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Abstract

Manufacturers of computer hardware are able to continuously sustain an unprecedented
pace of progress in computing speed of their products, partially due to increased clock rates
but also because of ever more complicated chip designs. With new processor families ap-
pearing every few years, it is increasingly harder to achieve high performance rates in
sparse matrix computations. This research proposes new methods for sparse matrix fac-
torizations and applies in an iterative code generalizations of known concepts from related
disciplines.

The proposed solutions and extensions are implemented in ways that tend to deliver
efficiency while retaining ease of use of existing solutions. The implementations are thor-
oughly timed and analyzed using a commonly accepted set of test matrices. The tests were
conducted on modern processors that seem to have gained an appreciable level of popular-
ity and are fairly representative for a wider range of processor types that are available on
the market now or in the near future.

The new factorization technique formally introduced in the early chapters is later on
proven to be quite competitive with state of the art software currently available. Although
not totally superior in all cases (as probably no single approach could possibly be), the new
factorization algorithm exhibits a few promising features.

In addition, an all-embracing optimization effort is applied to an iterative algorithm that
stands out for its robustness. This also gives satisfactory results on the tested computing
platforms in terms of performance improvement. The same set of test matrices is used
to enable an easy comparison between both investigated techniques, even though they are
customarily treated separately in the literature.

Possible extensions of the presented work are discussed. They range from easily con-
ceivable merging with existing solutions to rather more evolved schemes dependent on hard
to predict progress in theoretical and algorithmic research.
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Chapter 1

Problem Description

1.1 Introduction

The computer hardware industry (and its high performance branch in particular) continues
to follow Moore’s law [122, 124] even though there exist skeptical opinions [158]. This
development trend on the one hand makes the integrated circuits faster, but on the other
hand, more complex and harder to use. At the same time, there exists an ever increasing
demand from science and industry for yet higher computation rates – Grand Challenge
problems [109, 121, 126, 127] and the interest in the Grid [72] exemplify the need. In a
nutshell, this work shows a way of applying recent algorithmic advances in dense numerical
linear algebra and matrix ordering optimizations in sparse computational kernels, namely
direct and iterative codes.

1.2 Motivation

The prevalent processor architecture for high performance computers has been Reduced
Instruction Set Computer (RISC) and recently (for the second time in history) also Com-
plex Instruction Set Computer (CISC) [44, 122] with introduction of increasingly powerful
commodity desktop computers. Despite the differences between the two, when solving
applied numerical linear algebra problems they benefit from similar optimization tech-
niques [51, 88] – those that are used in tuned versions of Basic Linear Algebra Subroutines
(BLAS) [56, 163] and deliver a rather high percentage of theoretical peak performance [55].
Unfortunately, many interesting scientific and commercial problems cannot be formulated
in terms of dense linear algebra kernels since that would require prohibitive amounts of
storage and computational capacity. In effect, possible formulations are the main source
of sparse matrices that have had customarily large dimensions because they commonly
originate in discretizations of rather large multidimensional problems. A positive feature
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of sparse matrices is that relatively few entries that need to be considered during compu-
tations and while storing them. This has been taken advantage of in many ways, most
commonly to reduce storage requirements. The computational efficiency suffers because
intricate data structures do not match the execution patterns favored by modern Central
Processing Units (CPU). Clearly, BLAS is for now the only way to achieve the levels of
performance that are commonly advertised by hardware vendors. To address this problem,
it is necessary to consider how a contemporary CPU handles floating point (FP) data, how
BLAS use this information, and why sparse computations fail in this respect.

1.2.1 Application of Recursive Methods

On modern CPUs, the two major issues that hinder efficient calculations of sparse codes, as
opposed to dense codes, are an extra demand for memory bandwidth and additional fixed
point calculations. Both of these are directly related to sparse data storage schemes which
require transfer and processing of integer data [156]. The former may be addressed in a
novel way – by use of recursion [53, 54]. It was possible because of recent introduction of
recursion-based formulation of matrix decomposition algorithms [67, 95, 157] that reduce
the memory bus traffic. In addition, if the recursive LU algorithm is combined with a
recursive layout [93] then the resulting code is superior to any known software techniques
as shown later on. This is chosen as the premise for possible application in a direct sparse
solver. The latter issue of integer arithmetic may be addressed with direct use of BLAS.
This, however, will require reformulating FP computations, but there exist ways to do so
and they will be elaborated on later. The point needs to be stressed here that the transfer
of data that describes the sparsity structure (not present in dense computations) is more
important than the extra calculations on such data because of the widening gap between the
processor and system bus speeds – a fact illustrated quite well by the ratio of performance
of BLAS xGEMV andxGEMM routines as presented in section4.2.

A quick argument in favor of recursive formulation of a computational task may easily
be made with a simple example of the Fibonacci series. The traditional way of defining the
Fibonacci series is this:

F(0) = 1

F(1) = 2

F(n) = F(n−1)+F(n−2)

This is a, so called,tail recursion. In order to calculate a single element of the series all
preceeding elements have to be calculated first. It may be (rather easily) proven that the
following definition is an equivalent one:

F(0) = 1

2



F(1) = 2

F(2) = 3

F(n) =
{

F(n−1
2 )2 +F(n−1

2 −1)2 if n is odd
F(n/2)2−F(n/2−2)2 if n is even

The latter formulation uses adivide and conquerrecursion and even intuitively should be
faster. The intuition proves correct in practice because the latter formulation is typically
orders of magnitude faster. The former formulation is in a sense analogous to the LU
decomposition method used in LINPACK [46] – a single column of the matrix is factored
at a time. The latter formulation of the Fibonacci series corresponds the aforementioned
recursive LU factorization – at any given point of the algorithm both halves of the matrix
are processed recursively.

The are more examples of rather elegant use of recursion to formulate a superior al-
gorithm. To name the some of them, the Fast Fourier Transform (FFT) [123] and Nested
Disection [76] algorithms should be mentioned. In these cases, the divide and conquer
recursion was successfully used to reduce the computational cost of a computational task.

1.2.2 Iterative Methods

In practice, direct methods could fail for two main reasons: prohibitive amount of storage
requirements due to fill-in and/or extremely long factorization time (again due to fill-in).
In such cases, an iterative method is a viable solution. On one hand, it does not incur fill-in
and on the other (if matrix properties permit) executes far less FP operations in comparison
with a direct method. However, iterative methods are known for lack of robustness, i.e.
might not converge for a well-conditioned matrix. It is less of a problem with emergence
of techniques such as the Bi-CGSTAB [161] method designed in a sense for unsymmetric
matrices. Once the choice of the method has been made, performance optimization op-
tions need to be considered. As it was the case in direct methods, integer indices are the
main performance concern. A different optimization goal is striven here as the dominant
operation is matrix-vector multiplication (contrasting with matrix-matrix multiplication for
direct codes). Consequently, a different approach must be taken – the one that optimizes
system bus utilization and takes advantage of RISC architectures for relatively small dense
structures present in sparse matrices – be it short vectors or elongated rectangular matrices.
In particular, in such a setting BLAS cannot be considered to leverage hardware’s high
computational rate as the function call overhead cannot be offset by possible performance
gains.
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1.3 Problem Statement

The main objective of this work is to improve solution time of the following system of
linear equations:

Ax= b, (1.1)

whereA is a n by n real matrix (A ∈ IRn×n), andx andb aren-dimensional real vectors
(b,x ∈ IRn). The values ofA andb are known and the task is to findx satisfying (1.1).
It is assumed that the matrixA is large (of order commonly exceeding ten thousand) and
sparse, in other words, there are enough zero entries inA that it is beneficial to use special
computational methods to factor the matrix rather than to use a dense code. There are two
common approaches that are used to deal with such a case, namely, iterative [146] and
direct methods [58].

Iterative methods, in particular techniques based on Krylov subspace such as the Con-
jugate Gradient [97] algorithm, are the methods of choice for the discretizations of elliptic
or parabolic partial differential equations where the resulting matrix is often guaranteed
to be positive definite or close to it. However, when the linear system matrix is strongly
unsymmetric or indefinite, as is the case with matrices originating from systems of ordi-
nary differential equations or the indefinite matrices arising from shift-invert techniques in
eigenvalue methods [41], one has to revert to direct methods [58]. For such methods, this
study analyzes how the recursive formulation of the LU factorization algorithm can be ef-
ficiently applied to sparse matrices. It involves consideration of a matrix ordering scheme
applied prior to factorization. Various schemes for sparse matrix storage are considered
to exploit most commonly used computer architectures and existing software for matrix
computations.

An attractive meeting point between direct and iterative methods is preconditioning [19].
In a sense, it addresses shortcomings of both approaches. Common causes of failure for
direct methods are excessive storage requirements to accommodate fill-in or prohibitive
amount of FP operations. On the other hand, iterative methods (especially non-stationary
ones) are quite capricious when it comes to matrix spectrum considerations. Precondi-
tioning fits perfectly in such a situation. It allocates space for a closely controlled amount
of fill-in and consequently has predictable computational complexity. L and U factors re-
sulting from incomplete LU preconditioning are often less numerically accurate than those
from the proper Gaussian elimination process, but are good enough to bring the iteration
matrix close to the identity matrix. As the name – incomplete LU – indicates, there is a
notion of incompleteness involved in the methods that are used in preconditioning. This fa-
vorably coincides with the fact that the recursive LU factorization for sparse matrices does
not perform pivoting – a possibly incomplete solution for some matrices but quite likely
sufficient for the purposes of applications involving iterative methods.
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1.4 Limitations

This study is concerned with application of recursion to direct methods, which have a draw-
back of incurring fill-in in the factored matrix which, in turn, may prohibit factorization of
large matrices due to excessive memory requirements. To increase the performance, the
Level 3 BLAS have to be used. This places extra burden on the matrix ordering which has
to fulfill one more requirement, i.e., it has to introduce dense sub-matrices in the original
matrix structure. This, again, may not be possible for certain types of matrices. Thus, the
study aims at optimizing performance for as many types of matrices as possible with the
provision of less satisfactory results for remaining matrices.

Another decision made early in the development process was to not include pivoting
in the recursive sparse LU code. Obviously it simplifies the algorithm but simplification
was not the only reason. There exist strong evidence [114, 115] that other techniques
(mainly a form of equilibration [60]) provide enough countermeasures against excessive
pivot growth during the factorization for most cases. However, if during the factorization
a diagonal value occurs that is dangerously close to 0, it is dealt with techniques described
later on (see section2.5).

The iterative method research is limited to the unpreconditioned Bi-CGSTAB method.
Other researchers have considered the use of multiple iterative methods [20]. In addition,
even though preconditioning is an attractive option to increase robustness [19] and serves
as an interesting conceptual bridge between a true direct code and a purely iterative method
but consequently it poses new challenges which were decided to be left out of this effort.
However, this research provides concepts, tools, and techniques to create a preconditioned
iterative method.

Yet another constraint imposed on this research is the rather early maturity state of par-
allel implementations of the recursive LU code for dense matrices [106, 107]. Naturally, a
high quality parallel dense recursive solver would be a perfect starting point for a parallel
sparse recursive solver as it was the case in the sequential case. More thorough scalability
considerations need to be provided prior to competing with existing sparse solvers for par-
allel machines. A contrasting argument is raised against including parallel iterative method
techniques here – namely a rather interesting concepts were proposed by others [20, 63]
which do not fit directly into the problem addressed by this writing.

Lastly, techniques specific to Vector Processing Units (VPU) are not included here as
the processors traditionally have been addressing the problem of sparse computations with
gather andscatter instructions and the optimizations considered here result in rather
short (in VPU vernacular) vector lengths which quite certainly would not yield substantial
benefits.
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Chapter 2

Theoretical Framework

2.1 Decompositional Techniques

Given a system of linear equation denoted with

Ax= b, (2.1)

whereA is a n by n real matrix (A ∈ IRn×n), andx andb aren-dimensional real vectors
(b,x∈ IRn) the Gaussian elimination with partial pivoting [89] is performed to find a solu-
tion of (2.1). Most commonly, the factored form ofA is given by means of matricesL, U ,
P andQ such that:

LU = PAQ, (2.2)

where:

• L is a lower triangular matrix with unitary diagonal, i.e.∃B∈IRn×n L = L1(B)

• U is an upper triangular matrix with arbitrary diagonal,∃B∈IRn×n U = U(B)

• P andQ are row and column permutation matrices (P,Q∈ IPn), respectively.

A simple transformation of (2.1) yields:

(PAQ)Q−1x = Pb, (2.3)

which in turn, after applying (2.2), gives:

LU(Q−1x) = Pb, (2.4)

Solution to (2.1) may now be obtained in two steps:

Ly = Pb (2.5)

U(Q−1x) = y (2.6)

6



and these steps are performed through so called forward and backward substitutions. The
matrices involved in the substitutions are triangular and therefore solving (2.5) and (2.6)
is faster than solving (2.1). More precisely, the most computationally intensive part of
solving (2.1) is the LU factorization defined by (2.2). This operation has computational
complexity of orderO(n3) whenA is a dense matrix, as compared toO(n2) for the sub-
stitution phase. Therefore, optimization of the factorization is the main determinant of the
overall performance.

When both of the matricesP andQ of (2.2) are non-trivial, i.e. neither of them is an
identity matrix, then the factorization is said to be using complete pivoting. In practice,
however,Q is an identity matrix and this strategy is called partial pivoting which tends to
be sufficient to retain numerical stability of the factorization, unless the matrixA is singular
or nearly so [152]. Moderate values (κp� ε−1) of the condition numberκp = ‖A−1‖p‖A‖p

guarantee a success for a direct method as opposed to matrix norm and spectrum consider-
ations required for iterative methods.

It is assumed thatA is sparse, which may be formulated as

n≤ η(A)� n2, (2.7)

whereη(A) is the number of (structural) nonzero entries inA. Many authors avoid an
explicit definition of sparsity in quantitative terms. It is commonly accepted, though, that
the aim is for the amount of fill-in and computational complexity to be proportional to
O(n)+O(η(A)) [51]. If the matrixA is sparse, it is important for the factorization process
to operate solely on the non-zero entries of the matrix. However, new nonzero entries are
introduced in theL andU factors which are not present in the original matrixA of (2.1). The
new entries are referred to as fill-in and cause the number of non-zero entries in the factors
(we use the notationη(A) for the number of non-zeros in a matrix) to be (almost always)
greater than that of the original matrixA: η(L +U) ≥ η(A). The amount of fill-in can be
controlled with the matrix ordering performed prior to the factorization and consequently,
for the sparse case, both of the matricesP andQ of (2.2) are non-trivial. MatrixQ induces a
column reordering that minimizes fill-in andP permutes rows so that pivots selected during
the Gaussian elimination warrant numerical stability.

