allowing the Nitinol tube to pass through.  

  

The sensor’s inlet was fixed using a v-clamp such that only the sensing area was allowed to move. We attached two guiding 
tools to the Nitinol tube to make the shape manipulation easier. We randomly moved the guiding tools for 30 min to change 
the sensor’s shape in various curvatures and orientations. Later, the measured spectrum from the interrogator, and the 
marker coordinates from the MOCAP system, were synchronized based on their timestamps with a tolerance of 2.8 msec. 
The total acquired data size was 143160 samples, each sample containing the Edge-FBG spectrum (125 pixels) and the 
coordinates of 10 markers.  

Although this setup was suitable for testing medium deflections, it was impossible to reach more complex shapes due to 
the limited flexibility of the Nitinol tube. Therefore, the Nitinol tube was replaced with a Hytrel furcation tubing to collect 
a separate set of data for larger deflections (Figure 3). The Hytrel tube has an inner diameter of 400 µm and an outer 
diameter of 900 µm. We used smaller passive markers with an outer diameter of 6.4 mm such that their weight is light 
enough for bending the tube in positive curvatures. The sensor’s length, defined by the distance between the first and the 
tenth marker, is 22.5 cm in the medium deflection setup, which got extended up to 35 cm in the large deflection setup, as 
more markers were placed before the first Edge sensor.  

2.2 Data preparation 

Measurements with spectrometers often show random fluctuations that occur over time caused by various noise sources. 
Averaging over repeated measurements helps to increase the signal-to-noise ratio. In our case, the detected spectrum was 
not averaged during the measurement. Instead of averaging the scans in the data preprocessing step, we feed the network 

Edge sensor

Guiding tools

Passive marker

V-Clamp
Motion capture camera

MIOPAS interrogator

Figure 2. Experimental setup for data acquisition in medium deflections using a Nitinol tube. 
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all scans acquired within a specified time interval and let the network combine them. We evaluated the network’s 
performance when 2, 3, 5, and 10 measurements are fed into the network for averaging. The best model was achieved by 
providing three scans as the input data (125 × 3) and averaged marker locations as their output. To further increase the 
stability and performance of the neural network, the input data were normalized using the Z-score method. 

 

2.3 Hyperparameter tuning 

Manually designing a network architecture is a time-consuming and computationally expensive process. Since for each 
choice of hyperparameter (e.g., parameters of the network architecture and parameters of the training process’ optimizer), 
the network needs to be trained for a reasonable time. The Keras tuner, as an open-source framework for hyperparameter 
search [11], can automatically propose a suitable network architecture for the task at hand. Several hyperparameter 
optimization algorithms, such as Random search, Bayesian optimization, and Hyperband, are implemented in the Keras 
tuner. We chose the Hyperband algorithm, as it showed promising results in preliminary experiments concerning accuracy 
and execution time. In the hyperparameter search, the Huber loss [12] with a delta of 5 was calculated, projecting the 
absolute errors of the individual coordinates of all ten markers to a scalar. Table 1 lists the hyperparameters in the search 
space. The search was started by considering only dense layers, and then convolutional layers were added for possible 
further improvements. Faster convergence and better validation loss were achieved by applying batch normalization after 
the activation function of the convolutional layer. The mini-batch size was set to 128, and the size of the validation set was 
chosen to be 10 % of the total number of samples.  
 

Table 1. The list of hyperparameters in the search space and their searching range. *Stochastic Gradient Descend 
 

       
 
2.4 Network architecture 

The optimal network architecture was chosen by comparing the average of the validation loss as well as the average values 
of the tip error and the RMSE on the testing samples for all models proposed by the Keras tuner. The tip error is calculated 
by the Euclidean distance between the predicted and the actual location of the last marker and RMSE, as a measure of 
mismatch between the curves, is the root mean square of the Euclidean distance between the real and the predicted 
coordinates of all markers. Figure 4 shows one of the highest scored models: A feedforward neural network with one input 

Hyperparameter Search range 
Number of 1D convolutional layers Integer values from 1 to 30 
Number of filters for convolutional layers Integer values from 8 to 256 with a step size of 8 
Kernel size Integer values from 1 to 25 
Number of dense layers Integer values from 0 to 3 
Number of units in a dense layer Integer values from 8 to 128 with a step size of 8 
Dropout rate Values from 0 to 0.5 with a step size of 0.05 
Activation function for convolutional layers ReLU and Tanh 
Activation function for dense layers ReLU, Tanh, or Sigmoid 
Learning rate for Adam optimization algorithm 0.01, 0.001, and 0.0001 
Learning rate in SGD* 0.01, 0.001, 0.0001, and 0.00001 
Momentum of SGD 0, 0.2, 0.4, 0.6, 0.8, and 0.9 

 

Figure 3. The data acquisition setup for large deflections using Hytrel tubing. 
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layer, seven 1D Convolutional layers, each followed by the ReLU activation function and Batch normalization, a Flatten 
Layer, a Dropout Layer, and the output layer.  

 
 

3. RESULTS AND DISCUSSION 
3.1 Feasibility of using low-cost interrogators 

One of the main challenges in fiber sensor industrialization is the cost of their interrogation system. We investigated the 
feasibility of using a low-cost system for Edge-FBG sensors. In intensity-based sensors, it is vital that the level of noise in 
measured amplitudes at FBG wavelengths is low enough such that the amplitude ratio caused by bending can be detected. 
As we are only interested in changes in the amplitude ratio between the FBG peaks, the global intensity variations, which 
cause a linear amplitude change in the adjacent Bragg peaks, can be neglected. However, the spectrum profile in low-cost 
FBG interrogators might show instabilities over time (Figure 5(a)), as the implemented light sources are often not supported 
by temperature or current controllers. These ripples can cause errors in the amplitude ratio measurements. To estimate the 
level of this systematic error inside our interrogator, we monitored the temperature and the spectrum profile of the light 
source for several hours.  

The graph in Figure 5(b) shows changes of the spectrum profile 1 hour, 2 hours, and 3 hours after starting the interrogator. 
As can be seen, within the first two hours, changes in the spectrum profile are significant. Calculating the attenuation 
between the spectra taken 2 and 3 hours after starting the interrogator shows that the ripples are still not stable and may 
cause an error in the measured amplitude ratio at Bragg wavelengths (Figure 5(c)). During our experiment, we observed 
that two factors could cause these changes: thermal variations and intrinsic instability of the interrogator. For instance, in 
an interval of five hours, where the temperature was fixed at 25.2 ℃, the amplitude ratio between the FBGs of the third 
Edge sensor changed for 0.002 a.u. In a similar time interval, when temperature variations of 0.2 ℃ (25.2 ℃ - 25.4 ℃) 
were detected, the amplitude ratio changed twice as much as it did in the fixed temperature environment. These 
observations demonstrate the sensitivity of the ripples on the spectrum profile to even sub-degree thermal variations. These 
systematic errors make the signals coming from small deflections unrecognizable and will be hidden in the noise. 
Therefore, to detect small deflections, a data acquisition setup with a higher signal-to-noise ratio, including a more stable 
light source and higher resolution spectrometer, would be needed. Nevertheless, the signal level for medium to large 
deflections is in the order of few tenths of a.u., which can be detected even if sub-degree thermal variations occur, or the 
measurements last for several hours. Therefore, it is feasible to use the current setup for detecting medium and large 
deflections with an Edge sensor.  

Figure 4. The configuration of the selected network. *Conv: convolutional layer, Norm: normalization. 
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3.2 Evaluation of the deep learning model 

In this section, we discuss the impact of the kernel size on the outcome of the selected architecture. A more thorough 
analysis of the other parameters’ influence in the search space will be done in future work. As shown in Figure 6(a), the 
model consisting of CNNs with a kernel size of 1 reaches a plateau already after 1000 epochs, and the training loss does 
not improve any further. Although the models with larger kernel sizes need more extended training to converge, they can 
achieve lower training losses. Higher validation loss than training loss means that the optimized model based on the training 
samples does not generalize for making accurate predictions when applying to the validation set. The frequent appearance 
of a high validation loss for different epochs shows the difficulty level of training. Figure 6(d) shows how these fluctuations 
disappear as the training loss decreases. 

The scores for different kernels over the testing set, including the tip error and the RMSE in both medium and large 
deflection setups, are respectively shown in Figures 7(a) and (b), where the testing dataset is 10% of the total number of 
samples. It can be noticed that in the medium deflection setup, the kernel size of 1 can only achieve a median tip error of 
12 mm and a median RMSE of 7 mm. However, the kernel size of 25 indicates the least prediction error among others, 
resulting in a median tip error of 5.3 mm and a median RMSE of 3.3 mm. In the large deflection setup, the Huber loss’s 
median value drops significantly for larger kernel sizes, which results in a median value of 5.8 mm in tip error and 3.4 mm 
in RMSE for a kernel size of 25. Although the applied shapes are more complicated than the Nitinol-protected sensor, and 
the output dimension of the network is almost doubled, the model is still able to make shape predictions with the same 
accuracy level. The model consists of CNNs with a kernel size of 25 is then selected for detecting both medium and large 
deflections, which can make predictions over unseen data in less than 500 μsec when running on a GPU (GeForce RTX 
2080). This means that Edge sensors not only can be interrogated with a low-cost system but can also be trained to make 
predictions using low-power CPU-based devices. Moreover, the accuracy improvement from kernel size of 1 to 25 suggests 
that further increment of kernel size can get the current architecture closer to the optimal design. 

Figure 5: (a) Spectrum profile of the MIOPAS interrogator. (b) The calculated attenuation between the reference spectrum 
and measured spectrums after 1 hour, 2 hours, and 3 hours. (c) The calculated attenuation between the spectra measured 2 
and 3 hours after the reference spectrum. 
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Figure 6. The training and validation Huber loss (δ = 5) of the selected network with kernel size of (a) 1, (b) 3, (c) 5, and 
(d) 25 in the convolutional layers (large deflection dataset). 

Figure 7. Shape evaluation parameters for kernel sizes of 1, 3, 5, and 25 over the testing dataset in medium and large deflection 
setup. On each box, the median is indicated with a central mark, and the 25th and 75th percentiles are indicated with the bottom 
and top edges of the box, respectively. The whiskers show the minimum and maximum values within each group not considered 
outliers, and the outliers are marked with the '+' symbol. Some outliers are excluded for better visualization of the median values. 

