
UvA-DARE is a service provided by the library of the University of Amsterdam (https://dare.uva.nl)

UvA-DARE (Digital Academic Repository)

Proceedings of the 7th Junior Researcher Workshop on Real-Time Computing:
JRWRTC 2013: Sophia Antipolis, France, October 16-18, 2013

Altmeyer, S.

Publication date
2013
Document Version
Final published version

Link to publication

Citation for published version (APA):
Altmeyer, S. (2013). Proceedings of the 7th Junior Researcher Workshop on Real-Time
Computing: JRWRTC 2013: Sophia Antipolis, France, October 16-18, 2013. Faculty of
Science, University of Amsterdam. http://jrwrtc.science.uva.nl/JRWRTC13_proceedings.pdf

General rights
It is not permitted to download or to forward/distribute the text or part of it without the consent of the author(s)
and/or copyright holder(s), other than for strictly personal, individual use, unless the work is under an open
content license (like Creative Commons).

Disclaimer/Complaints regulations
If you believe that digital publication of certain material infringes any of your rights or (privacy) interests, please
let the Library know, stating your reasons. In case of a legitimate complaint, the Library will make the material
inaccessible and/or remove it from the website. Please Ask the Library: https://uba.uva.nl/en/contact, or a letter
to: Library of the University of Amsterdam, Secretariat, Singel 425, 1012 WP Amsterdam, The Netherlands. You
will be contacted as soon as possible.

Download date:09 Mar 2023

https://dare.uva.nl/personal/pure/en/publications/proceedings-of-the-7th-junior-researcher-workshop-on-realtime-computing-jrwrtc-2013-sophia-antipolis-france-october-1618-2013(63a948a5-b30a-4d1e-b0a2-84a1642a9820).html
http://jrwrtc.science.uva.nl/JRWRTC13_proceedings.pdf

Proceedings of the

7th Junior Researcher Workshop

on Real-Time Computing

JRWRTC 2013
http://jrwrtc.science.uva.nl

Sophia Antipolis, France

October 16-18, 2013

Message from the Workshop Chair

Welcome to the 7th Junior Researcher Workshop on Real-Time Computing in Sophia

Antipolis. As part of the 21st International Conference on Real-Time and Network Systems

(RTNS), the workshop provides junior researchers the opportunity to present their work,

share and discuss their ideas and meet with the real-time community in a relaxed forum.

I would like to take the opportunity to express my gratitude to the members of the

Program Committee listed below for thoroughly reviewing all papers within a very short time.

Furthermore, I thank the General Chairs of the RTNS, Robert De Simone (INRIA Sophia-

Antipolis Méditerranée), Michel Auguin (LEAT, Nice) and the local organization committee

as well as the Program Chairs, Rob Davis (University of York, UK) and Emmanual Grolleau

(LIAS, ISAE-ENSMA, Poitiers), for their help and support in organizing the workshop.

Special thanks go to Liliana Cucu-Grosjean (INRIA Rocquencourt, France) for arranging

the best paper prize and to INRIA Rocquencourt for sponsoring it.

On behalf of the Program Committee, I wish you a pleasant workshop, hope you will

enjoy the presentations and invite you to discuss the presented ideas with the authors during

the poster session.

Sebastian Altmeyer (University of Amsterdam)

JRWRTC 2013 Workshop Chair

Program Committee

Mihail Asavoae Grenoble INP / Verimag, France

Mohamed Bamakhrama Leiden University, NL

Dakshina Dasari CISTER Porto, Portugal

Andreas Gustavsson Mälardalen University, Sweden

Jörg Herter Saarland University, Germany

Emilien Kofman INRIA Sophia Antipolis, France

Juri Lelli Scuola Superiore S.Anna, Pisa, Italy

Will Lunniss University of York, United Kingdom

Arno Luppold Ulm University, Germany

Dorin Maxim INRIA Nancy - Grand Est, France

Mitra Nasri TU Kaiserslautern, Germany

Gurulingesh Raravi CISTER Porto, Portugal

Nicolas Serna LEAT Nice, France

Yassine Ouhammou LIAS/ISAE-ENSMA, France

Table of Contents

Message from the Workshop Chair . iii

Improving the Precision of Approximations in WCET Analysis for Multi-Core

Processors . 1

Michael Jacobs

An Optimal Design Flow for Hard Real-Time Streaming Systems . 5

Mohamed Bamakhrama, Teddy Zhai and Todor Stefanov

Minimizing the cardinality of a real-time task set by automated task clustering. 9

Antoine Bertout, Julien Forget and Richard Olejnik

Optimism due to serialization in the trajectory approach for switched Ethernet

networks . 13

Georges Kemayo, Frédéric Ridouard, Henri Bauer and Pascal Richard

History-Cognisant Time-Utility-Functions for Scheduling Overloaded Real-Time

Control Systems . 17

Florian Kluge, Mike Gerdes, Florian Haas and Theo Ungerer

Schedule-aware Distribution of Parallel Load in a Mixed Criticality Environment 21

Marc Bommert

Application Architecture Adequacy through an FFT case study . 25

Emilien Kofman, Jean-Vivien Millo and Robert de Simone

Running Linux and AUTOSAR side by side . 29

Tillmann Nett and Jörn Schneider

A constraint-based WCET computation framework . 33

Hajer Herbegue, Mamoun Filali-Amine and Hugues Cassé

Taming Control Exchange for Software Defined Radio in System Level Models 37

Andrea Enrici, Ludovic Apvrille and Renaud Pacalet

Improved Priority Assignment for the Abort-and-Restart (AR) Model 41

Hing Choi Wong and Alan Burns

v

Load and Quality Cooperation for Distributed Embedded Systems Using Different

Modes of Operation . 45

John Schommer, Thomas Gerlitz and Stefan Kowalewski

Design and Implementation of a FPGA-Based RTOS Real-Time Performance

Analysis Environment (RTPE) for Satellite On-Board Computers . 49

Fernando Garcia Nicodemos, Osamu Saotome and George Lima

Worst-Case Communication Overhead in a Many-Core based Shared-Memory Model . . . 53

Dkhil Amira, Stephane Louise and Christine Rochange

Towards a Programming and Analysis Framework for Timer Units . 57

Marco Marazza, Fabio Cremona, Daniele Ceraolo Spurio, Carsten Demuth,

Christian Nastasi and Alberto Ferrari

vi

Improving the Precision of Approximations in WCET
Analysis for Multi-Core Processors

Michael Jacobs (jacobs@cs.uni-saarland.de)
Saarland University, Saarbrücken, Germany

Abstract—The worst-case execution time (WCET) analysis for multi-
core processors is a challenge. An explicit consideration of all possible
interference effects caused by the shared resources is in many cases
combinatorially infeasible. Therefore, approximations are used to reduce
this complexity. Current approaches to WCET analysis for multi-core
processors are specific to particular ways of approximating the underlying
system. Furthermore they are only applicable to rather restricted classes
of processors. We identified a common methodology behind existing
approaches and formalized it in a unified meta approach. Our meta
approach is not restricted to a particular way of approximation. It allows
to improve the precision of the obtained WCET bounds by incorporating
properties of the system under consideration.

I. INTRODUCTION

Multi-core processors consist of several processor cores, which
share common resources such as buses or caches. Their use can
reduce the weight, the energy consumption and the production costs
of computer systems. Hence, they are likely to also be used for
timing-critical applications in the long run [1].

However, resource sharing can have a significant impact on the
overall performance of a system [2] because several cores compete
for the shared resources. This effect is commonly referred to as shared
resource interference.

For a timing-critical application it is important that the time needed
to deliver the results of its calculations does not exceed a deadline
dictated by the physical environment. A time-critical application may
consist of several programs that interact. Knowledge about the worst-
case execution time (WCET) [3] of each such program allows to
verify the timeliness of the overall application. It is safe to replace the
WCET of a program by an upper bound on its execution times in this
verification step. However, the timeliness of an application can often
only be verified if these upper bounds are relatively tight. WCET
analyses can be used to derive these upper bounds on the execution
times of programs. The execution times of a program depend heavily
on possible execution behaviors at the microarchitectural level of
the processor that executes the program. From now on, we just use
behaviors to refer to the execution behaviors at the microarchitectural
level of a processor.

Very simple processors allow for a precise WCET analysis by
instruction counting or time measurement of a single execution run
of the system [4]. Modern processors, however, are too complex to
exhaustively simulate or measure the execution times of all possible
behaviors. WCET analyses for those processors need to approximate
some of the microarchitectural details in order to reduce the inherent
complexity [5], [6]. Approximation often comes at the cost of a less
tight WCET bound.

The WCET analysis of programs executed on multi-core processors
is a special challenge. It needs to take into account all possible
interference effects due to resource sharing. A precise consideration
of all such effects might in many cases require an exhaustive
enumeration of all possible interleavings of accesses to the shared
resources by the different processor cores. Such a consideration can
be looked upon as combinatorially too complex.

Current approaches to WCET analysis for multi-core proces-
sors [7], [8], [9], [10], [11], [12], [13] try to find a level of approx-
imation that avoids this complexity without sacrificing precision too
much. Unfortunately, the existing approaches are only applicable to
programs executed on very restricted classes of processors. Further-
more, each approach is specific to a particular way of approximating
the behavior of the considered system.

In our opinion, a first step toward overcoming these limitations
is to identify the common ideas of existing approaches. This will
help in designing future approaches in a more generic and uniform
way. Our contribution is a meta approach that is not restricted to a
particular way of approximation. It allows to improve the precision of
the obtained WCET bounds by incorporating properties of the system
under consideration.

II. RELATED WORK

The existing approaches to WCET analysis for multi-core proces-
sors are derived in formally quite different ways. Yet, the different
approaches loosely follow a common two-step methodology.

As a common starting point, all considered approaches assume a
level of approximation that does not restrict the amount of shared re-
source interference. Schranzhofer et al. represent a program executed
on a particular core as a sequence of superblocks [7], [8], [9]. A
superblock only bounds the number of processor cycles (not blocked
at the bus) and the number of bus accesses for a part of the program.
Liang et al. assume upper and lower bounds on the number of
processor cycles per basic block [10]. These bounds ignore possible
penalty cycles induced by the memory hierarchy. The approach of
Chattopadhyay et al. [11] bounds the points in time that each program
instruction can spend in each pipeline stage of the processor core.

Furthermore, all approaches assume properties of the concrete
system under analysis, that provide bounds on the amount of shared
resource interference. The approaches considering a shared bus
provide bounds on the number of blocked cycles. The intuition behind
the bounds stems from the protocol used for bus arbitration (Time
Division Multiple Access [7], [11], Round-Robin [12], [13], First-
Come-First-Served [12], [8]). The approaches considering a shared
cache exploit system properties that guarantee that certain accesses
to the shared cache cannot miss [10], [11]. All approaches use these
bounds on the shared resource interference to exclude some of the
spurious execution behaviors introduced by approximation.

Our meta approach depicts this common methodology in a formal
and generic way.

III. CONCRETE EXECUTION BEHAVIOR AND TIME

We consider a multi-core processor consisting of the set Cores of
processor cores. For simplicity, we assume that each core only runs
one program and that each program may at most be executed once
per system run. In the following, we use the term system to refer to
the combination of the hardware containing the multi-core processor
and the software executed on it.

1

The system may exhibit different execution behaviors depending on
its initial state, external input parameters and clock drift effects. Let
Traces be the set of all execution behaviors of the system. Its superset
Universe contains the execution behaviors of arbitrary systems.

Universe ⊇ Traces

Each core C (or the program executed on it) can be assigned an
execution time per execution behavior. This time is given by the
function etC .

etC : Universe→ N ∪ {∞}
The WCET of a core C is the maximal execution time for C over

all execution behaviors of the considered system.

WCETC = max
t∈Traces

etC(t) (1)

IV. APPROXIMATION BY ABSTRACT TRACES

Modern processors usually exhibit too many execution behaviors
to allow for an exhaustive consideration of all of them. The set Traces
is simply too large. Therefore, it is mandatory to introduce some kind
of approximation. The goal is to not have to argue separately about
each concrete execution behavior.

In our view, an abstract model is given by the tuple (T̂races, γtrace).
T̂races is the set of abstract traces of the model. The function γtrace

maps those abstract traces to subsets of the universe of execution
behaviors. Please note that P(Universe) denotes the power set of
this universe of execution behaviors.

γtrace : T̂races→ P(Universe)

We say that an abstract model (T̂races, γtrace) is an overapproxi-
mation of Traces iff:

⋃

t̂∈T̂races

γtrace(t̂) ⊇ Traces (2)

We assume that for each core C there is an upper bound on its
execution times per abstract trace. This bound shall be given by UBetC .

UBetC : T̂races→ N ∪ {∞}
∀t̂ ∈ T̂races : UBetC(t̂) ≥ max

t∈γtrace(t̂)
etC(t) (3)

From (2) and (3) it follows that the abstract model provides an
upper bound to the WCET as defined in (1) by:

max
t̂∈T̂races

UBetC(t̂) ≥ WCETC (4)

From now on we only consider abstract models that are overap-
proximations of Traces.

A sound abstract model for a multi-core processor can be derived
in a similar way as for a single-core processor by only focussing
on one core. This will likely result in very conservative assumptions
about the behavior of this core when accessing shared resources as
the behavior of shared resources and concurrent cores is not explicitly
considered. The baseline approximations of the approaches discussed
in Section II follow this paradigm.

V. INFEASIBLE ABSTRACT TRACES

The method used to obtain the set of abstract traces (e.g. static
analysis) might introduce imprecision. Therefore, there may be ab-
stract traces that only describe spurious execution behavior. We call
them infeasible abstract traces.

Înfeas = {t̂ | t̂ ∈ T̂races ∧ γtrace(t̂) ∩ Traces = ∅} (5)

Correspondingly, we refer to T̂races \ Înfeas as the set of feasible
abstract traces. In fact, it follows from (5) that the set of feasible
abstract traces is an overapproximation of Traces.

⋃

t̂∈T̂races\Înfeas

γtrace(t̂) ⊇ Traces (6)

Based on an abstract model (T̂races, γtrace), which is an overap-
proximation of Traces, we define a set Deriv

(T̂races,γtrace)
of further

abstract models as follows:
Deriv

(T̂races,γtrace)
=

{(T̂races′, γtrace) | T̂races ⊇ T̂races′ ⊇ T̂races \ Înfeas}
(7)

Consider an element (T̂races′, γtrace) of set Deriv
(T̂races,γtrace)

. Ac-

cording to (7), T̂races′ is a subset of T̂races that contains at least
all feasible abstract traces of T̂races. It follows from (6) and (7) that
each element of Deriv

(T̂races,γtrace)
is an overapproximation of Traces.

∀(T̂races′, γtrace) ∈ Deriv
(T̂races,γtrace)

:
⋃

t̂∈T̂races′

γtrace(t̂) ⊇ Traces (8)

In a similar way as (2) and (3) imply (4), it is a consequence of
(8) and (3) that we can calculate an upper bound to the WCET based
on any member of Deriv

(T̂races,γtrace)
:

∀(T̂races′, γtrace) ∈ Deriv
(T̂races,γtrace)

:

max
t̂∈T̂races′

UBetC(t̂) ≥ WCETC
(9)

As a consequence, we can ignore an arbitrarily chosen set of
infeasible abstract traces in an abstract model. A WCET bound based
on the remaining abstract traces is still guaranteed to be sound.

The calculation of WCET bounds is based on upper bounds on
the execution times per abstract trace (3). If an abstract model makes
conservative assumptions about the behavior at the shared resources,
some infeasible abstract traces might assume an amount of shared
resource interference that exceeds the maximum possible amount for
the concrete system. As upper bounds on the execution times of such
infeasible abstract traces are likely to be very pessimistic, ignoring
those abstract traces—as in (9)—might improve the tightness of the
resulting WCET bound significantly.

However, it depends heavily on the abstract model (T̂races, γtrace)
and the upper bounds on the execution times per abstract trace if
the WCET bound can be tightened by leaving out some infeasible
abstract traces. Consider the particular case that the calculation of the
WCET bound is dominated by an infeasible abstract trace. Further
assume that each feasible abstract trace has an upper bound on its
execution times that is strictly smaller than the calculated WCET
bound. Then we can obtain a strictly smaller WCET bound by basing
its calculation only on the feasible abstract traces. In fact, this proves
that the precision of the WCET bound can be improved by pruning
infeasible abstract traces.

VI. SYSTEM PROPERTIES

We assume properties to be boolean predicates on execution be-
haviors. System properties are properties that hold for each execution
behavior of a concrete system. The existence of a bound on the shared
resource interference may for example be a system property. Let Prop
be a set of properties of the system under consideration:

Prop = {P1, . . . , P#Prop}
∀t ∈ Traces : ∀Pi ∈ Prop : Pi(t) (10)

2

We want to use these system properties to detect some infeasible
abstract traces. But so far, they only argue about execution behaviors
of the concrete system. Therefore, we need to lift them to abstract
traces. This means, we need to find P̂i such that:

∀t̂ ∈ T̂races :

[∃t ∈ γtrace(t̂) : Pi(t)]⇒ P̂i(t̂)
(11)

The intuition behind that requirement gets more clear if we have
a look at what it means if P̂i does not hold for an abstract trace
t̂ ∈ T̂races:

¬P̂i(t̂)
⇒
(11)
∀t ∈ γtrace(t̂) : ¬Pi(t)

⇒
(10)
γtrace(t̂) ∩ Traces = ∅

⇔
(5)
t̂ ∈ Înfeas

(12)

So if a lifted property does not hold for an abstract trace, this
means that the abstract trace is infeasible. From now on, the lifted
version of any system property shall be identified by the name of the
system property with an additional hat on top.

VII. PROPERTY LIFTING EXAMPLE

The following example will illustrate how we can find a P̂i(t̂)
satisfying (11) without using γtrace(t̂) directly, which is mandatory
for an efficient use of an abstract model.

Assume that we have an upper bound on the number of bus
accesses performed by a particular processor core C per abstract
trace.

∀t̂ ∈ T̂races :

∀t ∈ γtrace(t̂) :
UB#accessesC(t̂) ≥ #accessesC(t)

(a)

We only use γtrace to argue about the soundness of the bounds. But
we assume that each bound is given by a preceding analysis in the
same way as the corresponding abstract trace is.

In addition, we assume to have a lower bound on the number of
cycles that core C is blocked at a shared bus per abstract trace.

∀t̂ ∈ T̂races :

∀t ∈ γtrace(t̂) :
LB#blockedCyclesC(t̂) ≤ #blockedCyclesC(t)

(b)

Now assume that the concrete system we consider uses a Round-
Robin policy to arbitrate its shared bus. Therefore, all its execution
behaviors shall fulfill the property Prr:

Prr(t)⇔[#blockedCyclesC(t)

≤ #accessesC(t) · (#Cores− 1)

· maxCyclesPerAccess]

(c)

The intuition behind this property (implicitly assumed in [12]) is
that with Round-Robin arbitration, each concurrent core (there are
#Cores − 1 of them) can at most perform one access to the bus
before an access of core C is granted. Together with an upper bound
on the number of cycles that a granted bus access can at most take
to complete on the concrete system, we arrive at an upper bound on
the number of cycles that any access of core C can be blocked at the
bus. Knowledge about how many accesses to the bus are performed
by core C allows us to bound the overall amount of bus blocking
experienced by core C in a particular execution behavior.

We can safely lift Prr to abstract traces in a way that satisfies (11)
by applying (a) and (b):

∀t̂ ∈ T̂races :

∃t ∈ γtrace(t̂) : Prr(t)

⇔
(c)
∃t ∈ γtrace(t̂) :

#blockedCyclesC(t)

≤ #accessesC(t) · (#Cores− 1)

· maxCyclesPerAccess

⇒
(a)
(b)

LB#blockedCyclesC(t̂)

≤ UB#accessesC(t̂) · (#Cores− 1)

· maxCyclesPerAccess

⇔: P̂rr(t̂)

(d)

P̂rr as defined in (d) clearly satisfies the soundness criterion (11) for
lifted properties. According to (12) any abstract trace t̂ with ¬P̂rr(t̂)
can safely be considered as infeasible.

VIII. IMPROVING THE APPROXIMATION

We define a compound property P̂ for abstract traces to be
the conjunction over the lifted versions of the considered system
properties.

∀t̂ ∈ T̂races :

P̂ (t̂)⇔ ∀Pi ∈ Prop : P̂i(t̂)
(13)

If P̂ does not hold for an abstract trace t̂ then this means that t̂ is
infeasible:

¬P̂ (t̂)

⇔
(13)
∃Pi ∈ Prop : ¬P̂i(t̂)

⇒
(12)
t̂ ∈ Înfeas

(14)

We can use P̂ to define an alternative set ̂LessTraces of abstract
traces based on T̂races:

̂LessTraces = {t̂ | t̂ ∈ T̂races ∧ P̂ (t̂)} (15)

̂LessTraces is the subset of abstract traces in T̂races that cannot be
classified as infeasible by any of the P̂i. It follows from (7), (14) and
(15) that (̂LessTraces, γtrace) is a member of Deriv

(T̂races,γtrace)
.

(̂LessTraces, γtrace) ∈ Deriv
(T̂races,γtrace)

(16)

As a consequence of (9) and (16), we can derive a sound WCET
bound from (̂LessTraces, γtrace):

max
t̂∈ ̂LessTraces

UBetC(t̂) ≥ WCETC (17)

(̂LessTraces, γtrace) can improve the precision, as ̂LessTraces po-
tentially prunes some of the infeasible abstract traces still included
in T̂races. In that context, (T̂races, γtrace) is referred to as baseline
abstract model as it is the starting point for further improvements of
precision.

3

IX. REDUCING THE SIMPLIFYING ASSUMPTIONS

So far, we assume that each core only runs one program and that
each program may at most be executed once per system run. Please
note that these restrictions are not inherent to our meta approach.
They are ment to facilitate the focus on the essential ideas.

Our meta approach can easily be extended to support several
programs per processor core by introducing a set Programs of
program identifiers. Such an extension will assume the existence of
etProg and UBetProg for each program Prog ∈ Programs. We define the
WCET of program Prog as follows:

WCETProg = max
t∈Traces

etProg(t)

It is straightforward to derive an upper bound to this WCET based
on an abstract model that is an overapproximation of the considered
system’s behaviors:

max
t̂∈T̂races

UBetProg(t̂) ≥ WCETProg

In case a program Prog can be executed more than once per system
run, it is no longer possible to assign a single execution time per
program to each execution behavior. Therefore, we use the helper
function runsProg to extract the different execution runs of Prog from
an execution behavior. In this context, etProg assigns an execution time
to each execution run of Prog. An extended definition of the WCET
of Prog incorporates the execution runs of Prog:

WCETProg = max
t∈Traces

max
run∈runsProg(t)

etProg(run)

However, the previous definition of a WCET bound for Prog can
anyway be reused provided that UBetProg fulfills the following criterion:

∀t̂ ∈ T̂races :
UBetProg(t̂) ≥ max

t∈γtrace(t̂)
max

run∈runsProg(t)
etProg(run)

X. CONCEPTUAL APPROACH AND GENERALITY

It should be noticed that we describe a conceptual approach.
Implementations do not necessarily have to stick to its two-step
character of first accumulating the set T̂races and then sorting out
provably infeasible abstract traces.

Note that we did not restrict the form or structure of abstract traces
by any means. Therefore, we expect that our meta approach can
be mapped to the different ways of approximation used in WCET
analyses.

Furthermore, the use of our meta approach is by no means
restricted to a scenario of WCET analysis for multi-core processors.
Whenever there exists an abstract model that provides an overap-
proximation of a system’s behavior, our meta approach can serve to
further improve the precision by additional properties of the system.

XI. FUTURE WORK

We plan to instantiate our meta approach for the aiT WCET
analyzer1. In that way, we intend to come up with an overall approach
that supports a wide range of complex processor core features.

In addition to the instantiation of the meta approach for a powerful
baseline abstraction, it will be crucial to find a reasonable set of
system properties for each supported processor. Those properties
have to bound the shared resource interference in a way such that
sufficiently tight WCET bounds can be obtained.

Consider system properties that relate the behavior of one processor
core to that of other cores. Such properties are typical for systems that

1http://www.absint.com/ait

do not provide performance isolation between their cores [12], [8].
If an abstract model only focuses on one processor core, then it has
to assume arbitrary spurious behaviors for the other cores. The lifted
version of a property relating the behavior of the focused core to that
of others would have to pessimistically assume the other cores to
behave in a way that the property always holds. Therefore, our meta
approach currently only profits from such properties if it is used
in combination with a baseline abstract model that argues in detail
about several processor cores at the same time. But abstract models
that argue in detail about several processor cores can be seen as
combinatorially too complex. A goal of future work will be to allow
for the use of baseline abstract models that focus on one processor
core, but that still enable us to incorporate sound assumptions about
the behavior of concurrent processor cores.

XII. CONCLUSION

We presented a conceptual meta approach to WCET analysis for
multi-core processors. It points out a common methodology behind
previous approaches. Yet, it does not depend on a particular way
of approximating the system under consideration. Bounds on the
shared resource interference of the concrete system can uniformly be
incorporated to improve the precision of the obtained WCET bound.

ACKNOWLEDGMENT

The author would like to thank Sebastian Hahn and Jan Reineke
for many comments and interesting discussions.

REFERENCES

[1] J. Nowotsch and M. Paulitsch, “Leveraging multi-core computing archi-
tectures in avionics,” in Proceedings of the ninth European Dependable
Computing Conference, 2012, pp. 132–143.

[2] A. Abel et al., “Impact of resource sharing on performance and perfor-
mance prediction: A survey,” in CONCUR, 2013, pp. 25–43.

[3] R. Wilhelm et al., “The worst-case execution-time problem — overview
of methods and survey of tools,” ACM Trans. Embed. Comput. Syst.,
vol. 7, no. 3, pp. 36:1–36:53, May 2008.

[4] P. Puschner, “The single-path approach towards WCET-analysable soft-
ware,” in Proceedings of the IEEE International Conference on Indus-
trial Technology, vol. 2, 2003, pp. 699–704.

[5] S. Thesing, “Safe and precise WCET determination by abstract inter-
pretation of pipeline models,” Ph.D. dissertation, 2004.

[6] X. Li et al., “Modeling out-of-order processors for WCET analysis,”
Real-Time Syst., vol. 34, no. 3, pp. 195–227, Nov. 2006.

[7] A. Schranzhofer et al., “Timing analysis for TDMA arbitration in
resource sharing systems,” in Proceedings of the 16th IEEE Real-
Time and Embedded Technology and Applications Symposium. IEEE
Computer Society, 2010, pp. 215–224.

[8] R. Pellizzoni et al., “Worst case delay analysis for memory interference
in multicore systems,” in Proceedings of the Conference on Design,
Automation and Test in Europe. European Design and Automation
Association, 2010, pp. 741–746.

[9] A. Schranzhofer et al., “Timing analysis for resource access interference
on adaptive resource arbiters,” in Proceedings of the 17th IEEE Real-
Time and Embedded Technology and Applications Symposium. IEEE
Computer Society, 2011, pp. 213–222.

[10] Y. Liang et al., “Timing analysis of concurrent programs running on
shared cache multi-cores,” Real-Time Systems, vol. 48, pp. 638–680,
2012.

[11] S. Chattopadhyay et al., “A unified WCET analysis framework for
multi-core platforms,” in Proceedings of the 18th IEEE Real-Time and
Embedded Technology and Applications Symposium, 2012, pp. 99–108.

[12] R. Pellizzoni and M. Caccamo, “Impact of peripheral-processor in-
terference on WCET analysis of real-time embedded systems,” IEEE
Transactions on Computers, vol. 59, pp. 400–415, 2010.

[13] D. Dasari et al., “WCET analysis considering contention on memory bus
in COTS-based multicores,” in Proceedings of the 16th IEEE Conference
on Emerging Technologies Factory Automation, 2011, pp. 1–4.

4

An Optimal Design Flow for Hard Real-Time
Streaming Systems

Mohamed A. Bamakhrama, Jiali Teddy Zhai, and Todor Stefanov
Leiden Institute of Advanced Computer Science

Leiden University, Leiden, Netherlands
Email: m.a.m.bamakhrama@liacs.leidenuniv.nl

Abstract—In this paper, we address the problem of auto-
mated design of hard real-time embedded streaming systems.
To this end, we introduce the notion of optimal design flow.
An optimal design flow is one that accepts, as input, a set of
hard real-time streaming programs, and then produces in a fully
automated manner, as output, the final system implementation,
which provably satisfies the timing constraints of the input
programs. We propose a realization of such an optimal design flow
and implement it. This implementation is called the DaedalusRT

design flow and it is available for download, as an open-source
framework, from http://daedalus.liacs.nl/.

I. INTRODUCTION

The design of modern embedded streaming systems is a
difficult task. The difficulty of this task stems from the fact that
multiple functionalities have to be implemented on a single
system while meeting stringent timing constraints. In order
to tackle this difficult task, modern embedded streaming sys-
tems are often realized using Multiprocessor System-on-Chip
(MPSoC) technology [1]. In MPSoCs, multiple processors,
hardware accelerators, and hardware peripherals are integrated
into a single silicon chip. Realizing modern embedded stream-
ing programs on MPSoCs entails several challenges. The first
challenge is expressing the parallelism in the programs in a
way such that (1) we exploit efficiently the multiple processors
found in MPSoCs, and (2) we can reason analytically about the
performance of the programs. Streaming programs are usually
specified at an algorithmic level using a high-level sequential
language such as C or MATLAB. Once the correctness of
these sequential specifications is verified, they are passed
to subsequent design stages. Therefore, it is necessary to
parallelize such programs in order to exploit MPSoC platforms
efficiently.

The second challenge is how to allocate and schedule the
programs on the MPSoC such that all the timing constraints
of the programs are met. In order to provide such guarantees,
the system must use predictable hardware and software. Pre-
dictable here means that any HW/SW operation has a bounded
worst-case duration. Additionally, the OS scheduler must be
capable of enforcing timing isolation between the running
programs.

The third challenge is how to design a complex MPSoC
with the least designer effort. Traditionally, embedded sys-
tems have been designed at the level of Register Transfer Level
(RTL) for hardware and low-level Application Programmer
Interfaces (API) for software. However, as embedded systems
move from uniprocessor systems to multiprocessor systems, a
shift in the way such systems are designed is also needed.

Real-Time
Guarantees

Designer
Productivity

Design of
Concurrent
Software

Fig. 1. The challenges involved in designing modern hard real-time
multiprocessor streaming systems.

Based on the aforementioned three challenges, we can
say that the problem of designing a hard real-time streaming
system is an intersection of three sub-problems as shown
in Fig. 1. The grey area represents the area to which the
aforementioned design problem belongs. In this grey area, the
designer must produce a hard real-time multiprocessor system
that runs several streaming programs in parallel.

The three sub-problems in Fig. 1 affect each other. For
example, the way in which a program is parallelized influences
how it will be scheduled during the system run-time. This, in
turn, has a direct impact on the timing behavior of the program.
Therefore, in order to solve these sub-problems, they must be
addressed simultaneously by the designer. Solving these sub-
problems together can be formulated as follows:

Given a set of hard real-time streaming programs,
devise a systematic way to parallelize the programs
and design, at the right level of abstraction, an MP-
SoC which runs the parallelized programs such that
the timing constraints of the programs are guaranteed
to be always met during system run-time.

II. PROPOSED SOLUTION

To address the aforementioned problem, we propose a
sequence of steps that the designer should follow in order
to arrive at the final MPSoC implementation. These steps
constitute a design flow (also called design methodology).
An optimal design flow is one which accepts, as input, a set
of hard real-time streaming programs, and then produces in
a fully automated manner, as output, the final MPSoC imple-
mentation. Naturally, an optimal design flow should address the
challenges outlined in Section I. Therefore, an optimal design
flow should consist of steps that facilitate maximum design
automation and correct-by-construction design. We identify

5

int main() {
while(1) {
for(i=1;i<=10;i++) {

for(j=1;j<=3;j++) {
src(&img[i][j],&img1[i][j]);

if(j<=2)
img[i][j]=f1(img[i][j]);

else
img[i][j]=f2(img[i][j]);

snk(img[i][j],img1[i][j]);
}

}
}

}

Listing 1: Example of a SANLP in C

such steps for hard real-time streaming systems and call them
design flow pillars.

A. Automated Parallelization and Model Construction

Recall that most streaming programs are specified as se-
quential programs. Most of the execution of these sequential
specifications is spent in nested loops [2]. Researchers have
investigated several techniques for parallelizing such programs.
One particular class of nested loop programs which received
a lot of attention is Static Affine Nested Loop Programs
(SANLP) [3]. This class has been shown to embody a large
portion of streaming programs [4]. An example of a valid
SANLP is shown in Listing 1.

It has been shown in [3] that a SANLP can be automatically
analyzed to construct a parallel version of it. Hence, it is im-
portant to utilize this property to relieve the designer from the
burden of parallelizing such programs manually. Therefore, the
first pillar in an optimal design flow is automated paralleliza-
tion. Given a sequential program, automated parallelization
tools analyze the program and construct a parallel version of
it. This parallel version of the program exposes the parallelism
present in the original sequential program. Several parallelizing
compilers were proposed for SANLPs, such as the PNgen
compiler [5].

Analysis of parallel programs is a tedious task. Therefore,
it has been recognized that the designers need to abstract from
the actual programs by building high-level models of them
using Models of Computation (MoC) [6]. Then, these models
are used to analyze the program performance under different
scheduling and mapping decisions. Such design approach is
often called Model-Based Design (MBD) which constitutes
the second pillar in the proposed design flow. Several MoCs
have been proposed in the literature such as Synchronous Data-
Flow (SDF, [7]) and its generalization Cyclo-Static Dataflow
(CSDF, [8]). Under these models, a program is modeled as a
directed graph, where graph nodes represent the tasks in the
program and the graph edges represent the data dependencies
among the tasks. According to [9], almost all streaming
programs can be modeled as SDF graphs. In this work, we
choose the CSDF [8] model as the model of computation since
it is expressive enough to model most streaming programs as
shown in [9].

Mapping
(Program on Architecture)

Program Architecture

Refinement

System Implementation

Fig. 2. System-level design of modern embedded systems

B. Real-Time Scheduling Framework

As mentioned earlier in Section I, hard real-time streaming
programs have timing constraints that must be always met
during the system run-time. To this end, hard real-time
scheduling theory represents a well-established domain that
offers a lot of solutions to the aforementioned issues. It is a
mature research area with plenty of results for uniprocessor
and multiprocessor systems [10]. Therefore, hard real-time
scheduling theory is the third pillar in an optimal design flow.

Hard real-time scheduling theory works in a similar way to
model-based design; it abstracts the programs in the form of
a real-time task model. Such task models impose restrictions
on the timing of the program tasks. As a result, it becomes
easier to perform timing analysis of the program and reason
about its behavior during the design phase. The most famous
model is the real-time periodic task model proposed by Liu and
Layland in 1973 [11]. This model has simple schedulability
analysis which led to its wide adoption. In this work, we utilize
the periodic task model to analyze the timing behavior of the
parallelized programs.

C. System-Level Design and Synthesis

Recall from Section I that modern embedded systems
must be designed in a way different than the traditional RTL
approach. System-Level Design (SLD, [12]) has emerged as
a promising solution to tackle this problem. Under SLD, the
system is designed at higher level of abstraction than the
RTL level. At system-level, the engineer deals with processors,
buses, peripherals, and memories as the primitive blocks that
form the system. System-level design abstracts the SoC design
by considering it at a high level of abstraction as shown in
Fig. 2. In Fig. 2, the system design is a process of mapping
a set of tasks onto a set of processing elements. Once such
a mapping is determined, for example using design space ex-
ploration, Electronic System-Level (ESL) synthesis tools [13]
provide a (mostly) automated procedure to generate the RTL
descriptions for hardware components and the parallel software
running on the processors. System-level design represents the
fourth pillar in the proposed design flow.

III. THE PROPOSED OPTIMAL DESIGN FLOW:
DAEDALUSRT

Given the four pillars described earlier, they constitute
together the optimal design flow shown in Fig. 3. This design
flow is called DaedalusRT [14] and it consists, in total, of six
steps. The step number is marked inside a circle in Fig. 3.

