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Abstract
Parser combinators are a well-known mechanism used for the compositional construction of parsers,
and have shown to be particularly useful in writing parsers for rich grammars with data-dependencies
and global state. Verifying applications written using them, however, has proven to be challenging in
large part because of the inherently effectful nature of the parsers being composed and the difficulty
in reasoning about the arbitrarily rich data-dependent semantic actions that can be associated
with parsing actions. In this paper, we address these challenges by defining a parser combinator
framework called Morpheus equipped with abstractions for defining composable effects tailored for
parsing and semantic actions, and a rich specification language used to define safety properties
over the constituent parsers comprising a program. Even though its abstractions yield many of the
same expressivity benefits as other parser combinator systems, Morpheus is carefully engineered to
yield a substantially more tractable automated verification pathway. We demonstrate its utility in
verifying a number of realistic, challenging parsing applications, including several cases that involve
non-trivial data-dependent relations.
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1 Introduction

Parsers are transformers that decode serialized, unstructured data into a structured form.
Although many parsing problems can be described using simple context-free grammars
(CFGs), numerous real-world data formats (e.g., pdf [34], dns [9], zip [35], etc.), as well as
many programming language grammars (e.g., Haskell, C, Idris, etc.) require their parser
implementations to maintain additional context information during parsing. A particularly
important class of context-sensitive parsers are those built from data-dependent grammars,
such as the ones used in the data formats listed above. Such data-dependent parsers allow
parsing actions that explicitly depend on earlier parsed data or semantic actions. Often, such
parsers additionally use global effectful state to maintain and manipulate context information.
To illustrate, consider the implementation of a popular class of tag-length-data parsers; these
parsers can be used to parse image formats like PNG or PPM images, networking packets
formats like TCP, etc., and use a parsed length value to govern the size of the input payload
that should be parsed subsequently. The following BNF grammar captures this relation for a
simplified PNG image.
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png ::= header . chunk∗

chunk ::= length . typespec . content

The grammar defines a header field followed by zero or more chunks, where each chunk has a
single byte length field parsed as an unsigned integer, followed by a single byte chunk type
specifier. This is followed by zero or more bytes of actual content. A useful data-dependent
safety property that any parser implementation for this grammar should satisfy is that “the
length of content plus typespec is equal to the value of length”.

Parser combinator libraries [44, 25, 12, 33] provide an elegant framework in which to
write parsers that have such data-dependent features. These libraries simplify the task of
writing parsers because they define the grammar of the input language and implement the
recognizer for it at the same time. Moreover, since combinator libraries are typically defined
in terms of a shallowly-embedded DSL in an expressive host language like Haskell [1, 19] or
OCaml [25], parser implementations can seamlessly use a myriad of features available in the
host language to express various kinds of data-dependent relations. This makes them capable
of parsing both CFGs as well as richer grammars that have non-trivial semantic actions.
Consequently, this style of parser construction has been adopted in many domains [2, 1, 33],
a fact exemplified by their support in many widely-used languages like Haskell, Scala, OCaml,
Java, etc.

Although parser combinators provide a way to easily write data-dependent parsers,
verifying the correctness (i.e., ensuring that all data dependencies are enforced) of parser
implementations written using them remains a challenging problem. This is in large part due
to the inherently effectful nature of the parsers being composed, the pervasive use of rich
higher-order abstractions available in the combinators used to build them, and the difficulty
of reasoning about complex data-dependent semantic actions triggered by these combinators
that can be associated with a parsing action.

This paper directly addresses these challenges. We do so by imposing modest constraints
on the host language capabilities available to parser combinator programs; these constraints
enable mostly automated reasoning and verification, without comprising the ability to specify
parsers with rich effectful, data-dependent safety properties. We manifest these principles in
the design of a deeply-embedded DSL for OCaml called Morpheus that we use to express
and verify parsers and the combinators that compose them. Our design provides a novel
(and, to the best of our knowledge, first) automated verification pathway for this important
application class. This paper makes the following contributions:
1. It details the design of an OCaml DSL Morpheus that allows compositional construction

of data-dependent parsers using a rich set of primitive parsing combinators along with
an expressive specification language for describing safety properties relevant to parsing
applications.