Proc. SPIE 2021 47



The error distribution of the real and the predicted position of the markers are illustrated in Figure 8. As can be seen, the 
median value increases towards the end of the fiber sensor. This accumulative error can be explained by Figure 9, which 
shows two examples of the predicted shape in large deflection. In Figure 9 (a), the model was able to predict the shape 
with less than 3 mm RMSE and 2.2 mm tip error. In Figure 9 (b), although the model nicely predicted the overall shape, it 
could not correctly estimate the curve’s initial orientation, which led to a tip error of 18.9 mm. The inaccuracy of the 
predicted bending direction at the sensor’s inlet can be due to the gap between the v-clamp and the first Edge sensor. In 
this gap, no sensing node is present, and only the spectrum profile changes depending on the applied curvature. However, 
inaccurate prediction in the bending orientation suggests that the spectrum profile is more sensitive to the curvature than 
its direction. The low sensitivity of this part of the fiber to the bending direction leads to large shape prediction errors, 
especially for Hytrel protected sensor. Therefore, to achieve a more accurate shape estimation, this gap between the v-
clamp and the first sensing node should be minimized. Another reason for the inaccuracy in some of the predicted shapes 
can be the manual movement of the fiber during data acquisition, which was not limited to a specific volume. Consequently, 
the samples used for training the model might slightly be biased to certain shapes. One possible solution for this issue is 
to define a constrained volume for the fiber and automate the shape manipulation process such that the training and testing 
data correspond to the same workspace.  

 

For robustness testing, a new set of data was collected roughly half an hour after the training data acquisition. The median 
values of the tip error and the RMSE for the predicted shapes increase to 15 mm and 9 mm in the medium deflection setup. 
The evaluation parameters went up to 30 mm and 18 mm for large deflections. In the time interval between the data 
acquisitions, we let the tracking system run, which causes thermal variations around the sensor by constantly sending IR 
pulses to scan the markers. The high prediction error shows the importance of the environmental condition, including 
temperature, on the spectrum profile that limits the model’s accuracy. In future work, we will investigate possible solutions 
to reduce the impact of thermal variations on prediction accuracy. 

 

4. CONCLUSION 

In this work, a new technique was developed for modeling Edge-FBG shape sensors. We used a low-cost interrogator and 
designed a deep neural network using the Keras tuner framework to directly estimate the sensor’s shape based on the full 
spectrum of the Edge-FBG array. Although there is still room for improvement, this pilot study shows that the Edge 
sensor’s shape can be estimated given its spectrum profile. The hyperparameter optimization points towards simple 
network architectures, thus enabling these networks also to be run on very simple embedded processors. These findings 
open new possibilities for real-time shape sensing applications based on low-power devices and inexpensive interrogators. 

Figure 8. The error distribution of the real and the predicted positions of the markers (large deflection dataset). Some outliers are 
excluded for better visualization of the median values. 
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The key advantage of our method in comparison to the standard sensor characterization technique, in which the fiber’s 
shape is estimated by measuring the mode field dislocation, is that the shape is predicted based on the full spectrum of the 
Edge sensor, meaning that it takes into account the effect of other bending-related phenomena on the spectrum profile.  

 

For future work, we plan to use a data acquisition setup with a higher signal-to-noise ratio for measuring the Edge-FBG 
spectrum, including a more stable light source and a higher resolution spectrometer to detect small deflections. Limiting 
the volume in which the sensor moves and automating the shape manipulation process can ensure that the training and 
testing data correspond to the same workspace. Moreover, we intend to continue investigating other network architectures 
for further improvements in shape estimation.  
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Chapter 6

Advanced Study on Using Deep
Learning to Model Edge-FBG Shape
Sensors

The publication presented in this chapter describes a more thorough investigation of modeling
edge-FBG sensors with deep learning algorithms. In this study, we first analyzed various data
transformations on the edge-FBG spectra and the sensor’s 3D shape. We then optimized the
hyperparameters of a convolutional neural network. We set a more advanced search space in
the hyperparameter optimization algorithm to achieve a better performing configuration that can
reach higher shape prediction accuracy with a median tip error of 4.4mm. We were able to
achieve further improvements and reduce the median tip error of the shape prediction to 3.1mm
by upgrading the network’s architecture according to the Siamese design.
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Abstract

Continuum robots in robot-assisted minimally invasive surgeries provide ad-
equate access to target anatomies that are not directly reachable through
small incisions. Achieving precise and reliable motion control of such snake-
like manipulators necessitates an accurate navigation system that requires
no line-of-sight and is immune to electromagnetic noises. Fiber Bragg Grat-
ing (FBG) shape sensors, particularly edge-FBGs, are promising tools for
this task. However, in edge-FBG sensors, the intensity ratio between Bragg
wavelengths carries the strain information that can be affected by unde-
sired bending-related phenomena, making standard characterization tech-
niques less suitable for these sensors. We showed in our previous work that a
deep learning model has the potential to extract the strain information from
the full edge-FBG spectrum and accurately predict the sensor’s shape. In
this paper, we conduct a more thorough investigation to find a suitable ar-
chitectural design with lower prediction errors. We use the Hyperband algo-
rithm to search for optimal hyperparameters in two steps. First, we limit the
search space to layer settings, where the best-performing configuration gets
selected. Then, we modify the search space for tuning the training and loss
calculation hyperparameters. We also analyze various data transformations
on the input and output variables, as data rescaling can directly influence
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the model’s performance. Moreover, we performed discriminative training
using the Siamese network architecture that employs two CNNs with iden-
tical parameters to learn similarity metrics between the spectra of similar
target values. The best-performing network architecture among all evalu-
ated configurations can predict the sensor’s shape with a median tip error of
3.11mm.

Keywords: Supervised deep learning, shape sensing, bending birefringence,
bending loss, edge-FBG, fiber sensor, curvature sensing

1. Introduction

Minimally invasive surgical procedures (MIS) are delicate operations per-
formed through small incisions or natural orifices on anatomical structures
of the human body. Such interventions are beneficial compared to conven-
tional open surgeries, as they reduce patient trauma, shorten recovery time
[1], and ensure overall cost-effectiveness [2]. In addition, surgical robots help
to realize the full potential of MIS procedures by enhancing dexterity and
manipulability, as well as improving stability and motion accuracy [2]. Con-
tinuum robots play an important role in complex robot-assisted MIS proce-
dures, where no adequate and direct access through small incisions to target
anatomies is available [1, 3, 4, 5, 6, 7, 8]. However, achieving precise and
reliable motion control of continuum robots requires accurate and real-time
shape sensing. Accurately modeling the shape of these instruments remains
challenging due to their inherent snake-like design and inevitable collisions
with the surrounding tissues during the surgery [9, 10]. Therefore, a precise
and accurate tracking system is needed to enable closed-loop control for such
flexible manipulators.

The most common and commercially available medical tracking systems
include optical tracking systems [11, 12], electromagnetic sensors [11], in-
traoperative imaging technologies [13], angular sensors [14, 15], and FBG-
based sensors [14]. Optical trackers are state-of-the-art technology for track-
ing medical tools and patients inside the operating room (OR). The optical
trackers consist of cameras that detect navigation markers attached to the
object of interest. They can navigate up to 25 tools with sub-millimeter ac-
curacy over a large measurement volume (e.g., Polaris NDI ∼ 0.12mm RMS
(root-mean-square) over a volume of ∼ 2m3 [11]). Wireless tracking, reliable
measurement, and stable performance are the other key advantages of this
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technology. However, they require a line-of-sight and are best suited to use
with large, rigid tools. These substantial limitations make optical trackers
unsuitable for navigating flexible endoscopes inside the patient’s body.

Electromagnetic (EM) tracking systems consist of two key components,
field generators and wired sensor coils. The field generator emits a defined
low-intensity EM field which establishes the measurement volume (e.g., AU-
RORA NDI, Planar 20-20 FG 75 cm3 [11]). Once the sensors enter the mea-
surement volume, a small current is induced inside them, which is then used
to determine the position and orientation of the sensor relative to the pa-
tient. This technology allows intracorporeal tracking, as it does not require a
line-of-sight and can be embedded or placed at the tip of flexible tools. How-
ever, EM tracking systems are less accurate than optical trackers and have
a smaller working volume. Adding multiple sensors along the endoscope is
often impossible, as the sensors must be wired. Furthermore, they are sensi-
tive to environmental EM interferences (e.g., the EM field of the robot) and
to the presence of conductive or ferromagnetic metals.

Intraoperative imaging modalities, including fluoroscopy, cone-beam CT,
and ultrasound, can be an alternative to EM sensors for intracorporeal track-
ing. Some imaging modalities like biplane fluoroscopy achieve even higher
accuracy as compared to EM sensors (mean shape error of 0.54mm [13]) but
are challenging to perform in crowded OR settings. In addition, they have
limitations such as high doses of radiation (e.g., X-ray-based imaging), high
computational cost (e.g., cone-beam CT), and low resolution (e.g., ultra-
sound).

In FBG-based shape sensors, the main components are a sensing probe
(coated optical fibers) and an interrogation system for measuring the sensor’s
signal. FBG sensors can track themselves in three dimensions, thus providing
real-time feedback on the shape and tip location when inserted into flexible
instruments. These sensors are easily integrable into medical devices for
tracking, as one single fiber with a typical diameter of 250µm can carry an
array of FBGs to extract strain information along the length of the fiber.
Moreover, FBG sensors are immune to EM interferences and are applicable
for navigating robotic tools. The coating layer of the optical fiber can be
a bio-compatible material, which makes it suitable for tracking catheters as
well [16].

Although different configurations for FBG-based shape sensors have been
studied in recent years [16, 17, 18, 19, 20, 21, 22], the only fiber shape sensors
that have been commercialized work based on multicore fibers (e.g., [23, 24]).
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Multicore fiber shape sensors are able to track themselves with a millimeter
range accuracy (e.g., an average error of 1.13mm for a 38 cm long sensor [20]).
However, the cost of such systems is quite high [25], as an optical frequency
domain reflectometer (OFDR) is needed for interrogating the FBGs [26],
plus a fan-out device for reading the signal from each core [27]. Recently, a
new configuration for FBG-based shape sensing, called edge-FBG, has been
proposed by Waltermann et al. [28], in which the FBGs are inscribed on
the edge of the core in a single-mode optical fiber. Unlike standard FBG-
based shape sensors, edge-FBG sensors are intensity-based, and the strain
information is carried by the intensity ratio between the Bragg wavelengths.
Such sensors can be interrogated using a broadband light source and a low-
cost spectrometer, making the edge-FBG sensor a suitable choice for many
applications where the price should be relatively low.