Step 1 accepts the SANLPs as input, and then uses the
PNgen compiler to parallelize them and generate the parallel
specification of these input programs. The parallel specification

6

SANLP

Polyhedral Process Network

CSDF Model

SANLP

Polyhedral Process Network

CSDF Model

Constraints by Designer SANLP

Automatic Parallelization
(PNgen Compiler)

Polyhedral Process Network

Model Construction WCET Analysis

WCET ValuesCSDF Model

Scheduling Framework

Architecture
Specifications

Mapping
Specifications

Temporal
Specifications

System-Level Synthesis
(ESPAM)

RTL + Software

Synthesis/Compilation

MPSoC Implementation
(for ASIC or FPGA)

System Deployment
and Validation

1©

3©2©

4©
4©

4©

5©
5©

5©

6©

7©

provably satisfied

D
es

ig
n

Ti
m

e

Tape-out

R
un

Ti
m

e

Fig. 3. Overview of the proposed design flow

consists of the Polyhedral Process Network (PPN) representa-
tion of the program. PPN is a parallel MoC that is useful for
code generation and optimizations. However, it is not suitable
for performance analysis. This leads us to the next step.

In Step 2, the performance analysis model (i.e., CSDF)
is derived automatically from the PPNs generated in step 1.
Given a PPN, we propose in [14] an algorithm to derive a
CSDF graph that is equivalent to the given PPN.

In Step 3, we perform WCET analysis on the parallel
specification of the program. WCET analysis can be performed
by either static analysis tools or profiling the code on the target
MPSoC platform [15].

In Step 4, the CSDF models generated in step 2, the
WCET values generated in step 3, and the user constraints,
which include for example the type of scheduler and other
parameters, are fed to the scheduling framework. We propose
in [16]–[18] a scheduling framework that derives, for the tasks
in the CSDF model, a corresponding real-time periodic task
set. The framework computes the parameters of each task
(i.e., period, start time, and deadline) and the buffer size
of each communication channel such that a valid schedule
is guaranteed to exist. After that, the framework performs
schedulability analysis based on the scheduler type given by
the user. This results in: (i) the architecture specification, which
describes how many processors are needed to schedule the
programs, and (ii) the mapping specification, which describes
the allocation of tasks to processors.

In Step 5, the PPNs together with the architecture and
mapping specifications are processed by ESPAM [19]. ESPAM
is a SLD synthesis tool that supports MPSoC synthesis from
PPNs. We have extended ESPAM to support synthesizing the
target MPSoC hardware and software. The output from this
step is a full MPSoC implementation consisting of the RTL

TABLE I. TIME NEEDED TO PARALLELIZE AND DERIVE THE CSDF
MODEL FOR THE BENCHMARK PROGRAMS ON A LENOVO T500 LAPTOP

Program # actors # edges # lines Time (seconds)

Filter-bank 69 89 367 1.60
FM radio 28 39 195 0.66

ADI solver 28 167 209 7.26
2D FDT kernel 17 71 144 0.89
2D gauss filter 11 26 75 7.82
Gram-Schmidt 9 20 48 1.85

Regularity detector 8 11 54 2.86

needed to perform low-level synthesis for FPGA or ASIC
together with the software running on each processor in the
MPSoC.

Step 6 is the last step in the design flow and consists of
performing low-level synthesis for FPGA or ASIC backends
together with compiling the code for each processor.

IV. EVALUATION AND RESULTS

In this section, we present the results of empirical eval-
uation of the DaedalusRT flow explained in Section III. We
evaluate the different steps of the flow and demonstrate their
effectiveness.

A. Evaluating Automated Parallelization and Model Construc-
tion

We evaluate steps 1 and 2 by parallelizing a set of real-life
programs and deriving their CSDF models. The used programs
are from the PolyBench benchmark [20]. The programs are
specified as SANLPs in C and vary in size and complexity. The
list of programs together with the time needed to parallelize
them and derive their CSDF models is shown in Table I.

The time reported in Table I includes: (1) the time needed
by the PNgen compiler to parse the C program and generate
the parallelized program, (2) the time needed to derive the
CSDF model as described in [14]. We see clearly that the first
two steps of the proposed flow (i.e., automated parallelization
and model construction) are very fast. The fast derivation of
the parallelized program and CSDF model relieves the designer
from the burden of writing the parallel specifications manually.
Moreover, this allows the designer to explore a large number
of alternative program specifications in a short period of time.

B. Evaluating Scheduling Framework

The results of evaluating the scheduling framework are
described in detail in [16], [17]. We summarize these results
here as follows. For 19 real-life programs, scheduling the
programs as real-time periodic task sets results in: (1) optimal
throughput for 16 programs, and (2) optimal latency for 14
programs. Optimal throughput and latency of a streaming
program are those obtained under self-timed scheduling. Under
self-timed scheduling, an actor is fired as soon as its input
data are available. The aforementioned result shows clearly
that periodic scheduling of streaming programs is capable of
achieving optimal performance (i.e., throughput and latency)
for most programs.

7

TABLE II. PROGRAMS USED FOR SYSTEM VALIDATION

Program Description # tasks

JPEG encoder Image encoder from raw format to JPEG format 6
JPEG decoder Image decoder from JPEG format to raw format 2

sobel Sobel edge-detector filter 5
pipeline A synthetic program with pipeline topology 4
split-join A synthetic program with split-join topology 4

C. System Validation

In this step, we validate the systems generated by the
DaedalusRT design flow. To this end, we use a set of streaming
programs as shown in Table II. First, we synthesize a set of sys-
tems, where each system runs a mixture of the programs shown
in Table II. Then, the synthesized systems are prototyped on
two types of hardware platforms which are: (1) Xilinx ML605
FPGA board, and (2) Avnet ZedBoard with Xilinx Zynq-7000
SoC. We run each synthesized system on actual hardware and
monitor its execution to detect deadline misses and/or buffer
underflows/overflows. Each synthesized system was validated
by running it with real input data for a duration between 1
and 12 hours. For all the synthesized systems, no deadline
misses and/or buffer underflow/overflow were detected during
the whole validation phase.

V. OPEN ISSUES

In this section, we list the main open issues that we plan
to tackle in the future.

1) Support for more expressive MoCs: A more expressive
MoC allows a more accurate performance analysis. A first step
towards this goal is the work in [21]. The authors in [21]
present a scheduling framework similar to ours with support
for a MoC called Affine Data-Flow (ADF) graphs, which is a
generalization of CSDF. Another option is to support dynamic
MoCs which model programs that change their behavior during
run-time.

2) Support for programs with cyclic dependencies: Cur-
rently, the scheduling framework as proposed in [16], [17]
supports only programs with acyclic dependencies. Recently,
Benabid et al. [22] showed that any cyclic SDF graph can
be scheduled as a set of periodic tasks provided that its back
edges contain sufficient amount of initial tokens. Therefore,
in theory, it is possible to schedule cyclic CSDF graphs by
converting them to SDF graphs. However, it remains an open
issue whether or not an analysis technique like the one in [22]
can be applied directly on CSDF graphs.

3) Improving the WCET by considering the effect of map-
ping: During the WCET analysis, we assume that the com-
munication operations take their worst-case latency under a
fully congested interconnect. However, such assumption over-
estimates the WCET value. In a real system, many com-
munication streams are isolated from the others. Therefore,
communication operations occur without congestion and they
do not take their worst-case latency. Therefore, it is possible
to reduce the WCET values if the actual mapping is taken into
account.

REFERENCES

[1] W. Wolf, A. A. Jerraya, and G. Martin, “Multiprocessor System-on-
Chip (MPSoC) Technology,” IEEE Trans. Comput.-Aided Design Integr.
Circuits Syst., vol. 27, no. 10, pp. 1701–1713, 2008.

[2] B. Franke, “C Compilers and Code Optimization for DSPs,” in Handbook
of Signal Processing Systems, S. S. Bhattacharyya et al., Eds. Springer
US, 2010, pp. 575–601.

[3] P. Feautrier, “Dataflow analysis of array and scalar references,” Int. J.
Parallel Prog., vol. 20, no. 1, pp. 23–53, 1991.

[4] C. Bastoul, “Improving Data Locality in Static Control Programs,” Ph.D.
dissertation, University Paris 6, Pierre et Marie Curie, France, 2004.

[5] S. Verdoolaege, H. Nikolov, and T. Stefanov, “pn: a tool for improved
derivation of process networks,” EURASIP J. on Embedded Systems, vol.
2007, no. 1, pp. 19–19, 2007.

[6] E. A. Lee and S. Neuendorffer, “Concurrent models of computation for
embedded software,” IEE P.-Comput. Dig. T., vol. 152, no. 2, pp. 239–
250, 2005.

[7] E. A. Lee and D. G. Messerschmitt, “Synchronous data flow,” Proc.
IEEE, vol. 75, no. 9, pp. 1235–1245, 1987.

[8] G. Bilsen et al., “Cyclo-static dataflow,” IEEE Trans. Signal Process.,
vol. 44, no. 2, pp. 397–408, 1996.

[9] W. Thies and S. Amarasinghe, “An empirical characterization of stream
programs and its implications for language and compiler design,” in Proc.
of PACT, 2010, pp. 365–376.

[10] R. I. Davis and A. Burns, “A survey of hard real-time scheduling for
multiprocessor systems,” ACM Comput. Surv., vol. 43, no. 4, pp. 35:1–
35:44, 2011.

[11] C. L. Liu and J. W. Layland, “Scheduling Algorithms for Multipro-
gramming in a Hard-Real-Time Environment,” J. ACM, vol. 20, no. 1,
pp. 46–61, 1973.

[12] K. Keutzer et al., “System-level design: orthogonalization of concerns
and platform-based design,” IEEE Trans. Comput.-Aided Design Integr.
Circuits Syst., vol. 19, no. 12, pp. 1523–1543, 2000.

[13] A. Gerstlauer et al., “Electronic System-Level Synthesis Methodolo-
gies,” IEEE Trans. Comput.-Aided Design Integr. Circuits Syst., vol. 28,
no. 10, pp. 1517–1530, 2009.

[14] M. A. Bamakhrama et al., “A methodology for automated design of
hard-real-time embedded streaming systems,” in Proc. of DATE, 2012,
pp. 941–946.

[15] R. Wilhelm et al., “The worst-case execution-time problem–overview
of methods and survey of tools,” ACM T. Embed. Comput. S., vol. 7,
no. 3, pp. 36:1–36:53, 2008.

[16] M. Bamakhrama and T. Stefanov, “Hard-real-time scheduling of data-
dependent tasks in embedded streaming applications,” in Proc. of EM-
SOFT, 2011, pp. 195–204.

[17] M. A. Bamakhrama and T. Stefanov, “Managing latency in embedded
streaming applications under hard-real-time scheduling,” in Proc. of
CODES+ISSS, 2012, pp. 83–92.

[18] J. T. Zhai, M. A. Bamakhrama, and T. Stefanov, “Exploiting just-
enough parallelism when mapping streaming applications in hard real-
time systems,” in Proc. of DAC, 2013, pp. 170:1–170:8.

[19] H. Nikolov, T. Stefanov, and E. Deprettere, “Systematic and Automated
Multiprocessor System Design, Programming, and Implementation,”
IEEE Trans. Comput.-Aided Design Integr. Circuits Syst., vol. 27, no. 3,
pp. 542–555, 2008.

[20] L.-N. Pouchet, “PolyBench/C: the Polyhedral Benchmark suite,” last
accessed on: July 22, 2013. [Online]. Available: http://www.cs.ucla.edu/
~pouchet/software/polybench/

[21] A. Bouakaz, J.-P. Talpin, and J. Vitek, “Affine Data-Flow Graphs for
the Synthesis of Hard Real-Time Applications,” in Proc. of ACSD, 2012,
pp. 183–192.

[22] A. Benabid-Najjar et al., “Periodic Schedules for Bounded Timed
Weighted Event Graphs,” IEEE Trans. Autom. Control, vol. 57, no. 5,
pp. 1222–1232, 2012.

8

Minimizing the cardinality of a real-time task set by
automated task clustering

Antoine Bertout, Julien Forget and Richard Olejnik
Laboratoire d’Informatique Fondamentale de Lille

Université Lille 1, France
{antoine.bertout,julien.forget,richard.olejnik}@lifl.fr

ABSTRACT
The objective of this paper is first to properly define the notion of
task clustering. This is the process of automatically mapping func-
tionalities (blocks of code corresponding to a high-level feature)
with real-time constraints to tasks (or threads). We aim at reducing
the number of tasks functionalities are mapped to, while preserving
the schedulability of the initial system. Second, our goal is to ex-
pose the complexity of the problem and to sketch methods we will
propose for solving this problem. We consider independent tasks
running on a single processor.

1. INTRODUCTION
Our work falls within the scope of real-time systems program-

ming. Usually, real-time system developers design a system as a set
of functionalities with real-time constraints. A functionality is here
considered a block of code corresponding to a high-level feature.
Implementing such systems requires to map each functionality to
a real-time task (thread). On the one hand, the number of those
functionalities is quite high. For instance, it ranges from 500 to
1000 in the flight control system of an aircraft or of a space vehicle
[6, 10]. On the other hand, a large number of threads implies, a
significant time overhead in context switching [23, 13] and an im-
portant memory footprint (e.g. task control block, size of the stack,
etc.). Thus, the number of tasks supported by embedded real-time
operating systems is limited, rarely over one hundred and develop-
ers cannot map each functionality to a different task. This mapping
is currently mainly performed manually and, given the number of
functionalities to process, this work can be tedious and error-prone.

In our work, we address this question from the scheduling point
of view. We model a system as a set of tasks with real-time con-
straints, where each task is characterized by an execution time, an
activation period and a deadline, in the same way as Liu and Lay-
land’s task model [16]. With respect to this model, functionalities
can simply be considered as finer grain tasks, while threads are just
coarser tasks. Thus, mapping functionalities to tasks amounts to
gathering several tasks into a single one, which we call task clus-
tering. Clustering several tasks implies to choose only one deadline
for the cluster, which effectively reduces some task deadlines. As
a consequence, we have to check that the system schedulability is
preserved after the clustering. Our objective is to automate the clus-
tering, so as to reach a minimal task number, while preserving the
system schedulability.

Related Work.
In the literature, task clustering is most often studied in the con-

text of distributed systems implementation, where it consists in dis-
tributing a set of tasks over a set of computing nodes (processors or
cores). This is different from our context, because in the distributed

systems context a cluster corresponds to the set of tasks allocated
to the same computing resource. For instance, [20, 1] aim at mini-
mizing communications by clustering tasks that communicate a lot.
The approaches in [19, 11] cluster tasks based on communications,
in order to reduce the system makespan. The number of tasks of
the resulting implementation is however not reduced.

Functionality to task mapping is known as runnable-to-task map-
ping and is identified as a step of the development process in the
augmented real-time specification for AUTomotive Open System
ARchitecture (AUTOSAR) [5]. This document and [23] also pro-
vide guidelines defining under which conditions runnables can be
mapped to the same tasks. Authors in [26] propose an automated
mapping in that context, but that work is restricted to functionali-
ties that have deadlines equal to their periods. In [7, 18], the authors
study the multi-task implementation of multi-periodic synchronous
programs and must allocate the different elements of the program to
tasks. The clustering is out of the scope of [18], while the heuristic
proposed in [7] is very specific to the language structure.

In [22], authors aim at reducing the number of tasks in order to
reduce the complexity of the scheduling problem. However, they
only focus on functional requirements to group tasks, without con-
sidering timing constraints.

This research.
The number of possible clusterings of a task set is equal to the

number of partitions of the set, which is close to the Bell num-
ber [21]. The Bell number is exponential with respect to the car-
dinality of the set. Thus, given the huge number of possibilities to
explore, we motivate the use of a heuristic to tackle the task clus-
tering problem. We also study the schedulability tests that can be
applied to first, check the schedulability of a clustering and second,
to constitute a relevant heuristic cost function. For now, we do not
consider communications and the execution platform is made up
of a single processor. These are strong restrictions, which will be
lifted in future work. The aim of the present paper is to properly
define the problem and to study it in a simple setting, so as to serve
as a basis for future work.

Organization.
The rest of the paper is organized as follows. In Section 2, we

describe our clustering model. Section 3 is dedicated to the com-
plexity of the task clustering problem. We adress the question of
schedulability in Section 4. We describe the current status and the
future work involved in Section 5.

2. PROBLEM DEFINITION
Our model, illustrated in Figure 1, is based on Liu and Layland’s

model [16]. A system consists of a synchronous (i.e. with offsets

9

equal to zero) set of real-time tasks S = ({τi(Ci, Di, Ti)}1≤i≤n)
where Ci is the worst-case execution time (WCET) of τi, Ti is the
activation period, Di is the relative deadline with Di ≤ Ti. We
denote τi.k the (k + 1)th (k ≥ 0) instance, or job, of τi. The
job τi.k is released at time oi.k = kTi. Every job τi.k must be
completed before its absolute deadline di.k = oi.k +Di

oi.0

Ci

di.0Di

oi.1

Ci

di.1Di

oi.2

0

Ti Ti

Figure 1: Task Diagram.

2.1 Scheduling
In this paper, we focus on priority-based scheduling policies, ei-

ther fixed-job with Earliest Deadline First [16](EDF) or fixed-task
priority policies with Deadline Monotonic [14](DM).

Let J denote an infinite set of job, i.e., J = {τi.k, 1 ≤ i ≤
n, k ∈ N}. Given a priority assignment Φ where 0 is the lowest
priority, we define two functions sΦ, eΦ : J → N, where sΦ(τi.k)
is the start time and eΦ(τi.k) is the completion time of τi.k in the
schedule produced by Φ.

DEFINITION 1. Let S = ({τi}1≤i≤n) be a task set and Φ be
a priority assignment. S is schedulable under Φ if and only if:
∀τi.k, eΦ(τi.k) ≤ di.k ∧ sΦ(τi.k) ≥ oi.k

In the sequel, we will also rely on the notion of laxity.

DEFINITION 2. Laxity L (or slack time) indicates the maxi-
mum delay that can be taken by the task without exceeding its dead-
line: Li = Di − Ci.

2.2 Clustering
Clustering τi and τj , where Di ≤ Dj , produces a cluster τij

with the following parameters:

Cij = Ci + Cj

Tij = Ti = Tj

Dij = Di

The cluster deadline is the shortest of the two tasks. Taking the
minimum deadline ensures we respect both initial deadlines, even
though the constraints will be, in general, more stringent than the
initial constraints.

DEFINITION 3. Let S = ({τi}1≤i≤n) be a task set and τx and
τy be two tasks of S such thatDx ≤ Dy . We say that τxy is a valid
cluster if and only if:

1. Tx = Ty

2. Lx ≥ Cy

3. The task set obtained after clustering is schedulable

In industrial practices, functionalities of different periods are some-
times mapped together, especially when these functionalities inter-
act a lot, to minimize communication as explained in [24]. This
possibility makes the clustering more complex because it requires
to manage scheduling inside a cluster. For this reason, we do not

deal with this option in this paper. Nevertheless, we could relax
this assumption via, e.g., hierarchical scheduling [15].

The laxity test is just an optimization. It is redundant with the
schedulability test but it is simpler to check (constant time). Laxity
is depicted in Subfigure 2(a).

A schedulable system might become non schedulable after clus-
tering, as illustrated in Figure 2. Indeed, we notice in Subfig-
ure 2(b) that the task τb misses its first deadline after the cluster-
ing of tasks τa and τc. Thus, we must check the resulting task set
schedulability after clustering.

5 10 15

τa
Ca

Da Ta

5 10 15

τc
Cc

Dc Tc
5 10 15

τb
Cb

Db Tb
Cb

Ca

Cc

La

Lb

Lc

(a) Initial schedulable system of tasks τa,τb and τc under DM.

5 10 15

τac Dac Tac

5 10 15

Db Tb
Cb

Cac

Cb

Cac

τb

(b) Resulting unschedulable system after clustering of tasks τa
and τc.

Figure 2: Influence of task clustering on system schedulability.

3. TASK CLUSTERING COMPLEXITY
We aim in this section at emphasizing the complexity of task

clustering, which is related to the search space and to the schedula-
bility test applied.

3.1 Search space
Our problem consists in finding a partition of the task set that is

schedulable and with a minimum number of subsets. A partition of
a set X is a set of nonempty subsets of X such that every element
n in X is in exactly one of these subsets. The number of partitions
of a set is the Bell number [21]. The Bell number is exponential
with respect to the size of X and can be computed by the following
recurrence relation:
Bn+1 =

n∑
k=0

(
n
k

)
Bk with B0 = 1

To give a better idea of the size of the search, notice that for
instance, B500 ' 10844.

To be more precise, as we only cluster tasks with identical peri-

ods, the search space can be restricted to
m∏
i=0

Bni where Bni is the

Bell number of the set of tasks with period Ti and m is the number
of different periods of the whole task set. Nevertheless, this number
remains exponential.

A naive approach might be to conduct an exhaustive search among
all partitions of the initial task set, e.g. by applying partitions gen-
eration algorithms [2, 17], checking schedulability for each par-
tition generated and choosing the partition with the least subsets.
Nonetheless, our first experimentations show that, even using sim-
ple, non exact linear schedulability tests (presented below), this so-
lution is not achievable due to the exponential number of partitions
to explore. For instance, experiments conducted on a 2.3GHz In-
tel Core i7 quad-core with 4GByte memory, from an initial set of
20 tasks, lead to more than several days of computation. Thus, we
propose to limit the exploration, by applying a heuristic.

10

3.2 Heuristic function
We start from an initial task set where each task is considered a

cluster with one element, we gradually try to group more and more
clusters together to minimize the cardinality of the task set. At each
step, we try to group one cluster with another and we have, among
the candidates that fullfilled conditions 1,2 and 3, some more or
less good possibilities. This could be illustrated by Figure 3 for
example. Then, we must select the best candidate. This can be
achieved by a heuristic cost (or evaluation) function that estimates
which candidate will the most likely lead to the best clustering. We
propose to achieve task clustering using classic heuristics based on
cost functions, such as greedy Best-first search (greedy BFS), A*
algorithm or simulating annealing (SA).

A B C D

A B C D A B D C

B D CA B DA C A B D C

BA D C A B C D BA C D

A B C D

Figure 3: Possible ways to cluster tasks

4. SCHEDULABILITY ANALYSIS
While conditions 1 and 2 adressed earlier can be checked triv-

ially in constant time, condition 3 is more complex. We need
a schedulability test to determine a valid task clustering because
grouping tasks makes the resulting task set more and more difficult
to schedule. Moreover, we need a relevant heuristic cost function to
determine the best candidate for the clustering. We want a schedu-
lability test that exhibits some features that might allow us to com-
pare the potential of two task sets. Therefore, in this section, we
consider schedulability tests that can be also considered heuristic
cost functions.

We present schedulability tests that can be used for clustering
under DM and EDF scheduling policies and we detail their ability
to be considered a relevant cost function.

A schedulability test is called sufficient if all task sets considered
schedulable by the test are actually schedulable. In the same man-
ner, a schedulability test is called necessary if all task sets consid-
ered unschedulable by the test are in fact unschedulable. Schedula-
bility tests that are both sufficient and necessary are referred to as
exact.

We only consider exact and sufficient tests, thus insuring that the
task sets obtained after clustering are schedulable. Indeed, applying
sufficient tests means that we might not get the minimum number
of clusters but we are sure to still obtain a valid clustering.

4.1 Exact schedulability tests
[8] distinguishes two types of tests: boolean schedulability tests

and response time tests. On the one hand, boolean tests give a
boolean answer, determining only whether a task set is schedulable
or not, for instance with processor demand analysis (PDA). Thus,
they do not exhibit any clear feature that could be considered a
heuristic cost function and are not appropriate for our purpose. On
the other hand, exact tests based on response time analysis (RTA)
provide worst response time for each task and are more suited to be
used as cost functions. Indeed, considering a task τk with its worst
response time denoted Rk, the closer to 1 Rk

Dk
is, the less we have

margin to group the task τk with another. Thus, the sum of each
task response time divided by its respective deadline can be used

as heuristic cost function. Then, we have a heuristic cost function
h(S), such that

h(S) =
|S|∑
k=0

Rk
Dk

Deadline Monotonic.
RTA [12, 3] of a task τi is based on the concept of level-i busy

period. The level-i busy period is the maximum continuous time
interval during which a processor executes tasks of higher or equal
priority to the priority of the considered task τi, until τi finishes its
active job. Then, the computation of the worst response time for
each task τi is based on the length of level-i busy period. RTA for
DM can be performed with a pseudo-polynomial time algorithm.

Earliest Deadline First.
Contrary to fixed-task priority (FP) systems, the worst response

time is not necessarily found on the first processor busy period in a
task set scheduled by EDF [25]. Thus, computing RTA for EDF is
more complex and has an exponential complexity.

Even though the RTA for FP has a pseudo-polynomial complex-
ity, early experiments show that the test is quite efficient. The RTA
for EDF has an exponential complexity and early experiments seem
to show that the test is not practicable (it takes more than several
days of computation for 20 tasks).

4.2 Sufficient schedulability conditions
In order to reduce the complexity of the computations, we also

considered linear sufficient schedulability tests. Audsley [4] and
Devi [9] propose sufficient but not necessary schedulability tests,
respectively for DM and EDF in O(n) complexity. As far as we
know, there are no more efficient tests for DM and EDF in linear
complexity. The first results show that the test for DM behaves
well for clustering and better than that of EDF. Nevertheless, com-
putations with linear test under DM are only 2 times faster than
computations with exact RTA test under DM.

Those two sufficient tests actually provide an approximate worst
response time for each task. They have a similar form to the exact
tests based on RTA. Accordingly, they are also adapted to be used
as heuristic cost function.

5. CURRENT STATUS AND FUTURE WORK
INVOLVED

We emphasized in this paper that task clustering can not be effi-
ciently achieved by an optimal and exhaustive search but through a
heuristic, because of the exponential number of partitions to assess
as mentioned in Section 3.1. We explored in this sense the use of
sufficient tests and exact tests as heuristic cost functions for DM
and EDF.

We are currently working on a heuristic that makes the task clus-
tering feasible. Our preliminary results show that clustering can
lead to drastically reducing the number of task, especially when re-
alistic parameters (e.g. with deadlines close to the periods) are used
at random task set generation. For instance, we are able to cluster
400 tasks to several dozen in a reasonable time (less than an hour on
the machine’s configuration cited above) under DM. Results under
EDF are less encouraging with high processor utilization factors,
probably due to the pessimism of the sufficient test with such set-
tings.

We studied the problem of automatically reducing a large set of
independent tasks to a smaller set, while preserving the schedula-
bility of the task set. The current assumption that tasks are indepen-

11

dent is quite restrictive and will be lifted in future work. Situations
where tasks of different periods may be gathered will also be stud-
ied.

6. REFERENCES
[1] A. Ahmadinia, C. Bobda, and J. Teich. Temporal task

clustering for online placement on reconfigurable hardware.
In Field-Programmable Technology (FPT), 2003.
Proceedings. 2003 IEEE International Conference on, pages
359 – 362, Dec. 2003.

[2] J. Arndt. Matters Computational: Ideas, Algorithms, Source
Code. Springer, 2010.

[3] N. Audsley, A. Burns, M. Richardson, K. Tindell, and A. J.
Wellings. Applying new scheduling theory to static priority
pre-emptive scheduling. Software Engineering Journal,
8(5):284–292, 1993.

[4] N. C. Audsley, A. Burns, M. F. Richardson, and A. J.
Wellings. Deadline monotonic scheduling. Citeseer, 1990.

[5] AUTOSAR. RTE Standard Specifications.
[6] F. Boniol, P.-E. Hladik, C. Pagetti, F. Aspro, and V. Jégu. A

framework for distributing real-time functions. In
Proceedings of the 6th international conference on Formal
Modeling and Analysis of Timed Systems, FORMATS ’08,
pages 155–169. Springer-Verlag, 2008.

[7] A. Curic. Implementing Lustre Programs on Distributed
Platforms with Real-time Constrains. PhD thesis, University
Joseph Fourier, Grenoble, 2005.

[8] R. I. Davis, A. Zabos, and A. Burns. Efficient exact
schedulability tests for fixed priority real-time systems.
Computers, IEEE Transactions on, 57(9):1261–1276, 2008.

[9] U. Devi. An improved schedulability test for uniprocessor
periodic task systems. In Real-Time Systems, 2003.
Proceedings. 15th Euromicro Conference on, pages 23 – 30,
july 2003.

[10] J. Forget. A Synchronous Language for Critical Embedded
Systems with Multiple Real-Time Constraints. PhD thesis,
Université de Toulouse, 2009.

[11] L. Guodong, C. Daoxu, W. Daming, and Z. Defu. Task
clustering and scheduling to multiprocessors with
duplication. In Parallel and Distributed Processing
Symposium, 2003. Proceedings. International, page 8 pp.,
Apr. 2003.

[12] M. Joseph and P. Pandya. Finding response times in a
real-time system. The Computer Journal, 29(5):390–395,
1986.

[13] E. Lee. The problem with threads. Computer, 39(5):33–42,
2006.

[14] J. Y.-T. Leung and J. Whitehead. On the complexity of
fixed-priority scheduling of periodic, real-time tasks.
Performance evaluation, 2(4):237–250, 1982.

[15] G. Lipari and E. Bini. A methodology for designing
hierarchical scheduling systems. Journal of Embedded
Computing, 1(2):257–269, 2005.

[16] C. L. Liu and J. W. Layland. Scheduling algorithms for
multiprogramming in a hard-real-time environment. Journal
of the ACM, 20(1):46–61, January 1973.

[17] M. Orlov. Efficient generation of set partitions. Engineering
and Computer Sciences, University of Ulm, Tech. Rep, 2002.

[18] C. Pagetti, J. Forget, F. Boniol, M. Cordovilla, and
D. Lesens. Multi-task implementation of multi-periodic
synchronous programs. Discrete Event Dynamic Systems,

21(3):307–338, 2011.
[19] M. Palis, J.-C. Liou, and D. Wei. Task clustering and

scheduling for distributed memory parallel architectures.
Parallel and Distributed Systems, IEEE Transactions on,
7(1):46 –55, Jan. 1996.

[20] K. Ramamritham. Allocation and scheduling of
precedence-related periodic tasks. IEEE Trans. Parallel
Distrib. Syst., 6(4):412–420, Apr. 1995.

[21] G.-C. Rota. The number of partitions of a set. The American
Mathematical Monthly, 71(5):498–504, 1964.

[22] L. Santinelli, W. Puffitsch, C. Pagetti, and F. Boniol.
Scheduling with functional and non-functional requirements:
the sub-functional approach. Work-in-Progress Session of
ECRTS 2013, 2:9, 2013.

[23] O. Scheickl and M. Rudorfer. Automotive real time
development using a timing-augmented AUTOSAR
specification. Proceedings of ERTS2008, 4, 2008.

[24] S. Schliecker, J. Rox, M. Negrean, K. Richter, M. Jersak, and
R. Ernst. System level performance analysis for real-time
automotive multicore and network architectures. IEEE
Transactions on Computer-Aided Design of Integrated
Circuits and Systems, 28(7):979 –992, July 2009.

[25] M. Spuri. Analysis of Deadline Scheduled Real-Time
Systems. Research report RR-2772, INRIA, 1996.
REFLECS Project.

[26] M. Zhang and Z. Gu. Optimization issues in mapping
AUTOSAR components to distributed multithreaded
implementations. In 2011 22nd IEEE International
Symposium on Rapid System Prototyping (RSP), pages 23
–29, May 2011.

12

Optimism due to serialization in the trajectory approach for switched Ethernet
networks

Georges Kemayo, Frédéric Ridouard, Henri Bauer, Pascal Richard
LIAS/ISAE-ENSMA Université de Poitiers

1 avenue Clément Ader – BP40109 – 86961 Futurscope Cedex – France
{georges.kemayo,frederic.ridouard,henri.bauer,pascal.richard}@ensma.fr

Abstract

Many safety-critical applications in avionic systems
rely on switched Ethernet networks. A guaranteed upper
bound on End-To-End (ETE) communication delays for
each flow is mandatory for certification reasons.

Deterministic methods such as the Trajectory Ap-
proach have been defined in order to compute a guaran-
teed upper bound on ETE delay of flows. It has already
been proven that in some corner cases, the trajectory ap-
proach can be optimistic.

In this paper, we show that the optimization criterion
that takes into account the serialization effect can also add
further optimism to the computation.

1 Introduction

In this paper, we study high speed packets-network
such as, for example, AFDX (Avionics Full DupleX
Switched Ethernet)[1] or ATM. We focus on the ETE de-
lays of flows. The flows are constrained by a traffic con-
tract at their ingress point. There is no collision on the
physical links. The network elements are designed to en-
sure that no packet is lost even under maximum conges-
tion conditions. Each network element stores the packet
in a buffer using the FIFO (First In, First Out) policy. The
configuration of the network is statically defined. Thus
each flow (which can be multicast) is identified and stati-
cally mapped.

Several approaches have been designed to analyze the
ETE delays of flows. The Network Calculus [4, 5, 11] and
the Trajectory Approach compute an upper bound of the
ETE delay for each flow. We focus on the latter.

This approach has first been introduced by Martin et al.
in [10] for FIFO networks. The application on real case
scenarios has been proven in [2]. An optimization, con-
sidering the serialization of flows is defined in [3]. The
sources of the pessimism of the trajectory approach have
been analyzed in [8]. Recently, it has been proven that in
some corner cases [6], the trajectory approach can be opti-
mistic. Two sources of this optimism have been identified

and analyzed.
In this paper, we demonstrate through an example that

the optimization criterion taking into account the serial-
ization effect presented in [3] is flawed and can produce
optimistic bounds.

The remainder of this paper is organized as follow: the
trajectory approach is presented in Section 2. The counter-
example is detailed in Section 3. Finally, Section 4 con-
cludes this work.

2 The trajectory approach

The trajectory approach has been defined [10, 9] in or-
der to compute upper bounds on ETE delay of flows in dis-
tributed systems context. The trajectory approach model
is defined in Section 2.1. The trajectory approach princi-
ple is detailed using an example in Section 2.2. Finally,
the optimization criterion [3] which is analyzed in this pa-
per, is summarized in Section 2.3.

2.1 Trajectory approach network model
Let Γ = {v1, v2, . . . , vn} be a set of n sporadic and

unidirectional flows crossing the network. The network is
composed of p nodes {N1, N2, . . . , Np} (or network ele-
ments). A node consists of a FIFO buffer with 100 Mbps
servicing rate. The set of flows crossing a node Nk is de-
noted ΓNk

. The delay between two consecutive nodes for
any packet is constant and denoted L.

A flow vi is defined by : (1) Ci, the maximum process-
ing time of frames generated by vi; (2) Ti, the minimum
inter-generation time between two consecutive packets of
vi at its network ingress point; (3) Pi, ordered list of
crossed nodes from its source node (denoted firsti) to
the destination node (lasti). The cardinality of Pi is |Pi|.

An important assumption in the trajectory approach is
that two flows vi and vj meet at most once. In this case, we
note firsti,j (resp. lasti,j) their first (resp. last) common
node and between these two nodes, they cross the same
nodes in the same order (see Figure 1). Finally, when they
separate, they do not meet again.

The ETE delay of a flow is defined as the duration be-
tween its generation in its source node upon its departure

13

Figure 1. Intersection between two flows

Figure 2. Elements of the ETE delay

from its last node. It corresponds to the sum of the con-
stant technological latencies L and the sum of the waiting
times accumulated in each crossed node. The waiting time
depends on the backlog present in the buffer at arrival time
and therefore, it can suffer varying delays. The ETE de-
lay components are depicted in Figure 2. In this paper, for
sake of simplicity, we consider the delay between nodes
as negligible (eg. L = 0µs).

2.2 Trajectory approach principle
Let us consider the configuration depicted in Figure 3.

It is composed by 8 nodes {N1, · · · , N8} and 10 flows
{v1, · · · , v10}. The characteristics of the flows are re-
sumed in Table 1.

