
A Framework for Efficient Execution of

Matrix Computations

Doctoral Thesis

May 2006

José Ramón Herrero

Advisor: Prof. Juan J. Navarro

UNIVERSITAT POLITÈCNICA DE CATALUNYA
Departament D’Arquitectura de Computadors

To Joan and Albert
my children

To Eugènia
my wife

To Ramón and Gloria
my parents

Stillicidi casus lapidem cavat
Lucretius

(c. 99 B.C.-c. 55 B.C.)
De Rerum Natura1

1Continual dropping wears away a stone. Titus Lucretius Carus. On the nature of things

Abstract

Matrix computations lie at the heart of most scientific computational tasks.
The solution of linear systems of equations is a very frequent operation in many
fields in science, engineering, surveying, physics and others. Other matrix op-
erations occur frequently in many other fields such as pattern recognition and
classification, or multimedia applications. Therefore, it is important to perform
matrix operations efficiently. The work in this thesis focuses on the efficient
execution on commodity processors of matrix operations which arise frequently
in different fields.

We study some important operations which appear in the solution of real
world problems: some sparse and dense linear algebra codes and a classification
algorithm. In particular, we focus our attention on the efficient execution of
the following operations: sparse Cholesky factorization; dense matrix multipli-
cation; dense Cholesky factorization; and Nearest Neighbor Classification.

A lot of research has been conducted on the efficient parallelization of nu-
merical algorithms. However, the efficiency of a parallel algorithm depends
ultimately on the performance obtained from the computations performed on
each node. The work presented in this thesis focuses on the sequential execution
on a single processor.

There exists a number of data structures for sparse computations which can
be used in order to avoid the storage of and computation on zero elements. We
work with a hierarchical data structure known as hypermatrix. A matrix is
subdivided recursively an arbitrary number of times. Several pointer matrices
are used to store the location of submatrices at each level. The last level con-
sists of data submatrices which are dealt with as dense submatrices. When the
block size of this dense submatrices is small, the number of zeros can be greatly
reduced. However, the performance obtained from BLAS3 routines drops heav-
ily. Consequently, there is a trade-off in the size of data submatrices used for a
sparse Cholesky factorization with the hypermatrix scheme. Our goal is that of
reducing the overhead introduced by the unnecessary operation on zeros when a
hypermatrix data structure is used to produce a sparse Cholesky factorization.
In this work we study several techniques for reducing such overhead in order to
obtain high performance.

One of our goals is the creation of codes which work efficiently on different
platforms when operating on dense matrices. To obtain high performance, the
resources offered by the CPU must be properly utilized. At the same time, the
memory hierarchy must be exploited to tolerate increasing memory latencies. To
achieve the former, we produce inner kernels which use the CPU very efficiently.
To achieve the latter, we investigate nonlinear data layouts. Such data formats
can contribute to the effective use of the memory system.

i

ii

The use of highly optimized inner kernels is of paramount importance for
obtaining efficient numerical algorithms. Often, such kernels are created by
hand. However, we want to create efficient inner kernels for a variety of proces-
sors using a general approach and avoiding hand-made codification in assembly
language. In this work, we present an alternative way to produce automatically
efficient kernels based on a set of simple codes written in a high level language,
which can be parameterized at compilation time. The advantage of our method
lies in the ability to generate very efficient inner kernels by means of a good
compiler. Working on regular codes for small matrices most of the compilers we
used in different platforms were creating very efficient inner kernels for matrix
multiplication. Using the resulting kernels we have been able to produce high
performance sparse and dense linear algebra codes on a variety of platforms.

In this work we also show that techniques used in linear algebra codes can
be useful in other fields. We present the work we have done in the optimization
of the Nearest Neighbor classification focusing on the speed of the classification
process.

Tuning several codes for different problems and machines can become a
heavy and unbearable task. For this reason we have developed an environment
for development and automatic benchmarking of codes which is presented in
this thesis.

As a practical result of this work, we have been able to create efficient codes
for several matrix operations on a variety of platforms. Our codes are highly
competitive with other state-of-art codes for some problems.

Acknowledgements

My family and me have undergone really tough moments these years. I feel
joyful we have overcome them. I am also glad that such situations have allowed
me to learn many things. One of the most important is to be thankful.

I want to express my deepest gratitude to Eugènia, my wife. She has taken
care of a really large number of important things to allow me to work an un-
countable number of hours; she cheered me up when I was feeling down; she has
been besides me at all times.

This work, as it is, would have never been achieved without the support of
my parents. They have supported and encouraged me all my life, providing
me with the means to study what I wanted. I feel really thankful for the scale
of values I have inherited from them. Thanks to Javier, my brother, for his
company and faith in me. I also feel indebted to my family in-law. They have
supported us when our children were sick or I was working very hard, i.e. always.

I want to thank Juanjo Navarro, my supervisor for granting me the oppor-
tunity to work in our department. He has given me good advice while he has
let me do it my way. He has been very patient and has trusted me.

It has been important for me to receive the encouragement of Jenny Edwards
and Cristina Barrado. They have shown interest in my work, offered their help
and insisted that it was time to finish. My recognition also for Oriol Riu. Some
of my jobs had large memory requirements and didn’t fit into normal batch
queues. He kindly scheduled my processes in special queues to run overnight or
during the weekends.

I thank all my office-mates and all the other colleagues with which I have
been teaching undergraduate courses for being so easy going. I would like to
acknowledge the system administrators in LCAC and CEPBA for their good
work keeping the systems up and running, and the department’s administrative
staff which manage to make bureaucracy less painful. Many thanks to some col-
leagues which offered support, complicity, resources and warm words: Agust́ın
Fernández, David López, Josep L. Larriba, Jordi Torres, Xavier Martorell, Enric
Morancho, Mateo Valero, J.C. Cruellas, Leandro Navarro and Miguel Lechón.

Thanks to V. Olivé, M. Antoni, X. Muro, R. Mart́ınez, S. Stroke and C.
Naranjo among others for contributing to my self-consciousness and to overcome
some of my limitations. There are many other people towards which I feel
gratitude. Most of them will never read this but I have them in my heart.

And finally, the last, but not least part. Some will agree that matrix compu-
tations are important. Few would discuss that health is of extreme importance.
Thanks to J. Moreno, X. Krauel and their team at Hospital Sant Joan de Déu
in Barcelona for helping our son Albert save his life. Thanks to C. Casajoana
and G. Tissedre for keeping my family and me alive and kicking.

Eugènia, Joan and Albert: thanks for coming. Thanks for staying.

iii

Good Use Right

It is strictly prohibited to use, to investigate or to develop, in a direct or indirect
way, any of the scientific contributions of the author contained in this work by
any army or armed group in the world, for military purposes and for any other
use which is against human rights or the environment, unless a written consent
of all the persons in the world is obtained.

Funding

This work was supported by the Ministerio de Educación y Ciencia of Spain
(TIN2004-07739-C02-01).

Contents

Abstract i

Acknowledgements iii

Contents v

List of Figures viii

List of Tables xii

1 Introduction 1
1.1 Motivation . 1
1.2 Goals . 1
1.3 Overview . 2

2 Compiler-optimized inner kernels 7
2.1 Introduction . 7
2.2 Generation of efficient inner kernels 8

2.2.1 Taking advantage of compiler optimizations 9
2.2.2 Smoothing the way to the compiler 9

2.3 Creation of a Small Matrix Library (SML) 9
2.3.1 A Poly-Algorithmic Approach 10

2.4 Inner matrix multiplication kernel: sparse codes 11
2.5 Inner matrix multiplication kernel: dense codes 13
2.6 Generalization of the matrix multiplication 15
2.7 Alignment . 16
2.8 Conclusions . 16

3 Sparse Hypermatrix Cholesky 19
3.1 Background . 19
3.2 Hypermatrix data structure . 20
3.3 Matrix characteristics . 21
3.4 Reducing overhead . 22

3.4.1 Using SML routines . 23
3.4.2 Rectangular data submatrices 24
3.4.3 Bit Vectors . 24
3.4.4 Windows within data submatrices 25

3.5 1D vs 2D data layouts and computations 26
3.6 First results and analysis . 27

v

vi CONTENTS

3.6.1 Problems solved using Interior Point Methods 27
3.6.2 Problems solved using Finite Element Analysis 31
3.6.3 Analysis of sparse hypermatrix Cholesky 32

3.7 Amalgamation . 36
3.7.1 Intra-block amalgamation 36
3.7.2 Hypermatrix oriented supernode amalgamation 43

3.8 Other considerations on sparse HM Cholesky 51
3.8.1 Porting efficiency to a new platform 51
3.8.2 Sparse matrix reordering 52
3.8.3 Data submatrix storage: compression 55
3.8.4 Larger data submatrices: performance 56
3.8.5 Sparse HM Cholesky vs WSSMP: Performance 57
3.8.6 Future work . 59
3.8.7 Conclusions . 60

4 Operation on dense matrices 61
Nonlinear array layouts.
4.1 Introduction . 61
4.2 A bottom-up approach . 64

4.2.1 Inner kernel based on SML 65
4.3 Hypermatrix storage . 65

4.3.1 Exploiting the memory hierarchy 65
4.3.2 Parallel dense HM multiplication using OpenMP 68
4.3.3 Data submatrix storage: Column versus row storage and

alignment . 74
4.4 Square Block Format (SB) . 75
4.5 Final considerations . 77

5 Application to other fields: NN Classification 79
5.1 Introduction . 79

5.1.1 Computer resources . 79
5.1.2 Nearest Neighbor Classification 80
5.1.3 Data and Computation Diagram 81
5.1.4 Related Work . 82
5.1.5 Processor Overview . 82
5.1.6 Performance Metrics . 83

5.2 Algorithm Analysis . 83
5.2.1 The NC(cpu) Component 84
5.2.2 The NC(mem) Component 85

5.3 Block Algorithm . 87
5.4 Optimization details . 88
5.5 Conclusions . 92

6 POSTDATE 93
Performance Oriented SofTware Development & Tuning Env.
6.1 Development tools . 94

6.1.1 Introduction . 94
6.1.2 System Architecture . 95
6.1.3 Available Operations . 99
6.1.4 Related Work . 102

CONTENTS vii

6.1.5 Conclusions . 103
6.2 Accurate Measurements . 103

6.2.1 Related work . 104
6.2.2 Theoretical foundations 104
6.2.3 Design . 106
6.2.4 User files . 106
6.2.5 System files . 107
6.2.6 Conclusions . 110

6.3 Benchmarking tool . 110
6.3.1 Automatic benchmarking: motivation 111
6.3.2 Automatic performance optimization of libraries 111
6.3.3 Features of BMT at a glance 111
6.3.4 Important aspects of automatic benchmarking 112

7 Conclusions and future work 115

Bibliography 119

viii CONTENTS

List of Figures

1.1 Overview of the main parts of this work. 6

2.1 Performance of different A×BT routines for several matrix sizes
on an Alpha 21164. 12

2.2 Performance of different A×BT routines for several matrix sizes
on an R10000. 13

2.3 Peak performance of SML dense matrix multiplication routines:
Alpha 21264A. 14

2.4 Peak performance of SML dense matrix multiplication routines:
Intel Itanium2. 14

2.5 Peak performance of SML dense matrix multiplication routines:
Power4 and Pentium 4. 15

3.1 A sparse matrix and a corresponding hypermatrix. 20
3.2 Static partition of a matrix: definition of blocks and example of

use. 23
3.3 Impact of the matrix multiplication routine on sparse hyperma-

trix Cholesky. 24
3.4 Bit Vectors: Definition . 25
3.5 Using Bit Vectors. 25
3.6 Windows within dense submatrices. 26
3.7 Windows: column-wise intersection. 27
3.8 Performance of hypermatrix Cholesky with bit vectors and windows 28
3.9 SN vs HM performance. 30
3.10 SN vs HM Cholesky for 3 matrix families: a) Tripart; b) PDS;

c) QAP. 31
3.11 Performance of several sparse Cholesky factorization codes: IPM. 32
3.12 Performance of several sparse Cholesky factorization codes: FEA. 32
3.13 Sparse HM Cholesky: performance for several input matrices in

IPM. 33
3.14 Increase in number of floating point operations in sparse HM

Cholesky w.r.t. the minimum: windows reduce the number of
operations on zeros. 33

3.15 Sparse HM Cholesky using windows in data submatrices of size
4x32: Increase in number of operations. 34

3.16 Sparse HM Cholesky: Percentage of calls to each A × BT sub-
routine type. 35

3.17 Sparse HM Cholesky: flops per A × BT subroutine type. 35

ix

x LIST OF FIGURES

3.18 Calls, flops and time per A × BT subroutine type: QAP8 and
QAP12. 36

3.19 Four matrix multiplication routines. 37
3.20 Original data submatrix before intra-block amalgamation. 37
3.21 Data submatrix after row-wise intra-block amalgamation. 38
3.22 Data submatrix after column-wise intra-block amalgamation. . . 38
3.23 Data submatrix after applying both row and column-wise intra-

block amalgamation. 39
3.24 Intra-block amalgamation: matrix QAP8. 39
3.25 Intra-block amalgamation: matrix QAP12. 40
3.26 Intra-block amalgamation: matrix TRIPART1. 40
3.27 Intra-block amalgamation: matrix TRIPART2. 41
3.28 Intra-block amalgamation: matrix pds10. 41
3.29 Intra-block amalgamation: matrix pds20. 41
3.30 Performance of sparse HM Cholesky without and with intra-block

amalgamation. 42
3.31 Performance of several sparse Cholesky factorization codes. . . . 42
3.32 a) Two supernodes. b) Supernode amalgamation into a single

supernode which contains zeros. 43
3.33 Merge one child node into its parent. 44
3.34 Merge all child nodes into their parent. 44
3.35 Merge some child nodes into their parent. 44
3.36 Performance of five amalgamation algorithms on matrices pds10

(left) and TRIPART1 (right). 45
3.37 Performance obtained with each amalgamation threshold using

algorithm 4. 46
3.38 Average improvement per amalgamation threshold compared to

the static partitioning. 46
3.39 Effect on performance of amalgamation algorithm 4 with different

threshold values in factorization of matrix GRIDGEN1. 47
3.40 Increase in total number of floating point operations (left) and

total number of calls to A×Bt routines (right) on matrix GRID-
GEN1 with amalgamation algorithm 4. 47

3.41 Percentage of calls to each AxBt subroutine type: GRIDGEN1. . 48
3.42 Floating point operations per AxBt subroutine type: GRIDGEN1. 48
3.43 Percentage of flops performed by each AxBt routine: static (left)

vs dynamic (right). 49
3.44 Performance of hypermatrix Cholesky: static vs dynamic parti-

tioning. 49
3.45 Performance of several sparse Cholesky factorization codes. . . . 49
3.46 Number of fronts obtained with each amalgamation algorithm:

matrix pds10 (left) and TRIPART1 (right). 50
3.47 Number of fronts per amalgamation threshold with algorithm 4. 51
3.48 Sparse HM Cholesky on an Intel Itanium2: Performance obtained

with different values of intra-block amalgamation on submatrices
of size 4 × 32 on matrix pds20. 52

3.49 Number of iterations necessary to amortize cost of improved or-
dering. 54

3.50 Data submatrices before compression. 55
3.51 Data submatrices after compression. 55

LIST OF FIGURES xi

3.52 HM structure: reduction in space after submatrix compression. . 56

3.53 Sparse HM Cholesky: variation in execution time for each sub-
matrix size relative to size 4 × 32. 57

3.54 Sparse HM Cholesky vs WSSMP LP. 58

3.55 Sparse HM Cholesky vs WSSMP using several ordering algorithms. 58

4.1 Performance of dense matrix multiplication for several hyperma-
trix configurations on an Intel Itanium 2 processor. 66

4.2 Two examples of Multilevel Orthogonal Block forms 66

4.3 Performance of HM dense matrix multiplication for several loop
orders on an Intel Itanium 2. 67

4.4 Performance of HM dense matrix multiplication for several loop
orders on an Alpha 21264A processor. 68

4.5 Performance of dense codes using hypermatrices on a MIPS R10000. 68

4.6 Performance of dense codes using hypermatrices on an Alpha
21264A. 69

4.7 Performance of dense codes using hypermatrices on an Itanium 2. 69

4.8 a) Two parallel loops with dynamic scheduling and several chunk
sizes on 8, 4 and 1 processors. b) Performance of ATLAS’ DGEMM. 71

4.9 a) Two parallel loops with dynamic scheduling: smaller blocks.
b) Three loops parallelized (one in the level of pointers to data). 71

4.10 a) One and two parallel loops with static scheduling. b) Parallel
outer loop with dynamic scheduling and several chunk sizes. . . . 72

4.11 a) Static scheduling of outermost loop and dynamic scheduling
of next inner loop. b) Maximum values obtained for each block
size and scheduling algorithm. 73

4.12 Experiments with different OpenMP features when the hyperma-
trix is partitioned for perfect load balancing. 73

4.13 Square Block Format: matrices aligned and stored by submatrices. 75

4.14 Performance of dense matrix multiplication on Pentium4 & Ita-
nium 2. 76

4.15 Performance of dense matrix multiplication on a Power4 processor. 76

5.1 Codes for the a) jki and b) jki exit forms 81

5.2 Data and Computation Diagram for the jki form of NN classifi-
cation . 81

5.3 Probability distribution of the number of iterations of the inner
loop computed for a) Real application and b) Random initialization 84

5.4 a) Code for the block form. b) Data and Computation Diagram
for the block form. 88

5.5 Comparison of NC for different data types (grouped by problem
sizes) . 88

5.6 Comparison of NC for different problem sizes (grouped by data
types) . 89

5.7 Dependence graph of inner kernel: square of Euclidean distance. 89

5.8 Dependence graph: rectangular block 6 × 1. 90

5.9 Dependence graph: square block 3 × 3. 90

5.10 Alpha AXP-21064: Comparison of NC for different codes on a
large problem. 91

xii LIST OF FIGURES

6.1 System architecture. 95
6.2 Files automatically included. 97
6.3 Example: User Makefiles and file system tree. 101
6.4 Template files in ACME and their relation. 106

List of Tables

2.1 Some implementations of the C = C − A × BT operation. 11
2.2 Cache sizes . 15
2.3 Floating-point load latency (minimum) when load hits in cache. . 15
2.4 Peak Mflops of inner kernel on a Pentium 4 Xeon Northwood. . . 16

3.1 Matrix characteristics: application of Interior Point Methods. . . 21
3.2 Matrix characteristics: applications of Finite Element Analysis . 22
3.3 Supernodal vs Hypermatrix Cholesky: Effective Mflops 29
3.4 Performance of the C = C−A×BT matrix multiplication routine

for each submatrix size. 57

5.1 NC obtained for different problem sizes and data distributions:
HP PA-7150 . 85

5.2 NC obtained for different problem sizes 85
5.3 NC on the PA-7150 for large problems without and with block

algorithms . 87
5.4 NC obtained with hand optimized code on the AXP-21064 . . . 91

xiii

Chapter 1

Introduction

This chapter introduces the goals and topics covered in this doctoral dissertation
relating them to the corresponding sections in the document.

1.1 Motivation

Matrix computations lie at the heart of most scientific computational tasks.
The solution of linear systems of equations is a very frequent operation in many
fields in science, engineering, surveying, physics and others. Other matrix op-
erations occur frequently in many other fields such as pattern recognition and
classification, or multimedia applications. Therefore, it is important to perform
matrix operations efficiently. The work in this thesis focuses on the efficient
execution of some frequent matrix operations on commodity processors.

1.2 Goals

The main goal of this thesis is that of obtaining efficient implementations of
codes which operate on matrices. We are interested in operations which arise
frequently in different fields. We will study some important operations which
appear in the solution of real world problems: some sparse and dense linear
algebra codes and a classification algorithm. In particular, we will focus our
attention on the efficient execution of the following operations: sparse Cholesky
factorization; dense matrix multiplication; dense Cholesky factorization; and
Nearest Neighbor Classification.

A lot of research has been conducted on the efficient parallelization of nu-
merical algorithms. However, the efficiency of a parallel algorithm depends ulti-
mately on the performance obtained from the computations performed on each
node. The work presented in this thesis will focus on the sequential execution
on a single processor.

There exists a number of data structures for sparse computations which can
be used in order to avoid the storage of and computation on zero elements. We
work with a hierarchical data structure known as hypermatrix. A matrix is
subdivided recursively an arbitrary number of times. Several pointer matrices
are used to store the location of submatrices at each level. The last level consists
of data submatrices which are dealt with as dense submatrices. Our goal is that

1

2 CHAPTER 1. INTRODUCTION

of reducing the overhead introduced by the unnecessary operation on zeros when
a hypermatrix data structure is used to produce a sparse Cholesky factorization.

One of our goals is the creation of codes which work efficiently on different
platforms when operating on dense matrices. To obtain high performance, the
resources offered by the CPU must be properly utilized. At the same time, the
memory hierarchy must be exploited to tolerate increasing memory latencies.
To achieve the former, we want to produce inner kernels which use the CPU
very efficiently. We would like to create them for a variety of processors. How-
ever, we want to achieve this using a general approach, avoiding hand-made
codification in assembly language. To achieve the latter, we want to investigate
nonlinear data layouts. Such data formats can contribute to the effective use of
the memory system.

We want to show that techniques used in linear algebra codes can be useful
in other fields. To do this, we will optimize another important algorithm: the
Nearest Neighbor classification. We will focus on the speed of the classification
process.

In summary, we would like to identify the key points for obtaining high
performance from matrix computations and be able to create efficient codes for
several matrix operations on a variety of platforms.

1.3 Overview

Next, we will briefly introduce the topics covered in this work. For each of them
we include the corresponding ACM categories and subject descriptors.

Compiler-optimized inner kernels

Categories and Subject Descriptors

G.1.3 [Numerical Analysis]: Numerical Linear Algebra
G.4 [Mathematical Software]: Efficiency

General Terms Algorithms, performance

Keywords Inner kernel, dense matrix multiplication.

The efficiency of the inner kernel is of paramount importance for the overall
performance of an algorithm. For this reason the inner kernel is usually coded by
hand using assembly language. However, this is a difficult and time consuming
task when this work has to be done for many platforms. We are interested
in developing high performance inner kernels using a high level language. We
address the issue of generating high performance inner kernels in the following
way: we produce specialized routines which allow for the efficient execution of
basic linear algebra codes on small matrices (matrices which fit in the first cache
level). We can automatically tune these routines for different matrix sizes for
a given platform. We introduce these routines in a library which we call the
Small Matrix Library (SML). Then, we can use such routines as inner kernels for
operations on sparse and dense matrices. This topic is explained in chapter 2.

1.3. OVERVIEW 3

Sparse Cholesky Factorization

Categories and Subject Descriptors

G.1.3 [Numerical Analysis]: Numerical Linear Algebra—linear systems, sparse,
structured, and very large systems (direct methods)
G.2.2 [Discrete mathematics]: Graph Theory—graph labeling
G.4 [Mathematical Software]: Efficiency

General Terms Algorithms, performance

Keywords Sparse Cholesky, hypermatrix, sparse matrix ordering, elimination
tree, amalgamation, matrix multiplication.

One of the most frequently occurring problems in all areas of scientific en-
deavor is that of solving a system Ax = b of n linear equations in n unknowns.
Depending on the characteristics of the problem different methods can be used
to solve them. It is a basic tenet of numerical analysis that structure should be
exploited whenever solving a problem. Algorithms for general matrix problems
can be streamlined in the presence of such properties as symmetry, definiteness
and sparsity [66]. A very important operation is the Sparse Cholesky factoriza-
tion of a symmetric positive definite matrix. This operation is used frequently
in applications of Finite Element Methods as well as in Interior Point Methods
of linear programming, taking a substantial proportion of their total computing
time.

In chapter 3 we will provide some details on the work we have done in order
to produce a rather efficient implementation of a sparse Cholesky factorization
using a hypermatrix [61], data structure (defined in section 3.2). We have de-
veloped several overhead reduction techniques trying to reduce the operations
on zeros which can be stored within data submatrices. Section 3.4.1 shows that
an important contribution to the performance improvement obtained by our
sparse hypermatrix Cholesky comes from the usage of routines from our SML.
The use of these routines, specialized in the operation on matrices of a given
and small size, allows us to reduce data block size while keeping BLAS3 per-
formance. In fact, section 3.4.2 shows that the best results are obtained when
rectangular data submatrices are used. We have tried to reduce the number of
non productive operations performed on parts of submatrices which are full of
zeros. Sections 3.4.3 and 3.4.4 present the results obtained by using bit vectors
and windows of non-zeros within data submatrices. Both techniques improve
the performance of our sparse hypermatrix Cholesky factorization. However,
the former becomes unnecessary when the latter is used. We have also inves-
tigated two forms of amalgamation for use in a sparse hypermatrix Cholesky:
in both cases we allow for the possibility of storing zeros and performing com-
putations on them. First, using Intra-block amalgamation we extend windows
within data submatrices under certain circumstances. We present this tech-
nique in section 3.7.1. Second, we have developed algorithms which implement
a hypermatrix oriented supernode amalgamation. Only some matrices benefit
from this technique in a sequential code. However, the resulting hypermatrix
is better partitioned for parallel factorization. These algorithms are presented
in section 3.7.2. In section 3.5 we show that a 2D recursive data layout and
scheduling of the computations is beneficial to the efficient computation of the

4 CHAPTER 1. INTRODUCTION

Cholesky factorization of large sparse matrices. Final considerations on sparse
hypermatrix Cholesky factorization are presented in section 3.8.

We have compared the performance of our sparse hypermatrix Cholesky fac-
torization with that of codes using traditional approaches such as supernodal
and multifrontal codes. A package which includes implementations of those two
methods is TAUCS. The implementation in TAUCS is known to provide reason-
able performance [68]. We have found that our code outperforms TAUCS for
many problems arising in Interior Point Methods, providing similar performance
on matrices taken from the application of the Finite Element Method.

Operation on dense matrices

Categories and Subject Descriptors

G.1.3 [Numerical Analysis]: Numerical Linear Algebra
G.4 [Mathematical Software]: Efficiency
E.1 [Data Structures]: Arrays

General Terms Algorithms, performance

Keywords Dense Cholesky, dense matrix multiplication, hypermatrix, square
block data layout.

One of our goals is the creation of codes which work efficiently on different
platforms when operating on dense matrices. For this reason we must exploit the
machine resources as effectively as we can. Our efforts will go in two directions:
first, try to use the resources within the CPU efficiently; second, exploit the
memory hierarchy adequately. To achieve the former we use the routines in our
SML as inner kernels. To carry out the latter we have investigated the usage
of two nonlinear array layouts: a hypermatrix scheme and a square block data
layout.

As it can be seen in chapter 4, the use of hypermatrices with SML routines
as inner kernels is quite competitive on some platforms. Recently, however, we
have used a different data structure: a Square Block data layout (SB) which
can be found in section 4.4. Basically, this is a two dimensional layout of square
data submatrices. Using this data structure we have reduced some overhead in-
curred by the recursive codes which operate on the hypermatrix data structure.
The resulting Mflops rate increased to outperform that of ATLAS [167] double
precision general matrix multiplication (DGEMM) routine on some platforms,
and got very close to their performance on other machines in which ATLAS
relies on hand-made inner kernels coded in assembler.

Application to other fields: Nearest Neighbor Classification

Categories and Subject Descriptors

I.5.4 [Pattern Recognition]: Applications
I.5.2 [Pattern Recognition]: Design Methodology—Classifier design and eval-
uation

General Terms Algorithms, measurement, performance

1.3. OVERVIEW 5

Keywords Nearest Neighbor classification

The Nearest Neighbor (NN) classification procedure is a popular technique in
pattern recognition, speech recognition, multitarget tracking, medical diagnosis
tools, etc. A major concern in its implementation is the immense computational
load required in practical problem environments. Other important issues are
the amount of storage required and the data access time. In chapter 5 we
address these issues by using techniques widely used in linear algebra codes:
use floating-point operations instead of integer arithmetic, apply tiling, loop
unrolling or software pipelining. We show that a simple code can be very efficient
on commodity processors and can sometimes outperform complex codes which
can be more difficult to implement efficiently. This is something which this
application has in common with the sparse codes: sometimes it can pay off to
do more operations, as long as they are performed faster.

POSTDATE: Performance Oriented SofTware Development
And Tuning Environment

Categories and Subject Descriptors

D.2.8 [Software Engineering]: Metrics—Performance measures
D.2.4 [Software Engineering]: Software/Program Verification—Validation
D.2.13 [Software Engineering]: Reusable Software—Reusable libraries
G.4 [Mathematical Software]: Efficiency

General Terms Algorithms, measurement, performance

Tuning several basic linear algebra codes for many matrix sizes and ma-
chines became a heavy and unbearable task. For this reason we developed an
environment, presented in chapter 6, which consists of three components.

• maker : A front-end to make to ease the build process.
As the amount of software developed grew and more platforms were used,
a need for a simplification of the build process appeared. We created
an environment for the development of programs which can be found in
section 6.1.

• ACME : A framework to ensure accurate measurements.
Getting accurate measurements for all our benchmarks is of paramount
importance. For this reason we developed a set of routines which ease this
process. Details are provided in section 6.2.

• BMT : A benchmarking tool.
A framework to handle the tuning process automatically. Such framework,
is introduced in section 6.3.

Figure 1.1 shows the relations among some parts of the work done during
the development of this thesis and connects them to the corresponding chapters
in the dissertation. SML is a key part for the efficient execution of both dense
and sparse codes. We used maker, ACME, and BMT to develop most of our
codes and benchmark them.

6 CHAPTER 1. INTRODUCTION

SML

Sparse

[Ch.6]

[Ch.2]

Dense

[Ch.3]

[Ch.4,5]

BMT

ACME
maker

POSTDATE

Figure 1.1: Overview of the main parts of this work.

Chapter 2

Compiler-optimized inner
kernels

The use of highly optimized inner kernels is of paramount importance for ob-
taining efficient numerical algorithms. Often, such kernels are created by hand.
In this chapter, however, we present an alternative way to produce efficient ker-
nels based on a set of simple codes which can be parameterized at compilation
time. Using the resulting kernels we have been able to produce high performance
sparse and dense linear algebra codes on a variety of platforms.

2.1 Introduction
Creation of efficient code has traditionally been done manually using assembly
language and based on a great knowledge of the target architecture. Such an
approach, however cannot be easily undertaken for many target architectures
and algorithms. Alternatively, codes specially optimized for a particular target
computer can be written in a high level language [105, 134]. This approach
avoids the use of the assembly language but keeps the difficulty of manually
tuning the code. It still requires a deep knowledge of the target architecture
and produces a code that, although portable, will rarely be efficient on a different
platform.

Many linear algebra codes can be implemented in terms of matrix multi-
plication [9, 104]. Thus, it is important to have efficient matrix multiplication
routines at hand. The Fortran implementation of Basic Linear Algebra Sub-
routines (BLAS) [47] is inefficient, and developing efficient codes for a variety
of platforms can take a great effort. Consequently, there have been attempts
to produce such codes automatically. A new paradigm was created: Auto-
mated Empirical Optimization of Software (AEOS). The goal is to use empiri-
cal timings to adapt a package automatically to a new computer architecture.
PHiPAC [27] was the first such project. Later, the Automatically Tuned Lin-
ear Algebra Software (ATLAS) project [167] appeared, which continues to date.
Today, ATLAS-tuned libraries represent one of the most widely used libraries.
Automatic code generation and empirical search has also been applied in other
fields. The specific problem of sparse matrix vector multiplication is addressed
in the SPARSITY project [99]. In the signal processing domain, FFTW [59] au-

7

8 CHAPTER 2. COMPILER-OPTIMIZED INNER KERNELS

tomatically tunes an implementation of the discrete Fourier transform (DFT).
Code generation in search for portable optimal performance for linear digital
signal processing is studied in the SPIRAL project [149].

ATLAS uses many well known optimization techniques developed by both
linear algebra and compiler optimization experts. However, and despite its
name, a great effort has been applied to produce high performance inner ker-
nels for matrix multiplication using hand-coded routines contributed by some
experts. Directory tune/blas/gemm/CASESwithin the ATLAS distribution con-
tains about 90 files which are, in most cases, written in assembler, or use some
instructions written in assembler to do data prefetching. Often, one or more
of these codes outperform the automatically generated codes. The best code is
automatically selected as the inner kernel. The use of such hand-made inner
kernels has improved significantly the overall performance of ATLAS subrou-
tines on some platforms. Many processors have specific kernels built for them.
However, there exist processors for which no such hand-made codes are avail-
able. Then, the performance obtained by ATLAS on the latter platforms is
comparatively worse than that obtained on the former.

BLAS routines are usually optimized to deal with matrices of different sizes.
One amongst several inner codes can be selected at runtime depending on matrix
dimensions. This is very convenient for medium and large matrices of differ-
ent sizes. When small matrices are provided as input, however, the overhead
incurred becomes too large and the performance obtained is poor. There are ap-
plications which produce a large number of matrix operations on small matrices.
For instance, programs which deal with sparse problems or multimedia codes.
In those cases, the use of BLAS can be ineffective to provide high performance.

We are interested in obtaining efficient codes when working on both small
and large matrices on a variety of platforms. For these purposes we have created
a framework which allows us to produce ad hoc routines which can perform
matrix multiplications quite efficiently operating on small matrices. Though
our codes are adapted to the underlying architecture, they are written in a
high level programming language (Fortran). On each platform, our codes were
compiled with the native compilers: Compaq Fortran 77, MIPSpro F77, IBM xlf,
and Intel Fortran compilers respectively. Using this approach we have created
efficient routines on a variety of platforms: MIPS R10000, Digital Alpha 21164
and 21264, IBM Power4, Intel Pentium4 and Itanium2. Based on these routines,
we have produced efficient implementations of both sparse and dense codes for
several platforms which are presented in chapters 3 and 4. In the following
sections we present our approach and comment on the results. All the results
presented in this document refer to double precision floating point data.

2.2 Generation of efficient inner kernels

Our approach relies on the quality of code produced by current compilers. The
resulting code is usually less efficient than that written manually by an expert.
However, its performance can still be extremely good and sometimes it can yield
even better code.

