793 research outputs found

    Workload Equity in Vehicle Routing Problems: A Survey and Analysis

    Full text link
    Over the past two decades, equity aspects have been considered in a growing number of models and methods for vehicle routing problems (VRPs). Equity concerns most often relate to fairly allocating workloads and to balancing the utilization of resources, and many practical applications have been reported in the literature. However, there has been only limited discussion about how workload equity should be modeled in VRPs, and various measures for optimizing such objectives have been proposed and implemented without a critical evaluation of their respective merits and consequences. This article addresses this gap with an analysis of classical and alternative equity functions for biobjective VRP models. In our survey, we review and categorize the existing literature on equitable VRPs. In the analysis, we identify a set of axiomatic properties that an ideal equity measure should satisfy, collect six common measures, and point out important connections between their properties and those of the resulting Pareto-optimal solutions. To gauge the extent of these implications, we also conduct a numerical study on small biobjective VRP instances solvable to optimality. Our study reveals two undesirable consequences when optimizing equity with nonmonotonic functions: Pareto-optimal solutions can consist of non-TSP-optimal tours, and even if all tours are TSP optimal, Pareto-optimal solutions can be workload inconsistent, i.e. composed of tours whose workloads are all equal to or longer than those of other Pareto-optimal solutions. We show that the extent of these phenomena should not be underestimated. The results of our biobjective analysis are valid also for weighted sum, constraint-based, or single-objective models. Based on this analysis, we conclude that monotonic equity functions are more appropriate for certain types of VRP models, and suggest promising avenues for further research.Comment: Accepted Manuscrip

    Solving the waste collection problem from a multiobjective perspective: New methodologies and case studies

    Get PDF
    Fecha de lectura Tesis Doctoral: 19 de marzo de 2018.Economía Aplicada ( Matemáticas) Resumen tesis: El tratamiento de residuos es un tema de estudio por parte de las administraciones locales a nivel mundial. Distintos factores han de tenerse en cuenta para realizar un servicio eficiente. En este trabajo se desarrolla una herramienta para analizar y resolver el problema de la recogida de residuos sólidos en Málaga. Tras un análisis exhaustivo de los datos, se aborda el problema real como un problema de rutas multiobjetivo con capacidad limitada. Para los problemas multiobjetivo, no suele existir una única solución óptima, sino un conjunto de soluciones eficientes de Pareto. Las características del problema hacen inviable su resolución de forma exacta, por lo que se aplican distintas estrategias metaheurísticas para obtener una buena aproximación. En particular, se combinan las técnicas de GRASP, Path Relinking y Variable Neighborhood Search, que son adaptadas a la perspectiva multicriterio. Se trata de una aproximación en dos fases: una primera aproximación de la frontera eficiente se genera mediante un GRASP multiobjetivo. Tres son los métodos propuestos para la primera aproximación, dos de ellos derivados de la publicación de Martí et al. (2015) y el último se apoya en la función escalarizada de logro de Wierzbicki (Wierzbicki, 1980) para distintas combinaciones de pesos. A continuación, esta aproximación es mejorada con una versión de Path Relinking o Variable Neighborhood Search, con un punto de referencia diseñado para problemas multiobjetivo. Una vez generada la aproximación de la frontera eficiente, el proceso de obtención de la solución que más se adecúa a las preferencias de los gestores se basa en el desarrollo de un método interactivo sin trade – off, derivado de la filosofía NAUTILUS (Miettinen et al. 2010). Para evitar gastos de cómputo extensos, esta metodología se apoya en una pre - computación de los elementos de la frontera eficiente

    Planning a sustainable reverse logistics system: balancing costs with environmental and social concerns

    Get PDF
    The present work aims to support tactical and operational planning decisions of reverse logistics systems while considering economical, environmental and social objectives. In the literature, when addressing such systems economical aspects have been often used, while environmental concerns have been only recently emerging. The social component is the one less studied, and rarely the combination of the three concerns has been analyzed. This work address the three objectives and was motivated by the challenge of supporting decisions makers when managing a real case study of a recyclable waste collection system, where strategic decisions on the number and location of depots, vehicles and containers were taken beforehand. Tactical and operational decisions are studied involving the establishment of service areas for each depot and the definition and scheduling of collection routes for each vehicle. Such decisions should represent a compromise solution between the three objectives considered and support a sustainable reverse logistics plan. A multi-objective solution approach based on mixed-integer linear programming models is developed. Trade-offs between the objectives are discussed. Moreover the solutions obtained when each objective is tackled individually are compared between themselves and with the balanced solution.info:eu-repo/semantics/publishedVersio