The upper bound on ETE delay computed with trajec-
tory approach is based on the busy period concept. A busy
period [7] is a time interval between two consecutive idle
times. An idle time, is a time such as all previously arrived
packets have been processed at this time. The trajectory
approach analyzes a packet i of vi generated at time t on
its source node and computes an upper bound of its ETE
delay.

We denote W lasti
i (t) as the latest starting time on its

last node, of the packet i generated by flow vi at time t
(on its source node). The upper bound on the ETE delay
of the packet i, generated at time t can be deduced by the
following formula: Ri(t) = W lasti

i (t)+Ci−t. Finally, all
possible generation times t are tested and the worst case is
selected as an upper bound. The upper bound of the ETE
delay for a packet i generated from flow vi is given by:
Ri = maxt≥0 Ri(t).

To present the trajectory approach concepts, we an-
alyze packet 7 of flow v7 following the path P7 =
{N4, N5, N6} from the configuration depicted in Figure 3.
An arbitrary scenario of packet 7 generated at time t =
30µs is depicted in Figure 4.

According to [10], the time origin is arbitrarily cho-

Figure 3. Network configuration.

v1, v3, . . . , v8 v2 v9 v10

Ci 20 20 30 10

Ti 1000 40 1000 1000

Table 1. Characteristics of the flows of the
configuration from Figure 3

sen as the arrival time of the first packet interfering with
packet 7 on the source node of the analyzed flow: packet
3 on node N4. ah

i denotes the arrival time of packet i on
the node h.

The delay incurred by packet 7 is related to three
busy periods noted bpN4 , bpN5 and bpN6 corresponding
to nodes N4, N5 and N6. For each node h, there are two
important packets :

• f(h), the first packet executed during bph;

• p(h), the "pivot packet": it is the first packet trans-
mitted during bph and following the analysed packet
i in its next node. In the last node, p(h) is always the
packet under study.

In our example, following these notation, the first packet
executed during bpN4 is f(N4) = 4 and the pivot packet
of the busy period bpN5 is p(N5) = 8.

To determine the latest starting time of packet 7 on its
last nodeN6, we need to evaluate on each crossed node h:

• the sum of processing time of all packets between
f(h) and p(h) (included);

• we then subtract, except for the source node, the dif-
ference between the arrival time of packets f(h) and
p(h − 1) (pivot packet coming from previous node)
denoted ∆h

i (t) = (ah
p(h−1) − ah

f(h));

• finally, the processing time of the packet under anal-
ysis (packet 7) is subtracted since it is the latest start-
ing time which is computed.

In the example depicted in Figure 4, considering this
scenario, the latest starting time of packet 7 on last node
N6, WN6

7 (30), is obtained by adding parts of the three
busy periods highlighted in black: WN5

7 (30) = (20 +
10 + 50) = 80µs. The ETE delay of packet 7 generated
at time 30µs is deduced: R7(30) = 80+20−30 = 70µs.

All possible generation times t shall be tested in or-
der to obtain the worst-case ETE delay. But to avoid
a combinatorial explosion, an upper bound of the latest
starting time and therefore on the delay is computed by
the trajectory approach. In [10], some criteria have been
established to characterize the worst-case scenario and
therefore to determine the upper bound on the ETE de-
lay. Thus, for each crossed node h: (1) the number of
packets between f(h) and p(h) is maximized; (2) the term
∆h

i (t) = (ah
p(h−1) − ah

f(h)) is minimized. The number of
packets between f(h) and p(h) is obtained by maximiz-
ing the interference of each met flow. Martin et al. [10]

14

0 50 100

N4

aN4
f (N4) = aN4

p(N4)

4 = f (N4) = p(N4) 7 3

bpN4

N5

aN5
f (N5) aN5

p(N4)

8 = f (N5) = p(N5) 4 7 3

bpN5

N6

aN6
f (N6) aN6

p(N5)

9 = f (N6) 10 8 7 = p(N6)

bpN6

Figure 4. Arbitrary scenario for packet 7

0 50 100 150

N4

aN4
3 = aN4

4 = aN4
7

4 3 7

N5
4 3 8 7

N6
9 10 8 7

Figure 5. Worst-case scenario for packet 7.

minimize the term ∆h
i (t) = (ah

p(h−1) − ah
f(h)), for any

node h to zero.
Considering the previous criteria, a hand-built scenario

leading to the worst-case scenario for packet 7 generated
at time t = 0 is depicted Figure 5. We obtain: WN5

7 (0) =
(20+60+60) = 140µs and the worst-case response time
is deduced: R7 = 160µs

2.3 Optimization considering the serialization effect
But considering the example described in Figure 3 and

its flow v7. A hand-built scenario leading to its worst-case
ETE delay is depicted Figure 5. In particular, this scenario
takes into account the minimization of term ∆h

i (t) to zero
[10]. This criterion is pessimistic. In fact, this worst-case
scenario considers that packets 9 and 10 arrive simulta-
neously at time 80µs on node N6. It is impossible since
these two packets share the same link to node N6. Hence
they are serialized and they come in sequence.

The Figure 6 presents a worst-case scenario taking into
account the serialization effect. The packet 9 arrives on
node N6 at time 70µs instead of 80µs and the packet 10
arrives simultaneously with the packet 8 = p(N5) at time
80µs. Therefore, we obtain ∆N6

7 (0) = 10 > 0. The
upper bound on the ETE delay is reduced at 150µs instead
of 160µs.

Taking into account the serialization effect, Bauer et al.
[3] define a new minimization criterion to term ∆h

i (t).

3 Overestimation due to serialization

In this section, we show that the optimization criterion
introduced by Bauer et al. [3] about the term ∆h

i (t) taking
into account the serialization effect can lead the trajectory
approach to be optimistic. Therefore the upper bound on

0 50 100 150

N4

aN4
3 = aN4

4 = aN4
7

4 3 7

N5
4 3 8 7

N6
9 10 8 7

Figure 6. Worst-case scenario considering
the serialization effect, for packet 7.

ETE delay computed with the trajectory approach can be
flawed.

3.1 Counter-example
We consider the flow v1 from the configuration detailed

Figure 3. The v1 path is P1 = {N1, N3, N8}. We focus
on the packet 1 generated by flow v1, at time t = 40µs,
on its source node N1. The ETE delay is computed with
the trajectory approach, considering the two minimization
criterion for the terms ∆h

1 (40) for each crossed node by
v1.

First, using the basic minimization criterion of Martin
et al., ∆h

1 (40) = 0 for any crossed node h, the ETE delay
computed for packet 1 generated at time 40µs on node
N1 is equal to : 140µs. If we use the optimization cri-
terion presented by Bauer et al., we obtain ∆N8

1 (40) =
∆N3

1 (40) = 20 and therefore, the ETE delay of packet 1
decreases to 100µs.

A hand-built scenario focusing on the packet 1 is de-
tailed Figure 7. The packet 1 generated at time t = 40µs
on N1, arrives simultaneously with the packet 2 on node
N3 at time 60µs. Another packet from flow v2, packet
2′ interferes also with packet 1. Due to the period T2 =
40µs of v2, packet 2′ arrives on nodeN3 at time 20µs. On
the node N8, the packet 1 meets the packets 3, 4, 5 and 6.
Since these packets arrive from the same input link, only
the packet 6 can arrive simultaneously with the packet 1 at
time 100µs. The others packets have arrived previously.

The ETE delay determined visually with this hand-
built scenario is 140µs. It is equal to the ETE delay com-
puted with the basic criterion from Martin et al. but it is
more than the ETE delay computed with the Bauer et al.

15

0 50 100 150

N1

aN1
1

1

N2

aN2
2′ aN2

2
2′ 2

N3

aN3
1 = aN3

2aN3
2′

2′ 2 1

N7

aN7
3 aN7

4 aN7
5 aN7

6
3 4 5 6

N8

aN8
2′ = aN8

3 aN8
4 aN8

2 = aN8
5 aN8

1 = aN8
6

3 2′ 4 5 2 6 1

Figure 7. Worst-case ETE delay of packet 1 at t = 40µs

0 50 100

N3

aN1
1

2′ 2 1

N7

aN2
2′ aN2

2
3 4 5 6

N8

aN8
f (N8) = aN8

3 aN8
p(N3) = aN8

2′

Figure 8. Computation of term ∆N8
1 (40) ac-

cording to the optimization criterion pro-
posed by Bauer et al.

optimization criterion which is 100µs. We can conclude
that the upper bound on the ETE delay using the basic cri-
terion is correct but the optimization criterion can lead to
an ETE delay which is no longer an upper bound. Thus,
this criterion cannot be used to certificate critical systems.

3.2 Discussion about this optimism
The criterion propose by Bauer et al. [3] can induce

optimism in the trajectory approach computation. The
terms ∆N3

1 (40) and ∆N8
1 (40) are optimist. For example,

∆N8
1 (40) is minimized by µ20 using the Bauer et al. op-

timization criterion taking into account the serialization
effect. The computation of ∆N8

1 (40) is depicted Figure 8.
The arrival of packets from each input link (packets 1, 2
and 2′ for the first link coming from N3 and packets 3, 4,
5 and 6 for the second link) are delayed at maximum and
synchronized between them. This criterion does not re-
spect the period between the packets 2 and 2′. Therefore,
the arrival time of packets f(N8) = 3 and p(N3) = 2′
on node N8 are separated by 20µs which leads to an over
estimation of term ∆N3

1 (40).

4 Conclusion

In this work, we focus on the trajectory approach. This
method is used to determine upper bound on ETE delay
of flows in distributed systems. We analyze an optimiza-
tion criterion proposed by Bauer et al. that takes into ac-
count the serialization effect between flows sharing the

same link. Using a counter-example, we prove that this
optimization criterion can induce some optimism in the
computed ETE delay.

As future work, we plan to propose a new criterion
taking into account the serialization effect for solving the
problem exhibited in this short paper.

References

[1] ARINC 664, Aircraft Data Network, Parts 1,2 7. Technical
report, ARINC specification 664., 2002-2005.

[2] H. Bauer, J.-L. Scharbarg, and C. Fraboul. Applying
trajectory approach to afdx avionics network. Emerging
Technologies and Factory Automation (ETFA 2009), pages
1–8, September 2009. Palma de Mallorca.

[3] H. Bauer, J.-L. Scharbarg, and C. Fraboul. Improving the
worst-case delay analysis of an afdx network using and
optimized trajectory approach. IEEE Transactions on In-
dustrial Informatics, 6(4):521–533, November 2010.

[4] J.-Y. L. Boudec and P. Thiran. Network calculus: A Theory
of Deterministic Queuing Systems for the Internet, volume
2050. Springer Verlag, 2001. ISBN: 3-540-42184-X.

[5] F. Frances, C. Fraboul, and J. Grieu. Using network calcu-
lus to optimize the afdx network. In Embbeded Real-time
and Systems (ERTS), January 2006.

[6] G. Kemayo, F. Ridouard, H. Bauer, and P. Richard. Op-
timistic problems in the trajectory approach in fifo con-
text. In 18th IEEE Int. Conf. on Emerging Technologies
and Factory Automation (ETFA), Cagliari, Italy, Septem-
ber 2013. IEEE.

[7] J. Lehoczky. Fixed-priority scheduling of periodic task
sets with arbitrary deadlines. Real-Time Systems Sympo-
sium, pages 201–209, 1990. Lake Buena Vista.

[8] X. Li, J.-L. Scharbarg, and C. Fraboul. Analysis of the pes-
simism of the trajectory approach for upper bounding end-
to-end delay of sporadic flows sharing a switched ethernet
network. International Conference on Real-Time and Net-
work Systems, pages 149–158, September 2011. Nantes.

[9] S. Martin. Mastering the time dimension of the quality of
service in networks. PhD thesis, Univ. Paris XII, 2004.

[10] S. Martin and P. Minet. Schedulability analysis of flows
scheduled with fifo: application to the expedited forward-
ing class. Rhodes Island, Greece, april 2006. IEEE Inter-
national Parallel and Distributed Processing Symposium.

[11] J.-L. Scharbarg, F. Ridouard, and C. Fraboul. A proba-
bilistic analysis of end-to-end delays on an afdx avionic
network. IEEE Transactions on Industrial Informatics,
5(1):38–49, Feb. 2009.

16

History-Cognisant Time-Utility-Functions for
Scheduling Overloaded Real-Time Control Systems

Florian Kluge, Florian Haas, Mike Gerdes, Theo Ungerer
Department of Computer Science, University of Augsburg, Germany

{kluge,haas,gerdes,ungerer}@informatik.uni-augsburg.de

Abstract—Time-utility functions (TUFs) as means for schedul-
ing allow to build flexible real-time systems. TUFs yield utility
values for single job executions. We extend this concept to
history-cognisant utility functions (HCUFs) that assign an overall
utility value to a whole task. We aim to use such HCUFs to
improve the single-task performance in control systems. We
present two extensions of the EDF policy for overloaded firm
real-time systems and compare them with related approaches.
First promising results are shown.

I. INTRODUCTION

The notion of deadlines as the sole scheduling criterion is
often too strict and can lead to inflexible and performance-
sacrificing real-time systems. Instead, Jensen et al. [10] pro-
pose to use time value functions (TVFs, also Time Utility
Functions, TUFs) as a basis for scheduling. A TUF represents
a task’s value that it will contribute to the system if it is
completed up to a certain time. A TUF can be based on task
deadlines, but may also incorporate other parameters, e.g. the
significance a task has for the operation of a system.

Jensen et al.’s work [10] was extended for best effort
scheduling [14] and tasks with dependent activities [8]. In
the meantime, several heuristic scheduling algorithms have
been proposed (e.g. [7], [12], [20]). The notion of time-value
is used in scheduling of real-time systems in general (see
[19] for an overview, or e.g. [1], [6], [9]) and in the special
case of overloaded real-time systems (e.g. [4], [11], [15],
[16]). Applications of time-value scheduling can be found
in dynamic reconfiguration of systems [5], Ethernet packet
scheduling [20] and robotics [2].

To the best of our knowledge, hitherto existing works on
TUF-based scheduling only take the possible value of the
current task instance into account, but do not care about a
task’s previous execution behaviour. In our work, we target
periodic control loops that can tolerate sporadic deadline
misses. If a control algorithm is built robust and executed at
a rate high enough, the system can tolerate single iterations
to fail, as it is able to recompense for these in the following
iterations [17]. Such behaviour has been formalised e.g. in
the (m, k)-firm real-time task model [18] and the weakly-
hard real-time model [3]. Nevertheless, control loops are most
often implemented as periodic tasks with hard deadlines, thus
sacrificing performance and flexibility.

Our aim is to exploit the robustness of such control loops
and execute them in a more flexible manner. Scheduling
decisions influence the behaviour of the control system and can

lead to a degradation of its quality. In this paper, we present
an approach to distribute such degradations equally over all
control tasks in the system at hand. Therefore, we introduce
history-cognisant utility functions (HCUFs). A HCUF maps
a task’s execution history into a single value which can be
evaluated by scheduler. We demonstrate how these HCUFs
can be used for scheduling overloaded control systems. If an
overload situation is detected, we cancel single jobs until all
other jobs can meet their deadlines. Using HCUFs as base
for the decision which jobs shall be cancelled, we achieve
that (1) cancellations are distributed equally over all tasks in
the system, and (2) the number of subsequent cancellations
affecting one task is reduced. While our approach is currently
based on timing parameters solely, it is possible to refine the
utility functions for an actual implementation using further
metrics that might also allow for an interaction between the
control algorithm and the scheduler.

This paper is structured as follows: In section II we review
the concept of TUFs and introduce history-cognisant utility
functions. A scheduling approach based on HCUFs is pre-
sented in section III. Preliminary evaluation results are shown
in section IV. We conclude this paper in section V.

II. UTILITY FUNCTIONS

Utility functions are applied to jobs that are generated by
tasks. A task τi generates jobs ji,k at times ai,k. Each job
has a deadline di relative to its activation time ai,k and an
absolute deadline d̂i,k = ai,k + di. The completion time of
job ji,k is denoted as ci,k. All utility functions map into the
utility domain U := [0, 1] ∪ {−∞}. 1 represents maximum
benefit for the system that can degrade down to 0 meaning no
benefit; −∞ stands for a failed job with possibly catastrophic
consequences.

A. Traditional Utility Functions

Time-utility functions can be used to assess single job exe-
cutions. The concept of firm real-time jobs that are worthless
once they exceed their deadline can be represented by the
following utility function which is also depicted in figure 1(a):

uF (ji,k) =

{
1 ci,k ≤ d̂i,k
0 else

(1)

A utility function for soft real-time jobs which are allowed
to miss their deadlines can be defined exemplarily in the

17

following manner (see also figure 1(b)):

uS(ji,k) =

1 ci,k ≤ d̂i,k
1− ci,k−d̂i,k

di
d̂i,k ≤ ci,k ≤ d̂i,k + di

0 else
(2)

Utility

0

1

Time

Deadline

(a) firm real-time

Utility

0

1

Time

Deadline

(b) soft real-time
Figure 1. Exemplary utility functions

These functions stand only as examples for utility functions.
Actual utility functions may have different shapes (see e.g.
[10]). Based on such TUFs, we want to estimate the utility of
successive job executions.

B. History-Cognisant Utility Functions

A history-cognisant utility function maps the utility values
of multiple successive job executions of one task into a single
utility value for the task. Insofar, we view a task τi as a
sequence of jobs Ji = (ji,0, ji,1, . . .). The notion of successive
jobs is formalised through connected subsets of sequences:

Definition 1: Let X = (xn) = (x0, x1, . . .) be a (possibly
infinite) sequence. Then X|p,q with p, q ∈ N0, p < q denotes
the connected subset (xp, xp+1, . . . , xq−1, xq) of X . The
whole sequence X can be written as X|0,∞, a tail of the
sequence as X|p,∞. Additionally, let

S(X) = {X|p,q|p, q ∈ N0} ∪ {X, ∅} (3)

be the set of all connected subsets of a sequence X .
To estimate the contribution of a task to the overall system

value, we use history-cognisant utility functions U that work
on sequences of job executions (with p ≤ q and some utility
functions u):

Definition 2: A history-cognisant utility function maps the
utilities of multiple subsequent job executions Ji|p,q of a task
τi into a single value that represents the the task’s contribution
to the system’s benefit:

U : S(Ji) → U
Ji|p,q 7→ U(u(ji,p), . . . , u(ji,q))

(4)

The following two examples illustrate concrete definitions
of HCUFs:

Example 1: One way to define a concrete HCUF is to
calculate the average utility UA of a subsequence of jobs
Ji|p,q:

UA(Ji|p,q) =

∑q
k=p u(ji,k)

q − p+ 1
(5)

Using UA, all job executions within the window Ji|p, q yield
the same influence on a task’s utility.
In a robust control system, a single job execution that dates
back longer has less influence on a system’s current state. We
model this behaviour with the following recursive HCUF UE .

Example 2: Let UE(ji,k) be the utility of task τi after the
execution of the k-th job ji,k. Using some weight w ∈ (0, 1)
and a TUF u(ji,k), we define UE(ji,k) as:

UE(ji,0) = 1
UE(ji,k) = (1− w)Ui(ji,k−1) + wu(ji,k)

(6)

In our future work we will investigate the influence of the
parameter w on an application. Also, we plan to define further
HCUFs that e.g. take into account how often a task deviates
from a desired behaviour succeedingly.

III. UTILITY-BASED SCHEDULING

Jensen et al. [10] and Locke [14] proposed an extension
to the earliest deadline first (EDF) scheduling algorithm [13]
to handle possible overload situations. As long as no overload
occurs, their best-effort algorithm (in the following called BE)
implements the original EDF online policy. If high probability
for an overload is detected during runtime, the algorithm
modifies an EDF schedule based on the value density of each
task. The value density for a task τi is calculated as Vi/Ci,
with Vi being the value of the task, and Ci its processing
time. The algorithm removes tasks with lowest value density
from the schedule until the overload probability drops below
a predefined threshold.

Aldarmi and Burns [1] address one problem of this approach
stemming from the static value density (SVD) used in BE: in
choosing a task to remove from a schedule, BE does not care
whether the task has already started executing. If a running
task is chosen for removal, the work it has performed until
that point will be lost, and the computing time used up was
therefore wasted. Aldarmi and Burns propose to use dynamic
value density (DVD) as base for scheduling decisions. They
calculate a task τi’s priority Pi(t) at some time t as Pi(t) =
Vi(t)/C̄i(t) with C̄i(t) being the task’s remaining execution
time. Thus, once a task has started executing, its priority will
increase and probability of cancellation decreases.

We notice another problem that can occur with the use of
BE: Jobs of tasks with a low value density are cancelled with
a higher probability during overload situations. Concerning
control applications, such behaviour can be counterproductive:
complex control loops with a high execution time might be
cancelled more often. In this case, it will be helpful if all
tasks suffer a similar degradation, but still are able to provide
some guaranteed value to the system.

To address this problem, we propose to use one HCUFs as
base for priority calculation to make the scheduling process
history-cognisant. Our approach is based on the fact that robust
control loops can tolerate single executions to fail. However,
such failures must not occur too often. If the scheduler has to
perform job cancellations to make a schedule valid, we want to
prefer such tasks for cancellation that performed successfully
before. Tasks that suffered from cancellations before shall be
preferred for execution.

We modify the BE scheduling approach by using different
criteria for removal of jobs from an overloaded schedule.
Instead of removing low-value-density jobs, we choose jobs

18

Table I
TASK SET TS1: GOOD-NATURED WITH 100% UTILISATION THROUGH

PERIODIC TASKS

Task Pi/oi Ci di pA

p1 6/0 2 6 -
p2 6/2 2 6 -
p3 6/4 2 6 -
s1 5 1 5 0.33

Table II
TASK SET TS2: ILL-CONDITIONED, PERIODIC TASKS CREATE OVERLOAD;

oi = 0 FOR ALL TASKS

Task Pi Ci di pA

p1 15 3 6 -
p2 57 8 13 -
p3 111 9 19 -
p4 42 10 18 -
p5 37 5 19 -
s1 50 5 10 0.4
s2 10 2 5 0.2
s3 100 13 20 0.3

whose tasks have accumulated a maximum utility U until now.
This leads to our first history-cognisant EDF extension, which
we call HC1 in the following. Additionally, the tasks shall also
profit from the findings concerning DVD. Therefore, we also
include a job’s remaining execution time C̄(t) in our removal
metric. This leads to a removal of jobs that have maximum
values of U(t) · C̄(t). We call this second history-cognisant
EDF extension HC2.

IV. EVALUATION

We have performed preliminary use case evaluations of
the HCUFs to compare the four extensions BE, DVD, HC1
and HC2 of the EDF scheduling policy. Any extension be-
comes active, if an overload situation is detected and removes
tasks from the schedule. We are interested, how the different
scheduling approaches influence the overall completion rates
of the single tasks. Also, we investigate how cancellations are
distributed over a single task’s life time.

A. Scenario

All scenarios that we investigated so far are based on the
following assumptions: time is divided into discrete time steps.
If a task τi is activated, it generates a job ji,k, k = 0, 1, . . . that
must be executed. All tasks τi are firm real-time with deadline
di relative to their activation time. Their utility is calculated
according to equation (1). Periodic tasks pi are activated at
the beginning of their period Pi, heeding a possibly positive
offset oi. Periodic tasks may have deadlines equal to their
period, but can also have shorter ones. Sporadic tasks si may
be activated with a certain probability pA in each time step
after their minimum separation time has elapsed. Any task τi
accumulates utility through a history-cognisant utility function
Ui as defined in equation (6). In our simulations we chose
w = 0.5.

p1 p2 p3 s1

0.8

0.9

1

BE DVD HC1 HC2

Figure 2. Completion rates of task set 1

p1 p2 p3 p4 p5 s1 s2 s3

0

0.5

1

BE DVD HC1 HC2

Figure 3. Completion rates of task set 2

So far, we have performed evaluations with several task
sets. For reasons of space, we only present the results of
two task sets. Task set 1 (table I) is rather well-natured. The
periodic tasks create 100% processor utilisation. Any time the
sporadic task is activated, the scheduler has to cope with an
overload situation. We chose this task set because the overload
is well under control and easy comprehensible. Task set 2
(table II) is ill-conditioned. The periodic tasks alone often lead
to overload situations that can be aggravated by additional
sporadic tasks. The aim of this task set is to estimate, how
the different scheduling approaches perform under very hard
conditions. For any sporadic task, the number recorded in
the Pi column indicates the task’s minimum separation time
between to subsequent activations.

In our simulations, jobs are generated and executed for one
million time steps. After this time no new jobs are generated,
and only those already activated are finished.

B. Completion Rates

In task set 1, the periodic tasks generate a basic load of
100%. The sporadic task (s1) gains a completion rate of 1
under BE, DVD and HC2 (see fig. 2). This happens at the cost
of the periodic tasks. However, their degradation depends on
the concrete policy. The completion rates under BE are lower
than those under DVD and HC2. This is due to the fact that
DVD and HC2 heed the remaining execution times of tasks
that might be cancelled. Both approaches prefer those tasks for
cancellation that have not yet started execution. HC1 achieves
a nearly equal distribution of task cancellations. In task set

19

Table III
MAXIMUM LENGTH OF SUBSEQUENT CANCELLATIONS FOR TASK SET 2

BE DVD HC1 HC2
p1 0 1 3 2
p2 7 9 3 6
p3 34 10 2 7
p4 22 13 3 9
p5 5 5 2 4
s1 3 5 3 4
s2 0 0 3 1
s3 134 73 3 48

2, BE and DVD discriminate against tasks that have longer
execution times (see fig. 3). HC1 nearly aligns the completion
rates of all tasks. Due to the stronger irregularity of the task set,
it cannot achieve this completely. HC2 again behaves similar
to DVD, but can weaken the discrimination in some places.

All in all, HC1 achieves the best alignment of completion
rates among the tasks of a task set. This results from HC1 only
taking a task’s previous completion behaviour into account, if
a cancellation is necessary. HC2 performs similar to DVD,
as both approaches also regard a job’s (remaining) execution
time.

C. Subsequent Cancellations

Next, we examine how cancellations are distributed over a
task’s lifetime. Therefore, we count how often any sequence
of n subsequent cancellations for each task occurs during
our simulations of task sets 1 and 2. In task set 1, the
longest sequence had length 9, occurring under BE, while
all other policies lead to only isolated cancellations. The
maximum lengths that occurs during the execution of task set
2 are displayed in table III. Again, longest cancel sequences
occurred under BE scheduling, and shortest ones under HC1.
Though not fully evaluated yet, these first results indicate that
task that are executed using HC1 will most probably not suffer
from extensive cancellation sequences.

V. CONCLUSIONS AND FUTURE WORK

We have presented history-cognisant utility functions as an
extension of the well-known time-utility functions that can
be used for real-time scheduling. We have demonstrated the
use of HCUFs through an extension of the EDF scheduling
algorithm. The results obtained in our evaluations indicate that
the use of apt utility functions can help improving single-
task performance in overloaded firm real-time systems. In the
future, we will perform extensive evaluations with random task
sets to get a more detailed image of the behaviour of our
approach. Additionally, we plan to investigate further TUFs
and HCUFs. We will compare our approach to other overload
schedulers. Especially, we will extend our approach such that
it can give the same guarantees as the (m, k)-firm real-time
scheduler. Finally, we aim to integrate our HCUFs into current
TUF-based schedulers.

REFERENCES

[1] S. A. Aldarmi and A. Burns. Dynamic value-density for scheduling
real-time systems. In Real-Time Systems, 1999. Proceedings of the 11th
Euromicro Conference on, pages 270–277, 1999.

[2] A. Baums. Indicators of the real time of a mobile autonomous robot.
Automatic Control and Computer Sciences, 46(6):261–267, 2012.

[3] G. Bernat, A. Burns, and A. Liamosi. Weakly hard real-time systems.
IEEE Transactions on Computers, 50(4):308 –321, Apr. 2001.

[4] G. Buttazzo, M. Spuri, and F. Sensini. Value vs. deadline scheduling in
overload conditions. In Real-Time Systems Symposium, 1995. Proceed-
ings., 16th IEEE, pages 90–99, 1995.

[5] E. Camponogara, A. B. de Oliveira, and G. Lima. Optimization-
Based Dynamic Reconfiguration of Real-Time Schedulers With Support
for Stochastic Processor Consumption. Industrial Informatics, IEEE
Transactions on, 6(4):594–609, 2010.

[6] H. Chen and J. Xia. A Real-Time Task Scheduling Algorithm Based
on Dynamic Priority. In Embedded Software and Systems, 2009. ICESS
’09. International Conference on, pages 431–436, 2009.

[7] K. Chen and P. Muhlethaler. A scheduling algorithm for tasks de-
scribed by time value function. Real-Time Systems, 10:293–312, 1996.
10.1007/BF00383389.

[8] R. K. Clark. Scheduling Dependent Real-Time Activities. PhD thesis,
Carnegie Mellon University, Aug. 1990.

[9] W. Ding and R. Guo. Design and Evaluation of Sectional Real-Time
Scheduling Algorithms Based on System Load. In Young Computer
Scientists, 2008. ICYCS 2008. The 9th International Conference for,
pages 14–18, 2008.

[10] E. D. Jensen, C. D. Locke, and H. Tokuda. A time-driven scheduling
model for real-time operating systems. In 6th Real-Time Systems
Symposium (RTSS ’85), December 3-6, 1985, San Diego, California,
USA, pages 112–122, Dec. 1985.

[11] G. Koren and D. Shasha. Dover; an optimal on-line scheduling algorithm
for overloaded real-time systems. In Real-Time Systems Symposium,
1992, pages 290–299, 1992.

[12] P. Li, H. Wu, B. Ravindran, and E. D. Jensen. A utility accrual
scheduling algorithm for real-time activities with mutual exclusion
resource constraints. IEEE Transactions on Computers, 55(4):454 –
469, Apr. 2006.

[13] C. L. Liu and J. W. Layland. Scheduling algorithms for multiprogram-
ming in a hard-real-time environment. J. ACM, 20(1):46–61, Jan. 1973.

[14] C. D. Locke. Best-effort decision-making for real-time scheduling. PhD
thesis, Carnegie Mellon University, Pittsburgh, PA, USA, 1986.

[15] P. Mejia-Alvarez, R. Melhem, and D. Mosse. An incremental approach
to scheduling during overloads in real-time systems. In Real-Time
Systems Symposium, 2000. Proceedings. The 21st IEEE, pages 283–293,
2000.

[16] D. Mosse, M. E. Pollack, and Y. Ronen. Value-density algorithms to
handle transient overloads in scheduling. In Real-Time Systems, 1999.
Proceedings of the 11th Euromicro Conference on, pages 278–286, 1999.

[17] L. Palopoli, L. Abeni, G. Buttazzo, F. Conticelli, and M. Di Natale.
Real-time control system analysis: an integrated approach. In Real-Time
Systems Symposium, 2000. Proceedings. The 21st IEEE, pages 131–140,
2000.

[18] P. Ramanathan. Overload management in real-time control applications
using (m, k)-firm guarantee. Parallel and Distributed Systems, IEEE
Transactions on, 10(6):549–559, 1999.

[19] B. Ravindran, E. D. Jensen, and P. Li. On recent advances in time/utility
function real-time scheduling and resource management. In Object-
Oriented Real-Time Distributed Computing, 2005. ISORC 2005. Eighth
IEEE International Symposium on, pages 55–60, 2005.

[20] J. Wang and B. Ravindran. Time-utility function-driven switched
ethernet: packet scheduling algorithm, implementation, and feasibility
analysis. IEEE Transactions on Parallel and Distributed Systems,
15(2):119 – 133, Feb. 2004.

20

Schedule-aware Distribution of Parallel Load
in a Mixed Criticality Environment

Marc Bommert
RheinMain University of Applied Sciences, Wiesbaden, Germany

Email: marc.bommert@hs-rm.de

Abstract—This paper presents an approach to segment parallelized
algorithms in a mixed criticality multi-processor system. Segmentation is
based on utilization of processors by higher criticality scheduling layers.
The ambition is to establish load distributions with reduced overhead
compared to non-clearvoyant distributions. The approach tends to be
deterministic in order to guarantee real-time capabilities, i.e. bounded
maximum execution time of parallelized segments, by avoiding thread
migration completely. We present two methods of load segmentation: A
static distribution based on WCET analysis of hard real-time tasks and
a second method to overcome the issues of the static approach by means
of backfilling.

I. INTRODUCTION

A. Contribution
We present a novel approach to segment lower critical parallel

algorithms in a partitioned mixed criticality (MC) multi-processor
environment, based on information on the temporal behavior of higher
critical tasks. It intents to reduce the overhead of workload distribution
for the sake of throughput and to facilitate task parallelization, while
preserving predictability to a maximum. The main target is to segment
parallelized loops in a way such that the parallel subtasks achieve
equal completion times, even if inhomogenous processing capacity
remains available on each processor due to the partitioned execution
of higher critical tasks.

Tasks of highest criticality are by definition well-analyzed in
terms of their functional and temporal behavior to prove them correct.
The result of system level temporal analysis is usually an execution
time budget accounted to a task in order for it to meet its deadline
in any possible system state. We show that the proportions between
these time budgets can be consulted as an evaluation criterion for
proper load distribution between lower criticality subtasks, resulting in
less coordination effort, i.e potential earlier completion of the overall
task. Since subtask/worker-thread migration is not required with this
approach, it basically allows bounded worst-case execution times.

B. Organization of this Paper
In Section II, we describe the theoretical background. A suitable

MC reference model is defined. The OpenMP standard for shared
memory parallel programming is briefly introduced. A description
of the identified problem scenario finishes Section II. In Section III,
we present our approach of defining processor utilization functions
and using these functions to control load distribution to tasks. We
introduce two methods, a statically weighted distribution and a hybrid,
partially dynamic distribution. We complete with simulation results
and an outlook on further work.

II. BACKGROUND

A. Conventions
To avoid ambiguity we define the terms used in this paper as

follows: A process is an instance of a computer program. A process
comprises one or more threads, flows of execution, which can be

independently scheduled by the operating system on the system’s
processors. Threads providing means to execute arbitrary application-
specific tasks as workload are called worker threads. A real-time task
denotes a part of a real-time (RT) application with sporadic or periodic
invocation and a certain deadline. We distinguish between hard real-
time (HRT) tasks, which never miss their deadline, and soft real-time
(SRT) tasks, which may miss their deadline, but guarantee bounded
tardiness to still ensure a certain quality of service.

B. Mixed Criticality Scheduling
The MC concept has been introduced for the avionic domain in

order to reduce size, weight and power (SWaP) of embedded systems.
The fundamental idea is to lower the number of hardware platforms
in a system by consolidating independent software modules onto the
same platform. An important aspect of this reduction is proper fault
isolation through temporal and spatial partitioning. Both, the SWaP
paradigm and the MC concept, are promising for mobile applications
in general, e.g. automotive ones, due to the rising importance of
multiprocessor platforms and strong demand for fault isolation [1].

For transfering the MC approach from uniprocessor (UP) systems
towards multiprocessor (MP) systems, since RT scheduling on an
MP system is usually an NP-hard problem [2], a common approach
is to partition the processors against each other for HRT tasksets.
This reduces schedule verification efforts on MP systems to methods
similar to those used on UP systems, which are well known.

Fig. 1. Container scheduling in an MC environment, Mollison et al. [3].

Our reference model of an MC stack is inspired by MC2 [3].
Figure 1 shows the MC2 stack, with each of the nested layers
implementing a specific scheduling algorithm:

Layer A uses a cyclic executive (CE) for applications of highest
criticality with HRT constraints. The second-highest layer B uses
partitioned EDF scheduling (P-EDF) for applications of highest

21

criticality with HRT constraints. A third tier, comprising layer C and
D, uses global EDF scheduling (G-EDF) for applications with SRT
constraints. Finally, the lowest layer E assigns remaining processing
time with, for example, global fixed-priority scheduling to processes
that are executed in a best effort manner.