2.2 Recursive LU Factorization

Figure2.1shows the classical LU factorization code which uses Gaussian elimination. Re-
arrangement of the loops and introduction of blocking techniques can significantly increase
performance rates achieved by this code [11, 40]. However, the recursive formulation of
the Gaussian elimination shown in Figure2.2 exhibits superior performance [95, 157]. It
does not contain any looping statements and most of the floating point operations are per-
formed by the Level 3 BLAS routines:xTRSM andxGEMM. These routines achieve near-peak
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functionxGETRF(matrix (Rn×n 3)A≡ [ai j ] i, j = 1, . . . ,n)
begin

for i = 2, . . . ,n do
begin

ai j := 1
a j j

(ai j −
j−1
∑

k=1
aikak j) j = 1, . . . , i−1

ai j := (ai j −
i−1
∑

k=1
aikak j) j = i, . . . ,n

end
end

Figure 2.1: LU factorization function of a dense matrixA that uses Gaussian elimination
and does not perform pivoting.

Mflop/s rates on modern computers with deep memory hierarchy. They are incorporated
in many vendor-optimized libraries, and also the ATLAS project [56, 163] automatically
generates implementations tuned to specific platforms. Some properties of the recursive
LU algorithm are established by the following theorems.

Theorems1 and2 compare the amount of memory traffic – called I/O for short – for
LAPACK’s blocked implementation of LU factorization and the recursive one. The mem-
ory traffic that is being accounted for in the theorems is the one that takes place between the
Level 1 cache (referred to as primary memory) and the rest of the memory hierarchy (most
commonly Level 2 cache).

Theorem 1 ([157]) Given a matrix multiplication subroutine whose I/O performance sat-
isfies equation

IOMM(n,n,m)≤
{

3nm+m2 if m≤
√

M/3
2nm2/

√
M/3+2nm if m>

√
M/3

and a subroutine for solving triangular linear systems whose I/O performance satisfies
equation

IOTS(m,m)≤
{

2.5m2 if m≤
√

M/3
m3/

√
M/3+m2 if m >

√
M/3

the recursively partitioned LU decomposition algorithm running on a computer with M
words of primary memory [(Level 1 cache)] computes the LU decomposition with partial
pivoting of an n-by-m matrix using at most

IORP(n,m)≤ 2nm

(
m

2
√

M/3
+ logm

)
+2n2(1+ logm)
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functionxGETRF(matrixA∈ IRm×n)
if (A∈ IRm×1) If the matrix has just one column.

|ak1| := max
1≤i≤n

|ai1| Find a suitable pivot – equivalent

to the Level 1 BLASIxMAX.
a11 :=: ak1 Exchange a11 with ak1.
A := 1

a11
A Scale the matrix – equivalent

to the Level 1 BLASxSCAL.
else begin

k := min{m,n}
k1 := bk/2c
m1 := m−k1

n1 := n−k1 Divide matrix A into four sub-matrices:

A =
[

A11 A12

A21 A22

] [
IRk1×k1 IRk1×n1

IRm1×k1 IRm1×n1

]
xGETRF([A11 A21]T) Recursive call.
xLASWP([A12 A22]T) Apply pivoting from the recursive call.
A12 := L1(A11)−1A12 Perform a lower triangular solve which is

equivalent to the Level 3 BLASxTRSM
function.

A22 := A22−A21A12 Compute the Schur’s complement which is
equivalent to a matrix-matrix multiply
performed by the Level 3 BLASxGEMM
function.

xGETRF(A22) Recursive call.
xLASWP([A11 A21]T) Apply pivoting from the recursive call.

end
end.

Figure 2.2: Recursive LU factorization function of a dense matrixA equivalent to the LA-
PACK’s xGETRF function (partial row pivoting is performed).
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I/Os.

Theorem 2 ([157]) Given a matrix multiplication subroutine whose I/O performance sat-
isfies equation (r≤ s≤ t)

IOMM(t, r,s)≤
{

2ts+ rs+ rt if r <
√

M/3
2trs/

√
M/3+2ts if r ≥

√
M/3

and a subroutine for solving triangular linear systems whose I/O performance satisfies
equation (r≤ s)

IOTS(r,s)≤
{

2rs+ r2/2 if r <
√

M/3
r2s/

√
M/3+ rs if r ≥

√
M/3

the right-looking LU decomposition algorithm running on a computer with M words of
primary memory [(Level 1 cache)] computes the LU decomposition with partial pivoting
of an n-by-m matrix using at least (r is so-called blocking factor)

IORL(n,m)≥


1
4nm2/

√
M/3+2nm if r = M/n

1
4nm3/2 if r ≈

√
m<

√
M/3

1
4nm3/2 if r =

√
M/3

I/Os. If the matrix is not very large [. . . ], n2/3≤ M, [. . . ]
√

M/3≤ r ≤ M/n [. . . ] the
total number of I/Os is at least

nm2

4
√

M/3
+2nm≥ n2m2

4M
+2nm.

Theorem3 provides another insight into the superiority in performance exhibited by the
recursive factorization. The theorem introduces quantity calledarea of the matrix operands
passed to BLAS. Clearly, a BLAS subroutine references memory locations that hold matrix
entries. Such references incur memory bus traffic which needs to be optimized since it is
the bottleneck of the factorization. The theorem shows that the recursive algorithm is more
optimal with respect to area of the matrix operands passed to BLAS.

Theorem 3 ([95]) Let A be a M-by-N matrix (A∈ IRM×N) where M= mNB, N = nNB,
and NB is a blocking factor. The total area of the matrix operands passed to BLAS for the
recursive LU algorithm is

AR(mNB,nNB) = (((2+ blognc)n−21+blognc)m+ f (n))N2
B

10



where
f (2k) = 2k(k(1−2×2k)+5(2k−1))/4

In particular, if n is a power of2 (n = 2k) and m= n, then

AR(nNB,nNB) = 2k−2(k(2k+1 +1)+5(2k−1)]N2
B.

The total area of the LU right-looking LAPACK algorithmDGETRFis

AL(mNB,nNB) = ((n(n+1)/2)(m−n/3+4/3)−m−1)N2
B.

For n> 3, AL(m,n) > AR(m,n), and the AL(n,n)/AR(n,n) ratio is approximately4
3n/logn.

Finally, Lemma1 and Theorem4 show that asymptotically the recursive and iterative
(loop-based) factorizations perform the same number of FP operations.

Lemma 1 The right-looking LU factorization algorithm of an m×n(m≥ n) matrix per-
forms mn2−n3/3−n2/2−n/6 FP operations.

Proof Let FD denote divisions by pivot andFU – additions and multiplications during the
update phase. The outer-product update version of the factorization will be used in the
proof.

In each column, all entries below the diagonal need to be divided by the pivot element.
And so there arem−1 divisions in the first column,m−2 in the second, and so on, until
thenth column where there arem−n divisions. Thus:

FD = (m−1)+(m−2)+ . . .+(m−n) =

= mn−
n

∑
i=1

i = mn−n(n+1)/2 = mn−n2/2−n/2

There aren−1 updates (there is no update in the last column) – an update in columni
(1≤ i ≤ n−1) is an outer-product update which performs 2(m− i)(n− i) FP operations (it
may be regarded as axGEMM call with the third dimension equal to one). Thus:

FU = 2(m−1)(n−1)+2(m−2)(n−2)+ . . .+
+2(m− (n−1))(n− (n−1)) =

= 2
n−1

∑
i=1

(mn− i(m+n)+ i2) =

= 2((n−1)mn− (m+n)(n−1)n/2+n(n−1)(2n−1)/6) =
= mn2−n3/3−mn+mn+n/3

11



And finally:
FD +FU = mn2−n3/3−n2/2−n/6

Theorem 4 The recursive LU factorization algorithm of an m×n(m≥ n) matrix performs
mn2−n3/3+O(m2,n2,mn) FP operations.

Proof For simplicity, it is assumed thatm andn are powers of 2. Letf (m,n) denote the
number of FP operations in the recursive LU factorization of anm× n matrix. At each
(other than a single column case) recursion level the following operations are performed:

• the left hand side of the matrix is factored recursively – this performsf (m,n/2) FP
operations,

• xTRSM is called on the top right part of the matrix – this performs(n/2)3 FP opera-
tions,

• xGEMM is called to compute Schur’s complement – this performs 2(n/2)2(m−n/2)
FP operations,

• the lower right portion of the matrix is factored recursively – this performsf (m−
n/2,n/2) FP operations,

Thus, the functionf satisfies the following recursive equation:

f (m,n) = f (m,n/2)+(n/2)3 +2(n/2)2(m−n/2)+ f (m−n/2,n/2) (2.8)

Since for the proof only the high order terms are relevant then functionf is of the form:

f (m,n) = αmn2 +βn3 + γm2n+δm3 (2.9)

Coefficientsα, β, γ, andδ are determined by substituting equation (2.9) in equation (2.8):

αmn2 +βn3 + γm2n+δm3≡ αmn2/4+βn3/8+ γm2n/2+
+δm3 +n3/8+mn2/2−n3/4+α(m−n/2)n2/4+
+βn3/8+ γ(m−n/2)2n/2+δ(m−n/2)3

To simplify, we immediately observe that:

δm3≡ δm3 +δm3⇒ δ = 0

Gathering “mn2 terms” yields:

αmn2≡ αmn2/4+mn2/2+αmn2/4− γmn2/2

12



and thus:
α = α/4+1/2+α/4− γ/2⇒ α = 1− γ.

Similarly “n3 terms” give:

βn3≡ βn3/8+n3/8−n3/4−αn3/8+βn3/8+ γn3/8

so that:

β = β/8+1/8−1/4−α/8+β/8+ γ/8⇒ β =
γ−1

3
.

To determine the value ofγ the “initial condition” f (2,2) = 2 is used, which is combined
with (2.9): f (2,2) = 8α+8β+8γ. This givesγ = 0 and consequentlyβ =−1/3 andα = 1.
Finally then (2.9) may be written as

f (m,n) = mn2−n3/3.

An alternative formulation of the recursive algorithm is proposed here and shown in
Figure 2.3. Most notable difference is the lack of pivoting code and additional calls to
Level 3 BLAS. Experiments show that this code performs equally well as the code from
Figure2.2. The experiments also provide indications that further performance improve-
ments are possible, if the matrix is stored recursively [93]. A simplified but still recursive
storage scheme is proposed and illustrated in Figures2.4and2.5. This scheme causes dense
square sub-matrices to be aligned recursively in memory which is a discrete mapping be-
tween one dimensional main memory and matrix entries that form a two dimensional array.
The recursive algorithm from Figure2.3traverses the recursive matrix structure all the way
down to the level of a single dense sub-matrix. At this point an appropriate computational
routine is called (either BLAS orxGETRF). Depending on the size of the sub-matrices (re-
ferred to as a block size [11]), it is possible to achieve higher execution rates than for the
case when the matrix is stored in the column-major or row-major order due to lower cache
miss rate [93]. This observation, and the aforementioned lack of pivoting (that excessively
complicates sparse codes) are primary incentives to adopt the code from Figure2.3as the
base for the sparse recursive algorithm presented below. The pivot growth effect, how-
ever, is still a concern as far as numerical stability is concerned and so it is dealt with with
rank-one matrix perturbations as described later on (see section2.5).

The following theorem establishes computational equivalence between the algorithms
from Figures2.2and2.3(the latter is called pivot-free).

Theorem 5 The recursive pivot-free LU factorization algorithm of a n×n matrix asymp-
totically performs2

3n3 FP operations.

Proof For simplicity, it is assumed thatn is a power of 2. Letf (n) denote the number of
FP operations in the recursive pivoting-free LU factorization of ann×n matrix. At each
(other than a single element case) recursion level the following operations are performed:

13



functionxGETRF(matrixA∈ IRn×n) begin
if (A∈ IR1×1) return Do nothing for matrices of order1.

n1 := bn/2c
n2 := n−bn/2c Divide matrix A into four sub-matrices:

A =
[

A11 A12

A21 A22

] [
IRn1×n1 IRn1×n2

IRn2×n1 IRn2×n2

]
xGETRF(A11) Recursive call.
A21 := A21U(A11)−1 Perform a upper triangular solve which is

equivalent to the Level 3 BLASxTRSM
function.

A12 := L1(A11)−1A12 Perform a lower triangular solve which is
equivalent to the Level 3 BLASxTRSM
function.

A22 := A22−A21A12 Compute the Schur’s complement which is
equivalent to a matrix-matrix multiply
performed by the Level 3 BLASxGEMM
function.

xGETRF(A22) Recursive call.
end.

Figure 2.3: A recursive LU factorization function suitable for sparse matrices (no pivoting
is performed).
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Column-major storage scheme:
1 8 15 22 29 36 43
2 9 16 23 30 37 44
3 10 17 24 31 38 45
4 11 18 25 32 39 46
5 12 19 26 33 40 47
6 13 20 27 34 41 48
7 14 21 28 35 42 49

Recursive storage scheme:
1 4 5 22 23 28 29
2 6 8 24 26 30 32
3 7 9 25 27 31 33

10 14 16 34 36 42 44
11 15 17 35 37 43 45
12 18 20 38 40 46 48
13 19 21 39 41 47 49

functionconvert(matrixA∈ Rn×n)
begin

if (A∈ R1×1)
Copy current element ofA
Go to the next element ofA

else
begin

A =
[

A11 A12

A21 A22

]
convert(A11)
convert(A21)
convert(A12)
convert(A22)

end
end.

Figure 2.4: A column-major storage scheme versus a recursive one (left) and a function for
converting a square matrix from the column-major to recursive storage (right). Block size
is 1.

