2,429 research outputs found

    A Survey of Fault-Tolerance Techniques for Embedded Systems from the Perspective of Power, Energy, and Thermal Issues

    Get PDF
    The relentless technology scaling has provided a significant increase in processor performance, but on the other hand, it has led to adverse impacts on system reliability. In particular, technology scaling increases the processor susceptibility to radiation-induced transient faults. Moreover, technology scaling with the discontinuation of Dennard scaling increases the power densities, thereby temperatures, on the chip. High temperature, in turn, accelerates transistor aging mechanisms, which may ultimately lead to permanent faults on the chip. To assure a reliable system operation, despite these potential reliability concerns, fault-tolerance techniques have emerged. Specifically, fault-tolerance techniques employ some kind of redundancies to satisfy specific reliability requirements. However, the integration of fault-tolerance techniques into real-time embedded systems complicates preserving timing constraints. As a remedy, many task mapping/scheduling policies have been proposed to consider the integration of fault-tolerance techniques and enforce both timing and reliability guarantees for real-time embedded systems. More advanced techniques aim additionally at minimizing power and energy while at the same time satisfying timing and reliability constraints. Recently, some scheduling techniques have started to tackle a new challenge, which is the temperature increase induced by employing fault-tolerance techniques. These emerging techniques aim at satisfying temperature constraints besides timing and reliability constraints. This paper provides an in-depth survey of the emerging research efforts that exploit fault-tolerance techniques while considering timing, power/energy, and temperature from the real-time embedded systems’ design perspective. In particular, the task mapping/scheduling policies for fault-tolerance real-time embedded systems are reviewed and classified according to their considered goals and constraints. Moreover, the employed fault-tolerance techniques, application models, and hardware models are considered as additional dimensions of the presented classification. Lastly, this survey gives deep insights into the main achievements and shortcomings of the existing approaches and highlights the most promising ones

    Scheduling Techniques for Operating Systems for Medical and IoT Devices: A Review

    Get PDF
    Software and Hardware synthesis are the major subtasks in the implementation of hardware/software systems. Increasing trend is to build SoCs/NoC/Embedded System for Implantable Medical Devices (IMD) and Internet of Things (IoT) devices, which includes multiple Microprocessors and Signal Processors, allowing designing complex hardware and software systems, yet flexible with respect to the delivered performance and executed application. An important technique, which affect the macroscopic system implementation characteristics is the scheduling of hardware operations, program instructions and software processes. This paper presents a survey of the various scheduling strategies in process scheduling. Process Scheduling has to take into account the real-time constraints. Processes are characterized by their timing constraints, periodicity, precedence and data dependency, pre-emptivity, priority etc. The affect of these characteristics on scheduling decisions has been described in this paper

    Scheduling of real time embedded systems for resource and energy minimization by voltage scaling

    Full text link
    The aspects of real-time embedded computing are explored with the focus on novel real-time scheduling policies, which would be appropriate for low-power devices. To consider real-time deadlines with pre-emptive scheduling policies will require the investigation of intelligent scheduling heuristics. These aspects for various other RTES models like Multiple processor system, Dynamic Voltage Scaling and Dynamic scheduling are the focus of this thesis. Deadline based scheduling of task graphs representative of real time systems is performed on a multiprocessor system; A set of aperiodic, dependent tasks in the form of a task graph are taken as the input and all the required task parameters are calculated. All the tasks are then partitioned into two or more clusters allowing them to be run at different voltages. Each cluster, thus voltage scaled results in the overall minimization of the power utilized by the system. With the mapping of each task to a particular voltage done, the tasks are scheduled on a multiprocessor system consisting of processors that can run at different voltages and frequencies, in such a way that all the timing constraints are satisfied