We chose the mentioned scheduling stack for its hierarchical
structure and for the degression of software criticality from highest
towards lowest layers. Basically, a hierarchical scheduling model is
sufficient for our purpose. However, in such a scheduling stack, tasks
on each layer are preempted if tasks on a higher scheduling layer
become eligible for execution. Preemption delays are accounted when
RT behavior is analyzed. In practice, in contrast to the referenced
MC stack, at layer B, rate monotonic scheduling (RMS) is probably
more commonly used than P-EDF due to a simpler implementation
based on priorities, which most RTOS provide, and, consequently,
higher determinism in case of deadline misses. RMS, however, is not
optimal for tasks whose periods are not harmonic. Thus, in most real-
world scenarios, a certain processor capacity will remain unused by
scheduling layer B. For non-periodic tasks in RMS, it is common
practice to be mapped to periodically planned task-containers [4],
with a period according to the highest possible activation rate. This
additionally will lead to more processing time being accounted than
being used in average when RMS applies at layer B.

C. Shared Memory Parallel Programming with OpenMP
Whilst using an MP platform allows parallel processing to execute

independent single-threaded applications in parallel1, it also allows
algorithms to exploit real parallelism, e.g. performing segments of
computations on multiple processors, collecting the results. Compu-
tational problems face a permanent rise in complexity and amount of
to-be-processed data. Due to the challenge for modern UP systems
to further increase circuit density and throughput to satisfy Moore’s
Law, this is one important method to cope with increasingly strong
temporal requirements.

Parallel programming usually involves explicit definition of thread
behavior in terms of synchronized execution and data access. Until
today, it is a topic in research to simplify this process by abstracting
to a parallel programming model which hides these issues from
the more functional considerations of development. Such a stan-
dardized and widely used programming model is OpenMP [5]. It
allows shared memory parallel programming within a single process,
starting parallel worker-threads on demand and hiding their specific
synchronization and data access. OpenMP imposes a thread fork-join
structure to underlying software layers, i.e. the operating system (OS)
scheduler.

Due to its size, its high level of abstraction and the methods
of work allocation to be found in current implementations, e.g.
distributing subtasks to processors from a global queue, OpenMP
itself has not received much attention in development of RT systems.
The fork-join model of OpenMP imposes tasks with zero laxity to
the scheduler, which cause worse schedulability. Transforming fork-
join task models to improve their schedulability is a topic in recent
research [6].

An example of an OpenMP-parallelized loop is shown in List-
ing 1. A large number of iterations is implicitly parallelized into
independent subtasks of equal weight by the preceding preprocessor
statement. Threads are forked at loop entry and have to join at loop
exit. There is no explicit concurrent data access. The shown example
may implement any single-instruction, multiple-data algorithm with

1this can be legacy applications that are consolidated in an MC approach

independent iterations, e.g. vector operations, tree or cube traversal,
searching or even sorting.

Listing 1. C Language Example Code: OpenMP-parallelized for-loop
#pragma omp parallel for schedule (static)
for (int i = 0; i < 1000000; i++) {

result[i] = processData(&data[i]);
}

D. Problem Scenario & Incentive
In a multi-processor MC system, highest scheduling layers work

in a partitioned or clustered manner. Furthermore, application soft-
ware of high criticality is verified with corresponding high detail
regarding its temporal behavior. Worst-case execution time (WCET)
is determined, accounted to tasks, and forms deadlines. For layers
of lower criticality with SRT requirements or without temporal
requirements, the partitioning is relieved and tasks are allocated to
processors from a global ready queue.

Thus, software (with or without RT constraints) demanding par-
allel execution of algorithms, such as the fork-join model applied
by OpenMP, is not directly considered by the MC approach. Due to
inhomogenous remaining processing capacities on scheduling layers
below partitioned HRT scheduling, throughput of parallel algorithms
is not efficient. The distribution of parallel workload to processors is
usually not aware of the demand for processing capacity at higher
criticality layers, which is directly linked to parameters of real-time
tasks at these layers. Due to excessive verification effort required
at highest criticality layers, those tasks parameters are usually well-
determined anyway. They could easily be used to optimize workload
distribution, although it is important not to expose them to isolated
tasks of lower criticality.

A trusted layer of workload distribution, e.g. an implementation
of the OpenMP runtime libraries at lower levels of the MC stack,
is suitable to overcome this issue in order to potentially improve
efficiency while preserving fault isolation and preventing covert
information channels from higher towards lower criticality processes.
Furthermore, if a fixed mapping between worker threads and a
system’s processors would be used, RT guarantees could basically
be given by means of bounded execution times of parallelized task
segments.

III. A SCHEDULING LAYER FOR DIVISIBLE LOAD IN A MIXED

CRITICALITY ENVIRONMENT

We define an additional scheduling layer in the presented MC
model. This new scheduling layer is located below the two topmost
partitioned scheduling layers A and B. Threads of that new layer
are preempted when HRT-tasks of a higher layer become ready. In
turn, activity in lower scheduling layers is preempted when either the
new layer or HRT layers signal readyness. At the new layer, work
is distributed globally for all processors of the system or a specified
cluster of at least two processor nodes.

For simplification, we assume the new scheduling layer to contain
a single process for now. This process interfaces an RT capable
subset of the OpenMP programming standard. It implements a single
parallelized loop as introduced in listing 1. When the loop is executed,
a number of worker threads, one for each processor, become eligible
for execution. Each of the threads is assigned a subtask to process
a disjoint share of the parallelized loop. The share, i.e. the loop
iteration count to be assigned to a specific subtask, is determined by a
distribution function which itself decides about workload distribution
based on a utilization function.

22

A. Utilization Functions
If a parallelized task is executed on a lower MC layer, below

the partitioned HRT-tasks, a processor may be claimed by higher
criticality tasks. Since the superior task schedule is static and a
complete WCET analysis is available, information on worst-case
processor utilization by HRT tasks can be statically provided as a
utilization function u(i, t0, t1). It delivers the worst-case utilization
of processor i in [t0, t1).

In a periodically planned partitioned MC system, a system global
period Tp can always be derived as the lowest common multiple of
all task periods of all partitioned, higher criticality tasksets. For a
realtime system which measures and controls a real-world process
with high frequency, task periods are usually short. Thus, the system
global period is also potentially short. More precisely, our approach
requires that the overall runtime of the parallel sequence is a large
multiple of Tp. This allows to consolidate utilization functions for
integer multiples of the system global period Tp with reasonable error,
despite the exact execution time of the parallelized task segment.

Tp is the period of the utilization function. The function result is
a normalized value: A result of 0 indicates an idle processor i and a
result of 1 indicates that the processor will not be available at all in the
given interval. The utilization function is defined at system integration
time, based on static HRT task parameters, e.g. their period and their
WCET.

For the following definition of workload distribution methods, we
distinguish between worst-case utilization of each processor, based on
WCET analysis of RT tasks, and its best-case utilization. Therefore,
we distinguish between worst-case and best-case utilization functions,
uWCET () and uBCET ().

B. Weighted Static Distribution of Parallel Load
From uWCET (), certainly remaining processing time of processor

i can be determined as 1−uWCET (i, t0, t1). The proportions between
worst-case processor utilization define a proportional distribution
function z(i,N,m, t) which is consulted at each fork operation for
each of the involved processors [1..m]:

z(i,N,m) =
1−uWCET (i,0,Tp)∑m

k=1
(1−uWCET (k,0,Tp))

∗N = Ni

Where N is the overall loop iteration count as illustrated in listing
1, and Ni is the loop iteration count to be distributed to processor i.

This proportional distribution function z is consulted during
execution of the fork operation of the parallel task segment. It is
called exactly once per processor per parallelized loop to decide
about the proportions in which N is shared between subtasks. Load
segmentation according to z would be optimal, if the effective
execution time of higher criticality tasks would always equal their
WCET and the runtime of the parallel task segment would be an
integer multiple of Tp. Depending on the execution time variance
of higher criticality tasks, and the parallel segment’s exact execution
time, the distribution function z is thus presumably always affected
by a certain error. This error has to be tolerated to give RT guarantees
to the parallel task segment. Dividing the parallel segment based
on WCET analysis of higher criticality tasks will thus barely ever
achieve an optimal result. Nevertheless, this static weighted approach
is able to reach better results than a static distribution not considering
processor utilization by higher criticality tasks, which we will further
refer to as static naive for comparison.

Using the static weighted method, starvation of parallel subtasks
is prevented by design. It is technically easy to limit the maximum

processor usage and to inherit definitive processing time to lower MC
layers.

C. Hybrid Distribution of Parallel Load
In order to overcome an issue of a static weighted distribution

based solely on the WCET of higher criticality tasks, a hybrid distri-
bution concept seems promising. Instead of entire static segmentation
of load, a hybrid algorithm would pre-divide load into a fraction
Ns which is assigned statically and a second fraction Nd, which is
assigned dynamically. This allows threads finishing their statically
assigned share early, to actively claim new work. Such backfilling is
potentially capable to reduce or eliminate inserted idle time caused
by reduced utilization of a specific processor at higher criticality
layers. Its cost is an increased number of potential synchronization
operations between workers when dynamically requesting new work,
i.e. a certain fixed number of loop iterations.

To pre-segment the overall number of loop iterations, the band
between WCET and BCET in each processor’s RT-taskset may
be considered by means of the utilization functions uWCET and
uBCET . The dynamically allocated part has to be sufficiently large
to compensate the expected imbalance in processor utilization due
to execution time variances of higher criticality tasks. Therefore,
processing capacity definetly not used by a processor by HRT tasks
cdef = 1 − uWCET is distinguished from utilization that may
additionally not be required cpot = uWCET − uBCET . Ns and Nd

can be determined to:

Ns = N −Nd = N ∗
∑m

i=1
cdef∑m

i=1
(cdef + cpot)

By choosing the number of operations which are dynamically
allocated on worker thread request, speaking in OpenMP terminology,
the chunk size of dynamic work allocation, this approach trades
between worker synchronization overhead and the finally remaining
maximum inserted idle time. The divisibility factor, i.e. the WCET
of a single loop iteration, provides an ultimate limit.

IV. SIMULATION RESULTS

 0

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

 0.7

 0.8

 0.9

 1

 620 640 660 680 700 720 740 760 780 800

overall runtime of parallel segment [ms]

static naive
dynamic naive
static weighed

Fig. 2. Static weighted distribution with constant load from a higher priority
task.

Figure 2 shows simulation results comparing three types of
workload distribution methods. The simulation platform is a dual-
core processor running a vanilla Linux kernel. One of the two

23

processors is constantly kept under load to a known share (1
3

) by a
highest priority thread simulating a cyclically executed RT task with a
period of 3ms. The shown plot compares execution time of a parallel
task segment subject to a static naive workload distribution, a fully
dynamic workload distribution, and our (clearvoyant) static weighted
distribution which allocates shares according to remaining processing
capacities. A single work cycle iteratively computes a short Fibonacci
sequence. The workload consists of 100 million cycles. Dynamically
assigned chunks consist of 1000 single cycles. Each simulation is
repeated 500 times.

It can easily be seen, that the static weighted distribution out-
performs the naive distributions. Its main advantage compared to the
static naive distribution is the drastically reduced inserted idle time at
the processor node which is idle at the highest criticality layer. The
advance to the fully dynamic (naive) distribution is due to reduced
worker synchronization.

 0

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

 0.7

 0.8

 0.9

 1

 580 600 620 640 660 680 700 720

overall runtime of parallel segment [ms]

static naive
dynamic naive

hybrid weighed

Fig. 3. Hybrid distribution with variable load from a higher priority task.

Figure 3 shows simulation results comparing three types of work-
load distribution methods. One of the two processors is dynamically
kept under load within known bounds (1

6
to 1

3
) by a highest priority

thread simulating a cyclic executed RT task with a period of 3ms. The
shown plot compares execution time of a parallel task segment subject
to a static naive workload distribution, a fully dynamic workload
distribution, and our (clearvoyant) hybrid distribution. Simulation
parameters are as mentioned before, but dynamically assigned chunks
consist of 1 million single cycles.

Again, we observe a clear advantage of our distribution over the
static naive distribution. More interesting, the hybrid method also
performs slightly better than the dynamic naive distribution, although
the latter is subject to only 100 work-stealing cycles, i.e. worker
thread synchronizations, during each run.

V. CONCLUSION

A. Discussion
In this paper, we described a novel approach for scheduling divisi-

ble load in an MC system at a layer which is subordinate to partitioned
HRT scheduling. We proposed a method to consider parameters of RT
tasks in order to determine an adequate segmentation of large numbers
of independent calculations. We focused on calculations with equal
demands of processing time, e.g. OpenMP-parallelized for-loops.

We concluded that the RT system could provide utilization
functions to predict definetly and potentially unused processing time
for each processor. Data provided by such functions, based on static
information from the system integration domain, could be used to
segment divisible load regarding the optimality principle, i.e. reaching
equal completion time of subtasks. The resulting optimization towards
the optimality principle would improve efficiency of parallel task
execution.

Since subtask/worker-thread migration is not required with this
approach, it basically allows bounded worst-case execution times
and, consequently, provides a HRT-capable interface for parallelized
algorithms.

B. Future Work
We currently develop a prototype implementation of the pre-

sented approach by gradually establishing a subset of an OpenMP-
compatible environment on basis of an RTOS. This environment will
have to interface the integration domain to gather highest criticality
task parameters, i.e. WCETs and BCETs. Load distribution within this
environment will then consider these parameters. Prior attention lies
on parallelized loops, that is, dynamic (runtime) assignment of loop
iterations to worker threads. So far, we can say that the scheduling
methods which can be interfaced through the OpenMP API, namely
static, dynamic and guided, suit the presented approach. Such a
middleware layer aims towards a general purpose solution. Static
assignment (pinning) of worker threads to processors, disallowing the
(non-clearvoyant) OS scheduler to migrate them between processors,
will presumably allow execution time guarantees to be given in order
to fulfill HRT requirements. Verification has to consider specific,
yet to be defined, use cases reproducing real-life scenarios such as
processing multimedia data with and without RT constraints.

In future work, the method can then eventually be extended
towards multiple parallel task segments, nested parallel task segments
and parallel task segments that explicitly access shared data and
thus are subject to locking. The approach may also be adapted
to parallel segments with inhomogenous runtime which itself are
weighted against each other by means of annotations. Limits in
memory- and bus-bandwith have not been considered yet, but are
crucial in a real-world implementation and thus need further attention.
Methods towards the system integration domain have to be designed
in order to automatically define utilization functions based on given
or gathered HRT task parameters.

REFERENCES

[1] ISO 26262, “Road Vehicles Functional Safety,” 2011.
[2] K. Ramamritham, J. Stankovic, and P. Shiah, “Efficient scheduling

algorithms for real-time multiprocessor systems,” IEEE Transactions on
Parallel and Distributed Systems, vol. 01, no. 2, pp. 184–194, 1990.

[3] M. S. Mollison, J. P. Erickson, J. H. Anderson, S. K. Baruah, and J. A.
Scoredos, “Mixed-criticality real-time scheduling for multicore systems,”
in Proceedings of the 2010 10th IEEE International Conference on
Computer and Information Technology, ser. CIT ’10. Washington, DC,
USA: IEEE Computer Society, 2010, pp. 1864–1871.

[4] L. Sha, M. Klein, and J. Goodenough, “Rate monotonic analysis for
real-time systems,” Carnegie Mellon University, Software Engineering
Institute, Tech. Rep., 1991.

[5] OpenMP Architecture Review Board, “OpenMP application program
interface version 3.0,” May 2008.

[6] K. Lakshmanan, S. Kato, and R. Rajkumar, “Scheduling parallel real-
time tasks on multi-core processors,” in Real-Time Systems Symposium
(RTSS), 2010 IEEE 31st. IEEE, 2010, pp. 259–268.

24

Application Architecture Adequacy
through an FFT case study

Emilien Kofman 12 Jean-Vivien Millo 1 Robert de Simone 1

1INRIA Sophia-Antipolis, Aoste team (INRIA/I3S/CNRS/UNS), 06560, Sophia-Antipolis, France
2Univ. Nice Sophia Antipolis, CNRS, LEAT, UMR 7248, 06900 Sophia-Antipolis, France

{emilien.kofman, jean-vivien.millo, robert.de simone}@inria.fr

ABSTRACT
Application Architecture Adequacy (AAA) aims at tuning
an application to a given hardware architecture. However it
is still a difficult and error prone activity. As like as in Hard-
ware/Software co-design, it requires a model of both the ap-
plication and the architecture. With the new highly-parallel
architectures, AAA should also allow a fast exploration of
different software mapping granularity in order to leverage
better the hardware resources without sacrificing too much
productivity. The main contribution of this paper is to ex-
tract from a case study a methodology based on dataflow
modeling to make the software both faster to develop and
suited to the target. Then we show how this methodology
can solve some of these issues.

Keywords
Application Architecture Adequacy (AAA), Fast Fourier Trans-
form, Hardware/Software co-design, Massively Parallel Pro-
cessor Array (MPPA), parallel computing

1. INTRODUCTION
This article identifies through a case study how to make

the maximum use of the heterogeneous parallelism of the
upcoming architectures. The example we picked is the well
known FFT algorithm. It is often taken as a benchmark
utility but one should keep in mind that this is almost al-
ways a building block of larger software systems, and not
a standalone application. Thus it is important to study its
potential parallelism when running within the regular con-
ditions. Moreover, the chip-level parallelism has a growing
interest because it allows a large and scalable parallelism. It
is now possible to aggregate many cores on the same chip
but at some point the bus medium for data transfers be-
comes the bottelneck because communication is serialized,
hence the need for new communication media. This prob-
lem can be solved using network on chips (NoC) which allow
parallel communications. However it also raises much more
complexity for the programmer.

It is possible to adapt an implementation to a given ar-
chitecture although this work often requires many modifica-
tions and is thus very time consuming and error prone. On
contrary, given an implementation it is difficult to pick an ar-
chitecture which would improve it (either for performance,
energy consumption, temperature, cost). The reasons are
that there exist only few tools for fast architecture design
space exploration (such as [4, 7] based on systemC) and
they often require expertise. Moreover the implementation

sometimes already assumes hardware specific features thus
the need for a new representation.

2. CASE STUDY
In order to identify which representation would fit we

picked a DSP algorithm and tried to adapt it to a given
system, while keeping in mind which choices are related to
specificities of the given hardware system.

2.1 Hardware architecture
Very different, and heterogeneous hardware architectures

exist. General purpose GPU offer a very massive fine-grain
parallelism while multi-core CPUs offer coarse-grain paral-
lelism. Many-core architectures fall in the middle. The ex-
perimental platform is the Kalray Massively Parallel Pro-
cessor Array (MPPA-256). It has 16 clusters of 16 VLIW
cores, which yields a total of 256 VLIW cores. The clus-
ters are connected through a network-on-chip which is ac-
cessible through a message passing interface. The cores
inside a cluster are connected through a bus and share a
2MB memory, then the parallelism is leveraged thanks to
openMP. Additional cores are available for input/output
purposes (PCIe/Ethernet/GPIO/Interconnect). Thus one
Kalray MPPA-256 machine offers three levels of parallelism:

• The compiler bundles instructions for VLIW cores and
thus provides an instruction level parallelism.

• A shared-memory intra-cluster parallelism using openMP
or POSIX threads.

• A message-passing inter-cluster parallelism using a spe-
cific message passing interface.

2.2 FFT implementation
A from-scratch iterative Cooley-Tukey decimation in fre-

quency implementation allows to understand better the data
dependencies in this algorithm. Decimation in frequency
was preferred instead of decimation in time because it splits
the dataset in half at each stage instead of splitting even/odd
sample indices. It is thus easier to experiment with, espe-
cially on a distributed memory architecture. However, a
DMA-assisted transfer could efficiently split even/odd sam-
ples.

The FFT implementation often comes with different steps
(normalizing, FFT, unscrambling). The FFT Step requires
multiple stages which are a set of mutiply-add operations
named radix. For instance, a 213 samples radix2 FFT has
13 stages of 212 radix2 operations. In this paper, Step is
disambiguated from Stage which is part of the FFT Step.

25

The radix operation is the building block of the FFT al-
gorithms. Optimized routines exist for radix2 to radix16
(including radix3, radix5,...). It is sometimes called a but-
terfly operation due to its datapath representation. It is
made of multiply-add operations and requires constant co-
efficients named twiddle factors. When done in-place (one
buffer for both input and output), the FFT algorithm out-
puts results in bit-reversed order. Thus, the samples need to
be sorted, this is the unscrambling step. The resulting sam-
ples often need a normalization factor which can be applied
either at the end or along the FFT stages. In order to check
the implementation performance, the pseudo-throughput is
defined: let N be the number of samples:

throughput(Gflops) =
5.N.log2(N)

time(ns)
(1)

An inplace transform is implemented and the twiddle fac-
tors are pre-computed. The bit-reversing steps and normal-
izing steps were implemented for functional testing but are
not taken into account in this study because depending on
the whole application, they may not be necessary. Moreover
the bit-reversing is sometimes hardware-accelerated (some
DSP are capable of bit-reversed addressing). The algorithm
shows that at each stage of the FFT, all the radix opera-
tions could run in parallel (provided sufficient computation
units). Then, synchronization is needed at each stage and
the stages could be pipelined (provided sufficient memory).
This is the ideal, maximum parallelism of the application
which is reached for example in hardware implementations
or with GP-GPU implementations [9].

One should keep in mind that most of the signal processing
applications will use the FFT on a dataset with a power-of-
two number of elements, and within a given range (usually
not larger than 212). Moreover, applications will very-likely
run batches of FFT, and not a single one (for instance for
image processing purposes).

Apart from GPU implementations, few work exist on the
highly parallel implementation efficiency of FFT on distributed
memory architectures, and they either conclude that the se-
quential implementation runs faster ([3]) or that the parallel
implementation runs faster for a very large (non-realistic)
dataset of more than 212 samples. Other parallel implemen-
tations study only multidimensional FFTs, which fall in the
scope of ”batched FFTs”, and thus gives better results than
one-dimensional FFT on reasonable datasets because they
allow a simpler data-parallelism. For instance when running
a 2D-FFT, one can run first 1D-FFT on each row (and they
are independant), then run 1D-FFT on each column.

Although this study focuses on parallel implementations,
sequential efficiency of the algorithm is of course important.
radix2, radix4 and radix8 versions of the algorithm have
been implemented and radix4 and radix8 clearly outper-
forms radix2 (by a factor of 3.3x on x86 CPU). Mixed-radix
has not been implemented.

2.3 Results
The implementation first focuses on shared memory paral-

lelism achieved with openMP (Figure 1 on x86 and Figure 2
on MPPA), then evaluates distributed-memory parallelism.
The provided tools allow to compile both for Kalray’s ar-
chitecture and for the Host’s architecture (which is an Intel
i7-3820 CPU with 8 cores). The scale on the right gives
the pseudo throughput (equation 1). White edges identify

the number of threads which allows highest throughput for
given FFT size. The sequential column shows performance
when openMP pragmas are ignored, which differs from the
1-thread column (openMP pragma are not ignored but the
number of threads is restricted to 1).

16

32

64

128

256

512

1024

2048

4096

8192

16384

32768

65536

seq 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16

"<awk '{$1=\"\"}1' colormap | sed '1 d'" matrix

0

1

2

3

4

5

6

7

8

9

10

Figure 1: FFT size over number of threads on host

16

32

64

128

256

512

1024

2048

4096

8192

16384

32768

65536

seq 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16

"<awk '{$1=\"\"}1' colormap | sed '1 d'" matrix

0

0.2

0.4

0.6

0.8

1

1.2

Figure 2: Evaluation on one 16-cores cluster

As you can see, there is significant speedup in both cases
but there are also few differences. The absolute performance
of the CPU is higher than on one MPPA cluster. The most
interesting result is probably that the parallel implemen-
tation outperforms the sequential implementation even for
small sizes on CPU, but only for ”large” sizes (more than
210 samples) on one cluster. This may be due either to dif-
ferent openMP implementations or to the fact that VLIW
cores already perfom the radix steps in fewer operations,
thus reducing the computation time over sync time factor.
Figure 3 gives the maximum speedup performance results.
This shows a 11x speedup for large FFT sizes. Although we
admitted that such large datasets are not often used, this

26

Sheet1

Page 1

16
32

64
128

256
512

1024
2048

4096
8192

16384
32768

65536

0

2

4

6

8

10

12

Figure 3: Maximum speedup on one MPPA cluster

gives a clear idea of the reachable speedup performance for
batched FFTs or multidimensional FFTs because it is pos-
sible to run only a subset of the 216 FFT stages such that
it computes multidimensional FFTs of smaller sizes (recip-
rocally, a large FFT can be computed combining the results
from smaller FFTs). Given these results, it is probably wiser
to run batches of FFTs to leverage best this architecture.
This means this architecture is not very well suited to fine
grain parallelism but can achieve massive coarse grain paral-
lelism. The figures shows that provided low communication
overhead it would probably outperform CPU when running
batches of FFTs on 16 clusters.

This experiment rises two problems: The application and
the architecture needs to be described in such a way that it
is easy to allocate resources differently given the same (vali-
dated) implementation. The description of the architecture
needs to be precise enough in order to formally decide the
best suited parallelism granularity for a given hardware ar-
chitecture.

3. MODELING METHODOLOGY
Deciding which amount of parallelism should be auto-

mated is now an actively studied topic. The related works
in this area yield at least two main methodologies.

Some methods would take legacy code and compile it
through a front-end to an intermediate (possibly hardware-
independent) representation [2]. Then identify parallelism in
this representation with a custom tool and apply back-end
transformations according to the given architecture. This
source to source compiling allows to identify fine-grained
parallelism (e.g Instruction Level Parallelism) which is for
instance necessary when compiling code for a VLIW archi-
tecture but extracting coarse grain and pipeline parallelism
is not easy.

Another way to tackle this problem is to express applica-
tions in a dataflow-representation (either with a text-based
or graphical language) in order to ease the identification of
parallelism, then compile it to a given architecture. Given
the appearence of specific languages for specific architectures
(e.g. Open Computing Language for GPUs) it is reasonable
to think that a new representation is needed for signal pro-
cessing and multimedia applications.

3.1 Motivations
Many attempts exist in this area ([1, 5]) but for instance

in the case of StreamIt[5], the description of the architec-

ture is limited to sparse information (number of threads,
size of caches), and no model of the architecture is provided
in order to help the allocation mechanism. This can result in
under-performing implementations. For instance using sock-
ets for inter-process communication, either when processes
are located on the same machine or on another machine on
the network provides homogeneity to the whole compilation
process, but using the shared memory would be more effi-
cient. Thus compiling a streamIt application for another ar-
chitecture involves changing the compiler’s behavior which
is a tough task. GUI-programming tools also exist when
it comes to mapping dataflow applications onto hardware.
They allow very comfortable learning and fast prototyping
but they do not compete with hand-written applications.
Moreover they are sometimes bound to specific hardware.

3.2 Dataflow graph representation
Synchronous Data Flow ([6], SDF) is a dataflow process

network used to express logical parallelism of data flow appli-
cations. A functionnally correct representation of an appli-
cation within SDF allows formal checking for deadlock, star-
vation, conflict. Moreover it is now admitted that it eases
analysis of the buffer size over throughput compromise and
thus allows further optimisation for instance through static
scheduling [8].

An SDF is a graph structure in which every vertex has a
type. The graph has a set of agents N , a set of places P and a
set of arcs. The edges of an SDF are directed, they are hence
called arcs. An arc cannot connect two vertices of the same
type. An arc in an SDF has a width expressed with a non-
zero integer that represents the number of tokens travelling
simultaneously on it. The places hold tokens. Each place
has exactly one incoming and one outgoing arc.

This representation makes no assumption on the archi-
tecture (buffer sizes, execution speed). In the scope of this
article, an SDF models an application where the agents rep-
resent the different filters (or actors) that can be performed
concurrently in the application. The places represent a loca-
tion in memory. The arcs represent the flows of data (data
dependencies). The presence of a token in a place represents
the availability of a data element in the memory. An agent
without incoming (outgoing) arc represents a global input
(resp. output) of the application. The arcs does not neces-
sarily describe an access in memory or a channel of commu-
nication but a flow of data between agents. The nature of
the link will come with the description of the architecture.

It is then possible to give a (very fine grain) SDF graph of
the FFT algorithm which is actually very close to the well
known butterfly diagrams, which exposes the maximum par-
allelism. Expressing the same algorithm serially obfuscates
the data dependencies. Because of the very repetitive pat-
terns it would be easier to represent the application with a
language or a set of classes (as like as streamIt or FastFlow)
and not graphically.

3.3 Morphing and mapping
Given a precise description of the architecture, this SDF

representation can be morphed to the correct parallelism
level, then mapped to an hardware architecture. For in-
stance if the FFT has to be implemented on GPU, the very
fine grain representation could be fine. However if it has to
be implemented on CPU, it would be very time consuming
to synchronize that much threads (assuming one agent is

27

mapped to one thread) thus it is not the correct represen-
tation: on contrary the Figure 1 shows that it is essential
to limit the number of threads accordingly to the number of
cores.

Indeed, a precise description of the architecture and its
communication media should allow to split and merge agents
depending on communication throughput/latency, DMA en-
gines, routing in the case of network on chips and depend-
ing on the computation elements (size of their cache and
local memories, co-processors, VLIW or SIMD features, ...).
Then, the actual data moves can easily be identified. We in-
troduce the following morphed and mapped FFT represen-
tation (Figure 4). The assumed hardware in this example
is an heterogeneous shared/distributed memory architecture
as like as the Kalray MPPA-256. Two places which are in
the same cluster can benefit from shared memory (reduces
communication time and memory consumption compared to
a FIFO). Only the edges from one cluster to a different clus-
ter require message passing. These clusters have a DMA
thus the message passing could be asynchronous.

sample

4096

4096

2048 radix2

2048

2048

1024 radix2

1024

1024

512 radix2

512

512

FFT

512

store

2048

1024 radix2

1024

1024

512 radix2

512

512

FFT

512

1024

512 radix2

512

512

FFT

512

1024

512 radix2

512

512

FFT

512

512

FFT

512

512

FFT

512

512

FFT

512

512

FFT

512

2048

512 512 512 512 512 512 512 512

1024

512 512 512 512

1024

I/O Cluster

I/O Cluster

Cluster 0

Cluster1 Cluster3 Cluster5 Cluster7

Cluster 2

Cluster 4

Cluster 6

Figure 4: A 4096-samples FFT algorithm repre-
sented with a dataflow, then morphed to fit an archi-
tecture composed of 8 distributed memory clusters.

Further investigation on a 4096 samples FFT shows that
assuming no shared memory parallelism, positive speedup is
obtained when splitting the first stage, but not when split-
ting the second stage. However combining openMP and
message passing in this manner does not provide positive
speedup.

4. FUTURE WORKS
The tough task of the morphing and mapping steps is to

decide the representation level to allow a correct exploration
for a performant implementation. Indeed the architecture
has to be described but the abstraction level is not yet iden-
tified. Assuming the heterogeneities (for instance between
a regular CPU, a processor array, and a GPU), it is clear
that at least a high level representation (UML/SysML) of
the hardware is needed and not only sparse information.
Different level of complexity exist: non-functionnal UML,

systemC-TLM or CABA (Cycle Accurate Bit Accurate),
ISS, complete IP-XACT descriptions. An other obstacle to
this exploration is that it is sometimes hard to obtain precise
information about the hardware, especially for specialized
chips (GPUs, accelerators).

5. CONCLUSIONS
The present paper explained through an example how

software development of DSP and multimedia algorithms
could improve in order to ease code reuse and validation on
mutiple hardware targets. The dataflow representation, and
especially the SDF representation of applications [8] comes
naturally as a suitable candidate for hardware-independent
and optimisation capable representation. However picking
a hardware representation for fast design space exploration
and for performant implementation is still complex.

6. REFERENCES
[1] M. Aldinucci, M. Danelutto, P. Kilpatrick, and

M. Torquati. Fastflow: high-level and efficient
streaming on multi-core. In S. Pllana and F. Xhafa,
editors, Programming Multi-core and Many-core
Computing Systems, Parallel and Distributed
Computing, chapter 13. Wiley, Jan. 2013.

[2] M. Amini, B. Creusillet, S. Even, R. Keryell,
O. Goubier, S. Guelton, J. O. McMahon, F.-X.
Pasquier, G. Péan, P. Villalon, et al. Par4all: From
convex array regions to heterogeneous computing. In
IMPACT 2012: Second International Workshop on
Polyhedral Compilation Techniques HiPEAC 2012,
2012.

[3] M. Balducci, A. Choudary, and J. Hamaker.
Comparative analysis of fft algorithms in sequential and
parallel form. In Mississippi State University
Conference on Digital Signal Processing, pages 5–16,
1996.

[4] L. Benini, D. Bertozzi, A. Bogliolo, F. Menichelli, and
M. Olivieri. Mparm: Exploring the multi-processor soc
design space with systemc. Journal of VLSI signal
processing systems for signal, image and video
technology, 41(2):169–182, 2005.

[5] M. I. Gordon. Compiler Techniques for Scalable
Performance of Stream Programs on Multicore
Architectures. PhD thesis, Massachusetts Institute of
Technology, 2010.

[6] E. A. Lee and D. G. Messerschmitt. Synchronous data
flow. Proceeding of the IEEE, 75(9):1235–1245, 1987.

[7] LIP6. The soclib project : An integrated
system-on-chip modelling and simulation platform.
http://www.soclib.fr/, 2003.

[8] J.-V. Millo and R. De Simone. Periodic scheduling of
marked graphs using balanced binary words.
Theoretical Computer Science, 2012.

[9] V. Volkov and B. Kazian. Fitting fft onto the g80
architecture. University of California, Berkeley, 40,
2008.

28

Running Linux and AUTOSAR side by side∗

Tillmann Nett, Jörn Schneider
Trier University of Applied Sciences

Schneidershof
Trier, Germany

{T.Nett, J.Schneider}@Hochschule-Trier.de

ABSTRACT
Mixed criticality systems are systems, on which safety-critical
and non safety-critical software must run simultaneously.
For such a system it is necessary that all deadlines of safety
critical jobs can be met, and no safety-critical function is
impaired by any other function. Current approaches for
designing such a system include virtualization, hardware
partitioning or implementing all software as critical software.
These approaches however introduce additional costs due to
additional hardware, more complicated development tech-
niques for non-critical software or loss of processing power
due to the virtualization layer.

We demonstrate a novel method for implementing a system,
that provides lean interfaces for real-time software and a full
Unix interface for non real-time software. This system uses
vertical partitioning to run two different operating systems
on two cores of a single ARM multiprocessor.

1. INTRODUCTION
Real time operating systems such as AUTOSAR [1] allow

provably fast responses to physical events. This is required
for example in cars, where the speed of the wheels has to be
continuously monitored to take action if the brakes lock. As
a failure of such systems often can harm lives, such operating
systems need to be simple and easy to verify for correct
functional and temporal behaviour.

Interactive operating systems provide a good average case
performance thus delivering fast responses to user request in
most cases. However, they are not designed for predictability
and the worst-case reaction times can be very high.

In a growing class of systems users interaction, e. g. through
a GUI (Graphical User Interface), and guaranteed real-time
behavior of safety relevant functions has to be available
simultaneously. Such systems can be considered as a kind
of mixed-criticality systems. This means that such a system

∗This work is partly funded by the German Federal Min-
istry of Economics and Technology under grant number
01ME12043 within the econnect Germany project.

must at the same time fulfill requirements for two types
of systems, which cannot easily be provided by a single
operating system.

A viable but impractical method for building such a hybrid
system is to implement all parts to the same standards
according to the highest level of criticality on top of a common
real-time operating system. This means all interactive parts,
including driver software and the complete user interface
would have to be implemented as real-time tasks. This
introduces additional costs during development and whenever
parts of the system are changed.

In some cases it may also be possible to change an existing
interactive operating system to provide real-time facilities.
For Linux various patches add additional schedulers, syn-
chronization primitives etc. [11]. However the changes to the
Linux kernel are often quite large as for example in case of
the PREEMPT RT patch. Also it is often unclear whether
these patches offer full hard real-time guarantees or only
soft real-time guarantees. Furthermore all kernel code would
have to satisfy the relevant safety standards such as [10] and
be included in worst-case execution time analyses.

Another method to build such systems is to put different
parts of the system on different hardware each with a single
operating system, and then connecting them via a bus or
network. This method however requires doubling the amount
of hardware build into the automobile and introduces latency
because of the communication via the network. Furthermore
this method increases the power consumption of the system.