As explained in [28], the mode field’s center in a single-mode fiber is
sensitive to shape deformations and moves towards the opposite direction
of bending. Depending on the radial and the angular distance between the
dislocated mode field and the edge-FBGs, the intensity ratio between the
edge-FBGs at each sensing plane changes. In this method, the curvature and
the bending direction can be calculated from the estimated mode field cen-
troid, and a shape reconstruction accuracy of ∼5 cm for a 25 cm long sensor
can be achieved [29]. However, in such eccentric FBGs, the intensity values
at the Bragg wavelengths also depend on the spectrum profile of the inci-
dent light. Macro bending in optical fibers may affect the spectrum profile by
causing wavelength-dependent attenuation [30]. Moreover, in curved areas of
an optical fiber, the refractive index profile is asymmetric (known as bending-
induced birefringence), and therefore, changes in the light’s polarization state
are wavelength-dependent [31]. Consequently, polarization-sensitive elements
inside the FBG interrogation system may modify the spectrum profile by at-
tenuating each wavelength element differently and cause errors in intensity
measurements.

The authors showed in [18] that considering the complicated impact of
bending-induced phenomena on the signal of edge-FBG sensors, it is feasible
to model such sensors using deep learning techniques that predict the sensor’s
shape based on the full spectrum and not only the intensity at Bragg wave-
lengths. Meaning that it is already considering the effect of bending-related
phenomena on the spectrum profile.

In this paper, we investigate the usage of deep learning algorithms for
modeling edge-FBG sensors in more detail. First, we focus on identifying
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a good set of tuning parameters, known as hyperparameters, for our deep
learning algorithm to extract relevant features from the edge-FBG sensor.
We perform this hyperparameter tuning when the model’s input (the sensor’s
spectra) and output data (the sensor’s spatial shape) are preprocessed using
different rescaling methods. Ultimately, we employ the most suitable data
rescaling approach and the optimized feature-extracting network to perform
discriminative training using the Siamese network [32].

2. Methodology

The importance of choosing a good set of hyperparameters for a deep learning
algorithm is well-known. The Hyperband, as one of the most common hy-
perparameter optimizers, considers several possible resource allocations (e.g.,
the total number of epochs used during evaluation) and invokes Successive
Halving [33] on randomly sampled hyperparameter configurations [34]. Com-
pared to black-box approaches like Bayesian optimization, the Hyperband is
5× to 30× faster and evaluates an order-of-magnitude more configurations
[34]. In addition to the hyperparameter configuration, rescaling input and
output variables before being presented to deep neural networks greatly af-
fects the model’s performance [35]. When input variables have large values,
the model learns large weights, which may cause numerical instability, poor
performance during training, and generalization error in the network. Large-
scaled target values result in significant update rates in weight values, making
the learning process unstable. In common practices, preprocessing transfor-
mations are applied to input variables prior to training the networks, and
postprocessing steps are introduced to the model’s predictions for calculat-
ing the desired target values [35]. Therefore, we investigate different rescaling
methods on the input and output variables to identify the most suited data
preprocessing steps.

2.1. Training Setup

The dataset used in this work is from [18] with almost 53000 samples. Each
sample consists of three consecutively measured edge-FBG spectra, the inten-
sity values of 125 wavelength elements from 812 nm to 871 nm, as the input
and the spatial coordinates of 21 discrete points along the fiber’s length as
corresponding target values. These discrete points are the positions of re-

5

57



1

2

3

4

5

Tracking Camera

Interrogator

Fiber Sensor

Reflective Marker

Protecting Tube

1

2

3

5

4

Figure 1: The data acquisition experimental setup of the edge-FBG sensor. Five tracking
cameras (Oqus 7+) are used to monitor the sensor’s shape. The sensor is inserted into a
Hytrel furcation tubing to protect the fiber during shape manipulation.

flective markers that we attach to the sensor and monitor using a motion
capture system. Figure 1 shows a schematic of the experimental setup. The
FBG spectrum contains the reflected signal of 15 edge-FBGs from five sens-
ing planes. Each sensing plane has three co-located FBGs at the left, top,
and right edge of a single-mode fiber’s core (SM800p from FIBERCORE
company, UK).

We use the Hyperband algorithm, built in the Keras tuner [36], to perform
hyperparameter optimization in two steps. First, a bigger search space is
defined to optimize the settings of 1D convolutional layers (conv1D) and
pooling layers (search criteria can be found in Table 3 in the appendix).
For this hyperparameter tuning step, the number of conv1D layers is set to
seven. Based on our observations when investigating various search criteria,
the network with seven conv1D is deep enough for feature extraction. Then,
we fix these layer settings and modify the search space to tune the loss
function, the optimizer, and the dropout rate (more detail on the search
criteria is available in Table 4 in the appendix). The model’s input and
output data are preprocessed using various data rescaling methods in this
hyperparameter tuning step. The objective of the Hyperband is set to be
the root-mean-square error on the validation set so that the scale of the
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scores, assigned to suggested configurations, is not affected when different
loss functions get selected. As the Hyperband is based on a random search,
we repeat each hyperparameter search three times for statistical robustness
before selecting the final settings. To evaluate the predictive performance of
the proposed model in an unbalanced way, the dataset is split into mutually
disjoint Train-Validation-Test subsets: 80% for training, 10% for validating,
and 10% for testing.

Figure 2: The architecture of the best-performing configuration after the first step of
hyperparameter search. For this network, the input data is three consecutive edge-FBG
spectra, normalized using one-dimensional z-scaling (see Section 2.2 for more details), and
the output data is the absolute coordinates of 21 discrete points along the sensor’s length.
The channel sizes of the seven 1D convolution layers (conv1D) are 176, 120, 48, 96, 48,
232, and 224, respectively. The pooling sizes of the four max pooling layers are 2, 2, 2,
and 3, respectively.
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We investigated various configurations in the first hyperparameter tuning
step. Figure 2 shows the best-performing architecture among the suggested
configurations, in which each conv1D layer is followed by a Sigmoid activation
function and batch normalization. The kernel size for the conv1D layers is
10. Four max pooling layers are placed after the conv1D layers number two,
three, five, and seven for down sampling the features. The final layer is a
fully connected layer with a linear activation function to map the extracted
features into desired target values. These hyperparameters are fixed for the
remainder of this paper.

2.2. Input Data Preprocessing

As mentioned earlier, the intensity ratios between Bragg wavelengths of co-
located FBGs carry the strain information. Therefore, the input variables
should not be normalized/standardized independently. We investigate two
preprocessing transformations on the input variables, one-dimensional and
multi-dimensional z-scaling [37]. In the first method, we apply the standard
scaling technique, considering the input data as a one-dimensional vector.
The data distribution after rescaling has a zero mean value, and its standard
deviation is one. Figure 3(a) and (b) show the data distribution before and
after rescaling. In the second method, we apply multi-dimensional standard
scaling [37] by subtracting each wavelength element from its mean value and
dividing them over the square root of the covariance matrix

Z = UD−1/2U t(X − µ), (1)

where U and D are the Eigenvectors and the Eigenvalues of the covariance
matrix, X is the input data (sensor’s spectra), and µ is the mean inten-
sity value at each wavelength element over the training dataset. With this
approach, we achieve an approximately Gaussian density distribution (see
Figure 3(c)).

2.3. Output Data Preprocessing

In this section, we consider the measured coordinates of each marker as a
point cloud and investigate the model’s performance when various prepro-
cessing transformations are applied to these point clouds (for more details,
see the appendix). In the first method (M1), we translate each point cloud
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(a) (b) (c)

Figure 3: The histogram of the flat original input data (a), normalized input data using
one-dimensional (b), and multi-dimensional z-scaling (c). The density distribution when
using multi-dimensional z-scaling is approximately Gaussian, with skewness of ∼ 0.003
and kurtosis of ∼ −1.2.

to the origin of the global frame by subtracting the mean coordinate values
from the original coordinates. We calculate the radial distance of the points
from the cloud’s center in all markers and compute its mean value. We then
divide the translated coordinates by this calculated mean radial distance. In
this method, the spatial coordinate elements for each marker have different
scaling from the original data, but their density profile remains unchanged
(see Figure 4). In the second approach (M2), each already translated point
cloud is rescaled based on the mean of the radial distance of its own points,
and therefore, the scaling factor is different for each point cloud. For the
third method (M3), we apply a three-dimensional standard scaling to each
point cloud. This way, the transformed data is uncorrelated, and the density
profiles are different from the original ones. Lastly, as the fourth method
(M4), we use the relative coordinates between the markers instead of abso-
lute coordinate values. Figure 4 shows how the distribution of the coordinate
elements changes when applying different preprocessing transformations to
the target values.

2.4. Siamese Network

A further improvement of the network’s performance was possible by guiding
the feature-extracting part of the network in selecting relevant features for
a given spectral sample [38, 39]. The Siamese network [32] is an architec-
ture, designed for learning similarity metrics, which is well known from face
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recognition [40, 41] and handwritten forgery detection applications [32, 42].
A Siamese network usually takes two inputs, compares them in the feature
space, and provides a similarity measure between the two feature vectors.
Siamese architectures consist of two identical subnetworks (the feature ex-
tractors) with shared weights that are trained using paired samples corre-
sponding to similar (genuine) or dissimilar (imposter) outputs/pairs. During
training, the feature extractor subnetworks are forced to provide vectors close
to each other when the inputs belong to the same groups and are far away
from each other if they are from different groups.

In our implementation, shown in Figure 5, we use the same layer settings

Figure 4: The histograms of the original x-, y-, and z-coordinates, their normalized values
using M1 and M3, and the relative values using M4 for the point cloud number 10 are
shown. The histogram of processed values using methods M2 is not depicted, as the
distributions of x, y, and z coordinates are similar to M1.

10

62 Chapter 6. Advanced Study on Using Deep Learning to Model Edge-FBG Sensors



for feature extraction as in the architecture explained in Section 2.1. We
calculate the Euclidean distance between the two feature vectors, apply batch
normalization, and pass it through a single-unit fully connected layer followed
by a Sigmoid activation function. The output of the Sigmoid activation
function gives a value close to one for distant feature vectors and a value
close to zero for close vectors. In parallel, the feature vectors are also passed
into two fully connected layers. The first one has 1344 units followed by a
Sigmoid activation function, and the second one is similar to the last layer
of the previous architecture (compare Figure 2), in which the preprocessed
coordinates are calculated. We group the samples using the RMSE, that is,
the root-mean-square of the Euclidean distance between the corresponding
shapes. First, we calculate the RMSE for all possible pairs in the training
dataset. We then define the 1st and the 25th percentiles in the RMSE’s
histogram as thresholds for labeling the samples. These limits are selected
after studying various combinations. If the calculated RMSE between two
samples is less than the lower limit, we label the samples as zero (genuine
pairs), and if it is within a 1% range around the upper limit, we label them
as one (imposter pairs).

