142 research outputs found

    A factored sparse approximate inverse preconditioned conjugate gradient solver on graphics processing units

    Get PDF
    Graphics Processing Units (GPUs) exhibit significantly higher peak performance than conventional CPUs. However, in general only highly parallel algorithms can exploit their potential. In this scenario, the iterative solution to sparse linear systems of equations could be carried out quite efficiently on a GPU as it requires only matrix-by-vector products, dot products, and vector updates. However, to be really effective, any iterative solver needs to be properly preconditioned and this represents a major bottleneck for a successful GPU implementation. Due to its inherent parallelism, the factored sparse approximate inverse (FSAI) preconditioner represents an optimal candidate for the conjugate gradient-like solution of sparse linear systems. However, its GPU implementation requires a nontrivial recasting of multiple computational steps. We present our GPU version of the FSAI preconditioner along with a set of results that show how a noticeable speedup with respect to a highly tuned CPU counterpart is obtained

    A framework for efficient execution of matrix computations

    Get PDF
    Matrix computations lie at the heart of most scientific computational tasks. The solution of linear systems of equations is a very frequent operation in many fields in science, engineering, surveying, physics and others. Other matrix operations occur frequently in many other fields such as pattern recognition and classification, or multimedia applications. Therefore, it is important to perform matrix operations efficiently. The work in this thesis focuses on the efficient execution on commodity processors of matrix operations which arise frequently in different fields.We study some important operations which appear in the solution of real world problems: some sparse and dense linear algebra codes and a classification algorithm. In particular, we focus our attention on the efficient execution of the following operations: sparse Cholesky factorization; dense matrix multiplication; dense Cholesky factorization; and Nearest Neighbor Classification.A lot of research has been conducted on the efficient parallelization of numerical algorithms. However, the efficiency of a parallel algorithm depends ultimately on the performance obtained from the computations performed on each node. The work presented in this thesis focuses on the sequential execution on a single processor.There exists a number of data structures for sparse computations which can be used in order to avoid the storage of and computation on zero elements. We work with a hierarchical data structure known as hypermatrix. A matrix is subdivided recursively an arbitrary number of times. Several pointer matrices are used to store the location ofsubmatrices at each level. The last level consists of data submatrices which are dealt with as dense submatrices. When the block size of this dense submatrices is small, the number of zeros can be greatly reduced. However, the performance obtained from BLAS3 routines drops heavily. Consequently, there is a trade-off in the size of data submatrices used for a sparse Cholesky factorization with the hypermatrix scheme. Our goal is that of reducing the overhead introduced by the unnecessary operation on zeros when a hypermatrix data structure is used to produce a sparse Cholesky factorization. In this work we study several techniques for reducing such overhead in order to obtain high performance.One of our goals is the creation of codes which work efficiently on different platforms when operating on dense matrices. To obtain high performance, the resources offered by the CPU must be properly utilized. At the same time, the memory hierarchy must be exploited to tolerate increasing memory latencies. To achieve the former, we produce inner kernels which use the CPU very efficiently. To achieve the latter, we investigate nonlinear data layouts. Such data formats can contribute to the effective use of the memory system.The use of highly optimized inner kernels is of paramount importance for obtaining efficient numerical algorithms. Often, such kernels are created by hand. However, we want to create efficient inner kernels for a variety of processors using a general approach and avoiding hand-made codification in assembly language. In this work, we present an alternative way to produce efficient kernels automatically, based on a set of simple codes written in a high level language, which can be parameterized at compilation time. The advantage of our method lies in the ability to generate very efficient inner kernels by means of a good compiler. Working on regular codes for small matrices most of the compilers we used in different platforms were creating very efficient inner kernels for matrix multiplication. Using the resulting kernels we have been able to produce high performance sparse and dense linear algebra codes on a variety of platforms.In this work we also show that techniques used in linear algebra codes can be useful in other fields. We present the work we have done in the optimization of the Nearest Neighbor classification focusing on the speed of the classification process.Tuning several codes for different problems and machines can become a heavy and unbearable task. For this reason we have developed an environment for development and automatic benchmarking of codes which is presented in this thesis.As a practical result of this work, we have been able to create efficient codes for several matrix operations on a variety of platforms. Our codes are highly competitive with other state-of-art codes for some problems

    2D Static Resource Allocation for Compressed Linear Algebra and Communication Constraints

    Get PDF
    International audienceThis paper adresses static resource allocation problems for irregular distributed parallel applications. More precisely, we focus on two classical tiled linear algebra kernels: the Matrix Multiplication (MM) and the LU decomposition (LU) algorithms on large linear systems. In the context of parallel distributed platforms, data exchanges can dramatically degrade the performance of linear algebra kernels and in this context, compression techniques such as Block Low Rank (BLR) compression techniques are good candidates both for limiting data storage on each processor and data exchanges between processors. On the other hand, the use of BLR representation makes the static allocation problem of tiles to processors more complex. Indeed, the load associated to each tile depends on its compression factor, which induces an heterogeneous load balancing problem. In turn, solving this load balancing problem optimally might lead to complex allocation schemes, where the tiles allocated to a given processor are scattered all over the matrix. This in turn induces communication costs, since matrix multiplication and LU decompositions heavily rely on broadcasting operations along rows and columns of processors, so that the communication volume is minimized when the maximal number of different processors on any row and column is minimized. In the fully homogeneous case, 2D Block Cyclic (BC) allocation solves both load balancing and communication minimization issues simultaneously , but it might lead to bad load balancing in the heterogeneous case. Our goal in this paper is to propose data allocation schemes dedicated to BLR format and to prove that it is possible to obtain good performance on makespan when simultaneously balancing the load and minimizing the maximal number of different processor in any row or column