A third design method is to add a separate partitioning
layer underneath the real-time and the interactive layer fol-
lowing the principle of [4]. This layer separates the real-time
system from the interactive system by assigning individual
slots in a major time cycle and separating memory as well as
forcing all communication over a so-called system partition.
However, the enforced indirection has several disadvantages
as described in [12].

We present a novel method for designing a mixed criticality
system, running two different operating systems (vertical
partitioning) on two Cortex-A9 cores. A similar method
has previously been used to run two differently configured
Linux kernels on two separate cores of an x86 System [8].
Other vertical partitioning setups first start the Linux system
and then set aside a separate core for real-time work using
core isolation methods provided by Linux [5]. This however
greatly increases the startup time of the real time portions as
the complete Linux system has to be up and running before
the real-time core can be isolated.

The implementation method described here was used for

29

implementing an interactive monitoring and control system
in electric cars for a field trial on user acceptance of smart
grid technology in the project econnect-Trier.

The rest of this paper is organized as follows: Section 2
shortly summarizes the requirements, which governed our
design and implementation process. In section 3 we give a
detailed overview of the implementation of our prototype,
including startup of both operating systems, and the static
resource sharing scheme. In section 4 we summarize our work
and show how future work can extend our implementation.

2. REQUIREMENTS
The main driving force for this research were the conflicting

requirements presented in Section 1. However at the same
time other non-functional requirements also had to be taken
into account. We will now present the detailed requirements
and their justifications.

1. It shall be possible to derive and prove hard real-time
bounds for tasks where needed.

2. It shall be possible to implement non real-time or soft
real-time parts using operating system abstractions
well known by desktop programmers.

3. It shall be easily possible to argue and verify that the
real-time tasks are not impaired by the non real-time
functions.

4. It shall be possible to add, change or remove non safety-
related software without additional analysis or verifica-
tion of the real-time software.

5. It shall be possible to derive a fixed deadline for the
boot time, i.e. the real-time parts of the system must
be responsive after a fixed time when the system is
started.

Requirements 1, 2, 3, and 4 have been justified in Section
1.

Requirement 5 has been defined, as in cyber physical
systems often rigorous constraints are imposed considering
answer time of systems. For example safety critical systems
in cars often have to answer to messages on the CAN-bus
within 100ms after system startup. This often requires large
optimizations of the boot code when implementing such
devices [2]. Our method on the other hand will optimize
the response latency after boot by first starting the real-
time operating systems and then starting the non real-time
operating system on a separate core.

3. SYSTEM CONFIGURATION
In a uniform memory architecture two or more separate

processor cores operate on the same shared memory. All
cores can access the same hardware and can receive the same
interrupts. For the mixed-criticality system a OMAP4460
multiprocessor [9] was used, which provides two cortex-a9
cores [6], two cortex-m3 cores as well as other specialized
cores. Only the two cortex-a9 cores were used and all other
cores were deactivated, to keep the system uniform.

3.1 Startup Sequence
During startup of a OMAP4460 the Cortex-A9 Core0 is

initialized first by the ROM code. The ROM code fetches the
boot code from non volatile storage and starts executing it.
At this point, the system runs in single core mode and can

Hardware Assigned to

Screen Linux
Touch-pad Linux
non-volatile memory (SD-Card) Linux
UMTS Module Linux
USB Subsystem Linux
L3 OCM RAM (SRAM) AUTOSAR
GPS-Module AUTOSAR
CAN-Module AUTOSAR
SPI-Interface AUTOSAR
UART-Interface AUTOSAR
L3 and L4 Interconnects AUTOSAR/Linux
Main Memory (DRAM) AUTOSAR/Linux
Interrupt Distributor AUTOSAR/Linux
Interrupt CPU Interfaces One per Operating System
Hardware Spinlocks AUTOSAR/Linux

Table 1: Hardware distribution among operating
Systems

perform initialization steps and load the operating system.
At the same time the Core1 is put into an idle state by the
ROM code, from which it can be awakened by the operating
system. Once the operating system is ready it can configure
the start address of Core1 and send a special signal which
awakes the other core. At this point the system runs in dual
core mode.

The mixed criticality system uses Das U-Boot [7] as a boot-
loader to load an AUTOSAR conforming operating system
from non-volatile storage. This AUTOSAR image currently
also includes a complete linux kernel statically linked in a
separate section of the executable. The real-time system
used is an open source version of the ArcticCore AUTOSAR
implementation [3]. This Version was implemented for a
single core machines, hence the second core is not started by
default. We added additional startup code which configures
and starts the other core. On the second core a short startup
routine is used to load the Linux image contained in the
AUTOSAR image and transfer control to the Linux image.
All startup parameters needed by linux are provided by the
core1 startup routine and are written to the correct locations
in memory. These parameters also include the maxcpus=1

option, which instructs the Linux kernel to run in single core
mode.

Das u-boot currently uses different code, depending on the
operating systems to be started. For Linux this code also
deactivates all interrupts, flushes caches and turns of caches
and the MMU. This code is not performed when starting
AUTOSAR from a ELF-image, but is required to later start
Linux from within AUTOSAR. To put the system into a
state that allows Linux to be booted, a call to this code
was manually added to the ELF-startup code of das u-boot.
As ArcticCore does not use caches or the MMU, it was not
impaired by these configuration changes. Interrupts are later
initialized again by code which was added to ArcticCore in
a way that interrupt lines could be statically assigned to one
of the Operating systems.

3.2 Hardware Assignment
To simplify the design of the system and to avoid the

need for resource management protocols, which may impair
real-time functions, we decided to statically assign most
hardware to one of the two operating system. However
some Hardware was needed by both operating Systems. For
this hardware is is necessary that initializations done by

30

t

core0

core1

U-Boot SPL U-Boot AUTOSAR startup AUTOSAR startup hook AUTOSAR tasks

Core1 Configuration Linux decompressor Linux code

Figure 1: Startup sequence of the mixed system

Figure 2: Memory configuration of the final mixed
system

AUTOSAR are not be overwritten during booting of Linux.
Hence for all shared hardware which is normally initialized
by Linux, the initialization routines were deactivated and
if necessary the initialization was performed during startup
of AUTOSAR. One exception to this rule was the main
memory. Main memory is initialized even prior to the start
of the OS in das u-boot, hence this initialization could be kept
in place. However to ensure that the address space reserved
for AUTOSAR would not be used by Linux, we manually
deactivated this address space in the Linux kernel using
the mem= boot parameters. Like all other boot parameters,
these were dynamically written by the Core1 startup code
within AUTOSAR, based on the actual address space used
by AUTOSAR.

To ensure timing correctness for memory access the MMU
was disabled on the core running AUTOSAR. For OMAP4460
SOCs disabling the MMU also disables all caches for memory
used by that core. To provide the real time parts with a
fast memory the L3 OCM RAM (SRAM) was used for data
parts of the system. The L3 and L4 Interconnects used for
communication between subsystems as well as memory of
the OMAP4460 was shared between subsystems. A closer
analysis of the arbitration strategies for the Interconnects to
ensure that all deadlines can be met is still required.

3.3 Interrupt Distribution
Both Cortex-A9 Cores in the OMAP4460 share a single

generic interrupt controller (GIC) [1]. This GIC is responsible
for global masking of specific interrupts and distributing
interrupts to the cores. The GIC is divided into a global
distributor and one CPU-interface per core. The distributor
can distribute interrupts to one or more CPU-interfaces which
then signal the interrupt to the CPU. Interrupts can then

be acknowledged on the CPU-Interface. Interrupts can both
be masked in the CPU-interface by setting a flag, as well as
in the distributor by setting an empty target list.

Neither the application context of the described system,
nor the chosen assignment of hardware resources require to
signal interrupts to more than one core. At startup all inter-
rupts are configured by AUTOSAR with an empty target list.
The target is then set to the appropriate core when activating
the interrupt in AUTOSAR or Linux. Reconfiguration of the
target within the distributor requires setting a single bit in a
memory mapped register. As other bits in the same register
may be owned by another operating system, a lock had to
be added around any configuration code. For this Lock one
of the hardware spinlocks provided by the OMAP4460 SOC
was used. Hardware spinlocks use memory mapped registers
for operation, hence providing a fast way for synchronization
between cores. This lock is only taken during short sections
within the Linux kernel. Before requesting this lock we dis-
able preemption in Linux. Because preemption is disabled,
only a single kernel-thread can wait for the lock at any time.
This means, the time that any AUTOSAR task must wait
for the lock is bounded and a worst-case execution time anal-
ysis for AUTOSAR tasks remains possible, by taking this
additional lock contention time into account. In case Linux
is run on multiple cores however the lock could be requested
by multiple kernel threads simultaneously. In this case it is
possible for one of the threads to steal the lock from the wait-
ing AUTOSAR task and the locking time becomes unbound.
In this case a different synchronization primitive is necessary
to ensure bounded execution times within AUTOSAR. For
example a mixed-criticality lock [12] could be used. Within
AUTOSAR all interrupts are configured during startup of
the system, so that lock contention times only influence the
startup and schedulability is not impacted by the lock.

3.4 Communication
To share data between AUTOSAR and Linux we added

real-time communication facilities. For stream transmissions
a non-blocking ring buffer implementation is used. Multiple
ring buffers are provided for multiple data streams. Using
these ring-buffers AUTOSAR tasks can send data packets to
Linux, which are then received in a kernel thread. Multiple
tasks sending data simultaneously through the same ring
buffer must be synchronized with each other. For this the
real-time resource sharing mechanisms within AUTOSAR
are used.

For communication from Linux to AUTOSAR only the
transmission of single word signals was needed. Hence these
words were reserved within a shared memory space. These
memory words are written in Linux using an atomic store
operation and read within AUTOSAR using an atomic read

31

operation.
All data structures needed for communication are set up

by AUTOSAR within the address space used by AUTOSAR.
The addresses of these data structures are then transmitted
to Linux prior to startup using a boot parameter. These
data structures are then read from a Linux kernel module
which configures all kernel data structures and offers a de-
vice file for communication with user space. The provided
communication facilities match the requirements imposed by
the current project, i.e. single word transmission from Linux
to AUTOSAR and stream transmission from AUTOSAR to
Linux.

3.5 Modifications to the Linux Kernel
One of the goals of this setup was to keep the modification

of the Linux source code to a minimum. Hence, additional
functions were implemented in a kernel module, where possi-
ble. This module can be compiled into the kernel or loaded
at runtime. Loading of the module has no impact on the
timing behaviour of the real-time parts, because no shared
resources are needed. Some additional modifications were
still needed to allow a separation of the operating systems.

The Linaro Linux Kernel for an OMAP4460 SOC contains
a complete hardware description of all submodules on the
chip. This description is read during startup and all hard-
ware modules are automatically initialized by the kernel. No
dynamic configuration of the SOC hardware is performed.
This initialization also includes all hardware modules which
were shared or statically assigned to AUTOSAR. As this
additional initialization would undo all previous initializa-
tions done by AUTOSAR, we had to reduce the hardware
initialization. For this it was sufficient to remove any module
used by AUTOSAR from the hardware description tables
provided in the Linux source tree.

During it’s initialization routine Linux on the OMAP4460
also configures the GIC and sets all interrupts to target the
first core used by Linux. As the GIC is already set up by
AUTOSAR this additional initialization code was removed.
Instead the interrupt targets are set when the interrupt is
activated within Linux. The code for setting the target upon
activation was also added.

In the SRAM management code it was completely sufficent
to set the SRAM size to zero. The current Linux kernel
already includes code paths to skip all SRAM initializations
in case there is no SRAM on the current system and to reject
all allocations on the SRAM.

As these changes are quite small and only include parts
of the kernel which change rarely, it is easily possible to
re-apply the same patches to newer kernel versions, making
updates of the Linux portions simple.

4. CONCLUSIONS AND FUTURE WORK
We were able to show that it is possible to use separate

cores for different operating systems on multi-core processors.
While previous work [8] only showed such a setup for x86
systems running two invocations of the same Linux system,
we extended this work to the ARM-Platform where one of
the operating systems was a real-time operating system. The
real-time ability was not impaired by the simultaneously
running non-real-time system.

Future work may include a better resource sharing among
both systems. As it is rare for both systems to require
the same hardware at the same time, it may be possible

to provide a suitable protocol that enables the necessary
resource-sharing between systems. However such a protocol
would have to provide guaranteed latency for the real-time
system, but not for Linux system, so an asymmetric protocol
could be used. This could for example be implemented
using Mixed Criticality Locks [12], which may be adapted
for multicore architectures.

Also a detailed comparison and experimental evaluation of
the different methods for implementing mixed criticality sys-
tems is still needed. At this point however such a comparison
would be beyond the scope of this article.

References
[1] ARM Generic Interrupt Controller - Architecture Spec-

ification. ARM. 2011.

[2] Jan Altenberg. Fastboot Technologie für Linux. Tech.
rep. Mülhofen, Germany: linutronix, 2010.

[3] Arctic Core - the open source AUTOSAR embedded
platform. ARCCORE AB, 2011. url: http://www.

arccore.com/products/arctic-core/.

[4] Avionics Application Software Standard Interface. AR-
INC Report 653. Aeronautical Radio Inc., Jan. 1997.

[5] Michael Christofferson. 4 Ways to Improve Linux Per-
formance for Multicore Devices. IEEE Spectrum Online
Tech Insider Webinar. 2013.

[6] CortexTM-A9 MPCore - Technical Reference Manual.
ARM. 2009.

[7] Wolfgang Denk. Das U-Boot. 2012. url: http://git.
denx.de/cgi-bin/gitweb.cgi?p=u-boot.git;a=

summary.

[8] Adhiraj Joshi et al. “Twin-Linux: Running indepen-
dent Linux Kernels simultaneously on separate cores
of a multicore system”. In: Proc. of the Ottawa Linux
Symposium. Ottawa, Canada, 2010, pp. 101–107.

[9] OMAP4460 Multimedia Device Silicon Revision 1.x.
Technical Reference Manual. Version F. Texas Instru-
ments. 2011.

[10] Road vehicles – Functional safety. ISO/FDIS 26262.
International Organization for Standardization, Dec.
2010.

[11] Steven Rostedt and Darren V Hart. “Internals of the
RT Patch”. In: Proc. of the Ottawa Linux Symposium.
Vol. Two. Ottawa, Canada, 2007, pp. 161–171.

[12] Jörn Schneider. “Overcoming the Interoperability Bar-
rier in Mixed-Criticality Systems”. In: 19th ISPE In-
ternational Conference on Concurrent Engineering -
CE2012. Trier, Germany, 2012.

32

A Constraint-Based WCET Computation Framework

Hajer Herbegue Mamoun Filali Hugues Cassé

CNRS IRIT
Université de Toulouse, France

first_name.last_name@irit.fr

ABSTRACT
OTAWA is a tool dedicated to the WCET computation of
critical real-time systems. The tool was enhanced in or-
der to take into account modern micro-architecture features,
through an ADL-based approach. Architecture constraints
are expresses such that they can be solved by well known ef-
ficient constraint solvers. In this paper, we present how we
could describe some complex architecture features using the
Sim-nML language. We are also concerned by the validation
and the animation point of views.

1. INTRODUCTION
OTAWA is a tool dedicated to the analysis of critical

real-time systems. The worst case execution time (WCET)
computation is one of the crucial analyses it provides. In
a previous paper [12], we have shown how to enhance this
tool in order to take into account modern micro-architecture
features and complex instruction set architectures. An ap-
proach based on architecture description language (ADL)
for the execution time analysis considers the architecture de-
scription in the Sim-nML language [11]. We have surveyed
how to express architecture constraints such that they can
be solved by well-known efficient solvers. In this paper, we
present an extension of the Sim-nML language that allows
to handle a set of complex features of modern processors.
We are also concerned by a validation point of view. Since
the validation of almost all currently used solvers is out of
reach, we extended the OTAWA framework to allow the
validation of the results returned by these solvers. This ap-
proach is not new: it is already used in assistant theorem
provers [7, 16] where results provided by other less reliable
but more efficient tools [2] are established again, i.e., vali-
dated. The inclusion of the validation layer is a novelty of
OTAWA since it represents an easy and fast way to verify if
analysis results meets the initial architecture specification.

The rest of our paper is organized as follows: Section 2 is
an overview of the related works. Section 3 recalls the con-
text of our work. We present the OTAWA tool and the
constraint-based approach for WCET computation. Sec-
tion 4 presents the Sim-nML language and its extension to
describe some complex features of modern processors. Sec-
tion 5 presents another contribution of the paper related
to validation and animation aspects. Section 5 draws some
conclusions.

2. RELATED WORKS
Over the last years, many studies have been undertaken

with respect to WCET computation for pipeline architec-
tures. Among them, we mention the work of [15] concerned
by verifying structural properties related to the wellformed-
ness of the architecture. A graph-based model of the pro-
cessor is generated from an ADL-based description. Archi-
tecture structural properties are validated using algorithms
applied on the graph. With respect to dynamic aspects, the
model checking approach has been experimented with miti-
gated results [9]. The basic timed automata model enhanced
with game theory aspects [4] seems promising. Nevertheless,
abstract interpretation based approaches [19] are today well
established. In this paper, we are interested in the AI based
approach on constraint satisfaction [6] and its validation.

3. ADL-BASED APPROACH FOR WCET
COMPUTATION

OTAWA [3] is a framework dedicated to WCET compu-
tation founded on an abstraction layer that describes the
target hardware and the instruction set architecture (ISA),
as well as the binary code under analysis. The instruc-
tion set architecture (ISA) specification is expressed in the
Sim-nML language. The hardware architecture is described
through an XML format. Yet only some architectures can
be handled by such a model. A pipeline analysis consists
in modeling the execution of basic blocks1 on the pipeline
and then computing the corresponding execution costs [18].
A constraint-based approach, presented in [12], is based on
ADL processor descriptions and uses constraint specification
languages and resolution methods to compute the time cost
of a basic block. The target processor is described using the
Sim-nML language [10, 17]. In addition to the ISA level,
the architecture description includes the hardware compo-
nents and the execution model of instructions. Sim-nML
was extended to support such a description of the proces-
sor. The carried analysis aims to estimate the time cost of
basic blocks of a program. Using the processor description
in the Sim-nML language and the basic block, we generate
a constraint-based description. The execution time of a ba-
sic block is described as a Constraint Satisfaction Problem
(CSP) [6]. This approach handles complex processors with
out-of-order execution, superscalar stages, pipelined func-
tional units, etc. This is done within an automated work
flow, presented in Figure 1.

4. THE SIM-NML LANGUAGE
1A basic block is a sequence of instructions, without any
branch, which makes up the execution path of a program.

33

Sim-nML

Architecture and
Instruction path models

Analysis

Binary file Basic block GLISS

Hardware
description

ISA
description

CFG Constructor
OTAWA

Constraint
based description

WCET analyzer
Constraint solver

Tools

Sources and
Generated modules

Automatic

Data flow

UPPAAL Checker
Time replay

Feedback
CSP Generator

Feedback

Figure 1: ADL-based work flow for WCET analysis

A representation of an architecture consists of the descrip-
tion of its hardware components and the supported instruc-
tion set. Sim-nML [11] is a hierarchical and a highly struc-
tured language able to perform such a description. From
this, it provides the ability to generate processor specific
tools. In Sim-nML, the processor model is described at
instruction level, as a hierarchical structure using an at-
tributed grammar. The instructions and the addressing
modes are described by pre-defined attributes. The syntax
attribute defines the assembly representation of the instruc-
tion. The attribute image gives the binary representation
and the attribute action defines the semantics of the in-
struction. See lines 15-18 of listing 1.

Listing 1: Sim-nML processor description
1 s tage FE , DE , IS , ALU[2] , MEM , CM
2 extend FE , DE , IS , CM
3 capac i ty = 2 / / d e g r e e o f s u p e r −

s c a l a r i t y

4 i no rde r = true / / i n − o r d e r s t a g e s

5 extend ALU , MEM
6 i no rde r = f a l s e / / o u t −o f − o r d e r s t a g e s

7

8 / / F e t c h B u f f e r a n d Re− o r d e r B u f f e r

9 bu f f e r FBuf [4] , RoB [8]
10

11 reg PC [1 , card (32)] / / 32− b i t PC r e g i s t e r

12 reg R [32 , card (32)] / / 3 2 r e g i s t e r s o f 3 2 b i t s

13 mem M [32 , card (8)] / / a m em o r y o f 2 ˆ 3 2 8− b i t w o r d s

14

15 op add (d : card (2) , s1 : card (2) , s2 : card (2))
16 syntax = format (”add r%d r%d r%d” ,d , s1 , s2)
17 image = format (”00%2b%2b%2b” ,d , s1 , s2)
18 action = {R[d] = R[s1] + R[s2] ;}
19 uses = FE & FBuf ,DE, IS & RoB,ALU[0] & R[s1] . read

& R[r2] . read & R[d] . wr i t e & RoB #{1} , CM
20

21 op load (d : card (2) , s : card (2))
22 . . .
23 uses = FE & FBuf ,DE, IS & RoB,MEM & R[d] . wr i t e &

R[s] . read & M. read & RoB #{10} , CM

We extended the Sim-nML language such that we can de-
clare the hardware structure of the processor2. Precisely,
the extended language provides the syntax to define the
pipeline stages, the resources accessed by the instructions
when they execute on the pipeline. The properties of these
hardware components are specified as attributes. So, we can
declare stages, buffers, registers and memories as hardware
resources. Lines 1-13 of Listing 1 describes the processor in
the Figure 2. The instruction definition is extended with
an attribute uses that describes the execution model of the

2Extensions are underlined in the listings.

Buffers and queues Registers Cache memoriesStages and functional units

ALU

Re-order
Buffer

Instruction

Cache

Fetch
Buffer

PC

MEM

ALU
mul

Data
Cache

FE DE CM

instr 0

Register
File

instr 1

instr 0

instr 1

instr 0

instr 1

instr 0

instr 1

instr 0

instr 1
DE

Figure 2: An out-of-order superscalar processor

instruction. The execution model represents the instruction
behavior in terms of resources allocation. For example, to
begin executing on a stage, an instruction has to wait for
its resources to be available. Therefore, the execution time
of an instruction is impacted by the general resources state.
The uses attribute defines, in a timed sequence called clause,
the resources used by an instruction in each step of its exe-
cution. A sequence is defined using commas. Every clause
in a sequence represents a step of the instruction execution.
In every step, one or more resources are required, and access
can be in a read or a write mode. Parallel access is expressed
by an operator &. Access to some resources can take a fixed
duration t that can be specified as #{t}. An example of
uses attribute is given in lines 19 and 23 of Listing 1.

Listing 2: Specialized execution with different laten-
cies

1 s tage FE , DE , IS , ALU[2] , MEM , CM
2 extend DIV
3 uses = FE , DE , IS , ALU[1] & R[rn] . read &
4 R[rd] . wr i t e & R[rm] . read #{25} , CM
5 extend MUL
6 uses = FE , DE , IS , ALU[1] & R[rd] . wr i t e &
7 R[rm] . read & R[rn] . read #{5} , CM

Listing 3: Multiple load instruction
1 extend l oad mu l t i p l e
2 uses = FE , DE , IS ,
3 (i f r e g l i s t <0..0> == 1 then MEM & M. read & R

[0] . wr i t e . . e nd i f) ,
4 (i f r e g l i s t <1..1> == 1 then MEM & M. read & R

[1] . wr i t e . . e nd i f) , . . . , CM

The language was extended to handle some complex fea-
tures of recent architectures. In fact, modern architectures
present complex pipelines and instructions with complex
execution models. We were able to handle pipelines with
specialized execution units, micro-coded instructions and
pipelined functional units (like floating point pipelines). For
example, we assume having a pipeline with 2 out-of-order
ALU units, among which only one executes multiplication
instructions. This feature is relevant in execution time com-
putation. Multi-cycle instructions and the micro-coded in-
structions as the load/store multiple are handled by our de-
scription language. Listing 3 presents a load multiple in-
struction where the reglist parameter is a bit sequence. A

34

bit is set to one if the corresponding register is loaded. Dif-
ferent latencies can be specified for every stage and are taken
into consideration when generating temporal constraints.
The example of Listing 2 considers the same architecture
in Figure 2. We assume that multiplication and division in-
structions are executed by the second ALU unit, which is
the specialized functional unit. However, different latencies
are specified for the two instructions on that functional unit
(see Listing 2). These clauses, specified for every instruction
supported by the processor, will be used, with the stages
attributes to generate the instructions constraints [12]. In
fact, we use temporal intervals to represent the lifetime of
instructions on the pipeline stages and the resource alloca-
tions. The instruction dependencies within a basic block are
expressed with constraints on the time intervals. The con-
straint description captures the architecture and instruction
semantics such as the resource allocation strategy, the data
dependencies, the structural dependencies, contentions on
shared resources, etc. The constraints are combined to for-
mulate a CSP, which resolution provides the time cost of
basic blocks of a program.

5. VALIDATION AND ANIMATION
The aim of the OTAWA tool is to provide an environment

for the hardware architect. In this section, we consider two
tools related to validation and animation. These tools are
based on an internal representation modeling the architec-
ture and the instructions behavior.

ISA level tasks: Step level tasks:

〈ISA〉〈interval〉〈instruction〉 〈Step〉〈interval〉〈instruction〉,〈step〉

Basic tasks (leaves):

〈occurrence|?〉〈Stage〉
〈interval〉
〈instruction〉,〈step〉 |

[r|w]
〈occurrence|?〉〈Resource〉〈interval〉〈instruction〉,〈step〉,〈index〉

〈Stage〉 , 〈Resource〉 ::= 〈Register | Buffer | Memory〉

Table 1: Collected clauses syntax

5.1 The internal representation
Since we are concerned by modeling concurrency of in-

structions, we have chosen an OCCAM based representa-
tion [8, 13]. We consider the following basic constructors:
• USES : This is the terminal case in which a basic re-

source request and an access are specified.
• SEQ : This is a sequential behavior. Each element of

this sequence is specified recursively by a clause. Intu-
itively, the SEQ constructor will allow us to specify the
execution path of an instruction. Each clause of this
path will specify the local behavior with respect to a
stage of the processor, what we called a step.
• PAR. This is a concurrent behavior. Each element is

specified recursively by a clause. Intuitively, we ex-
press as such the simultaneous use of resources during
a step.
• ATTR. These are general attributes superposed to a

clause, e.g., timing ones. Actually, our internal rep-
resentation is decorated with the resolved constraints.

Our internal representation is based on generic attributed
clauses. For our validation purposes, we instantiate the at-
tribute type as the corresponding time interval. With re-
spect to our concerns, the collected clauses can be described
through the light DSL (Domain Specific Language) given
by the syntax in Table 1. For instance, if we consider the
load instruction : ldr r3 , [r11 , -#20] executed on
the architecture of Listing 1, the following clause represents
the effective resources access of the instruction.

i0 clause = 0FE
[0,1]
0,0 & ?

?FBuf
[0,1]
0,0 & r

15R
[0,1]
0,0 , 0DE

[1,2]
0,1 ,

0IS
[2,3]
0,2 & ?

?RoB
[2,3]
0,2 , 0MEM

[3,4]
0,3 & r

0M
[3,4]
0,3 & r

11R
[3,4]
0,3

& w
3 R

[3,4]
0,3 & ?

?RoB
[3,4]
0,3 , 0CM

[4,5]
0,4

5.2 Validation.
We have studied two kinds of validation:
• Instruction constraints validation. It consists in check-

ing that the results are coherent with respect to the
initial representation. For example, we validate that
the intervals of instruction steps respect the data haz-
ard constraints.
• Architecture validation. It consists in checking that

the results are coherent with respect to the studied
architecture. For instance, we validate that, in an in-
order pipeline, an instruction steps occurs before its
successors.

∀ s
[l,u)
i,s ∈ STEP. ∀ s

[l′,u′)
i′,s′ ∈ STEP. i < i′ ⇒ u ≤ l′

Although, theoretically these validations should not be
necessary, our experiments have shown that they are of great
help. Actually, it is much easier to assess these validations
than those on the usual execution graphs [14] that can be
huge.

5.3 Animation.
The aim of the ”animated” views is to assist the architect

to better understand instruction behaviors. For that pur-
pose, we consider a well known formal model: that of timed
automata [1] for which verification tools like UPPAAL [5]
implement the decision procedure. As a matter of fact, the
UPPAAL framework is by now a mature tool which offers
a powerful simulator in order to interact dynamically with
the architecture under study. Currently, we generate au-
tomatically the instruction view and the stage view. Also,
architects can use the UPPAAL query language to express
temporal predicates. Then, such predicates will be decided
automatically. Moreover, if some property is not verified a
counter example is exhibited. To summarize, the architect
user can step along the execution of his model and validate
general dynamic properties.

Behavior specification: from timed clauses to timed au-
tomata.

Basically, to each clause, we associate a timed automata
location. Thanks to an invariant, control remains in such
a location starting from the lower bound until the upper
bound of the interval associated to the clause is reached. A
guard ensures that such a location is not left before the up-
per bound is actually reached. Each of our animated views
consists in a network of such automata sharing a global
clock clk. Last, since our automata progresses according
to time (not to internal events or synchronizations), the la-
bels of their states are also meaningful.

35

• The instruction view. In this view, a timed automata
was assigned to each instruction. Stepping trough this
view allows us to see how each instruction evolves.
This view is especially interesting for observing the
relative ”speed” of each instruction: when an instruc-
tion enters the pipe and maybe stalls over its successive
stages.
• The stage view (Figure 3). In this view, to each stage

is associated a timed automata. Stepping through this
view allows us to see how stages evolve. This view is
especially interesting for observing stages occupancy.

Figure 3: Stage view network timed automata

6. CONCLUSION
In this paper, starting from our extension of the OTAWA tool

allowing WCET computations for today architectures [12],
we have extended the Sim-nML language in order to handle
modern processors features. We found the constraint-based
time computation method suitable for expressing complex
instruction features. We have also presented a light DSL
for expressing architecture properties. Last, we have con-
sidered how to validate and animate the results obtained
through constraint solvers. As a future work, we intend to
use the DSL presented in this paper to formalize the archi-
tecture specification and constraints, in order to elaborate a
reliable description of the architecture constraints.

7. REFERENCES
[1] R. Alur and D. Dill. A theory of timed automata.

Theoretical Comput. Sci., 126(1):183–235, February
1994.

[2] M. Armand, G. Faure, B. Grégoire, C. Keller,
L. Théry, and B. Werner. A modular integration of

sat/smt solvers to coq through proof witnesses. In
CPP, pages 135–150, 2011.

[3] C. Ballabriga, H. Cassé, C. Rochange, and P. Sainrat.
Otawa: An open toolbox for adaptive wcet analysis. In
Software Technologies for Future Embedded and
Ubiquitous Systems (SEUS), 2010.

[4] J.-L. Béchennec and F. Cassez. Computation of wcet
using program slicing and real-time model-checking.
CoRR, 2011.

[5] G. Behrmann, A. David, K. G. Larsen, J. H̊akansson,
P. Pettersson, W. Yi, and M. Hendriks. Uppaal 4.0. In
QEST, pages 125–126, 2006.

[6] N. Beldiceanu, M. Carlsson, S. Demassey, and
T. Petit. Global constraint catalogue: Past, present
and future. Constraints, 12(1):21–62, Mar. 2007.

[7] Y. Bertot and P. Casteran. Interactive Theorem
Proving and Program Development. SpringerVerlag,
2004.

[8] A. Burns. Programming in Occam 2. Addison-Wesley,
1988.

[9] A. Dalsgaard, M. Olesen, M. Toft, R. Hansen, and
K. Larsen. METAMOC: Modular execution time
analysis using model checking. In 10th International
Workshop on Worst-Case Execution Time Analysis
(WCET), 2010.

[10] A. Fauth, J. Van Praet, and M. Freericks. Describing
instruction set processors using nml. European Design
and Test Conference (EDTC), 1995.

[11] M. Freericks. The nml machine description formalism.
Technical Report 1991/15, TU Berlin, 1991.

[12] H. Herbegue, H. Cassé, M. Filali, and C. Rochange.
Hardware architecture specification and constraint
based wcet computation. In International Symposium
on Industrial Embedded Systems (SIES), June 2013.

[13] C. Hoare. Communicating Sequential Processes.
Prentice Hall, 1985.

[14] X. Li, A. Roychoudhury, and T. Mitra. Modeling
out-of-order processors for WCET analysis. Real-Time
Systems, 2006.

[15] P. Mishra and N. Dutt. Modeling and validation of
pipeline specifications. ACM Trans. Embed. Comput.
Syst., pages 114–139, Feb. 2004.

[16] T. Nipkow, L. Paulson, and M. Wenzel. Isabelle/HOL.
A Proof Assistant for Higher-Order Logic. Number
2283 in Lecture Notes in Computer Science. Springer,
2002.

[17] V. Rajesh and R. Moona. Processor modeling for
hardware software codesign. In International
Conference on VLSI Design, 2000.

[18] C. Rochange and P. Sainrat. A context-parameterized
model for static analysis of execution times.
Transactions on High-Performance Embedded
Architectures and Compilers II, 2009.

[19] R. Wilhelm, J. Engblom, A. Ermedahl, N. Holsti,
S. Thesing, D. Whalley, G. Bernat, C. Ferdinand,
R. Heckmann, T. Mitra, F. Mueller, I. Puaut,
P. Puschner, J. Staschulat, and P. Stenström. The
worst-case execution-time problem—overview of
methods and survey of tools. ACM Transactions on
Embedded Computing Systems (TECS), 2008.

36

Taming Control Exchange for Software Defined
Radio in System Level Models

Andrea ENRICI, Ludovic APVRILLE, Renaud PACALET
Institut Mines-Telecom, Telecom ParisTech
CNRS/LTCI, Sophia Antipolis, France

Email : firstname.lastname@telecom-paristech.fr

Abstract—A great amount of the complexity en-
countered when dealing with SDR architectures comes
from simultaneously facing interwoven dataflow and
controlflow requirements at system level [1]. Failing to
consider both requirements when programming SDR
systems leads to poor performance and inefficient uti-
lization of the hardware resources. In this paper we take
a UML-based dataflow Model Driven Design method-
ology for SDR applications and enrich it with novel ex-
pressiveness to capture controlflow, early at modeling
phase, by means of intuitive Domain Specific Modeling
Languages. Our contributions provide the necessary
features to tame control needs and constraints in high-
level models from which the executable control code
can be automatically generated by means of synthesis
mechanisms.

I. Introduction and Context
Current radio systems (e.g. base stations) have to sup-

port multiple communication standards in order to take
advantage of the growing number of available air-services
(e.g. 3G, GPS). The latter share numerous Digital Signal
Processing algorithms demanding an architecture capable
of implementing the corresponding computations in the
most generic and flexible way.
Software Defined Radio [2] is perceived as the technol-

ogy that could solve this flexibility issue by implement-
ing most of the complex signal processing operations of
radio receivers and transmitters via software instead of
dedicated hardware. A SDR system is formed by DSP
processors governed by (heterogeneous) general purpose
processor(s) and is configurable via software : thus, mul-
tiple applications (waveforms) are supported by pooling
the architecture (platform) computational, storage and
communication resources.
SDR equipment design is a hw/sw co-design topic that
deals with most issues of design space exploration for em-
bedded real-time systems. In fact, the required properties
of SDR design share many commonalities with other fields,
e.g. image and video processing, thus allowing solutions
specific to SDR systems to be applied to other domains.
In these domains, MDD methodologies have been widely
used as they expose and exploit high-level structures and
interactions of systems. In particular, dataflow MoCs are
popular in the design and implementation of signal pro-
cessing systems due to their intuitive match with commu-
nication system block diagrams and the formal structure

exposed by such representations [3].
So far, many dataflow-based methodologies have been
applied to SDR systems. [4] permits executable code gen-
eration from an initial dataflow model through a series of
graph transformations. [5] proposes a lightweight approach
facilitating cross-language, cross-platform migration and
prototyping for different signal processing domains, includ-
ing SDR. [1] describes a dataflow methodology based on
UML, capable of generating executable code from high-
level abstract models.
However, one must keep in mind that SDR systems are not
only dataflow oriented : methodologies also have to deal
with control issues and above all with the conflicts that
may arise between the two flows. Some SDR architectures
exhibit conflicts when transferring control and data items
due to shared resources, [6]. Others, [7], have multiple
Control Units with different set of control features. In
the first case, contention becomes an issue and deadlocks
may occur. In the second case, mapping of tasks over
the platform is constrained by the control capabilities of
a single CU. In either case, if controlflow is not taken
into account early at modeling phase, a MDD method-
ology may generate code with poor performance and sub-
optimal scheduling.
In this paper we introduce a novel approach based on
DiplodocusDF [1] that solves the above issues. In contrast
to purely dataflow-based methodologies, our solution ex-
plicitly describes control in architecture and application
models, thus enabling description of complex scheduling
scenarios and mapping constraints that do not only de-
pend on the way data flows through processing operations.
We start with a brief introduction to DiplodocusDF and
the platform over which it has been employed. Next, the
problem with controlflow in SDR systems is presented by
a case study which is the starting point for a discussion
illustrating our solution. Finally we outline how our con-
tributions help solving the issues presented by the case
study and conclude with the state and directions of future
works.