2.3. CREATION OF A SMALL MATRIX LIBRARY (SML) 9

2.2.1 Taking advantage of compiler optimizations

Compiler technology is a mature field. Many optimization techniques have been
developed over the years. A very complete survey of compiler optimization tech-
niques can be found in [17]. The knowledge of the target platform introduced
in the compiler by its creators together with the use of well known optimization
techniques such as software pipelining, loop unrolling, auto-vectorization, etc.,
can result in efficient codes which can exploit the processor’s resources in an
effective way. This is specially true when it is applied to highly regular codes
such as a matrix multiplication kernel. Since many platforms have outstanding
optimizing compilers available nowadays, we want to let the compiler do the
creation of optimized object code for our inner kernels.

2.2.2 Smoothing the way to the compiler

The optimizations performed by the compiler can be favored by certain char-
acteristics of the compiled code. For instance, some loop orders can be more
beneficial than others. Some access patterns can be more effective in using
memory. Knowing the number of iterations of a loop can help the compiler
decide on the application of some techniques such as loop unrolling or software
pipelining. We have taken this approach for creating a Small Matrix Library
(SML). Basically, we:

• Provide the compiler with as much information as possible regarding ma-
trix leading dimensions and loop trip counts;

• Try several variants of code, with different loop orders or unroll factors.

In addition, in some cases the resulting code can be more efficient if:

• Matrices are aligned;

• All matrices are accessed with stride one;

• Store operations are removed from the inner kernel.

2.3 Creation of a Small Matrix Library (SML)

We have created a library called Small Matrix Library (SML) which contains
routines meant to work on small matrices of fixed size. For each desired oper-
ation, we have written a set of codes in Fortran. Although the most important
kernel is the matrix multiplication operation, we have also included in the li-
brary two other operations: SYRK (Symmetric Rank K update) and TRSM
(Solve Triangular System of equations) since these operations appear within a
Cholesky factorization. Nevertheless, we will concentrate on the matrix multi-
plication since, in general, this is the operation which takes most of the compu-
tation time.

For each operation we have written several variants of code with different
loop orders (kji, ijk, etc.) and unroll factors. We compile each of them using
the native compiler and trying several optimization options. For each resulting
executable, we automatically execute it and register its performance. These
results are kept in a database and finally employed to produce a library using

10 CHAPTER 2. COMPILER-OPTIMIZED INNER KERNELS

the best combination of parameters. This process is done automatically with a
benchmarking tool introduced in section 6.3. This work was presented in [87].
We also tried feedback driven compilation using the Alpha native compiler but
performance either remained the same or even decreased slightly.

By fixing the leading dimensions of matrices and the loop trip counts at
compilation time we have managed to obtain very efficient codes for matrix mul-
tiplication on small matrices. Since several parameters are fixed at compilation
time the resulting object code is useful only for matrix operations conforming to
these fixed values. Actual parameters of these routines are limited to the initial
addresses of the matrices involved in the operation performed. Thus, there is
one routine for each matrix size. Each one has its own name in the library. In
this document, however, we refer to any of them as mxmts fix.

One approach related to ours uses C++ templates which are used to create
kernels for basic linear algebra operations of fixed size [159]. The authors create
a Fixed Algorithm Size Template (FAST) library with sizes fixed at compilation
time. This library is then used to create a Basic Linear Algebra Instruction Set
(BLAIS) library.

Our approach is also related to Iterative compilation [109] which consists
in a repetitive compilation of code using different parameters. Program trans-
formations such as loop tiling and loop unrolling are very effective techniques
to exploit locality and expose instruction level parallelism. The authors claim
that finding the optimal combination of tile size and unroll factor is difficult and
machine dependent. Thus, they propose an optimization approach based on the
creation of several versions of a program and decide upon the best by actually
executing them and measuring their execution time. Our approach for obtain-
ing high performance code is similar with the difference that, while they apply a
set of transformations, we use simple codes and let the compiler do its best. We
must note that the use of the highest optimization flag for the compiler was not
necessarily the one producing the best performance. Thus, for each variation
we tried several compiler optimization flags, keeping the resulting performance
in a database. Eventually, we pick the best code variation and compiler flag to
create the routine inserted in the library.

We must also note that the best loop order and unroll factor obtained for
some matrix dimensions on one processor is not necessarily the best for other
matrix dimensions or platforms. Choosing a single code for all cases would
result in an important performance loss.

2.3.1 A Poly-Algorithmic Approach

A single algorithm is not always efficient for solving a target problem on any
platform [118, 71, 165, 48, 132]. Thus, we follow a poly-algorithmic1 approach
for selecting the most suitable code among various ones for a given problem
size and platform. For instance, consider the matrix multiplication commented
above. Table 2.1a presents eleven implementations of C = C − A × BT matrix
multiplication operation where A(i× k), B(j × k) and C(i× j). For simplicity,
each algorithm is coded with a number. The notation for the order of the
loops (forms) was introduced in [135]. kji means that loop k (direction k in

1The term polyalgorithm was introduced by Professor John Rice and refers to the choice
of one suitable algorithm from a set of candidate algorithms, all designed to solve the same
problem, with the aim of obtaining the best possible performance in a given situation [165].

2.4. INNER MATRIX MULTIPLICATION KERNEL: SPARSE CODES 11

the iteration space) is specified as the outer loop while loop i is found in the
inner loop. 4ı̃ means that a loop with 4 iterations in direction i has been fully
unrolled. BCreg means values in matrices B and C are kept in local variables
in an attempt to improve register reuse. i(. . .) means tiling is done in the i
dimension.

Alg. form

1 jik Creg

2 jik

3 kji Breg

4 i(jk4ı̃ BCreg)

5 i(jk4ı̃ Breg)

6 i(jk4ı̃)

7 ijk

8 kji

9 jki

10 jik4k̃ Creg

11 jik8k̃ Creg

a)

Matrix Alpha

sizes 21164 R10000

4 4 4 2 8

4 4 8 3 5

4 4 16 3 3

4 4 32 3 3

8 8 8 10 6

8 8 16 11 8

8 8 32 11 5

16 16 16 11 2

16 16 32 11 5

32 32 32 11 6

b)

Table 2.1: Some implementations of the C = C −A×BT operation: a) List of
algorithms b) Algorithm giving best performance for each matrix dimensions
on an Alpha 21164 and an R10000.

Table 2.1b shows the best algorithm found for the matrix multiplication
operation for several matrix sizes on the Alpha 21164 and R10000 processors.
Matrix sizes are expressed as i j k. There is a large variation in the optimal
algorithm chosen. Seven out of eleven algorithms resulted to be the best for some
particular combination of sizes and target platform. Choosing a single algorithm
for all cases would result in an important performance loss. Subsequently, we
have developed up to 42 variations of the matrix multiplication kernel which
have been used in the experiments presented in the sequel of this document.

2.4 Inner matrix multiplication kernel for oper-
ations on sparse matrices

Exploiting structure is important when working on sparse matrices. There ex-
ist data structures which avoid any storage of zeros and computation on them.
However, operation on single data elements is very inefficient. Thus, such ele-
ments are grouped in order to work more efficiently using BLAS3 operations, at
the expense of possibly storing and working on zero values. Thus, even when we
are operating on sparse matrices it is interesting to use dense operations which
work on submatrices.

As we will see in chapter 3 we split sparse matrices into small blocks. We
can avoid storage and operation on submatrices which would be full of zeros.
For submatrices which contain nonzero values we perform operations on dense
submatrices of small size. To do this, we will use the appropriate routines from
our SML in the inner kernel of the codes which deal with sparse matrices of
larger sizes.

12 CHAPTER 2. COMPILER-OPTIMIZED INNER KERNELS

Figure 2.1: Performance of different A×BT routines for several matrix sizes on
an Alpha 21164.

Figure 2.1 shows the performance of different routines for dense matrix multi-
plication for several matrix sizes on an Alpha-21164.2 The matrix multiplication
performed in all routines benchmarked uses: the first matrix without transpo-
sition (n); the second matrix transposed (t); and subtracts the result from the
destination matrix (s). This is the reason why we call the vendor BLAS rou-
tine dgemm nts. This operation appears within a Cholesky factorization of a
lower triangular matrix L using Fortran column-wise storage. Actually, it is the
operation which takes most of the computation time for this operation.

The vendor BLAS routine dgemm nts yields very poor performance for very
small matrices getting better results as matrix dimensions grow towards a size
that fills the L1 cache (8 Kbytes for the Alpha-21164). This is due to the over-
head of passing a large number of parameters, checking for their correctness, and
scaling the matrices (alpha and beta parameters in dgemm). This overhead is
negligible when the operation is performed on large matrices. However, it is no-
table when small matrices are multiplied. Also, since its code is prepared to deal
with large matrices, further overhead can appear in the inner code by the use of
techniques such as strip mining or data copying. We will show in section 3.4.1
that this is not adequate for our hypermatrix Cholesky factorization.

A simple matrix multiplication routine mxmts g which avoids any parameter
checking and scaling of matrices can outperform the BLAS for very small matrix
sizes. Finally, our matrix multiplication code mxmts fix with leading dimensions
and loop limits fixed at compilation time gets excellent performance for all block
sizes ranging from 4x4 to 32x32. The latter is the maximum value that allows
for a good use of the L1 cache on the Alpha unless tiling techniques are used.

Figure 2.2 shows the performance of routines dgemm nts and mxmts fix for
several matrix sizes on a 250 MHz MIPS R10000 processor. The first level
instruction and data caches have size 32 Kbytes. There is a secondary unified
instruction/data cache with size 4 Mbytes. This processor’s theoretical peak

2Labels in this figure and the next refer to the three dimensions of the iteration space.
However, for all the other figures matrices are assumed to be square and of equal size. In all
plots the dashed line at the top shows the theoretical peak performance of the processor.

2.5. INNER MATRIX MULTIPLICATION KERNEL: DENSE CODES 13

Figure 2.2: Performance of different A×BT routines for several matrix sizes on
an R10000.

performance is 500 Mflops. Results on the R10000 processor are similar to those
of the Alpha with the only difference that the mxmts g performs very well3. This
is due to the ability of the MIPSpro F77 compiler to produce software pipelined
code, while the Alpha compiler hardly ever manages to do so. We conclude
that, as long as a good compiler is available, fixing leading dimensions and loop
limits is enough to produce high performance codes for very small dense matrix
kernels.

2.5 Inner matrix multiplication kernel for oper-
ations on dense matrices

We have extended our Small Matrix Library (SML) with routines which work
with sizes larger than the ones used for the sparse codes. We choose as inner
kernel the one providing best performance.

Figures 2.3 and 2.4 show the peak performance of the C = C − A × BT

matrix multiplication routines in our SML for several matrix dimensions on two
different processors. On an Alpha 21264A we have chosen the routine which
works on matrices of size 48 × 48. On the Intel Itanium2 we have selected
size 92 × 92 while on the R10000 the elected size is 60 × 60 (see figure 2.2).
The following tables show information about the caches present in these three
platforms. Table 2.2 shows the number of caches and their sizes. Table 2.3
shows the minimum latency for a floating-point load when it hits in each cache
level on several machines.

The Itanium2 has three levels of cache. In the first level it has separate
instruction and data caches with 16 Kbytes each. Then, it also has a 256
Kbytes L2 cache and an off-chip L3 cache with possible sizes ranging from 1.5

3The corresponding bar has been excluded from the figure to avoid cluttering.

14 CHAPTER 2. COMPILER-OPTIMIZED INNER KERNELS

Figure 2.3: Peak performance of SML dense matrix multiplication routines:
Alpha 21264A.

Figure 2.4: Peak performance of SML dense matrix multiplication routines:
Intel Itanium2.

up to 9 MB. The configuration used had a 3 MB L3 cache. It is interesting
to note that on the Itanium2 the highest performance was obtained for matrix
sizes which exceed the capacity of the level 1 (L1) data cache. The reason for
this comes from the fact that this machine does not cache floating-point data
in L1 cache [100]. In addition, it has low latency when a load hits in its level
2 (L2) cache. Table 2.3 shows the minimum latency for floating-point loads in
each cache level for the R10000, Alpha 21264A and the Itanium2 processors.
The latency of a floating-point load which hits in the Itanium2 level i cache is
similar to that of the Alpha level i−1 cache. The Intel Fortran compiler applied
the software pipelining technique automatically for tolerating such latency and
produced efficient codes. This are the reasons why on this machine the best
peak performance for our SML matrix multiplication routines was found for
matrices which exceed the L1 data cache size.

On MIPS, ALPHA, and Intel Itanium2 platforms we could obtain very effi-
cient inner kernels for the matrix multiplication. However, on Power4 and Intel

2.6. GENERALIZATION OF THE MATRIX MULTIPLICATION 15

Table 2.2: Cache sizes

Cache Level R10000 ALPHA 21264A Itanium2

L1 32 KB 64 KB 16 KB
L2 4 MB 4 MB 256 KB

L3 - - 3 MB

Table 2.3: Floating-point load latency (minimum) when load
hits in cache.

Cache Level R10000 ALPHA 21264A Itanium2

L1 3 4 -
L2 8-10 13 6

L3 - - 13

Pentium 4 Xeon the Mflops obtained are far from the theoretical peak of the
machine. Figure 2.5 shows the performance obtained on Power4 and Pentium 4
Xeon processors. The best results obtained with our compiler-optimized codes
on the Power4 are over 2500 Mflops for matrices of size 36. The sustained per-
formance of the vendor DGEMM gets around 2700 Mflops. Therefore, the code
produced for our inner kernel is reasonably good. However, on the Intel Xeon
the performance obtained with our approach (3334 Mflops) is not only far from
the theoretical peak but also from the sustained performance of the DGEMM
routines of GotoBLAS (4000 Mflops). On the other hand it approaches that of
ATLAS (3500 Mflops). The Intel Fortran Compiler (version 8.0) is unable to
exploit efficiently the SSE2 [160] extension which provides SIMD parallelism on
this processor for the C = C −A×BT matrix multiplication. In section 2.7 we
will see that the situation changes when data is properly aligned and accessed
with stride one.

Figure 2.5: Peak performance of SML dense matrix multiplication routines:
Power4 and Pentium 4.

2.6 Generalization of the matrix multiplication

We have generalized our matrix multiplication codes to be able to perform the
matrix operations C = βC+αop(A)×op(B) where α and β are scalars and op(A)
is A or AT . Actually, we consider β = 1 since it is more efficient to perform the

16 CHAPTER 2. COMPILER-OPTIMIZED INNER KERNELS

multiplication of matrix C by β before calling the matrix multiplication kernel
rather than performing this multiplication within it [43]. We allow values of 1
and -1 for α.

We parameterize our kernels with preprocessor symbols which are adequately
defined at compilation time to determine the type of operation performed. Thus,
given a particular loop order and unroll factor, we can produce up to eight
kernels: those corresponding to the combinations of transposition of matrices
and values of α.

The case C = C +αAT ×B is particularly appealing since it allows accessing
all three matrices with stride one. In addition, stores to matrix C can be hoisted
from the inner loop, resulting in additional performance gains. Actually, this is
the kernel used in ATLAS.

2.7 Alignment

Contrary to what happens on other platforms tested, the results obtained for
our matrix multiplication routines on an Intel Pentium 4 Xeon were initially
very poor. This machine allows for vectorization with the SSE2 instruction
set [160] and the Intel Fortran compiler can take advantage of them. However,
we were getting Mflops values far from the theoretical peak for this machine.
The problem is that data must be properly aligned and accessed with stride
one. Otherwise the compiler is not able to produce such an efficient code. By
forcing the alignment of matrices to 16, the Intel Fortran Compiler is able to
vectorize the code, resulting in a substantial performance increase. The best case
is that with AT × B which gets a peak performance of 3810 Mflops. Table 2.4
summarizes these results. On this platform, as on the Itanium2, floating-point
loads are not cached in the L1 cache. Thus, the block size automatically chosen
(104) targets the L2 cache. This work was presented in [96]. Other works which
state the importance of alignment for certain processors can be found in [2, 32].

Table 2.4: Peak Mflops of inner kernel on a Pentium 4 Xeon Northwood.

A × BT AT × B
No align 3334 3220

Align 3457 3810

2.8 Conclusions

It is possible to obtain high performance inner kernels using a high level language
and a good optimizing compiler. The inner kernel can target the first level cache.
It is interesting to note that it can also target the second level cache: on some
machines the highest performance was obtained for matrix sizes which exceed
the capacity of the L1 data cache. This happens on processors which do not
cache floating-point data in the first level cache, as on the Intel Pentium 4
and Itanium2 processors. We must note, however, that on these machines the
latency of a floating-point load from the second level cache is quite low. Thus,

2.8. CONCLUSIONS 17

in some cases it can be hidden using techniques for tolerating latency such as
software pipelining and prefetching.

The case C = C +αAT ×B is particularly appealing since it allows accessing
all three matrices with stride one. In addition, stores to matrix C can be hoisted
from the inner loop, resulting in additional performance gains.

There is a large variation in the optimal algorithm chosen for different matrix
sizes and platforms. Choosing a single algorithm for all cases would result in an
important performance loss. A poly-algorithmic approach is necessary to obtain
high performance inner kernels.

We agree with other authors [165] which identify the need for a standard
kernel interface, different from BLAS, so that optimized kernels tuned to specific
processors can be made available to library developers for writing high perfor-
mance codes. These kernel routines operate on small blocks that fit in the L1
cache.

Using routines in our Small Matrix Library can improve the performance of
codes which perform a large number of operations on small matrices. Examples
of such programs are sparse matrix and multimedia codes (such as 3D graphics
engines, signal processing or video encoding/decoding algorithms). These rou-
tines can also be used as inner kernels for general dense operations. Based on
these routines, we have produced efficient implementations of both sparse and
dense codes for several platforms which are presented in chapters 3 and 4.

18 CHAPTER 2. COMPILER-OPTIMIZED INNER KERNELS

Chapter 3

Sparse Hypermatrix
Cholesky Factorization

In this chapter we present our work on the sparse Cholesky factorization using
a hypermatrix data structure. First, we provide some background on the sparse
Cholesky factorization and explain the hypermatrix data structure. Next, we
present the matrix test suite used. Afterwards, we present the techniques we
have developed in pursuit of performance improvements for the sparse hyperma-
trix Cholesky factorization of a symmetric positive definite matrix into a lower
triangular factor L.

3.1 Background

Sparse Cholesky factorization is heavily used in several application domains,
including finite-element and linear programming algorithms. It forms a sub-
stantial proportion of the overall computation time incurred by those applica-
tions. Consequently, there has been great interest in improving its performance
[50, 137, 154]. Methods have moved from column-oriented approaches into panel
or block-oriented approaches. The former use level 1 BLAS while the latter have
level 3 BLAS as computational kernels [154]. Operations are thus performed on
blocks (submatrices).

Columns having similar structure are taken as a group. These column groups
are called supernodes [122]. Some supernodes may be too large to fit in cache and
it is advisable to split them into panels [137, 154]. In other cases, supernodes
can be too small to yield good performance. This is the case of supernodes
with just a few columns. Level 1 BLAS routines are used in this case and
the performance obtained is therefore poor. This problem can be reduced by
amalgamating several supernodes into a single larger one [11]. Although, some
null elements are then both stored and used for computation, the resulting use
of level 3 BLAS routines often leads to some performance improvement.

We address the optimization of the sparse Cholesky factorization of large
matrices. For this purpose, we use a Hypermatrix [61] block data structure.

19

20 CHAPTER 3. SPARSE HYPERMATRIX CHOLESKY

3.2 Hypermatrix data structure

Our application uses a data structure based on a hypermatrix (HM) scheme
[61, 138], in which a matrix is partitioned recursively into blocks of different
sizes. Commercial package such as NASTRAN or PERMAS have used the hy-
permatrix structure for solving very large systems of equations [13]. They can
solve very large systems out-of-core and can work in parallel. This approach
is also related to a variety of recursive/nonlinear data layouts which have been
explored elsewhere for both regular [33, 58, 165, 170] and irregular [129] appli-
cations.

The HM structure consists of N levels of submatrices, where N is an arbitrary
number. In order to have a simple HM data structure which is easy to traverse
we have chosen to have blocks at each level which are multiples of the lower
levels. The top N-1 levels hold pointer matrices which point to the next lower
level submatrices. Only the last (bottom) level holds data matrices. Data
matrices are stored as dense matrices and operated on as such. Hypermatrices
can be seen as a generalization of quadtrees. The latter partition each matrix
precisely into four submatrices [169].

Null pointers in pointer matrices indicate that the corresponding submatrix
does not have any non-zero elements and is therefore unnecessary. This is
useful when matrices are sparse. Figure 3.1 shows a sparse matrix and a simple
example of corresponding hypermatrix with 2 levels of pointers.

Figure 3.1: A sparse matrix and a corresponding hypermatrix.

The main potential advantage of a HM structure is the ease of use of mul-
tilevel blocks to adapt the computation to the underlying memory hierarchy.
The operation on dense submatrices can take advantage of the BLAS3 routines.
At the same time however, HM suffers from the disadvantage that zeros can be
stored within data submatrices and used in computation. This is due to the fact
that we do not descend down to the element level. Instead we use data subma-
trices of arbitrary size, considering them as dense blocks. Consequently, such
data submatrices can store some zero elements. This can produce substantial
overhead on sparse Cholesky. In all figures shown in this chapter we will present
the Effective Mflops obtained. They refer to the number of useful floating point
operations (#flops) performed per second. Although the time includes the op-
erations performed on zeros, this metrics excludes nonproductive operations on
zeros performed by the HM Cholesky algorithm when data submatrices contain
such zeros.

Effective Mflops =
#flops(excluding operations on zeros) · 10−6

T ime (including operations on zeros)

3.3. MATRIX CHARACTERISTICS 21

Block sizes can be chosen either statically (fixed) or dynamically. In the
former case, the matrix partition does not take into account the structure of the
sparse matrix. In the latter case, information from the elimination tree [121] is
used. Initially we will partition the hypermatrix statically. Afterwards, we will
use the elimination tree to create a dynamic (variable) partitioning. In the latter
case we use an amalgamation algorithm specific for use with hypermatrices.

3.3 Matrix characteristics

We have used several test matrices. Most results presented in this document
were obtained using sparse matrices corresponding to linear programming prob-
lems. QAP matrices come from Netlib [136] while others come from a variety of
linear multicommodity network flow generators: A Patient Distribution System
(PDS) [29], with instances taken from [57]; RMFGEN [19, 65]; GRIDGEN [117];
TRIPARTITE [64]. Table 3.1 shows the characteristics of several matrices ob-
tained from such linear programming problems. Matrices were ordered with
METIS [107] and renumbered by an elimination tree postorder.

Table 3.1: Matrix characteristics: application of Interior Point Methods.

Matrix Dimension NZs NZs in La Density Flops to factorb

GRIDGEN1 330430 3162757 130586943 0.002 278891
QAP8 912 14864 193228 0.463 63
QAP12 3192 77784 2091706 0.410 2228
QAP15 6330 192405 8755465 0.436 20454

RMFGEN1 28077 151557 6469394 0.016 6323
TRIPART1 4238 80846 1147857 0.127 511
TRIPART2 19781 400229 5917820 0.030 2926
TRIPART3 38881 973881 17806642 0.023 14058
TRIPART4 56869 2407504 76805463 0.047 187168

pds1 1561 12165 37339 0.030 1
pds10 18612 148038 3384640 0.019 2519
pds20 38726 319041 10739539 0.014 13128
pds30 57193 463732 18216426 0.011 26262
pds40 76771 629851 27672127 0.009 43807
pds50 95936 791087 36321636 0.007 61180
pds60 115312 956906 46377926 0.006 81447
pds70 133326 1100254 54795729 0.006 100023
pds80 149558 1216223 64148298 0.005 125002
pds90 164944 1320298 70140993 0.005 138765

aNumber of non-zeros in factor L (matrix ordered using METIS).
bNumber of floating point operations (in Millions) necessary to obtain L from the original
matrix (ordered with METIS).

Recently, we have also benchmarked our code using matrices which come
from applications of the Finite Element Method. Their characteristics can be
found in table 3.2. Matrices bear, rail and methan come from structural engi-
neering problems used in the PERMAS project [13]; cfd1 and cfd2 are pressure

22 CHAPTER 3. SPARSE HYPERMATRIX CHOLESKY

matrices from problems in computational fluid dynamics from Ed Rothberg, Sil-
icon Graphics, Inc.; nasasrb is a structural engineering problems from NASA.
These last three matrices can be obtained from [42]. Matrix inline 1 is a stiffness
matrix from MSC-Software used in the PARASOL project [144].

Table 3.2: Matrix characteristics: applications of Finite Element Analysis

Matrix Dimension NZs NZs in La Density Flops to factorb

bear 25906 412447 3278225 0.009 847
rail 11783 799545 3768886 0.054 1594

methan 48162 1234332 16631801 0.014 10493
nasasrb 54870 1366097 10489476 0.007 3496

cfd1 70656 949510 20910296 0.008 13523
cfd2 123440 1605669 37696869 0.005 31218

inline 1 503712 18660027 174608135 0.001 150974

aNumber of non-zeros in factor L (matrix ordered using METIS).
bNumber of floating point operations (in Millions) necessary to obtain L from the original
matrix (ordered with METIS).

3.4 Reducing overhead

In this section we present several aspects of the work we have done to improve the
performance of our sparse Hypermatrix Cholesky factorization. Both of them
are based on the fact that a matrix is divided into submatrices and operations
are thus performed on blocks (submatrices).

A matrix M is divided into submatrices. We call Mbri,bcj
the data submatrix

in block-row bri and block-column bcj . Figure 3.2 shows several submatrices
within a matrix. The highest cost within the Cholesky factorization process
comes from the multiplication of data submatrices. It takes approximately 90%
of the total factorization time. In order to ease the explanation we will refer
to the three submatrices involved in a product as A, B and C. For block-rows
br1 and br2 (with br1 < br2) and block-column bcj , each of these blocks is
A ≡ Mbr2,bcj

, B ≡ Mbr1,bcj
and C ≡ Mbr2,br1

. Thus, the operation performed is
C = C −A × BT , which means that submatrices A and B are used to produce
an update on submatrix C.

As we already introduced in section 3.2 the use of dense data submatrices
allows for the use of level 3 Basic Linear Algebra Subroutines (BLAS3) which
is the traditional way to obtain performance in a portable way. However, a
certain number of zero elements can be stored in data submatrices and used
during the factorization operation. This reduces the effective number of cal-
culations performed since operations on such zeros are unnecessary. When the
block size used is small, the number of zeros can be greatly reduced. However,
the performance obtained from BLAS3 routines drops heavily. Consequently,
there is a trade-off in the size of data submatrices used for a sparse Cholesky
factorization with the hypermatrix scheme.

3.4. REDUCING OVERHEAD 23

br
1

br
2

bc
1

bc
2

x

x

x
C

x

A

x

x

B
x

x

x

x

x

C

B
x

k2

x

x

i2 x x i2

j3

x

x

x

A

j2

j1

j3

i1 x

k1 k3 k4

Figure 3.2: Static partition of a matrix: definition of blocks and example of use.

3.4.1 Using Small Matrix Library (SML) routines

In section 2.3 we introduced our library called Small Matrix Library (SML)
which works on small matrices of fixed size. By fixing leading dimensions and
loop trip counts at compilation time we can produce very efficient codes if a
good compiler is available. Although the most important kernel is the matrix
multiplication operation, we have also included in the library the SYRK (Sym-
metric Rank K update) and TRSM (Solve Triangular System of equations) since
these operations appear within a Cholesky factorization.

The matrix multiplication performed in all routines benchmarked in this sec-
tion uses the first matrix without transposition, the second matrix transposed,
and subtracts the result from the destination matrix. This is the reason why we
call the BLAS routine dgemm nts. This operation appears within a Cholesky
factorization of a matrix into a lower triangular matrix L.

As we mentioned in section 2.4 the vendor BLAS routine dgemm nts yields
very poor performance for very small matrices getting better results as matrix
dimensions grow towards a size that fills the L1 cache. This is due to the
overhead of passing a large number of parameters, checking for their correctness,
and scaling the matrices (alpha and beta parameters in dgemm). This overhead
is negligible when the operation is performed on large matrices but too large for
operation on small matrices. Also, since the code is optimized for large matrices,
further overhead can appear in the inner code by the use of techniques such as
strip mining or data copying. Next, we show that this is not adequate for our
hypermatrix Cholesky factorization.

Figure 3.3 shows results of the HM Cholesky factorization on an R100001

for matrix QAP15 from the Netlib set of sparse matrices corresponding to linear
programming problems [136]; and problem pds40 from a Patient Distribution
System (40 days) [57]. Ten submatrix sizes are shown: 4x4, 4x8, 4x16, . . . 32x32.
Effective Mflops are presented. They refer to the number of useful floating point
operations performed per second.

When dgemm nts is used, the best performance is usually obtained with
data submatrices of size 16 × 16 or 16 × 32. Since the amount of zeros used
can be large, the effective performance is quite low. Using mxmts fix however,

1Results on the Alpha are similar.

24 CHAPTER 3. SPARSE HYPERMATRIX CHOLESKY

Figure 3.3: Impact of the matrix multiplication routine on sparse hypermatrix
Cholesky. Mflops obtained using different A × BT codes in the factorization of
matrices QAP15 and pds40 on an R10000.

smaller submatrix sizes usually produce better results than larger submatrix
sizes. Particularly effective in this application is the use of rectangular matrices
due to the fill-in produced by the Cholesky factorization. For instance, using
4×16 or 4×32 submatrix sizes, the routine used yields very good performance.
Since the number of operations on zeros is considerably lower, the effective
Mflops obtained are much higher than those of any other combination of size
and routine.

The use of a fixed dimension routines in the SML library speeded up our
Cholesky factorization an average of 12% for our matrix test suite.

Information about the creation of the SML was given in [87]. The application
of SML to sparse hypermatrix Cholesky was presented in [89].

3.4.2 Rectangular data submatrices

As seen from the results shown in the preceding section, the use of rectangu-
lar data matrices can favor performance. For instance, on the R10000, we store
sparse matrices with subblocks of size 4×32 and use routine mxmts 4 4 4 4 4 32.
The characteristics of a sparse Cholesky factorization explain this. Let us as-
sume that the lower triangular matrix (L) is stored and used. Often an off-
diagonal nonzero produces updates on other positions in the same row to its
right. It is well known that fill-in can be introduced: positions which were origi-
nally zero become different from zero after the factorization. Since this updates
are produced in a row-wise fashion, the rectangular shape is better suited for
storing data submatrices.

3.4.3 Bit Vectors

We want to be able to avoid unnecessary matrix multiplications between ma-
trices with elements in disjoint columns. What we need to know is whether a
column within a data submatrix has any non-zero elements or not. We associate
a set of bits to each data submatrix. We refer to such a set of bits as bit vector.
Figure 3.4.3 shows a data submatrix with a bit vector associated to it.

Each bit in the vector is used to point to the existence of any non-zero in
the corresponding column. For instance, consider matrix B in figure 3.5a. Let
us consider column indices start at 1 (Fortran indexing). There are non-zero
elements only in columns k2 = 3, k3 = 4 and k4 = 7. Thus, only bits 3, 4
and 7 in BVB will be different from 0. A bit-wise AND between bit vectors
corresponding to matrices A and B can be used to decide whether the matrix

3.4. REDUCING OVERHEAD 25

0 1 000 1 10 BV
M

x

x

x

M

x

Figure 3.4: Bit Vectors: Definition

multiplication between those matrices is necessary or not. If a single bit of the
bit-wise AND results to be 1 then we need to perform the operation. If all bits
are zero, then we can skip it. This test can be done in a couple of CPU cycles
with an AND operation followed by a comparison to zero. The creation of the
bit vectors can be done initially, when the hypermatrix structure is prepared
using the symbolic factorization information. The overhead for their creation is
negligible.

1

2

3

2

31

x

3

1

4

2

2

0 0

0 0

00

0 0 1 0

1 0

1

1

1

0

0 0 0 &0100 B0

BV
B

BV
A

BV
A

BV

x

x

A

B

x

x
x

x

x

x

i

i

j

i

j

kk

j

j

k

x

x

k

C

a)

1

2

31

2

3

4

1

5

x

2

0 00 0 01

010

1

00

0

1 0 1

0 000 000 0 &

A

BV
B

BV

B
BV

A
BV

k

i

i

j

j

j

x

kk

x

x

x

x

k

x

B

A

x

x

k

x

x

C

b)

Figure 3.5: Using Bit Vectors. a) BVA&BVB 6= 0: operation must be per-
formed. b) BVA&BVB = 0: operation can be avoided.

In [91] we showed that bit vectors can be effective to improve performance
as long as windows are not used. Results can be found in section 3.6.

3.4.4 Windows within data submatrices

In order to reduce the storage and computation of zero values, we define win-
dows of non-zeros within data submatrices in a way similar to that described
in [55]: by keeping information about the actual space within a data submatrix
which stores non-zeros (dense window) Figure 3.6a shows a window of non-zero
elements within a larger block. The window of non-zero elements is defined
by its top-left and bottom right corners. All zeros outside those limits are not
used in the computations. Null elements within the window are still stored and
computed. Storage of columns to the left of the window’s leftmost column is
avoided since all their elements are null. Similarly, we do not store columns to
the right of the window’s rightmost column. However, we do store zeros over

26 CHAPTER 3. SPARSE HYPERMATRIX CHOLESKY

the window’s upper row and/or underneath its bottom row whenever these win-
dow’s boundaries are different from the data submatrix boundaries, i.e. whole
data submatrix columns are stored from the leftmost to the rightmost columns
in a window. We do this to have the same leading dimension for all data subma-
trices used in the hypermatrix. Thus, we can use our specialized SML routines
which work on matrices with fixed leading dimensions. Actually, we extended
our SML library with routines which have the leading dimensions of matrices
fixed, while the loop limits may be given as parameters. Some of the routines
have all loop limits fixed, while others have only one, or two of them fixed.
Other routines have all the loop limits given as parameters. The appropriate
routine is chosen at execution time depending on the windows involved in the
operation. Thus, although zeros can be stored above or underneath a window,
they are not used in computation. Zeros can still exist within the window but,
in general, the overhead is greatly reduced.

