226 research outputs found

    Type inference for action semantics

    Get PDF
    Action semantics, developed by Mosses and Watt, is a metalanguage for denotational semantics in which program denotations are actions. We study actions as polymorphic combinators that operate on collections of types. Our work includes a category-sorted algebra-based model for action semantics; a unification-based type inference algorithm for action expressions similar to that used for ML, extended with subtypes and records; proofs of its soundness and completeness with respect to the model; and an algorithm for simplifying inheritance subtyping constraints on records to constraints on non-record primitives. Our work extends other research on type inference with subtypes and records, primarily because our results are based on a semantic model: we avoid the large constraint sets encountered by previous researchers because coercions are not needed in our model. Our system provides record concatenation and union operations, without the need for complex constraints on record types

    Theorem Provers as Libraries -- An Approach to Formally Verifying Functional Programs

    Get PDF
    Property-directed verification of functional programs tends to take one of two paths. First, is the traditional testing approach, where properties are expressed in the original programming language and checked with a collection of test data. Alternatively, for those desiring a more rigorous approach, properties can be written and checked with a formal tool; typically, an external proof system. This dissertation details a hybrid approach that captures the best of both worlds: the formality of a proof system paired with the native integration of an embedded, domain specific language (EDSL) for testing. At the heart of this hybridization is the titular concept -- a theorem prover as a library. The verification capabilities of this prover, HaskHOL, are introduced to a Haskell development environment as a GHC compiler plugin. Operating at the compiler level provides for a comparatively simpler integration and allows verification to co-exist with the numerous other passes that stand between source code and program

    Modular and type-safe definition of Attribute Grammars with AspectAG

    Get PDF
    AspectAG is a Haskell-embedded domain-specific language (EDSL) that encodes first-class attribute grammars (AGs). AspectAG ensures the wellformedness of AGs at compile time by using extensible records and predicates encoded using old-fashioned type-level programming features, such as multiparameter type classes and functional dependencies. AspectAG suffers the usual drawbacks of EDSLs: when type errors occur they usually do not deliver error messages that refer to domain terms, but to the host language. Often, implementation details of the EDSL are leaked in those messages. The use of type-level programming techniques makes the situation worse since type-level abstraction mechanisms are quite poor. Additionally, old-fashioned type-level programs are untyped at type-level, which is inconsistent with the general approach of strongly-typed functional programming. By using modern Haskell extensions and techniques we propose a reworked version of AspectAG that tackles those weaknesses. New AG definitions are safer, both at the level of types and at the level of kinds. Furthemore, a set of identified domain-specific errors are reported with DSL-oriented messages. To achieve this, we define and use a framework for manipulating type errors that can be used in any EDSL. We show the pragmatics of AspectAG by defining languages and extending them both with new syntax and semantics. We use MateFun, a purelyfunctional language used to teach mathematics as a case study.AspectAG es un lenguaje de dominio específico embebido (EDSL) que codifica gramáticas de atributos (AGs) como ciudadanos de primera clase. AspectAG garantiza la buena formación de las AGs en tiempo de compilación por medio del uso de registros extensibles y predicados, codificados gracias al uso de características antiguas de programación a nivel de tipos, como clases multiparámetro y dependencias funcionales. AspectAG sufre las desventajas usuales de los EDSLs: cuando ocurren errores de tipado, los mensajes de error reportados no se expresan en términos del dominio, sino del lenguaje anfitrión. También es usual que detalles de implementación del EDSL se vean filtrados en estos mensajes. El uso de técnicas de programación a nivel de tipos agrava la situación porque los mecanismos de abstracción a nivel de tipos son pobres. Ademas, las técnicas de programación a nivel de tipos usadas en AspectAG son esencialmente no tipadas, lo que es inconsistente con nuestro enfoque de tipado fuerte. Usando extensiones modernas al sistema de tipos de Haskell, proponemos una nueva versión de la biblioteca AspectAG, abordando los problemas antes mencionados. Las nuevas definiciones de AGs son mas seguras tanto a nivel de tipado como a nivel de kinds (tipado a nivel de tipos). Ademas, un conjunto identificado de errores específicos del dominio son reportados con mensajes referentes al mismo. Para lograr esto, definimos y utilizamos un framework para manipular errores de tipado, que puede ser aplicado a cualquier EDSL. Mostramos la pragmática de AspectAG definiendo lenguajes y extendiéndoles con nueva sintaxis y con nueva semántica. Utilizamos el lenguaje MateFun, un lenguaje funcional puro utilizado para enseñar matemáticas como caso de estudio

    Morpheus: Automated Safety Verification of Data-Dependent Parser Combinator Programs