    Dynamic voltage scaling algorithms for soft and hard real-time system

    Get PDF
    Dynamic Voltage Scaling (DVS) has not been investigated completely for further minimizing the energy consumption of microprocessor and prolonging the operational life of real-time systems. In this dissertation, the workload prediction based DVS and the offline convex optimization based DVS for soft and hard real-time systems are investigated, respectively. The proposed algorithms of soft and hard real-time systems are implemented on a small scaled wireless sensor network (WSN) and a simulation model, respectively

    A resource allocation mechanism based on cost function synthesis in complex systems

    Get PDF
    While the management of resources in computer systems can greatly impact the usefulness and integrity of the system, finding an optimal solution to the management problem is unfortunately NP hard. Adding to the complexity, today\u27s \u27modern\u27 systems - such as in multimedia, medical, and military systems - may be, and often are, comprised of interacting real and non-real-time components. In addition, these systems can be driven by a host of non-functional objectives – often differing not only in nature, importance, and form, but also in dimensional units and range, and themselves interacting in complex ways. We refer to systems exhibiting such characteristics as Complex Systems (CS). We present a method for handling the multiple non-functional system objectives in CS, by addressing decomposition, quantification, and evaluation issues. Our method will result in better allocations, improve objective satisfaction, improve the overall performance of the system, and reduce cost -in a global sense. Moreover, we consider the problem of formulating the cost of an allocation driven by system objectives. We start by discussing issues and relationships among global objectives, their decomposition, and cost functions for evaluation of system objective. Then, as an example of objective and cost function development, we introduce the concept of deadline balancing. Next, we proceed by proving the existence of combining models and their underlying conditions. Then, we describe a hierarchical model for system objective function synthesis. This synthesis is performed solely for the purpose of measuring the level of objective satisfaction in a proposed hardware to software allocation, not for design of individual software modules. Then, Examples are given to show how the model applies to actual multi-objective problems. In addition the concept of deadline balancing is extended to a new scheduling concept, namely Inter-Completion-Time Scheduling (ICTS. Finally, experiments based on simulation have been conducted to capture various properties of the synthesis approach as well as ICTS. A prototype implementation of the cost functions synthesis and evaluation environment is described, highlighting the applicability and usefulness of the synthesis in realistic applications

    Sparse Signal Processing Concepts for Efficient 5G System Design

    Full text link
    As it becomes increasingly apparent that 4G will not be able to meet the emerging demands of future mobile communication systems, the question what could make up a 5G system, what are the crucial challenges and what are the key drivers is part of intensive, ongoing discussions. Partly due to the advent of compressive sensing, methods that can optimally exploit sparsity in signals have received tremendous attention in recent years. In this paper we will describe a variety of scenarios in which signal sparsity arises naturally in 5G wireless systems. Signal sparsity and the associated rich collection of tools and algorithms will thus be a viable source for innovation in 5G wireless system design. We will discribe applications of this sparse signal processing paradigm in MIMO random access, cloud radio access networks, compressive channel-source network coding, and embedded security. We will also emphasize important open problem that may arise in 5G system design, for which sparsity will potentially play a key role in their solution.Comment: 18 pages, 5 figures, accepted for publication in IEEE Acces

    Experiences in Implementing an Energy-Driven Task Scheduler in RT-Linux

    Get PDF
    Dynamic voltage scaling (DVS) is being increasingly used for power management in embedded systems. Energy is a scarce resource in embedded real-time systems and energy consumption must be carefully balanced against realtime responsiveness. We describe our experiences in implementing an energy driven task scheduler in RT-Linux. We attempt to minimize the energy consumed by a taskset while guaranteeing that all task deadlines are met. Our algorithm, which we call LEDF, follows a greedy approach and schedules as many tasks as possible at a low CPU speed in a power-aware manner. We present simulation results on energy savings using LEDF, and we validate our approach using the RT-Linux testbed on the AMD Athlon 4 processor. Power measurements taken on the testbed closely match the power estimates obtained using simulation. Our results show that DVS results in significant energy savings for practical real-life task sets. We also show that when CPU speeds are restricted to only a few discrete values, this approach saves more energy than currently existing methods
    • …
    corecore