Data Submatrix

bottom row

rig
ht

co
lum

n

lef
t c

olu
mn

top row window

���������������
���������������
���������������
���������������
���������������

���������������
���������������
���������������
���������������
��������������� �����

�����
�����
�����

x

x

x

a)

2

3

2

1

3

1

2

1

42 3

��

��

	�	�	�	�	�		�	�	�	�	�		�	�	�	�	�		�	�	�	�	�	

�
�
�
�
�

�
�
�
�
�

�
�
�
�
�

�
�
�
�
�

���

���

��������������
���������
���������
���

��

��

���

���������
���������
���������

x

x

x

x

x

x

x

x

x

x

x

k k

j

j

j

i

i

j

i

kkB

A C

b)

Figure 3.6: Windows within dense submatrices. a) A data submatrix and a
window within it. b) Windows can reduce the number of operations.

The use of windows of non-zero elements within blocks allows for a larger
default block size. When blocks are quite full operations performed on them can
be rather efficient. However, in those cases where only a few non-zero elements
are present in a block, or the intersection of windows results in a small area,
only a subset of the total block is computed (dark areas within figure 3.6b).

When the column-wise intersection of windows in matrices A and B is null,
we can avoid the multiplication of these two matrices (figure 3.7a). There are
cases where the window definition we have used is not enough to avoid unnec-
essary operations. Consider figure 3.7b: there is a column-wise intersection of
windows in A and B. Thus, we would perform a product using the dark area
within the three matrices involved.2 Results will be presented in section 3.6.

3.5 1D vs 2D data layouts and computations

In [90], we have compared 1 and 2 dimensional recursive layouts of data and
computations on data blocks. The 2D recursive layout systematically produced

2However, if we look at the elements within those matrices we can see that the product
A×BT will produce a null update on C. In this case, the usage of bit vectors would be useful
and could avoid this operation.

3.6. FIRST RESULTS AND ANALYSIS 27

541

2

1

3

3

2

1

�����������
�����������
�����������
�����������

���������
���������
���������
���������

���������
���������
���������
���������
���������

���������
���������
���������
���������
���������

�������������������������
�������������������������
�������������������������
�������������������������
�������������������������
�������������������������

�����������������������
�����������������������
�����������������������
�����������������������
�����������������������
�����������������������

x

x

x

xx

x

x

x

x

x

CA

B kkkk

i

i

j

j

j

a)

2

3

3

1

2

1

4 52

1

�������������������������
�������������������������
�������������������������
�������������������������
�������������������������
�������������������������

�����������������������
�����������������������
�����������������������
�����������������������
�����������������������
�����������������������

	�	�	�	�	�	�	
	�	�	�	�	�	�	
	�	�	�	�	�	�	
	�	�	�	�	�	�	

�
�
�
�
�

�
�
�
�
�

�
�
�
�
�

�
�
�
�
�

���������������
���������������
���������������
���������������
���������������

���������������
���������������
���������������
���������������
���������������

��
��
��
�

������
������
������
���

��

��

������
������
������
������
���

������
������
������
������
���

x

x

x

x

x

x

x

x

x

x

x

k k

j

j

j

i

i

kk kB

A C

b)

Figure 3.7: Windows: column-wise intersection. a) Disjoint windows can avoid
matrix products. b) Windows can be ineffective to detect false intersections.

faster factorizations for the matrix test suite. Section 3.6.3 shows the results
obtained with several variants of our HM Cholesky code. In all cases the code
follows a right looking scheduling with a fixed partitioning of the hypermatrix
(the elimination tree is consequently not used at all). We use a 4 × 32 data
matrix size as stated in section 3.4.2.

3.6 First results and analysis

In this section we present and analyze the results we have obtained on our matrix
test suite. Matrices come from two different areas: Interior Point Methods
(IPM) of linear programming and Finite Element Analysis (FEA). We show
results for five different codes. The processing done prior to the factorization
is the same in all of them. The original sparsity pattern is used. Data values,
however, are generated to obtain a positive definite matrix suitable for Cholesky
factorization. Then, the sparse matrix is reordered using METIS [107] and
renumbered by an elimination tree postorder [121].

In the sparse HM Cholesky code, after the elimination tree postorder we
perform a symbolic factorization. Afterwards, we build the HM data structure.
Finally, the resulting hypermatrix is factored. In this section we use the best
variant of our sparse hypermatrix Cholesky. Later, in section 3.6.3, we will ana-
lyze each variant of our code and show which is the one which usually produces
best performance.

Execution took place on a 250 Mhz MIPS R10000 Processor. The first level
instruction and data caches have size 32 Kbytes. There is a secondary unified
instruction/data cache with size 4 Mbytes. This processor’s theoretical peak
performance is 500 Mflops.

3.6.1 Problems solved using Interior Point Methods

We have used several sparse matrices corresponding to linear programming prob-
lems. Table 3.1 shows the characteristics of these matrices obtained from such
linear programming problems.

28 CHAPTER 3. SPARSE HYPERMATRIX CHOLESKY

Supernodal Cholesky (Ng-Peyton)

The left half of table 3.3 presents results obtained by a supernodal (SN) block
Cholesky factorization [137]. It takes as input parameters the cache size and
unroll factor desired. This algorithm performs a 1D partitioning of the matrix.
A supernode can be split into panels so that each panel fits in cache. This
code has been widely used in several packages such as LIPSOL [174], PCx [39],
IPM [31] or SparseM [111]. Although the test matrices we have used are in most
cases very sparse, the number of elements per column is in some cases large
enough so that a few columns fill the first level cache. Thus, a one-dimensional
partition of the input matrix produces poor results. As the problem size gets
larger, performance degrades heavily. We noticed that we could improve its
results by specifying cache sizes larger than the actual first level cache. However,
performance degrades in all cases for large matrices. Due to this trend, some
parameter combinations were not tried and correspond to blanks in the table.

HM ± windows ± BVs

The right half of table 3.3 shows results obtained by several variants of our sparse
hypermatrix Cholesky code. We have used SML [89] routines to improve our
sparse matrix application based on hypermatrices. A fixed partitioning of the
matrix has been done to be able to test the impact of each overhead reduction
technique used. We present results obtained with and without bit vectors for
two data submatrix sizes: 8× 8 and 4× 32. For the latter we also introduce the
usage of windows.

Figure 3.8: Performance of hypermatrix Cholesky with bit vectors (BV) and
windows (win).

Figure 3.8 summarizes these results. The usage of windows clearly improves
the performance of our sparse hypermatrix Cholesky algorithm. We observe
that the usage of bit vectors can improve performance slightly when windows
are not used. When windows are used, however, bit vectors are not effective at
all.

3
.6

.
F
IR

S
T

R
E

S
U

L
T

S
A

N
D

A
N

A
L
Y

S
IS

2
9

Table 3.3: Supernodal vs Hypermatrix Cholesky: Effective Mflops
Supernodal Cholesky (Ng-Peyton) Hypermatrix Cholesky

Upper levels 32 x 512
Block size 8 x 8 4 x 32
Windows No No Yes

Bit Vectors No Yes No Yes No Yes
Cache 32K 512K 1M 2M

Unrolling 4 8 4 8 4 8 4 8

GRIDGEN1 23.8 24.4 — — — — 201.2 199.5
QAP8 186.6 194.2 186.7 194.9 175.1 177.3 139.0 142.5 146.6 151.5 179.6 180.2
QAP12 118.8 102.2 181.0 223.0 215.7 166.3 160.5 176.0 174.7 197.5 246.8 247.3
QAP15 49.0 54.8 152.4 186.0 165.6 149.1 213.1 214.4 222.7 248.4 303.1 300.2

RMFGEN1 55.9 61.9 169.8 189.0 256.2 154.9 221.0 220.8 202.8 210.7 298.4 300.9
TRIPART1 118.7 176.4 175.6 177.1 160.5 164.5 151.2 170.7 151.0 152.8 203.6 207.1
TRIPART2 205.2 182.5 208.4 213.1 216.9 171.8 175.5 202.5 156.8 178.3 232.5 235.3
TRIPART3 116.9 142.7 188.2 151.3 199.0 213.1 181.7 185.3 256.6 261.1
TRIPART4 46.4 119.3 121.1 133.8 118.7 222.8 231.5 222.5 241.4 295.5 295.2

pds1 87.5 89.6 75.7 73.8 19.0 20.2 13.7 14.3 20.2 20.2
pds10 121.5 125.5 183.5 132.2 102.4 106.5 111.6 121.3 193.3 192.3
pds20 106.8 82.7 130.3 104.2 126.1 127.1 139.3 149.9 229.7 227.6
pds30 104.0 78.2 133.5 135.5 142.9 141.5 169.3 178.0 241.7 241.1
pds40 99.9 97.3 126.4 159.8 144.5 144.6 169.8 176.8 247.9 242.1
pds50 84.8 92.0 121.1 121.4 140.2 147.5 181.3 191.4 252.4 252.2
pds60 85.0 66.0 131.8 112.0 152.8 153.4 181.4 188.1 253.9 254.5
pds70 91.4 127.4 111.3 154.6 154.8 186.0 194.4 253.0 252.4
pds80 62.3 132.5 107.2 154.1 164.4 196.6 198.0 260.1 259.5
pds90 108.5 105.1 166.3 169.4 195.2 195.4 267.9 265.7

30 CHAPTER 3. SPARSE HYPERMATRIX CHOLESKY

Supernodal Cholesky (Ng-Peyton) vs HM

Figure 3.9: SN vs HM performance.

Figure 3.9 compares the best result obtained with each algorithm for the
whole set of test matrices. We have included matrix pds1 to show that for
small matrices the hypermatrix approach is usually very inefficient. This is due
to the large overhead introduced by blocks which have plenty of zeros. For
large matrices however, blocks are quite dense and the overhead is much lower.
Performance of HM Cholesky is then much better than that of the supernodal
algorithm. This is due to the better usage of the memory hierarchy: locality is
properly exploited with the two dimensional partitioning of the matrix which is
done in a recursive way using the HM structure.

Finally, figure 3.10 shows performance of each algorithm on several matrix
families. Note that, contrary to the supernodal algorithm behavior, the hyper-
matrix Cholesky factorization improves its performance as the problem size gets
larger.

We conclude that a two dimensional partitioning of the matrix is necessary
for large sparse matrices. The overhead introduced by storing zeros within dense
data blocks can be reduced by keeping information about a dense subset (win-
dow) within each data submatrix. Although some overhead still remains, the
performance of our sparse hypermatrix Cholesky is up to an order of magni-
tude better than that of a supernodal block Cholesky which tries to use the
cache memory properly by splitting supernodes into panels. Using windows and
SML routines our HM Cholesky often gets over half of the processor’s peak
performance for medium and large size matrices factored in-core.

Comparison with other packages

Figure 3.11 shows the results obtained by five different sparse Cholesky factoriza-
tion codes on the set of matrices introduced above. Matrix families are separated
by dashed lines. The first bar corresponds to a supernodal left-looking block
Cholesky factorization (SN-LL (Ng-Peyton)) [137] already discussed above.

The second bar shows the performance obtained by the sequential version
of a 2D block-oriented approach [155] as found in the SPLASH-2 [173] suite.

3.6. FIRST RESULTS AND ANALYSIS 31

a) b)

c)

Figure 3.10: SN vs HM Cholesky for 3 matrix families: a) Tripart; b) PDS; c)
QAP.

According to [155] submatrices are kept in a two-dimensional data layout. How-
ever, this code fails to produce efficient factorizations for large matrices.

The third and fourth bars correspond to sequential versions of the supernodal
left-looking (SN-LL) and supernodal multifrontal (SN-MF) codes in the TAUCS
package (version 2.2) [102]. In these codes the matrix is represented as a set of
supernodes. The dense blocks within the supernodes are stored in a recursive
data layout matching the dense block operations. The performance obtained by
these codes is quite uniform.

Finally, the fifth bar shows the performance obtained by our right looking
sparse hypermatrix Cholesky code (HM). We have used windows within data
submatrices and SML [89] routines to improve our sparse matrix application
based on hypermatrices. A three-level fixed partitioning of the matrix has been
used. We present results obtained for data submatrix sizes 4 × 32 and upper
hypermatrix levels with sizes 32×32 and 512×512. Basically, the sparse hyper-
matrix Cholesky factorization improves its efficiency as the problem dimension
gets larger.

On this set of matrices, the sparse hypermatrix Cholesky code is clearly the
best amongst all five codes. Its performance is considerably better than the
others for large matrices.

3.6.2 Problems solved using Finite Element Analysis

Many codes in mechanical engineering and computational fluid dynamics use
direct solvers. In this section we present results obtained on some matrices

32 CHAPTER 3. SPARSE HYPERMATRIX CHOLESKY

Figure 3.11: Performance of several sparse Cholesky factorization codes: IPM.

which belong to these areas. Their characteristics can be found in table 3.2.

Figure 3.12: Performance of several sparse Cholesky factorization codes: FEA.

Figure 3.12 compares the performance of our sparse HM Cholesky with that
obtained by the supernodal left looking and the multifrontal codes available in
the TAUCS package. We can see that, on these types of matrices, our code is
not as efficient as with the IPM matrices. However, it is still competitive, with
performance similar to TAUCS codes.

3.6.3 Analysis of sparse hypermatrix Cholesky

Next, we analyze the performance of variants of our sparse HM Cholesky imple-
mentation. In all cases the code follows a right looking scheduling with a fixed
partitioning of the hypermatrix (the elimination tree is consequently not used
at all). We use a 4 × 32 data matrix size as stated in section 3.4.2.

Usage of windows within data submatrices

Figure 3.13 shows the results obtained with several variants of our sparse HM
Cholesky code on matrices taken from IPM. The first and second bars allow for
the evaluation of the usage of windows within data submatrices (in a 2D layout

3.6. FIRST RESULTS AND ANALYSIS 33

of such submatrices). The usage of windows clearly improves the performance
of our sparse hypermatrix Cholesky algorithm.

Figure 3.13: Sparse HM Cholesky: performance for several input matrices in
IPM.

The reason is the large reduction in operations on zeros when windows are
used within data submatrices. Figure 3.14 shows the increase in number of
floating point operations in sparse HM Cholesky with blocks of size 4×32 w.r.t.
the minimum (with no operations on zero elements). The number of unnecessary
operations on zeros elements is very large for all matrices. When windows are
used, however, there is a large reduction in the number of operations on zeros.

Figure 3.14: Increase in number of floating point operations in sparse HM
Cholesky w.r.t. the minimum: windows reduce the number of operations on
zeros.

2D layout and scheduling

The second and third bars in figure 3.13 show the results of 2D and 1D data
layouts and scheduling of the data submatrices (windows are used in both cases).
The former uses upper levels in the HM with sizes 32× 32 and 512× 512: each

34 CHAPTER 3. SPARSE HYPERMATRIX CHOLESKY

of them allows for efficient use of the corresponding level of cache. For the
latter, we define only an upper level with sizes 32 × 32. We observe that a
2D data layout and scheduling of the computations is beneficial to the efficient
computation of the Cholesky factorization of large sparse matrices.

Overhead: operations on zeros

We have included matrix pds1 in figure 3.11 to show that for small matrices
the hypermatrix approach is usually very inefficient. This is due to the large
overhead introduced by blocks which have many zeros. Figure 3.15 shows the
percentage of increase in number of flops in sparse HM Cholesky (using windows
within data submatrices of size 4 × 32) w.r.t. the minimum (using a Compact
Sparse Row storage). For large matrices however, blocks are quite dense and
the overhead is much lower. Then, sparse HM Cholesky can obtain over half of
the processor’s peak performance.

Figure 3.15: Sparse HM Cholesky using windows in data submatrices of size
4x32: Increase in number of operations.

Matrix Multiplication: efficiency of different routines

We focus on matrix multiplication because it is, by far, the most expensive
operation within the Cholesky factorization. We use four matrix multiplication
operations. FULL refers to the routine where all elements in data submatrices
are used, i.e. no windows are used. WIN 1DC names the routine where windows
are used for columns while WIN 1DR indicates the equivalent applied to rows.
Finally, WIN 2D denotes the case where windows are used for both columns and
rows. Figure 3.16 shows the percentage of calls to each matrix multiplication
routine for each matrix taken from IPM.

Figure 3.17 shows the percentage of multiplication operations performed by
each of the four A × BT routines we use. We can observe that the number
of floating point operations is not proportional to the number of calls to each
matrix multiplication subroutine. For instance, one call to routine FULL for
data submatrix size 4 × 32 produces 4 × 4 × 32 (multiply-subtract) operations,
while one call to routine WIN 2D computes less operations (which can be as
low as one).

3.6. FIRST RESULTS AND ANALYSIS 35

Figure 3.16: Sparse HM Cholesky: Percentage of calls to each A×BT subroutine
type.

Figure 3.17: Sparse HM Cholesky: flops per A × BT subroutine type.

In addition, the time spent in each routine is also different. Let’s consider
matrices QAP8 and QAP12. For each of them, figure 3.18 shows three bars.
Given our four A × BT routines, these bars give their different proportions in
number of calls, number of flops, and time.

The explanation for the differences in computation time come from the ef-
ficiency of each code. FULL refers to the routine where all matrix dimensions
are fixed. This is the most efficient of the four routines and can perform matrix
multiplications faster. WIN 2D denotes the case where windows are used for
both columns and rows. Thus, for the latter, no dimensions are fixed at com-
pilation time and it becomes the least efficient of all four routines. WIN 1DC
computes matrix multiplications more efficiently than WIN 1DR because of the
constant leading dimension used for all three matrices. This is the reason why
the performance obtained for matrices in the TRIPARTITE set is better than
that obtained for matrices with similar size belonging to the PDS family. The

36 CHAPTER 3. SPARSE HYPERMATRIX CHOLESKY

Figure 3.18: Calls, flops and time per A × BT subroutine type: QAP8 and
QAP12.

performance obtained for the matrix with the largest number of floating point
operations in our test suite, namely matrix GRIDGEN1, is less than half of the
theoretical peak for the machine used. This is basically due to the dispersion
of data in this matrix which leads to the usage of the FULL A × BT routine
less than 50% of the time. In addition, a large number of calls is done to the
least efficient routine WIN 2D. This routine is used to compute about 10% of
the operations.

3.7 Amalgamation

Amalgamation [11] has been used for a long while in sparse codes. It consists in
joining supernodes with different structures allowing for the presence of zeros.
This is used to produce larger blocks and thus improve the performance by a
better use of the machine resources via BLAS3 routines. Next, we present the
ways in which we introduce amalgamation in our sparse hypermatrix Cholesky
code. First we introduce Intra-block amalgamation. Second, we present Hyper-
matrix oriented supernode amalgamation.

3.7.1 Intra-block amalgamation

Approximately 90% of the sparse Cholesky factorization time comes from matrix
multiplications. Thus, a large effort must be devoted to perform such operations
efficiently. We have 4 codes specialized in the multiplication of two matrices.
Figure 3.19 shows graphically the data used by each routine. The most efficient
is the one on the left. Their efficiency diminishes as we move to the right.
The names and characteristics of each routine, from left to right, are: FULL
operates on the entire matrices, WIN 1DC uses windows in columns; WIN 1DR
uses windows in rows; finally, WIN 2D uses windows in both dimensions and is
the slower code amongst all 4 codes.

In this section we present an aspect of the work we have done to improve
the performance of our sparse Hypermatrix Cholesky factorization.

3.7. AMALGAMATION 37

Figure 3.19: Four matrix multiplication routines deal with different input ma-
trices.

The usage of windows reduces the number of unnecessary operations on
zeros. However, routines which work on submatrices with windows have a con-
siderably lower performance than that of the routine for full data submatrices,
where all leading dimensions and loop trip counts are fixed at compilation time
(see the analysis in [90]). Performing a slightly higher number of operations
with a faster routine could some times pay off. For this reason we have decided
to add the possibility to extend windows with rows or columns full of zeros.
This work was presented in [94].

Figure 3.20 shows a rectangular data submatrix with a window defined
within it. That window saves operations in both columns and rows. Each
time this matrix needs to be multiplied by another matrix the WIN 2D code
will be used. Since this is the slower code amongst our 4 matrix multiplication
routines, this can produce a reduction in performance.

lef
t c

olu
mn

top row

bottom row

rig
ht

co
lum

n

Data Submatrix

���
���
���
���

window

���
���
���
���
���

���
���
���
���
���

x

x

x x

Figure 3.20: Original data submatrix before intra-block amalgamation.

Figure 3.21 shows how we can extend the window row-wise. We are aware
that the resulting window will have rows full of zeros either at the top or at the
bottom. This extension introduces extra overhead due to the extra number of
operations on such zeros. However, this intra-block amalgamation can reduce
the number of calls to routine WIN 2D. Instead, some new calls to WIN 1DC
can be done. Since the latter routine is more efficient than the former, this
can result in a performance improvement as long as the number of unnecessary
operations on zeros is not too large. We only perform such amalgamation if the
dimension of the window is close to the dimension of the data submatrix. We
define a threshold for rows and another one for columns.

Figure 3.22 shows how we can extend the window column-wise. In this case,
the resulting window will have columns full of zeros in at least one of its sides.
Again, this can reduce the number of times in which routine WIN 2D is used.
In this case, such calls could be replaced by calls to WIN 1DR.

Finally, figure 3.23 shows how we can extend the window both row and
column-wise. In this case, the resulting window matches the whole data subma-

38 CHAPTER 3. SPARSE HYPERMATRIX CHOLESKY

lef
t c

olu
mn

rig
ht

co
lum

n

top row

bottom row

Data Submatrix

���
���
���
���

window

���
���
���
���
���

���
���
���
���
���

x

x

x x

Figure 3.21: Data submatrix after row-wise intra-block amalgamation.

top row

bottom row

lef
t c

olu
mn

rig
ht

co
lum

n

Data Submatrix

���
���
���
���

window

	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	

�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�

x

x

x x

Figure 3.22: Data submatrix after column-wise intra-block amalgamation.

trix. Again, this action can reduce the number of times routine WIN 2D is used.
In this case, such calls could be replaced by calls to any of the 3 other matrix
multiplication routines (either FULL, WIN 1DC or WIN 1DR) depending on
the other matrix involved in the multiplication.

Results

Given a 4×32 data block, we have introduced intra-block amalgamation in rows
and columns. We have used values from 0 to 3 for row-wise amalgamation and
0 to 9 for column-wise amalgamation. A row-wise amalgamation with value 3
means that no routines dealing with windows in rows would be used. Next,
we show details on the performance obtained using several values of row and
column-wise amalgamation for some sparse matrices: QAP8 (fig. 3.24) , QAP12
(fig. 3.25), TRIPART1 (fig. 3.26), TRIPART2 (fig. 3.27), pds10 (fig. 3.28) and
pds20 (fig. 3.29). Effective Mflops are presented. They refer to the number
of useful floating point operations performed per second. This metrics excludes
useless operations on zeros performed by the HM Cholesky algorithm when data
submatrices contain zeros.

In all cases, row-wise amalgamation with values 1 and 2 obtain the best per-
formance. There are several values for column-wise amalgamation with similar
performance. We have chosen a value of 5 for the latter since this was often the
best one or nearly the best.

Figure 3.30 shows the performance obtained with our sparse HM Cholesky

3.7. AMALGAMATION 39

top row

bottom row

lef
t c

olu
mn

rig
ht

co
lum

n

Data Submatrix

���
���
���
���

window

���
���
���
���
���

���
���
���
���
���

x

x

x x

Figure 3.23: Data submatrix after applying both row and column-wise intra-
block amalgamation.

Figure 3.24: Intra-block amalgamation: matrix QAP8.

code with and without intra-block amalgamation. In both cases SML routines
and windows have been used. The block sizes are also the same in both cases:
4×32 as the data submatrix size; 32×32 for the next pointer level, and 512×512
as the upper pointer level.

Finally, we present results obtained by five different sparse Cholesky factor-
ization codes. Figure 3.31 shows the results obtained with each of them for the
set of matrices introduced above. Matrix families are separated by dashed lines.

The first bar corresponds to a supernodal left-looking block Cholesky fac-
torization (SN-LL (Ng-Peyton)) [137]. The second bar shows the performance
obtained by the sequential version of a 2D block-oriented approach [155] as
found in the SPLASH-2 [173] suite. Although submatrices are kept in a two-
dimensional data layout this code fails to produce efficient factorizations for
large matrices. The third and fourth bars correspond to sequential versions
of the supernodal left-looking (SN-LL) and supernodal multifrontal (SN-MF)
codes in the TAUCS package (version 2.2) [102]. In these codes the matrix is
represented as a set of supernodes. The dense blocks within the supernodes
are stored in a recursive data layout matching the dense block operations. The
performance obtained by these two codes is quite uniform.

Finally, the fifth bar shows the performance obtained by our right looking
sparse hypermatrix Cholesky code (HM). We have used windows [90] within
data submatrices and SML [89] routines to improve our sparse matrix appli-

40 CHAPTER 3. SPARSE HYPERMATRIX CHOLESKY

Figure 3.25: Intra-block amalgamation: matrix QAP12.

Figure 3.26: Intra-block amalgamation: matrix TRIPART1.

cation based on hypermatrices. Values 1 for row-wise and 5 for column-wise
amalgamation have been used [94]. A fixed partitioning of the matrix has been
used. We present results obtained for data submatrix sizes 4 × 32 and upper
hypermatrix levels with sizes 32 × 32 and 512× 512.

Conclusions

A performance improvement was always achieved for row-wise amalgamation
with values 1 and 2. A value around 5 was usually the best for column-wise
amalgamation on the matrices tested. Using intra-block amalgamation by rows
with a value of 1, and by columns with a value of 5, produces a performance
improvement between 3% and 12.9% with an average of 5.3% on our sparse
matrix test suite on an R10000 processor.

When we introduce intra-block amalgamation we increase the overhead as-
sociated with the unnecessary operations on zeros. Thus, the next step towards
performance improvements could come from a new data storage for data sub-
matrices. In the future, we plan to add the possibility to store data submatrices
as supernodes. In this way we could join several non-consecutive rows in a con-
secutive fashion in the same way as a code based on supernodes. We believe
this could reduce the overhead since the storage and operation on zeros could
be avoided while the efficient execution with BLAS3 would still remain.

3.7. AMALGAMATION 41

Figure 3.27: Intra-block amalgamation: matrix TRIPART2.

Figure 3.28: Intra-block amalgamation: matrix pds10.

Figure 3.29: Intra-block amalgamation: matrix pds20.

42 CHAPTER 3. SPARSE HYPERMATRIX CHOLESKY

Figure 3.30: Performance of sparse HM Cholesky without and with intra-block
amalgamation.

Figure 3.31: Performance of several sparse Cholesky factorization codes.

3.7. AMALGAMATION 43

3.7.2 Hypermatrix oriented supernode amalgamation

We have been using a fixed partitioning of the hypermatrix. Now, we want
to use a variable partitioning of the hypermatrix based on the information of
the frontal tree. Such partitioning can avoid unnecessary dependences and can
expose more parallelism than a fixed-sized partitioning. However, this can pro-
duce very small blocks when supernodes have a reduced number of columns.
Consequently, performance can degrade unless we amalgamate supernodes. In
[12] the authors reported that a variable size blocking was introduced in PER-
MAS to save storage and to speed the parallel execution. However, that paper
does not explain how the variable sized blocking is achieved. We have devel-
oped some supernode amalgamation algorithms addressed to the hypermatrix
scheme.

a)

0

0

0

b)

Figure 3.32: a) Two supernodes. b) Supernode amalgamation into a single
supernode which contains zeros.

When two supernodes are amalgamated, zeros are introduced in the resulting
supernode (figure 3.32). Usually amalgamation algorithms are parameterized
with either the absolute number of zeros allowed, or the relative increase in
the number of zeros after the amalgamation. Having too many zeros within
supernodes outweighs the possible gains (efficient operations on larger blocks
using BLAS3 routines). When we use a hypermatrix scheme, however, we can
avoid the storage and computation of blocks of zero elements by keeping null
pointers (figure 3.1). In addition, we can reduce it further by using windows
within data submatrices. (figure 3.6). Thus, we can amalgamate supernodes
to obtain new ones with larger number of columns (nodes) while the number
of zeros included in the hypermatrix representation of such supernodes is not
necessarily high. For this reason we need a special amalgamation algorithm for
use with hypermatrices.

We define three amalgamation operations which can be used to merge su-
pernodes in the supernodal (or frontal) tree:

• merge one (fig. 3.333): merge single children.
Used to merge the frontal tree allowing only chains of nodes to merge.

3In these simple frontal trees each circle represents a column (node) or group of columns
(supernode). The node at the top (parent) can only be processed when all the nodes below
(children) have been processed. The size of the node refers to the amount of columns within
it. The shaded nodes are amalgamated into their parent, forming a larger node.

44 CHAPTER 3. SPARSE HYPERMATRIX CHOLESKY

���

���

�����������
�����������
�����������
�����������
�����������

�����������
�����������
�����������
�����������
�����������

Figure 3.33: Merge one child node into its parent.

• merge all (fig. 3.34): merge all children into parent node.
Allows a parent to absorb all children.

������
������

������
������

�������������������������

	�	�		�	�		�	�		�	�		�	�	

�
�

�
�

�
�

�
�

�
�

�
�

�
�

�����������������������������������

�����������������������������������

��������������

�����������������������������������

�����������������������������������

�����������
�����������
�����������
�����������
�����������
�����������

�����������
�����������
�����������
�����������
�����������
�����������

Figure 3.34: Merge all child nodes into their parent.

• merge any (fig. 3.35) merge any children.
Allows some children fronts to merge with their parent.

������
������

������
������

�������������������������

�������������������������

���������
���������
���������
���������
���������

���������
���������
���������
���������
���������

Figure 3.35: Merge some child nodes into their parent.

In all cases a post-order traversal of the frontal tree is used. The criterion
used to decide whether nodes are assimilated into the parent is the following: we
force amalgamation if the number of columns in the child (merge one), or the
sum of the columns in the children (some of them in merge any and all of them
in merge all) is smaller than a given value. We call this value the amalgamation
threshold.

We combine these three amalgamation operations to form four different al-
gorithms.

• Algorithm 1: merge all(); merge any();

• Algorithm 2: merge one(); merge all(); merge any();

• Algorithm 3: merge all(); merge any(); merge one();

• Algorithm 4: merge one(); merge all(); merge any(); merge one();

In addition, we have implemented a variant which applies amalgamation only
to nodes which are leaves of the frontal tree:

• Algorithm 5: merge leaves one(); merge leaves all(); merge leaves any();

The approach we use is the following: first, we allow for the amalgamation of
whole subtrees using merge all(). In this case the sum of the number of columns
in all children must be lower or equal to the amalgamation threshold. Second,
we traverse the tree again using merge any() which allows some nodes to be

3.7. AMALGAMATION 45

merged with the parent: at each step we amalgamate the child with the lowest
number of columns and continue up to the point when the sum of the columns
of all the children already amalgamated added to those of the next candidate
node exceed the threshold.

However, we have variations of this approach to allow for amalgamation of
chains of nodes: we allow to merge a single node either at the beginning of the
process or at the end using merge one(). Calling it in the beginning, we allow
single nodes which are not leaves of the tree to merge into their parents. It can
be observed below, when we present the results, that this hardly ever has any
effect. In the case we call the merge one() routine at the end of the process, we
use a different amalgamation threshold: the total number of columns. We do
this to force all single children to be merged. This has a positive effect on the
performance obtained in the numerical factorization.

Results

Figure 3.36 presents the performance obtained in the factorization of matrices
pds10 and TRIPART1 for each amalgamation algorithm and threshold value.
Results for algorithms 1 and 2 are almost equal. The same happens with algo-
rithms 3 and 4. This means that using a first step which merges a single child
with its parent is irrelevant. However, doing this step at the end of the amal-
gamation process can pay off. Algorithms 3 and 4 are systematically the best.
Also, the best values for the amalgamation threshold are similar for matrices
of several sizes. We will study this in the next section. Finally, algorithm 5
is clearly the worst one in terms of performance. Merging only leaf nodes pro-
duces many small fronts for small and medium amalgamation thresholds. Data
submatrices are then too small and the performance obtained is poor. Simi-
lar results were obtained on the other matrices in our test suite. We will use
amalgamation algorithm 4 for the rest of our experiments.

Figure 3.36: Performance of five amalgamation algorithms on matrices pds10
(left) and TRIPART1 (right).

Analysis: amalgamation threshold

Figure 3.37 shows the effective Mflops obtained for each matrix using amalga-
mation algorithm 4. We reckon effective Mflops counting only operations on
nonzero elements since operations performed on zeros are non productive. The
values of the amalgamation threshold range from 4 to a very large number for

46 CHAPTER 3. SPARSE HYPERMATRIX CHOLESKY

which the amalgamated frontal tree has only one front. In such case, the re-
sulting hypermatrix is equivalent to one with a static (fixed) partitioning. In
some cases, several values for the threshold produce a single front in the tree.
That is the reason why several matrices have some bars with exactly the same
height (same effective Mflop rate). On the other hand, we can observe that, in
general, very small threshold values obtain the worst performance.

Figure 3.37: Performance obtained with each amalgamation threshold using
algorithm 4.

Figure 3.38: Average improvement per amalgamation threshold compared to
the static partitioning.

Figure 3.38 shows the average improvement obtained using our amalgama-
tion algorithm 4 on our test matrix suite for several values of the amalgamation
threshold. Large values produce hypermatrix structures similar to those ob-
tained using a static partitioning. Consequently, the resulting performance is
similar to that of the static partitioning. On the other hand, the use of small
values often results in a degradation of performance. The reason for this comes
from the reduction in the size of some data submatrices. This occurs when
the supernodes being amalgamated contain very few columns. We only force
amalgamation of nodes with less columns than the threshold value. The perfor-
mance degradation occurs when the threshold used is smaller than the number
of columns used in the creation of the matrix multiplication routines with fixed
dimensions (32 columns for our target platform). This means that, for any op-
eration on such submatrices we can only use routines WIN 1DC, which uses
windows along the columns, and WIN 2D, which uses windows in both dimen-
sions and is the slowest amongst all 4 codes. In addition, each block is smaller,

3.7. AMALGAMATION 47

but there are more blocks. Thus, more subroutine calls are necessary with
the consequent overhead. Let us illustrate this point with some details on the
hypermatrix Cholesky factorization of matrix GRIDGEN1.

Figure 3.39: Effect on performance of amalgamation algorithm 4 with different
threshold values in factorization of matrix GRIDGEN1.