2. It presents an automated refinement type-based verification framework that validates the
correctness of Morpheus programs with respect to their specifications and which supports
fine-grained effect reasoning and inference to help reduce specification annotation burden.

3. It justifies its approach through a detailed evaluation study over a range of complex
real-world parser applications that demonstrate the feasibility and effectiveness of the
proposed methodology.

The remainder of the paper is organized as follows. The next section presents a detailed
motivating example to illustrate the challenges with verifying parser combinator applications
and presents a detailed overview of Morpheus that builds upon this example. We formalize
Morpheus’s specification language and type system in Secs. 3 and 4. Details about Morpheus’s
implementation and benchmarks demonstrate the utility of our framework is given in Sec. 5.
Related work and conclusions are given in Secs. 6 and 7, respectively.
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1 decl ::= typedef . type−expr . id=rawident
2 | extern ...
3 | ...
4 typename ::= rawident
5 type−exp ::= "int" | "bool"
6 expr ::= ... | id=rawident

1 decl ::= typedef . type−expr . id=rawident [
¬ id ∈ (!identifiers)]

2 {types.add id}
3 | ...
4 typename ::= x = rawident [x ∈ (!types)]{

return x}
5 type−exp ::= "int" | "bool"
6 expr ::= ... | id=rawident {identifiers.add id ;

return id}

Figure 1 Context-free and context-sensitive grammars for C declarations.

2 Motivation and Morpheus Overview

To motivate our ideas and give an overview of Morpheus, consider a parser for a simplified
C language declarations, expressions and typedefs grammar. The grammar must handle
context-sensitive disambiguation of typenames and identifiers 1. Traditionally, C-parsers
achieve this disambiguation via cumbersome lexer hacks2 which use feedback from the symbol
table maintained in the parsing into the lexer to distinguish variables from types. Once the
disambiguation is outsourced to the lexer-hack, the C-decl grammar can be defined using
a context-free-grammar. For instance, the left hand side, Figure 1, presents a simplified
context-free grammar production for a C declaration.

Unfortunately, ad-hoc lexer-hacks are both tedious and error prone. Further, this
convoluted integration of the lexing and parsing phases makes it challenging to validate the
correctness of the parser implementation. A cleaner way to implement such a parser is to
disambiguate typenames and identifiers when parsing by writing an actual context-sensitive
parser. One approach would be to define a shared context of two non-overlapping lists of
types and identifiers and a stateful-parser using this context. The modified context-sensitive
grammar is shown in right hand side, Figure 1.

The square brackets show context-sensitive checks e.g. [¬ id ∈ (!identifier)] checks that
the parsed rawident token id is not in the list of identifiers, while the braces show semantic
actions associated with parser reductions, e.g. {typed.add id}, adds the token id to types, a
list of identifiers seen thus far in the parse.

Given this grammar, we can use parser combinator libraries [25, 30] in our favorite
language to implement a parser for C language declarations. Unfortunately, although
cleaner than the using unwieldy lexer hacks, it is still not obvious how we might verify that
implementations actually satisfy the desired disambiguation property, i.e. typenames and
identifiers do not overlap. In the next section we provide an overview of Morpheus that
informally presents our solution to this problem.

2.1 Morpheus Surface Language
An important design decision we make is to provide a surface syntax and API very similar to
conventional monadic parser combinator libraries like Parsec [25] in Haskell or mParser [30] in
OCaml; the core API that Morpheus provides has the signature shown in Figure 3. The library

1 https://web.archive.org/web/20070622120718/
http://www.cs.utah.edu/research/projects/mso/goofie/grammar5.txt

2 https://www.lysator.liu.se/c/ANSI-C-grammar-l.html
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1 let ids = ref []
2 let types = ref []
3 type decl =
4 Typedecl of {typeexp;string}
5 | . . .

6 type expression =
7 Address of expression
8 | Cast of string ∗ expression
9 | . . .