The following loss function is used for this Siamese network:

Loss = mean
(
α
(
(1− ytrue) y

2
pred + ytruemax(0,M − ypred)

2
)

+ (1− α)
(
L(yA − ya) + L(yB − yb)

)) (2)

where,

L(a) =

{
0.5 a2

δ
|a| ⩽ δ,

0.5 δ + (|a| − δ) otherwise.
(3)

In definition (2), α is a scalar coefficient to weight loss contributions of
the three model’s outputs, and δ is a hyperparameter defining the range
for mean-absolute-error, and mean-square-error in L, a modified version of
Huber loss function [43]. M is the margin, ytrue is the true label of paired
samples, ypred is the output of the right arm, yA and yB are the true relative
coordinates, and ya and yb are the predicted relative coordinates in the left
and the middle arms of the network (Figure 5). The partial loss, calculated
from ypred, is the Contrastive loss [44]. Depending on whether the inputs are
a genuine/imposter pair, the first or the second part of the Contrastive loss
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Figure 5: The architecture of the Siamese model. The feature extractor subnetworks have
a similar architecture to what is shown in Figure 2, but without the dropout and the fully
connected layers.

is applied to the output of the network’s right arm. The two L loss functions
are calculated from predicted relative coordinate values in the left and middle
arms of the network (Figure 5). For a genuine pair, the network pushes ypred
towards zero, such that the first part of the Contrastive loss also gets closer
to zero. If the inputs are an imposter pair, ypred is forced to be larger than
the value of M , such that the feature vectors stay separated in the feature
space. Similar to the data preprocessing Sections 2.2 & 2.3, the training
hyperparameters for this network, including the optimizer’s parameters, M ,
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Table 1: Shape evaluation errors on the test dataset when the input data are preprocessed
using one-dimensional and multi-dimensional normalization methods. IQR: interquartile,
one-dim.: one-dimensional normalization, multi-dim.: multi-dimensional normalization.

tip error [mm] RMSE [mm]
method median IQR median IQR
one-dim. 4.46 4.30 2.74 2.39
multi-dim. 13.38 11.34 8.11 5.76

α, and δ, were tuned using the Hyperband algorithm (see Table 5 in the
appendix for the search criteria). We ran the Hyperparameter search multiple
times and selected the best-performing architecture for final training.

3. Results

Evaluating the performance of the configurations suggested by the Hyper-
band is done by calculating the shape evaluation metrics between the true
and the predicted shapes. Shape evaluation metrics include the tip error (the
Euclidean distance between the true and the predicted coordinate of the sen-
sor’s tip) and the RMSE. The best-performing architecture among the three
hyperparameter search attempts for each normalization method is selected
based on the median values of the shape evaluation metrics in the validation
dataset.

Table 1 shows the error values for the two input normalization methods.
The one-dimensional normalization method, which preserves the distribution
profile of the input data, results in a median tip error and a median RMSE
of 4.46mm and 2.74mm, respectively. In the multi-dimensional normaliza-
tion approach, the median values are 13.38mm and 8.11mm, respectively,
which are significantly higher compared to the one-dimensional normaliza-
tion method. This might be due to the validation loss reaching its plateau
quicker when the input data distribution is approximately Gaussian (shown
in Figure 6). The one-dimensional normalization method is therefore selected
as the input data preprocessing step for the remainder of this paper.

The error statistics for shape evaluation metrics when using different pre-
processing methods on the target data are shown in Table 2. Among the three
preprocessing approaches applied to the absolute coordinate values (M1, M2,
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and M3), the first method (M1) shows the lowest error values with a median
tip error of 4.68mm and a median RMSE of 2.83mm. However, the net-
work performs better in predicting relative coordinates (M4) compared to
absolute values by resulting in the median value of 4.36mm for the tip error
and 2.78mm for the RMSE. Therefore, the relative coordinate values are
selected as the best-performing target data preprocessing. The last row in
Table 2 shows the shape evaluation parameters of the Siamese network when
using the best-performing data preprocessing on both input and target data,
one-dimensional normalization, and M4. As can be noted, there is a signif-
icant improvement in all error values, and the median tip error is reduced
by almost 1.25mm to 3.11mm compared to M4 (more information on the
significance test is provided in the appendix). The median value of RMSE is
also reduced to 1.98mm compared to the M4 method, which is 2.78mm.

The designed Siamese network uses the RMSprop as the optimizer with
a learning rate of 1−4, a momentum of 0.9, and a decay factor of 0.7. The
loss function’s hyperparameters, including M , α and δ, are 0.5, 0.7, and 2.2,
respectively. A typical case of predicted shapes using the designed Siamese
network is shown in Figure 7. The error statistics based on the Euclidean
distance between the true and the predicted shapes are shown in Figure 8. It
can be noticed that the median of the Euclidean distance between the true
and the predicted shapes is increasing towards the sensor’s end. As explained
in [18], this accumulative error might be due to inaccuracies in predicting the

(a) (b)

Figure 6: Training histories when the input data is preprocessed using (a) multi-
dimensional and (b) one-dimensional normalization methods. The model was trained
with early stopping conditions.

14

66 Chapter 6. Advanced Study on Using Deep Learning to Model Edge-FBG Sensors



Table 2: Shape evaluation errors on the test dataset when the target data are processed
using four different methods and when the network architecture is modified based on the
Siamese design (indicated in bold). The model’s output is first scaled back to absolute
coordinates for each method, and then the error values are computed.

tip error [mm] RMSE [mm]
method median IQR median IQR
M1 4.68 4.29 2.83 2.20
M2 6.73 5.46 3.97 2.69
M3 6.85 5.37 3.98 2.69
M4 4.36 4.46 2.78 2.56
Siamese 3.11 3.38 1.98 1.97

sensor’s initial orientation.

4. Conclusion

In this work, we designed a deep learning-based model to extract the shape
information of an edge-FBG sensor based on its full spectrum. We used
the Hyperband algorithm to optimize the hyperparameters of our neural

Figure 7: A typical case of predicted shapes using the designed Siamese model. The
transparent lines and circles represent the XY , XZ, and Y Z projections in the 3D graphs.
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Figure 8: The error statistics are based on the Euclidean distance between the true mark-
ers’ absolute coordinates and the predicted relative coordinates that are scaled back to
the absolute values (the first marker is excluded). On each box, the median is indicated
with a central mark, and the 25th and 75th percentiles are indicated with the bottom and
top edges of the box, respectively. The whiskers show the minimum and maximum values
within each group not considered outliers, and the outliers are marked with ⋄ symbols.
The total number of outliers are ∼ 400 out of ∼ 5300 samples. Some outliers were excluded
for better visualization of the median values.

networks. We performed the hyperparameter tuning in two steps to avoid a
large search space. First, the parameters related to the conv1D and the pool-
ing layers were optimized. The best-performing architecture contains seven
conv1D layers with a Sigmoid activation function and four max pooling lay-
ers. In the second step, optimization and loss calculation hyperparameters
were defined in the Hyperband search space to optimize the networks with
differently scaled input and output data. We showed that the models per-
form better when the input data are normalized with the one-dimensional
z-scaling and when relative coordinates instead of absolute values are used
as the target data. Upgrading the selected architecture to the Siamese de-
sign significantly improved the shape prediction accuracy of a 30 cm long
sensor, with a median tip error of 3.11mm and a median RMSE of 1.98mm.
We achieved an improvement of almost 2.7mm in the median value of the
tip error, and 1.4mm in the median value of the RMSE using the proposed
model compared to the previously designed network architecture proposed in
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[18] which showed a median tip error of 5.8mm and a median RMSE value
of 3.4mm. Compared to the mode field dislocation method [29, 28], our
proposed model can accurately predict the sensor’s shape with an order of
magnitude lower tip error.

In future work, we will add temporal shape information to the input
data to further improve the prediction accuracy. We also tend to continue
investigating different architectural designs, including Siamese networks with
triplet loss.

Supplementary information

In the supplementary material, we provided a video of the sensor’s predicted
shapes using the designed Siamese model.
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Appendix .1. Hyperparameter Optimization

This section presents the search criteria for all three hyperparameter opti-
mizations performed in this work. Table 3 shows the search space settings
for the first step of hyperparameter optimization, in which the number of
conv1D layers was set to seven. Each conv1D layer was followed by a Sigmoid
activation function and batch normalization. For the second step of hyperpa-
rameter optimization, the settings of the conv1D and the pooling layers were
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fixed. Table 4 shows the search space settings for this hyperparameter tun-
ing. The search criteria for tuning the Siamese network’s hyperparameters
are presented in Table 5.

Table 3: Search criteria for the first step of hyperparameter optimization. The optimized
kernel size, channel sizes, and pooling layer settings, resulting from this hyperparameter
tuning step, are fixed in the next hyperparameter search step.
hyperparameter search space
dropout rate min: 0, max: 0.3, step: 0.1
optimizer SGDW, Adamw
learning rate 0.1, 0.01, 0.001, 0.0001
weight decay 0.1, 0.01, 0.001, 0.0001, 0.00001
momentum min: 0, max: 0.9, step: 0.1
kernel size (similar for all conv1D layers) min: 2, max: 10, step: 1
channel size (different for each conv1D layer) min: 8, max: 256, step: 8
choice of max pooling (different after each conv1D layer) true, false
pooling size (different for each max pooling layer) min: 2, max: 3, step: 1

Table 4: Search criteria for the second step of hyperparameter optimization. In this step,
the hyperparameter search is performed three times for each data preprocessing approach.
hyperparameter search space
dropout rate min: 0, max: 0.3, step: 0.1
optimizer SGDW, Adamw, RMSprop, Adadelta, Adamax
learning rate 0.1, 0.01, 0.001, 0.0001
weight decay 0.1, 0.01, 0.001, 0.0001, 0.00001
momentum min: 0, max: 0.9, step: 0.1

loss function
mean absolute error, mean squared error,
mean squared logarithmic error, huber loss,
mean absolute percentage error, cosine similarity

Table 5: Hyperparameter search criteria for Siamese network. α, δ, and M are the loss
function’s hyperparameters, defined in Eq. 2.
hyperparameter search space
α min: 0, max: 1, step: 0.1
δ min: 0.1, max: 5, step: 0.1
M min: 0.5, max: 1, step: 0.1
rho min: 0.5, max: 0.9, step: 0.1
momentum min: 0.5, max: 0.9, step: 0.1
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Appendix .2. Point Cloud Rescaling

This section explains the output data transformation approaches in more de-
tail. Figure 9 shows a 3D shape example of the fiber sensor with 21 markers.
For illustration purposes, we only focus on three highlighted markers (num-
bers 7, 12, and 17) and study their point cloud modifications as we apply
M1-M4 rescaling methods. Figures 10 and 11 depict the scatter plots (point
clouds) of measured coordinates of the selected markers in ∼ 5800 different
shape examples. To compare the size of the point clouds after rescaling, an
estimated sphere of each point cloud is depicted with a black mesh plot. Each
sphere is centered at the mean coordinate of the original/rescaled points and
has a radius of r. The radius r in each point cloud is the mean value of the
calculated radial distance between the points and the cloud’s center.