    Get PDF
    Parser combinators are a well-known mechanism used for the compositional construction of parsers, and have shown to be particularly useful in writing parsers for rich grammars with data-dependencies and global state. Verifying applications written using them, however, has proven to be challenging in large part because of the inherently effectful nature of the parsers being composed and the difficulty in reasoning about the arbitrarily rich data-dependent semantic actions that can be associated with parsing actions. In this paper, we address these challenges by defining a parser combinator framework called Morpheus equipped with abstractions for defining composable effects tailored for parsing and semantic actions, and a rich specification language used to define safety properties over the constituent parsers comprising a program. Even though its abstractions yield many of the same expressivity benefits as other parser combinator systems, Morpheus is carefully engineered to yield a substantially more tractable automated verification pathway. We demonstrate its utility in verifying a number of realistic, challenging parsing applications, including several cases that involve non-trivial data-dependent relations

    Using Links to prototype a Database Wiki

    Get PDF
    Both relational databases and wikis have strengths that make them attractive for use in collaborative applications. In the last decade, database-backed Web applications have been used extensively to develop valuable shared biological references called curated databases. Databases offer many advantages such as scalability, query optimization and concurrency control, but are not easy to use and lack other features needed for collaboration. Wikis have become very popular for early-stage biocuration projects because they are easy to use, encourage sharing and collaboration, and provide built-in support for archiving, history-tracking and annotation. However, curation projects often outgrow the limited capabilities of wikis for structuring and efficiently querying data at scale, necessitating a painful phase transition to a database-backed Web application. We perceive a need for a new class of general-purpose system, which we call a Database Wiki, that combines flexible wiki-like support for collaboration with robust database-like capabilities for structuring and querying data. This paper presents DBWiki, a design prototype for such a system written in the Web programming language Links. We present the architecture, typical use, and wiki markup language design for DBWiki and discuss features of Links that provided unique advantages for rapid Web/database application prototyping

    Combinator evaluation of functional programs with logical variables

    Get PDF
    technical reportA technique is presented that brings logical variables into the scope of the well known Turner method for evaluating normal order functioned programs by S, K, I combinator graph reduction. This extension is illustrated by SASL+LV, an extension of Turner's language SASL in which general expressions serve as formal parameters, and parameter passage is done by unification. The conceptual and practical advantages of such an extension are discussed, as well as semantic pitfalls that arise from the attendant weakening of referential transparency. Only four new combinators (LV, BV, FN and UNIFY) are introduced. The resulting object code is fully upward compatible in the sense that previously compiled SASL object code remains executable with unchanged semantics. However, "read-only" variable usage in SASL-f LV programs requires a "multi-tasking" extension of the customary stack-based evaluation method. Mechanisms are presented for managing this multi-tasking on both single and multi-processor systems. Finally, directions are examined for applying this technique to implementations involving larger granularity combinators, and fuller semantic treatment of logical variables (e.g. accommodation of failing unifications)

    How functional programming mattered

    Get PDF
    In 1989 when functional programming was still considered a niche topic, Hughes wrote a visionary paper arguing convincingly ‘why functional programming matters’. More than two decades have passed. Has functional programming really mattered? Our answer is a resounding ‘Yes!’. Functional programming is now at the forefront of a new generation of programming technologies, and enjoying increasing popularity and influence. In this paper, we review the impact of functional programming, focusing on how it has changed the way we may construct programs, the way we may verify programs, and fundamentally the way we may think about programs

    Multiparty Session Programming with Global Protocol Combinators

    Get PDF
    EPSRC Doctoral Prize FellowshipMultiparty Session Types (MPST) is a typing discipline for communication protocols. It ensures the absence of communication errors and deadlocks for well-typed communicating processes. The state-of-the-art implementations of the MPST theory rely on (1) runtime linearity checks to ensure correct usage of communication channels and (2) external domain-specific languages for specifying and verifying multiparty protocols. To overcome these limitations, we propose a library for programming with global combinators -- a set of functions for writing and verifying multiparty protocols in OCaml. Local behaviours for all processes in a protocol are inferred at once from a global combinator. We formalise global combinators and prove a sound realisability of global combinators -- a well-typed global combinator derives a set of local types, by which typed endpoint programs can ensure type and communication safety. Our approach enables fully-static verification and implementation of the whole protocol, from the protocol specification to the process implementations, to happen in the same language. We compare our implementation to untyped and continuation-passing style implementations, and demonstrate its expressiveness by implementing a plethora of protocols. We show our library can interoperate with existing libraries and services, implementing DNS (Domain Name Service) protocol and the OAuth (Open Authentication) protocol
    corecore