1

16

64

256

1 84 16

1

8

16

rows:

4

columns:

Logical view Physical view

main memory
address:

Figure 2.5: Recursive matrix layout in logical (algorithmic) and physical (main memory)
views.
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• the upper left part of the matrix is factored recursively – this performsf (n/2) FP
operations,

• xTRSM is called on the top right part of the matrix – this performs(n/2)3 FP opera-
tions,

• xTRSM is called on the bottom left part of the matrix – this performs(n/2)3 FP oper-
ations,

• xGEMM is called to compute Schur’s complement – this performs 2(n/2)3 FP opera-
tions,

• the lower right portion of the matrix is factored recursively – this performsf (n/2)
FP operations,

Thus, the functionf satisfies the following recursive equation:

f (n) = f (n/2)+(n/2)3 +(n/2)3 +2(n/2)3 + f (n/2) (2.10)

or more concisely:
f (n) = 2 f (n/2)+n3/2 (2.11)

It is easily verifiable that the highest order term that satisfies equation (2.11) is of the form:
αn3. By substitution it easily follows that:

αn3 = 2αn3/8+n3/2 (2.12)

from which it is established thatα = 2/3.

2.3 Sparse Matrix Factorization

Matrices originating from the Finite Element Method [28, 153], or most other discretiza-
tions of Partial Differential Equations, have most of their entries equal to zero. During fac-
torization of such matrices it pays off to take advantage of the sparsity pattern for a signifi-
cant reduction in the number of FP operations and execution time. To reap the benefits how-
ever, one needs to address the major issue of the sparse factorization – the aforementioned
fill-in phenomenon. It turns out that a proper ordering of the matrix, represented by the ma-
tricesP andQ from equation (2.2), may reduce the amount of fill-in. However, the search
for the optimal ordering is anN P -complete problem [165]. Therefore, many heuristics
have been devised to find an ordering which approximates the optimal one. These heuris-
tics range from the divide and conquer approaches such as Nested Dissection [76, 116]
to the greedy schemes such as Minimum Degree [2, 155]. For certain types of matrices,
bandwidth and profile reducing orderings such as Reverse Cuthill-McKee [33, 84] and the
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Sloan ordering [151] may perform well. Once the amount of fill-in is minimized through
an appropriate ordering, it is still desirable to use the optimized BLAS to perform the FP
operations. This poses a problem since the sparse matrix coefficients are usually stored
in a form that is not suitable for BLAS. There exist two major approaches that efficiently
cope with this, namely the multifrontal [61] and supernodal [15] methods. The SuperLU
package [42, 113] is an example of a supernodal code, whereas UMFPACK [35, 39] is a
multifrontal one.

The factorization algorithm for sparse matrices includes the following phases:

• matrix ordering,

– reduces fill-in (for reduction of memory storage),

– introduces dense sub-matrices (for efficient use of Level 3 BLAS),

– transforms matrix so it is almost diagonally dominant (for numerical stability).

• symbolic factorization,

– estimates memory requirements for the L and U factors,

– prepares the data structures to store factored matrix.

• numerical factorization,

– performs Gaussian elimination to compute L and U factors.

• triangular solves,

– finds the solution of the original system by backward substitution.

• iterative refinement,

– improves solution found in the previous step,

– compensates for inaccuracies introducied by lack of pivoting and round-off er-
rors during the factorization.

The first phase – matrix ordering – is aimed at reducing the aforementioned amount
of fill-in. Also, it may be used to improve the numerical stability of the factorization (it
is then referred to as a static pivoting [60, 115]). Here, this phase serves both of these
purposes, whereas in SuperLU and UMFPACK the pivoting is performed only during the
factorization. The actual pivoting strategy being used in theses packages is called a thresh-
old pivoting: the pivot is not necessarily the largest in absolute value in the current column
(which is the case in dense codes) but instead, it is just large enough to preserve numerical
stability. This makes the pivoting much more efficient, especially with the complex data
structures involved in sparse factorization even in parallel codes [6, 7].
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The next phase – symbolic factorization – finds the fill-in and allocates the required
storage space. This process can be performed solely based on the matrix sparsity pattern
information without considering matrix values. Substantial performance improvements are
obtained in this phase if graph-theoretic concepts such as elimination trees and elimina-
tion DAGs [85] are efficiently utilized. In essence, for the LLT (Cholesky) factorization,
fill-in may be determined without additional storage with the use of undirectedquotient
graphs[79]. For an unsymmetric matrix the amount of fill-in cannot be bound in a prac-
tical way and directed graphs need to be used. It makes the process much slower and
therefore, the matrix is implicitly split into two components one of which is symmetric and
can take advantage of existing algorithms for Cholesky factorization [65, 66].

The following three phases – numerical factorization, triangular solves, and iterative
refinement – share similar goals and implementation techniques. They aim at executing the
required floating point operations at the highest rate possible. This may be achieved in a
portable fashion through the use of BLAS. SuperLU uses supernodes, i.e. sets of columns
of a similar sparsity structure, to call the Level 2 BLAS. Memory bandwidth is the limit-
ing factor of the Level 2 BLAS, so, to reuse the data in cache and consequently improve
the performance, the BLAS calls are reorganized yielding the so-called Level 2.5 BLAS
technique [42, 43, 113]. UMFPACK uses frontal matrices that are formed during the fac-
torization process. They are stored as dense matrices and may be passed to the Level 3
BLAS. The recursive code uses dense regular sub-matrices – blocks – that include original
and fill-in entries and may be directly passed on to BLAS.

2.4 Sparse Recursive Factorization Algorithm

An essential part of any sparse factorization code is the data structure used for storing
matrix entries. The storage scheme for the sparse recursive code is illustrated in Figure2.6.
It has the following characteristics:

• the data structure that describes the sparsity pattern is recursive as shown in Fig-
ure2.4,

• the storage scheme for matrix structure and entries has two levels:

– the (lower) level of numerical values, which consists of dense square sub-
matrices (blocks) which enable direct use of the Level 3 BLAS, and

– the (upper) level of integer pointers, which describes the sparsity pattern of the
blocks.

There are two important ramifications of this storage scheme. First, the number of
integer indices that describe the sparsity pattern is smaller than in other codes because each
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• ? © ? • • ? ?
• • © ? • • • ?

? • • •
? ? • •

• – original nonzero value
© – zero value introduced due to blocking
? – zero value introduced due to fill-in

Figure 2.6: Sparse recursive blocked storage scheme with the blocking factor equal 2.
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of the integer indices refers to a block of values rather than individual values or small set of
values. It allows for more compact data structures and during the factorization it translates
into a shorter execution time because there is less sparsity pattern data to traverse and
more floating operations are performed by efficient BLAS codes. This is in contrast to a
code that relies on sophisticated compiler optimization to produce efficient code for integer
computations. Second, the blocking introduces additional nonzero entries that would not be
present otherwise. These artificial non-zeros amount to an increase in storage requirements.
Also, the arithmetic complexity is higher because floating point operations are performed
on the artificial zero values. This leads to the conclusion that the sparse recursive storage
scheme performs best when natural dense (or almost dense) blocks exist in the L and U
factors of the matrix. Such a structure may be achieved with band-reducing orderings
such as Reverse Cuthill-McKee or Sloan. These orderings tend to incur more fill-in than
others such as Minimum Degree or Nested Dissection, but this effect can be expected to be
alleviated by the aforementioned compactness of the data storage scheme and utilization of
the Level 3 BLAS.

The algorithm from Figure2.3 remains almost unchanged in the sparse case – the dif-
ferences being the calls to BLAS which are replaced by the calls to their sparse recursive
counterparts and that the data structures are no longer the same. Figures2.7, 2.8 and2.9
show the recursive BLAS routines used by the sparse recursive factorization algorithm.
They traverse the sparsity pattern and upon reaching a single dense block they call the
BLAS which perform actual FP operations.

The system matrix is converted into a blocked form prior to the factorization. The
following provides quantitative rationale as to why the blocked form should not be used to
determine the fill-in. First, two matrix operators are defined (a matrixA is assumed to be
the set of its entries and|A| is the cardinality of this set, i.e. the number of non-zero entries
of A).

Definition 1 Given an n by n matrix A letF (A) denote the set of nonzero entries of A and
(possibly none) additional entries incurred by structural fill-in resulting from LU factoriza-
tion.

Definition 2 Given an n by n matrix A letB f (A) denote a set of nonzero entries of A and
(possibly none) additional entries incurred by regular square blocked storage with blocking
factor f .

The intuitive properties of the above operators may be summarized as follows.

Observation 1 Given an n by n matrix A and operatorsF andB f (fill-in and blocked form
sets, respectively) the following holds:

1. F (A) = F (F (A))
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C := C−A·B
A,B,C are rectangular matrices (A∈ IRm×k,B∈ IRk×n,C∈ IRm×n)
function xRGEMM(’N’,’N’,α =−1,A,B, β = 1,C)
begin

if any of A,B,C are smaller than block sizenB – use BLAS
if m< nB or k < nB or n < nB then

xGEMM(’N’,’N’,α =−1,A,B, β = 1,C)
return

end if

A =
[

A11 A12

A21 A22

]
B =

[
B11 B12

B21 B22

]
C =

[
C11 C12

C21 C22

]
C11 := C11−A11 ·B11

xRGEMM(’N’,’N’,α =−1,A11,B11, β = 1,C11)
C21 := C21−A21 ·B11

xRGEMM(’N’,’N’,α =−1,A21,B11, β = 1,C21)
C11 := C11−A12 ·B21

xRGEMM(’N’,’N’,α =−1,A12,B21, β = 1,C11)
C21 := C21−A22 ·B21

xRGEMM(’N’,’N’,α =−1,A22,B21, β = 1,C21)
C12 := C12−A11 ·B12

xRGEMM(’N’,’N’,α =−1,A11,B12, β = 1,C12)
C12 := C12−A12 ·B22

xRGEMM(’N’,’N’,α =−1,A12,B22, β = 1,C12)
C22 := C22−A21 ·B12

xRGEMM(’N’,’N’,α =−1,A21,B12, β = 1,C22)
C22 := C22−A22 ·B22

xRGEMM(’N’,’N’,α =−1,A22,B22, β = 1,C22)
end.

Figure 2.7: Recursive formulation of thexRGEMM function which is used in the sparse re-
cursive factorization to perform the Schur’s complement operation.
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B := B·U−1

U is an upper triangular matrix with non-unitary
diagonal without zero entries (B∈ IRm×n,U ∈ IRn×n)

function xRTRSM(’R’,’U’,’N’,’N’,U,B)
begin

if U or B are smaller than block sizenB – use BLAS
if m< nB or n < nB then

xTRSM(’R’,’U’,’N’,’N’,U,B)
return

end if

B =
[

B11 B12

B21 B22

]
U =

[
U11 U12

0 U22

]
B11 := B11 ·U−1

11
xRTRSM(’R’,’U’,’N’,’N’,U11,B11)
B21 := B21 ·U−1

11
xRTRSM(’R’,’U’,’N’,’N’,U11,B21)
B22 := B22−B21 ·U12

xRGEMM(’N’,’N’,α =−1,B21,U12, β = 1,B22)
B22 := B22 ·U−1

22
xRTRSM(’R’,’U’,’N’,’N’,U22,B22)
B12 := B12−B11 ·U12

xRGEMM(’N’,’N’,α =−1,B11,U12, β = 1,B12)
B12 := B12 ·U−1

22
xRTRSM(’R’,’U’,’N’,’N’,U22,B12)

end.

Figure 2.8: Recursive formulation of thexRTRSM function for upper triangular matrices as
it is used in the sparse recursive factorization.
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B := L−1 ·B
L is a lower triangular matrix with unitary

diagonal without zero entries (B∈ IRm×n,L ∈ IRm×m)
function xRTRSM(’L’,’L’,’N’,’U’,L,B)
begin

if L or B are smaller than block sizenB – use BLAS
if m< nB or n < nB then

xTRSM(’L’,’L’,’N’,’U’,L,B)
return

end if

B =
[

B11 B12

B21 B22

]
L =

[
L11 0
L21 L22

]
B11 := L−1

11 ·B11

xRTRSM(’L’,’L’,’N’,’U’,L11,B11)
B21 := B21−L21 ·B11

xRGEMM(’N’,’N’,α =−1,L21,B11, β = 1,B21)
B21 := L−1

22 ·B21

xRTRSM(’L’,’L’,’N’,’U’,L22,B21)
B12 := L−1

11 ·B12

xRTRSM(’L’,’L’,’N’,’U’,L11,B12)
B22 := B22−L12 ·B12

xRGEMM(’N’,’N’,α =−1,L12,B12, β = 1,B22)
B22 := L−1

22 ·B22

xRTRSM(’L’,’L’,’N’,’U’,L22,B22)
end.

Figure 2.9: Recursive formulation of thexRTRSM function for lower triangular matrices as
it is used in the sparse recursive factorization.
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2. B f (A) = B f (B f (A))

3. F (B f (A))⊇ B f (F (A))⊇ F (A)

It is a rather intuitive result that calculating fill-in after the matrix is converted into a blocked
form (even though faster) requires more storage than doing it afterwords. The following
substantiates intuition.

Observation 2 Let A be an n by n matrix and Bi j , Bjk, Bik (i > j and k> j) sub-matrices
such thatB f (A) ⊃ Bi j ∪B jk (sub-matrices Bi j , Bjk are present in the original matrix) and
B f (A) 6⊃ Bik (sub-matrix Bik is not present in the original matrix) then

η(Bi j +B jk) > f 2⇒ Bi j ∈ B f (F (A))

and
η(Bi j )+η(B jk) > 1⇒ Bi j ∈ F f (B(A)).

In essence, to produce a fill-in sub-matrix it takes for the matrix to have either a certain
structure or simply have enough entries. In contrast, if fill-in is calculated on a matrix in
blocked form then a single entry per block produces fill-in.