In method M1, the rescaling factor is the same for all spheres. Therefore,
as can be seen in Figures 10 (b1-3), the relative size between the spheres
is similar to their original versions (Figures 10 (a1-3)). In method M2, the
rescaling factor for each point cloud is the average of calculated r values in

Figure 9: A 3D shape example of the fiber sensor with 21 attached reflective markers is
depicted. The three highlighted markers, numbers 7, 12, and 17, are selected for scatter
plotting. The remaining reflective markers are shown with gray circles.
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that point cloud. Therefore, all point clouds have sphere mesh plots with
a radius of one (Figures 10 (c1-3)). In the third method (M3), applying
three-dimensional standard scaling to the point clouds makes the transformed
data uncorrelated (Figures 11 (d1-3)). Using relative coordinates between
the markers (M4) greatly changes the point clouds’ appearance. As the
markers are fixed on the sensor, the maximum relative distance between two
neighboring markers is limited. It can be seen in Figures 11 (e1-3) that the
coordinate points, especially for the markers closer to the sensor’s tip, are
constrained in terms of volume and better form a sphere.

Appendix .3. Significance Test

In this section, the significance test results, comparing the evaluated models,
are presented. Figure 12 shows the tip error box plots of all seven methods
evaluated in this paper. As can be clearly noticed, the Siamese network
has the least median tip error. We performed Tukey’s HSD pairwise group
comparisons on the seven methods. The Siamese method shows p-values
close to zero compared to the other seven methods, proving that the shape
prediction’s improvement is statistically significant.
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Figure 10: The scatter plot of measured coordinates in ∼ 5800 shape examples. The
estimated sphere of each point cloud is shown with a black mesh plot. The Original
coordinate values of marker numbers 7 (a1), 12 (a2), and 17 (a3). The rescaled point
clouds using M1 method for marker numbers 7 (b1), 12 (b2), and 17 (b3). The rescaled
point clouds using M2 method for marker numbers 7 (c1), 12 (c2), and 17 (c3).
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Figure 11: The rescaled point clouds using M3 method for marker numbers 7 (d1), 12
(d2), and 17 (d3).The rescaled point clouds using M4 method for marker numbers 7 (e1),
12 (e2), and 17 (e3).
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Figure 12: The tip error statistics of the designed networks when different data prepro-
cessing methods and the Siamese architecture were employed. On each box, the median
is indicated with a central mark, and the 25th and 75th percentiles are indicated with
the bottom and top edges of the box, respectively. The whiskers show the minimum and
maximum values within each group not considered outliers, and the outliers are marked
with ⋄ symbols. Some outliers were excluded for better visualization of the median values.
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Chapter 7

The Secret Role of Undesired Physical
Effects in Eccentric FBGs

In the publication presented in this chapter, we describe the physical phenomena in edge-FBG
sensors that are induced by shape deformations. We comprehensively investigated how the edge-
FBG spectra respond to external perturbations and why the mode field dislocation approach as
the proposed technique for characterizing edge-FBG sensors in the literature is not accurate
enough. The shape prediction error of our proposed deep learning method, compared to the
mode field dislocation approach, is 50 times lower, and we could achieve a median tip error of
almost 2mm in a curvature range of 0.58m−1 to 33.5m−1. Moreover, by decoding our model’s
decisions, we were able to provide a visual explanation of our model’s predictions. Our finding
shows that the designed deep learning model has found a meaningful pattern in the edge-FBG’s
side slope and used them as additional sources of shape deformation information to compensate
for the low spatial resolution of the sensor.
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Abstract

Fiber optic shape sensing is an innovative technology that has enabled
remarkable advances in various navigation and tracking applications.
Although the state-of-the-art fiber optic shape sensing mechanisms can
provide sub-millimeter spatial resolution for off-axis strain measure-
ment and reconstruct the sensor’s shape with high tip accuracy, their
overall cost is very high. The major challenge in more cost-effective
fiber sensor alternatives for providing accurate shape measurement is
the limited sensing resolution in detecting the shape deformations.
Here, we present a novel data-driven technique to overcome this lim-
itation by removing strain measurement, curvature calculation, and
shape reconstruction steps. We design a deep-learning model based on
convolutional neural networks that is trained to directly predict the
sensor’s shape based on its spectrum. Our fiber sensor is based on
easy-to-fabricate eccentric fiber Bragg gratings (FBG) and is interro-
gated with a simple and cost-effective readout unit in the spectral
domain. We demonstrate that our deep-learning model benefits from
undesired bending-induced effects (e.g., cladding mode coupling and
polarization), which contain high-resolution shape deformation informa-
tion. These findings are the first steps toward a low-cost yet accurate fiber
shape sensing solution for detecting complex multi-bend deformations.
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Keywords: Eccentric FBGs, fiber sensors, FBG sensors, polarization,
bending loss, deep learning, shape sensing, curvature sensing

Fiber optic shape sensing has proven to have great potential, specifically in
medical applications such as catheter navigation, surgical needle tracking, and
continuum robot navigation. Compared to other common navigation tech-
nologies [1–3], fiber shape sensing has many advantages, such as immunity
to electromagnetic fields, bio-compatibility, and high flexibility. Fiber shape
sensors are small in diameter, easily integrable into flexible instruments, and
require no line-of-sight. Distributed sensors based on multicore fibers can also
provide high-resolution shape measurements [4–6].

Fiber shape sensors measure off-axis strain, which is then used to calcu-
late the directional curvature and reconstruct the sensor’s shape [7]. Various
fiber sensor configurations have been investigated for off-axis strain measure-
ment, including multicore fibers with [8–10] or without [11–13] FBGs in their
cores, fibers with cladding waveguide FBGs [14], and fiber bundles made from
multiple single-mode fibers that contain FBG arrays [15–19]. For an accurate
shape reconstruction, high spatial resolution for off-axis strain measurement is
essential. In some fiber shape sensor configurations (e.g., distributed multicore
fiber sensor), sub-millimeter spatial resolution can be achieved [4]. However,
in these sensors, complex and expensive readout units are used to analyze the
output signal in time- or frequency domain for strain measurement [20–23].
Although fiber sensors interrogated with the spectral-domain readout systems
are cheaper, their spatial resolution is limited by their lower sensing plane
density [8, 24], making them inapplicable for tracking complex shape defor-
mations. Therefore, a cost-effective, high-resolution, and accurate fiber shape
sensing technique is desirable.

Among cost-effective fiber shape sensors interrogated in the spectral
domain, eccentric FBG (eFBG) sensors show great capacity for tracking appli-
cations thanks to their unique sensing mechanism [25–27]. Each sensing plane
in eFBG shape sensors consists of three highly localized FBGs, written off-axis
in the fiber’s core (also known as edge-FBG triplet) as shown in Fig. 1a [25].
Shape deformations are commonly calculated from the displacement of the
fundamental mode-field inside the optical fiber, which is estimated from spec-
tral intensity modifications (See Figs. 1b and c) [25, 26]. However, many
other effects including bending-sensitive mode coupling [28–31], polarization-
dependent losses [32–36], and wavelength-dependent bending losses [37–43]
also modify the eFBGs spectral profile. These effects cannot be accurately
modeled, and their impact on the sensor’s spectra is indistinguishable from the
mode-field displacements. Further details on the eFBG configuration, sensing
mechanism, and bending-induced effects are provided in Methods.

We present in this paper a data-driven modeling technique based on deep
learning (DL) that can indeed find a meaningful pattern in the eFBG sig-
nal that is affected by uncontrolled bending-induced effects. These additional
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Fig. 1 FBG configuration and working principle of the eFBG sensor. a Sketch of
the cross-section view of the eFGB sensor. Each sensing plane of the eFBG sensor consists
of three FBGs inscribed off-axis with ∼ 90◦ angular separation (also known as edge-FBG
triplet). b Mode-field distribution of a straight single-mode fiber and the expected signal
from eFBGs of a same sensing plane. c When the fiber is curved, mode-field distribution
moves in the opposite direction of the bending, which affects the relative intensity between
the eFBGs.

sources of information considerably improve shape prediction accuracy. Our
novel technique provides high spatial resolution shape estimation, directly from
the eFBG sensor’s signal without requiring any strain measurement, curvature
calculation, and shape reconstruction steps.

Concept

In this section, we explain the designing and training process of a deep neural
network for our eFBG shape sensor. The 30 cm long eFBG fiber sensor used
in this work features five sensing planes separated by 5 cm from each other.
At each sensing plane, three off-axis FBGs are inscribed at a radial distance
of ∼ 2 µm to the top, left, and right side of the fiber’s core.

The dataset used for developing the deep-learning-based model is collected
using a similar setup reported in our previous work [44] (see Methods for more
details). We use three normalized, consecutively measured spectral scans as
input data to the proposed DL model. Each scan is recorded from 800 nm to
890 nm comprising 190 wavelength components. The target data are the rela-
tive coordinates of 20 discrete points (reflective markers of the tracking system)
measured over the length of the shape sensor (see Ref. [45] for more detail
on data preprocessing). For this dataset, around 58000 samples are collected
during 30mintues of random movement of the fiber sensor. To evaluate the
predictive performance of the trained model in an unbiased way, samples are
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first shuffled and then split into Train-Validation-Test subsets: 80% for train-
ing, 10% for validating, and 10% for testing. We refer to this testing data set
as Test1 for the remainder of this paper. The second set of data (Test2) with
a size of ∼ 5800 samples is recorded separately to evaluate the performance
of the trained model for unseen shapes from a continuous movement. We also
collected 320 samples, as Test3, when only certain sensor regions are bent (see
Methods for more detail).

A DL model needs a specially designed network architecture to extract
essential features from the sensor’s spectra and to predict its corresponding
shape. To do so, we ran an optimization algorithm similar to the Hyperband
optimizer [46]. This optimization algorithm looks for the best set of essential
parameters, such as number of layers, whose values can not be estimated from
the data during training (also known as hyperparameters). Figure 2 shows the
architecture of the best-performing configuration after hyperparameter tuning.