A. The Hardware Platform Embb
[6] proposes a new generic baseband architecture for

SDR applications. An instance of such a platform is
depicted in Fig. 1. It is composed of (1) DSP units, (2)

37

a system interconnect and (3) a main CPU. The DSP
units are in charge of executing processing operations (e.g.
FFT). They are equipped with a hardware accelerator
as computational unit (Processing Sub-System, PSS), a
DMA to transfer data, an internal memory mapped on
the main processor memory and a microcontroller (µC)
that allows to reduce interventions of the main CPU.
The latter is linked to DSPs via the system interconnect
that allows data-blocks and control information to be
exchanged among units. The main processor executes
the waveform control operations : it manages data-transfer
operations, the computational units and the interface with
the external environment (Fig. 1, yellow area).

Interconnect (AVCI Crossbar)

External Env.

Interface

JTAG, ...)

(Flash, I2C,

main

CPU

AXI

Programmable Logic Control System

DSP3

RF

DSP2

R

D
G

B

I

E

DSP1

DSP4

DMA
Memory
PSS

µC

Fig. 1: Architecture of an Embb instance

Since the processing operations of a waveform pool data
storage, computation and transfer resources, Embb pro-
vides means for its units to exchange control information.
More specifically : each DSP unit has several interrupt
lines : one input, and multiple output and internal lines
dedicated to event signaling; PSSs, DMAs and µCs are
equipped with control and status registers. Interrupts are
raised by PSSs upon processing completion, by DMAs
upon data-transfer completion and by µCs or by the main
CPU software to mutually signal events.

B. The DiplodocusDF Methodology
DiplodocusDF [1] is a UML dataflow-oriented MDD

methodology for the domain of SDR applications, Fig. 2.
It stems from DIPLODOCUS, [8], a UML Model Driven
Engineering methodology for hw/sw partitioning of SoC at
high abstraction level, currently implemented by the free
software TTool [9]. The core strength of DIPLODOCUS
is the automatic transformation of models for simulation
and formal verification [10]. However, the DIPLODOCUS
approach is too abstract to permit automatic code gen-
eration for SDR systems as models lack the necessary
expressiveness to face the complexity of platforms and
waveforms.

DiplodocusDF is a first attempt to fill this gap; it
enriches DIPLODOCUS with the following extensions :

1) A dataflow semantics : an application is a
dataflow graph where nodes represent tasks (process-
ing, routing, addressing operations) interconnected
by special links called signals used to carry data-

Run Time Environment

Mapping

Waveform model Platform model

Executable code

Intermediate Representation

Compiler Platform API

Fig. 2: The DiplodocusDF methodology

blocks and data parameters (e.g. r/w memory ad-
dresses).

2) A specialization of the architecture
language : SDR platforms are represented as a
network of computation nodes (e.g. DSPs), storage
nodes (memories) and data-transfer nodes (bus,
bridges, DMAs) connected by data links.

3) A code generation environment : the description
of a waveform mapped over a platform is translated
in C language via an intermediate representation en-
riched by the platform API and by a static scheduler
(RTE).

II. Dataflow vs Controlflow
In Embb conflicts between data and control can be

found in the bridge that separates the programmable logic
domain from the control system domain, Fig. 1. This unit
equally serves read/write requests from both domains,
regardless their type (control or data) : when the bridge
is busy with a DMA transfer, all control accesses are
blocked. Fig. 3 depicts such a scenario : task T1 processes
data that the RF interface stores in memory MEM and
transfers them via DMA to T2 for further processing
(dotted line). Parallel to this, task T3 runs on the CPU
and upon execution completion triggers T4, running on
DSP2 (continuous line).

T2 T4

DMA

controlflow

DSP1 DSP2

CPU BRIDGE

T1

T3

dataflow

MEM

Interface
Radio Frequency (RF)

Fig. 3: Dataflow vs controlflow in Embb

Due to the underlying MoCs, dataflow MDD method-
ologies ([1], [4]) usually schedule operations statically and
only according to availability of input data to tasks. Fig. 4
shows how such an approach for the scenario of Fig. 3
leads to a deadline miss. Because of availability of input
data from the RF interface, T1 is scheduled for execution
first and accesses the bridge before T3 can trigger T4.
As a consequence the DMA transfer locks the bridge
and prevents control information to reach DSP2 on time
causing T4 to miss its deadline!
Of course, approaches that modify the scheduler only may

38

be implemented, but we are not concerned with them as
we look for a higher level solution based on system models.

(DSP2)

(CPU)

T3

T1

(CPU)

(DSP1)

T4

T4 misses its deadline!

Task locking bridge

T2

Task execution start

Task deadline

Fig. 4: Typical scheduling of dataflow-based approaches

DiplodocusDF Limitations :
DiplodocusDF’s approach to controlflow is rigidly dom-

inated by its inner dataflow nature. In the most gen-
eral case (processing operations), tasks consist of up to
two UML Activity Diagrams (ADs) : one for modeling a
task configuration and one for modeling a task execu-
tion. Within a task’s ADs, controlflow is implemented by
means of the usual structures (e.g. conditional statements,
loops) but the data-block parameters (e.g. data offsets,
addresses) are the only control variables that can be tested
to perform different actions. Additionally, none of the
two ADs is allowed to communicate and exchange the
data-block parameters with other tasks, independently of
a data-block’s dataflow itself. Consequently, data-block
parameters are strictly scoped to the tasks to which a
data-block is connected to and no primitives are available
to exchange them to other tasks. The latter are, in fact
exclusively linked by data-blocks. As a consequence, the
application description is limited to a network of data-
dependent operations that can only be scheduled accord-
ing to decisions taken on the I/O availability of data.
Coherently with the above expressive power for waveforms,
platform models provide no medium to describe how
control information is exchanged among the architecture
units. At mapping phase, this means that tasks are blind
with respect to the real controlflow capabilities of the
platform. All the above-mentioned lack of expressiveness
may thus lead to sub-optimal resource utilization, sub-
optimal scheduling and performance as illustrated in the
case study of Fig.3 and Fig.4.

III. Controlflow in System Level Models
Following the previous discussion, we describe our solu-

tion to enrich DiplodocusDF in order to model controlflow
and the conflicts with dataflow in both architecture and
application graphs, Fig. 5.
In the waveform graph, Fig.5(a), we take advan-
tage of the control exchange primitives events and
requests from DIPLODOCUS. These primitives have
already been described in detail in [10]; therefore, we sim-
ply recall their semantics. Events are synchronous point-
to-point unidirectional primitives between two tasks, used

to synchronize the execution of ADs. They are stored,
between sender and receiver, in an intermediate FIFO
(finite or infinite), operators are provided to tasks to
send, receive and test for the presence of events. Requests
are asynchronous multipoint-to-point unidirectional prim-
itives between tasks, used to spawn execution of ADs.
They are stored in an infinite FIFO between sender and
receiver; tasks are provided with operators to send a
request and to retrieve its arguments upon reception of
a request. Both events and requests are in fact able to
carry arguments (e.g. counters, flags). In addition to the
above primitives, we add a new class of requests,
notified requests, and a new class of nodes, fork and
join nodes, for exchanging events among tasks. A
notified request is a request provided with a notification
mechanism sent by the receiver task upon completion of
its execution, to the request sender. This new class of
requests carries integer parameters (e.g. error codes) like
standard requests. Two new operators, one for sending the
notification and one for receiving it as well as retrieving
its parameters, are provided. Fork and join nodes for
events are a new class of routing nodes for events only.
A fork node allows events from one source task to be
dispatched to multiple destination tasks, in parallel and
simultaneously (broadcast). A join node allows multiple
events from different tasks to be serialized and dispatched
to a single receiver task (gathercast); serialization takes
place according to priority assigned to single events. For
the latter purpose events are enriched so that they can be
tagged with a priority.
The core strength of our novel approach lays in abstracting
and modeling control information exchange in the archi-
tecture also. On top of enriching the models’ expressive
power by introducing new modeling features, our solution
includes all the control-related architecture constraints
that limit mapping of an application onto a platform.
In the architecture graph, Fig.5(b), we introduce
a new class of links called control links and a new
class of nodes called control join nodes. A control
link is an oriented point-to-point link in the architecture
graph between two units, regardless their type (control
or execution unit). As opposed to DiplodocusDF data
links, control links are specifically instantiated to transfer
control information only. Moreover, while data links model
physical paths in the architecture through which items are
routed and transferred in the hardware, control links are
virtual. They are an abstraction used to model the control
exchange flow paths in the architecture, thus there is not
always a one-to-one correspondence with a physical path in
the hardware through which control signals and variables
are transferred. Given a source unit S and a destination
unit D, a control link is instantiated iff control information
can be exchanged between S and D regardless the physical
medium over which the transfer effectively takes place (e.g.
dedicated interrupt line, bus).
A control join node is the equivalent of an application

39

join node for events, at the architecture level. It allows
serial reception of multiple control items, passing through
several control links that come from several different input
units (gathercast). This particular kind of node is used
to model hardware mechanisms like interrupt controllers,
but can also be instantiated to take into account software
control mechanisms implemented by the platform OS.
Additionally, we extend the semantics of bridges in order
to consider control links and the control items they carry.
So, bridges become nodes that route both control and data
information coming from control and data links, when the
two flows need access to shared resources as highlighted
in the case study. The semantics of buses need not be
extended as it is not required to implement a different
policy when transferring data or control items.

FORKTSK1

TSK2

send(REQ)

notify(REQ)

JOIN

TSK3

BUS2 MEM3

TSK2

MEM2

TSK4

TSK1

DSP1

TSK5

TSK4

a) Waveform

DSP2

dataflow

controlflow

JOIN

CPU

DSP3

MEM1

b) Platform and Mapping

BUS1

B
R
ID

G
E

TSK3

TSK5

B
R
ID

G
E

Fig. 5: Taming controlflow in a sample SDR system

In order to automatically generate the control code,
information contained in the system models must be
merged by establishing a relation between an element of
the waveform and an element of the platform. In addition
to DiplodocusDF relations where signals are associated to
data links and tasks to processing/control units, we even-
tually complete the mapping phase by projecting
events and requests from the application to control
links and control join nodes in the architecture,
Fig. 5(b).

IV. Expected Results and Conclusions
By means of the contributions described in section III,

our enriched version of DiplodocusDF is now equipped
with the correct expressive power to describe controlflow
and to enable scheduling of tasks in a more flexible way.
Fig. 6 shows how the scenario of Fig. 3 can be executed
differently if the separation between data and control
that we introduced at system-level models is maintained
throughout the whole methodology. This separation of
concerns leads to implementations where the executable
code is automatically generated with independent data
and control tasks.

In our case study, this translates at scheduling level,
into task T1 being divided into two tasks. The new task
T1 now only implements the processing of data that are
then dispatched to T2 by a standalone task T0 in charge of
the cross-domain DMA transfer. So, the conflict between
control and data for accessing the bridge is solved and a

(DSP2)

T2

Task locking bridge

Task deadline

Task execution start

T1

T0

(CPU)

(DSP1)

T4

(CPU)

T3

(CPU)

Fig. 6: A solution to conflicting control and data flows in
Embb

more performing scheduling solution can be implemented
as illustrated.

We are currently working at integrating the described
enhancements in the DiplodocusDF methodology as well
as implementing these extensions in TTool. Future works
will address formal verification, code generation and
scheduling. Concerning the former, we envisage to take
advantage of the formal semantics already available in
DIPLODOCUS and enrich it to consider the new modeling
features we discussed in this paper, before and after map-
ping. On the side of code generation, we will provide new
elements to decorate the models so that user will be able
to specify how the executable code is implemented. For
instance, user will be able to choose whether to implement
the control code corresponding to events and requests
as interrupt-based or polling-based, in order to tackle
performance aspects. Lastly, we will work on scheduling
algorithms and strategies that fit the models’ new expres-
sive power, providing policies to properly handle conflicts
between dataflow and controlflow as illustrated in the
above case study and its proposed solution.

References
[1] J. M. Gonzalez Pina, “Application Modeling and Software Ar-

chitectures for the Software Defined Radio,” Ph.D. dissertation,
Télécom-ParisTech, May 2013.

[2] J. Mitola III, “Cognitive Radio: An Integrated Agent Archi-
tecture for Software Defined Radio,” Ph.D. dissertation, Royal
Institute of Technology (KTH), May 2000.

[3] S. S. Bhattacharyya, “Hardware/Software Co-synthesis of DSP
Systems,” in Programmable Digital Signal Processors: Architec-
ture, Programming, and Applications, 2001, pp. 333–378.

[4] C. Moy and M. Raulet, “High-Level Design for Ultra-Fast
Software Defined Radio Prototyping on Multi-Processors Het-
erogeneous Platforms,” Advances in Electronics and Telecom-
munications, vol. 1, no. 1, pp. 67–85, 2010.

[5] C. Shen, W. Plishker, H. Wu, and S. S. Bhattacharyya, “A
Lightweight Dataflow Approach for Design and Implementation
of SDR Systems,” in SID-WInComm, 2010.

[6] N.-u.-I. Muhammad, R. Rasheed, R. Pacalet, R. Knopp, and
K. Khalfallah, “Flexible Baseband Architectures for Future
Wireless Systems,” in EUROMICRO DSD, 2008, pp. 39–46.

[7] “Parallela,” http://www.parallela.org/.
[8] L. Apvrille, W. Muhammad, R. Ameur-Boulifa, S. Coudert,

and R. Pacalet, “A UML-based Environment for System Design
Space Exploration,” in IEEE ICECS, 2006, pp. 1272–1275.

[9] “TTool,” http://ttool.telecom-paristech.fr/.
[10] D. Knorreck, L. Apvrille, and R. Pacalet, “Formal system-

level design space exploration.” Concurrency and Computation:
Practice and Experience, vol. 25, no. 2, pp. 250–264, 2013.

40

Improved Priority Assignment for the Abort-and-Restart (AR) Model

H.C. Wong and Alan Burns
Real-Time Systems Research Group, Department of Computer Science, University of York, UK.

{hw638, alan.burns}@york.ac.uk

Abstract

This paper addresses the scheduling of systems that implement
the abort and restart (AR) model. The AR model requires that pre-
empted tasks are aborted. As a result high priority tasks run quickly
and shared resources need not be protected (as tasks only work on
copies of these resources). However there is significant wastage as
low priority tasks may be subject to a series of aborts. We show
that exact analysis of the AR model is intractable. A sufficient but
tractable test is developed and is used to address the priority as-
signment issue. Again an optimal tractable algorithm is not avail-
able. The paper develops a priority assignment heuristic that is
demonstrated to perform better than existing schemes.

1 Introduction

Abort-and-Restart is a scheme to support Priority-based Func-
tional Reactive Programming (P-FRP). P-FRP has been introduced
as a new functional programming scheme [2] for real-time systems.
It combines the property of atomic execution from Functional Re-
active Programming (FRP) [11], and supports priority assignments.
To achieve this property of P-FRP, preempted tasks are aborted and
the tasks restart as new once the higher priority tasks are completed.
We call it the Abort-and-Restart (AR) model in this paper.

Various forms of priority inheritance and priority ceiling proto-
cols have been developed [10] to deal with the problems of shared
resources. The AR model does not face the problems because
tasks do not access resources directly. But the disadvantage is that
aborted tasks delete the old copy of the resource and restart as new,
hence the time spent before preemption is wasted. In this paper, we
call this wasted time, the abort cost.

1.1 Motivation for the AR model
The AR model provides strong correctness guarantees on deal-

ing with shared resources, and it also supports FRP which has
been used for the domains of computer animation, computer vision,
robotics and control systems [6]. Original FRP cannot be used for
real-time systems but P-FRP has rectified this. Preemptible Atomic
Regions (PAR) is a new concurrency control abstraction for real-
time systems [8]. The basic notions of the AR model and the PAR
model are similar. In other words, the AR model has been imple-
mented in a common programming language.

1.2 Contributions
This paper presents an analysis for the AR model. It first con-

firms that an exact analysis is not tractable as the critical instance
cannot, in general, be identified in polynomial time. The second
contribution is to develop a new schedulability test for the AR

model. A final contribution is to address priority assignment. Gen-
eral priority assignment policies such as rate and deadline mono-
tonic, are not optimal for the AR model or the developed test. In
this paper, we evaluate a number of existing priority assignment
policies and provide an improved (though still not optimal) policy
called Execution-time-toward-Utilisation Monotonic (EUM).

2 System Model and Related Work

We consider the static priority scheduling of a set of sporadic
tasks on a single processor. Each task gives rise to a potentially
unbounded sequence of jobs. The notations and formal definitions
used are as follows: N is the number of tasks. τi, any given task in
the system. Ci worst-case execution time (WCET), Ti period, Di

deadline, Pi priority, Ri worst-case response time, Ui utilisation
of task τi. U is the total utilisation of all the tasks in the task-
set. αi is the maximum abort cost for τi (see equation 1). C̃n

i is
the new value for the WCET of τi, the biggest abort cost is picked
between τi and τn (see equation 3). In general we allow Di ≤ Ti,
although previous work and many of the examples in this paper
have Di = Ti.

2.1 The Abort-and-Restart Model
In the Abort-and-Restart (AR) model [9], lower priority tasks are

preempted and aborted by releases of higher priority tasks. Once
the higher priority tasks have completed, the lower priority tasks
are restarted as new.

Table 1. An example task-set.
Task Period WCET Release offset Priority
τ1 12 3 3 H
τ2 15 4 0 L

In Table 1 and Figure 1, τ2 is released at 0 and executes until
time 3, because of the arrival of τ1, τ2 is aborted at time 3. τ1
finishes its job at time 6 and τ2 is restarted as a new job so the spent
time between 0 and 3 is wasted.

Figure 1. An example task-set.

2.2 Copy-and-Restore Operation
When tasks begin or restart execution, they get a copy (scratch

state) of the current state from the system [3]. Tasks only mod-
ify the copy so no tasks lock the data resource. The copy will be
discarded when a higher priority task is released. Once the higher
priority tasks have completed execution, the lower priority tasks

41

are aborted and restarted. When a task has finished, the copy is re-
stored into the system as an atomic action. Although atomic, copy-
and-restore cannot be undertaken instantaneously. Hence a high
priority task cannot abort a lower priority task while it is restoring
state; the higher priority task must block leading to a blocking term
in the analysis. For ease of presentation this term is omitted from
the scheduling equations given in this paper.

2.3 Related Research
Ras and Cheng [3] state that the critical instant argument from

Liu and Layland [7] may not apply fully to the AR model. Table
1 and Figure 1 illustrate this if τ1 and τ2 are released together then
R2 = 7. Figure 1 shows clearly that R2 ≥ 10.

Ras and Cheng [9] also state that standard response time analysis
is not applicable for the AR model, and assert that the abort cost can
be computed by the following equations:

αi =

N∑

j=i+1

⌈
Ri

Tj

⌉
· j−1
max
k=i

Ck (1)

Ri = Ci +
∑

∀j∈hpi

⌈
Ri

Tj

⌉
· Cj + αi (2)

In Section 3.2 we will derived an equivalent but more intuitive
schedulability test for the AR model. Belwal and Cheng [2] noted
that Rate Monotonic (RM) priority assignment is not optimal in the
AR model. They introduced an alternative policy called Utilisation
Monotonic (UM) priority assignment in which a higher priority is
assigned to a task which has higher utilisation, and showed that it
provides better schedulability than RM. They also note that when
RM and UM give the same ordering of priorities then that order is
optimal (for their analysis).

3 New Analysis

In this section we derive a new sufficient test of schedulability
for the AR model. But first we explain why the method cannot be
exact.

3.1 Critical Instant for the AR model
First we consider periodic tasks and then sporadic. In the AR

model, a critical instant occurs when a higher priority task aborts a
lower priority task, because the abort cost is added to the response
time. For a 2-task task-set, only the highest priority task aborts the
lowest priority task as illustrated in Table 1 and Figure 1. For a
3-task task-set, there are two cases as the highest priority task can
abort either of the two lower priority tasks. To generalise:

Lemma 3.1. A task-set with N periodic tasks under the AR model
has at least (N-1)! abort combinations.

Proof. Consider a pure periodic task-set ΓN = {τ1, τ2, ..., τn} and
all tasks only released once. The highest priority task is τ1 and the
lowest priority task is τn. Each task τi has N − i choices of lower
priority tasks to abort. When higher priority tasks are released more
than once, the number of choices for those tasks are increased. The
number of abort combinations is therefore at least (N − 1) ∗ (N −
2) ∗ ... ∗ 1, which is (N-1)!.

As there is no information within the task set that would indicate
which set of abort combination could give rise to the worst-case
response times, they all need to be checked for exact analysis.

For sporadic tasks:

Lemma 3.2. A sporadic task with a later release may bring a
longer response time.

Proof. In general, a sporadic task with its maximum arrival rate
delivers the worst-case response time. Lemma 3.2 can be proved
by showing a counter example. In Table 2, there is a three task
task-set. Task τ1 is a sporadic task and has the highest priority. It
has a minimum inter-arrival time, 8. Other tasks are periodic tasks.

Table 2. A task-set with a sporadic task.
Task Period WCET Priority
τ1 8 1 1
τ2 20 2 2
τ3 40 4 3

In Figure 2, the response time of τ3 is 16 when the second job of
τ1 is released with the minimum inter-arrival time, 8.

Figure 2. A time chart.

If, however, the second job of τ1 is released 1 tick later, the
response time of τ3 will be 17. In this case, a sporadic task with a
later release may result in a longer response time.

For a set of sporadic tasks exact analysis would require all pos-
sible release times to be checked.

Theorem 3.3. Finding the critical instant for the AR model with
periodic and sporadic tasks is intractable.

Proof. Lemma 3.1 shows that there is at least (N − 1)! abort com-
binations for N periodic tasks, all of which must be checked for
the worst-case to be found. For sporadic tasks all possible release
times over a series of releases must be checked to determinate the
worst-case impact of the sporadic task. These two properties in iso-
lation and together show that this is an intractable number of release
conditions to check in order to define the critical instant.

A exact schedulability test cannot be tractable if the critical in-
stant cannot be found in polynomial time.

3.2 New Formulation for schedulability tests
In this section we derive a sufficient test that is tractable. Hence

we have traded necessity for tractability. We believe this new test
is more intuitive than those previously published.

Given a priority assignment, the worst-case response time of task
τn (priority Pn) will depend only on the behaviour of tasks of pri-
ority greater than Pn. Consider the interference caused by a single
release of task τi (Pi > Pn). In the worst-case τi will abort, just
before it completes, a task with a lower priority than τi but with the
maximum execution time of all lower priority tasks. Let the aborted
task be τa, so Pi > Pa ≥ Pn and Ca = max

∀j∈hepn

⋂
lpi

Cj .

The impact of τi will therefore be, in the worst-case, Ci at pri-
ority Pi and Ca at priority Pa. As Pa ≥ Pn this is equivalent (for
τn) to τi having an execution time of Ci + Ca at priority Pi. Let
C̃n

i = Ci +Ca. The original task-set with computation times Ci is

42

transposed into a task-set with C̃n
i . This is now a conventional task-

set, so the critical instant is when there is a synchronous release.
(The maximum interference on τn must occur when all higher pri-
ority tasks arrive at their maximum rate, initially at the same time,
and all have their maximum impact.)

The worst-case for the AR model is that any higher priority
task aborts a lower priority task which has the biggest possible
worst-case execution time, and that this abort occurs just before
the aborted task would actually complete. By this process, a new
value C̃i

j for τj is combined by Cj and Ck:

C̃i
j = Cj + max

∀k∈hepi

⋂
lpj

Ck (3)

where C̃i
j is the new value for the WCET of τj , Cj is the original

WCET of τj and Ck is the biggest execution time of a task with
priority between τi and τj but τj is not included. The response
time analysis applies to τi. Note that in general the C̃i

j values will
depend on the task under investigation.

In Table 3, there is an example implicit-deadline task-set. The
highest priority is 1. The response time of task τ4 is being com-
puted.

Table 3. An example with new WCET for 4-task task-set.
Task Period C C̃4

i Priority
τ1 28 2 7(2+5) 1
τ2 120 3 8(3+5) 2
τ3 140 4 9(4+5) 3
τ4 200 5 5(5+0) 4

The C̃4
i values are computed by Equation (3). In this example

we consider the response time for τ4 so i = 4. For C̃4
1 , j is 1 and

Ck is higher than or equal to τ4 but lower than τ1. The calculation
is C̃4

1 = C1 + C4, so the result of C̃4
1 is 2 + 5 = 7.

For C̃4
4 , i and j are 4. Ck is higher than or equal to τ4 but lower

than τ4 so no task is matched, so the result of C̃4
4 is 5+0 = 5. After

all the C̃4
i values have been calculated, we use C̃n

i instead of C in
the response time analysis; that is:

R4 = C̃4
4 +

∑

∀j∈hp4

⌈
R4

Tj

⌉
· C̃4

j (4)

This is solved in the usual way by forming a recurrence relation-
ship, the result is R4 = 36, which is the same as that obtained via
the equation of Ras and Cheng [9]. In fact, the test derived above,
i.e. (4), while more intuitive and more efficiently solved is never-
theless equivalent to that given in [9].

Theorem 3.4. Equations (2) and (4) are equivalent.

Proof. We rephrase (2) as follows:

Ri = Ci +
∑

∀j∈hpi

⌈
Ri

Tj

⌉
· Cj +

∑

∀j∈hpi

⌈
Ri

Tj

⌉
· j−1
max
k=i

Ck (5)

Both
j−1
max
k=i

Ck and max
∀k∈hepi

⋂
lpj

Ck pick a bigger WCET task with

a priority that is higher or equal to τ(i) and lower than τj , so we
simply to obatin:

Ri = Ci +
∑

∀j∈hpi

⌈
Ri

Tj

⌉
· (Cj + max

∀k∈hepi

⋂
lpj

Ck) (6)

Equation (3) replaces into (6) as follows:

Ri = Ci +
∑

∀j∈hpi

⌈
Ri

Tj

⌉
· C̃n

j (7)

As (2) was previously proved to be sufficient for the AR model
[9] it follows that (4) is similarly sufficient.

Although the equations are equivalent, (4) is in the standard form
for response time analysis and is therefore amenable to the many
ways that have been found to efficiently solve this form of analysis
[5]. It is also in a form that allows the issue of priority assignment
to be addressed.

4 Priority assignment schemes

Here, we introduce a priority assignment policy called
Execution-time Monotonic (EM) which assigns a higher priority
to a task which has a bigger worst case execution time 1. An in-
spection of (3) shows that the minimum execution times (the C̃n

i

values) are obtained when priority is ordered by execution time.
Although this does not necessarily minimise utilisation, it may pro-
vide an effective priority assignment policy. Audsley’s Algorithm
provides optimal priority assignments[1] but it does not hold for the
AR model since the response time of a task depends not only on the
set of higher priority tasks but also on their relative order (which is
not permitted).

4.1 New Algorithm
Exhaustive Search (ES) of all possible priority assignments is

optimal for any model but it is not tractable. We used it to validate
other policies for small values of N. In a later section, the experi-
ments show that UM and EM have similar results, and they do not
dominate each other. If a new algorithm dominates both UM and
EM, it will offer a better schedulability rate.

We derive a new algorithm that starts with EM ordering and tests
the tasks in priority order starting with the highest priority task. If
any task can not be scheduled then try to find a higher priority task
which has less utilisation. The ordering begins from the failed task
to the top. If a task is found then shift down the higher priority task
below the lower priority task. If no task is found, the task-set is
deemed to be not schedulable.

Table 4 shows that the task-set is not schedulable at τ4. Again
deadline is equal to period; RT is response time. Note onlyC values
are given in the table, the necessary C̃n

i values are dependent on
which task is actually being tested, they must be re-computed for
each task.

Table 4. An example task-set fails in EM ordering.
Task Period C U Priority RT
τ1 60 6 0.1 1 6
τ2 50 5 0.1 2 16
τ3 32 4 0.125 3 24
τ4 25 3 0.12 4 30 (X)
τ5 100 2 0.02 5

τ2 has less utilisation than τ4 so we shift τ2 down below τ4. The
new ordering is τ1,τ3,τ4,τ2 and τ5, then the task-set is schedulable.
We call this policy Execution-time-toward-Utilisation Monotonic
(EUM) priority assignment.

1With ties broken arbitrarily

43

4.2 Time complexity
To analyse the complexity of the EUM policy, we count each

single task schedulability test required (each test is itself of pseudo-
polynomial complexity). In the worst-case, an N-task task-set starts
with EM ordering and the task-set is only scheduled by UM order-
ing which is the completely opposite to EM. It is easy to see that in
this case, 2N − 1 schedulability tests are required before the task
that starts out at priority N is placed at priority 1, and that a further
2(N − 1) − 1 tests are needed before the next task (that started at
priority N − 1) is placed at priority 2. Overall, the number of sin-
gle task schedulability tests required to transform EM ordering into
UM ordering is given by:

N−1∑

k=1

(2k − 1) = N2 (8)

So the complexity of EUM priority assignment is O(N2) single
task schedulability tests. EUM dominates EM and UM because the
EUM algorithm starts with EM ordering and ends at UM ordering
in the worst-case; however, unlike Exhaustive Search (ES) it is a
tractable priority assignment policy.

5 Experimental Evaluation

The experiments compare different priority assignments (DM,
UM, EM, ES and EUM) for the AR model. The parameters are:
Deadline is equal to period. All tasks are periodic. A set of N
utilisation values Ui was generated by the UUniFast Algorithm [4].
Task periods were generated between 500 and 5000 according to
a log-uniform distribution2. Task execution times are: Ci = Ui ·
Ti Utilisation for task-sets are ranged between 20% and 60% in
steps of 1%. 10000 task-sets were generated for each utilisation
level. The number of tasks in each task-set was 8, as this is the
maximum that could be handled by Exhaustive Search (ES). Other
experiments were also performed for larger task sets (up to 20 tasks)
for the heuristic policies, but are not shown due to space limitations.

In Figure 3 the X-axis is Utilisation and the Y-axis is the Schedu-
lability rate, i.e. the percentage of task sets that were deemed
schedulable. DM has the worst schedulability, UM and EM are
quite similar, while EUM is the best of the heuristics and very close
to optimal for task sets of size 8. Indeed it is impossible to distin-
guish between them. Nevertheless EUM is not optimal, the figure
contains in total 410,000 task sets of which ES deemed 137,366
schedulable and EUM (136,712), a difference of 654 (i.e. schedula-
ble by ES but not by EUM). Note that EUM explored a maximum of
N(N −1)/2 = 28 different priority orderings in this case, whereas
ES explored a maximum of N ! = 40320. Although not exact, the
performance of EUM for N = 8 leads to a reasonable conclusion
that EUM is an effective and near optimal priority ordering for the
AR model, at least for relatively small task sets.

6 Conclusion

The AR model has been proposed as a means of implementing
priority-based functional reactive programming. Any released task,
if it has a higher priority than the current running task, will abort
that task. It can therefore immediately make progress. As a conse-
quence the aborted task must re-start its execution when it is next
executed.

2The log-uniform distribution of a variable x is such that ln(x) has a uniform
distribution.

Figure 3. The number of tasks is 8.

We have confirmed that the AR model is intractable, in the sense
that exact analysis is not possible due to the number of cases that
need to be investigated in order to identify the worst-case release
conditions (the critical instant). Nevertheless a tractable sufficient
test has been developed that allows the issue of priority ordering to
be addressed.

Unfortunately optimal priority ordering is also problematic with
the AR model. Deadline (or Rate) monotonic ordering is demon-
strably not optimal. Also the optimal Audsley’s algorithm is not ap-
plicable. We have however developed a heuristic (called EUM) that
performs well and has O(N2) complexity in terms of the number
of single task schedulability tests required. On small sized systems
(N = 8) EUM performs almost identically to an optimal scheme
(using exhaustive search). For larger numbers of N (where exhaus-
tive search is infeasible) it performs better than previous published
approaches.

References

[1] N.C. Audsley. On Priority Assignment in Fixed Priority Scheduling. Informa-
tion Processing Letters, 79(1):39–44, 2001.

[2] C. Belwal and A.M.K. Cheng. On Priority Assignment in P-FRP. RTAS, pages
45–48, 2010.

[3] C. Belwal and A.M.K. Cheng. Determining Actual Response Time in P-FRP.
In Ricardo Rocha and John Launchbury, editors, Practical Aspects of Declar-
ative Languages, volume 6539 of Lecture Notes in Computer Science, pages
250–264. Springer Berlin/Heidelberg, 2011.

[4] E. Bini and G. Buttazzo. Measuring the Performance of Schedulability Tests.
Real-Time Systems, 30:129–154, 2005.

[5] R.I. Davis, A. Zabos, and A. Burns. Efficient Exact Schedulability Tests
for Fixed Priority Real-Time Systems. IEEE Transactions on Computers,
57(9):1261–1276, 2008.

[6] R. Kaiabachev, W. Taha, and A. Zhu. E-FRP with priorities. In Proceed-
ings of the 7th ACM & IEEE international conference on Embedded software,
EMSOFT ’07, pages 221–230. ACM, 2007.

[7] C. Liu and J. Layland. Scheduling Algorithms for Multiprogramming in a
Hard-Real-Time Environment. J. ACM, 20(1):46–61, 1973.

[8] J. Manson, J. Baker, A. Cunei, S. Jagannathan, M. Prochazka, B. Xin, and
J. Vitek. Preemptible atomic regions for real-time Java. In Real-Time Sys-
tems Symposium, 2005. RTSS 2005. 26th IEEE International, pages 10 pp.–71,
2005.

[9] J. Ras and A.M.K Cheng. Response Time Analysis for the Abort-and-Restart
Task Handlers of the Priority-Based Functional Reactive Programming (P-
FRP) Paradigm. In Embedded and Real-Time Computing Systems and Ap-
plications, RTCSA, pages 305–314, 2009.

[10] H. Takada and K. Sakamura. Real-time synchronization protocols with
abortable critical sections. In Proc. of the First International Workshop on
Real-Time Computing Systems and Applications, pages 44–52, 1994.

[11] Z. Wan and P. Hudak. Functional reactive programming from first principles.
In Proc. of the ACM SIGPLAN, PLDI, pages 242–252. ACM, 2000.

44

Load and Quality Cooperation for Distributed Embedded
Systems Using Different Modes of Operation

John F. Schommer
Embedded Software

Laboratory
Ahornstr. 55

52074 Aachen, Germany
schommer@embedded.

rwth-aachen.de

Thomas Gerlitz
Embedded Software

Laboratory
Ahornstr. 55

52074 Aachen, Germany
gerlitz@embedded.

rwth-aachen.de

Stefan Kowalewski
Embedded Software

Laboratory
Ahornstr. 55

52074 Aachen, Germany
kowalewski@embedded.

rwth-aachen.de

ABSTRACT
Nowadays the design goal of embedded systems is shifted from
statically defined to a dynamic quality of service at application
level. Where embedded systems getting distributed or co-located
on platforms, the complexity increases along with their adaptivity
and dynamic. And while real-time requirements are still essen-
tial, in that setup the runtime behavior gets unpredictable at com-
pile time leading to this trend. This paper presents a software-
architecture for embedded systems connected within networks to
reach a common computational objective. This architecture en-
ables the network to instantaneously switch its mode of operation.
The mode switch is done in two steps, coordination, where a dy-
namic event is consumed, and adaptive transitions, where the mode
switching is delegated to all network nodes. Finally, the paper
presents one proof of concept and ongoing as well as related work.