2.5 Pivoting and Numerical Stability of LU Factorization

The main problem in robust implementations of Gaussian elimination as far as numerical
stability of the algorithm and error propagation are concerned is so calledpivot growth.
Each column of the matrix is divided by the diagonal element – apivot – of that column.
Partial pivoting makes sure through row rearrangements that the pivot is as large in absolute
value as possible. However, the recursive LU factorization algorithm that has been chosen
for the implementation for sparse matrices does not perform any kind of pivoting. Conse-
quently, a pathological case may be encountered – the current pivot is very small (may be
regarded as zero for practical purposes). A rather simple solution is proposed here – the
offending pivot value is replaced withε‖A‖ (ε being the FP precision constant for a given
machine). This clearly perturbs the original system from equation (2.1) and the procedure
ends up solving

(A+E)x = b (2.13)

rather than (2.1). Commonly known identities allow to recover the solution of the origi-
nal system from the solution of the perturbed system. The Sherman-Morrison [148, 149]
formula may be used for such a recovery in case of rank-one perturbation, i.e. if only one
pivot value had to be replaced:

(A+huvT)−1 = A−1−h
A−1uvTA−1

1+hvTA−1u
(2.14)
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where:h∈ IR; u,v∈ IRn; A∈ IRn×n andA−1 exists.
The more general Sherman-Morrison-Woodbury [129, 164] formula works for higher rank
modifications:

(A+hUVT)−1 = A−1−hA−1U(I +hVTA−1U)−1VTA−1 (2.15)

where:h∈ IR; U,V ∈ IRn×m; A∈ IRn×n andA−1 exists.
The Bartlett-Sherman-Morrison-Woodbury [21, 26] formula generalizes the previous result
even further:

(A+BCD)−1 = A−1−A−1B(C−1 +DA−1B)−1DA−1 (2.16)

where:A∈ IRn×n; B∈ IRn×m; C∈ IRm×m; D ∈ IRm×n andA−1 exists.
It is worth mentioning that all of the matrix inverses from equation (2.14) do not need
to be computed explicitly but rather the result of matrix-vector multiplication needs to be
provided. This is readily available through computationally inexpensive backward and
forward substitution operations involving the L and U factors of the perturbed matrixA. In
equations (2.15) and (2.16), computational complexity of some of the inverses depends on
dimensions and numerical properties of the rank modyfing matrices:U , V, B, C, andD.
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Chapter 3

Review of Literature

3.1 Dense Linear Algebra Computations

One of the most common computational kernels in linear algebra is the LU factorization
of a matrix. In popular software packages [11, 56, 163] this operation, performed on a
dense matrix, achieves very good performance on modern architectures through the use
of block operations with BLAS [47, 48, 49, 50]. Recently these factorization codes have
been formulated and implemented using recursion, achieving further improvement of per-
formance [9, 10, 94, 95, 157]. For sparse matrices this approach cannot be applied directly
because the sparsity pattern of a matrix has to be taken into account in order to reduce both
storage requirements and floating point operation count. There two are the determining
factors of the performance of sparse code.

As a side remark, it is worth mentioning that the recursive LU codes are related to
space-filling curves [98, 130] in the sense of bridging the gap between single dimension
of column-oriented pivoting as well as linear memory storage model and an intuitive two-
dimensional view of matrix elements. There exist proposals [93] for new storage schemes
that would narrow the gap even further. Yet other, arguably more related, research ef-
forts are recursive matrix multiplication algorithms [32, 154] which considerably lower the
computational cost of recursive matrix decompositions [157].

Parallel implementation of the recursive factorization algorithm has not been studied as
thoroughly as its sequential counterpart and there still exists a need for further improve-
ment [106, 107]. Despite the fact that recursive algorithm uses well studied BLAS routines
it is still not clear whether it will be scalable and deliver superior performance rates with
respect to the existing parallel codes [31]. The main issue to deal with is the communica-
tion cost [145]. The ever-recurring issue of matrix sparsity plays paramount role in the data
distribution and work assignment in the case of a distributed memory implementation.
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3.2 Direct Sparse Methods for Linear Equations Solving

This section gives historical perspective and a brief overview of the evolution of sparse
factorization concepts. The review considers: factorization types (Cholesky, LU), algorith-
mic approaches (multifrontal, supernodal), and ordering techniques (Nested Dissection,
Minimum Degree, Reverse Cuthill-McKee, and Sloan).

Two main factorization approaches: multifrontal [61] and supernodal [15] were origi-
nally introduced in Cholesky factorization [147]. It was studied from the graph-theoretic
stand point and theelimination trees[119] were used to model and speed up factorization
process, as they were used in both: symbolic and numerical phases of the factorization. In
order to benefit from some of these concepts in LU factorization they had to be generalized
for unsymmetric matrices. The structure of such matrices may be represented with directed
graphs. Thus, e.g., elimination trees becameelimination dags(direct acyclic graphs) [85]
and symmetrical reductions were used to speed up symbolic factorization [65].

The concept of supernodes from Cholesky factorization [80] could be generalized in
number of ways and experimental results led to selection of the best option [42, 113]. The
trade-off between speed and precision of the solution was being balanced by introduction
of the threshold pivoting [58] and, later on, partial pivoting was replaced by the static
pivoting [114].

Historically, evolution of the supernodal approach may be followed with the software
packages that implemented it: GP [86], GP-Mod [66], SupCol [64]. The multifrontal
approach, on the other hand, was implemented in: MA48 [62], MUPS [5], and UMF-
PACK [35, 39]. The most recent supernodal code is SuperLU [43, 115] and multifrontal
one is MUMPS [6, 7].

In the early codes, matrix ordering was used primarily to reduce fill-in generated by the
factorization. It has been proven that finding optimal ordering isN P -complete [165] and
therefore numerous heuristics have been devised to approximate the optimal solution to the
problem. For structurally symmetric matrices the Nested Dissection ordering [76] was used
as it yields minimal fill-in for regular meshes. However, it is also suitable for broader class
of matrices [116]. It representsdivide and conquer(also referred to asglobal) approach
to matrix ordering which is in contrast withgreedy(or local) approaches represented by
Minimum Degree ordering [155] and its modern variants [3, 81, 117]. It was originally
presented as the Markowitz ordering [120] which balances minimum fill-in criterion with
numerical stability for unsymmetric matrices which require pivoting. In addition, matrices
originating from discretization of certain partial differential equations are amenable to the
Reverse Cuthill-McKee [33, 84] and Sloan [151] orderings which strive to minimize matrix
bandwidth. After such a transformation, the factored matrix will become a dense banded
matrix for which the dense factorization method may be favorable. Yet another function
of matrix ordering may be improvement of numerical properties of the matrix so that the
factorization process can remain numerically stable without use of pivoting [60].
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3.3 Vector and Parallel Algorithms for Sparse Matrix Fac-
torizations

Most likely the most important insight into issues regarding vector and parallel processing
is the fact that communication complexity of dense LU factorization [145] is only and
asymptotic upper bound for the sparse case. In fact, communication amount and its patterns
in the sparse case are determined by the sparsity structure of the matrix and how it is taken
advantage of in a particular implementation – hardly a non-trivial remark in the light what
has already been said here for sequential codes. In the following, a rather brief overview
is presented of relatively recent techniques applied in the area. Since their introduction
in the late eighties and early nineties most of the computer architectures that were tested
are long gone but some of the ideas are applicable to the contemporary hardware and thus
are used (possibly with some modifications) in modern codes. More detailed descriptions
are available [57, 96] – they give more technical record of the developments that are only
briefly and selectively mentioned here.

Even though the basic sequential algorithm for Cholesky factorization needs to be
changed for efficient use on vector computers [4, 13, 15, 34] the changes are not as ex-
tensive as those that are required for a parallel implementation. The key concept are su-
pernodes that allow to substantially increase data reuse in vector registers and thus improve
computational rates on vector supercomputers [4, 13, 15, 34]. In a similar fashion, supern-
odes reduce synchronization overhead in a shared memory parallel environment [78, 125]
that commonly is used with “pool of tasks” approach that naturally performs load balanc-
ing.

A number of interesting experiments have been reported [75, 77, 87, 100] for mas-
sively parallel machines of the past. While not as relevant today as they were in the time
of their writing, they provide a background for other developments that continue to influ-
ence contemporary software. A non-trivial issue of mapping the matrix data on the parallel
computing nodes. The more optimal the mapping the less communication that is an unwel-
come but unavoidable overhead of the parallel setting. Awrap mapping[74] might be a
good choice for dense parallel computations but it needs to be modified for the sparse case
– asparse-wrapmapping [77] is one of the options. Asymptotically a better alternative for
regular finite element grids is asubtree-to-subcubemapping [82] that uses the elimination
as a guide in data distribution. The same concept may be reused with different granularity:
instead column, cliques are used to construct the tree and perform distribution [133]. Even
unbalanced trees – the major cause for poor quality mapping with the subtree-to-subcube
scheme – may be sometimes rectified with atree rotationtechnique that improves load bal-
ance for the numerical phase of the factorization [118]. Still, it might not be sufficient in
certain cases, but a subtree-to-subcube mapping may be generalized with the use of combi-
nation of breadth first search on the elimination tree, bin packing algorithm and estimation
of workload on each node [73]. A different approach is to extend the concept of Nested
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Dissection by artificially mapping grid points onto a plain and performing so called Carte-
sian Nested Dissection [135, 136]. Some of the aforementioned concepts have influenced
in one way or another modern sparse solvers like SuperLU [43, 115] and MUMPS [6, 7].

A completely different approach has been taken by some researchers. It is quite closely
related to some of the ideas from this writing, as it involves variable blocking [90, 141, 142,
143, 144, 160]. Others, on the other hand, have stressed high quality of the implementa-
tion by incorporating many of the techniques described above and delivering extraordinary
result of 20 Gflop/s execution rate on the Cray T3D computer [92].

3.4 Iterative Sparse Methods for Linear Equations Solv-
ing

Ever since its introduction more than half a century ago, the Conjugate Gradient method [97]
has seen a wide range of modifications, additions and extensions [19, 63]. Rather then try-
ing to enumerate them all or even to provide some generalizations, only the most relevant
results are given. Namely, the Bi-CGSTAB method [161] is probably the safest choice for
unsymmetric matrices. There exist generalizations of the CG method for multiple right
hand sides [29, 128]. Also, a more practical termination criterion has been proposed [108].

On the implementation side, majority of effort has gone into improving performance of
sparse matrix-vector multiply. Experiments have been performed to utilize small blocking
factor and assembly level coding techniques to make sparse computational kernels more
suitable for modern RISCs [1, 156]. Also, a more generic approach has been proposed –
it relies on compiler optimizations and high quality heuristics developed for the Traveling
Salesman Problem as it can be proven to be related to matrix blocking problem [132]. Pro-
visions for blocked sparse data structures are made in general purpose solvers – PETSc be-
ing one of them [16, 17, 18]. Such blocking structures may be efficiently found in matrices
originating from finite difference and finite element methods [14]. Finally, a rather ambi-
tious project called Sparsity [101, 102] aims at fully automated performance tuning com-
parable with quite successful efforts in the dense matrix computations arena [24, 56, 163]
which makes it pertinent to the Self Adapting Numerical Software (SANS) framework [52].

3.5 Contribution of the Study

Direct methods such as LU factorization are a well know technique for solving problems
that involve sparse matrices which originate from the Finite Element Method [28, 153] or
other discretization methods of Partial Differential Equations. Their significance grows as
the resultant sparse matrices cease to have properties required for efficient application of
any of the iterative methods [146].
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There are two main approaches in direct methods, namely, multifrontal [61] (which is
the generalization of the frontal approach [105]) and supernodal [15]. Both of them tend
to exploit efficient linear algebra computational kernels to achieve high Mflop/s rates on
the modern computer architectures. Drawing on this experience, the recursive approach
introduces yet another technique which could exhibit competitive performance for certain
types of matrices.

In the context of iterative methods, a thorough analysis of implementations of the Bi-
CGSTAB method [161] is presented. The implementations are tested on the same sparse
matrix set as the direct codes to allow true comparison of the two approaches. An additional
purpose is to reveal runtime behavior of a more sophisticated (in terms of complexity and
robustness) iterative code so that a convincing argument may be made about optimizations
that should to be performed. Finally, a result from sparse matrix ordering discipline is bor-
rowed and generalized for unsymmetric matrices to allow possibly very high performance
gains in implementation of sparse matrix-vector multiplication.
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Chapter 4

Research Design

4.1 Test Matrices

To evaluate performance and behavior of the implementations of the algorithms presented
earlier, matrices from Harwell-Boeing [59] and Tim Davis’ [36, 37, 38] collections are
used. The collections are rather large and contain matrices originating in many scientific
disciplines. To reduce the time for tests but at the same time retain viability of findings,
only a subset of the matrices is used. The subset is chosen to be the same as the one that
was used to evaluate the performance of SuperLU [42, 113]. Matrices from that subset
are described in Table4.1. A disadvantage of using these matrices is relative small size of
some of them as compared with other matrices from the aforementioned collections. This
means that researchers around the world are solving linear systems of larger size. To defend
the choice of matrices presented here, it needs to be pointed out that due to availability of
parallel codes, bigger matrices are solved in parallel rather than sequentially. Also, the
matrices selected here for tests are from many different disciplines and they have a similar
sparsity pattern to bigger matrices from the same disciplines. In addition, the test matrices
from Table4.1 were used by others to compare against many other software packages.
Thus, a smaller set of codes needs to be tested here and the saved time and focus could be
directed toward other issues.

4.2 Hardware Description

Tables4.2, 4.3, 4.4, and4.5 show parameters of processors that are used to conduct the
tests. The SGI Octane computer uses a rather typical RISC processor while Pentium III
and Pentium 4 are CISCs (but internally they use RISC-type instructions – a microcode).
Even though they are so different they benefit from the optimization techniques that were
described earlier. The operating systems used were Unix variants: IRIX, Linux, and Solaris.

31



Table 4.1: Parameters of the test matrices (all of them are square).

Matrix name n η Originating discipline or application
af23560 23560 460 598 fluid flow
ex11 16614 1 096 948 3D steady flow calculation
gemat11 4929 33 185 optimal power flow (western U.S.)
goodwin 7320 324 772 fluid dynamics
jpwh 991 991 6 027 circuit physics
mcfe 765 24 382 astrophysics
memplus 17758 99 147 circuit simulation
olafu structure from NASA Langley,
(inaccura) 16146 1 015 156 inaccuracy problem
orsreg 1 2205 14 133 petroleum engineering
psmigr 1 3140 543 162 demography
raefsky3 21200 1 488 768 computational fluid dynamics
raefsky4 19779 1 316 789 computational fluid dynamics
saylr4 3564 22 316 petroleum engineering
sherman3 5005 20 033 petroleum engineering
sherman5 3312 20 793 petroleum engineering
wang3 26064 177 168 semiconductor device simulation
venkat01 62424 1 717 792 2D implicit Euler solver for flow simulation

32



Table 4.2: Parameters of the SGI Octane (running IRIX OS) machine used in tests. The
DGEMV andDGEMM rates were measured with ATLAS 3.2.1.