    Performance Improvements of Common Sparse Numerical Linear Algebra Computations

    Get PDF
    Manufacturers of computer hardware are able to continuously sustain an unprecedented pace of progress in computing speed of their products, partially due to increased clock rates but also because of ever more complicated chip designs. With new processor families appearing every few years, it is increasingly harder to achieve high performance rates in sparse matrix computations. This research proposes new methods for sparse matrix factorizations and applies in an iterative code generalizations of known concepts from related disciplines. The proposed solutions and extensions are implemented in ways that tend to deliver efficiency while retaining ease of use of existing solutions. The implementations are thoroughly timed and analyzed using a commonly accepted set of test matrices. The tests were conducted on modern processors that seem to have gained an appreciable level of popularity and are fairly representative for a wider range of processor types that are available on the market now or in the near future. The new factorization technique formally introduced in the early chapters is later on proven to be quite competitive with state of the art software currently available. Although not totally superior in all cases (as probably no single approach could possibly be), the new factorization algorithm exhibits a few promising features. In addition, an all-embracing optimization effort is applied to an iterative algorithm that stands out for its robustness. This also gives satisfactory results on the tested computing platforms in terms of performance improvement. The same set of test matrices is used to enable an easy comparison between both investigated techniques, even though they are customarily treated separately in the literature. Possible extensions of the presented work are discussed. They range from easily conceivable merging with existing solutions to rather more evolved schemes dependent on hard to predict progress in theoretical and algorithmic research

    Batched Linear Algebra Problems on GPU Accelerators

    Get PDF
    The emergence of multicore and heterogeneous architectures requires many linear algebra algorithms to be redesigned to take advantage of the accelerators, such as GPUs. A particularly challenging class of problems, arising in numerous applications, involves the use of linear algebra operations on many small-sized matrices. The size of these matrices is usually the same, up to a few hundred. The number of them can be thousands, even millions. Compared to large matrix problems with more data parallel computation that are well suited on GPUs, the challenges of small matrix problems lie in the low computing intensity, the large sequential operation fractions, and the big PCI-E overhead. These challenges entail redesigning the algorithms instead of merely porting the current LAPACK algorithms. We consider two classes of problems. The first is linear systems with one-sided factorizations (LU, QR, and Cholesky) and their solver, forward and backward substitution. The second is a two-sided Householder bi-diagonalization. They are challenging to develop and are highly demanded in applications. Our main efforts focus on the same-sized problems. Variable-sized problems are also considered, though to a lesser extent. Our contributions can be summarized as follows. First, we formulated a batched linear algebra framework to solve many data-parallel, small-sized problems/tasks. Second, we redesigned a set of fundamental linear algebra algorithms for high- performance, batched execution on GPU accelerators. Third, we designed batched BLAS (Basic Linear Algebra Subprograms) and proposed innovative optimization techniques for high-performance computation. Fourth, we illustrated the batched methodology on real-world applications as in the case of scaling a CFD application up to 4096 nodes on the Titan supercomputer at Oak Ridge National Laboratory (ORNL). Finally, we demonstrated the power, energy and time efficiency of using accelerators as compared to CPUs. Our solutions achieved large speedups and high energy efficiency compared to related routines in CUBLAS on NVIDIA GPUs and MKL on Intel Sandy-Bridge multicore CPUs. The modern accelerators are all Single-Instruction Multiple-Thread (SIMT) architectures. Our solutions and methods are based on NVIDIA GPUs and can be extended to other accelerators, such as the Intel Xeon Phi and AMD GPUs based on OpenCL

    A Makespan Lower Bound for the Scheduling of the Tiled Cholesky Factorization based on ALAP Schedule

    Get PDF
    International audienceDue to the advent of multicore architectures and massive parallelism, the tiled Cholesky factorization algorithm has recently received plenty of attention and is often referenced by practitioners as a case study. It is also implemented in mainstream dense linear algebra libraries and is used as a testbed for runtime systems. However, we note that theoretical study of the parallelism of this algorithm is currently lacking. In this paper, we present new theoretical results about the tiled Cholesky factorization in the context of a parallel homogeneous model without communication costs. Based on the relative costs of involved kernels, we prove that only two different situations must be considered, typically corresponding to CPUs and GPUs. By a careful analysis on the number of tasks of each type that run simultaneously in the ALAP (As Late As Possible) schedule without resource limitation, we are able to determine precisely the number of busy processors at any time (as degree 2 polynomials). We then use this information to find a closed form formula for the minimum time to schedule a tiled Cholesky factorization of size n on P processors. We show that this bound outperforms classical bounds from the literature. We also prove that ALAP(P), an ALAP-based schedule where the number of resources is limited to P , has a makespan extremely close to the lower bound, thus proving both the effectiveness of ALAP(P) schedule and of the lower bound on the makespan
    • …
    corecore