Figure 3.39 shows the effective Mflops obtained in the factorization after the
application of our amalgamation algorithm 4 for different threshold values on
matrix GRIDGEN1. The best Mflop rate is obtained for threshold values in
the range 128 to 1000. The left part of figure 3.40 shows the increase in the
total number of floating point operations of the hypermatrix Cholesky algorithm
w.r.t. the minimum, i.e. without any operations on zeros. The lowest increase
in the number of operations is obtained when the threshold value equals 4.
However, the resulting performance in Mflops is the worst amongst all the values
tested. The right part of figure 3.40 shows the total number of calls to any of the
4 different matrix multiplication routines performed for each threshold value.
We can see that the number of calls for the leftmost bar, which corresponds to a
threshold value of 4, is the highest. In spite of performing the lowest number of
floating point operations amongst all values of amalgamation threshold, it issues
more calls to the matrix multiplication routines. Furthermore, the percentage
of calls to the slower routine is higher than those done using the other threshold
values.

Figure 3.40: Increase in total number of floating point operations (left) and
total number of calls to A × Bt routines (right) on matrix GRIDGEN1 with
amalgamation algorithm 4.

Figure 3.41 shows the percentage of calls to each of the four matrix multipli-
cation routines and figure 3.42 presents the percentage of floating point opera-
tions performed by each of them. From top to bottom, the four parts of each bar

48 CHAPTER 3. SPARSE HYPERMATRIX CHOLESKY

correspond to calls to routine WIN 2D, WIN 1DR, WIN 1DC and FULL. For
amalgamation threshold 4 we see that about 37% of the calls are made to the
least efficient routine WIN 2D (figure 3.41) which computes only about 10% of
the operations (figure 3.42). The best Mflop rate for the hypermatrix Cholesky
factorization is obtained from those cases with the higher percentage of floating
point operations computed using the FULL routine. Amongst them, the ones
with lower number of operations on zeros provide the best results. Actually,
this was the reason why some intra-block amalgamation was useful to improve
performance.

Figure 3.41: Percentage of calls to each AxBt subroutine type: GRIDGEN1.

Figure 3.42: Floating point operations per AxBt subroutine type: GRIDGEN1.

Similar results have been observed for the other matrices in the test suite
(figure 3.37). Values of amalgamation threshold under 32 usually yield perfor-
mance loss. Recall that we fix the number of columns to 32 in the routines
which operate on small matrices with fixed dimension. In most cases values of
32 and 64 are the optimum. However, the largest matrices can benefit from
larger values: e.g. from 128 to 400 (GRIDGEN1) or 128 to 2000 (TRIPART4).

Figure 3.43 shows the percentage of floating point operations performed by
each matrix multiplication routine for a fixed partitioning of the hypermatrix
(left) and a dynamic partitioning using the elimination tree and amalgamation
algorithm 4 with a threshold value of 32 (right).

Figure 3.44 compares the performance obtained with both codes. The higher
gain in Mflops (figure 3.44) is achieved in those cases where the percentage of
flops performed by our faster matrix multiplication routine (FULL) increases
substantially and the operation on zero elements is reduced: 16,5% (TRI-
PART2), 11,7% (TRIPART3), 9% (TRIPART1 and GRIDGEN1).

3.7. AMALGAMATION 49

Figure 3.43: Percentage of flops performed by each AxBt routine: static (left)
vs dynamic (right).

Figure 3.44: Performance of hypermatrix Cholesky: static vs dynamic parti-
tioning.

Finally, we present results obtained by five different sparse Cholesky fac-
torization codes. In all cases matrices have been reordered using METIS and
a postorder of the resulting elimination tree. Figure 3.45 shows the results
obtained with each of them for the set of matrices introduced above. Matrix
families are separated by dashed lines.

Figure 3.45: Performance of several sparse Cholesky factorization codes.

The first bar corresponds to a supernodal left-looking block Cholesky fac-
torization (SN-LL (Ng-Peyton)) [137]. The second bar shows the performance
obtained by the sequential version of a 2D block-oriented approach [155] as
found in the SPLASH-2 [173] suite. Although submatrices are kept in a two-
dimensional data layout this code fails to produce efficient factorizations for
large matrices. The third and fourth bars correspond to sequential versions

50 CHAPTER 3. SPARSE HYPERMATRIX CHOLESKY

of the supernodal left-looking (SN-LL) and supernodal multifrontal (SN-MF)
codes in the TAUCS package (version 2.2) [102]. In these two codes the matrix
is represented as a set of supernodes. The dense blocks within the supernodes
are stored in a recursive data layout matching the dense block operations. In
both cases the vendor BLAS library is used. The performance obtained by
these two codes is quite uniform. While the first two codes can be considered
out-of-date, TAUCS codes are known to provide reasonable performance [68].

Finally, the fifth bar shows the performance obtained by our right looking
sparse hypermatrix Cholesky code (HM). We have used windows [90] within
data submatrices and SML [89] routines to improve our sparse matrix appli-
cation based on hypermatrices. Values 1 for row-wise and 5 for column-wise
amalgamation have been used [94]. A dynamic partitioning of the matrix has
been used. We present results obtained for data submatrix sizes 4 × 32 and
upper hypermatrix levels with sizes 32 × 32 and 512 × 512. These block sizes
were chosen to have data reused in each level of the memory hierarchy of the
machine used.

Number of fronts

The supernodal (or frontal) tree describes the structure of the matrix. This
provides one source of parallelism: different branches can be factored simulta-
neously. Once those branches are factored, their parent can be treated. Fig-
ure 3.46 shows the number of fronts obtained with each amalgamation algorithm
on matrices pds10 and TRIPART1. We must note that very high number of
fronts are obtained with small front sizes for all algorithms. Algorithm 5 is the
one providing the largest number of fronts. However, we saw in section 3.7.2
that the performance of algorithm 5 is clearly the worst.

Figure 3.46: Number of fronts obtained with each amalgamation algorithm:
matrix pds10 (left) and TRIPART1 (right).

Let’s consider again amalgamation algorithm 4. Figure 3.47 shows the num-
ber of fronts per amalgamation threshold for each matrix using amalgamation
algorithm 4. As the amalgamation threshold grows, the number of fronts tends
to 1. However, for small values the number of fronts becomes large. In sec-
tion 3.7.2 we saw that small values of amalgamation threshold yield reduced
performance. The performance of a parallel code depends ultimately on the
performance of the code executed on each node. Thus, it would not be advis-
able to use very small values of amalgamation threshold. The best performance
is achieved with values around 64. In figure 3.47 we can see that the number of

3.8. OTHER CONSIDERATIONS ON SPARSE HM CHOLESKY 51

Figure 3.47: Number of fronts per amalgamation threshold with algorithm 4.

fronts for this amalgamation threshold is still high for medium and large matri-
ces. Thus, we can still exploit this source of parallelism. We plan to implement
a parallel version of the hypermatrix Cholesky factorization in the near future.
Based on the information of the frontal tree we can create a variable sized par-
titioning of the hypermatrix which avoids unnecessary dependences and can
expose more parallelism than a fixed-sized partitioning.

Conclusions

Given the sparse nature of the problems, we need to adapt the blocks as much
as possible to the input data. In this section we have introduced a supernode
amalgamation algorithm which takes into account the characteristics of a hy-
permatrix data structure. The resulting frontal tree is then used to create a
variable-sized partitioning of the hypermatrix. The resulting sparse hyperma-
trix Cholesky factorization is slightly faster than the one which uses a fixed-sized
partitioning. It also reduces data dependencies which limit exploitation of par-
allelism from the frontal tree. We plan to implement a parallel hypermatrix
Cholesky in the future.

3.8 Other considerations on sparse hypermatrix

Cholesky factorization

3.8.1 Porting efficiency to a new platform

In this section we summarize the port of our application from a machine based
on a MIPS R10000 process to a platform with an Intel Itanium2 processor.
We address the optimization of the sparse Cholesky factorization based on a
hypermatrix structure following several steps.

First we create our Small Matrix Library (SML) automatically as explained
in section 2.3 . We have used 4 × 32 as data submatrix dimensions since these
were the ones providing best performance on the R10000. Later in this doc-
ument we will present the results obtained with other matrix dimensions. As
we mentioned in section 3.4.4 we use windows within data submatrices since
they have proved effective in reducing both the storage of and operation on zero
elements.

Afterwards, we experiment with different intra-block amalgamation values.
As an example, figure 3.48 shows the performance obtained using several val-

52 CHAPTER 3. SPARSE HYPERMATRIX CHOLESKY

ues of intra-block amalgamation on the hypermatrix Cholesky factorization of
matrix pds20 on an Itanium2. Each curve corresponds to one value of amal-
gamation along the rows. The curve at the top (amr=3) corresponds to the
largest amalgamation threshold along the rows: three, for submatrices consist-
ing of four rows. The one at the bottom corresponds to the case where this type
of amalgamation is disabled (amr=0).

On the Itanium2 and using our matrix test suite, the worst performance is
obtained when no amalgamation is done along the rows (amr=0). As we allow
increasing values of the intra-block amalgamation along the rows the overall
performance increases. The best performance for this matrix dimensions is
obtained when amalgamation along the rows is three. This means that, for
data submatrices of size 4 × 32, we will use no windows along the rows. This
suggests that a larger number of rows could provide improved performance.
We will analyze this issue in section 3.8.4. As we move right on the curves,
we observe the performance obtained with increasing values of amalgamation
threshold along the columns. The difference is often low, but the best results
are obtained with values ranging from six to ten. This work will appear in [97].

Figure 3.48: Sparse HM Cholesky on an Intel Itanium2: Performance obtained
with different values of intra-block amalgamation on submatrices of size 4× 32
on matrix pds20.

Notice that the threshold values providing best performance on the R10000
were different: one on the rows and five on the columns. The reason for this
is the different relative performance of the matrix multiplication routines. The
ability of one compiler to generate efficient code for routines which take windows
into account can be different from its aptitudes when dealing with routines which
do not use windows at all. And these capabilities can be different from those
of the compiler found on another platform. As a consequence we get different
optimal values for the intra-block amalgamation thresholds on each platform.

3.8.2 Sparse matrix reordering

A sparse matrix can be reordered to reduce the amount of fill-in produced dur-
ing the factorization. Also it can be reordered aiming to improve parallelism.
In all the tests presented so far we have been using METIS as the reorder algo-

3.8. OTHER CONSIDERATIONS ON SPARSE HM CHOLESKY 53

rithm. This algorithm is considered a good algorithm when a parallel Cholesky
factorization has to be done. Also, when matrices are relatively large, graph
partitioning algorithms such as METIS usually work much better than MMD,
the traditional Minimum Degree ordering algorithm [68].

Ordering sparse matrices for hypermatrix Cholesky

Although our current implementation is sequential, we have tried to improve
the sparse hypermatrix Cholesky for the matrices produced by METIS. In this
way, the improvements we get are potentially useful when we go parallel.

However, we have also studied several other algorithms. On small matrices
in our matrix test suite, when the Multiple Minimum Degree (MMD) [123] al-
gorithm was used the hypermatrix Cholesky factorization took considerably less
time. However, as we use larger matrices (RMFGEN1, pds50, pds60, . . .) the
time taken to factor the resulting matrices became several orders of magnitude
larger than that of METIS. We have also tried older methods [62] such as the
Reverse Cuthill-McKee (RCM) and the Refined Quotient Tree (RQT). RCM
tries to keep values in a band as close as possible to the diagonal. RQT tries
to obtain a tree partitioning of a graph. These methods produce matrices with
denser blocks. However the amount of fill-in is so large that the factorization
time gets very large even for medium sized matrices.

METIS implements a Multilevel Nested Dissection algorithm. This sort of
algorithms keep a global view of the graph and partition it recursively using
the Nested Dissection approach [63] splitting the graph in smaller disconnected
graphs. When these subgraphs are considered small, a local ordering algorithm
is used. METIS uses the MMD algorithm for the local phase. By default,
METIS changes to the local ordering strategy when the number of nodes is less
than 200.

We have modified the code in METIS so that we can:

• Change the algorithm for the local reordering phase:
We can now choose amongst MMD, RCM and RQT

• Change the threshold for switching to the local reordering phase:
We can use a command line flag in our application to choose the switch
value.

Our preliminary experiments with local ordering algorithms other than MMD
result in performance loss in many cases for the default switch value. When the
switch value is smaller (for instance 20) the RQT seems to be a good choice
for some matrices. In some cases the performance gain over the default val-
ues in METIS was about 20%. Unfortunately, there is a large variation in the
best switch value from one matrix to another. For this reason. we will need
to develop some new heuristic which adapts the switch value to the current
part of the graph being studied. This will be done after the thesis is presented.
Thus, our contribution for the time being is limited to give hints for possible
changes in a graph partitioning algorithm which could potentially return some
performance improvements.

54 CHAPTER 3. SPARSE HYPERMATRIX CHOLESKY

Ordering for Linear Programming problems

Working with matrices which arise in linear programming problems we may
use sparse matrix ordering algorithms specially targeted for these problems.
The METIS [106] sparse matrix ordering package offers some options which
the user can specify to change the default ordering parameters. Following the
suggestions found in its manual we have experimented with values which can
potentially provide improved orderings for sparse matrices coming from linear
programming problems. There are eight possible parameters. We skip the
details of these parameters for brevity. However, for the sake of completeness,
we include the values we have used: 1, 3, 1, 1, 0, 3, 60, and 5.

Using this configuration usually produces better sparse matrix orderings
than the default configuration for the type of problems we are dealing with. This
ordering results in faster sparse Cholesky numerical factorization. However, this
comes at the expense of a larger ordering process which incurs in a larger or-
dering time. We have measured both the ordering and numerical factorization
time obtained using the two configurations of METIS discussed above. We must
take into account that Interior Point Methods (IPM), i.e. the methods which
use the sparse Cholesky factorization on linear programming problems have an
iterative nature. In each iteration a sparse Cholesky factorization is performed
on matrices with different data but the very same structure. Thus, the order-
ing process can be performed only once, while the numerical factorization is
repeated many times on different data. Until now, we have been using METIS
default configuration. To evaluate the potential for the new ordering parameters
we have measured the number of iterations necessary to amortize the cost of the
improved matrix reordering. Figure 3.49 presents the number of iterations after
which the specific ordering starts to be advantageous. We can see that in many
cases the benefits are almost immediate. Consequently, in the rest of this work
we will present results using the modified ordering process specific for matrices
arising in linear programming problems. This work will appear in [97].

Figure 3.49: Number of iterations necessary to amortize cost of improved or-
dering.

3.8. OTHER CONSIDERATIONS ON SPARSE HM CHOLESKY 55

3.8.3 Data submatrix storage: compression

In section 3.8.1 we showed that on an Intel Itanium2 and using data submatrices
of size 4 × 32 the optimal threshold for amalgamation in the rows was three.
This suggests that using data submatrices with a larger number of rows should
be tried. However, the larger the blocks, the more likely it is that they contain
zeros. As we have discussed in previous sections, the presence of zero values
within data submatrices causes some drawbacks. Obviously, the computation
on such null elements is completely unproductive. However, we allow them as
long as operating on extra elements allows us to do such operations faster. On
the other hand, a different aspect is the increase in memory space requirements
with respect to any storage scheme which keeps only the nonzero values. Next,
we present the way in which we can avoid some of this additional storage.

As we mentioned in section 3.4.4, we use windows to reduce the effect of zeros
in the computations. However, we still keep the zeros outside of the window.
Figure 3.50 shows two data submatrices stored contiguously. Even when each
submatrix has a window we store the whole data submatrix as a dense matrix.

d1
m1

� � �
� � �
� � �
� � �

� � �
� � �
� � �
� � �

m2
d2

Figure 3.50: Data submatrices before compression.

However, we could avoid storing zeros outside of the window, i.e. just keep
the window as a reduced dense matrix. This approach would reduce storage
but has a drawback: by the time we need to perform the operations we need
to either uncompress the data submatrix or reckon the adequate indices for
a given operation. This could have a performance penalty for the numerical
factorization. To avoid such overhead we store data submatrices as shown in
figure 3.51.

d1
m1

� � � �
� � � �
� � � �
� � � �

� � �
� � �
� � �
� � �

m2
d2

Figure 3.51: Data submatrices after compression.

We do not store zeros in the columns to the left and right of the window.
However, we do keep zeros above and/or underneath such window. We do this

56 CHAPTER 3. SPARSE HYPERMATRIX CHOLESKY

for two reasons: first, to be able to use our routines in the SML which have
all leading dimensions fixed at compilation time (we use Fortran, which implies
column-wise storage of data submatrices); second, to avoid extra calculations
of the row indices. In order to avoid any extra calculations of column indices,
we keep pointers to an address which would be the initial address of the data
submatrix if we were keeping zero columns on the left part of the data submatrix.
Thus, if the distance from the initial address of a submatrix and its window is
dx we keep a pointer to the initial address of the window with dx subtracted
from it. These pointers are kept in the last level of pointers in the hypermatrix.
Thus, when the numerical factorization takes place, we can take advantage of
performing dense operations on data submatrices, i.e. use our efficient routines
working on small matrices and avoid complex calculation of indices. Note that
in the presence of windows, we will never access the zero columns to the left or
right of a window, regardless of having them stored or not.

Figure 3.52 presents the savings in memory space obtained by this method
compared to storing the whole data submatrices of size 4× 32. We can observe
that the reduction in memory space is substantial for all matrices. This work
will appear in [97].

Figure 3.52: HM structure: reduction in space after submatrix compression.

3.8.4 Larger data submatrices: performance

The reduction in memory space allows us to experiment with larger matrix
sizes (except on the largest matrix in our test suite: GRIDGEN1). Figure 3.53
presents the variation in execution time when the number of rows per data
submatrix was increased to 8, 16 and 32. In almost all cases the execution time
increased. Only matrices of the TRIPARTITE family benefited from the use of
larger submatrices.

We must note that the performance obtained with matrices of size 8 × 32
is worse that that obtained with submatrices of size 16 × 32. The reason for
this is the relative performance of the routines which work on each matrix
size. The one with larger impact on the overall performance of the sparse
hypermatrix Cholesky factorization is the one with fixed matrix dimensions and
loop trip counts. The corresponding routine for each matrix size obtains the

3.8. OTHER CONSIDERATIONS ON SPARSE HM CHOLESKY 57

Figure 3.53: Sparse HM Cholesky: variation in execution time for each subma-
trix size relative to size 4 × 32.

peak performance shown in table 3.4. We can observe that the efficiency of the
routine working on matrices with four rows is similar to the one which works on
matrices with eight rows. However, the overhead, in terms of additional zeros,
is much larger for the latter. This explains their relative performance. However,
the improved performance of the matrix multiplication routine when matrices
have 16 rows can pay off. Similarly to the comparison between codes with eight
rows and four, using matrices with 32 rows produces a performance drop with
respect to the usage of data submatrices with 16 rows. This work will appear
in [97].

4 × 32 8 × 32 16× 32 32 × 32

4005 4080 4488 4401

Table 3.4: Performance of the C = C − A × BT matrix multiplication routine
for each submatrix size.

3.8.5 Sparse HM Cholesky vs WSSMP: Performance

In [68] an exhaustive evaluation of several state-of-art sparse Cholesky factoriza-
tion packages was done. According to that work, the numerical sparse Cholesky
factorization in the Watson Sparse Matrix Package (WSMP) [74] was very often
the fastest. For this reason, we wanted to compare the performance obtained
by our code with WSSMP (the name of the sparse Cholesky routine in WSMP
based on the multifrontal algorithm [124]). The BLAS library used by WSSMP
was ATLAS version 3.7.11.

In addition, this package has its own sparse matrix reordering code [73] based
on a Nested Dissection algorithm. This code is supposed to handle matrices from
the linear programming field effectively [72]. The user can activate this special
ordering with one of the routine parameters: namely, setting iparm(20)=1. We
will refer to such case as WSSMP LP in the figures.

We have run both codes on an Itanium2 machine measuring the time taken

58 CHAPTER 3. SPARSE HYPERMATRIX CHOLESKY

by each of them. Note that the number of operations performed in each case
is different since the ordering algorithms used were different: for our sparse
hypermatrix Cholesky (HM) we used METIS with the configuration suitable
for linear programming problems (METIS LP in the figures). Data submatrices
of size 4 × 32 were used in all cases except for the TRIPART family on which
16×32 submatrices were used. A fixed partitioning of the hypermatrix was used
except for the GRIDGEN1 matrix and the TRIPART family. In these cases we
used amalgamation algorithm 3. In the former case the amalgamation threshold
was 160. On the TRIPART family the threshold used was 32. Figure 3.54 show
the performance of these two codes relative to the best one.

Figure 3.54: Sparse HM Cholesky vs WSSMP LP.

We can observe that in many cases HM METIS LP outperforms WSSMP
LP, getting close to the latter in those cases where the latter was the best.

In order to see the influence of the different orderings we have run WSSMP
with the default ordering algorithm (WSSMP in the next figure) and also using
METIS LP. Figure 3.55 show the performance of these two codes relative to the
best one.

Figure 3.55: Sparse HM Cholesky vs WSSMP using several ordering algorithms.

We can observe that WSSMP outperforms WSSMP LP on some matri-

3.8. OTHER CONSIDERATIONS ON SPARSE HM CHOLESKY 59

ces (GRIDGEN1, QAP family, TRIPART3 and TRIPART4). When we use
WSSMP METIS LP the performance increases for several matrices (GRID-
GEN1, TRIPART family, and some matrices of the pds family). We can observe
that no single ordering heuristic obtains the best performance across the whole
matrix test suite. We can also observe that our sparse hypermatrix Cholesky
obtains the best performance for several matrices and over 80% of the best
WSSMP case for the rest.

3.8.6 Future work

Next, we present some ideas for further improvements on sparse hypermatrix
Cholesky factorization.

Column versus row storage

We have been using a column-wise storage for data submatrices since this is
the standard Fortran order. Now, we want to see whether a row-wise storage
could benefit our algorithms. The possible advantage for the sparse Cholesky
factorization comes from the fact that about 90% of the time is spent in a matrix
multiplication such as C = C − A ∗ BT . Having the data submatrices stored
row-wise could result in streaming of all 3 matrices (accessing matrices with
stride 1). This would improve spatial locality and data could be brought from
upper levels of memory faster. On a Cholesky factorization, assuming Fortran
column major storage, this is equivalent to performing operations on an upper
triangular matrix (U) rather than the lower triangle (L). We plan to implement
this in the near future.

Supernodes within hypermatrix data submatrices

The results obtained with the intra-block amalgamation in section 3.7.1 suggest
that replacing dense data submatrices with supernodes could speed up our code.
Although the code is regular and fast, using plain dense matrices we produce
many unnecessary operations on zeros. We believe that we could improve the
effective Mflop rate of our algorithm if we packed the full rows within those
submatrices using a supernodal scheme. We purpose to modify the part of the
code which corresponds to the data submatrices to be able to deal with blocks
stored as supernodes. These changes however are not trivial. Thus, we will
implement it in the future.

Parallel sparse hypermatrix Cholesky

We have been trying to get an efficient sequential implementation of the sparse
hypermatrix Cholesky factorization. Once we have obtained it, we plan to de-
velop a parallel version which uses the information provided by the elimination
tree. Different branches in the tree can be computed in parallel quite easily.
However, we will need to introduce synchronization for the final step, i.e. up-
dating a diagonal block with the contributions produced by the off-diagonal
blocks to its left. Further parallelism will be obtained from operations within
the large blocks which result at the top of the elimination tree. We plan to do
this in the future.

60 CHAPTER 3. SPARSE HYPERMATRIX CHOLESKY

3.8.7 Conclusions

The sparse hypermatrix Cholesky factorization usually improves its performance
as the problem size gets larger. There are two reasons for this. The overhead due
to unnecessary operations on zeros is usually reduced. The other is that since
blocks tend to be larger, more operations are performed by efficient A × BT

routines. The best performance is obtained from those cases which have few
operations on zeros to cause overhead, and which make extensive use of the
most efficient matrix multiplication routines.

A two dimensional partitioning of the matrix is necessary for large sparse
matrices. Compared to codes which do a 1D partitioning of the matrix, our
code can result in a better usage of the memory hierarchy: locality is properly
exploited with the two dimensional partitioning of the matrix which is done in
a recursive way using the HM structure.

The overhead introduced by storing zeros within dense data blocks in the hy-
permatrix scheme can be reduced by keeping information about a dense subset
(window) within each data submatrix. Although some overhead still remains,
using windows and SML routines our sparse HM Cholesky often obtains over
half of the processor’s peak performance for medium and large sparse matrices
factored sequentially in-core. When windows are used bit vectors are unneces-
sary.

In spite of the simple fixed-sized blocking used, the sparse hypermatrix
Cholesky factorization which uses windows and SML routines is highly com-
petitive. On some problems, a variable partitioning of the matrix results in
performance improvements.

The efficient execution of a program requires the configuration of the software
to adapt it to the problem being solved and the machine used for finding a
solution. We have shown the way in which we can tune our sparse hypermatrix
Cholesky factorization code for high performance on a new platform. We have
seen that the optimal parameters can be different for each problem type and
platform. Thus, we need to adapt the code in search for performance.

Using a combination of techniques (windows within dense data submatrices,
intra-block and hypermatrix oriented supernode amalgamation) can be quite
effective. Our code outperforms some state-of-art codes when working on some
matrices taken from Linear Programming problems.

We are planning to experiment with a row-wise storage of data submatrices.
We have found many matrices for which routine WIN 1DR was used to do
more floating point operations than routine WIN 1DC. We think that using a
row-wise storage we could possibly improve the performance of the WIN 1DR
routine, and consequently, improve the factorization speed. In addition, we
would have data submatrices accessed with stride which can potentially speed
up the code. We can achieve this by operating on an upper triangular matrix
(U) rather than the lower triangle (L). In addition, we would like to switch to
a (faster) dense factorization for the last stages of the factorization.

We would also like to improve our code by reducing the operations on zeros
and avoiding the operation on very small matrices. We will try to extend our
code so that it can work with supernodes in addition to dense matrices in the
last level of the hypermatrix (data submatrix level).

Chapter 4

Operation on dense
matrices: Nonlinear array
layouts

In this chapter we present the study done on nonlinear data layouts. First,
we review related work. Then we comment the work we have done using two
different data structures. We have used the hypermatrix data structure for
dense matrix multiplication and Cholesky factorization. As we will see, the
results are competitive but show that there is room for improvement. Thus, we
have studied another data structure for operation on dense matrices: a square
block data layout.

4.1 Introduction

As processor speeds continue to increase relative to memory latencies, locality
optimizations get to be a significant performance issue for algorithms operating
on large matrices. Data has to be reused in cache as effectively as possible:
locality has to be exploited. In low associativity caches conflicts should be
avoided or reduced. A considerable amount of research has been conducted
towards achieving an effective use of memory hierarchies. In this section we
provide an overview of such work.

Conventional techniques

Tiling, also known as blocking, is a loop transformation which combines strip-
mining with loop permutation to form small tiles of loop iterations which are
executed together to exploit data locality [101, 172, 30]. An effective usage
of the cache also requires avoiding self-interference conflict misses within each
tile and reducing cross-interferences. Tile shapes and sizes can be adjusted to
eliminate both capacity and self-interference misses and reduce cross-reference
misses. Several papers have addressed these issues. The most representative
ones are: [52] selects the largest number of non-conflicting columns; [115] select
the largest non-conflicting square; [37] select rectangular non-conflicting tile
sizes.

61

62 CHAPTER 4. OPERATION ON DENSE MATRICES

An alternative method for avoiding conflict and TLB misses is to precopy
tiles to a buffer and modify code to use data directly from the buffer [115]. It
is possible to copy sections of different arrays to buffers. If buffers are adjacent,
then cross-interference misses are avoided. However, precopies are performed
at run time and can penalize performance[37]. Some authors have investigated
selective copying [163] and made efforts to optimize the routines used to do the
precopies[67].

Padding is another method which attempts to reduce conflict and TLB
misses by modifying the program’s data layout. It is a data alignment tech-
nique that involves the insertion of dummy elements into a data structure for
improving cache performance. In [16, 152] the authors examine two compile-
time data-layout transformations for eliminating conflict misses, concentrating
on misses occurring on every loop iteration. Inter-variable padding adjusts
variable base addresses, while intra-variable padding modifies array dimension
sizes. In other occasions authors combine padding and tiling [151, 143]. Appli-
cation of this kind of techniques in complex scientific programs has been studied
in [82, 153].

Alternative matrix representations

A matrix representation is a method used by a computer language to store
matrices of more than one dimension in memory. Fortran and C use different
schemes. Fortran uses ”Column Major”, in which all the elements for a given
column are stored contiguously in memory. C uses ”Row Major”, which stores
all the elements for a given row contiguously in memory. These two schemes
are considered canonical storage.

The default column/row-major order used by programming languages such
as Fortran and C limits locality to a single dimension. Alternative storage for-
mats have been proposed to address the issue of locality. A submatrix storage
was proposed in [128] with the purpose of minimizing the page faulting occur-
ring in a paged memory system. The authors partition matrices into square
submatrices, keeping one submatrix per page, obtaining orders of magnitude
improvement in the number of page faults for several common matrix opera-
tions.

More recently, with the advent of parallel computing platforms there has
been interest in new array representations. Extensive work has been done on
storage optimization of arrays [125, 75, 110, 108]. Lately, Hierarchical Tiled
Arrays (HTAs) [4] have been proposed as a generalization of the recursively
blocked arrays arising in some linear algebra algorithms. Their purpose is to
facilitate parallel programming and programming for locality. Parallel numerical
algorithms have been implemented using HTAs [25, 26].

The use of data layouts with recursive patterns is known in parallel comput-
ing for improving both load balance and locality and has been applied in several
application domains [22, 23, 147, 1]. These data layouts have been described in
terms of quadtrees1 [54, 157] or in terms of space-filling curves (SFC) [156]. The
quadtree is an aid to conceptualizing the layout, but none of its internal nodes
need to be physically represented in memory when an SFC is used. An SFC is

1The Quadtree is a tree data structure in which each internal node has up to four children.
Quadtrees are most often used to partition a two dimensional space by recursively subdividing
it into four quadrants. The quadtree data structure was created by R. Finkel and J.L. Bentley.

4.1. INTRODUCTION 63

a way of mapping the multi-dimensional space into the 1-D space. It acts as
a thread that passes through every cell element in the D-dimensional space so
that every cell is visited exactly once. There are numerous kinds of space-filling
curves. The difference between such curves is in their way of mapping to the
1-D space. Some of them have been applied more extensively due to locality
properties which make them attractive [130]. Peano-Hilbert [146, 98] and Mor-
ton [131] (or Z [141]) order have often been used in computer science as locality
preserving hashing functions.2 A mapping is called a locality-preserving map-
ping in the sense that, if two points are near to each other in the D-dimensional
space, then they will be near to each other in the 1-D space.

Serial dense codes using nonlinear array layouts

In the last ten years there have been several studies on the application of non-
linear array layouts in uniprocessor environments. Recursivity has been in-
troduced into linear algebra codes. Block recursive codes for dense linear al-
gebra computations appear to be well-suited for execution on machines with
deep memory hierarchies because they are effectively blocked for all levels of
the hierarchy [77, 164]. Unfortunately, block recursive algorithms do not in-
teract well with the TLB [3]. This has led to the irruption of new storage
formats [76, 8, 7, 80, 5, 6] which have been used both in serial and parallel
implementations.

Some studies have focused on the use of quadtrees or SFCs for serial dense
codes. In [58], a recursive matrix multiplication with quadtrees using a ”two-
miss” algorithm was presented3. They carried the recursion down to the level of
single array elements which causes a dramatic loss of performance. Later [171],
the same authors improved performance by stopping recursion at 8 × 8 blocks.

In [34] the authors have experimented with five different SFCs (U, X, Z,
Gray and Hilbert) on the matrix multiplication algorithm. The performance
reported was similar for all five. Morton (Z) order has relative simplicity in cal-
culating block addresses compared to the other orderings and is often the order
of choice. In spite of this relative simplicity compared to other layouts, calcu-
lation of addresses in Morton layout is expensive. There are several indexing
techniques which differ in their structure, but which all induce Morton order:
Morton, level-order, and Ahnentafel indexing. These indexing schemes require
bit manipulation unless a lookup table is precomputed [33]. Bit masks can be
used when dimensions are powers of two [14]. However, this requires padding.

In [33] the authors use two nonlinear formats: Morton-order and a block
data layout which they refer to as 4D. In 4D data is stored by submatrices
which are in turn stored by rows or columns. According to their results, the
performance of these two nonlinear data layouts is similar and both outperform
that of codes based on column-major layouts by factors of 1.1–2.5 depending on
the application.

Recursive patterns have also been applied to linear algebra codes to obtain
cache oblivious algorithms. Such algorithms are designed to inherently benefit
from any underlying hierarchy of caches, but do not need to know about the

2In computer science, a locality preserving hashing is a hash function f that maps a point
in a multidimensional coordinate space to a scalar value, such that if we have three points A,
B and C such that distance(A, B) < distance(B, C), then |f(A) − f(B)| < |f(B) − f(C)|.

3The two-miss algorithm ensures that one operand is reused between adjacent calls.

64 CHAPTER 4. OPERATION ON DENSE MATRICES

exact structure of the cache. Examples of this can be found for Morton [170, 84]
and Peano order [18].

A variant of the Z-Morton layout [131, 34, 170] is the Recursive Block Row
(RBR) format used in [76, 51]. The latter avoids the restriction of having block
sizes which are a power of two. A recursive block ordering is determined by
dividing the largest dimension of the rectangular matrix. When there is a tie,
the row dimension is divided. A variant of this format called Recursive Block
Column (RBC) divides the matrix in a similar way, but dividing the column
dimension when there is a tie. RBC corresponds to a variation of the reflected-
N-Morton space filling order [156].

Another advantage of nonlinear layouts can be found in implementations of
Strassen’s algorithm. This algorithm has reduced arithmetic complexity w.r.t
the standard matrix multiplication algorithm. However, it has poor algorithmic
data locality. In [165], the authors report excellent results for their implementa-
tion of the Winograd variant of Strassen’s algorithm based on their hierarchical
storage format.