To find out which part of the spectra is relevant for feature extraction, we
calculate the forward finite difference of the network’s output with respect to
the input spectral components. This difference provides an influence evaluation

Fig. 2 Architecture of the best-performing configuration after hyperparameter
tuning. The architecture includes five 1D convolutional layers (Conv1D), six fully connected
layers, five max pooling layers, four batch normalization steps, and two dropout steps. The
designed network receives three consecutive spectral scans as the input and predicts the
relative coordinates of 20 discrete points over the sensor’s curve. More detail on the channel,
kernel, and pooling sizes is available under Methods.
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Table 1 Shape evaluation errors in MFD and DL methods using test sets
Test1, Test2, and Test3. The lowest achieved error values are indicated in bold.

tip error [mm] RMSE [mm]
dataset method median IQR median IQR

Test1
MFD 111.3 121.5 59.4 71.7

DL 2.1 2.6 1.5 1.6

Test2
MFD 98.5 46.0 53.8 29.1
DL 17.1 12.6 9.8 7.0

Test3
MFD 39.5 34.7 17.1 18.3

DL 6.0 9.0 5.1 6.6

for each wavelength component of the input spectra to decode the model’s
predictions (see Methods).

As an evaluation baseline, we compared the shape prediction accuracy of
the proposed DL approach with the mode-field dislocation method (MFD) on
the same test sets. Following the process explained in our previous work [25],
we calibrate our shape sensor to determine the exact angular and radial posi-
tion of each eFBG. Then, we estimate the mode-field centroid at each sensing
plane and calculate the curvature and the bending direction [25]. Finally, we
reconstruct the 3D shape of the eFBG sensor using the interpolated values of
the calculated directional curvatures at small arc elements. It should be noted
that the density of the sensing planes in our eFBG shape sensor is not suf-
ficient for the MFD method to estimate complex deformations. Nevertheless,
we performed the test to show the superiority of the proposed data-driven
technique (DL).

Results and Discussion

Shape prediction evaluation. We evaluated the performance of the DL
approach using the three testing datasets and compared the results with the
MFD method. Table 1 shows the shape error metrics including the tip error,
that is, the Euclidean distance between the true and the predicted coordinate
of the sensor’s tip, and the root-mean-square of the Euclidean distance (RMSE)
between the true and the predicted coordinates of the discrete points along
the sensor’s length. The MFD approach, when using Test1 dataset, shows
median and interquartile (IQR) tip error values of 111.3mm and 121.5mm,
respectively. These error values reduce to 98.5mm and 46mm when using
Test2 dataset. The reason for such performance difference is that Test1 dataset
contains more diverse shapes, as the samples are randomly selected from a
larger dataset compared to Test2, which is a continuous sensor movement in a
short period. As expected, the error values are considerably high in all testing
datasets, since there is too little information available for the MFD approach
to estimate the complex shape deformations in these datasets.

The DL method, on the other hand, significantly improves the shape pre-
diction accuracy of Test1 samples, with a median and IQR tip error values
of 2.1mm and 2.6mm. These values increase to 17.1mm and 12.6mm on less
diverse Test2 samples. This is due to the fact that a DL model can only learn to
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extract the most general/relevant features from the input signal, if the training
dataset is representative of the expected signals from the sensor. However, in
Test2 dataset, less than 2% of the samples have at least 100 similar examples
in the training data (a maximum RMSE of 5mm is chosen as the similarity
measure after evaluating several thresholds). This shows that 30minutes of
manual shape manipulation is insufficient to cover the sensor’s working space
and create a representative training dataset for the model to generalize prop-
erly. On the other hand, in Test1 dataset, almost 20% of the samples have
at least 100 similar examples in the training dataset, which means the DL
method is being tested on samples that the model has already learned how to
handle. Therefore, Test1 can mimic the situation where the training dataset
represents the expected shapes of the sensor.

Shape evaluation results of Test1 dataset define the performance of our
model’s lower limit. Such performance difference also suggests that the DL
model is better to be trained as application-specific, since it can better focus
on relevant features when learned from the expected shape distribution of the
sensor. On the other hand, when training data covers most of the expected
behaviors from the sensor, the DL model might only “memorize” the corre-
sponding shape for each signal without searching for relevant features in the
sensor’s spectrum. To investigate this, we compare the performance of our DL
method with a dictionary-based algorithm. In this approach, all the training
and validation samples create a pre-defined dictionary. The shape prediction
is made by looking for the closest spectrum to the test sample and presenting
its corresponding shape. The median tip errors on datasets Test1 and Test2
are 5.9mm and 50.0mm with IQR values of 3.9mm and 43.3mm, respectively,
which are higher than error values when using our DL technique. This shows
that our DL model generalizes and is indeed beneficial for predicting more
accurate shapes.

Two essential factors have to be considered when working with dictionaries:
the size of the dictionary and the execution time required to find the best
matching example. To get an accurate shape estimation for a given sample,
the number of stored samples in the dictionary should be large enough to
cover all possible examples, which leads to a long execution time. Therefore,
this approach has a trade-off between accuracy and execution time. However,
extensive training data do not negatively affect these two factors in DL method,
as the resulting model size is independent of the training data size.

Our observations show that the designed DL model can recognize deforma-
tions even between the sensing planes. To further investigate this interesting
finding, we evaluated the shape predictions using Test3 dataset, in which the
deformations are only applied between the sensing planes. Test3 dataset con-
tains four deformation examples, each repeated twice and measured 40 times.
As expected, the classical MFD method is not able to accurately predict the
sensor’s shape for such deformations, as the deformed area is not at any of the
sensing planes. However, when using the DL method, we achieve a median tip
error of 6mm which is ∼ six times smaller than the median tip error using
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MFD on this dataset. The precision of the predicted tip position in Test3
dataset is 1.9mm on average.

An example from Test3 samples where the sensor is bent in the region
between the sensing planes 3 and 4 is depicted in Fig. 3a. It should be noted
that the intensity ratio of the eFBG Bragg peaks in each sensing plane can also
be influenced by previously mentioned effects other than fundamental mode-
field dislocations. The MFD approach, however, does not consider such effects

Fig. 3 Decoding the DL model decision for deformations between sensing planes.
a An example from Test3 samples in which the sensor is bent in the region between the
sensing planes 3 and 4. The true shape (ground truth) is shown with green circles. The
five sensing planes of the sensor are shown with × signs. The predicted shapes using the
mode-field dislocation method (MFD) and the deep learning method (DL) are shown with
orange and purple solid lines, respectively. b The finite difference of the loss value with
respect to the input spectral elements. Wavelength components shown with colors closer to
yellow contribute more to the model’s decision on this particular example. c Highlighting
the importance of input spectral elements in relative coordinate prediction of all 20 markers
based on the magnitude of the Euclidean distance between the predicted relative coordinates
of each marker, before and after spectral modification. The position of the sensing planes
with respect to the markers are indicated with dashed blue lines. SPi: ith Sensing Plane.
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and is thus incapable of correctly interpreting the signal variations. On the
other hand, the DL model manages to accurately predict the sensor’s shape as
it looks at the full spectral profile, including the minute changes at the wave-
lengths outside the Bragg resonances. Figure 3b shows the finite difference
analysis of the loss value with respect to the 190 wavelength components of the
input spectra. The higher the difference, the more important the correspond-
ing wavelength component is for shape prediction in this example. Figure 3c
gives a deeper insight into this investigation. For all 190 wavelength compo-
nents, the Euclidean distance between the predicted relative coordinates of
each marker before and after the spectral modification is depicted using a color
map. The contribution of each wavelength component to the relative coordi-
nate prediction of all 20 markers is realized from the presented color map in
Fig. 3c.

Fig. 4 Decoding the DL model decision for deformations after the last sensing
plane. An example from Test3 samples in which a 3 cm long segment, 1 cm after the last
sensing plane, is deformed. Refer to the caption of Fig. 3 for more details.
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Another important finding is that the DL model can also detect deforma-
tions after the last sensing plane. Figure 4 shows an example in which, a 3 cm
long segment, 1 cm after the last sensing plane, is deformed. Similar to the
example in Fig. 3, the MFD method is not able to predict the sensor’s shape
in such deformations. The DL model, in contrast, learned to employ relevant
features in the side slopes of the eFBG spectra to predict the correct shape
(see Figs. 4b and c). A possible explanation for such intriguing performance
is that in the area after the last sensing plane, wavelength-dependent interfer-
ence occurs between the back-reflected light from the air-glass interface at the
fiber’s end tip (Fresnel reflection) and the downstream incident light. Defor-
mations in this region affect interferences in two ways: first, the spectral profile
of the downstream light changes due to the bending. Second, the coupling
conditions between the back-reflected and the downstream lights change. Con-
sequently, the measured spectra from the fiber sensor show small variations,
as the deformations affect the interference pattern.
Optimum number of sensing planes. A key factor in eFBG sensors, when
using the MFD method, is the number of sensing planes for detecting shape
deformations. Similar to any other quasi-distributed shape sensor, the distance
between the sensing planes determines the sensor’s spatial resolution in shape
measurements. Depending on the complexity of the shape deformations, a lim-
ited number of sensing planes in the sensor (low spatial resolution) can lead to
large tip errors in methods that include shape reconstruction (e.g., the MFD
method). In this section, we present a theoretical analysis for realizing the
minimum number of sensing planes required in eFBG sensors when using the
MFD method to reach the same accuracy for the shape prediction as we get
using five sensing planes in our DL method here.

We simulated the shape reconstruction error for different spatial resolu-
tions. To do so, we first interpolate the discrete curve points over the sensor’s
true shape measured by the motion capture system, using a Spline with a res-
olution of 0.1mm (this value was selected empirically). We then calculated the
curvature and the torsion–the curve’s deviation from the osculating plane–at
the query points. Finally, we use the calculated curvatures and bending direc-
tions at the sensing planes to reconstruct the spatial curve and compare it
with the true shape. For a 25 cm long sensor with 50mm spatial resolution
(five sensing planes), the median tip error of the reconstructed shapes, tested
on Test1 and Test2 datasets, is ∼ 50mm, which is almost 16 times higher
compared to what the DL approach achieved (see Table 1). In order to get a
median tip error of 3mm, the spatial resolution of the sensor should also be in
a similar range, meaning that the MFD method would need around 84 sensing
planes consisting of 252 eFBGs.