Categories and Subject Descriptors
C.3 [Special-Purpose and Application-based Systems]: Real-time
and Embedded Systems; C.4 [Performance of Systems]: Fault
Tolerance

Keywords
Load balancing, Quality cooperation, Modes of operation

1. INTRODUCTION
Nowadays embedded systems are getting distributed or co-locat-

ed on platforms. Although real-time requirements are still essen-
tial in such networks, this trend forces distributed embedded sys-
tems to become more adaptive and dynamic, where the complex-
ity increases as well. While running a couple of applications si-
multaneously within one network or on one platform, the runtime
behavior gets unpredictable at compile time. The design goal for
distributed embedded systems is therefore shifted from a statically
defined setup to a dynamic quality of service at application level. In
the worst case, the network shall keep performing its main function
in the presence of faults, when several resources are temporarily or
even permanently not available.

For instance, a next generation electric car might be fully con-
trolled by drive-by-wire. This car will have a distributed power
and wheel controlling architecture, where four wheels are driven
by four electric motors controlled by four controllers. Although
the design goal is robustness, the developers must consider fault
tolerance on the level of safety-critical systems.

Instead of using for instance Triple Modular Redundancy [5],
with fixed redundant hard- and/or software components, different

modes of operation can be designed taking into account that some
resources may not be available at runtime. If for example one wheel
controller of the next generation car fails, the processing must be
either immediately redistributed over the three still functional con-
trollers, or the whole network switches to a degrade mode of oper-
ation with less computational consumption.

This paper presents an architecture to enable dynamic quality of
services for distributed software of embedded systems using dif-
ferent modes of operation. The described architectures extends the
concept of graceful degradation [4, 1] to a more flexible approach,
where adaptive transition allows quality degradation and also com-
putational promotion. This leads to a network of embedded sys-
tems that can cooperate with respect to load and quality. The re-
mainder of this paper is structured like follows. In Section 2 the
problem is discussed in more detail. After the contribution of this
work is summarized in the next section, a software-architecture is
presented in Section 4 that can be applied to the specific problem.
After that one feasibility study is presented, followed by discus-
sions about related and ongoing work. Section 7 concludes this
paper.

2. LOAD AND QUALITY BALANCING
During the runtime of distributed embedded systems various ev-

ents might occur that interrupt the typically periodic control flow
of the software. Reconsider the example stated in Section 1. One
wheel controller of the next generation electric car causes a fault.
In current generation cars this fault may lead to graceful degrada-
tion [4, 1], which is a well known concept for safety-critical em-
bedded systems. In this mode of operation the car would stop con-
trolled and safely, hopefully without harming any occupants. Of
course, this concept can also be applied to the design of the next
generation car.

But the presented problem description goes further, considering
the distributed embedded systems as network entities cooperating
for a common objective. If either, depending on a dynamic event,
more resources are needed or existing ones are no longer available,
the remaining network nodes have to adapt in a way that this com-
mon objective can still be reached. For the sketched scenario, this
paper will use the term cooperative network like defined.

Definition 1: Cooperative networks.
A cooperative network is a set C of distributed embedded sys-

tems that are physically or logically connected via some kind of
network topology T .

In the next generation car example the common objective is that

45

the car stays functional. Even if one of the wheel controller is fail-
ing, the car can adapt in two ways to reach this objective; only
powered by the three remaining motors respectively wheel con-
trollers. The first way is to increase the computation consump-
tion, so that the result of the computation stays constant in terms of
quality. Following the example, this means that the three remain-
ing wheel controllers must, along with their default computation,
compute the output of the failing fourth controller, where the qual-
ity of the computation stays on the default level. For simplicity,
it is assumed that in this example the results of these computations
are broadcasted via a bus system connecting each component of the
systems. The second way is to decrease the quality of the compu-
tation result, so that the computation consumption stays constant
in terms of energy. Again, the three remaining wheel controllers
compute the output of the failing controller. But now, the quality of
the computation is degraded to a level, where the energy consump-
tion of the wheel controllers stays constant. In the given example
the mode switching can be done by reducing the frequency of cal-
culation iterations within each wheel controller. It is additionally
required that a cooperative network can recover to a default mode
of operation, if this mode is again suitable depending on the con-
crete scenario, e.g. if the defect node successfully resets.

3. CONTRIBUTION
This paper targets distributed embedded systems that need to co-

ordinate together to reach a common objective. An architectural
framework is sketched to establish different modes of operation as
quality of service at application level for distributed embedded sys-
tems. Two strategies are presented dealing with load redistribution
among the nodes and the quality degradation of the functional be-
havior of the cooperative network. This framework provides meth-
ods to systematically cope with the problem description presented
above including that the network can return to the default mode of
operation, if possible. Hence, an overview of challenges in hind-
sight of the coordination of the nodes when deployed in different
topologies is given.

4. CONCEPT
This section describes the approach of how to realize the require-

ments sketched in Section 2. To make the presented approach eas-
ier to illustrate, Figure 1 abstracts from the electric car example
to the computation of geometric figures. These geometric figures
are used for illustration in the remainder of this paper. In both ex-
amples three modes of operation are sufficient: default, increased
consumption and decreased quality.

In this cooperative network the network nodes are working to-
gether to compute the outer edges of a square, where the common
objective of the network is to compute a closed polygon. The com-
putation is implemented in four tasks and distributed on four nodes,
e.g. to four different dual-core processors or using Ethernet. In de-
fault mode, the work load is equally distributed to each node by
computing one of the edges. When now Node1 fails, two options
exist, similar to the first example, to cope with this failure. Increase
the workload of the remaining nodes, which for example means to
compute one and one third edges, or degrade the functional behav-
ior of the whole system, which for example means to compute a
triangle, which is also a closed polygon, instead of a square.

Depending on the application scenario one of these two strate-
gies can be applied. To accomplish this application, the presented
approach uses the term adaptive transition like defined.

Definition 2: Adaptive Transition.

Wl1

Wl4

Wl3

Wl2

Node1
fails

Wl1 not computed

Wl4

Wl3

Wl2

Quality degradation

Wl4

Wl3

Wl2

Wl2 Wl3 Wl4

Computational promotion

Initial
situation

E
vent

C
om

m
on goal

unreached
A

dapt netw
ork to

reach com
m

on goal

Figure 1: Problem Illustration

A cooperative network C can switch from one mode of operation
to another mode with one of the following adaptive transitions.

• Computational Promotion: Increase the computation con-
sumption of a subset of C, to keep the quality of the com-
puted result constant. Load is a common synonym to com-
putation consumption.

• Quality Degradation: Degrade the quality of the computed
result to keep the computation consumption constant.

A cooperative network is enabled to makes adaptive transitions,
exactly if:

1. A coordinator node exists within the network. Any dynamic
event occurring in scope of the network is handled by this
coordinator node.

2. Each node in the cooperative network implements an inter-
face, where the coordinator node can force switching modes
of operation.

3. A unique behavior table is implemented by each node in the
cooperative network. When the coordinator node declares
another mode of operation, each node instantiates this new
mode of operation depending on this unique behavior table.

How many transitions are allowed in one direction is only limited
by the implementation, e.g. the amount of modes of operation that
may be instantiated. Due to page limitations, the remainder of this
paper assumes that a load increase directly leads to maintaining
quality.

4.1 Coordination
Distributed embedded systems are typically organized in a net-

work topology like the star, ring, bus or full mesh topology, but
may be organized within other common topologies. Together with
a corresponding type of communication the topology has a major
impact on how the cooperation and the adaptive transition have to
be implemented. Figure 2 shows a possible overall architecture as
an OSI-Model. The proposed architecture resides on the applica-
tion layer of the respective nodes and depends on the scheduling

46

and networking services of the used operating system. Highly re-
active scheduling in case of failures, prompt network transmissions
and a reliable physical layer are needed for the coordination pro-
cess. The core components of the proposed framework include a
coordinator node responsible for the coordination of the computa-
tion of a common objective within the cooperative network. This
computation is executed by so called ordinary nodes, which pro-
vide the interface to the coordinator node to interact with. This
interface is used to switch the mode of operation of the ordinary
nodes via a behavior table.

Coordinator

Middleware

OS Other nodes

Physical medium (Star topology)

Coordinator
Node

Ordinary Nodes

Coordi-
nator

Middleware

OS

Behavior
table

Application

Figure 2: Cooperative Architecture

To present the concept of how network nodes can coordinate to-
gether in a cooperative network when an event occurs, this paper fo-
cuses on networks of embedded systems with star topologies. The
central node in such a network is considered to be the coordinator
node.

Definition 3: Coordinator Node.
A coordinator node is a node within the cooperative network that

is responsible for switching the modes of operation within the net-
work.

Considering the illustrating example, such a coordinator node
coordinates the computation of the outer edges of the square. When
now one of the four network nodes computing single edges fails,
the coordinator must

1. receive this event and

2. accordingly adapt the rest of the network
to another mode of operation.

Receiving an event, which means in the example to determine a
node failure within the cooperative network, will be accomplished
as follows: if only a subcomponent of one network node fails, in
the example e.g. one of two cores of a processor used to compute
outer edges, and if the node is still able to communicate, this event
is directly sent to the coordinator node. This coordinator can then
switch the mode of operation within the network, which means that
all still functional nodes in the network are forced to switch their
mode of operation instantaneously. If the whole node is not avail-
able anymore, e.g the software of the node faces a failure, the node
is rendered unable to communicate with the coordinator node. In
this case a watch dog design pattern, which can be implemented
within the coordinator and/or other ordinary nodes, can be used.
The locations of the watch dogs within the cooperative network
highly depends on the used network topology, i.e. when ordinary
nodes can only communicate with the coordinator node (star topol-
ogy) they do not need to implement a watch dog for other ordinary

nodes. After detecting such an event the network switches to an-
other mode of operation like in the previous case.

While ordinary nodes may fail within a cooperative network, a
failure of the coordinator renders the system unadaptable in case of
further failures within the system. Recovering from a failure of the
coordinator node is only rational, if all remaining ordinary nodes
can still communicate with each other and a new coordinator node
can be elected. This can be accomplished by an algorithm which
chooses the new coordinator node on the basis of the available re-
sources of a node. Similar approaches are used in coordination
mechanisms for wireless sensor networks.

4.2 Topological Issues
When considering these two event-based approaches for a star

topology, they can be ported on logical level to all other topologies.
But on the other hand, applying them might cause a severe commu-
nication overhead. Therefore, different approaches might be better
suited for these topologies. For example, self-organized coordina-
tion, as already applied in the field of sensor networks, might be a
desirable property of the mesh topology. These enhanced commu-
nication paradigms will be discussed in ongoing work based on this
paper.

4.3 Instantiating modes of operation
After the coordinator has forced the still functional network nod-

es to switch their mode of operation, these nodes must perform
an local adaptive transition. Depending on the resulting compu-
tation this transition leads to a computation promotion, which im-
plies a workload redistribution throughout the network, or a quality
degradation, which is similar to the concept of graceful (functional)
degradation of the network. Comparing adaptive transitions like
defined in this paper with graceful degradation, it is not a funda-
mental new approach but provides a more flexible way of event-
based reaction. Within the presented architecture the modes of op-
eration are coded into a behavior table at design time. Each single
node in the cooperative network must implement such a behavior
table like defined.

Definition 4: Behavior Table.
A two-dimensional matrix, where the rows define the available

modes of operation and the columns define the workload of the
implementing network node, when the specific mode of operation
must be executed. The modes of operation are delegated by the
coordinator node to the ordinary nodes, where the column defini-
tion allows a parametrized mode switching. The entries of behavior
tables define a set of algorithms, e.g. function pointers in the Pro-
gramming Language C.

The set of algorithms should be fully calculated at compile time
or must be dynamically safeguarded to ensure feasible transitions
only, which is typically an NP-hard problem.

Depending on such a behavior table, the nodes of a cooperative
network determine their local adaptive transition. After the transi-
tions are executed for all available network nodes, the cooperative
network has switched its mode of operation. For example if one of
two cores of the processor of Node1 fails, the behavior tables of
the remaining nodes can be implemented like follows:

• The algorithm to compute the outer edge of the square is
simply executed on the remaining core of Node1.

• Node2, Node3 and Node4 just generate default output.

5. PROOF OF CONCEPT

47

The presented architectural approach has been applied in an ap-
plication scenario, where a simple fan has been constructed, pow-
ered by three electric motors. The architecture provides a workload
redistribution mechanism to this setup.

The fan is powered by three motors combining their output via
two differentials into one axis. These motor controllers are co-
ordinated by one microcontroller unit, with limited computational
power (ARM processor AT91SAM7S256 running at 48 MHz and
64 kB RAM), running three controller tasks and a centralized co-
ordinator (star topology) in quasi-parallel manner. The coordinator
task detects failures as discussed in Section 3, by applying the con-
cept of computational promotion. Therefore a motor failure does
not result in the lock of the whole fan system. If one of the mo-
tor controllers fails, the rotation of the fan is kept at a certain speed.
This is achieved by increasing the load of the remaining motors and
therefore promoting the state of the remaining motor controller.

The presented architecture also enables the fan system to revert
to the default state, if a failed controller has recovered. The result-
ing rounds per minute (RPM) of the fan system are measured using
a incremental rotary encoder. The evaluation of the results show
that the RPM of the fan system are not significantly affected in the
presence of failures or during both transitions to the adaptive mode
of operation or afterwards back to the default mode.

6. RELATED WORK
Graceful Degradation is a important design pattern in safety-

critical systems [4, 1], in particular for fault-tolerant systems. The
presented work goes beyond this statical approach, providing a
flexible concept to recover from the computation of dynamic events
and introduces the concept of computational promotion beside the
already applied concepts of performance degradation [6].

A optimized graceful degradation is presented in [2]. The opti-
mization is done on structural and behavioral level, and here in a
decentralized fashion. But, unlike the approach in the present pa-
per optimized graceful degradation does not consider the energy
consumption and the ability to recover from degradation.

Another similar approach is presented in [3], where tasks are
reconfigured by moving them in a network of connected devices.
This work makes use of reconfigurable hardware like programm-
able logic controllers to adapt to failed devices and newly intro-
duced tasks in an online fashion. On contrast to this work, the
presented approach focuses on software, which also allows not-
reconfigurable hardware that are getting more and more important
in current distributed embedded systems, but comes with the con-
straint to make the behavior table safe.

7. CONCLUSION
In this paper a software architecture for distributed embedded

systems is presented that allows cooperative work to reach a com-
mon objective in the presence of dynamic events and even failures.
Load and quality of the application running on the network is bal-
anced by using instantaneously switching modes of operation in
case these events occur. The design pattern presented in this paper
can be deployed to safety-critical software with respect to the un-
derlying software platform of the network nodes. The architecture
is evaluated based on a network of nodes arranged in a star topology
on the physical layer, which is introducing a single-point-of-failure
regarding the coordinating node.

The presented concept is work in progress. Therefore, this single-
point-of-failure and other challenges like scalability are in detail
tackled in ongoing work. One notable advantage of the presented

approach is the opportunity to allow also computational promotion
of the network using additional modes of operation. But due to
page limitations, such scenarios are not discussed in the present
paper. Another advantage of this approach is the ability to recover
from dynamic extraordinary events via the presented concept back
to a default state. Considering that this approach is fully software-
oriented, this is more or less an advantage for software-based devel-
oping safety-critical applications. The presented approach is lim-
ited by the timing behavior of the underlying platform. It has to
be evaluated, how good the concepts for load and quality balancing
work in terms of scalability and protocol stack dependencies. This
involves other topologies of networked embedded systems as well
as nested adaptations of parts of the cooperative network. Further it
must be analyzed, if the architecture can be used in priority-based
network communication. In this context, overhead of data flow and
communication between the nodes of the network requires careful
planning and evaluation.

The presented approach cannot eliminate the influence of bad
programming of the design pattern. but as a next generation electric
car in model size is available, it is planned that the presented work
is evaluated exhaustively and during a larger case study under more
realistic parameters. Conclusions are expected from this feasibility
study regarding of how to force good programming also.

8. ACKNOWLEDGMENT
This work was supported by the UMIC Research Centre, RWTH

Aachen University Germany.

9. REFERENCES
[1] A. Avizienis. Fault-tolerance: The survival attribute of digital

systems. Proceedings of the IEEE, 66(10):1109–1125, 1978.
[2] M. Glass, M. Lukasiewycz, C. Haubelt, and J. Teich.

Incorporating graceful degradation into embedded system
design. In DATE, pages 320–323. IEEE, 2009.

[3] C. Haubelt, D. Koch, F. Reimann, T. Streichert, and J. Teich.
Reconets design methodology for embedded systems
consisting of small networks of reconfigurable nodes and
connections. In M. Platzner, J. Teich, and N. Wehn, editors,
Dynamically Reconfigurable Systems, pages 223–243.
Springer Netherlands, 2010.

[4] T. Henzinger and J. Sifakis. The embedded systems design
challenge. In J. Misra, T. Nipkow, and E. Sekerinski, editors,
FM 2006: Formal Methods, volume 4085 of Lecture Notes in
Computer Science, pages 1–15. Springer Berlin Heidelberg,
2006.

[5] R. Lyons and W. Vanderkulk. The use of triple-modular
redundancy to improve computer reliability. IBM Journal of
Research and Development, 6(2):200–209, 1962.

[6] K. Shin and C. Meissner. Adaptation and graceful degradation
of control system performance by task reallocation and period
adjustment. In Real-Time Systems, 1999. Proceedings of the
11th Euromicro Conference on, pages 29–36, 1999.

48

Design and Implementation of a FPGA-Based RTOS Real-Time Performance
Analysis Environment (RTPE) for Satellite On-Board Computers

Fernando Nicodemos, Osamu Saotome
Instituto Tecnológico de Aeronáutica - ITA
Pç. Marechal Eduardo Gomes, 50 - IEEA

São José dos Campos - SP - Brazil
fgnicodemos@gmail.com, osaotome@ita.br

George Lima
Universidade Federal da Bahia - UFBA

Av. Adhemar de Barros, s/n - DCC
Salvador - BA - Brazil

gmlima@ufba.br

Abstract

We address the problem of measuring context
switching overhead in Real-Time Operating Systems
(RTOS). Such characteristic lies in the core of RTOS
performance and is usually assessed via custom vendor
software routines or benchmarking. The former
approach can be too intrusive while the later may incur
in tendentious measurements. In this paper we describe
an external non-intrusive FPGA-based measurement
tool. Our approach has been applied to a space case
study for which the Real-Time Executive for
Multiprocessor Systems (RTEMS) RTOS and the ERC32
processor are used. Experiments evaluate the
effectiveness of our tool.

1. Introduction

The complexity of space embedded systems has
increased substantially in the past few years due to new
missions that demand higher on-board processing
capabilities. Indeed, silicon foundry has evolved, new
architectural organizations has led to higher
performance, and applications, once limited to lower
level languages (e.g. assembly), are now developed in
higher level languages (e.g. C language). Combining
these aspects with mission costs and code reuse needs
for different projects, the use of a RTOS for supporting
space embedded systems is almost inevitable. However,
when implementing an embedded hard real-time system,
one has to account for the effects that the RTOS has on
the application. Task context switching, for instance,
have direct impact on the application timeliness. Thus,
the main requirement for a RTOS-based space
application is to prove that the real-time behavior is
predictable, i.e. that all tasks complete before their
deadlines in the worst-case conditions [1].

Usually, measuring RTOS core characteristics is
carried out by software-related approaches, via a timing
test suite, e.g. the user extensions of RTEMS Timing
Test Suite [2][3]. Benchmarking, like Rhealstone [4],

Hartstone [5], MiBench [6] and Thread-Metric [7], has
been also used. Static analysis has been also used to
make hard real-time systems comply with space
standards [8][9][10][11]. These approaches offer some
drawbacks since no standard measurement
methodologies exist and overestimation is inevitable.

Thus, hardware tools for supporting such RTOS core
analysis and carrying out such measurements are thus
justifiable and of paramount importance. Emulation of
an embedded system for industrial automation has been
considered in [12]. The goal is to know the conditions
and architectural combinations of a proprietary hardware
operation aiming to the best overall application gain
while reducing design time and risks. In [13] a
specialized hardware and software module has been
described. The module was created to generate control
signals over a RS232 interface so that a spy system can
calculate event response times. RTOS core analysis was
not taken into account. The Lauterbach company have
presented the TRACE32 debugger. Data can be
statistically evaluated and graphically displayed [14].
This solution depends on the PowerPC architecture and
supports specific RTOS versions, e.g. the RTEMS 4.6.x.

An initial version of a FPGA-based measurement tool
has been reported [15]. In this paper we describe a
further approach of this tool named Real-Time
Performance Analysis Environment (RTPE). It is used
for assessing RTOS core performance without being too
intrusive and capable of giving precise measurement
results. The RTPE is composed of three components: a
host computer (HOST PC), a FPGA Measurement Unit
(FMU) and Device Under Test (DUT). We have applied
the RTPE for analysing RTEMS. In the following
sections we detail this approach and present
experimental results. Although we have successfully
applied the described approach to analyzing other
RTEMS characteristics, such as interrupt, we focus here
only on the context switching analysis.

2. Context switching with preemption

Context switching is an operation that occurs when
one task leaves its own context and another task takes

49

over the processor with another context. Since RTOS
does not have information about the current register
scheme, the whole register set is saved for the current
context. The new context is restored, the processor
pipeline is flushed and specific RTEMS-related routines
are executed. The total time to execute the operation
described above is called context switching timing or
overhead. One of the main difficulties in assessing this
overhead is due to the low-level operations involved.
Thus, instrumenting the RTOS can be too intrusive. Our
context switching measurement model can be executed
in RTEMS at user application code without modifying
any RTOS code. We use special purpose tasks to
generate signals so as to allow that an external
measurement tool is able to measure context-switch
time. A minimum of two tasks are needed to provide
context-switch events. As our FPGA-based tool has four
input pins, we do not considered more than four tasks in
our experiments. Similar results would be obtained if
less than four tasks were considered. Moreover, we note
that RTEMS is compiled only with the non-floating
point library and therefore context switching that
includes floating point libraries are not evaluated.

We have considered the round-robin scheduling
model of RTEMS. Every task joins a FIFO queue and
each task has equal and configurable timeslices without
any weight and priority when executing. Figure 1
illustrates four monitored tasks being scheduled
according to the round-robin policy. That is, after a task
executes its timeslice, the scheduler selects the next one
on circular queue.

Figure 1. Context switching model with
preemption.

A GPIO pin from the DUT is assigned to each of
these tasks. The corresponding GPIO is set to mark logic
level "1" and cleared to mark logic level "0" within task
application code, creating a squared waveform. The
GPIO transitions allow the FPGA-based to measure the
absolute time differences and to define when one task
reaches the total timeslice execution and when the next
task starts executing. Figure 2 illustrates their temporal
behaviour.

Figure 2. Context switching timing chart.

A task runs its timeslice (tS), configurable by setting
the RTEMS "microseconds per tick" variable, and then
the scheduler selects the next task to run. The context
switching time can then be measured (tCS). Clock ticks
are set by adjusting RTEMS "ticks per timeslice"
granularity variable.

3. Space case study

The ERC32 processor was chosen, following the
roadmap by the Brazilian space program. It is a high-
performance 32-bit RISC embedded processor,
implementing the SPARC architecture V7 specification.
The TSC695E Starter Kit from Atmel [14] was used for
running the RTEMS core analysis proposed in this work.
The kit uses the low voltage version with part number
TSC695FL-15MA-E (ERC32 single chip), ordered as an
engineering sample. It operates at a maximum core clock
of 30 MHz [16]. Actually, the ERC32 core clock is set at
12 MHz, driven by an external oscillator operating at 24
MHz (core clock is automatically divided per two).

RTEMS is also defined following the roadmap by the
Brazilian space program. It is a free open-source real-
time executive designed for embedded systems
characterized by three layers: hardware support, kernel
and APIs. The hardware support layer encompasses the
processor and board dependent files as well as a
common hardware library. The kernel layer is the heart
of RTEMS and encompasses several libraries. The API
layer makes the bridge between the kernel and the user
application [17]. The analysis of this work ran on the
current RTEMS version 4.10.2.

4. RTPE Environment

Several approaches for measuring RTOS core
characteristics exist and were presented in Section 1.
Although hardware-based measurements may offer
accurate data, carrying out such an approach involves
specialized knowledge about both the hardware and the
software architecture to be assessed. To avoid the need
for this type of knowledge, we have developed the RTPE
tool to assess RTOS core characteristics, under contract
with the Brazilian Space Agency (AEB), via the
UniSpace Program.

RTPE is based on an external FPGA Measurement
Unit that can automatically read and store time
transitions to generate real timing information for the
model described in Section 2. The counterpart of the
model was also developed and implemented into the
FPGA (a mix of megafunctions and VHDL language
were used). The RTPE environment is composed of
three basic functional blocks: 1) Host computer (HOST
PC); 2) FPGA Measurement Unit (FMU); and 3) Device
Under Test (DUT). Figure 3 shows the three RTPE
functional blocks applied to the case study.

50

Figure 3. Real-Time Performance Analysis
Environment - RTPE.

The function of the HOST PC is to provide the
software development environment for all the
subcomponents of the other two blocks. It uses the Linux
CentOS 6.2 as the host OS. The RTEMS application
code based on the model described was developed using
the classic API, using the Eclipse Juno Environment.
The FPGA development environment is the Altera
Quartus II 7.2 [18]. All other software used to design and
implement the RTPE is focused on open-source or free
solutions. We developed a custom application in Java to
make the bridge between the collected data from FMU
with the open-source HSQL database [19]. The post
analysis is conducted via the R environment [20].

The function of the FMU is to provide the non-
intrusive tool for stimuli generation and timing
measurements of the model presented, under operation in
the DUT. It acts as a digital 50 MHz sampler so that the
time transitions can be stamped with a 32-bit counter.
The absolute differences between the time stamped in
these transitions are identified and time events due to
tasks transitions can be measured. The FMU stores a
minimum of three time transition samples to identify one
context-switch overhead between tasks. This block
makes use of the Altera NIOS II Development Kit [21].

The DUT is the device that one shall test under
operation in which the RTEMS core characteristic will
be measured.

RTPE has a simple operating principle. First, the
RTEMS application code, corresponding to the context
switching model, is downloaded via a RS232 interface
from HOST PC to DUT. The FPGA module is

programmed with its counterpart model via the JTAG
interface. The pressing of a button in FMU enables the
measurement and the first transition in any GPIO is
timestamped as 0. The following transition times are
timestamped accordingly. Up to 32,768 5-byte transition
time samples can be locally stored in the FMU. One byte
carries the task-related GPIO information and four bytes
carry the 32-bit timestamp values associated with each
sample. These values correspond to the absolute timing
differences read from the GPIOs 4-7, signaled from
DUT. The measurement procedure ends when memory is
full, which is automatically detected by the FMU. After
this, the stored data can then be sent to the HOST PC via
the RS232 interface using a custom Java application.
Collected data is then analysed.

5. Results

Three data sets of 32,768 transition samples were
collected via RTPE tool for the context switching model.
Task timeslice values were considered to be 1, 10, and
100 ms, each value for a collected set. Figure 4 shows
histograms for the calculated context-switch overheads
for each set.

The histograms show that the higher the timeslice
considered, the higher the occurrences near the worst
border. It also shows a higher variability, resulting from
the hardware architecture and the RTEMS context-
switch software proceedings described in Section 2.
However, it is worth of notice that the interval between
the best and the worst-case observed values lie within
130-160 microseconds independently of the timeslice
used. In Table 1, the observed best and worst times for
the three data sets are given.

Figure 4. Context switch data histograms.

51

Table 1. Context switching measured
timing overheads.

Context Switching Model with Preemption
Timeslice /
Ticks per ts Best Case Worst-case Mean /

Std. deviation

1 ms / 1 131.98 µs 153.6 µs 139.7898 µs /
2.312548

10 ms / 1 132.64 µs 155.84 µs 140.4472 µs /
2.975035

100 ms / 1 134.5 µs 156.66 µs 141.2638 µs /
4.024658

6. Conclusions

The Real-Time Performance Environment (RTPE)
environment was presented as a hardware-based non-
intrusive time measurement approach. We have analyzed
RTEMS in terms of its overhead when dealing with a
context switching model. Observed measurements
indicated that most context-switch overhead lies in
between 130-160 microseconds for the considered
hardware platform. The observed tight distribution for
the sampled data indicates certain stability of RTEMS, a
characteristic required for space applications such as
satellite on-board computer.

The RTPE tool adds indeed a new way to assess
RTEMS core performance and can complement other
methods to comply with space standard needs. Future
work includes the development of new RTEMS core
analysis models and its counterpart implementation in
RTPE. Floating point RTEMS library compilation
should be studied and also analyzed with the models.
The impact of cache memory should also be included.
Another aspect that can be considered is the impact of
the Error Detection And Correction (EDAC) unit
available in ERC32. Indeed, the detection and correction
of possible bit errors due to transient faults is an
important parameter to be analyzed. Further, a
comprehensive statistical analysis should also be
conducted with the measured data so that RTEMS
developers can identify software and optimize routines.

References

[1] "ECSS-E-ST-40C: Software", European Cooperation for
Space Standardization, 03/06/2009.

[2] On-Line Application Research Corporation, “RTEMS C
User's Guide”, www.rtems.com, 2013.

[3] On-Line Application Research Corporation, “RTEMS Intel
i386 Application Supplement”, www.rtems.com, 2003.

[4] R. P. Kar and K. Porter, “Rhealstone - A real-time
benchmarking proposal”, Dr. Dobb's Journal, vol. 14, pp.
14-24, 1989.

[5] W. A. Halang, R. Gumzej, M. Colnaric and M. Druzovec,
“Measuring the performance of real-time systems”,

International Journal of Time-Critical Computing
Systems, Vol.18, pp. 59-68, 2000.

[6] M. R. Guthaus, J. S. Ringenberg, D. Ernst, T. M. Austin, T.
Mudge, R. B. Brown, "MiBench: A free, commercially
representative embedded benchmark suite", Proceedings
of the Workload Characterization, pp. 3-14, 2001.

[7] W. Lamie and J. Carbone, “Measure your RTOSs real-time
performance”, www.eetindia.com, 2007.

[8] C. Brandolese, and W. Fornaciari, "Measurement, analysis
and modeling of RTOS system calls timing", 11th
Euromicro Conference on Digital System Design, pp.
618-625, 2008.

[9] A. Colin, and I. Puaut, "Worst-case execution tome analysis
of the RTEMS real-time operating system", 13th
Euromicro Conference on Real-Time Systems, pp. 191-
198, 2001.

[10] M. Lv, N. Guan, Y. Zhang, Q. Deng, G. Yu and J Zhang,
"A survey of WCET analysis of real-time operating
sustems", International Conference on Embedded
Software and Systems, pp. 65-72, 2009.

[11] R. Wilhelm, J. Engblom, A. Ermedahl, N. Holsti, S.
Thesing, D. Whalley, G. Bernat, C. Ferdinand, R.
Heckmann, T. Mitra, F. Mueller, I. Puaut, P. Puschner, J.
Staschulat and P. Stenstrom, "The wors-case execution-
time problem: overview of methods and survey of tools",
Journal of ACM Transactions on Embedded Computing
Systems, Vol.7, Issue 3, Article 36, 2008.

[12] K. Weiβ, T. Steckstor and W. Rosenstiel, “Performance
Analysis of a RTOS by Emulation of an Embedded
System”, 10th IEEE International Workshop on Rapid
System Prototyping, pp. 146-151, 1999.

[13] I. V. Druzhinin, A. A. Mynzhasova and E. A. Sinelnikov,
“Design and implementation of a hardware-software
module for testing real-time systems”, 34th International
Convention MIPRO, pp. 788-791, 2011.

[15] http://www.lauterbach.com/frames.html?home.html
[15] L. H. Shibuya, S. S. Sato, O. Saotome and F. G.

Nicodemos, "A real-time system based on FPGA to
measure the transition time between tasks in a RTOS",
1st Workshop on Embedded Systems, pp. 29-39, 2010.

[16] "Low-voltage rad-hard 32-bit SPARC embedded
processor TSC695FL datasheet", Atmel, 2005.

[16] "Evaluation board TSC695 user guide", www.atmel.com,
2005.

[17]http://rtemscentre.edisoft.pt/index.php?module=contentexp
ress&file=index&func=display&ceid=21&meid=37,
acessed in 08/05/2013.

[18] “Introduction to the Quartus® II Software – Version 7.2”,
Altera, 2007.

[19] http://www.hsqldb.org/
[20] http://www.r-project.org/
[21] “Stratix II Device Handbook, Volume 2 – SII5V2-4.4”,
Altera, 2008.

52

Worst-Case Communication Overhead in a Many-Core
based Shared-Memory Model

Amira Dkhil
CEA-LIST, Nano-Innov

PC172, F91191
Gif-sur-Yvette Cedex, France

amira.dkhil@cea.fr

Stéphane Louise
CEA-LIST, Nano-Innov

PC172, F91191
Gif-sur-Yvette Cedex, France
stephane.louise@cea.fr

Christine Rochange
IRIT, Université de Toulouse

118 route de Narbonne. 31062
Toulouse cedex 9, France

rochange@irit.fr

ABSTRACT
With emerging many-core architectures, using on-chip shared
memories is an interesting approach because it provides high
bandwidth and high throughput data exchange. Such a
feature is usually implemented as a multi-bus multi-banked
memory. Since predicting timing behavior is key to efficient
design and verification of embedded real-time systems, the
question that arises is how to evaluate the access time for one
memory access of a given task while others may concurrently
access the same memory-bank at the same time. In this paper,
we give the answers for a subset of streaming applications
modeled like CSDF Model of Computation and implemented
in Kalray’s MPPA chip.

Keywords
Access time, Shared memory, Multi-core, CSDF, MPPA chip

1. INTRODUCTION
Predicting timing behavior is key to efficient design and

verification of embedded real-time systems. For embedded
hardware platforms, Multiprocessor Systems-on-Chip (MP-
SoCs) provide a good balance between cost, power efficiency,
and flexibility. Multi-core systems are known to be especially
difficult regarding Worst-Case Execution Times (WCETs),
but the new way to program these many-cores is different
from the way embedded systems used to be programmed
with micro-controllers: Dataflow Models of Computation
(MOCs) are gaining in momentum because some subsets of
the dataflow based model of computation possess good prop-
erties concerning parallelism management [4]. It has been
shown recently that over 90% of streaming applications can
be modeled as acyclic SDF graphs [2]. Cyclo-Static Dataflow
(CSDF), the model we consider, is a generalization of SDF [8]
in which consumption and production rates take the form of
periodic sequences. CSDF is more versatile because it also
supports algorithms with a cyclically changing, but prede-
fined, behavior. It can provably run without locks and for

well-formed applications (detectable at compilation time) in
finite and statically-known memory.

Typically, these applications are partitioned into tasks that
communicate over channels (i.e. FIFO buffer) together form-
ing a Dataflow graph. In order to allow maximum flexibility
at the lowest cost, tasks share storage, computation and
communication resources. This leads to uncertainty about
resource management which can make the system decompos-
able. The temporal behavior of each task becomes dependent
on other tasks and cannot be analyzed in isolation. As sys-
tem runs without locks, what is required to know to calculate
worst-case latencies, in addition to stand-alone WCETs of
individual tasks, is the communication overhead induced by
the interference when several processors want to access nearly
simultaneously to the same bank of shared memory. We will
show that for a class of periodic scheduling schemes called
implicit-deadline periodic schedule, it is possible to compute
worst-case communication overhead in shared memory clus-
ters of Kalray’s MPPA chip [6] for a subset of usual stream
programs with the task resulting from the compilation of the
Sigma-C associated dataflow language [7]. Bamakhrama and
Stefanov [2] proved that Implicit-Deadline Periodic (IDP)
scheduling approach gives the maximum achievable processor
utilization and throughput for large set of dataflow graphs,
called matched I/O rates graphs [2]. These graphs represent
more than 80% of streaming applications [2]. Self-timed
schedule (STS), also known as as-soon-as possible schedule,
was considered the most appropriate for streaming appli-
cations modeled as dataflow graphs [2, 3]. Moreira and
Bekooij [3] established that it is possible to guarantee strictly
periodic behavior of tasks within self-timed implementation.
They have also provided the maximum latency for appli-
cations with periodic, sporadic and bursty sources. In [1],
authors present a complete framework for computing the
periodic task parameters using an estimation of worst-case
execution Time. They assume that each write or read has
constant execution time which is often not true.