10 | Identifier of string
11

expression :
PEstexc

{∀ h,
ldisjoint (sel (h, ids),sel (h, types)) = true)}

ν : expression result
{∀ h, ν, h’.ν = Inl (v1) =>

ldisjoint (sel (h’, ids),sel (h’, types)) = true)
∧ ν = Inr (Err) => included(inp,h,h’) = true }

12 let expression =
13 dom char ’(’
14 tn ← typename
15 char ’)’
16 e ← expression
17 return Cast (tn, e))
18 <|> . . .

19 <|>
20 dom

21 id ← identifier
22 let b = List.mem id !types
23 if (!b) then
24 ids := id :: (!ids)
25 return (Identifier id)
26 else
27 fail

28

typedecl :
PEstexc

{∀ h,
ldisjoint (sel (h, ids),sel (h, types)) = true) }

ν : tdecl result
{∀ h, ν, h’.ν = Inl (v1) =>
ldisjoint (sel (h’, ids),sel (h’, types)) = true)

∧ ν = Inr (Err) => included(inp,h,h’) = true }

29let typedecl =
30dom

31td ← keyword "typedef"
32te ← string "bool" <|> string "int"
33id ← indentifier
34(* incorrect-check: if (not(List.mem id

!types)) then*)
35if (not (List.mem id !ids)) then
36types := id :: (!types)
37return Tdecl {typeexp; id}
38else
39fail
40

typename :
PEstexc

{∀ h.
ldisjoint (sel (h, ids),sel (h, types)) = true}

ν : string result
{∀ h, ν, h’.ν = Inl (v) =>
mem (sel (h’, types), v) = true
∧ ν = Inr (Err) => included(inp,h,h’) = true}

41let typename =
42dom

43x ← identifier
44if (List.mem x !types) then
45return x
46else
47fail

Figure 2 A simplified C-declaration parser written in Morpheus. Specifications in blue are
provided by the programmer; specifications in gray are inferred by Morpheus. Line number 28
represents the complete multiline type specification.

defines a number of primitive combinators: eps defines a parser for the empty language,
bot always fails, and char c defines a parser for character c. Beyond these, the library
also provides a bind (>>=) combinator for monadically composing parsers, a choice (<|>)
combinator to non-deterministically choose among two parsers, and a fix combinator to
implement recursive parsers. The return x is a parser which always succeeds with a value
x. As we demonstrate, these combinators are sufficient to derive a number of other useful
parsing actions such as many, count, etc. found in these popular combinator libraries. From
the parser writer’s perspective, Morpheus programs can be expressed using these combinators
along with a basic collection of other non-parser expression forms similar to those found in
an ML core language, e.g., first-class functions, let expressions, references, etc.
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type ’a t
val eps : unit t
val bot : ’a t
val char : char → char t
val (>>=) : ’a t → (a → ’b t) → ’b t
val <|> : ’a t → ’a t → ’a t
val fix : (’b t → ’b t) → ’b t
val return : ’a → ’a t

Figure 3 Signatures of primitive parser combinators supported by Morpheus.

For instance a parser for option p, which either parses an empty string or anything that p
parses can be written:

let option p = (eps >>= λ_. return None) <|> (p >>= λ x. return Some x)

We can also define more intricate parsers like Kleene-star and Kleene-plus:

let star p = fix (λ p_star. eps <|> p >>= λ x. p_star >>= λ xs . return (x :: xs) )
let plus p = fix (λ p_star. p <|> p >>= λ x. p_star >>= λ xs . return (x :: xs) )

Figure 2 shows a Morpheus implementation that parses a valid C language decl.3 The
parser uses two mutable lists to keep track of types and identifiers. The structure is similar
to the original data-dependent grammar, even though the program uses ML-style operators
for assignment and dereferencing. For ease of presentation, we have written the program
using do-notation as syntactic sugar for Morpheus’s monadic bind combinator.

The typedecl parser follows the grammar and parses the keyword typedef using the keyword
parser (not shown).4 It uses a choice combinator (<|>) (line 32), which has a semantics
of a non-deterministic choice between two sub-parsers. The interesting case occurs while
parsing an identifier (lines 33 - 39), in order to enforce disambiguation between typenames
and identifiers, the parser needs to maintain an invariant that the two lists, types for parsed
typenames and ids for parsed identifiers are always disjoint or non-overlapping.