Hardware specifications
Machine name SGI Octane
Clock rate 270 MHz
CPU MIPS R12000
FPU MIPS R12010
Level 1 instruction cache 32 KiB
Level 1 data cache 32 KiB
Level 2 unified cache 2 MiB
Main memory 256 MiB

Performance of a single CPU
Peak FP performance 540 Mflop/s
Matrix-matrix multiply –DGEMM ≈450 Mflop/s
Matrix-vector multiply –DGEMV ≈80 Mflop/s

Table 4.3: Parameters of the Ultra SPARC II machine (running Solaris OS) used in tests.
TheDGEMV andDGEMM rates were measured with ATLAS 3.2.1.

Hardware specifications
CPU type Ultra SPARC II
CPU clock rate 296 MHz
System bus clock rate 100 MHz
Level 1 data cache 16 KiB
Level 1 instruction cache 16 KiB
Level 2 unified cache 2 MiB
Main memory 1024 MiB

CPU performance
Peak FP performance 592 Mflop/s
Matrix-matrix multiply –DGEMM ≈450 Mflop/s
Matrix-vector multiply –DGEMV ≈55 Mflop/s

33



Table 4.4: Parameters of the Pentium III machine (running Linux OS) used in tests. The
DGEMV andDGEMM rates were measured with ATLAS 3.2.1.

Hardware specifications
CPU type Intel Pentium III
CPU clock rate 550 MHz
System bus clock rate 100 MHz
Level 1 data cache 16 KiB
Level 1 instruction cache 16 KiB
Level 2 unified cache 512 KiB
Main memory 512 MiB

CPU performance
Peak FP performance 550 Mflop/s
Matrix-matrix multiply –DGEMM ≈390 Mflop/s
Matrix-vector multiply –DGEMV ≈100 Mflop/s

Table 4.5: Parameters of the Pentium 4 machine (running Linux OS) that was used in tests.
TheDGEMV andDGEMM rates were measured with ATLAS 3.2.1.

Hardware specifications
CPU type Intel Pentium 4
CPU clock rate 1700 MHz
System bus clock rate 400 MHz
Level 1 data cache 8 KiB
Level 1 instruction cache 12 KiB
Level 2 unified cache 256 KiB
Main memory 512 MiB

CPU performance
Peak FP performance 3400 Mflop/s
Matrix-matrix multiply –DGEMM ≈2200 Mflop/s
Matrix-vector multiply –DGEMV ≈350 Mflop/s
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4.3 Numerical Stability Techniques for LU Factorization

LU factorization, as any other numerical algorithm, is prone to roundoff errors and a good
quality implementation should provide means to alleviate the problem. Traditionally, the
countermeasures included [41]:

• equilibration (prior to factorization),

• pivoting (prior and during factorization),

• iterative refinement (after factorization and backward substitutions).

Equilibration strives to reduce the system matrix’ condition number by replacingAx= b
with eitherDAx= Db or DrADcx′ = Drb with x = Dcx′. Similar functionality is available
for sparse matrices [60] and is considered during the subsequent testing procedures.

There exist multiple variants of pivoting:

• full,

• partial,

• threshold, and

• static.

But here only the last one is used as it was reported to yield satisfactory results [114]
and allows for the numerical factorization phase to be easier to implement and faster to
execute. However, if a zero (or almost zero) pivot occurs during the numerical phase then
it is replaced by a value that is small relative to a norm of the matrix:‖A‖ε (ε being machine
FP precision). In this way, the obtained solution satisfies a slightly perturbed system rather
than the original one. That, in practice, is as good as the exact solution and (if more correct
digits are necessary) is a very good starting point for the iterative refinement process – see
below for details.

The iterative refinement method is a well know strategy for adding more significant
digits to a solutionx0 of a Ax= b linear system:xi = xi−1−A−1(Axi−1−b) (i = 1,2, . . .).
Based on the thoroughly studied Newton’s method for nonlinear equations of the form
f (x) = 0 with f (x) = Ax−b, it performs considerably well especially when the iterative
refinement calculations are performed in extended precision FP arithmetic. The method is
used in the following tests.
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4.4 Programming Language Considerations

The position of the Fortran programming language [103] is undoubtfully very strong in the
applied numerical analysis community and many high quality software pieces have been
successfully designed and implemented [8, 11, 25, 47, 48, 49, 50, 60] – far too many to
try to even count them all. In the context of the recursive LU factorization, however, the
shortcomings of the language seem to be more than just annoyances. The problem is posed
by the use of recursion. In standard Fortran 77 there is no support for recursion and thus
it has to be handled explicitly. Admittedly a matter of opinion and taste, a loop-based
implementation of the recursive LU obscures the expressiveness of the C code from Fig-
ure 4.1 (the code is just a C implementation of the algorithm presented in Figure2.2).
Seemingly, the problem is solvable in Fortran 90 (and later versions) that permits recur-
sion within the standard. Unfortunately, the overloaded semantics of array operations and
pseudo-pointers support forced many implementors of the language to institute semanti-
cally safe, but extremely inefficient in practice, data copying procedures that are executed
upon every function call. The data copying may be disabled with either command line
options or by compiler hints inlcluded in the code, but this defeats portability. –

At this point it should be clear that the C language [104, 110] is preferable to Fortran,
at least in the context of this work. In addition, to the aforementioned problems with
recursion, C has numerous success stories in the mathematical software field [30, 56, 163,
162] and is very competitive in terms of the quality of the generated assembly code on the
targeted systems [88].

Lastly, Python programming language [134, 137, 138, 139, 140] is used since it has a
maturing numerical extension [12]. It has also been successfully applied to large scientific
projects [22, 23, 99] and to refactor a mixed language sparse eigensolver [83]. On top of the
above facts, it encourages interactivity and thus is commonly known for its fast prototyping
facilities but at the same time facilitates clarity of style and object-oriented design [159].

4.5 Existing Software Packages for LU Factorization of
Sparse Matrices

There is a number of existing software packages available [45] that could be used for sparse
LU factorization. Out of them, only the fairly modern ones are considered that are still
maintained by their respective authors:

• SuperLU [42, 113],

• UMFPACK [35, 39],

• MA41 [8],
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int
dgrtrf(int m, int n, double *a,

int lda, int *ip) {
int i, k = m < n ? m : n, r=0;

if (1 == k) {
double t;
*ip = i =BLAS_idamax(m,a,1);
t = a[i];
if (t != 0.0 && t != -0.0) {
BLAS_dscal(m,1.0/t, a, 1);
a[i] = *a;
*a = t;

} else return m;
} else { /* k > 1 */
int k1 = k >> 1, m2, n2;
double *a12;
m2 = m - k1; n2 = n - k1;
a12 = a + k1 * lda;

r = LAPACK_dgrtrf(m, k1, a,
lda, ip);

BLAS_dge_permute(k1, n2, ip,
1,a12,lda);

BLAS_dtrsm(blas_colmajor,
blas_left_side,

blas_lower,
blas_no_trans,
blas_unit_diag,
k1, n2, 1.0, a,
lda, a12, lda );

BLAS_dgemm(blas_colmajor,
blas_no_trans,
blas_no_trans,
m2, n2, k1, -1.0,
a + k1, lda, a12,
lda, 1.0, a12+k1,
lda );

i = LAPACK_dgrtrf(m2, n2,
a12 + k1,
lda,
ip + k1 );

BLAS_dge_permute(k - k1, k1,
ip + k1, 1,
a + k1,
lda );

if (i && ! r) r = i;
for (ip += k1, k -= k1;

k!=0; k--) *ip++ += k1;
}
return r;

} /* dgrtrf */

Figure 4.1: C implementation of the recursive LU factorization with pivoting.
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• Watson Sparse Matrix Package [91] (WSMP).

The SuperLU package is a supernodal code and is available for sequential, shared mem-
ory and distributed memory machines1. It is portable due to the use of open standards for
threading and message passing. The sequential version performs threshold pivoting. The
orderings that are available with SuperLU are:

• natural ordering (the system matrix is not reordered prior to factorization),

• Multiple Minimum Degree (MMD) ordering applied to the (implicitly formed) struc-
ture ofATA,

• MMD ordering applied to the (implicitly formed) structure ofAT +A,

• approximate minimum degree column ordering.

The UMFPACK2 software package is a multifrontal code and was originally written in
Fortran 77 (versions up to and including 2.2) but later on (versions 3.0 and above) it was
rewritten in C. The change in programming language allowed for better modularization
of the code and rendered the API more flexible – it is now possible to run the symbolic
and numerical phases separately. An interesting feature of the package is that during the
symbolic factorization the assembly tree is created which is the main data structure used in
the numerical factorization for scheduling FP calculations. Since the symbolic factorization
depends only on the structure of the matrix, the assembly tree, and the work invested in
constructing it, may be reused between matrices that differ only in numerical content. The
ordering available for UMFPACK is the Approximate Minimum Degree (AMD) ordering.

An example of a commercial package isMA41 – a symmetric structure multifrontal
code. It is written in portable Fortran 77 and can take advantage of an SMP system through
threads. It was used as a basis for a distributed memory implementation – MUMPS [6, 7].
MA41 can use AMD ordering and allows for independent use of symbolic and numerical
factorizations. The former phase, just as in UMFPACK, creates the assembly tree for the
latter phase. Even thoughMA41 is a multifrontal code somewhat similar to UMFPACK, the
two codes differ in the use of symmetry. The former code’s performance heavily depends
on structural symmetry in the matrix while the latter code performs equally well even for
matrices with relatively few symmetric entries.

The last package (certainly not the least, though) is WSMP. It is a multifrontal code
that was highly tuned and refined for IBM SP-series systems. It takes advantage of thread-
based and message passing paradigms – all at the same time yielding exceptional levels of
performance. It is freely available but may only be used on IBM systems since it comes
in a form of binary libraries that may be linked by IBM compilers for C or Fortran. It

1It is freely available athttp://www.nersc.gov/˜xiaoye/SuperLU/.
2It is freely available athttp://www.cise.ufl.edu/research/sparse/umfpack/.
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has been excluded from comparisons with the other packages due to its closed-source form
and specific hardware demands. This decision is especially regretful since WSMP is very
competitive on IBM systems. Still, the reader is referred to the supplied reference to see
the performance levels achieved by WSMP.

Due to the recent interest of the IBM company in the Linux operating system, WSMP is
now available for Linux clusters from IBM. However, tests of WSMP were not performed
for purposes of this study due to the following considerations: a Linux release is a rather
recent development (the Linux version was announced at the beginning of 2003 – much
later than any of the tests presented later in this writing), its availability is still limited,
and the maturity of the release is (understandably) in its early stages which could possibly
require extensive tuning to achieve competitive performance.

4.6 Common Optimizations for Iterative Solvers

A straightforward implementation of a commonly accepted rendition of the Bi-CGSTAB
algorithm [19] for sparse matrices has a number of preformance problems which cannot be
easily resolved by a vast majority of optimizing compilers. An attempt has been made to
optimize this reference implementation for the set of test matrices presented earlier. All of
the optimizations applied to the code are described in this and the following section.

BLAS cannot be used directly for optimization of the sparse Bi-CGSTAB implementa-
tion targetted at the test matrices mentioned before. The reason is twofold:

1. Level 3 BLAS cannot be used because only matrix-vector multiplications are per-
formed and therefore no data reuse is possible to the extent observed for direct meth-
ods, and

2. sub-matrix dimensions and vector lengths are much smaller than those for direct
codes, mostly because of lack of fill-in.

Regardless, the optimization techniques used by vendors to tune their BLAS implementa-
tions may successfully be utilized in the iterative solver computations bearing in mind the
aforementioned limitations.

The following are the common practices used for optimization of sparse codes, espe-
cially matrix-vector multiplication [1, 16, 17, 18, 55, 83, 88, 101, 102, 132, 156]. Here,
they are applied throughout the entire iterative solver code:

• software pipelining,

• functional unit scheduling,

• register blocking,
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• matrix reordering,

• decreasing loop overhead through loop unrolling,

• lowering memory traffic,

• data prefetching,

• loop fusion.

Software pipelining makes sure that the pipelined architecture of modern CPUs is taken
advantage of. In essence, it is desirable that at any given point in time there are a few (ide-
ally as many as the length of the CPU pipeline) independent instructions in the CPU (certain
types of dependences are allowed but for simplicity of explanation they are not described
here). All of these instructions will be processed simultaneously and consequently achieve
appreciable speed up.

Explicit functional unit scheduling cannot be done portably and not even in the assem-
bly language since tha majority of modern CPUs have dynamic schedulers that decide the
order of execution at runtime rather than compilation time. However, since it is known that
a dynamic scheduler feeds the execution core from a straight line of code (free of test and
jump operations), thus, if a code already contains a dependence-free instruction list, it will
be utilized by the scheduler. The previous statement assumes that the compiler will not
spoil the handcrafted code – it is a rather safe assumption to make.

Register blocking allows for all the operands and results to reside in the CPU’s registers
so that no memory loads and stores need to be issued. Since the number of registers is
usually very small integer power of 2, register blocking is achieved by grouping matrix
entries into sub-matrices of dimensions up to 2 [156] or 3 [83]. For thexGEMM operation:
C←αAB+βC it would require up to 18 FP registers – still very few considering how many
there are available on some modern CPUs but another important limiting factor is the dense
(or almost dense) sub-matrices readily available in the sparse matrix itself and those tend
to be of rather small dimensions.

Matrix reordering mainly strives to increase data reuse in cache but may also help with
register blocking as the rearranged matrix has more dense sub-matrices. Commonly, the
Reverse Cuthill-McKee [33, 84] and Sloan [151] orderings produce favorable band-like
matrix structures that fory← βy+αAxmatrix-vector multiplication allow for better cache
utilization as far as entries ofx are concerned.

Loop unrolling quite often results from the previously described optimizations and so
the compiler usually does not perform the unrolling automatically because it assumes that
it has been done already by the programmer to a sufficient extent. However, more often
than not it is a false assumption and more unrolling may be performed manually to reduce
the loop overhead and expose more instruction-level parallelism to the CPU’s dynamic
scheduler. This is yet more relevant for sparse computations where the compiler can infer
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much less information about the data structures which tend to complicated to accommodate
matrix’ sparsity.

Lowering memory traffic is obviously necessary in any code due to the widening per-
formance gap between memory system and CPU. For sparse iterative codes it is especially
important as they rely on memory-bound matrix-vector multiplication and Level 1 BLAS
calls as well as transfer of data describing matrix sparsity structure. Reduction of the latter
by blocking (i.e. grouping together) nearby entries is a common optimization technique.