Our approach is similar to [1, 2] in using the periodic task
model which allows applying a variety of proven hard-real-
time scheduling algorithms for multiprocessors. However, it
is different in exploring system level in order to get upper
bounds on the communication overhead as close as to the real
values. Ongoing approaches focus on performance analysis
either on task or system level. Especially memory accesses
cannot be accurately captured on a single level alone: consid-
ering both perspectives lead to overly pessimistic estimations.

53

Figure 1: IDP schedule for CSDF graph

1.1 Motivating Example
We show the possible influence of parallel execution of

actors, under static implicit-deadline periodic (IDP) schedule,
on accesses to memory by means of an example. Figure 1
illustrates a CSDF graph consisting of five actors and six
communication channels. Under IDP schedule, actors are
executed in levels. Actors are assigned to levels according
to the dependency and the minimum number of tokens that
should be present on communication channels before firing.
Aj(n) is the set of actors in j level executing their nth

iteration. Actors in level j start execution at t = (j − 1)× φ.
φ is the global level period [1]. From the example depicted
in Figure 1, at t = 24, actor a5 of level 3 starts execution of
his 1st iteration, actor a1 of level 1 executes his 3rd iteration,
actors a2, a3, and a4 of level 2 execute their 2nd iteration.
The periodic start time t = (j − 1) × φ guarantees that
actors in a given level will have enough data (i.e. from their
predecessors) to start. From [2], authors proved that such
schedule executes with bounded memory buffers. Thus, all
actors of level j can start their execution simultaneously at
t = (j − 1) × φ and surely finish at t = j × φ. Well, it is
simple to observe, from Figure 1, that actors can read or
write memory at the same time. In this example, actors
execute on five processors. A processor can request access
to the shared memory without restriction but not without
penalties, since there is an additional and variable arbitration
cost. It would be trivial to assume that this cost is the same
for all accesses to memory because this will induce a very
pessimistic and maybe unreliable result. For these reasons,
we must look more closely at the access modes of shared
resources so that it will be possible to derive a fairly accurate
estimation.

1.2 Paper Contributions
Given a streaming application modeled as an acyclic CSDF

graph with periodic input streams, determine the maximum
number of overlapping reads and writes when executing

actors as implicit-deadline periodic tasks. For each level
in the CSDF graph, define the worst-case communication
overhead induced by the interference when several processors
want to access simultaneously to the same bank of shared
memory. The communication costs are defined as follows:
1) Arbitration cost: the time needed to arbitrate shared
communication resources at run-time, 2) Synchronization
cost: the time needed to check if all the necessary data is
available for the actor and 3) Transfer delay: The mean-time
needed to transfer input and output tokens from and to the
private memory of processing elements.

The remainder of this paper is organized as follows: Sec-
tion 2 introduces the CSDF model, the system model and the
IDP schedule. Section 3 defines theoretical results. Finally,
in section 4, we present our case study and then we conclude.

2. BACKGROUND

2.1 Cyclo-Static Data-Flow (CSDF)
We use Cyclo-Static Dataflow [9] to model real-time stream-

ing applications. It is a directed graph G = (A,E) , where
A is a set of computation actors and E is a set of commu-
nication channels. Data is transported in discrete chunks,
called tokens, via communication channels implemented as
First-In First-Out (FIFO) queues. An actor is enabled by the
availability of enough tokens on each of its incoming edges.
This is done by means of synhronization mechanisms like
semaphores. An enabled actor can fire and consume/produce
fom/to each of its input/output edges a number of tokens.
Actor firings are free from side effects. Each actor ai ∈ A
is viewed as executing through a periodically-repeating se-
quence of functions [fi(1), fi(2), ..., fi(τi)] of length τi ∈ N?.
P and C are the sets of production and consumption rates.
For example, the jth firing of ai is enabled if there is at least
[ceii (((j−1) mod τi)+1)] on its input channel ei, when fired,
it executes the code of function fi(((j− 1) mod τi) + 1) and
produces [peoi (((j − 1) mod τi) + 1)] tokens on its output
channel eo.

2.2 System Model
Late last year, two new architectures have emerged: the

SThorm chip from STMicroelectronics (i.e. 64 cores) and
MPPA chip from Kalray [6] (i.e. 256 cores). These chips rely
on a clustered architecture that allows clusters of processors
to share a particular level of the memory hierarchy and this
has the potential to reduce the average memory access time
of parallel applications [5]. A single MPPA cluster consists
of 16 user processors, a controller processor, and a shared
banked memory. It also comprises two DMA engines (one
in and one out) to exchange data with external parts of the
cluster through the NOC interface, but this is out of the
scope of this paper. Each processor has private L1 cache
and communicates with other processors through a shared
banked memory (SRAM) of 2MB. The banked memory is
implemented as a multi-bus approach [6]: it provides the
same functionality as a full crossbar with lower impact on
surface occupation or power consumption. Each memory-
bank has a private controller which manages the requests
sent from each processor in the cluster using a FIFO (first-
in, first-out) equivalent queuing strategy: this will give rise
to extra penalties. The shared memory is a Static RAM
(SRAM), so it is quite feasible to derive some access time:
some time is spent in sending a request to the controller,

54

and once the request is satisfied, back to the processor, this
time is noted t0. t0 is constant because there is no memory
coherence protocol. But Since we have overlapped accesses,
the overall access time is:

t = t0 + (πj − 1)× tc (1)

tc is the time needed from the controller to access memory
and it costs one RAM cycle [6]. (πj − 1) models the order of
processor requests in the FIFO of the memory-bank controller.
πj is the number of processors executing actors of level j.

2.3 Implicit-Deadline Periodic Schedule
Under IPD static schedule, processors execute a task set

A = [A1, A2, ..., An] of n periodic tasks. In this paper,
we consider that a task cannot be preempted during ex-
ecution. A periodic task Aj ∈ A is defined as a 4-tuple
Aj = (Sj , ωj , λj ,Dj) where Sj is the start time, ωj is the
worst-case execution time, λj is the task period and Dj is
the relative deadline of Aj . The kth invocation of task Aj
is at time instants t = Sj + k × λj ,∀k ∈ N. Aj executes for
ωj time units and his execution time should not exceed Dj .
A task has an implicit deadline if Dj = λj , it follows that
Aj has to terminate before time t = t = Sj + (k + 1)× λj .
The authors in [2] explain the following definitions in more
details: Since actors of CSDF graph G are assigned to levels,
we define φ as the minimum level period and λ as the mini-
mum actor period. These periods are given by the solution
to both equations:

φ = q1λ1 = q2λ2 = ... = qnλn (2)

and
→
λ −→ω ≥

→
0 (3)

where
→
q = [q1, q2, ..., qn] is the repetition vector of G and

qj � 0 represents the number of invocations of an actor aj
in a valid schedule of G. G is consistent if there exists a
repetition vector: When each actor is fired the number of

times specified by
→
q , the total number of tokens produced

on each arc is equal to the total number of tokens consumed.

3. WORST-CASE OVERHEAD

3.1 Assumptions and Definitions
A graph G refers to an acyclic consistent CSDF graph.

A consistent graph can be executed with bounded memory
buffers and no deadlock. So, we only consider consistent and
deadlock free CSDFs. Consistency concerns the correspon-
dence between production and consumption rates [11]. For
our analysis, we assume the following hypothesis:

H1- Basic access time of every actor to shared memory
conforms to (1). It is defined as the total time needed to
access memory depending on the order of access to FIFO
controller.

This order can be determined if we have exact knowledge of
each access requesting time which is not feasible in practice.
Under static or dynamic schedules, the order of accesses to
memory cannot be determined, even for fully static schedule
where we assume a very tight estimation of worst-case exe-
cution time of actors. In [12], Khandalia et al. explored the
problem of imposing an ordering of interprocessor commu-
nication operations in statically scheduled multiprocessors.

Their method is based on finding a linear ordering of com-
munication actors at compile time which could minimize
synchronization and arbitration costs, but this would be at
the expense of some run-time flexibility. In this paper, we
do not impose any constraints on communication operations.

Definition1: For a graph G under IDP schedule, the
worst-case overhead Oj of level j depends on the maximum
number of accesses to memory mi,j of actor ai not on the
exact time when a processor requests an access:
Oj = f(mi,j), ∀ai ∈ Aj . Aj is the set of actors of level j.

H2- Reading or writing tokens from/to the memory could
be done at any time. This assumption was derived from sim-
ulation results: during execution, the processor may require
read access when it needs some data and write access when
it finishes a part of the execution.

This last assumption does not affect the considered size of
shared buffers with IDP periodic schedule because reading
and writing in the same shared buffer cannot be done in the
same time as the execution is periodic and ordered in levels.

H4- We assume that we have reasonably tight estimates
of actors computation time. Computation time is the time
needed for computation operations. These estimates can be
obtained by several different mechanisms like those described
in [10].

H5- In [3], synchronization checks are done whenever
processors communicate: the sending processor ascertains
that the buffer it is writing to is not full, and the receiver
ascertains that the buffer it is reading from is not empty.
For IDP schedule, the synchronization cost is equal to zero,
because periodic behavior guarantees that an actor ai will
finish execution before deadline Di.

3.2 Tight overhead under IDP Model
For a simplified problem with only few processors and few

concurrent tasks with few accesses to memory, the worst-case
communication overhead cannot affect so much the worst-
case latency of the application. The non-obvious result is
that for such a configuration when the number of processors
and accesses to a single-bank memory are very high, the mean
access time is deeply impacted by the concurrent accesses. In
this section, we introduce an execution scheme to determine
an upper bound for overhead.

The CSDF graph is denoted Gω = (A,E, ω), ω is the set of
worst-case computation time of actors. Let S = (Gω, β, σ) be
the IDP model applied to Gω. β is the set of levels resulting
from scheduling and σ is the number of levels.

Let β = [β1, β2, ..., βσ] be the set of actors for each level.
βi = [β1

i , β
2
i , ..., β

πi
i] of level i, ∀i ∈ [1, σ] is the set of actors

for each level in each executing processor. πi denotes the
number of processors executing level i.
∀aj such that aj ∈ βi, it is possible to derive the associated

maximum number of accesses to memory (H1). We define
M = [M1,M2, ...,Mσ] the set of memory accesses for all
levels such that Mi = [0,m1

i ,m
2
i , ...,m

πi
i] is the set of total

number of memory accesses in each processor executing level
i. Note that a given processor can have multiple tasks in
each level.
Mi is sorted in this order: ∀i ∈ [1, σ], ∀j ∈ [1, πi] m1

i ≤
m2
i ≤ ... ≤ mπi

i , such that mk+1
i 6= mk

i ,∀k ∈ [1, πi]. The
new dimension of vector Mi is noted αi. In order to get a
tight overhead estimation, we assume that, for the (πi − 1)
potential concurrent tasks on a single memory bank, the min-
imum number of accesses in a given level have the maximum

55

overhead (H2). Thus we can guarantee safe estimation. The
worst-case arbitration overhead of level i is given by:
Oiarb = 0, if πi = 1
Oiarb = (m1

i − 0)× 1× tc, if πi = 2 , αi = 3
Oiarb = (m1

i−0)×2×tc+(m2
i−m1

i)×1×tc, if πi = 3 , αi = 4
.
.
.
Where:

Oiarb =

αi−2∑

δ=1

(mδ+1
i −mδ

i)× (πi − δ)× tc (4)

Equation 4 implies that the minimum difference in the
number of accesses of processors, for a given level, will get
the maximum overhead and so on. This allows us to get a
tight estimation of worst-case overhead since accesses will
get a variable penalty. Using Equation 4, we can derive the
worst-case overhead of level i by adding the transfer delay:

Oi =

αi−2∑

δ=1

(mδ+1
i −mδ

i)×(πi−δ)×tc+ max
j=17−→πi

(mj
i ×t0 +ωj)

(5)
From (5), Equation (3) becomes:
→
λ −→ω −

→
O ≥

→
0

Thus, we can take into account communication overhead
in estimating IDP periods.

4. EXPERIMENTS
We evaluated our proposed temporal analysis scheme on

four programs belonging to the StreamIT Benchmarks: Di-
rect Cosine Transform, Biotonic Sort, Audio Beam former
and Laplace transformation. As architecture platform, we
use the Kalary MPPA multi-cluster multi-core architecture
and the associated shared memory arbitration mechanism.
This paper does not consider the presence of a 2 two-way
instruction and data caches for each processor of the cluster.
The execution time analysis is done in three steps. First,
the application is executed with a set of input data on the
architecture and an execution trace of memory accesses is
generated. Second, we apply the scheduling strategy in order
to delimit the different phases of execution. Finally, we derive
the number of memory accesses and the execution time for
each node in the data-flow graph and use these informations
to compute the worst-case communication overhead. The
simulation time to generate these parameters was in order of
minutes, the longest time was spent to derive the memory
trace of each node in the application graph, because most of
them contains over 60 nodes.

In the case of the MPPA cluster, π is valued between 1 and
16. As a result (πi − j) is bound by 15 cycles, which is the
worst-case overhead associated to a given memory access. t0
costs seven cycles [6]. For the relevant cases, in Figure 2, the
worst-case overhead is between 17% and 23% of the overhead
derived from simulation results.

5. CONCLUSION
The main contribution of this paper is to propose a safe

timing per-cluster access memory model. This is a novel
approach proposed in order to estimate the worst-case com-
munication overhead. It was, as far as we are aware, the first

Figure 2: Measured overhead and Worst-case over-
head

time that a precise estimation of communication overhead
was provided for such an architecture. The evaluations are
also compliant with the experimental results. From the case
study, we conclude that the timing model is very accurate
and significantly improves the precision of worst-case over-
head. We will also apply the same methodology for other
scheduling strategies. We would like also to determine the
communication overhead if accesses are distributed between
the different memory banks in the same time.

6. REFERENCES
[1] M. A. Bamakhrama and T. Stefanov, Managing

Latency in Embedded Streaming Applications under
Hard-Real-Time Scheduling. CODES+ISSS, 2012.

[2] M. A. Bamakhrama and T. Stefanov, Hard-real-time
scheduling of data-dependent tasks in embedded
streaming applications, EMSOFT, 2011.

[3] O.M. Moreira and M.J.G. Bekooij, Self-Timed
Scheduling Analysis for Real-Time Applications, 2007.

[4] S.Sriram and S.S. Bhattacharyya, Embedded
Multi-processors: scheduling and synchronization.
Marcel Dekker, 2009.

[5] A. Erlichson et al. The Benefits of Clustering in Shared
Address Space Multiprocessors: An Applications-Driven
Investigation,1995.

[6] B. D. Dinechin et al., A distributed run-time
environment for the kalray mppa-256 integrated
manycore processor. ICCS Alchemy Workshop, (to be
published), 2013.

[7] T. Goubier et al., ΣC: A programming model and
language for embedded manycores, 2011.

[8] E.Lee and D. Messerschmitt, Synchronous dataflow.
IEEE Proceedings, 1987.

[9] G. Bilsen et al., Cyclo-static dataflow. IEEE trans.
Signal Process, Feb. 1996.

[10] R.Wilhelm et al.. The worst-case execution-time
problem overview of methods and survey of tools, 2008.

[11] E. A. Lee, Consistency in dataflow graphs, 1991.

[12] M. Khandelia et al., Contention-Conscious Transaction
Ordering in Multiprocessor DSP Systems, 2006.

56

Towards a Programming and Analysis Framework for
Timer Units

Marco Marazza
Sapienza - Università di Roma

marazza@diet.uniroma1.it

Fabio Cremona
Scuola Superiore Sant’Anna

f.cremona@sssup.it

Daniele Ceraolo Spurio
Sapienza - Università di Roma
daniele.ceraolospurio@gmail.com

Christian Nastasi
ALES S.r.l.

christian.nastasi@ales.eu.com

Carsten Demuth
STMicroelectronics
Application GmbH

carsten.demuth@st.com

Alberto Ferrari
ALES S.r.l.

alberto.ferrari@ales.eu.com

ABSTRACT
Programmable Timer Units are custom co-processors, typ-
ically assembly-programmed, used to process complex high
resolution timing functions subject to hard real-time con-
straints. The assembly language prevents code portability
among Timer Units, slows code development and mainte-
nance and limits analysis and optimization capabilities. A
high-level programming and analysis framework exposing the
same front-end for different Timer Units can help reducing
code development time and cost. In this paper we (1) discuss
our approach for achieving a high-level programming model
for Timer Units, (2) present the programming model and
back-end for a new Timer Unit and (3) its WCET analysis
tool.

1. INTRODUCTION
More and more industrial applications demand accurate con-
trol of timing and angle synchronization. This is particu-
larly true in automotive: common examples are power-train
applications involving engine control functions where spark
timing, fuel mixture control and fuel injection timing must
be carefully controlled to get the highest gain in terms of fuel
economy, unwanted emissions and engine performance. Soft-
ware implementations based on low-latency interrupts are
not always sufficient to perform high resolution timing func-
tions subject to hard real-time constraints. Timing issues
can also arise due to the large number of I/O functions to be
executed in parallel. To help delivering such time-intensive
functions, Timer Units can be integrated into the ECU archi-
tecture. Timer Units are customized co-processors used to
offload the CPU, especially in high-end applications where
single- or multi- cores are typically pushed to their limit.
Examples of programmable Timer Units are the eNhanced
High End Timer (NHET) [12] from Texas Instruments, the
Enhanced Timer Processing Unit (ETPU) [5] from Freescale
and the Generic Timer Module (GTM) [2], a new time-

predictable IP developed by BOSCH. Of all the Timer Units
mentioned above, only the ETPU comes with a C com-
piler and a Worst-Case Execution Time (WCET) analysis
tool. One of the advantages of using programmable Timer
Units is that these are more powerful and flexible for han-
dling complex waveforms. However, programming in as-
sembly has a negative impact on code optimization, time
required for firmware development and code maintenance;
moreover, developing code for different ECUs, each inte-
grating a particular Timer Unit often requires implementing
very similar functions via specific assembly dialects, which
prevents code portability. Since Timer Units are used in
safety-critical domains as e.g. automotive i.e. for engine
control functions, these become integral part of so-called
safety-critical systems, which are subject to the certification
processes regulated by International Standards [8], [9]. Be-
sides achieving functional requirements, safety-critical sys-
tems must meet additional non-functional requirements, i.e.
related to safety, reliability and availability constraints. Ev-
idence that non-functional requirements have been achieved
can be demonstrated by means of dependability and timing
analyses. Such analyses need information related to both
the developed code and the specific hardware capabilities.
A framework provided with the same front-end for different
Timer Units is gaining importance in the industry domain;
it would allow exposing a unique set of notations to the pro-
grammer for specifying functional and non-functional be-
haviours, hiding the specific back-ends for object code gen-
eration and the specific tools for partial or total automation
of timing analysis and dependability optimizations. This
would result in considerable savings in development cost and
time. In our knowledge the development of such a unified
programming and analysis framework for Timer Units has
not been addressed yet.

1.1 Goal and contribution of this work
The goal of this work is to achieve a high-level programming
framework giving the programmer the possibility to specify
functional and non-functional behaviours to program and
analyse different Timer Units by means of the same set of
notations. The main contributions of this work are: (1)
the raising of the GTM programming model to the C ab-
straction level, (2) the development of a compiler back-end
for the GTM IP and (3) the creation of a WCET analysis
tool to analyse the GTM code. In this preliminary work
we limit our study to the ETPU, one of the most common

57

programmable Timer Units, and the GTM, the newest one
proposed by BOSCH, one of the major players in the auto-
motive industry.
The paper is organized as follows: Sec. 2 provides a short
state of the art of programmable Timer Units; Sec. 3 dis-
cusses the approach for achieving a high-level programming
model for Timer Units; Sec. 4 describes how we designed the
GTM programming model, built the GTM compiler back-
end and the related WCET analysis tool, while Sec. 5 con-
cludes the paper. Sec. 6 gives some highlights about our
future work.

2. ARCHITECTURES
The most advanced Timer Units are provided with a cus-
tom instruction set architecture (ISA) and are usually pro-
grammed in assembly language, while simpler ones are just
configurable timer arrays. The main characteristics of the
ETPU [5] and the GTM [2] IPs, the most complex pro-
grammable Timer Units, are shortly described. A func-
tion performed by a programmable Timer Unit results from
the combination of a hardware-implemented function (per-
formed by configurable I/O Timer Channels) and a soft-
ware-implemented one. Every I/O Timer Channel is as-
signed a function determining its behaviour. Functions are
composed of so-called threads, which are Interrupt Service
Routines (ISRs); to use a general term, from here on we will
refer to these ISRs as Event Service Routines (ESRs). The
GTM features up to seven processors, called Multi Channel
Sequencers (MCSs). Also a MCS channel function contains
ESRs. However, the execution order of ESRs is established
by the ESR’s code itself: MCSs are provided with instruc-
tions to synchronise the function’s execution flow with: (1)
time or angle events, (2) events generated by other MCS pro-
cessing channels or (3) events coming from ARU-connected
modules. The ARU (Advanced Routing Unit) is a mod-
ule which enables data exchange among most of the GTM
modules. It implements a polling-based point-to-point com-
munication paradigm with a well-defined worst case time
bound.

3. APPROACH
One of today’s most commonly used programmable Timer
Units is the ETPU. Hence, one of the major concerns of
using the GTM IP is how to deal with the big amount of
legacy code coming from applications implemented on the
ETPU. The reuse of the ETPU code (or at least a part
of it) on the GTM platform by means of a high level pro-
gramming framework would in fact lead to considerable sav-
ings in development time and cost. Building such a frame-
work presents the following challenges: (1) how to abstract
the different hardware-implemented functionalities provid-
ing programmers with a common programming model? (2)
how to move from the common representation to the differ-
ent hardware/software partitionings and hardware/software
interactions? (3) how to integrate into the same set of pro-
gramming notations the (sub)configuration of the Channel
modes? (4) how to integrate into the programming model
the notations to specify non-functional requirements?
Figure 1 depicts our idea of high level programming frame-
work for Timer Units. At the highest abstraction level the
programmer should specify the model of the I/O function
(independent from the Timer Unit) and the models of the
hardware resources of the target Timer Units. These models

Mapping and Partitioning

ETPU Compiler

Tool-chain

GTM Compiler

Tool-chain

Other Compiler

Tool-chain N

ETPU Specific

C Language

GTM Specific

C Language

Other Specific

C Language

Platform Independent

Model

SW PartitionHW Partition

Timer Unit N

HW Model

SW SynthesisTimer Channels

Config Synthesis

Thick blocks

indicate the scope

of this work

Timer Unit

Config Synthesis

Figure 1: Common Programming Framework.

are used by partitioning and mapping algorithms to auto-
matically generate the hardware and software partitions for
the desired Timer Units. For a specific Timer Unit, the
hardware partition is used to generate the configurations of
its Timer Channels and the possible CPU code configuring
the Timer Unit itself, while the software partition is used
as input to the compiler tool-chains for synthesising the ob-
ject code that will run on the Timer Unit processor(s). The
software partition can be translated into C language either
by an automatic tool for software synthesis or by the human
programmer. The definition of platform independent models
and the implementation of mapping and partitioning algo-
rithms are complex tasks and remain out of the scope of this
preliminary work. The scope of current work is highlighted
in Figure 1 by thick line blocks. To limit the overall com-
plexity while providing a high level environment for code
development, we decided to build a GTM compiler yield-
ing a programming model similar to the ETPU one. This
approach has the following benefits: for those platform in-
dependent I/O function specifications resulting in the same
hardware and software partitions, the mapping function to
the specific Timer Unit is straightforward; if it results in
different partitions, the programmer is provided with a C-
like programming model to encode the software partition.
Moreover, since the interfacing language is the C language
for both architectures, the underlying tools remain mostly
the same, except the compiler back-end, which aim is to
generate the target code. Finally, having two similar pro-
gramming models for different Timer Units simplifies future
integration into the high level programming framework. In
the following section we describe how we realized the high-
level programming framework for the GTM, made of a C
compiler and a WCET analysis tool for its MCSs.

4. GTM DEVELOPMENT FRAMEWORK
4.1 The GTM C-like programming model
The first contribution of this work has been the raising of
the GTM programming language to the C-like level to allow
for (1) human-friendly code development framework, (2) in-
tegration of WCET analysis and (3) future integration of
dependability analysis and optimization techniques. Our
GTM programming model (depicted in Figure 2) is based on
code re-usability: it provides separation between definition
and instantiation of functions. This gives the programmer
the possibility to define a library of Function Prototypes

58

Configuration

File

MCS Task

Shared Variables

GTM Compiler Tool-chain

GTM

Object Code

Function

Prototypes

Library

Subroutines

Library

GTM WCET

Report

Figure 2: GTM Compiler Workflow

and then instantiate them an arbitrary number of times.
A function prototype is an abstraction of collaboration of
several GTM modules, including MCS processing channels,
I/O Timer Channels, etc. A Function Prototype is organized
according to the following structure: 1) declaration of sym-
bolic references indicating those GTM modules required to
perform the function; 2) definition of the function, including
definition of its ESRs set. The Function Prototype defini-
tion is similar to a standard C function in that it accepts
input parameters as an argument list. In contrast to the
ETPU programming models [3], which need a specific syntax
to associate each ESR with its respective activating events
combination, the GTM programming model exploits ad-hoc
synchronization instructions. These involve synchronization
with global time and angle references, synchronization with
functions running on other channels of the same MCS and
synchronization with events produced by other modules con-
nected by the Advanced Router Unit. This approach yields
more readable and easier to maintain functions. Function in-
stantiation upon different processors is achieved by defining
different configuration files. A configuration file is used to
produce the C-like code for a single GTM processor. Guided
by the configuration file, the instantiation process consists
of the following automated actions: 1) assign a name to a
Function Prototype chosen from the library 2) replace the
symbolic references with the appropriate addresses pertain-
ing to the modules (e.g. input and output Timer Channels,
etc.) involved in the function instance, 3) specify the pro-
cessing channel for each function. To avoid name clashing
when a Function Prototype is instantiated multiple times,
all its variables are properly renamed.

4.2 The GTM compiler
Our GTM C Compiler has been realized upon the Clang-
LLVM infrastructure [1]. The most powerful benefits of us-
ing LLVM derive from its modular nature: 1) many Timer
Units’ back-end can be easily added to the LLVM infrastruc-
ture and 2) compiler optimization passes operating on the
compiler’s Internal Representation (IR) need to be written
only once for all back-ends and 3) many optimizations are
already available from the Clang/LLVM infrastructure. The
GTM does not support a hardware implemented stack so,
to allow a function call to a subroutine, we implemented it
by software; since the number of general purpose registers
per Timer Channel is limited, we had also to limit the maxi-
mum number of parameters that a function call can transfer
via registers. If the number of parameters exceeds the limit,
these would be stored in RAM, with possible performance
degradation. To obtain correct handling of instructions like
call and return we had to opportunely tune the mechanisms
through which LLVM translates them from the IR to the as-

sembly code, which also involves stack management and pa-
rameter passing (calling conventions). In particular, call and
return pertain to the set of instructions that are modified
during the legalization step [1], which is the phase in which
IR structures are mapped to the types and operations na-
tively supported by the target platform. There are however
some instructions that cannot be replaced during the legal-
ization step; this is the case of IR instructions not supported
by the target architecture. For this purpose, LLVM offers
a different method to replace them with an equivalent set
of supported instructions: the so-called pseudo-instructions.
Pseudo-instructions are fake instructions recognized as sup-
ported by the target architecture during the legalization and
instruction selection phases; these are finally replaced by a
block of assembly code just before register allocation. This
allows replacing a single instruction with the desired, ar-
bitrarily complex algorithm. We used this functionality to
fully support instructions such as conditional jumps, con-
ditional moves and arithmetic shifts. Furthermore, we de-
cided to instruct the back-end to replace the most common
pseudo-instructions with subroutine calls, to avoid code rep-
etition and save memory. However, this improvement does
not always come for free, since the algorithms used to re-
place the instructions are software-implemented. This is
the case of multiplication and division instructions: since
the GTM instruction set does not support them, we imple-
mented them by software. These studies and related ar-
chitectural optimizations are left to a future study. Since
the GTM instruction set architecture is very different from
the general purpose ones targeted by LLVM, a few GTM
processor-specific instructions (e.g. the ones for function
synchronization) and some special purpose registers were
not supported by the pristine IR. We decided to temporarily
use the in-line assembly method to access these instructions
and registers, postponing their integration to a later stage
of our work. We expanded the functionality of the GTM
compiler by enabling some linking capabilities: it manages
allocation of functions and variables into the GTM proces-
sor memory space, avoiding waste of memory locations and
address clashing.

4.3 Timing analysis tool
Timing analysis on the code designed for safety-critical hard
real-time systems like Timer Units is a mandatory and cru-
cial activity during its whole development life-cycle [8], [9].
Determining the Worst-Case Execution Time (WCET) helps
bringing evidence that non functional requirements on the
program execution time are not violated. Our GTM com-
piler integrates a tool operating static timing analyses to
determine the worst-case execution time of functions exe-
cuted by each GTM processor. Static methods [14] study
the function’s code, possibly annotated with additional in-
formation –called flow facts (ff)– [10], by (1) analysing the
set of control-flow paths through the function, (2) combining
control flow with some model of the hardware architecture
and (3) obtaining upper bounds for this combination. An ef-
ficient technique performing static timing analysis is known
as IPET [14]; such technique makes use of the Integer Lin-
ear Programming (ILP) approach [10]. According to the
guidelines outlined in [14], the GTM can be defined as a
Time Composable Architecture. An MCS has no caches so
memory access time for data and instructions has a fixed
length in terms of instruction cycles. Moreover, MCSs have

59

SPARK_INITIALIZATION: 3

SPARK_SCHEDULE_RECALC_MATCH: 6

T F

if.else: 4

SPARK_SCHEDULE_START_MATCH: 24

T F

SPARK_MAIN_PULSE_START_MATCH: 26

T F

MULTI_PULSE_END: 9

SPARK_MAIN_PULSE_END_MATCH: 34

else: 1

Figure 3: Back annotated CFG

a thread interleaved architecture composed by eight inter-
leaved processing channels sharing the same pipeline, which
reduces (sometimes completely removes) pipeline stalls due
to pipeline hazards. This structure allows simplifying the
WCET analysis: in particular, accurate microarchitecture
analysis is not required. Our tool exploits a compiler analy-
sis pass operating on the compiler IR to extract the Control
Flow Graph (CFG) associated to each function. A further
ad-hoc analysis pass integrated into the GTM-backend com-
putes the length of each function’s Basic Block (BB) as num-
ber of instruction cycles. CFG structure and length of BBs
are combined in a back-annotated CFG (BCFG). The first
analysis step is loop reduction: BCFG and ff s are used to
reduce loop’s sub-CFGs into a single BB inside the BCFG
obtaining a new BCFG in the form of a Directed Acyclic
Graph (DAG). Finally, the analysis proposed in [10] is ap-
plied to compute the WCET Γ:

Γ =
N∑

i=1

γxi · xi (1)

where N is the total number of BBs in the WCET path,
xi is the number of executions of a BB and γxi is the local
WCET of BBi [10]. Figure 3 reports the BCFG obtained by
implementing a simplified version of the spark plug function
described in [4]. Each BB is represented as a box containing
its name and local WCET information γxi (after a colon);
arrows connecting BBs indicate the possible path(s) of the
control flow.

5. CONCLUSION
In this paper we pointed out that programming different
Timer Units through different assembly dialects targeting
the same set of applications represents the main limiting fac-
tor for code portability among Timer Units. We proposed
the creation of a programming and analysis framework for
Timer Units, analysed the related challenges and discussed a
possible approach. As a first step we raised the programming
model, developing the related C-like compiler and building
the WCET analysis tool for the GTM IP, the new time pre-
dictable Timer Unit designed by BOSCH. The contribution
of this work is to facilitate the migration from legacy ETPU
software to the GTM one by means of a similar programming

model. This encourages the next steps towards a common
programming and analysis framework for Timer Units.

6. FUTURE WORK
In the future we will accomplish our GTM compiler and
implement the high level programming and analysis frame-
work for Timer Units, exploiting our GTM compiler and
WCET analysis tool. Since Timer Units are often integrated
in safety-critical systems, to achieve safety metrics [9, 8] we
will add optimization techniques such as instruction or reg-
ister duplication [6, 7], instruction scheduling [11] control
flow checking [13] or register vulnerability reduction [15].

7. REFERENCES
[1] http://llvm.org.

[2] Gtm product information.
http://www.bosch-semiconductors.de/media/en/

pdf_1/ipmodules_1/timer/bosch_product_info_

gtm_ip_v1_1.pdf.

[3] ASH WARE. Compiler Reference Manual, version
2.01, 12 2011.

[4] Freescale. Using the eTPU Spark Function.
Application Note. http://www.freescale.com/files/
32bit/doc/app_note/AN3771.pdf.

[5] Freescale. ETPURM, Enhanced Time Processing Unit
(eTPU) Reference Manual, 05 2004.

[6] J. Hu, S. Wang, and S. Ziavras. In-register
duplication: Exploiting narrow-width value for
improving register file reliability. Dependable Systems
and Networks, DSN, 2006.

[7] J. S. Hu, F. Li, V. Degalahal, M. Kandemir,
N. Vijaykrishnan, and M. J. Irwin. Compiler-directed
instruction duplication for soft error detection. Design,
Automation and Test in Europe, DATE 2005, 2005.

[8] IEC. IEC 61508, 04 2010.

[9] ISO. Road vehicles – Functional safety, 11 2011.

[10] Y. T. S. Li, S. Malik, and A. Wolfe. Efficient
microarchitecture modeling and path analysis for
real-time software. In Real-Time Systems Symposium,
1995. Proceedings., 16th IEEE, 1995.

[11] S. Rehman, M. Shafique, and J. Henkel. Instruction
scheduling for reliability-aware compilation. DAC
2012, June 3-7, San Francisco, California, USA, 2012.

[12] Texas Instruments. http://processors.wiki.ti.
com/index.php/High_End_Timer.

[13] R. Venkatasubramanian, J. Hayes, and B. Murray.
Low cost on-line fault detection using control flow
assertions. On-Line Testing Symposium, IOLTS, 2003.

[14] Wilhelm, Reinhard et. Al. The worst-case
execution-time problem - overview of methods and
survey of tools. ACM Trans. Embed. Comput. Syst.,
2008.

[15] J. Yan and W. Zhang. Compiler-guided register
reliability improvement against soft errors. In
Proceedings of the 5th ACM international conference
on Embedded software, EMSOFT ’05, pages 203–209.
ACM, 2005.

60

	Message from the Workshop Chair
	Table of Contents
	Paper
	Improving the Precision of Approximations in WCET Analysis for Multi-Core Processors
	An Optimal Design Flow for Hard Real-Time Streaming Systems
	Minimizing the cardinality of a real-time task set by automated task clustering
	Optimism due to serialization in the trajectory approach for switched Ethernet networks
	History-Cognisant Time-Utility-Functions for Scheduling Overloaded Real-Time Control Systems
	Schedule-aware Distribution of Parallel Load in a Mixed Criticality Environment
	Application Architecture Adequacy through an FFT case study
	Running Linux and AUTOSAR side by side
	A constraint-based WCET computation framework
	Taming Control Exchange for Software Defined Radio in System Level Models
	Improved Priority Assignment for the Abort-and-Restart (AR) Model
	Load and Quality Cooperation for Distributed Embedded Systems Using Different Modes of Operation
	Design and Implementation of a FPGA-Based RTOS Real-Time Performance Analysis Environment (RTPE) for Satellite On-Board Computers
	Worst-Case Communication Overhead in a Many-Core based Shared-Memory Model
	Towards a Programming and Analysis Framework for Timer Units