Both the quadtree representation used in [58] and the codes presented in [34]
require padding to handle arbitrary sized matrices. The hierarchical storage for-
mat presented in [165] overcomes this requirement. Their hierarchical matrix
storage incorporates Morton order for arbitrary-sized matrices without any ad-
ditional memory or computation on zero padding.

Tiling can also be applied to nonlinear data layouts. In [145] the authors
show that improved cache and TLB performance can be achieved when tiling
is applied to both Block Data Layout and Morton layout. In their experiments
matrix multiplication with an iterative code using BDL was often faster than
a recursive code using Morton layout. As we will comment below, our results
agree with this: our iterative tiled algorithm working on BDL outperforms the
recursive code operating on hypermatrices. Authors have also investigated on
tile size selection for nonlinear array layouts [165, 145, 15] and have come to
similar conclusions to the case of canonical storage: blocks should target the
level 1 cache.

Different authors refer to a given data layout using different names. A data
layout where matrices are stored as submatrices which are in turn stored by
columns has been named as Submatrix storage in [128], BC in [76, 51], SB
in [80, 78, 81, 79], 4D in [33], and BDL in [145], TDL in [96]. In this document
we will refer to such data layout as SB. This name reflects the square nature of
the submatrices and is one used most extensively in the literature.

In the next sections we present our work using two nonlinear array layouts.

4.2 A bottom-up approach

We have studied two data structures for dense matrix computations: a Hyper-
matrix data structure [61] and a Square Block Format [80]. In both cases we
drive the creation of the structure from the bottom: the inner kernel fixes the
size of the data submatrices. Then the rest of the data structure is produced
in conformance. We do this because the performance of the inner kernel has a
dramatic influence in the overall performance of the algorithm. Thus, our first

4.3. HYPERMATRIX STORAGE 65

priority is using the best inner kernel at hand. Afterwards, we can adapt the rest
of the data structure (in case hypermatrices are used) and/or the computations.

4.2.1 Inner kernel based on our Small Matrix Library
(SML)

As we mentioned in section 2.5 we have extended our SML with routines which
work with sizes larger than the ones used for the sparse codes. We use the
matrix multiplication routine within our SML as the inner kernel of our general
matrix multiplication codes.

4.3 Hypermatrix storage

4.3.1 Exploiting the memory hierarchy

Number of levels and dimension of each level

We use the hypermatrix data structure to adapt our codes to the underlying
memory hierarchy. Our code can be parameterized with the number of pointer
levels and block sizes mapped by each level. For the dense codes we follow
the next approach: we choose the data submatrix block size according to the
results obtained while creating our SML matrix multiplication routine. The
one providing the best performance is taken. As seen in section 2.5 we do this
even when the matrix size is too large to fit in the L1 cache. Then, for the
upper levels we choose multiples of the lower levels close to the value

√

C/2,
where C is the cache size in double words. Such values are known to reduce
cache conflicts due to accesses to the other matrices [115]. We found that, for
the machines studied, we only needed two levels of pointers for dense in-core
operations. For larger matrices, which required to go out-of-core, or in machines
with more levels of caches more pointer levels could be used.

Figure 4.1 shows the performance of our hypermatrix multiplication routine
on an Itanium2 processor for several matrix dimensions. We have tried several
dimensions for the second level of pointers. Values 368 and 460, close to the
value

√

C/2, were the best. Using large blocks resulted in performance loss.
We tried using a third level with size 736 when the second one has size 368. It
didn’t produce any benefit since the SML routine was already using efficiently
the L2 cache, and the second level of pointers was enough to use the L3 cache
adequately. On the Alpha 21264A the size used for data submatrices was 48×48.
Then, a second level of pointers in the hypermatrix maps blocks of dimension
480. On the R10000 a data submatrix block size of 60×60 allows for a matrix to
be almost permanently in L1 cache. Some conflicts might arise but they should
be scarce. A second higher level of 8×8 pointers maps blocks of 480×480 data.
This is adequate both for the TLB and second level cache.

Orthogonal blocks

In [135] a class of Multilevel Orthogonal Block forms was presented. In that
class each level is orthogonal to the previous: they are constructed so that
the directions of the blocks of adjacent levels are different. These algorithms
exploit the data locality in linear algebra operations when executed in machines

66 CHAPTER 4. OPERATION ON DENSE MATRICES

Figure 4.1: Performance of dense matrix multiplication for several hypermatrix
configurations on an Intel Itanium 2 processor.

with several levels in the memory hierarchy. Figure 4.2 shows graphically the
directions followed by two possible Multilevel Orthogonal Block (MOB) forms.

Figure 4.2: Two examples of Multilevel Orthogonal Block forms

We have implemented Multilevel Orthogonal Blocks [135] for the different
levels in the hypermatrix structure. Actually, we can generate all combinations
of loop orders with a code generator. Figures 4.3 and 4.4 show the performance
obtained on a matrix multiplication performed on matrices of size 4507 on Ita-
nium2 and Alpha 21264A processors for all combinations of loop orders for two
levels of pointers in a hypermatrix. All bars to the right of the dashed line
correspond to orthogonal forms. Although we eventually use only two pointer
levels, for hypermatrix multiplication there is an improvement in the perfor-
mance obtained when the upper level is orthogonal to the lower. In this way
the upper level cache is properly used. The performance improvement is mod-
est, but results were always better than those corresponding to non-orthogonal
block forms.

Results

We have compared our dense Cholesky factorization and hypermatrix multi-
plication with vendor and ATLAS [167] DPOTRF and DGEMM routines. On

4.3. HYPERMATRIX STORAGE 67

Figure 4.3: Performance of HM dense matrix multiplication for several loop
orders on an Intel Itanium 2.

the R10000 our code outperformed both the vendor and ATLAS DPOTRF and
DGEMM routines. The graph on the left part of figure 4.5 shows the perfor-
mance obtained on this platform for a dense Cholesky factorization. The graph
compares the results obtained by our code (labeled as HM) with those obtained
by routine DPOTRF in the vendor library. Both when upper (U) or lower (L)
matrices were input to this routine its performance was worse than that of our
code. We also tried the matrix multiplication operation C = C − A ∗ BT since
this is the one which takes about 90% of Cholesky factorization. The results
can be seen in the right part of figure 4.5. Our code outperformed the DGEMM
matrix multiplication routine in both the vendor and ATLAS libraries. We must
note however, that ATLAS was not able to finish its installation process on this
platform. Thus, we used a precompiled version of this library which corresponds
to an old release of ATLAS.

On an Alpha 21264A ATLAS installation phase lets the user choose whether
to install a hand made code specially designed for this platform (GotoBLAS).
In both cases, on this system, ATLAS outperforms our matrix multiplication
code. One reason for this can be observed in figure 2.3. The peak performance of
the matrix multiplication routine in our SML was far from the theoretical peak
performance on this machine. However, we obtain the same performance as
DPOTRF for large matrices (figure 4.6). On the Itanium2 our performance got
close to ATLAS’ both for DGEMM and DPOTRF. It was similar to ATLAS for
large matrices (figure 4.7). We must note that, in spite of its name, the ATLAS
project is often based on matrix multiplication kernels written in assembly code
by hand.

This work was presented in [92].

68 CHAPTER 4. OPERATION ON DENSE MATRICES

Figure 4.4: Performance of HM dense matrix multiplication for several loop
orders on an Alpha 21264A processor.

Figure 4.5: Performance of dense Cholesky factorization and matrix multiplica-
tion using hypermatrices on a MIPS R10000 processor.

Conclusions

A hypermatrix data structure can be used to adapt the code to the underlying
memory hierarchy. For the machines studied and working on dense matrices
in-core, two levels of pointers were enough. Going out-of-core or working on
machines with more levels of cache memory could benefit from the extension
of this scheme to a larger number of levels in the hypermatrix. The use of
Multilevel Orthogonal Block forms was always beneficial on the platforms used.

4.3.2 Parallel dense HM multiplication using OpenMP

Introduction

We have used a Hypermatrix data structure [61, 138] in sequential linear alge-
bra codes. We could obtain efficient implementations in both sparse and dense
codes. Now, we are interested in the parallelization of our dense codes. This

4.3. HYPERMATRIX STORAGE 69

Figure 4.6: Performance of dense Cholesky factorization and matrix multiplica-
tion using hypermatrices on an Alpha 21264A processor.

Figure 4.7: Performance of dense Cholesky factorization and matrix multiplica-
tion using hypermatrices on an Intel Itanium 2 processor.

data structure, however, presents difficulties when work has to be distributed
amongst several processors. Namely, the difficulty to balance the load evenly.
In this section we present the work we have done to produce a hypermatrix
multiplication based on OpenMP directives. This work was presented in [95].
We wanted to know whether some of the features available in OpenMP could
surmount the intrinsic difficulties of parallel codes based on the Hypermatrix
data structure. We have chosen matrix multiplication because it is highly paral-
lelizable. Also, it is a very important operation since it appears as a basic kernel
in many scientific applications. For this reason it has been studied extensively
[167, 36, 34].

OpenMP

OpenMP [139] provides a set of directives and environment variables to express
and control parallelism in the execution of a program. The user can choose the
scheduling algorithm. When a static scheduling algorithm is used, the distribu-
tion of iterations to threads is done before the execution of any of them. When
a dynamic scheduling algorithm is used, the next piece of work for a thread
is assigned when it is needed. It is taken from the remaining operations due.
There is a default value for the number of iterations assigned to each processor
which can be changed by the user explicitly. We refer to the chunk size. The
default for the static scheduling is to split the work in as many parts as the
number of threads defined. The default for the dynamic scheduling is to take
one iteration each time.

70 CHAPTER 4. OPERATION ON DENSE MATRICES

Several nested loops can be parallelized. OpenMP permits this fact with
a feature known as nested parallelism. When nested parallelism is activated,
parallel constructs can be used within other parallel constructs.

In this work we have used OpenMP for the parallelization of a matrix mul-
tiplication code based on the hypermatrix data structure.

Hypermatrix data structure

Now, we are interested in the efficient execution on multiprocessor machines.
The hypermatrix data structure, however, presents some difficulties when par-
allel code is developed. Namely, the partitioning of the matrix is done when the
data structure is set. Each pointer in the upper pointer matrix level maps a part
of the matrix. If the dimension of such matrix is not a multiple of the number
of processors used then the load is not distributed evenly amongst them.

We have started with the study of the hypermatrix multiplication opera-
tion, which is very regular and has a high potential for parallelism. We have
added OpenMP directives to a few loops and experimented with several features
available with OpenMP in the Intel Fortran Compiler: scheduling algorithms,
chunk sizes and nested parallelism. We anticipate than none of these features
was completely successful for the efficient parallelization of our code.

Parallel dense hypermatrix multiplication using OpenMP

The target machine was a 8-way SMP with Intel Itanium2 processors running
at 1.5 GHz. The theoretical peak of this machine is 48 Gflops. The Itanium2
has three levels of cache. In the first level it has separate instruction and data
caches with 16 Kbytes each. Then, it also has a 256 Kbytes L2 cache and an
off-chip L3 cache with possible sizes ranging from 1.5 up to 9 MB.

We have experimented with four and eight processors. In this section we
will discuss the results obtained. Our preliminary study on four CPUs provides
a speed-up of 3.7 for medium to large matrices. The best combination was
that where the two outermost loops were parallelized using nested parallelism
and a dynamic scheduling algorithm was used where the chunk size equaled 2.
Figure 4.8a shows the performance of our hypermatrix multiplication code on
four processors for the C = C − A ∗ BT operation for both the sequential and
parallel versions of our code. We have used an upper block size of size 460×460,
i.e. each upper level pointer maps a block of such size. We then tried the same
approach on eight processors. The same figure 4.8a shows the performance
obtained on eight processors with a dynamic scheduling strategy, with the two
outermost loops parallelized using nested parallelism. Several chunk sizes were
used.

We observe that for small matrix dimensions small chunk sizes provide bet-
ter results. However, as the matrix gets bigger, larger chunk values can be more
effective. This is due to the reduction in the overhead which occurs when one
thread searches for new work. Giving a thread more work at once reduces the
number of times this needs to be done. Also, the memory hierarchy can be bet-
ter used since contiguous blocks corresponding to consecutive iterations can be
reused in the cache. It is important to note that a certain chunk value is effective
only when it keeps a good load balancing. Since the loops we have parallelized
are the outer loops, they correspond to the upper level pointer matrix. The

4.3. HYPERMATRIX STORAGE 71

a) b)

Figure 4.8: a) Two parallel loops with dynamic scheduling and several chunk
sizes on 8, 4 and 1 processors. b) Performance of ATLAS’ DGEMM.

chunk size times the number of processors should divide the upper level matrix
dimension evenly. Otherwise, load imbalance occurs and the performance drops.

We wanted to compare our results to those of ATLAS [167]. Figure 4.8b
shows the performance of the sequential and parallel (on eight processors) ver-
sions of ATLAS matrix multiplication routine DGEMM. Their code, starting
with the sequential version, outperforms ours. We must note, however, that
on this machine ATLAS uses a hand-tuned kernel. The interesting point here
comes from the fact that their code achieves high speed-ups sooner than our
code. For some large matrix dimensions the speed-up we obtain is similar to
theirs (around 7.0). However, for smaller matrices our speed-up is considerably
lower. This is due to the load imbalance mentioned above. We have revisited
our code and tried several variants aiming to improve its performance, specially
when working on smaller matrices.

Reducing the block size

By default we have been using an upper block size of 460× 460, i.e. each upper
level pointer maps a block of such size. However, we have also reduced the
size of the block to 368 × 368. Figure 4.9a shows the performance obtained
with dynamic scheduling and nested parallelism for this block size. Results are
similar to those obtained with our default block size of 460× 460.

a) b)

Figure 4.9: a) Two parallel loops with dynamic scheduling: smaller blocks. b)
Three loops parallelized (one in the level of pointers to data).

For the upper levels we have also tried other multiples of the lower levels
close to the value

√

C/2, where C is the cache size [115]. Figure 4.11b shows
the performance obtained with several sizes. To simplify the comparison, the
maximum value obtained for all chunk sizes for a given block size are presented.

72 CHAPTER 4. OPERATION ON DENSE MATRICES

Results are similar for all of them. We must note that the smaller block size
276 × 276 provides the worst performance for larger matrices. This size does
not use the memory hierarchy so effectively. Also, there is more overhead in the
parallelization.

Parallel loop in level of pointers to data

We have tried another code which parallelizes a third loop in addition to the
outermost two loops. This loop is the outermost loop in the level of pointers to
data. Figure 4.9b compares its results to those shown in figure 4.8a. This code
only gets better performance for a few small matrices. For larger matrices, this
code does not offer any advantages. The granularity of this third loop is too
small and the overhead of the parallelization outweighs any possible advantages.

Static scheduling

Figure 4.10a shows the results obtained with a static scheduling. Results with
and without nested parallelism are shown. When only the outermost loop is
parallelized we get a saw shape curve. The peaks correspond to sizes which get
a perfect partitioning of the hypermatrix, i.e. with a number of pointers in the
upper matrix which is a multiple of the number of processors. The use of nested
parallelism introduces some overhead. However, it improves the performance for
matrix sizes which are not multiples of the number of CPUs. The performance
obtained in both cases is in general worse than that presented in figure 4.8.

a) b)

Figure 4.10: a) One and two parallel loops with static scheduling. b) Parallel
outer loop with dynamic scheduling and several chunk sizes.

Dynamic scheduling with only 1 Parallel loop

Figure 4.10b shows the results obtained when only the outermost loop is paral-
lelized. A dynamic scheduling is used in this case. Again, we get a saw shaped
curve. It is quite obvious that larger chunk sizes suffer from load imbalance
more often.

Combining Static and Dynamic scheduling algorithms

We have scheduled the outermost loop using a static scheduling and the second
outermost loop using a dynamic scheduling. Figure 4.11a shows the perfor-
mance obtained. The performance obtained is similar to the one obtained when

4.3. HYPERMATRIX STORAGE 73

both loops are scheduled using a dynamic scheduling algorithm as shown in
figure 4.11b.

a) b)

Figure 4.11: a) Static scheduling of outermost loop and dynamic scheduling of
next inner loop. b) Maximum values obtained for each block size and scheduling
algorithm.

Perfect matrix partitioning

Figure 4.12 shows the results obtained when the matrix has been partitioned
in a number of parts which is multiple of the number of threads. All partitions
have the same size: each upper level pointer maps blocks of 460 × 460. Thus,
a dimension of 3680 produces a hypermatrix with eight pointers in the upper
level. The number of pointers in the upper level corresponding to the other three
matrix dimensions in the figure are 16, 24 and 32 respectively. All of them are
examples where the load can be easily balanced amongst the processors.

Figure 4.12: Experiments with different OpenMP features when the hyperma-
trix is partitioned for perfect load balancing.

These results allow us to study the overhead of each strategy. We use nest
to identify the use of nested parallelism. A value of 0 means nested parallelism
is not allowed while a value of 1 means the opposite. Label sch corresponds to
the scheduling algorithm used. A value of 0 denotes static scheduling. A value
of 1 is used to indicate dynamic scheduling. We use chu to specify the chunk
size. A value of 0 is used to signify the default value for a given scheduling
strategy.

74 CHAPTER 4. OPERATION ON DENSE MATRICES

On these perfectly partitioned hypermatrices we can observe that, when the
matrices are small, the only way to get good speed-ups is via simple strategies:
parallelizing only the outermost loop with either static or dynamic scheduling.
As the matrices get large there are more strategies which provide good speed-
ups. However, in any case it is important to use a chunk size which allows for
a good load balancing. The result of dividing the dimension of the upper level
pointer matrix by the number of threads must be a multiple of the chunk size.

In a few occasions, a chunk size larger than the default for the dynamic
scheduling strategy (which defaults to 1) can improve slightly the performance
of our matrix multiplication. This is due to the reduction of the overhead which
occurs when one thread takes several iterations at once instead of taking one
iteration each time. Also, better use of the memory hierarchy results when one
thread reckons several contiguous blocks corresponding to consecutive iterations.

Nested parallelism is not really effective in such situations. It cannot provide
any advantages. Instead, it introduces an additional overhead with the creation
of the inner parallel construct.

Conclusions

We conclude that the best way to parallelize our application is by means of
an adequate partitioning of the matrix. If this is possible, a simple scheduling
strategy where just the outermost loop is parallelized turns out to be the best
solution. Both static and dynamic scheduling algorithms work well and perform
in a similar manner.

When data cannot be partitioned adequately we can take advantage of nested
parallelism. Despite its overhead, it offers the advantage of being able to open
new parallel sections which can employ otherwise idle processors. The resulting
performance curves are smoother than the saw shaped curves which result from
those cases where only the outer loop was parallelized.

We have conducted experiments with eight processors and found some load
imbalance in those cases where the dimension of the matrix in the upper pointer
level is low and is not multiple of the number of processors used. Thus, smaller
matrices suffer from load imbalance as the number of processors grow. This can
limit the effectivity of parallel codes based on the hypermatrix scheme.

Consequently, we plan to replace the hypermatrix data structure in our al-
gorithms which deal with dense matrices. In the next section we use a plain
storage of the data submatrices which can be accessed with a simple indexing
scheme. In this way we can still use our routines which deal with small sub-
matrices and, at the same time, we will be able to split the work amongst all
processors more effectively.

4.3.3 Data submatrix storage: Column versus row storage
and alignment

We have been using a column-wise storage for data submatrices since this is
the standard Fortran order. Now, we want to see whether a row-wise storage
could benefit our algorithms. On a Cholesky factorization about 90% of the
time is spent in a matrix multiplication such as C = C − A ∗ BT . Having
the data submatrices stored row-wise could result in streaming of all 3 matrices

4.4. SQUARE BLOCK FORMAT (SB) 75

��

blkszy

dimx

dimy

m

mtofree
blkszx

Figure 4.13: Square Block Format: matrices aligned and stored by submatrices.

(accessing matrices with stride 1) for this operation. This would improve spatial
locality and data could be brought from upper levels of memory faster.

Note that C = C−A∗BT using row-wise storage is the same as C = C−AT ∗
B using column-wise storage. For this reason we have experimented with the
hypermatrix multiplication with C = C−AT ∗B. We found that a performance
improvement between 5 and 9% was obtained compared to the hypermatrix
multiplication where matrix A is not transposed while B is transposed.

4.4 Square Block Format (SB)

The overhead of a dense code based on hypermatrices due to the recursivity
and indexing, together with the difficulties to produce efficient parallel codes
based on this data structure, has led us to experiment with a different data
structure. We use a simple Square Block Format (SB) [80]. It corresponds to
a 2D data layout of submatrices stored in column-major order (see figure 4.13).
The shaded area represents padding introduced to force data alignment.

Using this data structure we were able to improve the performance of our
matrix multiplication code, obtaining very competitive results. This work was
published in [96]. Our code implements tiling. We use a code generator to
create different loop orders. Next, we present the results obtained with the best
loop order found.

Results

We present results for matrix multiplication on three platforms. The matrix
multiplication used is C = C − AT × B. Each of the following figures shows
the results of DGEMM in ATLAS, Goto or the vendor BLAS, and SB using our
SML. Goto BLAS [67] are known to obtain excellent performance. They are
coded in assembler and targeted to each particular platform. The dashed line
at the top of each plot shows the theoretical peak performance of the processor.
Some plots show the performance obtained with the dense codes based on the
hypermatrix (HM) scheme. We observe that SB outperforms HM.

For the Intel machines (figure 4.14) we have included the Mflops obtained
with a version of the ATLAS library where the hand-made codes were not

76 CHAPTER 4. OPERATION ON DENSE MATRICES

Figure 4.14: Performance of dense matrix multiplication on an Intel Pentium 4
Xeon (left) and an Intel Itanium 2 processor (right).

enabled at ATLAS installation time. We refer to this code in the graphs as
’nc ATLAS’. We can observe that in both cases ATLAS performance drops
heavily. SB with SML kernels obtain performance close to that of ATLAS
on the Pentium 4 Xeon, similar to ATLAS on the Itanium2, and better than
ATLAS on the Power4. For the latter we show the Mflops obtained by the
vendor DGEMM routine which outperform both ATLAS and SB (figure 4.15).
We can see that even highly optimized routines provided by the vendor can fail
under certain circumstances. For instance, some large leading dimensions can
be particularly harmful and produce lots of TLB misses if data is not precopied.
At the same time, data precopying must be performed selectively due to the
overhead incurred at execution time [163]. These problems can be avoided
using nonlinear array layouts.

Results for SB assume matrices already stored in block major format. Al-
though new matrix storage formats have been proposed [80, 7, 34, 165] the ma-
trix will probably need to be transformed from column major order into block
major order. We have measured the time necessary to create the three matrices
used in a matrix multiplication. Taking that into account, the performance of
SB drops by about 10% for small matrices, and as low as 1% for the largest
matrices tested. The reason for this is that the cost of this transformation is
O(N2) while for the multiplication the cost is O(N 3).

Figure 4.15: Performance of dense matrix multiplication on a Power4 processor.

4.5. FINAL CONSIDERATIONS 77

4.5 Final considerations

Column versus row storage and alignment

We have seen in previous sections that the performance obtained with the op-
eration C = C − AT ∗ B is superior to that of C = C − A ∗ BT . For this
reason we plan to implement a Cholesky factorization which uses the former
operation. This can be achieved by performing the Cholesky factorization on
an upper triangular matrix U instead of a lower triangular matrix L.

Inner kernel based on hand optimized codes

Both the hypermatrix and SB approaches could also benefit from codes written
in assembly language by hand. In order to improve our performance on some
systems, we would like to use an ad-hoc matrix multiplication kernel and com-
pare the results. This is a complex task and will be left as future work. Many
researchers have based their codes on the use of optimized inner kernels which
match the algorithm and the architecture [2, 67, 78, 51, 168]. We believe that
BLAS implementations should provide direct entry points to the inner kernels.
In this way, other codes could benefit from very efficient inner kernels created
by an expert by hand. We agree with [165] that a standard kernel interface
different from the BLAS should be added.

Recursive+HM vs Iterative+SB: Conclusions

The results obtained with an iterative code working on a simple Square Block
Format outperform the recursive code which uses a hypermatrix. Our results
agree with those presented in [145]. We would like to implement a dense
Cholesky factorization using an iterative approach and a Square Blocked Lower
(or Upper) Packed Format [80]. We plan to do it straightaway.

78 CHAPTER 4. OPERATION ON DENSE MATRICES

Chapter 5

Application to other fields:
Nearest Neighbor
Classification

5.1 Introduction

The Nearest Neighbor (NN) classification procedure is a popular technique in
pattern recognition, speech recognition, multitarget tracking, medical diagnosis
tools, etc. A major concern in its implementation is the immense computational
load required in practical problem environments. Other important issues are the
amount of storage required and the data access time.

In this chapter, we address these issues by using techniques widely used in
linear algebra codes: use floating-point operations instead of integer arithmetic,
apply tiling, loop unrolling or software pipelining. We show that a simple code
can be very efficient on commodity processors and can sometimes outperform
complex codes which can be more difficult to implement efficiently. This work
was presented in [93].

5.1.1 Computer resources

Computer architecture has evolved very quickly in the last decades with impor-
tant improvements in many areas. We will center our attention in two aspects
which are essential to the execution of programs: processor and memory. Cur-
rent microprocessors have very fast clocks and multiple functional units within
the processor. Potentially, some processors can execute billions of operations
per second. However, even general purpose processors are usually optimized
for scientific computations which require arithmetic with real numbers. This
means that, on many processors, a multiplication of floating point numbers will
be done much faster than the product of two integers. When multiple functional
units are present, several arithmetic operations can be done at the same time.
In addition, when those functional units are pipelined, a new arithmetic in-
struction can be started each cycle, with several operations proceeding through
the pipeline. On the other hand, integer arithmetic is usually slower. Also,

79

80CHAPTER 5. APPLICATION TO OTHER FIELDS: NN CLASSIFICATION

evaluating conditionals or taking branches can potentially stall the processor.
Therefore, processors can perform certain types of operations faster than others.

Computer memories are getting larger and larger. However, although their
access time is getting reduced, it is not progressing as rapidly as the processor
speed. This means that, from the processor point of view, the memory is getting
slower. For this reason it is important to use the memory hierarchy which is
composed of one or more cache memories in addition to the main memory. The
smaller they are, the faster they can be accessed. We need to reuse data in the
faster levels of the memory hierarchy in order to execute applications quickly.
Thus, we need to write “cache conscious” programs.

In this chapter we will show how we can obtain an efficient Nearest Neigh-
bor classification implementation by taking advantage of the machine resources.
This is achieved in two complementary steps. First, we use floating-point oper-
ations instead of integer operations and avoid conditionals. In this way we use
the efficient part of the processor and classify data much faster. Second, we use
blocked algorithms to reuse data in the cache memory. This is important in real
situations, where data sets are large.

5.1.2 Nearest Neighbor Classification

The classification problem consists in assigning a class from ` classes

C1, C2, . . . , C` to each of the Dsize unclassified vectors ~Xj = [xj
1, x

j
2, . . . , x

j
Vsize

]
with length Vsize, for j = 1, . . . , Dsize. The NN classification uses a set of vec-

tors ~P k = [pk
1 , p

k
2 , . . . , pk

Vsize
], for k = 1, . . . , Psize, called a set of prototypes,

whose class is known. Then, an unclassified vector ~Xj is classified in the same

class as ~P s if ~P s is the prototype with minimum distance to ~Xj , that is

d(~Xj , ~P s) = min
k=1,..,Psize

d(~Xj , ~P k)

where, in our examples, the distance function is defined as the square of the
Euclidean distance:

d(~Xj , ~P k) =

Vsize
∑

i=1

(xj
i − pk

i)2

Hence, the distance between the vector ~Xj , which is to be classified, and all

the vectors ~P k, k = 1, . . . , Psize, in the prototype set must be computed. The
time needed to classify a set of Dsize vectors is, consequently, proportional to
(Vsize × Dsize × Psize).

In the algorithms we use, which are shown below, the set of unclassified vec-
tors is kept in matrix D(Vsize, Dsize) where xj

i = D(i, j). The set of prototypes
is kept in matrix P (Vsize, Psize), where pk

i = P (i, k). Vector ClassP (Psize)

indicates the class the prototypes belong to, i.e. ClassP (k) = r if ~P k belongs
to class Cr. The result of the classification is stored in vector ClassD(Dsize),

where ClassD(j) = r if ~Xj is classified as belonging to class Cr.
Figure 5.1a shows the common brute force algorithm, which we label as jki

form due to the loop ordering. In this algorithm, all of the Vsize components

of an unclassified vector ~Xj , stored in a column of matrix D, are compared
to the correspondent components of each vector in the prototype set, stored as

5.1. INTRODUCTION 81

columns of matrix P . Often, the jki code has been modified to exit the loop that
computes the distance when the current distance exceeds the running minimum
found, reducing the number of computations required for classification, while
keeping the same accuracy as the brute force algorithm. Figure 5.1b shows the
modified jki loop, henceforward called jki exit algorithm.

MAX = 2 ** 30
DO J = 1, Dsize

mindis = MAX
DO K = 1, Psize

distance = 0
DO I = 1, Vsize

sub = D(I,J) - P(I,K)
distance = distance + sub*sub

ENDDO

IF (distance.LT.mindis) THEN
mindis = distance

mincla = ClassP(K)
ENDIF

ENDDO

ClassD(J) = mincla
ENDDO

a)

MAX = 2 ** 30
DO J = 1, Dsize

mindis = MAX
DO 2 K = 1, Psize
distance = 0

DO 1 I = 1, Vsize
sub = D(I,J) - P(I,K)

distance = distance + sub*sub
IF (distance.GT.mindis) GO TO 2

1 CONTINUE

mindis = distance
mincla = ClassP(K)

2 CONTINUE
ClassD(J) = mincla

ENDDO
b)

Figure 5.1: Codes for the a) jki and b) jki exit forms

5.1.3 Data and Computation Diagram

Figure 5.2 shows what we call a Data and Computation Diagram (DCD) for our
algorithm. DCDs have been proposed in [133] as a very powerful visual tool in
understanding and designing block algorithms. In this diagram, the rectangular
parallelepiped represents the iteration space, with the operations in the inside
and the data in the faces or in planes parallel to these faces. Thus, each of the 3
orthogonal directions of the Euclidean space is associated with one of the three
loops in the code in figure 5.1a. The arrows indicate the order in which the
data are accessed and the operations performed in the jki form. To clarify data
positions in this DCD, the elements p11 and d11 are represented in dark. From
the code and the DCD it should be apparent that matrix D can be reused in
direction k (all iterations of loop k use the same element of D), while matrix P
can be reused in direction j. This figure also shows vectors classP and classD,
used to store each vector’s classification.

size

k

i

D

size

size

P

v

j

P

DC
l
a
s
s
P

ClassD

Figure 5.2: Data and Computation Diagram for the jki form of NN classification

82CHAPTER 5. APPLICATION TO OTHER FIELDS: NN CLASSIFICATION

5.1.4 Related Work
A major concern in the implementation of the NN technique is the immense com-
putational load associated with it and the large amount of computer memory
required when large prototype and data sets exist. These problems have been
addressed at length and many alternatives proposed: special-purpose hardware,
such as systolic arrays [60] and several approaches have shown to be computa-
tionally advantageous over the brute force method:

• Modified metrics as alternative distance measures to the Euclidean dis-
tance used in classical NN classifiers [21, 41, 70, 85, 113, 116, 120, 150].

• Selection of a design subset of prototypes from a given set of prototype
vectors [41, 46, 83, 116, 150] and generation of prototype reference vectors
[45].

• Use of fuzzy logic and Self Organizing Maps [35, 112].

A paper [20] compared RISC-based systems to special purpose architectures
for Image Processing and Pattern Recognition (IPPR). They concluded that
although a lot of progress had been achieved in RISC technology, low advantages
could be obtained for IPPR due to the difficulty of producing efficient code
for such machines. In this work, however, we study ways of improving the
efficiency of Nearest Neighbor classification on general purpose RISC-based High
Performance Workstations since their price can make them cost-effective. Our
approach aims to maximize speed maintaining the accuracy of the brute force
method by means of an efficient codification of the algorithm using floating-
point arithmetic, which increases speed, and a block algorithm, which reduces
the number of misses in the cache memory. Such techniques have often been
used in numerical applications [10, 133] but never, to our knowledge, to NN
classification.

5.1.5 Processor Overview
Our tests have been carried out on two high performance workstations, which
incorporate superscalar processors: an HP PA-7150 [142] and a DEC Alpha
AXP-21064 processor [38] respectively. Both implement Integer/Floating-Point
two-way superscalar operation, i.e. one integer and one floating-point instruction
can be issued each cycle. Loads and stores of floating-point registers are treated
as integer operations. The CPU can read two consecutive data words (a total
of 8 bytes) every cycle from the external data cache. Although floating-point
operations can take several CPU cycles, the functional units are pipelined and
new operations can be started each cycle.

In order to dispatch operations to the functional units at a high rate, the
PA-7150 floating-point instruction set includes instructions which perform a
floating-point multiplication operation together with an independent addition
or subtraction operation in a single instruction, allowing the floating point unit
to dispatch two floating-point operations in a single cycle.

The PA-7150 cache has 256 Kbytes, with a line size of 32 bytes. The number
of elements in a line (L) is therefore 32 for byte, 8 for simple and 4 for double
precision floating-point data types. According to our experiments, a cache miss
produces a penalty of 35 cycles. Consequently, the number of Cycles Per Miss

5.2. ALGORITHM ANALYSIS 83

(CPM) is 35. The AXP-21064 incorporates separate 8 Kbyte on-chip instruc-
tion and data caches, and a 1 Mbyte off-chip unified cache. All of them have
line size equal to 32 bytes. A first level cache hit has a 3 cycle latency while a
miss which hits in the second level cache is available in 11 cycles for the first
word, and 18 for the following one.

5.1.6 Performance Metrics
In order to compare different codes that solve the same problem, CPUtime is a
clear candidate to be used as a metric. However, when problem size is changed
from execution to execution it is advisable to use a metric normalized to the size
of the problem. For this reason, we introduce Normalized Cycles (NC), which
for our classification problem is computed by:

NC =
CPU time in cycles

Vsize · Psize · Dsize

(5.1)

We model the NC with the following expression:

NC = NC(cpu) + NC(mem) (5.2)

where NC(cpu) is the component obtained considering no misses in the
memory hierarchy (caches, TLBs, page faults) and NC(mem) represents the
penalty cycles due to the misses in the memory system. In the analytical models
we develop in this chapter, we do not consider the misses produced by instruction
fetches since a separate instruction cache exists and the programs we evaluate
are sufficiently small so that no instruction misses occur. We include only misses
produced by load accesses to matrices since they constitute almost all the data
accesses. Experimental results of the NC for different codes are reported in
sections 5.2 and 5.3. All our programs are written in Fortran.