Data prefetching is a very useful feature of superscalar RISCs that allows them to re-
quest transfers of data to Level 1 cache ahead of time and perform useful operations while
the transfers are performed. It is done so that the cache miss penalty is not paid when later
on the requested data is used by the CPU. The challenging part is to perform prefetching
portably as resorting to low level coding cannot possibly be done for every piece of hard-
ware available today. Extra store or load operations (which are useless from the stand point
of the original code) allow to start memory transfer that would fulfill future data request.
However, these standard programming techniques do not always allow to bypass compiler’s
optimizations and emulate functionality provided by specialized assembly instructions for
prefetching.

Loop fusion is unlikely to be used in sparse matrix-vector multiplication due to its
rather simple structure that (for the reference implementation) involves only two nested
loops. For iterative solvers, however, it seems to be a very useful approach. The obser-
vation is that a typical iterative code involves many operations equivalent or similar to to
Level 1 BLAS. Rather than performing them in sequence one after another, they should be
computed jointly whenever possible (some of the operations might depend upon comple-
tion of others in which case they need to be performed in sequence). By doing so, a better
opportunity is created for application of other optimizations described earlier – manually
and automatically by the compiler.

4.7 New Register Blocking Technique

It has been shown that graph compression improves performance of the Minimum Degree
ordering for symmetric matrices [14]. A natural extension of this optimization is to use it
with unsymmetric matrices for matrix-vector multiplication. Such an extension is described
in detail below.

The non-zero structure of an arbitrary sparsen by n matrix A = [ai j ] (1≤ i, j ≤ n) may
be modeled with a graphGA = (V,E) whereV is a set of vertices:V = {1,2, . . . ,n} and
E is a set of edges:E = {(i, j) | ai j 6= 0 ;1≤ i, j ≤ n} ⊆ V ×V. An adjacency setof
vertexu ∈ V is defined as: adj(u) = {v ∈ V | (u,v) ∈ E}. Verticesu andv are indistin-
guishableif adj(u) = adj(v). Since a vertex inGA corresponds to a (say) row ofA, for two
indistinguishable vertices their corresponding matrix rows have the same sparsity structure
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and thus they may share the data that describes this structure. This sharing allows savings
in storage, but primarily it lowers memory traffic and reduces the number of fixed-point
operations to allow higher FP throughput. Depending on the compression level, the code
speed up could be much higher than the one offered by small fixed block sizes. Finally, a
successful application of the compression must be able to determine the indistinguishable
sets of vertices in a timely manner – a trivialO(n2) algorithm is by far not practical. For-
tunately, the algorithm for symmetric matrices [14] is applicable to nonsymetric ones and
thus it is possible to perform graph compression in timeO(|E|+ |V| log|V|) or in matrix
terms:O(η(A)+nlogn). This fast compression algorithm is described next.

The compression algorithm starts with calculating a checksum value for each row of the
matrix. Each checksum number is just a sum of integer indices that describe the sparsity
pattern of the row (compressed row storage is assumed) – this may be easily calculated
in O(η(A)) time. Next, the checksums are sorted which consumesO(nlogn) time. Finally,
a simple (linear in complexity) scan of the checksums allows to determine which rows truly
have identical structure since two rows of different structure may have the same checksum.

The graph compression technique helps to take greater advantage of all of the optimiza-
tions described in the previous section. A major reason is that it exposes regularity in the
matrix’ structure that neither the programmer or the compiler can know of prior and at the
compilation time.
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Chapter 5

Research Findings

5.1 Experiments with Recursive LU Factorization Code
for Dense Matrices

In order to better understand the behavior of the dense recursive LU factorization code from
Figure 2.3, comparative experiments were performed on the Ultra SPARC II computer.
Figure5.1shows results of these experiments. The figure compares performance of vendor
implementation ofDGETRF routine (achieving 403 Mflop/s) with the recursive code that
uses varying block size. In this experiment, block size is the size of the largest of a square
sub-matrix which is not divided any further but passed to vendor BLAS to perform the
actual calculations. The recursive code was using the recursive data layout from Figures2.4
and2.5. Since the matrix size is a power of 2 (4096 to be exact) the code was much more
simplified than it would have been if it was to deal with matrices of arbitrary size. Still, the
point is made that recursive layout of matrix data has superior memory access patterns if
compared with highly tuned algorithm supplied by the vendor. It needs to be stressed that
no floating point operations are performed in the recursive code. Instead, all of them take
place in the software libraries supplied by the vendor. Only the scheduling of the operations
was different and matrix layout was recursive (the conversion time from Fortran’s column-
major to recursive layout are not accounted for on the figure but it is only anO(n2) cost
and should become negligible as the matrix dimension increases). Similar results were
obtained on the Pentium III computer – they are not included here for brevity and lack of
any additional information on top of what is already shown in Figure5.1.

5.2 Performance Comparison of Direct Codes

Tables5.1, 5.2, and 5.3 show timing results (the time shown in tables and figures is
in seconds unless explicitly stated otherwise) and error estimates for SuperLU Version
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Figure 5.1: Performance of a dense recursive LU factorization with recursive layout of data
with varying block sizes compared with vendor LU on the Ultra SPARC II computer for
random matrix of size 4096 (the recursive code uses vendor BLAS at a single sub-matrix
block level).
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Table 5.1: Factorization time (t) and forward/backward error estimates after factoriza-
tion (ξ0, r0) and one iteration of iterative refinement (ξ1, r1) for the test matrices on the
SGI Octane computer.

Matrix SuperLU Recursive algorithm
name t [s] ξ0 t [s] ξ0 ξ1 r0 r1

af23560 34.57 7×10−14 34.06 2×10−14 1×10−15 2×10−6 2×10−7

ex11 85.75 6×10−05 33.47 3×10−07 2×10−07 2×10−7 7×10−7

goodwin 4.48 3×10−08 6.32 5×10−09 3×10−11 7×10−5 1×10−6

jpwh 991 0.18 3×10−13 0.16 5×10−08 3×10−15 3×10+3 5×10−5

mcfe 0.07 1×10−13 0.06 3×10−13 3×10−16 1×10−3 2×10−5

olafu 18.92 1×10−06 18.83 5×10−10 9×10−11 1×10−6 4×10−7

orsreg1 0.40 2×10−10 0.22 5×10−02 2×10−09 9×10+4 1×10−1

psmigr 1 69.44 7×10−11 45.64 4×10−07 8×10−12 3×10−4 4×10−4

raefsky3 46.26 3×10−09 56.2 8×10−14 8×10−15 3×10−6 1×10−7

raefsky4 62.15 3×10−06 64.68 3×10−07 2×10−06 4×10−6 6×10−7

saylr4 0.61 5×10−11 0.52 2×10−10 3×10−11 5×10−6 2×10−6

sherman3 0.45 5×10−13 0.49 2×10−13 1×10−13 1×10−6 7×10−7

sherman5 0.23 9×10−14 0.26 2×10−15 5×10−15 1×10−5 3×10−6

wang3 73.47 8×10−14 62.33 1×10−13 2×10−15 1×10−6 9×10−8

ξi = ‖x̂i−x‖/‖x̂i‖ (relative error at stepi)
r i = ‖Ax̂i−b‖/((‖A‖‖x̂i‖+‖b‖)nε) (backward error at stepi)
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Table 5.2: Factorization time and forward error estimates for the test matrices for three
factorization codes on the Pentium III computer.

Matrix SuperLU UMFPACK 3.0 Recursion
name t [s] FERR t [s] FERR t [s] FERR
af23560 44.2 5×10−14 29.3 4×10−04 31.3 2×10−14

ex11 109.7 3×10−05 66.2 2×10−03 55.3 1×10−06

goodwin 6.5 1×10−08 17.8 2×10−02 6.7 5×10−06

jpwh 991 0.2 3×10−15 0.1 2×10−12 0.3 3×10−15

mcfe 0.1 1×10−13 0.2 2×10−13 0.2 9×10−13

memplus 0.3 2×10−12 20.1 4×10−11 12.7 7×10−13

olafu 26.2 1×10−06 19.6 2×10−06 22.1 4×10−09

orsreg 1 0.5 1×10−13 0.3 2×10−12 0.5 2×10−13

psmigr 1 110.8 8×10−11 242.6 2×10−08 88.6 1×10−05

raefsky3 62.1 1×10−09 52.4 5×10−10 69.7 4×10−13

raefsky4 82.5 2×10−06 101.9 5×10+01∗ 104.3 4×10−06

saylr4 0.9 3×10−11 0.7 2×10−07 1.0 1×10−11

sherman3 0.6 6×10−13 0.5 2×10−11 0.7 5×10−13

sherman5 0.3 1×10−13 0.3 4×10−12 0.3 6×10−15

wang3 84.1 2×10−14 100.1 5×10−08 79.2 2×10−14

t - combined time for symbolic and numerical factorization
FERR= ‖x̂−x‖∞/‖x‖∞
∗ the matrixraefsky4 requires for threshold pivoting in UMFPACK
to be enabled in order to give a satisfactory forward error
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Table 5.3: Total factorization timet, forward error estimateξ0, and storage requirement
η(L+U) for the test matrices for two factorization codes on the Intel Pentium 4 computer.

Matrix SuperLU Recursion
name t [s] ξ0 η(L+U) t [s] ξ0 η(L+U)
af23560 14.1 5×10−14 132.2 13.9 1×10−14 155.7
ex11 36.8 2×10−05 210.2 22.0 1×10−06 159.3
goodwin 2.1 1×10−08 31.3 2.9 1×10−05 41.9
jpwh 991 0.1 2×10−15 1.4 0.1 2×10−15 3.4
mcfe 0.01 1×10−13 0.9 0.1 9×10−13 2.6
memplus 0.1 2×10−12 5.9 2.7 4×10−13 98.7
olafu 8.3 1×10−06 83.9 9.0 7×10−09 104.0
orsreg 1 0.2 1×10−13 3.6 0.2 1×10−13 5.7
psmigr 1 35.8 7×10−11 64.6 32.4 1×10−05 78.4
raefsky 3 20.0 1×10−09 147.2 27.2 1×10+00 189.5
raefsky 4 26.9 2×10−06 156.2 51.7 4×10−06 241.5
saylr4 0.3 3×10−11 6.0 0.5 1×10−11 11.7
sherman3 0.2 6×10−13 5.0 0.4 9×10−01 8.6
sherman5 0.1 1×10−13 3.0 0.2 8×10−15 5.4
wang3 29.3 2×10−14 116.7 48.9 1×10−14 246.4
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2.0 [42, 113] (for sequential machines), UMFPACK Version 3.0 [35, 39] and for the recur-
sive approach. The tables show the total execution time of factorization (including sym-
bolic and numerical phases) and forward error estimates. The matrices used in the tests
are selected matrices from the Harwell-Boeing collection [59], and Tim Davis’ [36, 37, 38]
matrix collection, which were used to evaluate the performance of SuperLU [42, 113]. Per-
formance of the sparse factorization code heavily depends on the initial ordering of the ma-
trix. Thus, we have selected the best time we could obtain using all the available ordering
schemes that come with SuperLU. UMFPACK supports only one kind of ordering (a col-
umn oriented version of the Approximate Minimum Degree algorithm [2, 3]), in addition,
the code was used with its default values of the tuning parameters and threshold pivoting
disabled. For the recursive approach almost all of the matrices were ordered using Reverse
Cuthill-McKee ordering [33] except forgoodwin andmcfe which were used with their nat-
ural ordering. For the recursive approach it is possible to select different block sizes, which
yield slightly different execution times. Generally, block size 40 seemed to be optimal;
however, for some matrices a better time may be obtained with a different block size (the
block sizes tried were between 40 and 120). This coincides with the internal blocking fac-
tor of ATLAS [56, 163] that was used as a BLAS implementation. To accommodate CPU
and memory hierarchy parameters, ATLAS performs computations on 40 rows or columns
at a time and does so in an extremely efficient manner. If the number of rows or columns
is not divisible by 40, a so calledclean-up codeis involved which is slightly less efficient.
Consequently, block sizes that are multiples of 40 are preferred when ATLAS is used.

The total factorization time from Tables5.1, 5.2, and5.3 favors the recursive approach
for some matrices, e.g.,ex11, psmigr 1 andwang3, and for others it strongly discourages
its use (matricesmcfe, memplus and raefsky4). There are two major reasons for the
poor performance of the recursive code on the second group of matrices. First, there is an
average density factor which is the ratio of the true nonzero entries of the factored matrix
to all the entries in the blocks. It indicates how many artificial non-zeros were introduced
by the blocking technique. Whenever this factor drops below 70%, i.e. more than 30% of
the factored matrix entries do not come from the L and U factors, the performance of the
recursive code will most likely suffer. Even when the density factor is satisfactory, still, the
amount of fill-in incurred by the Reverse Cuthill-McKee ordering may substantially exceed
that of other orderings. In both cases, i.e. with a low value of the density factor or excessive
fill-in, the recursive approach performs too many unnecessary floating point operations and
even the high execution rates of the Level 3 BLAS are not able to offset it.

The computed relative and backward errors are similar for all the codes despite the
fact that two different approaches to pivoting are used. SuperLU uses threshold pivoting
while in UMFPACK and the recursive code there is no pivoting but instead the iterative
refinement method is used.

Tables5.4and5.5show storage requirements and operation counts for the test matrices.
On average, it may be observed that SuperLU and UMFPACK use slightly less memory and
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Table 5.4: Parameters of the test matrices, their storage requirements and floating point
operation counts for SuperLU and the recursive algorithm on the SGI Octane computer.

Matrix parameters SuperLU Recursive algorithm
Name n η(A) η(L+U) no. flops nB η(L+U) no. flops

[MB] [Mflop] [-] [MB] [Mflop]
af23560 23560 460598 127.6 4515 50 138.9 5649
ex11 16614 1096948 206.7 14249 50 138.1 10320.5
goodwin 7320 324772 29.9 506 40 41.4 2097.82
jpwh 991 991 6027 1.5 16.1 36 2.3 34.2
mcfe 765 24382 0.7 2.7 34 1.2 11.94
olafu 16146 1015156 80.7 2960 50 90.0 4937
orsreg 1 2205 14133 3.6 43.6 33 3.4 49.05
psmigr 1 3140 543162 64.0 9687 45 73.7 20075.4
raefsky3 21200 1488768 143.1 7752 50 199.7 17618.5
raefsky4 19779 1316789 152.3 10575.6 50 214.3 21593.8
saylr4 3564 22316 5.3 62.3 36 6.3 101.55
sherman3 5005 20033 4.0 46.2 49 5.8 93.95
sherman5 3312 20793 2.3 16.3 40 3.3 44.21
wang3 26064 177168 111.6 9966.5 50 214.9 18140
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Table 5.5: Parameters of the test matrices and their storage requirements for three factor-
ization codes on the Pentium III computer (for the recursive code the blocking factornB for
the optimal run is also given).

