15,098 research outputs found

    Highly diverse nirK genes comprise two major clades that harbour ammonium-producing denitrifiers

    Get PDF
    Background: Copper dependent nitrite reductase, NirK, catalyses the key step in denitrification, i.e. nitrite reduction to nitric oxide. Distinct structural NirK classes and phylogenetic clades of NirK-type denitrifiers have previously been observed based on a limited set of NirK sequences, however, their environmental distribution or ecological strategies are currently unknown. In addition, environmental nirK-type denitrifiers are currently underestimated in PCR-dependent surveys due to primer coverage limitations that can be attributed to their broad taxonomic diversity and enormous nirK sequence divergence. Therefore, we revisited reported analyses on partial NirK sequences using a taxonomically diverse, full-length NirK sequence dataset. Results: Division of NirK sequences into two phylogenetically distinct clades was confirmed, with Clade I mainly comprising Alphaproteobacteria (plus some Gamma- and Betaproteobacteria) and Clade II harbouring more diverse taxonomic groups like Archaea, Bacteroidetes, Chloroflexi, Gemmatimonadetes, Nitrospirae, Firmicutes, Actinobacteria, Planctomycetes and Proteobacteria (mainly Beta and Gamma). Failure of currently available primer sets to target diverse NirK-type denitrifiers in environmental surveys could be attributed to mismatches over the whole length of the primer binding regions including the 3' site, with Clade II sequences containing higher sequence divergence than Clade I sequences. Simultaneous presence of both the denitrification and DNRA pathway could be observed in 67 % of all NirK-type denitrifiers. Conclusion: The previously reported division of NirK into two distinct phylogenetic clades was confirmed using a taxonomically diverse set of full-length NirK sequences. Enormous sequence divergence of nirK gene sequences, probably due to variable nirK evolutionary trajectories, will remain an issue for covering diverse NirK-type denitrifiers in amplicon-based environmental surveys. The potential of a single organism to partition nitrate to either denitrification or dissimilatory nitrate reduction to ammonium appeared to be more widespread than originally anticipated as more than half of all NirK-type denitrifiers were shown to contain both pathways in their genome

    An analysis of the Sargasso Sea resource and the consequences for database composition

    Get PDF
    Background: The environmental sequencing of the Sargasso Sea has introduced a huge new resource of genomic information. Unlike the protein sequences held in the current searchable databases, the Sargasso Sea sequences originate from a single marine environment and have been sequenced from species that are not easily obtainable by laboratory cultivation. The resource also contains very many fragments of whole protein sequences, a side effect of the shotgun sequencing method.These sequences form a significant addendum to the current searchable databases but also present us with some intrinsic difficulties. While it is important to know whether it is possible to assign function to these sequences with the current methods and whether they will increase our capacity to explore sequence space, it is also interesting to know how current bioinformatics techniques will deal with the new sequences in the resource.Results: The Sargasso Sea sequences seem to introduce a bias that decreases the potential of current methods to propose structure and function for new proteins. In particular the high proportion of sequence fragments in the resource seems to result in poor quality multiple alignments.Conclusion: These observations suggest that the new sequences should be used with care, especially if the information is to be used in large scale analyses. On a positive note, the results may just spark improvements in computational and experimental methods to take into account the fragments generated by environmental sequencing techniques

    A Scientific Roadmap for Antibiotic Discovery: A Sustained and Robust Pipeline of New Antibacterial Drugs and Therapies is Critical to Preserve Public Health

    Get PDF
    In recent decades, the discovery and development of new antibiotics have slowed dramatically as scientific barriers to drug discovery, regulatory challenges, and diminishing returns on investment have led major drug companies to scale back or abandon their antibiotic research. Consequently, antibiotic discovery—which peaked in the 1950s—has dropped precipitously. Of greater concern is the fact that nearly all antibiotics brought to market over the past 30 years have been variations on existing drugs. Every currently available antibiotic is a derivative of a class discovered between the early 1900s and 1984.At the same time, the emergence of antibiotic-resistant pathogens has accelerated, giving rise to life-threatening infections that will not respond to available antibiotic treatment. Inevitably, the more that antibiotics are used, the more that bacteria develop resistance—rendering the drugs less effective and leading public health authorities worldwide to flag antibiotic resistance as an urgent and growing public health threat

    Plant root associated biofilms

    Get PDF

    Personalized medicine : the impact on chemistry

    Get PDF
    An effective strategy for personalized medicine requires a major conceptual change in the development and application of therapeutics. In this article, we argue that further advances in this field should be made with reference to another conceptual shift, that of network pharmacology. We examine the intersection of personalized medicine and network pharmacology to identify strategies for the development of personalized therapies that are fully informed by network pharmacology concepts. This provides a framework for discussion of the impact personalized medicine will have on chemistry in terms of drug discovery, formulation and delivery, the adaptations and changes in ideology required and the contribution chemistry is already making. New ways of conceptualizing chemistry’s relationship with medicine will lead to new approaches to drug discovery and hold promise of delivering safer and more effective therapies