5.2 Algorithm Analysis
In this section we present the results obtained from the execution of several
codes using distinct data representations. For certain applications floating-point
arithmetic is required. In other cases, however, vector elements can be coded as
bytes. We have implemented the NN codes using three different data types for
the vector elements: byte, simple and double precision floating-point numbers,
which require 1, 4 and 8 bytes of storage space respectively.

For any of the data types used, results depend on problem size. For small
problems, the sizes of both the prototype and data to be classified have been
defined to be small enough to fit into the cache simultaneously. Data are brought
into the cache the first time they are referenced. Subsequent references will hit
in cache, since all data are kept in it. Executing a code many times and dividing
the execution time by the number of times it is performed hides the misses from
the first execution. Therefore, NC(mem) ≈ 0 for a small problem executed
many times and NC is approximately NC(cpu):

NCSmallProblem ≈ NC(cpu) (5.3)

When the problem size is big enough so that all the data do not fit in the
cache at the same time, cache misses arise and data are flushed from the cache
between uses. Locality is not well exploited resulting in a poor cache utilization.
The NC(mem) component in large problems can be easily estimated by:

NC(mem) ≈ NCLargeProblem − NCSmallProblem (5.4)

84CHAPTER 5. APPLICATION TO OTHER FIELDS: NN CLASSIFICATION

since NC(cpu) are the same for both large and small problems.
To analyze the consequences data size has on performance, two different

problem sizes have been tested. Considering the PA-7150’s 256 Kbytes data
cache, as a small problem we used a database of 200 vectors — 100 for the
prototype set and 100 used as data for classification — where each vector has
80 elements. Experiments on a large problem were carried out on a database
of 20852 vectors — 10426 for the prototype set and 10426 used as data for
classification — each also having 80 components.

In both cases two disparate data initializations have been used which impact
on the jki exit performance. First, a distribution obtained from a real applica-
tion has been used [69]. Figure 5.3a shows the probability distribution of the
number of iterations of the inner loop computed before it is exited. The mean
value of the number of iterations in this case is x = 22. Second, a random ini-
tialization has been used, where the mean number of iterations performed before
leaving the accumulation loop is x = 48. Figure 5.3b shows this distribution.

20 40 60 80

Number of iterations

0

2

4

6

P
er

ce
nt

ag
e

a)

20 40 60 80

Number of iterations

0

2

4

6
P

er
ce

nt
ag

e

b)

Figure 5.3: Probability distribution of the number of iterations of the inner loop
computed for a) Real application and b) Random initialization

Table 5.1 shows the NC measured for a small and a large problem for the
different distributions, algorithms and data types. For the random distribution,
with a larger mean value x = 48, the NC obtained with algorithm jki exit is
similar or worse than that of the jki algorithm. Clearly, a distribution with a
lower mean value, such as the one coming from real data, can take more profit
from the jki exit code. Thus, for the rest of the chapter we will only consider
the distribution which comes from real data with x = 22.

Table 5.2 shows the NC measured for a small and a large problem for the
different algorithms and data types. These results show that the use of floating-
point data is always worthwhile.

5.2.1 The NC(cpu) Component

Despite considerably increasing the memory requirements, using simple (4 bytes)
or double (8 bytes) floating-point data is better than a simple byte (assuming a
datum can be represented in a single byte). This is so because the PA-RISC 7150
processor can issue one load of a floating-point value together with one floating-
point multiplication and one floating-point addition (or subtraction) per cycle.

5.2. ALGORITHM ANALYSIS 85

Small Problem Large Problem
jki exit jki jki exit jki

Data type x = 22 x = 48 x = 22 x = 48

byte 6.1 14.1 15.0 7.1 15.3 16.3
simple float 4.5 10.4 3.6 6.0 12.8 8.4
double float 4.5 10.5 3.6 7.0 15.0 13.3

Table 5.1: NC obtained for different problem sizes and data distributions: HP
PA-7150

Table 5.2: NC obtained for different problem sizes
PA-7150 AXP-21064

Small Problem Large Problem Small Problem Large Problem

Data type jki exit jki jki exit jki jki exit jki jki exit jki

byte 6.1 15.0 7.1 16.3 24.0 24.0 25.1 25.1

simple float 4.5 3.6 6.0 8.4 22.1 11.9 23.9 19.7

double float 4.5 3.6 7.0 13.3 23.0 20.6 29.2 21.0

On the other hand, when integer arithmetic (byte or integer data type) is used,
just one instruction - a load, a multiplication, an addition or a subtraction - can
be issued each cycle. Moreover, several data conversions are performed, since
all the arithmetic is performed on 32 bit data. Furthermore, the multiplication
is computed on the floating-point unit which requires data movements from
a general purpose register to a floating-point register, and vice-versa, through
memory. From these results we infer that the use of floating-point arithmetic is
always beneficial.

In the jki code, the compiler applies software pipelining [114] producing
an instruction scheduling which circumvents the problem introduced by data
dependencies. When a conditional branch is present in the loop body, as in
the jki exit code, no software pipelining is applied. Consequently, due to the
dependencies between instructions plus the extra instructions implementing the
”if” statement, the NC(cpu) of the jki exit becomes larger than that of the jki
even for the reduced number of iterations of the jki exit inner loop; e.g. an
average of 22 for jki exit in our experiments as opposed to 80 for jki.

The same is basically true for the AXP-21064. The overhead of the jki exit
code is so large that this algorithm is outperformed by the simpler jki code.
However, since the compiler we had available was not able to perform software
pipelining, the instruction scheduling obtained was not as effective as that of
the PA-7150. We will thus center our attention on the latter although results
of a hand coded software pipelined version developed for the former processor
will be presented in section 5.4.

5.2.2 The NC(mem) Component

For a small problem the NC(mem) is negligible. As the problem size grows, the
NC(mem) component of the NC increases while the NC(cpu) remains constant
(equations (5.3) and (5.4)). In order to predict the number of cache misses a
code produces, it is important to take several aspects into consideration. We
analyze the jki and jki exit codes and make comments upon the relevant points.

86CHAPTER 5. APPLICATION TO OTHER FIELDS: NN CLASSIFICATION

Spatial Locality

For each inner loop iteration one data element and one prototype element are
referenced. It is important to note that for both data structures, accesses to
consecutive addresses (column accesses for both D and P) are performed in
consecutive iterations of the innermost loop I , exploiting the spatial locality.
When the first element in a line which is not present in cache is referenced, a
cache miss is produced with a penalty of CPM cycles. However, since the whole
line, containing L elements, is brought into the cache, the subsequent L − 1
accesses to elements in that line are cache hits introducing no extra penalty
cycles.

Temporal Locality

The elements of P as well as those of D are reused through the algorithm. Each
element of D is reused once for each iteration of the middle loop K, while each
element of P is reused for each iteration of the outer loop J .

For each iteration of the middle loop K a new column of P is referenced.
However, a fixed column of D is reused for each iteration of loop K and will only
be evicted from the cache, due to conflicts with elements of P , every C

Esize·Vsize

iterations of loop K, where C is the cache size in bytes and Esize is the element
size: 1, 4 or 8 for byte, simple or double precision floating-point data respec-
tively. Therefore, we can be reasonably certain that the elements of D are rarely
involved in cache misses.

For each iteration of the outermost loop J , all the elements in P are ref-
erenced. However, for large matrices, when a new line of P is referenced in
iteration J = j a cache miss occurs. Despite having been accessed in iteration
J = j − 1, the line has already been evicted from cache because accesses to the
whole matrix P have been performed and conflicts appeared among its elements
due to its large size.

An Analytical Model for NC(mem)

Taking into consideration the spatial and temporal locality of the algo-
rithms presented above, we conclude that, for the jki algorithm, a total of
Dsize · Psize · Vsize

L
misses occur for the prototype set P . Thus, from equa-

tion (5.1) we obtain:

NC(mem) ≈
CPM

L
(5.5)

All the statements asserted above are valid for the jki exit code with the
only difference that matrix P is not completely referenced within an iteration
of loop J . Given a mean number of iterations x before the inner loop is exited,
approximately Psize · Vsize · x

Vsize
elements of P will be used. Assuming these

data are still too many to fit in cache, Dsize · Psize · Vsize

L
· x

Vsize
misses occur.

Therefore, for the jki exit algorithm

NC(mem) ≈
x

Vsize

·
CPM

L
(5.6)

The leftmost two columns in table 5.3 show the NCs obtained using our
theoretical model. For these data, an estimation of the NC(cpu) is obtained

5.3. BLOCK ALGORITHM 87

from the NC of the small problem (equation (5.3)) shown in table 5.2. Then,
applying the results in equations (5.2), (5.3) (5.5) and (5.6) we obtain an esti-
mation of the NCs for a large problem which are very close to the empirical
results shown in table 5.2. It is important to note that for each data type used
(byte, simple and double precision floating-point) the NC(mem) differs since
L changes (32, 8, 4) — see equations (5.5) and (5.6). For this reason the us-
age of simple floating-point data produces better NCs than the use of double
floating-point data since both have the same NC(cpu). Despite producing a
lower NC(mem), the use of byte data results in worse NCs since its NC(cpu)
component is too large to make it competitive.

5.3 Block Algorithm

In this section we present a new code which exploits the locality in the algo-
rithm considerably better, also producing an NC(mem) ≈ 0 for large problems.
Figure 5.4a shows the code of a block algorithm we propose for substituting the
jki algorithm. The same idea can be applied to the jki exit algorithm. In this
code the number of loops has increased, but the arithmetic operations are the
same. Consequently, the accuracy is exactly the same as that of the non-blocked
algorithms. Figure 5.4b shows the Data and Computation Diagram [133] for the
block algorithm. The shaded area shows cached data that can be reused. In the
block code, the same column of P is referenced for each iteration of loop J ,
while a new column of D is accessed. The probability of cache hits for the data
in D is very high, and we will assume no misses appear. For each iteration of
loop K all the elements in a block of Vsize × Bsize elements of D are referenced.
The block size Bsize will be dimensioned so that the block fits into the cache:
Bsize × Vsize < C

Esize
. If a large Bsize is chosen, the number of intrinsic misses

of P will decrease but the number of conflicts will grow. The optimal block size
is considered to be approximately half the cache size C [115]. Consequently,
the data in the block remain in the data cache during all the iterations of loop
K. Some conflicts will arise, but their number and influence is so low to be
considered null. Consequently, the NC(mem) of a block algorithm is very low
and can be considered insignificant.

The last two columns in table 5.3 show the experimental measures obtained
for a large problem using the block algorithm proposed above for a block size
Bsize = 1

2
· 256·K

Vsize·Esize
. It should be noted that the NCs obtained are almost

identical to those shown in table 5.2 corresponding to a small problem (see also
figure 5.5).

Table 5.3: NC on the PA-7150 for large problems without and with block
algorithms

Data type jki exit jki block exit block

byte 6.4 16.1 6.6 15.2

simple float 5.7 8.0 4.8 3.7

double float 7.2 12.3 4.9 3.9

When the byte data type is used, the improvement obtained by the use of
blocks is minor, because there is a large NC(cpu) which was already high for
the code without blocks which cannot be lowered by blocking. Moreover, there

88CHAPTER 5. APPLICATION TO OTHER FIELDS: NN CLASSIFICATION

MAX = 2 ** 30

DO JJ = 1, Dsize, Bsize
DO ind = 1, Bsize

Vaux(ind)=MAX

ENDDO
DO K = 1, Psize

ind = 0
DO J = JJ, MIN(JJ+Bsize-1,Dsize)
ind = ind+1

distance = 0
DO I = 1, Vsize

sub = D(I,J) - P(I,K)
distance = distance + sub*sub

ENDDO
IF (distance.LT.Vaux(ind)) THEN

Vaux(ind) = distance

ClassD(J) = ClassP(K)
ENDIF

ENDDO
ENDDO

ENDDO

a)
b)

Figure 5.4: a) Code for the block form. b) Data and Computation Diagram for
the block form.

Byte Simple Float Double Float

jki

5

10

15

N
or

m
al

iz
ed

 C
yc

le
s

Byte Simple Float Double Float

jki_exit

5

10

15

N
or

m
al

iz
ed

 C
yc

le
s

Small
Large
Large with Blocks

Figure 5.5: Comparison of NC for different data types (grouped by problem
sizes)

exists high spatial locality due to the fact that the number of elements in a
cache line is big (L = 32). Simple floating-point data produced slightly better
results than double floating-point data (see figure 5.6) due to more efficient use
of the cache line (higher spatial locality).

5.4 Optimization details

As mentioned above, the compiler did not produce very efficient code on the
AXP-21064 processor. For this reason we have done the optimization by hand.
We have used a high level language (Fortran). However, the code produced is
targeted at this particular processor and tries to use the processor and memory
in an efficient way.

We have used blocking to avoid memory problems. We have tried one block.
Also, two levels of blocks, one for each cache level. Conflicts appear in the cache
but can be solved by precopying data into contiguous buffers in memory before
using them for the classification. In this way, we get an important performance
improvement (see the leftmost three columns in table 5.4).

However, the inner kernel is not as efficient as it could be. In order to im-
prove it we have applied software pipelining manually to produce an instruction

5.4. OPTIMIZATION DETAILS 89

Small Large Large Block

jki

5

10

15

N
or

m
al

iz
ed

 C
yc

le
s

Small Large Large Block

jki_exit

5

10

15

N
or

m
al

iz
ed

 C
yc

le
s

Byte data type
Simple Float
Double Float

Figure 5.6: Comparison of NC for different problem sizes (grouped by data
types)

Figure 5.7: Dependence graph of inner kernel: square of Euclidean distance.

scheduling which can be executed efficiently.
The dependency graph of the square of the Euclidean distance can be found

in figure 5.7. Two loads, one of element in D and one of P are done. Then,
they are subtracted. Next, the result is squared, and finally accumulated. The
subtraction and multiplication depend on data produced in the current iteration.
The accumulation needs data reckoned in the current iteration and it also has a
dependence with the operation in the previous iteration. This is the reason why
the respective arcs are labeled with 0 and 1. The result of applying software
pipelining to this code can be found in the fourth column in table 5.4.

Using software pipelining loops are reorganized such that each iteration in
the resulting loop is made from instructions chosen from different iterations of
the original loop. It is useful to reduce the time when the loop is not running
at full speed [86]. When the number of instructions in the loop body is small
and latencies of operations are high it can be convenient to increase the number
of iterations between when we issue an instruction and when we use its result.
To do this, loop unrolling can be combined with software pipelining. The limit
comes from the number of available registers in the machine. In order to obtain
an efficient code partial operations should be kept in registers. Thus we can
consider a block at the register level (BRL).

We have tried several blocks at the register level. Figure 5.8 shows a block
at the register level with 7 loads and 18 floating-point operations. Figure 5.9
shows a block with 6 loads and 27 floating-point operations. The latter reduces
the number of loads and provides with more opportunities for scheduling the
operations efficiently. This is the one used in the results shown in the fifth and
sixth columns in table 5.4.

90CHAPTER 5. APPLICATION TO OTHER FIELDS: NN CLASSIFICATION

Figure 5.8: Dependence graph: rectangular block 6 × 1.

Figure 5.9: Dependence graph: square block 3 × 3.

5.4. OPTIMIZATION DETAILS 91

Table 5.4 presents the results obtained when we hand-optimized the FOR-
TRAN code on the Alpha AXP-21064 by the application of software pipelining
techniques to improve the instruction scheduling for a better instruction level
parallelism, and tiling to improve the use of data locality. We show only the
results obtained for the single precision float data type since that was the one
producing the best performance. SP means Software Pipelining, num Bl, means
a num number of square blocks was applied, Pc implies that data precopies were
done; BRL stands for Blocking at the Register Level meaning that tiling was
also applied in order to improve the reuse of registers in the inner loop. The
data in the table shows that the combination of well-known techniques applied
to the Nearest Neighbor Algorithm produces significant improvements in per-
formance. Figure 5.10 summarizes the results obtained on large matrices on
this machine.

Table 5.4: NC obtained with hand optimized code on the AXP-21064
Problem No SP With SP

Size 1 Bl. 2 Bl. 2 Bl + Pc 1 Bl 1 Bl + Pc + BRL 2 Bl + Pc + BRL

small 13.7 15.0 11.0 8.1 4.8 4.6

large 14.7 15.1 11.2 9.4 5.6 4.6

Figure 5.10: Alpha AXP-21064: Comparison of NC for different codes on a
large problem.

Larger prototype vectors

The prototype vectors used in our experiments had 80 elements. In this case we
do not need a block in the Vsize direction. However, larger dimensions would
require such block. We have experimented with larger prototype vectors of
length 800. Using another block in this direction we could maintain the same
value of NC.

92CHAPTER 5. APPLICATION TO OTHER FIELDS: NN CLASSIFICATION

5.5 Conclusions

NN classification has the significant drawback of requiring a large number of
computations and data accesses which make it slow if the advantages that cur-
rent computer architectures offer are not used to full advantage. Frequently,
the byte data type has been used in an attempt to reduce the memory usage.
In order to decrease the number of computations, an IF statement has often
been added to the inner loop to test whether a better solution has already been
found. In our experiments, this improved performance by a factor larger than
2. However, this is not the best solution available. Due to processor charac-
teristics, the usage of floating-point arithmetic outperforms the use of integer
arithmetic. The resulting machine code can run faster because the instruction
level parallelism is higher and no data conversions are needed.

The disadvantage introduced by the use of floating-point data is the larger
amount of memory used. This issue can be overcome easily by means of block
algorithms. When these kinds of algorithms are used, the temporal locality of
programs is better exploited resulting in low number of cache misses, allowing
the computations to proceed at full speed. The use of simple floating-point data
produces fewer misses than the use of double precision floating-point data due to
better usage of spatial locality. However, the difference from the latter is almost
negligible because of the reduced number of cache misses incurred when a block
algorithm is used (see figure 5.6). In our experiments, the results obtained when
a block algorithm and simple precision floating-point data are used are between
2 and 4 times faster than the algorithms which use integer arithmetic although
they require 4 or 8 times more data storage. These results can be generalized
for other superscalar architectures.

Acknowledgments

We would like to thank Clemente Rodŕıguez from ”Universidad del Pais Vasco”
for introducing us to the problem of NN classification and providing us with
real data.

Chapter 6

POSTDATE: Performance
Oriented SofTware
Development And Tuning
Environment

New algorithms are constantly developed in search of better or faster results.
Many variants of code are often tried while searching for the best solution.
When the number of code variants or possible input parameters is very high,
the process of building the codes, benchmarking them, and analyzing the results
can become cumbersome and error prone. For these reasons we have written a
set of tools which help us in the development and benchmarking of new codes.

The process of building software for different projects and platforms can be
controlled by tools such as make. However, the user has to write complicated
Makefiles for large projects. In addition, it can be difficult to handle compilation
for different platforms in presence of a networked file system. In section 6.1 we
present our approach for handling the build process. This work was presented
in [88].

A problem may arise if the execution of a benchmarked code lasts for a
very short time due to lack of precision of timers. In section 6.2 we present a
framework to ensure accurate measurements.

Some codes were very similar so we created code templates in C which can
parameterized using some cpp (C preprocessor) macros. The code reads some
standard command line flags, initialize matrices adequately, launches execu-
tions, tests them, and times them. Since each algorithm may have different
characteristics, they may need different test routines or ways of defining the
number of operations. Thus the code is based on some macros and in order to
create a new benchmark some simple files defining such macros need to be done.
Actually, macros which are not defined in the new benchmark file take default
values. In this way a new code can be tested and benchmarked with a very low
effort.

In section 6.3 we describe a tool for automatic benchmarking which manages
a database of possible parameters and the results obtained for them. We call this

93

94 CHAPTER 6. POSTDATE

tool BMT. It can automatically choose the optimum code and create a target
library. Our tool can handle both parameters which are used at compilation
time and parameters used at execution time. Using it we have generated a
library specialized in the operation on very small matrices presented in section
2.3. This work was presented in [87].

6.1 Development tools

In this section we present a new approach to writing Makefiles and a system
called maker which helps in this process. Our main goals are: ease the process of
writing user Makefiles, reuse variable and rule definitions, handle common tasks
automatically (dependency tracking, preparation of code and environment for
testing or debugging) and provide support for software development on het-
erogeneous environments (automatic creation of targets in a specific build tree
for each architecture while working in the source tree; use of appropriate com-
piler name, flags and libraries; preparation of environment variables for finding
libraries and programs). This work was presented in [88].

6.1.1 Introduction

Building large software packages is a complex task. Source code is usually
scattered over many files and directories. Creation of destination files out of the
source files can be eased with the help of build programs. One such program
is make [53] which has become a de facto standard in the Unix world. make
uses files called Makefiles to get directions on how targets have to be built [140].
There are many flavors of make [44, 56, 119, 161]. However, one of them is
particularly attractive: GNU make or gmake [161]. It is freely distributed,
has a largely extended functionality over conventional make versions, and it is
available for many different platforms. There exists a tool called pgmake which
extends gmake’s utility to support distributed job execution [119].

In principle, creation of Makefiles is rather easy. However, it can become
tedious work when handling projects with many directories and files. Common
targets and variables are often repeated in Makefiles in different directories. For
instance, a target called clean is commonly used to delete all files in the current
directory that are created by building the program. A target as this will be
probably found in as many Makefiles as directories in the project.

Dealing with file dependencies can become rather complicated when included
header files include other files themselves. There are ways to get this dependen-
cies from the compiler but most people either do not know this is possible or
run it only at the time they create the Makefile. Unless the dependency list is
updated dynamically when a change is detected, inconsistencies can occur.

Another difficulty arises when one wants to build the project in a different
directory structure from where the sources are, i.e. the build tree is different
from the source tree. The problem with this is the time and effort it takes
to change to the directory and invoke make with the -f option followed by a
possibly long path compared to the time it takes to type make in the current
directory.

Finally, handling compilation in a heterogeneous environment with different
platforms can be a real pain. The compiler or the library names, command line

6.1. DEVELOPMENT TOOLS 95

makerGNUmakefile

User Makefiles make

Legend:

File creation

Input file

Program call

maker's
Makefile
Library

Figure 6.1: System architecture.

options or the location of files in different systems can differ substantially. Some
of these problems have already been tackled by other tools:

• BSD make [44] and nmake [56] use Makefile templates which can be in-
cluded from other Makefiles to allow for reuse of variable and rule defini-
tions.

• automake [127] and autoconf [126] help in the process of writing portable
code and its later distribution and installation. They also tackle the prob-
lem of dealing with a directory hierarchy and using different build trees.

In this section we present a new tool called maker: a front end to make
that solves the problems stated above and greatly simplifies the creation of user
Makefiles. The main advantages to maker’s users are: first, user Makefiles are
remarkably simple since they can reuse rules and definitions. Second, the user
does not need to deal explicitly with build directories specific to each target
architecture. Instead, the user can call maker from the source tree and it will
automatically use adequate compiler flags and create the targets in the appro-
priate build tree. This is particularly interesting in a heterogeneous system of
computers using a Network File System [158]. For the time being, however,
maker does not address the problem of code portability and distribution.

6.1.2 System Architecture

An overview of the system architecture is shown in figure 6.1.
The system has three components: 1) a program called maker which drives

the execution, 2) a set of predefined Makefiles which we refer to as maker’s
Makefile library, and 3) an intermediate Makefile, named GNUmakefile, built
and used by maker which acts as link between the user Makefiles and the Make-
file library

maker

maker is a wrapper around make (gmake). It is a program written in Perl [166]
that automatically changes to the appropriate build tree and calls gmake from

96 CHAPTER 6. POSTDATE

there. It is responsible for passing gmake the correct parameters for operation.
This includes passing the name of the Makefile in the source tree with the
correct path. In order to do that, an intermediate Makefile is generated and
used. This file is called GNUmakefile and needs to be generated only once, for
the root of the project tree (PRJROOT). Other tasks performed by maker are
the creation of certain files or directories if they do not exist and are necessary.
The GNUmakefile and the build tree directories (with the same tree structure
as in the source tree) are always needed. The debug build tree and debugger
initialization file are only built when needed.

The GNUmakefile

The GNUmakefile is a Makefile automatically created by maker which allows
for an automatic inclusion of the Makefile Library files into the user Makefiles.
It defines some variables which are important for the correct operation of the
system. These variables are:

• PRJROOT

The absolute name of the project source tree root. This is useful to locate
per project Makefiles or header files (if stored in ”$(PRJROOT)/include”
since this directory is automatically added to the search path for header
files).

• PRJCWD

The absolute name of the of the project current working directory in the
source tree. When make is called the current working directory is in the
build tree. Since source files come from the source tree, we need a way to
specify the matching directory in the source tree where source files can be
found.

There are also 3 variables that gmake uses to control its behavior:

• MAKEFLAGS

This variable is automatically passed to a sub-make, i.e. a recursive in-
vocation of make. Amongst data passed are directories where Makefiles
can be found. This includes the system wide maker directory so that the
Makefile Library files are found; directory ”$(PRJROOT)/Makefiles” so
that per project Makefiles can be found (this usually applies to file Make-
file.prj); and the current working directory in the source tree (PRJCWD).

• MAKEFILES

This variable keeps the name of all the Makefiles to be read on every
invocation of make. These files are, in load order: Makefile.sys Make-
file.prj Makefile.cfg and Makefile.lib. Thus, these files will be automati-
cally loaded upon call to the user’s Makefile in each subdirectory.

• VPATH

Keeps the search path for all dependencies. It contains values given at the
command line, plus the PRJCWD

6.1. DEVELOPMENT TOOLS 97

Automatic inclusion of files

1.GNUmakefile (Preparation Makefile: Initializes PRJROOT, PRJCWD,
 MAKEFLAGS, MAKEFILES, VPATH)

2.Makefile.sys (System-wide configuration file: requires ARCH)

3.Makefile.prj (Project-wide configuration file)

4.Makefile.cfg (Directory-wide customization)

5.Makefile.lib (Makefile library: common targets and rules)

6.Makefile.vpath (Configuration of header file search path)

7.Pdesc.$(ARH) (Platform description)

8.Makefile.deps (Dependency file ‘.d’ inclusion)

9.modules (Optional parts of library)

10.Makefile (Directory Makefile: targets & source file dependencies)

User
files

Figure 6.2: Files automatically included.

Once these variables are defined, make is invoked for the user’s Makefile in
$(PRJCWD)/Makefile. By the time it is loaded the Makefile library is already
loaded and fully available for use as if it was coded in the user file. Only one
GNUmakefile is necessary for a whole project’s directory hierarchy. This file
must correspond to the project root directory and can be used to prepare the
build process for any subdirectory under the project root directory. This allows
for finding header files in ”$(PRJROOT)/include” or libraries created in some
other subdirectory within the project directory hierarchy.

The GNUmakefile is created only once and reused henceforward. It is au-
tomatically created by maker if it does not exist but can also be created on
demand. If the project is moved to a different directory the GNUmakefile has
to be regenerated since the PRJROOT is hard coded in this file.

Makefile library

We have a set of files defining common rules and targets. These files are au-
tomatically included in the order specified in figure 6.2. The user only has to
provide a maximum of 3 out of ten files.

The Makefile library is a set of predefined Makefiles which contain variable
initializations and/or declaration of rules and functions. These files are read
before the user Makefile is read so that all their contents are available to the
user. They are presented in the same order as they are loaded:

• Makefile.sys

This is the system-wide configuration Makefile. In this file variables con-
trolling the build process are set to their default values. Variables could
be grouped into several categories: software used, variables used as com-
piler or linker options, installation directories, default filenames, search
paths and platform description. It assumes environment variable ARCH

98 CHAPTER 6. POSTDATE

is defined and its value describes the architecture where the execution is
being performed. This is the only environment variable that maker needs
predefined. In case it is not predefined the specific platform description
will simply not be used. Instead, some variables such as compiler names
or flags will be set to default values.

At this point, the project file Makefile.prj would be read if it exists. Next,
the user file Makefile.cfg would be loaded if the user had provided one for the
current directory being processed. Afterwards, Makefile.lib is automatically
included:

• Makefile.lib

This file defines a set of common targets and rules and is meant to be
used as a Makefile library. At this time this file has about 1700 lines
which are mainly common targets such as clean or install, or pattern
rules such as ”%.so: %.a” (which defines the way shared libraries can be
created from archives) or ”%.d: %.c” (for creation of dependency files for C
programs). A rule for recursion into directories listed in variable SUBDIRS
is also given in this file. Three files are included at the very beginning
of Makefile.lib: Makefile.vpath, Pdesc.$(ARCH), and Makefile.deps. At
the end, some optional parts of the library called maker modules can be
loaded.

• Makefile.vpath

This is the Makefile used for configuring the header file search path. This
path includes the project current working directory in the source tree, the
project include directory, a system dependent and a system independent
include directories. The user can specify other directories for header file
searching in a variable called USRINC which is placed before the rest of
the directories in the header file search path. The order directories are
added to the search path allows for file interposition: a directory or a
project can use their own header files overriding the system ones with the
same name.

• Pdesc.$(ARCH)

This is the platform description. This file defines architecture/system
dependent environment variables. Environment variable ARCH should be
set accordingly before maker is used. Otherwise default values are used.

• Makefile.deps

This file defines a way to include ’.d’ dependency files in Makefiles. This
inclusion will be automatically done for files listed in variables CSRC and
FSRC (for C and Fortran source files).

• maker modules

Optionally, some parts of the library which are only used in some cases can
be loaded. We call these parts maker modules. They extend the Makefile
Library functionality while preserving performance. They are only read
on user demand as specified on variable USE MAKER MODULES.

At this point, user file Makefile would be loaded and the build process would
start.

6.1. DEVELOPMENT TOOLS 99

User Makefiles

Per project:

• Makefile.prj

This is the project-wide configuration Makefile and should be stored in
directory $(PRJROOT)/Makefiles. Since this file is included for every
subdirectory in the project, common definitions can be placed here.

Per directory:

• Makefile.cfg

If present, this file is read by make immediately before loading file Make-
file.lib and can thus be used to customize some behavior of the library. For
instance, defining variable CSRC to list all C files used in that directory
will trigger the automatic inclusion of dependency files which can itself
trigger the automatic dependency generation in case dependency files are
inexistent or need to be rebuilt.

• Makefile

It should specify the targets for the directory as well as the source file
dependencies for each target she wants to build and the way it has to
be built (unless a rule already defined by gmake or our Makefile Library
applies).

An equivalent solution could be achieved with a single user file per directory
which had a first part with the contents of the .cfg file, followed by an explicit
inclusion of file Makefile.lib, and a final part with the targets in Makefile. This
solution is possible but has not been used to avoid the explicit inclusion of
Makefile.lib by the user.

6.1.3 Available Operations

For the time being maker extends make basic functionality in many ways. The
following list shows briefly some aspects for which maker either does it automat-
ically, or supports it with a minimum effort from the user, such as specifying a
simple option from the command line:

• Change current working directory to the appropriate directory in the build
tree before calling gmake

• Generation of the project GNUmakefile

• Inclusion of makefiles: system, project, configuration, library and platform
description

– Initialization of variables with default values

– Definition of common targets

– Definition of new rules

• Dynamic dependence generation

100 CHAPTER 6. POSTDATE

– Invoke cpp to create .d files listing all dependencies with header files
for each C or Fortran files listed in variables CSRC and FSRC; re-
compute the .d files whenever necessary

– Include the corresponding .d files for all files listed in CSRC and
FSRC

• Definition of VPATH for file searches

• Search of header files and generation of proper compiler option for adding
header file directories

• Recursion into subdirectories listed in variable SUBDIRS

• Treatment of shells or interpreters in sharp-bang (#!) lines:

e.g. create an executable file namefile using the contents of namefile.pl and
replacing some predefined strings with adequate values (such as replace
#YOUR PERL INTERPRETER# with the absolute name of Perl in the
system)

• Creation of a testing environment (in the same window or in a new xterm)
defining environment variables:

– PRJROOT: if set to the project root directory then maker can be
successfully executed from any subdirectory

– PATH and LD LIBRARY PATH: extended with the proper directo-
ries in the build tree, they allow for using new executable files and
dynamic libraries created in the build tree

• Creation of tag or debugger initialization files for a whole project tree

• Use compiler options for debugging and a different build tree when maker
–dbg is issued.

Example

The upper part of figure 6.3 shows the important directories used for a build
performed on an Alpha ev6 processor ($ARCH=ev6), maker variables, and files
generated. Makefiles and files other than prefetch.* have been omitted to sim-
plify the graph. The other subdirectories under ”.BuildTree” would be used
on builds on other systems. The lower part of figure 6.3 shows an example
for a simple software project. The figure presents the Makefiles for a simple
directory structure under directory ”simulator” with two subdirectories called
lib and include.

Using maker a number of actions would be performed for the Makefiles
presented above:

• Create directory .BuildTree/$ARCH with a GNUmakefile inside

• Create a directory hierarchy mirroring the source tree hierarchy under
directory .BuildTree/$ARCH (in this case it only creates one subdirectory
called lib since the Makefile in directory simulator has SUBDIRS=lib and
the ones in lib have no SUBDIRS

6.1. DEVELOPMENT TOOLS 101

PRJBT
(Project Build Tree
on an Alpha ev6)

BD
(Build Directory associated to PRJCWD
 while working on an Alpha ev6 processor)

PRJROOT

lib include .BuildTree

ev6 SGI64prefetch.c simulator.h

simulator

lib

prefetch.o

PRJCWD

(Project Root)

(Project Current Working
 Directory - in source tree)

PA-RISC2.0

prefetch.d
libsim.a
libsim.so

GNUmakefile

SUBDIRS=lib
TARGETS =

all: $(TARGETS)

LIBNAME = libsim
TARGET_LIBRARIES = $(LIBNAME).a $(LIBNAME).so
INSTALL_LIST_LIBRARIES_SYSDEP = $(TARGET_LIBRARIES)
FSRC = stride.F
CSRC = branch.c prefetch.c
MODS = $(FSRC:.F=.o)
TARGETS = $(TARGET_LIBRARIES)

all: $(TARGETS)

$(LIBNAME).a: $(LIBNAME).a($(MODS))

File simulator/Makefile

File simulator/lib/Makefile.cfg

File simulator/lib/Makefile

simulator

lib
Makefile

Makefile
Makefile.cfg
branch.c
prefetch.c
stride.F

include
simulator.h

Directory structure

Figure 6.3: Example: User Makefiles and file system tree.