Matrix parameters SuperLU UMFPACK 3.0 Recursion
Name n η(A)×10−3 η(L+U) η(L+U) η(L+U) nB

[MB] [MB] [MB]
af23560 23560 461 132.2 96.6 149.7 120
ex11 16614 1097 210.2 129.2 150.6 80
goodwin 7320 325 31.3 57.0 35.0 40
jpwh 991 991 6 1.4 1.4 2.3 40
mcfe 765 24 0.9 0.7 1.8 40
memplus 17758 126 5.9 112.5 195.7 60
olafu 16146 1015 83.9 63.3 96.1 80
orsreg 1 2205 14 3.6 2.8 3.9 40
psmigr 1 3140 543 64.6 76.2 78.4 100
raefsky3 21200 1489 147.2 150.1 193.9 120
raefsky4 19779 1317 156.2 171.5 234.4 80
saylr4 3564 22 6.0 4.6 7.2 40
sherman3 5005 20 5.0 3.5 7.3 60
sherman5 3312 21 3.0 1.9 3.1 40
wang3 26064 177 116.7 249.7 256.7 120

perform fewer FP operations. This can be attributed to the minimum degree algorithm and
its variations used in SuperLU and UMFPACK which minimize the fill-in and thus the
space required to store the factored matrix. The large differences between operation counts
come from the fact that the recursive approach stores many more floating point values (most
of which are zero). This is not evident from the memory requirements because the storage
scheme is very sparing in storage of indices. However, it becomes noticeable in the floating
point operation counts which is proportional to the third power of the number of FP values.
Nevertheless, the performance in terms of time to solution of the recursive code is still very
competitive with SuperLU and UMFPACK due to the judicious use of Level 3 BLAS.

Finally, Table5.6 shows comparison of performance ofMA41 and the recursive code.
The table shows only the numerical factorization time since this is the part of the recursive
code that was optimized the most. This is in contrast withMA41 which has been thoroughly
tuned in every aspect and in its current form benefits from theoretical and implementation
optimizations known in the field of sparse direct methods for symbolic as well as numerical
phases of the factorization. As the Table5.6 shows,MA41 is faster on all of the tested
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Table 5.6: Numerical factorization time for two factorization codes –MA41 and the recur-
sive one – on the Pentium III computer. Symmetry factor was reported byMA41 (100%
means structural symmetry).

Matrix parameters SymmetryMA41 Recursion
Name n η factor [%] t [s] t [s]
af23560 23560 460598 100 12.9 16.2
ex11 16614 1096948 100 29.1 30.9
goodwin 7320 324772 64 1.3 4.5
jpwh 991 991 6027 95 0.05 0.2
mcfe 765 24382 71 0.1 0.1
memplus 17758 126150 100 0.2 4.6
olafu 16146 1015156 100 9.8 10.6
orsreg 1 2205 14133 100 0.1 0.2
psmigr 1 3140 543162 48 39.9 60.1
raefsky3 21200 1488768 100 13.6 36.6
raefsky4 19779 1316789 100 34.5 64.5
saylr4 3564 22316 100 0.2 0.5
sherman3 5005 20033 100 0.2 0.3
sherman5 3312 20793 78 0.1 0.2
wang3 26064 177168 100 39.2 52.6

matrices except formcfe for which the times are the same. Still, the recursive code offers
comparable performance levels for matricesaf23560, ex11, andolafu. For the rest of
the matricesMA41 is a clear winner. Further analysis, that is presented later on, reveals the
reason for such extraordinarily good behavior. Namely, the structural symmetry factor has
very favorable values for the test matrices andMA41 takes full advantage of it.

5.3 Performance Analysis of Direct Codes

This section focuses on analysis of performance of the direct solvers presented earlier.
In particular, time breakdowns and timings for synthetic data sets are presented to reveal
performance characteristics of each code so it becomes possible to draw more insightful
conclusions from the previously presented tests as to under what circumstances and in
what manner the software packages should be used.

Table5.7gives more insight into performance characteristics of UMFPACK. First and
foremost, for matricesmemplus, olafu, psmigr 1, andraefsky3 the older Fortran version
is significantly faster than the new version written in C. It is hard to imagine that the choice
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Table 5.7: Breakdown of time spent in factorization for UMFPACK 3.0 in C and UMF-
PACK 2.2 in Fortran on the Pentium III computer. (Threshold pivoting was disabled; For-
tran version did not allow separation of factorization phases.)

Matrix UMFPACK 3.0 UMFPACK 2.2
name Symbolic Numerical Combined Combined
af23560 4.59 23.95 28.54 71.47
ex11 5.35 61.67 67.02 268.54
goodwin 0.89 18.08 18.97 17.19
jpwh 991 0.03 0.11 0.14 0.09
mcfe 0.06 0.1 0.16 0.12
memplus 6.78 11.74 18.52 0.65
olafu 3.04 22.86 25.9 13.85
orsreg 1 0.04 0.31 0.35 0.51
psmigr 1 3.31 247.57 250.88 61.34
raefsky3 1.59 51.17 52.76 45.74
raefsky4 5.10 97.17 102.27 134.04
saylr4 0.07 0.51 0.58 0.88
sherman3 0.06 0.36 0.42 0.71
sherman5 0.08 0.24 0.32 0.63
wang3 0.66 99.36 100.02 331.42

of programming language would trigger such a drastic change, especially bearing in mind
that for all the other matrices the new version clearly outperforms the older one. More
likely explanation is the change in internal algorithms when migrating to C from Fortran.
It seems to be supported by more flexible interface in the C version which allows to perform
symbolic and numerical phases separately (and possibly reuse the former for structurally
identical matrices.)

Figures5.2 and5.3 show time breakdown for the recursive code for block sizes 40
and 100, respectively. The breakdown lists relative time spent in the following phases of
the algorithm:

• Symbolic factorization – accommodating storage for fill-in entries,

• Block conversion – converting the original matrix and the fill-in entries into blocked
form so that dense sub-matrices rather than single entries are accounted for,

• Recursive conversion – converting the blocked form of the matrix into the recursive
layout; it is equivalent to a sort function on the blocks (sub-matrices),
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Figure 5.2: Breakdown of time spent in the recursive factorization code with block size 40
on the Pentium III computer.
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Figure 5.3: Breakdown of time spent in the recursive factorization code with block size 100
on the Pentium III computer.
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• Search for embedded blocks – withing each non-zero block sub-matrix, the small-
est sub-matrix is determined that encloses original non-zeros or fill-in entries; the
block sub-matrix region that is outside of an embedded block is not being used in FP
calculations,

• Numerical factorization – the actual operations FP operation that comprise Gaussian
elimination are performed.

Comparison of Figures5.2and5.3results in a predictable conclusion that for larger block
sizes more FP operations are performed. This may be easily explained by the fact that for
larger block sizes more artificial non-zero entries are introduced and therefore there is more
data to operate on. The difference is the most conspicuous for thememplus matrix which is
more sparse than any other matrix from the tested group. Such an insight offers a guideline
for selecting a block size – a balance must be achieved between performance of BLAS –
the block size cannot be too small – and excessive number of FP operations – the block
size cannot be too large.

Table5.8 compares numerical factorization times of various block-oriented sparse di-
rect codes (total factorization time is approximately twice as large as the numerical part
alone, refer to Figures5.2 and5.3 for detailed time breakdown). The table compares two
types of codes: the recursive one and a block one operating on symmetric matrix struc-
ture (it is a straightforward, loop-based, symmetric-structure code that instead of individual
values operates on the same submatrices that the recursive algorithm uses). The former can
handle matrices with unsymmetric structure. The latter assumes that the system matrix is
structurally symmetric and consequently have the storage and processing is needed to de-
scribe and operate on matrix’ structure. If, however, the original matrix is not symmetric in
structure then artificial non-zero entries are introduced such that the structure of the matrix
becomes symmetric but numerical equivalence is retained. Needless to say, such a naı̈ve
procedure might be disastrous in terms of performance for matrices whose structure is far
from symmetric and many artificial non-zero entries need to be introduced. The block sym-
metric code was implemented in C [104, 110] and Python [134] programming languages.
A number of interesting observation can be made. On average the recursive code is slightly
faster than the iterative code even though the iterative code has roughly twice as little inte-
ger arithmetic to perform. This may be attributed to superior memory performance of the
recursive code. It also explains why the larger block size yields for quite a few matrices
better performance as far as the recursive code is concerned whereas the iterative code al-
most invariably has worse performance for the larger block size (except for thepsmigr 1
matrix which is very dense after fill-in and could use as large block size as possible). The
column with timings for the Python code shows how few integer operations are performed
in the symmetric code. The Python implementation is comparable to its C counterpart even
though it is being interpreted (rather than first compiled and then executed on the CPU).
The Python code uses the same optimized BLAS as the other two codes and clearly it is the
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Table 5.8: Numerical factorization times for various block-oriented codes on the Pen-
tium III computer. For the implementation in the Python programming language the time
and block size of the fastest run are shown.

Matrix Recursive Symmetric Python symmetric
name nB = 40 nB = 100 nB = 40 nB = 100 t [s] nB

af23560 30.58 17.51 16.2 26.7 17.26 40
ex11 31.51 29.23 30.9 38.7 33.98 40
goodwin 3.81 3.92 4.5 6.5 7.08 40
jpwh 991 0.12 0.16 0.2 0.3 0.21 40
mcfe 0.09 0.13 0.1 0.3 0.13 20
memplus 7.63 3.6 4.6 16.1 5.52 30
olafu 12.86 10.37 10.6 18.1 16.39 40
orsreg 1 0.22 0.23 0.2 0.5 0.26 40
psmigr 1 50.11 52.89 60.1 56.7 57.92 100
raefsky3 42.61 35.91 36.6 44.4 38.41 40
raefsky4 61.45 60.76 64.5 75.1 71.02 40
saylr4 0.39 0.52 0.5 1.2 0.51 40
sherman3 0.35 0.37 0.3 0.6 0.36 40
sherman5 0.15 0.18 0.2 0.4 0.17 40
wang3 70.20 50.80 52.6 61.2 54.85 40

main prerequisite for performance.
Table5.9shows results from experiments on randomly generated skyline matrices. The

matrices were generated so they had a changing symmetry factor, i.e. the ratio of all non-
zero matrix entries to the number of entries in the minimal numerically equivalent ma-
trix that was symmetric in structure. The ratio is 0% for matrices without any symmetry
and 100% for structurally symmetric matrices. The experiments were mainly to show the
weakness of theMA41 code – its dependence on matrix’ structural symmetry. While on the
tests matricesMA41 performed exceptionally well (see Table5.6), it is rather slow for highly
structurally unsymmetric matrices and becomes more and more competitive as the matrix’
inherent structural symmetry rises. In a sense though, it cannot become competitive enough
since the blocked symmetric code, that takes advantage of symmetry just likeMA41, is al-
most consistently better. Surprisingly, SuperLU seems to be well (if not the best) suited for
this experimental setting having extremely good overall performance, especially bearing
in mind that for SuperLU the total time is reported rather than just numerical factorization
time. This turns out to be even more unexpected considering the fact that SuperLU does
not use Level 3 BLAS – only Level 2 or lower.
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Table 5.9: Numerical (total in the SuperLU case) factorization time for random skyline
matrices of order 30000 for various direct codes. Symmetry factor isη(A)/η(A+AT) and
is 100% for structurally symmetric matrices.

Symmetry MA41 Unsymmetric Symmetric SuperLU
factor [%] t [s] recursion,t [s] blocked,t [s] t [s]

37 22.7 11.6 38.6 9.7
56 36.8 19.9 35.7 19.9
64 54.5 34.5 34.7 29.9
67 136.1 153.2 35.6 39.9

5.4 Improving Performance of an Iterative Solver

Table 5.10 shows performance results of a reference (unoptimized) implementation of
sparse matrix-vector multiplication routine in row-oriented storage format together with
a code that utilizes the graph compression technique mentioned earlier (see section4.7)
which allows to take better advantage of standard RISC-oriented optimizations (also de-
scribed earlier – see section4.6). The set of the test matrices, although not selected for
practical purposes of this study, but rather influenced by external references, turned out to
be diversified enough to show both strengths and weakness of the optimization based on
graph compression. For matrixgemat11 a 100% performance improvement was possible.
While still it might be due to really low performance of the reference code, nevertheless, for
this matrix there should be a significant improvement against any other known optimization
techniques. Such a good result should be mainly attributed to a high level compression that
was possible for this matrix. Unfortunately, the Bi-CGSTAB algorithm does not converge
for this matrix and so the gains from the optimization cannot be used to obtain a solution
to a linear system (only to detect quicker a breakdown of the solver). On the other hand for
quite many (5 in all) matrices there was no visible improvement against reference imple-
mentation. For these matrices, no graph compression occurs – the original and compressed
graphs are isomorphic. This suggests that the graph compression method should be sup-
plied with other blocking techniques to get at least improvement level. On the positive side,
it has to be noted that compression did not slow the multiplication routine. Other than the
time that was used to compress the graph, no additional overhead is incurred even if the
optimization does not pay off.

Tables5.11and5.12show performance results on the Pentium III computer for refer-
ence (unoptimized) and optimized implementations, respectively, of the Bi-CGSTAB algo-
rithm. Similarly, Tables5.13and5.14show results for unoptimized and optimized codes
but on the Pentium 4 computer. The tables include timings for matrixmat64x32 which re-
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Table 5.10: Performance of the reference and optimized sparse matrix-vector multiplication
routines on the Intel Pentium 4 computer.

Matrix Reference Optimized Improvement
name [Mflop/s] [Mflop/s] [%]
af23560 262.5 295.3 12.5
ex11 279.1 294.2 5.4
gemat11 153.6 307.2 100.0
goodwin 267.6 291.9 9.1
mcfe 240.0 240.0 0.0
memplus 195.5 195.5 0.0
olafu 272.2 287.7 5.7
psmigr 1 285.0 300.9 5.6
raefsky3 268.8 301.7 12.2
raefsky4 269.1 286.7 6.5
saylr4 205.3 205.3 0.0
sherman3 175.3 175.3 0.0
sherman5 191.4 191.4 0.0

Table 5.11: Performance data for the reference (not optimized) Bi-CGSTAB implementa-
tion on the Intel Pentium III computer.