    Entropy inference and the James-Stein estimator, with application to nonlinear gene association networks

    Full text link
    We present a procedure for effective estimation of entropy and mutual information from small-sample data, and apply it to the problem of inferring high-dimensional gene association networks. Specifically, we develop a James-Stein-type shrinkage estimator, resulting in a procedure that is highly efficient statistically as well as computationally. Despite its simplicity, we show that it outperforms eight other entropy estimation procedures across a diverse range of sampling scenarios and data-generating models, even in cases of severe undersampling. We illustrate the approach by analyzing E. coli gene expression data and computing an entropy-based gene-association network from gene expression data. A computer program is available that implements the proposed shrinkage estimator.Comment: 18 pages, 3 figures, 1 tabl

    Comparative modelling of protein structure and its impact on microbial cell factories

    Get PDF
    Comparative modeling is becoming an increasingly helpful technique in microbial cell factories as the knowledge of the three-dimensional structure of a protein would be an invaluable aid to solve problems on protein production. For this reason, an introduction to comparative modeling is presented, with special emphasis on the basic concepts, opportunities and challenges of protein structure prediction. This review is intended to serve as a guide for the biologist who has no special expertise and who is not involved in the determination of protein structure. Selected applications of comparative modeling in microbial cell factories are outlined, and the role of microbial cell factories in the structural genomics initiative is discussed

    The ever-evolving concept of the gene: The use of RNA/Protein experimental techniques to understand genome functions

    Get PDF
    The completion of the human genome sequence together with advances in sequencing technologies have shifted the paradigm of the genome, as composed of discrete and hereditable coding entities, and have shown the abundance of functional noncoding DNA. This part of the genome, previously dismissed as "junk" DNA, increases proportionally with organismal complexity and contributes to gene regulation beyond the boundaries of known protein-coding genes. Different classes of functionally relevant nonprotein-coding RNAs are transcribed from noncoding DNA sequences. Among them are the long noncoding RNAs (lncRNAs), which are thought to participate in the basal regulation of protein-coding genes at both transcriptional and post-transcriptional levels. Although knowledge of this field is still limited, the ability of lncRNAs to localize in different cellular compartments, to fold into specific secondary structures and to interact with different molecules (RNA or proteins) endows them with multiple regulatory mechanisms. It is becoming evident that lncRNAs may play a crucial role in most biological processes such as the control of development, differentiation and cell growth. This review places the evolution of the concept of the gene in its historical context, from Darwin's hypothetical mechanism of heredity to the post-genomic era. We discuss how the original idea of protein-coding genes as unique determinants of phenotypic traits has been reconsidered in light of the existence of noncoding RNAs. We summarize the technological developments which have been made in the genome-wide identification and study of lncRNAs and emphasize the methodologies that have aided our understanding of the complexity of lncRNA-protein interactions in recent years

    Remotely acting SMCHD1 gene regulatory elements: in silico prediction and identification of potential regulatory variants in patients with FSHD

    Get PDF
    Background: Facioscapulohumeral dystrophy (FSHD) is commonly associated with contraction of the D4Z4 macro-satellite repeat on chromosome 4q35 (FSHD1) or mutations in the SMCHD1 gene (FSHD2). Recent studies have shown that the clinical manifestation of FSHD1 can be modified by mutations in the SMCHD1 gene within a given family. The absence of either D4Z4 contraction or SMCHD1 mutations in a small cohort of patients suggests that the disease could also be due to disruption of gene regulation. In this study, we postulated that mutations responsible for exerting a modifier effect on FSHD might reside within remotely acting regulatory elements that have the potential to interact at a distance with their cognate gene promoter via chromatin looping. To explore this postulate, genome-wide Hi-C data were used to identify genomic fragments displaying the strongest interaction with the SMCHD1 gene. These fragments were then narrowed down to shorter regions using ENCODE and FANTOM data on transcription factor binding sites and epigenetic marks characteristic of promoters, enhancers and silencers

    Modeling cancer metabolism on a genome scale

    Get PDF
    Cancer cells have fundamentally altered cellular metabolism that is associated with their tumorigenicity and malignancy. In addition to the widely studied Warburg effect, several new key metabolic alterations in cancer have been established over the last decade, leading to the recognition that altered tumor metabolism is one of the hallmarks of cancer. Deciphering the full scope and functional implications of the dysregulated metabolism in cancer requires both the advancement of a variety of omics measurements and the advancement of computational approaches for the analysis and contextualization of the accumulated data. Encouragingly, while the metabolic network is highly interconnected and complex, it is at the same time probably the best characterized cellular network. Following, this review discusses the challenges that genome‐scale modeling of cancer metabolism has been facing. We survey several recent studies demonstrating the first strides that have been done, testifying to the value of this approach in portraying a network‐level view of the cancer metabolism and in identifying novel drug targets and biomarkers. Finally, we outline a few new steps that may further advance this field
    corecore