• Set maker variables: PRJROOT, PRJCWD, ...

• Change directory: chdir to $PRJBT. Nothing to be done in there other
than doing recursion into SUBDIRS

• chdir into $PRJBT/lib, set PRJCWD to simulator/lib and call make with
the user makefile $PRJCWD/Makefile (the Makefile library and the other
user file Makefile.cfg will be loaded automatically)

• Directory $PRJROOT/includes is automatically used for header files search

• Create dependency files for all files in CSRC and FSRC (branch.d, prefetch.d
and stride.d) and include them

• Compile code into object files: branch.o, prefetch.o and stride.o

102 CHAPTER 6. POSTDATE

• Create libsim.a

• Create libsim.so

• If the user typed ”maker install” files libsim.a and libsim.so would be
installed in a system dependent directory for libraries. This directory is
specified in variable LIBDIR SYSDEP, whose value is set in Makefile.sys
(unless it is overridden by the user).

Drawbacks

There a number of issues that can limit the use of maker by new users:

• It requires a Perl interpreter and the definition of an environment variable
$ARCH to work

• Debugging the Makefiles can become hard

• The -n option of make prints a large amount of information due to the
complexity of the rule for automatic recursion into subdirectories.

6.1.4 Related Work

A number of tools exist which provide a front-end to make while extending
its functionality. Amongst them there are two which are particularly relevant:
imake [49] and automake + autoconf [126, 127]. It should be clear that maker
was not thought as a replacement to these tools. Our main goal was not world-
wide distribution of code as is their case.

Compared to these two systems Makefiles controlled by maker can be much
shorter since they share many commonalities. This is particularly important
when several build trees for different architectures are present in the same
system. This could happen in a heterogeneous network of computers with a
transparent file system access such as the one provided by NFS [158]. Using
automake and autoconf a whole new set of Makefiles would be created for each
architecture. Also, the user would have to be aware of building the project in a
different directory each time if she wanted them to coexist.

Using maker, the only requirement is that environment variable ARCH has
to be set to the name of the current platform. Taken this into account, the
rest is left to maker. Using it, there is only one version of each Makefile, which
is stored in the source tree. The user does not need to change to different
directories for compilation since maker automatically does it. The default build
tree root name is ”.BuildTree/$ARCH”. Consequently maker would create and
use a new build tree each time a new machine was used for building the package.
The proper platform description would be automatically used by maker and no
changes in the Makefiles nor creation of new ones would be required. Separation
into different trees automatically is very convenient: it makes things easier for
the user and less error prone.

The definition of ARCH as an environment variable can be easily done in
the shell initialization files. Actually, some shells already define variables such
as MACHTYPE or HOSTTYPE which can be helpful. Some systems provide
a command which offers useful information: psrinfo, hinv, arch, mach. In an
environment with heterogeneous systems sharing files with a Network File Sys-
tem [158] a script can be used to automate the process.

6.2. ACCURATE MEASUREMENTS 103

6.1.5 Conclusions

When software is created, the process of building the final executable can be
eased if a program as make is used for directing recompilation. make is di-
rected by the information written in Makefiles. Preparation of Makefiles can
become tedious or difficult as the project grows or different platforms have to
be supported.

We have presented a new approach to software development based on sharing
Makefiles. An architecture has been defined which is flexible and extensible.
Data used for directing builds is spread over several files in a logical way. Then,
the system manages these files in a way that common data is automatically
shared amongst Makefiles. The system architecture presented in this section
has been used to develop maker, a tool which has proved extremely useful for
the author when developing large software projects.

• Usual targets and rules can be used without having to write them in user
Makefiles

• User makefiles are cleaner, shorter and easier to maintain

• Developing software in a heterogeneous system with a Network File System
becomes much easier

We believe maker can be very useful for people interested in developing
software, not Makefiles.

6.2 Accurate Measurements

A hairy point when we want to compare the speed of two codes has to do with
the precision of timers. Most current processors have hardware counters which
can be used to get very accurate information on processor usage. However, there
exist situations where we have not been able to use such counters. For instance
on older platforms. Also, on machines where the activation of hardware counters
needed privileges which we didn’t have. For this reason we had to deal with the
precision of timers. Usually the user can choose amongst several timing devices.
Each one has a certain precision: millisecond, microseconds or nanoseconds.
When the amount of work is too low for the precision of the timer, the time,
or the number of operations per second, reported may be wrong (imprecise).
Thus, it is common practise to repeat a given operation enough times so that
the precision of the timer does not yield wrong results. When this process is
handled automatically, the situation is even more critical. We need a way to
determine automatically the number of iteration necessary for obtaining precise
results. For instance, we want a number of Mflops with a precision of 1 Mflop.
From the definition of Mflops (millions of operations per second) we get the
derivative w.r.t. T (the total time). With a simple substitution we can express
the number of iterations as a function of the expected Mflops of the algorithm
(to play it safe we use the theoretical peak for the machine), the operations
performed in a single iteration of the algorithm, the precision of the timer and
the desired precision for the Mflops. Thus we obtain a formula which we have
been able to express with another macro. In this way our algorithms execute a
number of iterations which is reckoned at runtime and are enough to get correct

104 CHAPTER 6. POSTDATE

results. The number of iterations gets smaller as the problem size grows or a
more precise timer is used.

6.2.1 Related work

It is well understood that collecting performance data on applications programs
relying on timers with poor resolution or granularity is undesirable. Nowadays,
most modern processors provide hardware counters which can provide accurate
information about the performance of the applications. Thus, most performance
tools rely on such counters. One problem with their use on different platforms
comes from the different interfaces which have to be used. Fortunately, there
have been several attempts to provide portable interfaces, such as PCL [24]
or PAPI [28]. Should any of them be available, we would advice using them.
However, on some systems we may not have access to such tools. This can
happen on rather outdated computers for which one still wants to automatically
adapt some code, or on systems where such tools are not installed and one
requires privileges, which do not have, for installation. For instance, to patch
an operating system kernel. Under such circumstances we may be interested in
using timers.

Standards have been created for timers and clocks [103]. However, regardless
of the precision (milli, micro or nanoseconds), we can have a problem of lack
of precision when the benchmarked code is executed very quickly and lasts for
about the timer precision. Previous work was done in order to achieve high
resolution timing with low resolution clocks [40]. Such high resolution can be
achieved by repeated execution of a benchmark with a number of iterations
through the code. Our approach resembles theirs. However, we provide a way
to determine the number of iterations automatically.

Portable Timing Routines (PTR) [148] is a Ptools project defining a standard
API for measuring intervals of program execution, in terms of wallclock, user
CPU, and system CPU time. We provide some routines similar to theirs which
can ease the benchmarking process.

6.2.2 Theoretical foundations

The speed of a numerical algorithm is usually communicated as the number of
floating point operations performed per second. Often, this number is very large
and is expressed in millions using the word Mflops.

Mflops =
#flops · 10−6

T ime

The number of flops performed by an algorithm can be calculated by the
programmer. The time spent in its execution can be obtained with some system
calls offered by the operating system. Each of these system calls should have its
precision clearly specified in the manual. Regardless of the precision provided
by any of such routines it is finite. If the number of operations computed is very
low, a lack of precision can occur.

Our goal is to get a correct estimation of the Mflops or execution time1

obtained with a program. We need to be sure that the difference between the

1We will center our discussion on the Mflops metrics since that is the usual way to measure
the speed of numerical algorithms.

6.2. ACCURATE MEASUREMENTS 105

real and estimated Mflops is low. The variations in the estimated Mflops due
to timing precision errors should be smaller than a certain threshold.

|∆Mflops| ≤ Threshold (6.1)

We can solve this problem by repeating the execution of a benchmark several
times. By increasing the amount of operations we increase the time spent in
their calculation. Consequently, the general expression for obtaining Mflops
contains the number of iterations performed:

Mflops =
#flops · Iterations · 10−6

T ime
(6.2)

The number of iterations needed becomes an issue. We need to know the
number of iterations which are necessary to obtain performance results which
are correct. At the same time, we want to avoid unnecessary iterations which
do not produce significant improvements in timing precision and would only
overload the system and delay the finalization of our benchmarks.

We need an expression which can be used at execution time to reckon an
adequate number of iterations for a given input program and data. To obtain it
we have defined the following process. First, we get the derivative of equation 6.2
with respect to T ime:

∂Mflops

∂T ime
= −

#flops · Iterations · 10−6

T ime2
(6.3)

We disregard the sign in equation 6.3 since we need only to get an small
error (in absolute terms). To get a practical implementation we take the discrete
analog of the derivative:

∆Mflops

∆T ime
=

#flops · Iterations · 10−6

T ime2
(6.4)

From equation 6.2 we express T ime as a function dependent on the other
components:

T ime =
#flops · Iterations

Mflops · 106

Then, substituting T ime in equation 6.4 we obtain:

∆Mflops

∆T ime
=

Mflops2 · 106

#flops · Iterations

Hence:

Iterations =
Mflops2 · 106

#flops
·

∆T ime

∆Mflops
(6.5)

Before a code is benchmarked we do not know its Mflops. In practice, we
can use the peak theoretical value for the target machine. This will ensure that
the results are correct. If we have an estimation of the Mflops of an algorithm
we can provide that value in order to reduce the number of iterations.

We use Mflops since this is the common metrics for evaluating the speed of
numerical algorithms.

106 CHAPTER 6. POSTDATE

archinfo.h

precision.h

profiler_templ.c

<_BenchName>._profiler.c

macros.hbenchmark.h

<_BenchName>.h

Figure 6.4: Template files in ACME and their relation.

We can use equation 6.5 to determine the number of iterations necessary
to obtain results within the desired precision. For instance, consider a timing
routine with a precision of 10−2 seconds (∆T ime = 10−2). We want to obtain
the number of iterations of a benchmarked subroutine such that the error in the
estimation of its Mflops is approximately 1 Mflop (∆Mflops ≈ 1):

Iterations =
Mflops2 · 106

#flops
·
10−2

1
=

Mflops2 · 104

#flops
(6.6)

6.2.3 Design

We have created a set of files which define C macros and routines which can
be used to obtain accurate measurements of the performance obtained from the
execution of a given code. For this reason we call this set of routines ACME. Fig-
ure 6.4 shows the files used and their relation. The system is mainly composed of
a core file profiler template.c which can be parameterized with some other files
which are included via C #include directives. A code can be timed as long as it
is callable from the C program. The user will define symbol CALL ROUTINE
indicating the way the call to her routine must be done (see the example in
section 6.2.4). The files surrounded by dotted lines are supplied by the user.
The rest of the files are provided by our system.

6.2.4 User files

When one wants to measure the performance of a new code and test it against
another implementation, the user only has to write two additional files. A
simple file which defines symbol BenchName and includes the main template
file profiler template.c. This file is called mtxms profiler.c in our example but
could have any other name. Such file has the following form:

/* $Id: mtxms_profiler.c,v 1.1 2005/01/21 08:05:31 myusername Exp $ */

#ifndef _BenchName
#define _BenchName mtxms
#endif

#include <profiler_templ.c>

6.2. ACCURATE MEASUREMENTS 107

The only other file the user must provide is BenchName.h where BenchName
should be replaced by the benchmark name (mtxms in the example). This is the
file used to customize the benchmarking. In it, the user overrides the default
macro definitions. An example follows:

/* $Id: mtxms.h,v 1.1 2005/01/21 08:05:31 myusername Exp $ */

#ifndef _BenchRoutine

#define _BenchRoutine \
ad_7(_BenchName,_LDA,_LDB,_LDC,_LI,_LJ,_LK)

#endif
#ifndef _NUM_OPERATIONS
#define _NUM_OPERATIONS 2*i*j*k

#endif
#ifndef CALL_ROUTINE

#define CALL_ROUTINE \
ad2(_BenchRoutine,_)(pdA, pdB, pdC)

#endif

#ifndef CALL_TEST_ROUTINE
#define CALL_TEST_ROUTINE \

mtxms_test_ (pdA, pdB, pdD, &i,&j,&k, &lda,&ldb,&ldc)
#endif

#ifndef MATRIX_INITIALIZATION
#define MATRIX_INITIALIZATION \

inimat_at_bn_(pdA,pdB,pdC,&i,&j,&k,&lda,&ldb,&ldc)

#endif

#ifndef CALL_GETINFO_BENCH
#define CALL_GETINFO_BENCH \

ad3(getinfo_,_BenchRoutine,_)()

#endif

The user can use several variables declared in the system core file to denote
matrices (pdA, pdB, pdC), their leading dimensions (lda, ldb, ldc) and the loop
trip counts (i,j,k). Macros to compose names at compilation time (ad 2, ad 3,
. . .) are provided by our system. The above code defines the name of the
routine to be benchmarked; the number of operations it performs; the way the
routine has to be called; and the way the oracle routine has to be called. Only
these definitions are compulsory.

Other symbols can be defined to allow for additional functionalities or mod-
ify the default behavior of the benchmarking system. For instance, we often
include information about the parameters used at compilation time to create
the executable. We can specify a routine which provides such information with
CALL GETINFO BENCH. Defining symbol MATRIX INITIALIZATION we
can modify the default matrix initialization.

All the work necessary to drive the benchmarking is handled by the code
supplied in the system files.

6.2.5 System files

Next, we present the most representative part of the files which constitute our
framework.

profiler templ.c

This file contains the template used as the main routine, the one which drives all
the process. It is used to to launch benchmarks using several parameters. It is
customized for a particular benchmark via a set of macros which can be defined
in file BenchName.h (where BenchName is a preprocessor symbol which must
be properly defined when cpp, the C preprocessor, is invoked).

108 CHAPTER 6. POSTDATE

Some symbols must be defined in BenchName.h. In other cases the template
file itself provides default values for these symbols, which can be overridden in
the BenchName.h file.

A pseudo-code with the most representative parts of this file follows:

/* $Id: profiler_templ.c,v 1.10 2004/11/04 15:51:27 myusername Exp $

*/

/* include header files */
...
#include <benchmark.h>

#include <macros.h>
#include <memory.h>

#include <precision.h>
...

#ifdef _BenchName
#define _FilNam <ad2(_BenchName,.h)>

#include _FilNam
#undef _FilNam

#endif

/* Default values for some preprocessor symbols */

#ifndef MATRIX_INITIALIZATION
#define MATRIX_INITIALIZATION \

inimat_an_bt_(pdA,pdB,pdC,&i,&j,&k,&lda,&ldb,&ldc)
#endif

/* Some extra code is needed for testing some benchmarks
but the default is not to need anything else. */

#ifndef EXTRA_DECLARATIONS

#define EXTRA_DECLARATIONS
#endif

#ifndef EXTRA_INITIALIZATIONS
#define EXTRA_INITIALIZATIONS
#endif

#ifndef EXTRA_FREEMEMORY
#define EXTRA_FREEMEMORY

#endif

#define EPSILON 10E-30

extern double validate_results_ ();

/* Global variables */

int i, j, k, lda, ldb, ldc, it, ti;

main (argc, argv)

int argc;
char *argv[];

{
declare_variables;

get_parameters;
initializations;

it = GET_NUMITERATIONS (_NUM_OPERATIONS);

Allocate_space;
MATRIX_INITIALIZATION;

if (check)
{

EXTRA_DECLARATIONS;

EXTRA_INITIALIZATIONS;

CALL_TEST_ROUTINE;

CALL_ROUTINE;

error = validate_results_ (pdC, pdD, &i, &j, &ldc);
if (error > EPSILON)

{
printf (xstr (ERROR: _BenchRoutine test failed\n));

6.2. ACCURATE MEASUREMENTS 109

printf ("Error=%g\n", error);
exit(-1);

} else { printf (xstr (OK: _BenchRoutine test succeeded\n)); }

EXTRA_FREEMEMORY;
}

/* call BenchMarked routine */

GET_MFLOPS (CALL_ROUTINE, ti, it, _NUM_OPERATIONS, mflops);

printf ("Mflops=%f Times=%d Iterations=%d \n", mflops, ti, it);

Free_space;

printf ("End of Execution\n");

}

Some of the definitions used in this file come from other files.

macros.h

This file defines several macros for string manipulation which are useful in the
creation of variable contents or routine names using preprocessor symbols at
compilation time.

archinfo.h

EX is used to specify the precision of the timing routine. PEAK MFLOPS
defines the theoretical peak performance which can be obtained on the target
machine. This acts as an upper limit in the possible values for Mflops, which
are not known a priori.

#define PEAK_MFLOPS 1000

/* Precision of timers:

*
* Considering precision as 10*1E-6
* #define _EX 1

* Considering precision as 100*1E-6
* #define _EX 2

*/
#define _EX 2

precision.h

This file provides macros to reckon the number of iterations.

/* -- DESCRIPTION

* Define "Default Mflops" in order to reckon the
* adequate number of iterations to obtain good accuracy

*/

/* -- FILES INCLUDED */

#include <math.h>
#include <archinfo.h>

/* --- BEGIN */

#ifndef _DEFMFLOP
#define _DEFMFLOP PEAK_MFLOPS * .9
#endif

/*

* Assuming an average of _DEFMFLOP Mflops per algorithm,
* reckon # of iterations needed to obtain enough precision: */

#define ITER_BASE \
(_DEFMFLOP*_DEFMFLOP*(pow((double)10,(double)_EX)))

110 CHAPTER 6. POSTDATE

/* Example: for a MxM operation

it= (int)
((unsigned long)(ITER_BASE/(unsigned long)(2*i*j*k)))+1;

if (!it) it=1;
*/

#define GET_NUMITERATIONS(OPS) \
(int) ((unsigned long)(ITER_BASE/(unsigned long)(OPS)))+1

#define DEBUG_PRECISION printf \

("DEFMFLOP=%f EX=%d IBASE=%f \n", _DEFMFLOP, _EX, ITER_BASE)

/* --- END */

benchmark.h

Here we define macros which handle the timing process. The user can easily get
the best time or Mflops obtained by his routine amongst a number of repetitions.
The details have been omitted for the sake of brevity.

/* Defines macros:
* GET_BEST_TIME (what,times,iterations,best_time)

* GET_MFLOPS (what,times,iterations,numops,mflops)
*/

/* Examples of usage:

GET_BEST_TIME (ad2(_MxMtName,_)(pdA, pdB, pdC), ti, it,
best_time);

GET_MFLOPS (ad2(_MxMtName,_)(pdA, pdB, pdC), ti, it,
2*i*j*k, mflops);

*/

6.2.6 Conclusions

We want to use hardware counters to do performance measurements whenever
it is possible. However, in those cases where it is not, we still want to be able
to obtain accurate performance measures using timers. To do so, we need to
execute enough iterations to avoid problems of lack of precision. At the same
time we do not want to perform unnecessary iterations. For a given desired
precision of the result (Mflops in our case), we have shown how we can determine
the number of iterations necessary to obtain it.

We have presented a framework for measuring the performance of new codes.
It can be parameterized by the user to specify the way to call and test the routine
being benchmarked. Then, our code will handle the benchmarking process.
Depending on the problem size, it will automatically determine the adequate
number of iterations.

Using this framework we have been able to validate and benchmark many
linear algebra codes in a systematic way. We have been able to tune automati-
cally our libraries for several platforms getting good performance on both dense
and sparse codes.

6.3 Benchmarking tool

We have very often been comparing different codes in search for the one which
provides best performance. We created an environment to ease this task.

6.3. BENCHMARKING TOOL 111

6.3.1 Automatic benchmarking: motivation

Some times code developers need to compare multiple variants of a program.
Each variant can be chosen either at compilation time or at execution time.
Conditional compilation can be done in case a particular variant amongst several
has to be chosen at compilation time. Conditional compilation is performed by
means of preprocessor directives. Depending on whether a symbol is defined or
not, or the value it has at compilation time, certain parts of code are included
or excluded, or take one value or another. In order to know the exact variant of
code we are using we need to keep track of all parameters specified at compilation
time. Similarly, when a program is executed it can often have multiple input
parameters.

Consequently, the results of the execution of a program should be kept asso-
ciated to all input parameters, i.e. to all parameters used at compilation time
to generate the object plus information on all inputs used at execution time.
Unless we keep all this information we will not be able to do accurate studies
with those results. A result can become useless if we cannot know exactly how
it was obtained.

As the number of parameters grows, the number of combinations tested can
become very large. Keeping all necessary data for each combination can be
tedious work and error prone. Thus, it is desirable and advisable to automate
this process.

6.3.2 Automatic performance optimization of libraries

In these sections we present a tool we have developed and how it has been used
to optimize a library of routines specialized in operating on small matrices. We
call this tool BMT, which stands for BenchMarking Tool.

We only know of one tool which has some similarity with BMT. We refer
to a commercial product called ST-ORM [162]. This tool allows for stochastic
analysis. It can be used to launch executions. It maintains a database of results
and offers statistical and graphical treatment of these results. However, as far
as we know, it does not offer the possibility to generate optimized libraries.

6.3.3 Features of BMT at a glance

BMT is a program written in Perl that can launch compilation of programs as
well as its posterior execution. In each case, BMT prepares the parameters to
be used, analyzes the compilation and execution processes searching for errors,
and keeps the results in a database. Statistics and plots can be obtained. The
tool can also inform about the optimal combination of parameters amongst a
set of combinations. Using this information it can produce a library of optimal
routines.

The user can specify a set of benchmarks to run. For each benchmark one can
specify parameters for compilation, including definition of preprocessor symbols,
and parameters for execution. For each parameter the user can specify a set of
values to use.

112 CHAPTER 6. POSTDATE

6.3.4 Important aspects of automatic benchmarking

Handling a variable number of parameters

When several parameters have to be used, we need a way to generate all their
combinations. The common way to do that is to define several nested loops.
Each loop is associated to one parameter. Then, the induction variable in each
loop gets its values from the list of values that its associated parameter can
have.

In general, we need a number of nested loops that equals the number of
parameters to use. However, a general benchmarking application must be able
to deal with any number of parameters: the number of parameters used for
one benchmark can be different from that used for another benchmark. Thus,
we cannot hard-code a particular number of nested loops in the benchmarking
tool since that would limit its applicability. Instead, we simulate any number of
loops. We generate all combinations of the input parameters, one by one, with
a single loop. For each parameter, we keep information about the next value
that must be used from its list of values in generating the next combination.

Checking the correctness of an execution

When hundreds or thousands of executions are launched the possibility of get-
ting errors increases. Some of them can be transient errors. Others can be
permanent (real) errors. For instance, if a process is killed externally, a disk
quota is exceeded or a machine crashes, the execution finishes abruptly. How-
ever, launching the process a second time can produce correct results. In this
case we have a transient error.

If, for instance, a routine expects a positive integer as input and we feed it
with a negative integer we will repeatedly get an incorrect execution. In this
case we should not keep trying but, instead, keep track of the incorrectness of
the parameter combination tried as input. In this way we could avoid future
retries.

Enforcing robustness of programs

We want to be able to check that a program worked correctly and all the pa-
rameters it used in its execution were those we expect. To make sure that the
process ended as expected we have it to output a given string just before it fin-
ishes execution, e.g. End of execution. Thus, we can check whether this string
appears in the output of the execution. In this way we can detect unexpected
termination of programs. When such an error is detected we can decide whether
to launch the execution again or not.

In order to make sure that a program is using the very same parameters
as we expect it to use, we force it to output all the parameters that affect its
execution. Both parameters used at compilation time and parameters used at
execution time. For each parameter we have it to write the parameter name
and its value. Then, after an execution is completed we can parse its output
and check all parameter-value pairs. If all of them match the current parameter
combination then we consider the execution correct and accept to keep its results
in the database. Otherwise those results are discarded and an error flagged.

6.3. BENCHMARKING TOOL 113

Dealing with concurrency

We believe it is important to allow for concurrent compilation and execution of
programs. Concurrency affects the way we handle compilations, executions and
accesses to the database.

We use a different (temporary) directory for each compilation. Thus, several
compilations can proceed at once. Once we obtain the executable we rename it
with a name that includes all parameters used at compilation time and store it
in a directory where we store all executable files handled by BMT. When each
execution is launched we redirect the standard output and standard error to a
file whose name starts with the name of the executable followed by all the input
parameters used for its execution. Finally, the output file is analyzed looking for
the information we want to store in the database of results. When the database
is managed we ensure mutual exclusion by using the usual lock procedures.

114 CHAPTER 6. POSTDATE

Chapter 7

Conclusions and future
work

Adapting the code to the target machine is fundamental for obtaining high
performance implementations of an algorithm. For many numerical algorithms
the matrix multiplication operation becomes the most time consuming part.
Thus, it is very important to obtain efficient implementations of the matrix
multiplication operation for each platform.

Creation of efficient code has traditionally been done manually using as-
sembly language and based on a great knowledge of the target architecture.
Such an approach, however cannot be easily undertaken for many target ar-
chitectures and algorithms. On the other hand, the Fortran implementation
of Basic Linear Algebra Subroutines (BLAS) is inefficient. Consequently, there
have been attempts to produce such codes automatically. A new paradigm was
created: Automated Empirical Optimization of Software (AEOS). The goal is
to use empirical timings to adapt a package automatically to a new computer
architecture. The ATLAS package implements this approach. However, the
performance obtained is sometimes low. Consequently, a great effort has been
applied to produce high performance inner kernels for matrix multiplication
using hand-coded routines contributed by some experts.

We have based our approach in the creation of efficient matrix multiplication
kernels adapted to the target machine. For each platform we build automati-
cally a library called Small Matrix Library (SML). Routines in this library are
specialized in the operation on small matrices (matrices which fit in the lower
level cache). We provide several variants of code written in a high level lan-
guage (Fortran). These variants implement the same operation using different
loop orders and unroll factors. We compile and benchmark each of them, keep-
ing the one which provides the best performance. By fixing leading dimensions
and loop trip counts at compilation time we can produce very efficient codes if a
good compiler is available. Thus, routines in this library work on small matrices
of fixed size. Once we have an efficient routine operating on small matrices we
use it in other codes which deal with matrices of any size. We use this approach
in both the dense and sparse fields.

The use of new data formats for dense matrix computations is currently an
active area of research. We have experimented with two nonlinear array lay-

115

116 CHAPTER 7. CONCLUSIONS AND FUTURE WORK

outs: one is based on a recursive partitioning and storage of matrices using a
hypermatrix scheme (HM); the other uses a square block data layout (SB). In
both cases the performance obtained is highly competitive with the matrix mul-
tiplication and Cholesky factorization implementations offered by the broadly
used ATLAS library. The code which works on hypermatrices has two disadvan-
tages: first, there is some overhead in following the data structure recursively;
and second, parallelism cannot be effectively exploited in an easy way, resulting
in load unbalance for many matrix dimensions. The implementation based on a
simple square block data layout outperforms the hypermatrix oriented codes for
dense operations. Our implementation, based on the compiler-optimized codes
in SML achieves good performance on a variety of platforms, approaching that
of hand-optimized codes.

We have also worked on the optimization of a sparse Cholesky factorization
based on a hypermatrix data structure. The use of such scheme has a drawback:
the storage of and computation on zeros within data submatrices. We have
studied several techniques aiming to the reduction of the overhead introduced
by the operation on zeros. The most effective ones are the use of the SML
routines corresponding to rectangular matrices, the use of windows, the use of
2D recursive layout of data submatrices and scheduling of the computations, and
the intra-block amalgamation. Using such techniques we obtained competitive
performance. Our hypermatrix Cholesky factorization outperforms TAUCS for
many matrices arising in Interior Point Methods, and obtain similar performance
on matrices obtained from the application of Finite Element Methods.

In this thesis we have also shown that techniques commonly used in linear
algebra codes can be effectively applied to other kinds of codes such as a Nearest
Neighbor classification algorithm. For example, for some classification problems
data elements can be represented using a single byte. Even when data can be
stored using bytes, it can be more effective to use real numbers to store such
data. This is the case on machines optimized for fast floating-point operations.
The additional amount of memory used could become a problem. However,
using tiling techniques such possibility is avoided and high performance can be
obtained even for very large classification data sets.

With the experience of having studied and optimized codes from different
fields, we confirm that some of the key factors which must be taken into account
when searching for high performance codes are:

• There is a trade-off between the speed of an algorithm and: the memory
space used; the computation of non productive operations. Using extra
space can be alleviated by tiling techniques. Allowing for some non pro-
ductive operations may result in more regular codes which can, sometimes,
be executed faster. Examples of this have been presented for the sparse
Cholesky factorization and the Nearest Neighbor classification.

• Some aspects are fundamental in obtaining high performance implemen-
tations of an algorithm. Namely, having: data accessed with stride one;
data properly aligned; store operations removed from the innermost loop.

• Current compilers can generate very efficient codes when working on sim-
ple and regular codes.

Even when some of these rules are followed, the process of optimizing a
code may require a large effort. There may exist several possibilities which

117

should be tested in search for the optimal values. For instance, different loop
orders, alignment values, or compiler flags. This can be time consuming and
error prone. For this reason we have developed tools which help us to adapt
programs for efficient execution on several platforms. These tools have proved
effective and give us a systematic way to develop and test new computer codes,
and improve their performance.

Future work

After finalizing this thesis we plan to extend this work in several directions:

• Modify our sparse hypermatrix Cholesky factorization to have data sub-
matrices accessed with stride one by operating on an upper triangular
matrix (U) rather than the lower triangle (L).

• Allow for a new data storage within hypermatrices: use supernodes to
store data submatrices in order to reduce the number of non productive
operations performed on zeros.

• Conduct research on sparse matrix ordering algorithms. We have observed
that delaying the change from a global strategy to a local ordering algo-
rithm can produce better performance in some cases. This needs further
research to identify a good criteria for deciding the switch point for a given
input matrix.

• Modify the sparse Cholesky code to produce an Incomplete Cholesky fac-
torization which can be used as a preconditioner for iterative methods.
For instance, we could cast off data submatrices with a reduced number
of nonzero elements. We think that avoiding the operation on such blocks
could yield a robust and high performance preconditioner.

• Create a Cholesky-like LDLT factorization for Indefinite and Quasi-definite
matrices. These kinds of matrices often have blocks with high density and
could benefit from the hypermatrix approach.

• Extend our sparse hypermatrix Cholesky implementation so that it is able
to factor matrices out-of-core. We would also like to use the message
passing paradigm for parallelization on distributed memory machines.

• Change the search for the optimal inner kernels during the creation of
our Small Matrix Library. Currently, an operation is repeated several
times on the very same matrices. Consequently, data can reside in cache
from the second iteration, which is not necessarily what happens when the
resulting subroutine is used. We want to determine the optimum algorithm
for inclusion in our library by using more representative programs: codes
which reference more data using realistic access patterns.

• Study the creation of optimal inner kernels for new processors with mul-
tiple cores. Similarly, study the case of graphics processing units (GPUs).

• Evaluate the impact of our SML’s matrix multiplication on multimedia
codes. For instance, MPEG-2 uses the Discrete Cosine Transform (DCT)
or its inverse (IDCT) which includes a matrix multiplication of matrices
with 8 × 8 elements.

118 CHAPTER 7. CONCLUSIONS AND FUTURE WORK

Bibliography

[1] M. J. Aftosmis, M. J. Berger, and S. M. Murman. Applications of space-
filling curves to cartesian methods for CFD. In 42nd Aerospace Sciences
Meeting and Exhibit, January 2004.

[2] R. C. Agarwal, F. G. Gustavson, and M. Zubair. Exploiting functional
parallelism of POWER2 to design high-performance numerical algorithms.
IBM J. Res. Dev., 38(5):563–576, September 1994.

[3] Nawaaz Ahmed and Keshav Pingali. Automatic generation of block-
recursive codes. In Euro-Par 2000,LNCS1900, pages 368–378, September
2000.

[4] George Almási, Luiz De Rose, Basilio B. Fraguela, José E. Moreira, and
David A. Padua. Programming for locality and parallelism with hierarchi-
cally tiled arrays. In Lawrence Rauchwerger, editor, LCPC, volume 2958
of Lecture Notes in Computer Science, pages 162–176. Springer, 2003.

[5] B. S. Andersen, J. A. Gunnels, F. Gustavson, and J. Wasniewski. A
recursive formulation of the inversion of symmetric positive defite matri-
ces in packed storage data format. In Juha Fagerholm, Juha Haataja,
Jari Jarvinen, Mikko Lyly, Peter Raback and Ville Savolainen, editors,
PARA’02, Applied Parallel Computing, Espoo, Finland, volume 2367 of
Springer series Lecture Notes in Computer Science (LNCS), pages 287–
296, Heidelberg, June 2002. Springer - Verlag.

[6] Bjarne S. Andersen, John A. Gunnels, Fred G. Gustavson, John K. Reid,
and Jerzy Waśniewski. A fully portable high performance minimal storage
hybrid format Cholesky algorithm. ACM Transactions on Mathematical
Software, 31(2):201–227, June 2005.

[7] Bjarne S. Andersen, Jerzy Wasniewski, and Fred G. Gustavson. A recur-
sive formulation of Cholesky factorization of a matrix in packed storage.
ACM Transactions on Mathematical Software (TOMS), 27(2):214–244,
2001.

[8] Bjarne Stig Andersen, Fred G. Gustavson, Alexander Karaivanov, Minka
Marinova, Jerzy Wasniewski, and Plamen Y. Yalamov. LAWRA: Linear
algebra with recursive algorithms. In Tor Sørevik, Fredrik Manne, Randi
Moe, and Assefaw Hadish Gebremedhin, editors, PARA, volume 1947 of
Lecture Notes in Computer Science, pages 38–51. Springer, 2000.

119

120 BIBLIOGRAPHY

[9] E Anderson, Z Bai, J Dongarra, A Greenbaum, A. McKenney, J. Du Croz,
S. Hammarling, J. Demmel, C. Bischof, and D. Sorensen. LAPACK: A
portable linear algebra library for high-performance computers. In Proc.
of Supercomputing ’90, pages 1–10. IEEE Press, 1990.