    Volumetric Techniques for Product Routing and Loading Optimisation in Industry 4.0: A Review

    Get PDF
    Industry 4.0 has become a crucial part in the majority of processes, components, and related modelling, as well as predictive tools that allow a more efficient, automated and sustainable approach to industry. The availability of large quantities of data, and the advances in IoT, AI, and data-driven frameworks, have led to an enhanced data gathering, assessment, and extraction of actionable information, resulting in a better decision-making process. Product picking and its subsequent packing is an important area, and has drawn increasing attention for the research community. However, depending of the context, some of the related approaches tend to be either highly mathematical, or applied to a specific context. This article aims to provide a survey on the main methods, techniques, and frameworks relevant to product packing and to highlight the main properties and features that should be further investigated to ensure a more efficient and optimised approach

    The sustainable home health care process based on multi-criteria decision-dupport

    Get PDF
    The increase in life expectancy has led to a growing demand for Home Health Care (HHC) services. However, some problems can arise in the management of these services, leading to high computational complexity and time-consuming to obtain an exact and/or optimal solution. This study intends to contribute to an automatic multi-criteria decision-support system that allows the optimization of several objective functions simultaneously, which are often conflicting, such as costs related to travel (distance and/or time) and available resources (health professionals and vehicles) to visit the patients. In this work, the HHC scheduling and routing problem is formulated as a multi objective approach, aiming to minimize the travel distance, the travel time and the number of vehicles, taking into account specific constraints, such as the needs of patients, allocation variables, the health professionals and the transport availability. Thus, the multi-objective genetic algorithm, based on the NSGA-II, is applied to a real-world problem of HHC visits from a Health Unit in Bragança (Portugal), to identify and examine the different compromises between the objectives using a Pareto-based approach to operational planning. Moreover, this work provides several efficient end-user solutions, which were standardized and evaluated in terms of the proposed policy and compared with current practice. The outcomes demonstrate the significance of a multi-criteria approach to HHC services.The authors are grateful to the Foundation for Science and Technology (FCT, Portugal) for financial support through national funds FCT/MCTES (PIDDAC) to CeDRI (UIDB/05757/2020 and UIDP/05757/2020), SusTEC (LA/P/0007/2021) and ALGORITMI Research Centre / LASI (UIDB/00319/2020). Filipe Alves thanks the FCT for supporting its research with the Ph.D. grant SFRH/BD/143745/2019.info:eu-repo/semantics/publishedVersio

    The capacitated vehicle routing problem with soft time windows and stochastic travel times

    Get PDF
    A full multiobjective approach is employed in this paper to deal with a stochastic multiobjective capacitated vehicle routing problem (CVRP). In this version of the problem, the demand is considered to be deterministic, but the travel times are assumed to be stochastic. A soft time window is tied to every customer and there is a penalty for starting the service outside the time window. Two objectives are minimized, the total length and the time window penalty. The suggested solution method includes a non-dominated sorting genetic algorithm (NSGA) together with a variable neighborhood search (VNS) heuristic. It was tested on instances from the literature and compared to a previous solution approach. The suggested method is able to find solutions that dominate some of the previously best known stochastic multiobjective CVRP solutions

    On green routing and scheduling problem

    Full text link
    The vehicle routing and scheduling problem has been studied with much interest within the last four decades. In this paper, some of the existing literature dealing with routing and scheduling problems with environmental issues is reviewed, and a description is provided of the problems that have been investigated and how they are treated using combinatorial optimization tools

    Essays on stochastic and multi-objective capacitated vehicle routing problems

    Get PDF

    Green Vehicle Routing Problem with Safety and Social Concerns

    Get PDF
    Over the two last decades, distribution companies have been aware of the importance of paying attention to the all aspects of a distribution system simultaneously to be successful in the global market. These aspects are the economic, the environmental, the social and the safety aspects. In the Vehicle Routing Problem (VRP) literature, the economic issue has often been used, while the environmental, the safety and the social concerns have been less proportion of studies. The Green vehicle routing problem (GVRP) is one of the recent variants of the VRP, dealing with environmental aspects of distribution systems. In this paper, two developed mixed integer programming models are presented for the GVRP with social and safety concerns. Moreover, a Genetic Algorithm (GA) is developed to deal efficiently with the problem in large size. Different numerical analyses have performed to validate the presented algorithm in comparison to exact solutions and investigate the influence of several key factors like the effect of increasing the cost of safety aspect on route balancing, and customer waiting time. The results confirm that the proposed algorithm performs well and has more social and safety benefits (such as more balanced tours and fewer customers waiting time than the classic GVRP
    corecore