Matrix Number of Correct ‖Ax−b‖∞ tTotal tSDGEMV Perf. tol
Name Iterations Digits [-] [s] [s] [Mflop/s] [-]
jpwh 991 39 9 2×10−09 0.028 0.016 91 10−09

mat64x32 1739 7 2×10−09 66.5 47.4 91 10−09

memplus 1499 5 1×10−10 41 26 53 10−09

orsreg 1 545 6 9×10−06 0.95 0.56 69 10−09

psmigr 1 1524 3 1×10−06 95.5 93.1 44 10−12

saylr4 3387 11 6×10−11 12.3 7.9 73 10−09

sherman3 22737 2 4×10−08 100.4 54.0 53 10−14

sherman5 2259 6 2×10−06 7.0 4.2 59 10−09

venkat01 7317 2 1×10−06 1744 1436 33 10−07

wang3 264 8 7×10−12 10.5 6.4 38 10−09
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Table 5.12: Performance data for the optimized Bi-CGSTAB implementation on the Intel
Pentium III computer.

Matrix Number of Correct ‖Ax−b‖∞ tTotal tSDGEMV Perf. tol
Name Iterations Digits [-] [s] [s] [Mflop/s] [-]
jpwh 991 39 9 5×10−09 0.025 0.014 82 10−09

mat64x32 1765 7 2×10−09 62.3 43.0 38 10−09

memplus 1474 5 2×10−10 43 27 34 10−09

orsreg 1 484 6 9×10−06 0.73 0.43 79 10−09

psmigr 1 1399 3 1×10−06 83.1 80.9 38 10−12

saylr4 3730 11 6×10−11 11.7 6.8 60 10−09

sherman3 17849 2 4×10−08 78.7 43.1 51 10−14

sherman5 2478 6 2×10−06 7.0 4.4 62 10−09

venkat01 6826 2 1×10−06 1652 1354 36 10−09

wang3 259 8 7×10−12 9.8 5.9 38 10−09

Table 5.13: Performance data for the reference (not optimized) Bi-CGSTAB implementa-
tion on the Intel Pentium 4 computer.

Matrix Number of Correct ‖Ax−b‖∞ tTotal tSDGEMV tol
Name Iterations Digits [-] [s] [s] [-]
jpwh 991 39 9 2×10−09 0.006 0.003 10−09

mat64x32 1739 7 2×10−09 10.1 6.0 10−09

memplus 1499 5 1×10−10 7.17 3.9 10−09

orsreg 1 545 6 9×10−06 0.22 0.13 10−09

psmigr 1 1524 3 1×10−06 11.22 10.7 10−12

saylr4 3387 11 6×10−11 2.46 1.4 10−09

sherman3 22737 2 4×10−08 21.17 10.8 10−14

sherman5 2259 6 2×10−06 1.58 0.9 10−09

venkat01 7317 2 1×10−06 250 186 10−07

wang3 264 8 7×10−12 1.69 0.9 10−09
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Table 5.14: Performance data for the optimized Bi-CGSTAB implementation on the Intel
Pentium 4 computer.

Matrix Number of Correct ‖Ax−b‖∞ tTotal tSDGEMV tol
Name Iterations Digits [-] [s] [s] [-]
jpwh 991 39 9 5×10−09 0.007 0.003 10−09

mat64x32 1765 7 1×10−09 9.6 5.8 10−09

memplus 1474 5 2×10−10 6.8 3.7 10−09

orsreg 1 484 6 9×10−06 0.19 0.1 10−09

psmigr 1 1399 3 1×10−06 9.98 9.5 10−12

saylr4 3730 11 6×10−11 2.7 1.6 10−09

sherman3 17849 2 4×10−08 16.6 8.4 10−14

sherman5 2478 6 2×10−06 1.8 1.0 10−09

venkat01 6826 2 1×10−06 222 169 10−09

wang3 259 8 7×10−12 1.6 0.8 10−09

sults from circular boundary conditions on a regular grid – it may be regarded as a generic
matrix for many model 2D problems that are commonly tackled with iterative methods.
To better show how time is distributed between various components of the codes, the time
spend in matrix-vector routine (the routine itself is called twice for every iteration – each
call is timed and accumulated for all calls)tSDGEMV is also included in the tables. Judging
by the number of publications on improvements made to the sparse matrix-vector multi-
plication routine, it should be natural to conclude that this is where most of the time is
spent (barring the use of a preconditioner). The data from the tables to an extent disagree
with this assertion – there are matrices (jpwh 991, sherman3, andsherman5) for which
only half of the time is spent in the multiplication routine. Thus, it is justifiable to optimize
the rest of the code as it was done for the optimized version in Tables5.12and5.14. By
using all the optimizations described earlier (see section4.7), except for graph compres-
sion whose influence was shown earlier, it is possible to reduce the time to solution by
about 10% on average. An interesting result was obtained for matrixwang3 for which the
time is much shorter than for any of the direct methods presented in the preceding sections.
The only superiority exhibited by direct methods is accuracy of the solution – twice as
many correct digits may be worth spending about six times as much on computations. The
rest of the matrices do not pose such a dilemma – any of the direct methods are superior in
terms of time and accuracy. The difference is not in order of magnitude, though.

Another comment is due at this point as to why time to solution was used as the per-
formance metric in Tables5.11, 5.12, 5.13, and5.14. It might be tempting to report time
per iteration and compare it for codes prior and after optimizations. This is especially
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true bearing in mind that the unoptimized and optimized codes perform different number
of iterations (for most of the matrices the optimized code performs less iterations but the
difference does not exceed 10%) to achieve the same level of accuracy and trigger the
stopping criterion. However, a user-centric view was adopted in reporting the data for the
tables. From the user perspective, only the time to obtain a solution (or indication of failure
for that matter) and its quality is important. The details of the implementation are of a
lesser, if not the least, concern.

Finally, it should be mentioned that Tables5.11, 5.12, 5.13, and5.14do not show results
for all the matrices that were used with the direct solvers in the preceding sections, the
reason being lack of convergence for the missing matrices. From a theoretical standpoint an
iterative method that does not converge should be replaced with a different method. From
the user standpoint, however, learning about the failure is as time consuming as delivering a
satisfactory solution. Consequently, even an optimized failing code has an advantage over
an unoptimized one as the former is able to provide quicker information about failure.
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Chapter 6

Conclusions and Implications

6.1 Concluding Remarks

This research completed the set of theoretical results pertaining to the recent algorithmic ad-
vances in decompositional techniques of numerical computational linear algebra for dense
matrices [67, 95, 157]. In addition, a new formulation of recursive LU factorization al-
gorithm has been proposed and applied in sparse matrix computations. The application
was compared with modern software packages. The comparison yielded promising results
on a range of modern computing platforms. Aside from competitive studies, thorough
performance analysis and time breakdown were presented. Also, mixed-language imple-
mentation was tested to give yet greater insight into runtime characteristics of the proposed
algorithm.

In the area of iterative methods, time breakdown was presented for the Bi-CGSTAB
algorithm while applying it to an interdisciplinary set of sparse matrices. Based on the
obtained results, a more holistic approach to optimization of Bi-CGSTAB was shown. The
approach incorporates a newly proposed generalization of theoretical advances in symmet-
ric matrix orderings [14] which results in appreciable speed-up of matrix-vector multipli-
cation for certain types of sparse matrices. Additionally, a set of known optimizations was
used to improve performance of the remaining part of the Bi-CGSTAB algorithm to pro-
vide yet more gains in terms of efficiency and revealing some convergence subtleties which,
however, do not diminish the improvements.

6.2 Recommendations for Further Research

The material from this writing could conceivably be extended in ways that might lead to
potentially useful results.

The use of recursive matrix layout (or any of its suitable variants [93]) could be incor-
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porated into existing multifrontal or supernodal approaches. This could shed more light on
an interesting question as to where the performance comes from in the current implemen-
tation, whether it is the algorithm or the data layout.

Extending the existing code so it handles variable size sub-matrices is also an interest-
ing undertaking as it has been successfully used before [90, 141, 142, 143, 144, 160] but
without recursive algorithm. Another possibility is to let the recursive algorithm be guided
by symbolic data structures like an elimination tree or assembly tree that are naturally cre-
ated during the symbolic phase of the factorizations. In this context, different recursive
tree traversal schemes give wide range of research possibilities. And finally, employing the
recursive code as a preconditioner might yield a viable solution in terms of efficiency and
numerical terms. A new notion of incompleteness in preconditioning is required, though.

In the context of vector and parallel processing, the basic precept of reduction of mem-
ory traffic by the recursive algorithm needs to be revisited and somehow achieve properties
that currently favor block-cyclic schemes [131]. Moreover, the use of recursion could be
a welcome innovation for factorization codes that need to initially obtain the data from a
disk and stage the factored matrix on a disk afterwords.

Certainly, the graph compression technique could use an improvement for matrices
without large subsets of vertices with identical adjacency sets – the very matrices that show
only moderate, none at all, performance increase. The requirement for the adjacency sets
to be identical simplifies and speeds-up the implementation but on the other hand makes
its success extensively dependent on matrix structure. Experiments with efficient algo-
rithms for 0-1 matrices [27] could give some insight into possible progress in this areas.
Also, näıve algorithms (with exponential computational complexity) for testing similari-
ties (rather than identity) between adjacency sets could be tackled with techniques from the
field of Fixed Parameter Tractability [68, 69, 70, 71, 111, 112].

As far as iterative methods are concerned, it would be interesting to see how much
slower an iterative solver is for, say, two right-hand sides. If it is comparable, then it
might be possible to iterate simultaneously on more than one vector which would increase
robustness of any iterative method. Another question is how these simultaneous vectors
and their corresponding right-hand sides should be related to yield faster convergence.

The results for block variants of popular iterative solvers do not give enough guidance
for possible implementations. The common result on convergence rate for the CG algo-
rithm states that [128, 146]:

‖x−xi‖A≤ 2‖x−x0‖A
(√

κ−1√
κ+1

)i

(6.1)

for Ax= b linear system withκ being a condition number ofA andxi being the iterates.
The result (6.1) is proven for each component separately in the case of a block method with
multiple right-hand side. Maybe a better monitoring strategy be possible if one or more of
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the iterated vectors is known from the onset – this would probably require a generalization
of equation (6.1).
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Definition of Terms

Acronyms

AMD Approximate Minimum Degree (ordering)

API Application Programming Interface

ATLAS Automatically Tuned Linear Algebra Software [56, 163]

CISC Complex Instruction Set Computer

CG Conjugate Gradient

CPU Central Processing Unit

BLAS Basic Linear Algebra Subroutines [47, 48, 50, 49] Routines referenced in the text:

• xSCAL – multiply a vector by a scalar,

• IxAMAX – find an element of a vector having the largest absolute value,

• xGEMV – matrix-vector multiplication

• xTRSM – triangular solve for multiple right-hand sides,

• xGEMM – matrix-matrix multiplication

Symbolx in each name specifies the floating point precision of matrix/vector it may
be eitherS, D, C, orZ which corresponds to single and double precision real and single
and double precision complex numbers.

flop floating point operation (also flop/s for number of floating point operations per sec-
ond)

FP floating point (arithmetic)

LAPACK Linear Algebra PACKage [11]. Routines referenced in the text:

81



• xGETRF – performs LU factorization with partial row pivoting based on Level 3
BLAS routines

• xLASWP – performs row pivoting

Symbolx has the same meaning as in BLAS.

FFT Fast Fourier Transform

IBM International Business Machines

KiB kibibyte1 (kilobinary): 210 (1024) bytes

MiB mebibyte (megabinary): 220 (1048576) bytes

MMD Multiple Minimum Degree (ordering)

MUMPS MUltifrontal Massively Parallel sparse direct Solver

NP Non-deterministic Polynomial (algorithm)

OS Operating System

RISC Reduced Instruction Set Computer, also Superscalar RISC [150] – a RISC processor
with multiple functional units

SANS Self Adapting Numerical Software

SMP Symmetric Multi-Processor

UMFPACK Unsymmetric Multifrontal PACKage

WSMP Watson Sparse Matrix Package

VPU Vector Processing Unit

Mathematical Symbols

IR set of real numbers
A,L,U real matrices:A,L,U ∈ IRm×n, A = [ai j ] 1≤ i ≤m,1≤ j ≤ n
‖ · ‖p matrix or vector norm:

‖x‖p = (∑n
i=1 |xi |p)1/p

‖A‖p = supx6=0‖Ax‖p/‖x‖p

1Seehttp://physics.nist.gov/cuu/Units/binary.html.
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‖A‖F = (∑m
i=1∑n

j=1 |ai j |2)1/2

where:A∈ IRm×n; x∈ IRn m,n∈ {1,2, . . .};1≤ p≤+∞
‖ · ‖A A-norm of a vector (A must be positive definite):

‖x‖A =
√

xTAx A∈ IRn×n;x∈ IRn

κp(A) p-norm matrix condition number:κp(A) = ‖A‖p ‖A−1‖p

U(A) upper triangular part of the matrix including the diagonal:

U(A) = [ui j ] ui j =
{

ai j if i ≤ j
0 if i > j

L1(A) lower triangular part of the matrix with unitary diagonal:

L1(A) = [l i j ] l i j =


0 if i < j
1 if i = j

ai j if i > j
IPn set ofn by n permutation matrices, i.e. identity matrices with

rearranged rows
η(A) number of (structural) nonzero entries in matrixA
n(A) dimension of matrixA

mB, nB blocking factors for the first and second matrix dimensions
float(x) floating point representation ofx

ε machine floating point precision:ε = maxe>0float(1+e) = 1
x̂ approximation ofx

ξ(x̂,x) relative forward error:
ξ(x̂,x) = (x− x̂)/x≡ FERR(x̂,x)

r(x̂) scaled residual (backward error) ofAx= b:
r(x̂) = (‖Ax̂−b‖)/(‖A‖‖x̂‖nε)

logx logarithm of base 2: logx≡ log2x (unless stated otherwise)
min{. . .} smallest value
O( f (n)) functions of orderf (n):

O( f (n)) = {g | ∃a,b,N∀n>N a f(n)≤ g(n)≤ b f(n)}
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