[10] E. Anderson and J. Dongarra. LAPACK User’s Guide, SIAM, Philadel-
phia, 1992.

[11] C. Ashcraft and R. G. Grimes. The influence of relaxed supernode parti-
tions on the multifrontal method. ACM Trans. Math. Software, 15:291–
309, 1989.

[12] M. Ast, C. Barrado, J.M. Cela, R. Fischer, O. Laborda, H. Manz, and
U. Schulz. Sparse matrix structure for dynamic parallelisation efficiency.
In Euro-Par 2000,LNCS1900, pages 519–526, September 2000.

[13] M. Ast, R. Fischer, H. Manz, and U. Schulz. PERMAS: User’s reference
manual, INTES publication no. 450, rev.d, 1997.

[14] Evangelia Athanasaki and Nectarios Koziris. Fast indexing for blocked
array layouts to improve multi-level cache locality. In Interaction between
Compilers and Computer Architectures, pages 109–119, 2004.

[15] Evangelia Athanasaki, Nectarios Koziris, and Panayioits Tsanakas. A tile
size selection analysis for blocked array layouts. In Interaction between
Compilers and Computer Architectures, pages 70–80, 2005.

[16] D. F. Bacon, J. H. Chow, D. R. Ju, M. Kalyan, and V. Sarkar. A compiler
framework for restructuring data declarations to enhance cache and TLB
effectiveness. In Proceedings of CASCON’94, Toronto, Ontario, October
1994.

[17] David F. Bacon, Susan L. Graham, and Oliver J. Sharp. Compiler trans-
formations for high-performance computing. ACM Computing Surveys,
26(4):345–420, December 1994.

[18] M. Bader and C. Zenger. Cache oblivious matrix multiplication using an
element ordering based on the Peano curve, 2006. submitted to Linear
Algebra and its Applications (Elsevier).

[19] Tamas Badics. RMFGEN generator., 1991. Code
available from ftp://dimacs.rutgers.edu in directory
pub/netflow/generators/network/genrmf.

[20] P. Baglietto, M. Maresca, and M. Migliardi. Image Processing on High-
Performance RISC Systems, Proceedings of the IEEE, 84(7):917–930, July
1996.

[21] S. Bandyopadhyay and U. Maulik. Efficient prototype reordering in near-
est neighbor classification, Pattern Recognition 35(12):2791–2799, Dec.
2002.

BIBLIOGRAPHY 121

[22] Ioana Banicescu and Susan Flynn Hummel. Balancing processor loads
and exploiting data locality in n-body simulations. In Supercomputing
’95: Proceedings of the 1995 ACM/IEEE conference on Supercomputing
(CDROM), page 43, New York, NY, USA, 1995. ACM Press.

[23] Jörn Behrens and Jens Zimmermann. Parallelizing an unstructured grid
generator with a space-filling curve approach. In Euro-Par ’00: Proceed-
ings from the 6th International Euro-Par Conference on Parallel Process-
ing, pages 815–823, London, UK, 2000. Springer-Verlag.

[24] Rudolph Berrendorf and Heinz Ziegler. PCL the Performance Counter
Library: A Common Interface to Access Hardware Performance Counters
on Microprocessors.

[25] Ganesh Bikshandi, Basilio B. Fraguela, Jia Guo, Maŕıa Jesús Garzarán,
Gheorghe Almási, José E. Moreira, and David A. Padua. Implementation
of parallel numerical algorithms using hierarchically tiled arrays. In Rudolf
Eigenmann, Zhiyuan Li, and Samuel P. Midkiff, editors, LCPC, volume
3602 of Lecture Notes in Computer Science, pages 87–101. Springer, 2004.

[26] Ganesh Bikshandi, Jia Guo, Daniel Hoeflinger, Gheorghe Almasi,
Basilio B. Fraguela, Maŕıa J. Garzarán, David Padua, and Christoph von
Praun. Programming for parallelism and locality with hierarchically tiled
arrays. In PPoPP ’06: Proceedings of the eleventh ACM SIGPLAN sym-
posium on Principles and practice of parallel programming, pages 48–57,
New York, NY, USA, 2006. ACM Press.

[27] Jeff Bilmes, Krste Asanovic, Chee-Whye Chin, and Jim Demmel. Optimiz-
ing matrix multiply using PHiPAC: a portable, high-performance, ANSI
C coding methodology. In 11th ACM Int. Conf. on Supercomputing, pages
340–347. ACM Press, 1997.

[28] S Browne, J Dongarra, N Garner, G Ho, and P Mucci. A Portable Pro-
gramming Interface for Performance Evaluation on Modern Processors.
Int. J. of High Performance Computing Applications, 14(3):189–204, 2000.

[29] W.J. Carolan, J.E. Hill, J.L. Kennington, S. Niemi, and S.J. Wichmann.
An empirical evaluation of the KORBX algorithms for military airlift ap-
plications. Oper. Res., 38:240–248, 1990.

[30] Steve Carr and Ken Kennedy. Compiler blockability of numerical algo-
rithms. In IEEE Computer Society. Technical Committee on Computer
Architecture, editor, Proceedings, Supercomputing ’92: Minneapolis, Min-
nesota, November 16-20, 1992, pages 114–124. IEEE Computer Society
Press, 1992.

[31] Jordi Castro. A specialized interior-point algorithm for multicommodity
network flows. SIAM Journal on Optimization, 10(3):852–877, September
2000.

[32] S. Chatterjee, L. R. Bachega, P. Bergner, K. A. Dockser, J. A. Gunnels,
M. Gupta, F. G. Gustavson, C. A. Lapkowski, G. K. Liu, M. Mendell,
R. Nair, C. D. Wait, T. J. C. Ward, and P. Wu. Design and exploitation

122 BIBLIOGRAPHY

of a high-performance SIMD floating-point unit for Blue Gene/L. IBM
Journal of Research and Development, 49(2/3):377–391, March/May 2005.

[33] Siddhartha Chatterjee, Vibhor V. Jain, Alvin R. Lebeck, Shyam Mundhra,
and Mithuna Thottethodi. Nonlinear array layouts for hierarchical mem-
ory systems. In Proceedings of the 13th international conference on Su-
percomputing, pages 444–453. ACM Press, 1999.

[34] Siddhartha Chatterjee, Alvin R. Lebeck, Praveen K. Patnala, and
Mithuna Thottethodi. Recursive array layouts and fast parallel matrix
multiplication. In Proc. of the 11th annual ACM symposium on Parallel
algorithms and architectures, pages 222–231. ACM Press, 1999.

[35] Z. Chi, J. Wu, and H. Yan. Handwritten numeral recognition using self-
organizing maps and fuzzy rules, Pattern Recognition, 28(1):59–66, 1995.

[36] J. Choi, J.J. Dongarra, R. Pozo, and D.W. Walker. ScaLAPACK: a scal-
able linear algebra library for distributed memory concurrent computers.
In Proc. Fourth Symposium on the Frontiers of Massively Parallel Com-
putation, pages 120–127. ACM Press, 1992.

[37] Stephanie Coleman and Kathryn S. McKinley. Tile size selection using
cache organization and data layout. In Proceedings of the ACM SIGPLAN
’95 Conference on Programming Language Design and Implementation,
pages 279–290, June 1995.

[38] Digital Equip. Corp. DECchip 21064 and DECchip 21064A Alpha AXP
Microprocessors - Hardware Ref. Manual, 1994.

[39] J. Czyzyk, S. Mehrotra, M. Wagner, and S. J. Wright. PCx User’s Guide
(Version 1.1). Technical Report OTC96/01, Optimization Technology
Center, Mathematics and Computer Science Division, Argonne National
Laboratory, Argonne, Illinois 60439, 1997.

[40] Peter B. Danzig and Stephen Melvin. High resolution timing with low
resolution clocks and microsecond resolution timer for Sun workstations.
SIGOPS Oper. Syst. Rev., 24(1):23–26, 1990.

[41] B.V. Dasarathy. Nearest Neighbor (NN) Norms: NN Pattern Classifica-
tion Techniques, IEEE Computer Society Press, 1991.

[42] Tim Davis. University of Florida Sparse Matrix Collection. NA Digest,
97(23), June 1997.

[43] Michel J. Daydé and Iain S. Duff. The use of computational kernels in full
and sparse linear solvers, efficient code design on high-performance RISC
processors. In VECPAR, pages 108–139, 1996.

[44] Adam de Boor. PMake - A Tutorial. University of California, Berkeley,
CA, USA, Jul. 1988.

[45] C. Decaestecker. Finding Prototypes for Nearest Neighbor Classifica-
tion by Means of Gradient Descent and Deterministic Annealing, Pattern
Recognition, 30(2):281–288, 1997.

BIBLIOGRAPHY 123

[46] A. Djouadi and E. Bouktache. A Fast Algorithm for the Nearest-Neighbor
Classifier, IEEE Trans. on Pattern Analysis and Machine Intelligence,
19(3):277–282, 1997.

[47] J. J. Dongarra, J. Du Croz, I. S. Duff, and S. Hammarling. A set of level 3
basic linear algebra subprograms. ACM Trans. Math. Software, 16:1–17,
1990.

[48] Jack Dongarra and Victor Eijkhout. Self-adapting numerical software for
next generation applications. The International Journal of High Perfor-
mance Computing Applications, 17(2):125–131, Summer 2003.

[49] Paul DuBois. Software Portability with imake. O’Reilly & Associates,
Inc., 1993.

[50] Iain S. Duff. Full matrix techniques in sparse Gaussian elimination. In
Numerical analysis (Dundee, 1981), volume 912 of Lecture Notes in Math.,
pages 71–84. Springer, Berlin, 1982.

[51] Erik Elmroth, Fred Gustavson, Isak Jonsson, and Bo K̊agström. Recursive
blocked algorithms and hybrid data structures for dense matrix library
software. SIAM Review, 46(1):3–45, 2004.

[52] K Esseghir. Improving data locality for caches. Master’s thesis, Dept. of
Computer Science, Rice University, September 1993.

[53] S. I. Feldman. Make – A program for maintaining computer programs.
Software – Practice and Experience, 9(4):255–265, March 1979.

[54] R. A. Finkel and J. L. Bentley. Quad trees, A data structure for retrieval
on composite keys. Acta Informatica, 4:1–9, 1974.

[55] Rolf Fischer, Markus Ast, Hartmut Manz, and Jesus Labarta. A dynamic
task graph parallelization approach. In Fourth Int. Colloquium on Com-
putation of Shell & Spatial Structures, June 2000.

[56] Glenn S. Fowler. The fourth generation Make. In USENIX Association,
editor, Summer conference proceedings, Portland 1985: June 11–14, 1985,
Portland, Oregon USA, pages 159–174. USENIX, Summer 1985.

[57] A. Frangioni. Multicommodity Min Cost Flow problems. Operations
Research Group, Department of Computer Science, University of Pisa.
Data available from www.di.unipi.it/di/groups/optimize/Data.

[58] Jeremy D. Frens and David S. Wise. Auto-blocking matrix-multiplication
or tracking BLAS3 performance from source code. Proc. 6th ACM SIG-
PLAN Symp. on Principles and Practice of Parallel Program., SIGPLAN
Notices, 32(7):206–216, 1997.

[59] Matteo Frigo and Steven G. Johnson. FFTW: An adaptive software ar-
chitecture for the FFT. In Proc. 1998 IEEE Intl. Conf. Acoustics Speech
and Signal Processing, volume 3, pages 1381–1384. IEEE, 1998.

[60] J. Fu and T.S. Huang. VLSI for Pattern Recognition and Image Process-
ing, Springer-Verlag, Berlin, 1984.

124 BIBLIOGRAPHY

[61] G.Von Fuchs, J.R. Roy, and E. Schrem. Hypermatrix solution of large
sets of symmetric positive-definite linear equations. Comp. Meth. Appl.
Mech. Eng., 1:197–216, 1972.

[62] A. George and J. W. H. Liu. Computer Solution of Large Sparse Positive-
Definite Systems. Prentice-Hall, Englewood Cliffs, NJ, 1981.

[63] Alan George. Nested disection of a regular finite element mesh. SIAM
Journal on Numerical Analysis, 10:345–363, September 1973.

[64] Andrew V. Goldberg, Jeffrey D. Oldham, Serge Plotkin, and Cliff
Stein. An implementation of a combinatorial approximation algorithm
for minimum-cost multicommodity flow. In Proceedings of the 6th In-
ternational Conference on Integer Programming and Combinatorial Opti-
mization, IPCO’98 (Houston, Texas, June 22-24, 1998), volume 1412 of
LNCS, pages 338–352. Springer-Verlag, 1998.

[65] D. Goldfarb and M. D. Grigoriadis. A computational comparison of the
Dinic and network simplex methods for maximum flow. In B. Simeone
et al., editors, FORTRAN Codes for Network Optimization, Annals of
Operations Research, vol. 13, pages 83–124, 1988.

[66] Gene H. Golub and Charles F. Van Loan. Matrix Computations. The
Johns Hopkins University Press, second edition, 1989.

[67] Kazushige Goto and Robert van de Geijn. On reducing TLB misses in
matrix multiplication. Technical Report CS-TR-02-55, Univ. of Texas at
Austin, November 1 2002.

[68] Nicholas I. M. Gould, Yifan Hu, and Jennifer A. Scott. A numerical
evaluation of sparse direct solvers for the solution of large sparse, sym-
metric linear systems of equations. Technical Report RAL-TR-2005-005,
Rutherford Appleton Laboratory, Oxfordshire OX11 0QX, April 2005.

[69] P.J. Grother and G.T. Candela. Comparison of handprinted digit classi-
fiers. Technical Report NISTR 5209, National Institute of Standards and
Technology (NIST), 1993.

[70] P.J. Grother, G.T. Candela, and J.L. Blue. Fast Implementation of Near-
est Neighbor Classifiers, Pattern Recognition, 30(3):459–465, 1997.

[71] John A. Gunnels, Greg Henry, and Robert A. van de Geijn. A family
of high-performance matrix multiplication algorithms. In International
Conference on Computational Science (1), pages 51–60, 2001.

[72] Anshul Gupta. Graph partitioning based sparse matrix orderings for inte-
rior point algorithms. Technical Report RC 20467(90480), IBM Research
Division, 1996.

[73] Anshul Gupta. Fast and effective algorithms for graph partitioning and
sparse-matrix ordering. IBM J. Res. Dev., 41(1-2):171–183, 1997.

BIBLIOGRAPHY 125

[74] Anshul Gupta, Mahesh Joshi, and Vipin Kumar. WSMP: A high-
performance shared- and distributed- memory parallel sparse linear equa-
tion solver. Technical report, IBM Research Division, T.J. Watson Re-
search Center, April 2001.

[75] M. Gupta and P. Banerjee. Demonstration of automatic data partitioning
techniques for parallelizing compilers on multicomputers. IEEE Trans.
Parallel Distrib. Syst., 3(2):179–193, 1992.

[76] F. Gustavson, A. Henriksson, I. Jonsson, and B. Kaagstroem. Recursive
blocked data formats and BLAS’s for dense linear algebra algorithms.
LNCS, 1541:195–206, 1998.

[77] F. G. Gustavson. Recursion leads to automatic variable blocking for dense
linear-algebra algorithms. IBM J. Res. Dev., 41(6):737–756, 1997.

[78] F. G. Gustavson. High-performance linear algebra algorithms using new
generalized data structures for matrices. IBM J. Res. Dev., 47(1):31–55,
January 2003.

[79] F. G. Gustavson. Algorithm Compiler Architecture Interaction Relative
to Dense Linear Algebra. Technical Report RC23715 (W0509-039), IBM,
T.J. Watson, September 2005.

[80] Fred G. Gustavson. New generalized data structures for matrices lead to
a variety of high performance algorithms. In PPAM, pages 418–436, 2001.

[81] Fred G. Gustavson. New generalized data structures for matrices lead to
a variety of high performance dense linear algebra algorithms. In Jack
Dongarra, Kaj Madsen, and Jerzy Wasniewski, editors, PARA, volume
3732 of Lecture Notes in Computer Science, pages 11–20. Springer, 2004.

[82] H. Han, G. Rivera, and C. Tseng. Software support for improving locality
in scientific codes. In Eighth International Workshop on Compilers for
Parallel Computers (CPC’2000), January 2000.

[83] Y. Harnamoto, S. Uchimura, and S. Tornita. A Bootstrap Technique for
Nearest Neighbor Classifier Design, IEEE Trans. on Pattern Analysis and
Machine Intelligence, 19(1):73–79, 1997.

[84] Ernst J. Haunschmid, Christoph W. Ueberhuber, and Peter Wurzinger.
Cache oblivious high performance algorithms for matrix multiplication.
Technical report, Vienna University of Technology, September 05 2002.

[85] R. Van Der Heiden and F.C.A. Groen. The Box-Cox Metric for Near-
est Neighbor Classification Improvement, Pattern Recognition, 30(2):273–
279, 1997.

[86] John L. Hennessy and David A. Patterson. Computer Architecture a
Quantitative Approach, 2nd. edition. Morgan Kaufmann, 1996.

[87] José R. Herrero and Juan J. Navarro. Automatic benchmarking and op-
timization of codes: an experience with numerical kernels. In Int. Conf.
on Software Engineering Research and Practice, pages 701–706. CSREA
Press, June 2003.

126 BIBLIOGRAPHY

[88] José R. Herrero and Juan J. Navarro. Building software via shared knowl-
edge. In Int. Conf. on Software Engineering Research and Practice, pages
861–867. CSREA Press, June 2003.

[89] José R. Herrero and Juan J. Navarro. Improving Performance of Hy-
permatrix Cholesky Factorization. In Euro-Par 2003,LNCS2790, pages
461–469. Springer-Verlag, August 2003.

[90] José R. Herrero and Juan J. Navarro. Optimization of a statically parti-
tioned hypermatrix sparse Cholesky factorization. In Workshop on state-
of-the-art in scientific computing (PARA’04),LNCS3732, pages 798–807.
Springer-Verlag, June 2004.

[91] José R. Herrero and Juan J. Navarro. Reducing overhead in sparse hyper-
matrix Cholesky factorization. In IFIP TC5 Workshop on High Perfor-
mance Computational Science and Engineering (HPCSE), World Com-
puter Congress, pages 143–154. Springer-Verlag, August 2004.

[92] José R. Herrero and Juan J. Navarro. Adapting linear algebra codes to the
memory hierarchy using a hypermatrix scheme. In Int. Conf. on Parallel
Processing and Applied Mathematics. LNCS 3911, September 2005.

[93] José R. Herrero and Juan J. Navarro. Efficient implementation of nearest
neighbor classification. In Int. Conf. on Computer Recognition Systems
(CORES). Advances in Soft Computing, Vol XVIII, pages 177–186, May
2005.

[94] José R. Herrero and Juan J. Navarro. Intra-block amalgamation in sparse
hypermatrix Cholesky factorization. In Int. Conf. on Computational Sci-
ence and Engineering, pages 15–22, June 2005.

[95] José R. Herrero and Juan J. Navarro. A study on load imbalance in par-
allel hypermatrix multiplication using OpenMP. In Int. Conf. on Parallel
Processing and Applied Mathematics. LNCS 3911, September 2005.

[96] José R. Herrero and Juan J. Navarro. Compiler-optimized kernels: An
efficient alternative to hand-coded inner kernels. In Proceedings of the
International Conference on Computational Science and its Applications
(ICCSA). LNCS 3984, pages 762–771, May 2006.

[97] José R. Herrero and Juan J. Navarro. Sparse hypermatrix Cholesky: Cus-
tomization for high performance. In Proceedings of The International
MultiConference of Engineers and Computer Scientists 2006, June 2006.

[98] D. Hilbert. Über die stetige abbildung einer linie auf ein flachenstück.
Math. Annalen, 38:459–460, 1891.

[99] E. Im and K. A. Yelick. Optimizing sparse matrix-vector multiplication
for register reuse. In International Conference on Computational Science,
May 2001.

[100] Intel. Intel(R) Itanium(R) 2 processor reference manual for software de-
velopment and optimization, 2004.

BIBLIOGRAPHY 127

[101] F. Irigoin and R. Triolet. Supernode partitioning. In POPL ’88: Proceed-
ings of the 15th ACM SIGPLAN-SIGACT symposium on Principles of
programming languages, pages 319–329, New York, NY, USA, 1988. ACM
Press.

[102] D. Irony, G. Shklarski, and S. Toledo. Parallel and fully recursive mul-
tifrontal sparse Cholesky. In ICCS 2002,LNCS2330, pages 335–344.
Springer-Verlag, April 2002.

[103] ISO/IEC 9945-1:1996. [ANSI/IEEE Std 1003.1, 1996 Edition] Informa-
tion technology - Portable Operating System Interface (POSIX)-Part 1:
System Application Program Interface (API) [C Language].

[104] Bo K̊agström, Per Ling, and Charles van Loan. GEMM-based level 3
BLAS: high-performance model implementations and performance evalu-
ation benchmark. ACM Transactions on Mathematical Software (TOMS),
24(3):268–302, 1998.

[105] C. Kamath, R. Ho, and D.P. Manley. DXML: A high-performance scien-
tific subroutine library. Digital Technical Journal, 6(3):44–56, 1994.

[106] George Karypis and Vipin Kumar. METIS: A Software Package for Par-
titioning Unstructured Graphs, Partitioning Meshes, and Computing Fill-
Reducing Orderings of Sparse Matrices, Version 4.0, September 1998.

[107] George Karypis and Vipin Kumar. A fast and high quality multilevel
scheme for partitioning irregular graphs. SIAM Journal on Scientific
Computing, 20(1):359–392, 1999.

[108] Ken Kennedy and Ulrich Kremer. Automatic data layout for distributed-
memory machines. ACM Trans. Program. Lang. Syst., 20(4):869–916,
1998.

[109] T. Kisuki, P.M.W. Knijnenburg, and M.F.P O’Boyle. Combined selection
of tile sizes and unroll factors using iterative compilation. In Parallel
Architectures and Compilation Techniques, pages 237–246, 2000.

[110] C.H. Koelbel, D.B. Loveman, R.S. Schreiber, G.L. Steele Jr., and M.E.
Zosel. The high performance Fortran handbook. Scientific and Engineering
Computation. MIT Press, 1994.

[111] Roger Koenker and Pin Ng. SparseM: A Sparse Matrix Package for R,
2003. http://cran.r-project.org/src/contrib/PACKAGES.html#SparseM.

[112] T. Kohonen. The self-organizing map, Proc. of the IEEE 78(9):1464–1480,
1990.

[113] M. Kudo, N. Masuyamaa, J. Toyamaa, and M. Shimbob. Simple ter-
mination conditions for k-nearest neighbor method, Pattern Recognition
Letters, 24(9-10):1203–1213, June 2003.

[114] M. Lam. Software Pipelining: An Effective Technique for VLIW Machines,
Proc. of the SIGPLAN’88, pp 318–328.

128 BIBLIOGRAPHY

[115] M.S. Lam, E.E. Rothberg, and M.E. Wolf. The cache performance and
optimizations of blocked algorithms. In Proceedings of ASPLOS’91, pages
67–74, 1991.

[116] E.W. Lee and S.I. Chae. Fast Design of Reduced-Complexity Nearest-
Neighbor Classifiers Using Triangular Inequality, IEEE Trans. on Pattern
Analysis and Machine Intelligence, 20(5):562–566, 1998.

[117] Y. Lee and J. Orlin. GRIDGEN generator., 1991.
Code available from ftp://dimacs.rutgers.edu in directory
pub/netflow/generators/network/gridgen.

[118] Jin Li, Anthony Skjellum, and Robert D. Falgout. A poly-algorithm
for parallel dense matrix multiplication on two-dimensional process grid
topologies. Concurrency - Practice and Experience, 9(5):345–389, 1997.

[119] Andrew Lih and Erez Zadok. PGMAKE: A portable distributed make
system. Technical Report CUCS-035-94, Computer Science Department,
Columbia University, May 1994.

[120] Cheng-Lin Liu, H. Sako, and H. Fujisawa. Performance evaluation of
pattern classifiers for handwritten character recognition. International
Journal on Document Analysis and Recognition, 4:191–204, 2002.

[121] J. H. W. Liu. The role of elimination trees in sparse factorization. SIAM
Journal on Matrix Analysis and Applications, 11(1):134–172, 1990.

[122] J. W. Liu, E. G. Ng, and B. W. Peyton. On finding supernodes for
sparse matrix computations. SIAM J. Matrix Anal. Appl., 14(1):242–252,
January 1993.

[123] J. W. H. Liu. Modification of the minimum degree algorithm by multiple
elimination. ACM Transactions on Mathematical Software, 11(2):141–153,
1985.

[124] J. W.-H. Liu. The multifrontal method for sparse matrix solution: Theory
and practice. SIAM Review, 34:82–109, 1992.

[125] Mary E. Mace. Memory storage patterns in parallel processing. Kluwer
Academic Publishers, Norwell, MA, USA, 1987.

[126] D. MacKenzie and B. Elliston. Autoconf: Creating Automatic Configura-
tion Scripts., User Manual, Edition 2.12, for Autoconf version 2.12. Free
Software Foundation, December 1998.

[127] D. MacKenzie and T. Tromey. GNU Automake, User Manual, for Au-
tomake version 1.4, Free Software Foundation,, April 1999.

[128] A. C. McKellar and Jr. E. G. Coffman. Organizing matrices and matrix
operations for paged memory systems. Communications of the ACM,
12(3):153–165, 1969.

[129] John Mellor-Crummey, David Whalley, and Ken Kennedy. Improving
memory hierarchy performance for irregular applications. In Proceedings
of the 13th international conference on Supercomputing, pages 425–433.
ACM Press, 1999.

BIBLIOGRAPHY 129

[130] M. F. Mokbel, W. G. Aref, and I. Kamel. Analysis of multi-dimensional
space-filling curves. GeoInformatica, 7(3):179–209, September 2003.

[131] G. M. Morton. A computer-oriented geodetic data base and a new tech-
nique in file sequencing. IBM Ltd. Ottawa, Canada, 1966.

[132] Wahid Nasri and Denis Trystram. A poly-algorithmic approach applied
for fast matrix multiplication on clusters. In IPDPS, pages 234–241. IEEE
Computer Society, 2004.

[133] J.J. Navarro, A. Juan, and T. Lang. MOB Forms: A Class of Multi-
level Block Algorithms for Dense Linear Algebra Computations, ACM
Int. Conf. Supercomputing, 1994, pp. 354–363.

[134] Juan J. Navarro, E. Garćıa, and José R. Herrero. Data prefetching and
multilevel blocking for linear algebra operations. In Proceedings of the
10th international conference on Supercomputing, pages 109–116. ACM
Press, May 1996.

[135] Juan J. Navarro, Antonio Juan, and Tomas Lang. MOB forms: A class
of Multilevel Block Algorithms for dense linear algebra operations. In
Proceedings of the 8th International Conference on Supercomputing. ACM
Press, 1994.

[136] NetLib. Linear programming problems. http://www.netlib.org/lp/.

[137] Esmond G. Ng and Barry W. Peyton. Block sparse Cholesky algorithms
on advanced uniprocessor computers. SIAM J. Sci. Comput., 14(5):1034–
1056, 1993.

[138] A. Noor and S. Voigt. Hypermatrix scheme for the STAR–100 computer.
Comp. & Struct., 5:287–296, 1975.

[139] OpenMP. URL. http://www.openmp.org.

[140] A. Oram and Steve Talbott. Managing Projects with Make. O’Reilly &
Associates, Inc., second edition, 1991.

[141] J. A. Orenstein and T. H. Merrett. A class of data structures for asso-
ciative searching. In PODS ’84: Proceedings of the 3rd ACM SIGACT-
SIGMOD symposium on Principles of database systems, pages 181–190,
New York, NY, USA, 1984. ACM Press.

[142] Hewlett Packard. PA-RISC 1.1 Architecture and Instruction Set Reference
Manual, 1994.

[143] Preeti Ranjan Panda, Hiroshi Nakamura, Nikil D. Dutt, and Alexandru
Nicolau. Augmenting loop tiling with data alignment for improved cache
performance. IEEE Transactions on Computers, 48(2):142–149, 1999.

[144] PARASOL. (EU ESPRIT IV LTR Project No. 20160).

[145] Neungsoo Park, Bo Hong, and Viktor K. Prasanna. Tiling, block data
layout, and memory hierarchy performance. IEEE Trans. Parallel and
Distrib. Systems, 14(7):640–654, 2003.

130 BIBLIOGRAPHY

[146] G. Peano. Sur une courbe, qui remplit toute une aire plane. Math. An-
nalen, pages 157–160, 1890.

[147] J.R. Pilkington and S.B. Baden. Dynamic partitioning of non-uniform
structured workloads with spacefilling curves. IEEE Transactions on Par-
allel and Distributed Systems, 7(3):288–300, March 1996.

[148] PTR. Parallel tools consortium working group on portable timing rou-
tines.

[149] Markus Püschel, José M. F. Moura, Jeremy Johnson, David Padua,
Manuela Veloso, Bryan W. Singer, Jianxin Xiong, Franz Franchetti, Aca
Gačić, Yevgen Voronenko, Kang Chen, Robert W. Johnson, and Nick Riz-
zolo. SPIRAL: Code generation for DSP transforms. Proceedings of the
IEEE, special issue on ”Program Generation, Optimization, and Adapta-
tion”, 93(2):232–275, 2005.

[150] F. Ricci and P. Avesani. Data Compression and Local Metrics for Nearest
Neighbor Classification, IEEE Trans. on Pattern Analysis and Machine
Intelligence, 21(4):380–384, 1999.

[151] G. Rivera and C.-W. Tseng. A comparison of compiler tiling algorithms.
LNCS, 1575:168–182, 1999.

[152] Gabriel Rivera and Chau-Wen Tseng. Data transformations for eliminat-
ing conflict misses. In SIGPLAN Conference on Programming Language
Design and Implementation, pages 38–49, 1998.

[153] Gabriel Rivera and Chau-Wen Tseng. Tiling optimizations for 3D scien-
tific computations. In Proceedings of Supercomputing’2000 (CD-ROM),
Dallas, TX, November 2000. IEEE and ACM SIGARCH. University of
Maryland.

[154] Edward Rothberg. Performance of panel and block approaches to sparse
Cholesky factorization on the iPSC/860 and Paragon multicomputers.
SIAM J. Sci. Comput., 17(3):699–713, 1996.

[155] Edward Rothberg and Anoop Gupta. An efficient block-oriented ap-
proach to parallel sparse Cholesky factorization. SIAM J. Sci. Comput.,
15(6):1413–1439, November 1994.

[156] Hans Sagan, editor. Space-Filling Curves. Springer-Verlag, 1994.

[157] Hanan Samet. The quadtree and related hierarchical data structures.
ACM Comput. Surv., 16(2):187–260, 1984.

[158] R. Sandberg, D. Goldberg, S. Kleiman, D. Walsh, and B. Lyon. Design
and implementation of the SUN Network File System. In Proceedings of
the Summer USENIX Conference, pages 119–130, Portland, Oregon, June
1985. Usenix Association.

[159] Jeremy G. Siek and Andrew Lumsdaine. A rational approach to portable
high performance: The basic linear algebra instruction set (BLAIS) and
the fixed algorithm size template (FAST) library. In Object-Oriented Tech-
nology, ECOOP’98 Workshop Reader, volume 1543 of Lecture Notes in
Computer Science, pages 468–469. Springer, 1998.

BIBLIOGRAPHY 131

[160] SSE2. Streaming SIMD Extensions 2 for the Pentium 4 processor.
http://www.intel.com/software/products/college/ia32/sse2.

[161] Richard M. Stallman and Roland McGrath. GNU Make: A Program
for Directing Recompilation, for GNU Make Version 3.79.1. GNU Press,
2002.

[162] ST-ORM User’s Manual, 1999. EASi Engineering GmbH.

[163] Olivier Temam, Elana D. Granston, and William Jalby. To copy or not
to copy: a compile-time technique for assessing when data copying should
be used to eliminate cache conflicts. In Supercomputing, pages 410–419,
1993.

[164] Sivan Toledo. Locality of reference in LU decomposition with partial
pivoting. SIAM J. Matrix Anal. Appl., 18(4):1065–1081, 1997.

[165] Vinod Valsalam and Anthony Skjellum. A framework for high-
performance matrix multiplication based on hierarchical abstractions, al-
gorithms and optimized low-level kernels. Concurrency and Computation:
Practice and Experience, 14(10):805–839, August 2002.

[166] Larry Wall, Tom Christiansen, and Jon Orwant. Programming Perl.
O’Reilly & Associates, Inc., Sebastopol, California, 3rd edition, July 2000.

[167] R. Clint Whaley and Jack J. Dongarra. Automatically tuned linear algebra
software. In Supercomputing ’98, pages 211–217. IEEE Computer Society,
Nov 1998.

[168] R. Clint Whaley and Antoine Petitet. Minimizing development and main-
tenance costs in supporting persistently optimized BLAS. Softw, Pract.
Exper, 35(2):101–121, February 2005.

[169] David S. Wise. Representing matrices as quadtrees for parallel processors.
Information Processing Letters, 20(4):195–199, May 1985.

[170] David S. Wise. Ahnentafel indexing into Morton-ordered arrays, or matrix
locality for free. In Euro-Par 2000,LNCS1900, pages 774–783, September
2000.

[171] David S. Wise and Jeremy D. Frens. Morton-order matrices deserve com-
pilers’ support. Technical Report TR 533, Computer Science Department,
Indiana University, 1999.

[172] M. Wolfe. More iteration space tiling. In ACM, editor, Proceedings, Su-
percomputing ’89: November 13–17, 1989, Reno, Nevada, pages 655–664.
ACM Press, 1989.

[173] Steven Cameron Woo, Moriyoshi Ohara, Evan Torrie, Jaswinder Pal
Singh, and Anoop Gupta. The SPLASH-2 programs: characterization
and methodological considerations. In Proceedings of the 22nd annual
international symposium on Computer architecture, pages 24–36. ACM
Press, 1995.

132 BIBLIOGRAPHY

[174] Yin Zhang. Solving large-scale linear programs by interior-point methods
under the MATLAB environment. Optim. Methods Softw., 10(1):1–31,
1998.