Conclusion

In this paper, we developed a novel fiber shape sensing mechanism with a data-
driven technique, that unlike conventional fiber shape sensors, does not include
off-axis strain measurement and curvature calculation at discrete points along
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the fiber sensor’s length to estimate its 3D shape. We used an easy-to-fabricate
eFBG sensor with a simple and cost-effective readout unit. We designed a deep
learning algorithm that can directly learn from our sensor’s signal to predict its
corresponding shape. We then evaluated the shape prediction accuracy of our
designed model (the DL method) in various testing conditions and compared
it with an exemplary experiment, the mode-field dislocation method (MFD).
Furthermore, we showed that the spatial resolution of off-axis strain measure-
ment in FBG-based (quasi-distributed) shape sensors is the main limitation,
as the deformations between the sensing planes are not detected in complex
shapes. The deep learning technique, on the other hand, uses the full spec-
trum of our eFBG sensor, including the Bragg resonance’s side slopes, as the
model’s input to compensate for the low density of sensing planes. We believe
that the deep learning model is using the impact of undesired bending-induced
phenomena, including cladding mode coupling, bending-loss oscillations, and
polarization-dependent losses, as additional sources of information to overcome
the spatial resolution limitation for detecting complex deformations. There-
fore, there is no need to adapt the fiber sensor design and its interrogation
system for minimizing the impact of such bending-induced phenomena. The
shape prediction error of our developed DL method for 3D curves in a curvature
range of 0.58m−1 to 33.5m−1 is reduced by a factor of ∼ 50 compared to the
MFD method. We also showed that the designed deep learning model general-
izes nicely, as the performance is twice as good compared to a dictionary-based
algorithm. The proposed shape sensing solution is 30 times less expensive than
the commercially available distributed fiber shape sensor with a similar level
of accuracy.

Methods

Working Principle of eFBG Sensor When the eFBG sensor is bent,
the field distribution of the fundamental mode moves away from the core
center [25–27] (see Fig. 1b). Dislocations in the mode-field’s centroid cause
intensity changes in the reflected signal from the eFBGs [25]. From the inten-
sity ratio between the eFBGs at each sensing plane, curvature and bending
direction can be calculated [25]. For simplification, this approach assumes that
no other physical phenomena inside a bent optical fiber affect the intensity
ratio between the eFBGs of the same sensing plane.

However, positioning FBGs away from the core axis breaks the cylin-
drical symmetry of the fiber, which increases coupling from the core mode
to the cladding modes [28, 29]. The strength of such mode coupling varies
when the fiber is bent, as it affects the overlap integral between the interact-
ing modes [28, 30]. Bending an optical fiber causes strain-induced refractive
index changes and dislocates the intensity distribution of the propagating
light [26, 47, 47], which directly influences the coupling efficiency. There-
fore, the intensity of the cladding modes changes when the fiber is bent.
In eFBGs, formation of cladding-mode resonances in fiber gratings provides
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highly sensitive full directional bending response with a simple light intensity
measurement [31]. Although cladding modes are often stronger in stripped
fibers or in fibers with lower refractive index coatings than the cladding
layer [28, 29], they have also been observed in standard fibers coated with
higher refractive index materials [48]. Any recoupling between the excited
cladding resonances and the fundamental mode, affects the relative intensity
values between the eFBGs.

FBG interrogators for quasi-distributed sensors typically consist of a broad-
band light source, like a super luminescent diode (SLED), and a grating-based
spectrometer. The emitted light from SLEDs is partially polarized, meaning
that it undergoes wavelength-dependent polarization changes [32] in a bire-
fringence medium (e.g., bent fiber) [33–36]. On the other hand, the efficiency
of spectrometer grating is polarization-dependent, and therefore, the spectral
profile will be impacted by polarization-dependent losses. This effect further
modifies the measured intensity ratio between the Bragg peaks. The polariza-
tion effect in intensity-based fiber sensors is often kept at a minimum by using
a polarization scrambler to change the polarization state randomly or by using
polarization-insensitive spectroscopy instruments.

As is well known, light power loss increases when optical fibers bend [37].
Macro bending loss usually reflects itself in spectral modulations due to
coherent coupling between the core mode and the radiated field reflected by
the cladding-coating and the coating-air interfaces (also known as whisper-
ing gallery modes) [38, 49]. The reflected field, at the coating-air boundary,
causes short-period modulations as the re-injection path is longer [38, 49].
Whereas, reflections at the closer cladding-coating interface cause long-period
resonances [39–41, 49]. These bending attenuation losses are also temperature-
dependent. Thermal variations affect the refractive index of the coating layer
and consequently influence the coupling between the core and the cladding
whispering gallery modes [42]. Many models have been proposed to evaluate
bending loss peak positions and shapes ([39, 40, 43]). The strong wavelength
dependence of bending losses is an additional complicating factor in designing
intensity-based sensors [49] as it modulates the spectral profile and affects the
intensity ratio at the Bragg peaks of the eFBGs in a same sensing plane.

Setup. Data acquisition setup used for developing the deep-learning-based
model is shown in Fig. 5. We used a low-cost FBG interrogator (MIOPAS
GmbH, Goslar, Germany) consisting of an uncooled transmit optical sub-
assembly (TOSA) SLED module and a NIR micro-spectrometer with 0.5 nm
resolution to cover all 15 Bragg wavelengths from 813 nm to 869 nm. We
recorded the sensor’s spectra at random curvatures and orientations (in a cur-
vature range of 0.58m−1 to 33.5m−1) while monitoring the reflective markers
attached to the 30 cm long sensor using a motion capture system (Oqus 7+,
Qualisys AB, Sweden). The data acquisition time period was 30minutes for
Test1 and 3minutes for Test2 datasets. The acquisition rates in the FBG
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interrogator and the motion capture system were 75Hz and 200Hz, respec-
tively. The sensor’s spectra and the coordinate values corresponding to its
shape were synchronized with a tolerance of less than 3ms.

We also used a laser-cut curvature template (Fig. 5) to collect 320 samples
for Test3 dataset, when only certain sensor regions should be bent. The cur-
vature template has four grooves allowing the sensor to be bent at the middle
30mm area between the sensing planes 2 and 3, 3 and 4, 4 and 5, and 10mm
after the last sensing plane with a bending radius of 50mm.

Training Setup. The search space we defined for tuning the network’s
hyperparameters consists of the number of 1D convolutional layers (Conv1D),
the number of fully connected layers (FC), the layer settings, the choice of
batch normalization and downsampling, training settings, and loss function
parameters. Search criteria are presented in Table 2.

In the designed network, input samples with a batch size of 256 are first
batch normalized and then fed into a Conv1D layer with 16 channels, followed
by a max pooling layer with a kernel size of 3 and a stride of 2. The second
Conv1D layer also has 16 channels, followed by a max pooling layer with a
kernel size of 2. The third Conv1D layer has 32 channels, followed by a max
pooling layer with a kernel size of 3 and a stride of 2. The fourth Conv1D
layer also has 32 channels with a stride of 2, followed by a max pooling layer
with a kernel size of 3. The last Conv1D layer has 256 channels, followed by
batch normalization and a max pooling layer with a kernel size of 2 and a
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Fig. 5 The data acquisition experimental setup. The motion capture system includes five
tracking cameras (Oqus 7+, Qualisys AB, Sweden). For protection purposes, the fiber sensor
is inserted in a Hytrel furcation tubing with an inner diameter of 425 µm and an outer
diameter of 900 µm. Two v-clamps are used to hold the protection tubing and to fix the
optical fiber before the insertion. The reflective markers are 6.4mm in diameter with an
1mm opening (X12Co., Ltd, Bulgaria). A thermocouple is placed close to the sensor’s base to
monitor the temperature during the data acquisition, ensuring no sudden thermal fluctuation
affects the sensor’s signal.
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Table 2 Search criteria for hyperparameter optimization.

hyperparameter search space selected values

number of Conv1D layer min: 1, max: 20, step: 1 5
number of FC layer min: 1, max: 20, step: 1 5

BN after each layer true, false -

dropout after FC layer true, false -
dropout rate min: 0.1, max: 0.8 -

stride min: 1, max: 2, step: 1 -

kernel size (max pooling layer) min: 2, max: 3, step: 1 -

distribution of initial weights

standard, Xavier uniform,

Xavier normal, Kaiming uniform,
Kaiming normal

Xavier normal

learning rate 0.01, 0.001, 0.0001, 0.00001 0.0001

sorting Conv1D layers true, false true
L2 regularization 0.1, 0.01, 0.001, 0.0001, 0.00001, 0 0

threshold in SmoothL1 any values between 0.0 and 5.0 4.04

stride of 2. The extracted features are flattened to a 2048-long vector, fed into
5 FC layers, each with 2000 units. The first FC layer is followed by batch nor-
malization and a dropout layer with a probability of 0.37, and two more FC
layers. A batch normalization, an FC layer, a dropout layer with a probability
of 0.16, and a fourth FC layer are the remaining layers before the final layer.
The last layer is an FC layer that maps the output of the fourth FC layer into
the target values, the relative coordinates. In all layers of this network archi-
tecture, the rectified linear unit (ReLU) serves as the activation function, and
the kernel size for the Conv1D layers is 3. In this model, the Adam optimizer
with a learning rate of 0.0001 minimizes the SmoothL1 loss function with a
threshold of 4.04.

Decoding The Model’s Decisions. Inspired by Gradient-weighted Class
Activation Mapping (Grad-CAM), we decode the decisions made by our CNN
(convolutional neural network)-based model. Decoding our model’s decisions
helps us understand which part of the input spectra contributes to coordinate
predictions. Grad-CAM is a commonly used technique in image classification
problems that generates visual explanations from any CNN-based model with-
out any re-training or architectural changes required. Gradient is a measure
that shows the effect on the output caused by the input. In other words, we
are looking for the part of the input with the highest effect on the model’s out-
put. However, due to the small output dimension in each channel of the last
Conv1D layer, its gradient heat map highlights the inputs’ important parts
with a low resolution. Therefore, instead of the gradient of the Conv1D layers,
we calculate the forward finite difference of the model’s loss with respect to
the input spectral elements. The spacing constant is chosen 0.1, higher than
the spectral intensity noise level. In this method, we modify the intensity value
of one spectral element and monitor the changes of the model’s loss value.
We repeat this process for all 190 spectral elements. The resultant color maps
(shown in Fig. 3 (b) and Fig. 4 (b)) indicate the impact of the changes in each
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spectral element on the model’s SmoothL1 loss value. In order to investigate
the contribution of each spectral element to the coordinate prediction of each
individual marker, we calculated the Euclidean distance between the predicted
coordinates of each marker before and after spectral modification. This way,
we were able to highlight all the spectral elements contributing to the relative
coordinate prediction of each marker.

Supplementary Information. We provided three videos in the supplemen-
tary material, visualizing the sensor’s predicted shapes using the DL and the
MFD methods on all three datasets.
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[29] Thomas, J.U., Jovanovic, N., Krämer, R.G., Marshall, G.D., Withford,
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Chapter 8

Conclusion and Outlook

8.1 Discussion

This thesis aimed to develop cost-effective shape-sensing solutions based on optical fibers for
navigating continuum robots in RAMIS with clinically relevant accuracy. A tool tracking system
in RAMIS provides a closed-loop motion control of continuum robots that makes path planning
possible and alleviates manipulation safety concerns. The work presented here focuses on de-
veloping two shape-sensing solutions: sensors based on multiple single-mode fibers containing
FBG arrays and edge-FBG shape sensors.

The first developed prototypes based on multiple fibers were presented in Chapters 3 and
4. The proposed sensor is categorized as a quasi-distributed FBG sensor, interrogated using
the WDM technique. The designed sensor consists of three single-mode fibers, each with an
array of five FBGs that are 5 cm apart. A sensor assembly setup was designed to align and
fix the three fibers on a substrate with highly flexible glue, ensuring no twisting occurs during
the gluing process. We selected two different substrates, a semi-rigid wire-braided Polyimide,
and a super-elastic Nitinol wire, to study the effect of the substrate’s stiffness on the sensor’s
performance.

The sensor probe with the semi-rigid substrate showed high thermal sensitivity. Therefore, a
template-free motorized calibration setup in a temperature-controlled environment was designed
to calibrate the sensor. The calibrated sensor showed high sensitivity to small deformations with
curvature levels of 0.7m−1 to 2.5m−1. The average positioning error in this 20 cm long sensor
was ∼ 2.7mm.

The sensor probe with the super-elastic substrate had a triangular cross-section and showed
bending preferences at specific orientations. Therefore, four 3D curvature templates were de-
signed to perform the sensor calibration in a controlled condition. Unlike typical calibration se-
tups in which the sensor is rotated in a fixed curvature template, the designed curvature template
was rotated to various orientations before the sensor insertion. This technique was successfully
able to provide repeatable data for sensor calibration. However, the prediction accuracy of this
20 cm long sensor in multi-bend shape deformations (curvature range of 0.04m−1 to 8.7m−1)
was not satisfactory and showed a median tip error of 9.9mm to 16.2mm.

Some limitations could not be overcome in these sensor configurations, such as, low spatial
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resolution, glue aging, and the strain transfer between the substrate and the re-coated FBGs.
Moreover, the calibration setup is always a limiting factor, as the shape accuracy of the ground
truth is limited by the template. Such sensors can only be suitable for short flexible tools with
limited flexibility, but not for detecting complex deformations in continuum robots. For longer
sensors, expensive broader light sources and higher resolution spectrometers would be needed
to increase the dynamic range of the sensor.

The second shape sensing solution we developed in this project was based on edge-FBGs.
Edge-FBG shape sensors are highly flexible and can provide real-time shape estimations. The
main challenge in edge-FBG shape sensors, which we addressed in this thesis, was the complex-
ity of the sensor’s response to shape deformations and the low shape prediction accuracy when
using existing approaches from literature. In standard calibration techniques for fiber shape sen-
sors, the fiber is rotated in a curvature template at known curvatures and all possible bending di-
rections. However, in edge-FBG sensors, the intensity ratios between the co-located edge-FBGs,
which carry the shape deformation information, are also sensitive to deformations applied to the
fiber segments outside the sensing area. Therefore, the fiber part that connects the sensor to the
interrogation system should be fixed during the calibration. On the other hand, such long and
thin fibers might not perfectly follow the curvature template’s movement during calibration, fur-
ther limiting the calibration accuracy. Moreover, the existing approaches do not consider all the
effects occurring in bent optical fibers and, consequently, cannot provide accurate shape predic-
tions. Addressing the aforementioned challenges, we developed a new technique that does not
require curvature templates or shape reconstruction steps and provides accurate shape predic-
tion in real-time. In Chapter 5, we focused on studying the feasibility of modeling the complex
behavior of edge-FBG shape sensors with deep learning techniques. We first studied the stabil-
ity of the signal acquired by a low-cost interrogation system. This interrogator was examined
in a setup designed for collecting sensor spectra during random shape deformation. As the ac-
curacy level of ground truth shape estimation using templates was not satisfactory, we used a
motion capture system to monitor the actual shape of the sensor during the data acquisition. We
used custom-made reflective markers that did not limit the sensor’s movements during manual
shape manipulations. Then, we evaluated the performance of a simple network architecture in
predicting the shape of the edge-FBG sensor.

In Chapter 6, we conducted a more thorough investigation using the deep learning technique.
We defined the suitable settings of the data preprocessing steps and the hyperparameter search
algorithm for designing the optimum network architecture. Moreover, we investigated an archi-
tectural design guided to learn similarities in the feature space, which considerably improved the
prediction accuracy.

In Chapter 7, as the highlight of this PhD thesis, we proved that the deep learning technique
upgrades the edge-FBG sensors from a quasi-distributed type into distributed fiber shape sen-
sors. We studied possible sources of information that the deep learning model uses for such an
upgrade. We also provided a visual explanation showing that spectral elements other than re-
flection peaks in the sensor’s spectrum were vital for the deep learning model’s decisions on the
testing samples. We showed that the deep learning model performs better than a lookup table
approach, in which the shape predictions are made by looking for the closest spectrum in the
provided dataset. Such a comparison showed that deep learning was not memorizing the cor-
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responding shape for each signal but rather found generalizing rules. The deep learning model
we designed can accurately predict complex deformations, in a curvature range of 0.58m−1 to
33.5m−1, with a median tip error of almost 2mm. This shape sensing solution is 30 times less
expensive than the commercially available distributed fiber shape sensor at a similar level of
accuracy.

However, there are, of course, some challenges when using edge-FBG shape sensors. Al-
though the deep learning model we developed can accurately predict complex shapes in the
laboratory environment, it does not yet perform as well when it receives an input signal that is
out of its expectations. The shape prediction error is almost one order of magnitude larger when
the testing samples are from different shapes. Moreover, the sensor requires a referencing step
prior to each use, as the spectrum profile of the straight fiber should be known for normalizing
the input spectra. These sensors are not yet at a high technology readiness level and need further
investigations, especially in an actual application environment.

8.2 Conclusion

This work has contributed to developing optical fiber-based shape sensing solutions for navigat-
ing continuum robots in RAMIS and flexible manual tools in MIS. We investigated two cost-
effective shape sensing configurations, multiple single-mode fiber bundles, and an edge-FBG
array sensor. Each presented shape sensing mechanism has certain benefits and drawbacks and
can be suitable for specific applications. The fiber bundle with the semi-rigid tubular substrate
has a working channel in the middle and is highly sensitive to small deformations. It can predict
shapes with an uncertainty of around 1% and is suitable for navigating semi-flexible manual
tools with a limited workspace and a maximum length of 20 cm. The fiber bundle with a super-
elastic wire has a more flexible substrate and can reach higher curvature levels. It can predict
shapes with an uncertainty of 5% to 10%, depending on the complexity level of deformations.
Such a sensor can be suitable for applications where large deflections are expected, but a cen-
timeter range tip accuracy can still be acceptable. In general, shape sensors based on multiple
single-mode fibers are limited by their substrate’s properties, thermal sensitivity, and glue aging.
In these sensors, there is always a trade-off between accuracy and flexibility.

In the second phase of this work, we investigated an edge-FBG array as the shape sensor.
We studied the behavior of the sensor from the physical point of view and introduced possible
sources of information that can be used to estimate the sensor’s shape. As the behavior of such
sensors is complex, standard characterization techniques are no longer applicable. Therefore, we
developed a deep learning technique that can directly predict the fiber’s 3D shape given the full
spectrum of the edge-FBG array. We designed three CNNs using hyperparameter search with
different search constraints and investigated their performance in predicting complex shapes.
We also analyzed the impact of learning similarity metrics using the Siamese design on the deep
learning model. The results showed that guiding the feature extractor subnetwork considerably
improves the shape prediction accuracy. Given the limitations of template-based datasets, we
designed a data acquisition setup where the edge-FBG sensor is manually manipulated while
monitoring its actual shape using a motion capture system. Using this dataset, we trained our
networks and were able to achieve a median tip accuracy of around 2mm and a median RMSE
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of 1.4mm in predicting the shape of a 25 cm long sensor. This approach requires no shape
reconstruction algorithm and has upgraded the edge-FBG sensors to distributed shape sensors.

8.3 Outlook

The two fiber shape sensing solutions developed in this work are promising, but are not yet at
a high technological readiness level. Despite the substantial limitations in the multiple single-
mode fibers, there is still room for improvement. Mainly, for applications needing small defor-
mation detection, one can use FBG arrays with smaller gaps between the sensing planes, creating
a short shape sensor with high spatial resolution. For increasing the mechanical strength of the
sensor probe, the currently used stripped FBGs can be replaced by draw tower gratings with
polymer coatings. Also, dummy fibers can be placed around the substrate to create a symmetric
cross-section for the sensor, minimizing bending preferences.

Based on the results of this work, we believe that edge-FBG sensors are promising naviga-
tion systems for medical applications, as they are highly flexible, accurate, and cost-effective.
There is a great potential for advancing the presented modeling technique further to improve
the accuracy and reliability of these sensors. In the context of the dataset, one can automate the
shape manipulation process during data acquisition to cover the sensor’s workspace and create
representative training data. We also expect that training the implemented deep learning model
application-wise, where certain constraints limit the sensor’s movement, can improve the pre-
diction accuracy. One could also try more advanced network architectures, extracting deeper
features from the edge-FBGs spectra to create more general models. The sensor also needs to
be tested in real application environments for stability and reliability.

Another remark could be to further investigate the possible sources of information in edge-
FBG sensors and conduct experiments estimating which physical effect in a bent edge-FBG
sensor contributes more to the deep learning model’s decisions. This can be done by study-
ing the sensor’s behavior when the impact of one effect at a time is minimized. For instance,
the interrogation system can be designed as polarization-insensitive to highlight the impact of
polarization-dependent loss on the sensor’s response. Also, particular types of fiber that limit
the whispering gallery/cladding modes can be selected for edge-FBG inscription. Moreover,
one can investigate the impact of the spectral gap between the edge-FBGs, the distance between
the sensing planes, the coating material, and the temperature variation on the shape prediction
accuracy.

Another research topic would be to use a high-resolution spectrometer that provides more
spectral information on the FBGs side bands. One can also use apodized or geometrically cor-
rected Bragg gratings to remove the side bands and study their possible influence. Investigating
the cladding modes in more detail by addressing the following questions: how long do the
cladding modes survive in edge-FBG sensors? What happens if the FBGs are inscribed closer
to the cladding area? Would it improve the sensor’s performance if a recoupling technique that
couples the cladding modes back to the fiber’s core is used?

Even though there is still room for improvement for a cost-effective and accurate fiber shape
sensing solution, we demonstrated in this thesis that this emerging technology has great potential
for navigating continuum robots in RAMIS.
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