In order to maintain the non-overlapping list invariant, a parsed identifier token (line 33)
can be a valid typename only if it is not parsed earlier as an identifier expression. i.e. it is
not in the ids list. The parser performs this check at (line 35). If this check succeeds, the list
of typenames (types) is updated and a decl is returned, else the parsing fails.

The disambiguation decision is required during the parsing of an expression. The expression
parser defines multiple choices. The parser for the casting expression parses a typename
followed by a recursive call to expression. The typename parser in turn (line 41) parses an
identifier token and checks that the identifier is indeed a typename (line 44) and returns it,
or fails.

The ids list is updated during parsing an identifier expression (line 20), here again to
maintain disambiguation, before adding a string to the ids list, its non-membership in the
current types list is checked (line 22).

Although the above parser program is easy to comprehend given how closely it hews to
the grammar definition, it is still nonetheless non-trivial to verify that the parser actually
satisfies the required disambiguation safety property. For example, an implementation in

3 For now, ignore the specifications given in gray and blue.
4 Morpheus, like other parser combinator libraries provides a library of parsers for parsing keywords,

identifiers, natural numbers, strings, etc.

ECOOP 2023
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which line 34 is replaced with the commented expression above it would incorrectly check
membership on the wrong list. We describe how Morpheus facilitates verification of this
program in the following section.

2.2 Specifying Data-dependent Parser Properties
Intuitively, verifying the above-given parser for the absence of overlap between the typenames
and identifiers requires establishing the following partial correctness property: if the types and
identifiers lists do not overlap when the typedecl parser is invoked, and the parser terminates
without an error, then they must not overlap in the output state generated by the parser.
Additionally, it is required that the parser consumes some prefix of the input list. Morpheus
provides an expressive specification language to specify properties such as these.

Morpheus allows standard ML-style inductive type definitions that can be refined with
qualifiers similar to other refinement type systems [38, 43, 18]. For instance, we can refine
the type of a list of strings to only denote non-empty lists as: type nonempty = { ν : [string]
| len (ν) > 0 }. Here, ν is a special bound variable representing a list and (len ν > 0) is a
refinement where len is a qualifier, a predicate available to the type system that captures the
length property of a list.

2.2.1 Specifying effectful safety properties
Standard refinement type systems, however, are ill-suited to specify safety properties for
effectful computation of the kind expressible by parser combinators. Our specification
language, therefore, also provides a type for effectful computations. We use a specification
monad (called a Parsing Expression) of the form PEε { ϕ } ν : τ { ϕ′ } that is parameterized
by the effect of the computation ε (e.g., state, exc, nondet, and their combinations like stexc
for (both state and exc), stnon (for both state and nondet), etc.); and Hoare-style pre- and
post-conditions [31, 41, 40]. Here, ϕ and ϕ′ are first-order logical propositions over qualifiers
applied to program variables and variables in the type context. The precondition ϕ is defined
over an abstract input heap h while the postcondition ϕ′ is defined over input heap h, output
heap h’, and the special result variable ν that denotes the result of the computation. Using
this monad, we can specify a safety property for the typedecl subparser as shown at line 28
in Figure 2. The type should be understood as follows: The effect label stexc defines that
the parser may have both state effect as it reads and updates the context; and exc effect
as the parser may fail. The precondition defines a property over a list of identifiers ids
and a list of typenames types in the input heap h via the use of the built-in qualifier sel
that defines a select operation on the heap [27]; here, ν is bound to the result of the parse.
Morpheus also allows user-defined qualifiers, like the qualifier ldisjoint. It establishes the
disjointness/non-overlapping property between two lists. This qualifier is defined using the
following definition:

qualifier ldisjoint [] l2 → true
| l1 [] → true
| (x :: xs) l2 → member (x, l2) = false ∧ ldisjoint (xs, l2)
| l1 (y :: ys) → member (y, l1) = false ∧ ldisjoint (l1, ys)

This definition also uses another qualifier for list membership called member. Morpheus
automatically translates these user-defined qualifiers to axioms, logical sentences whose
validity is assumed by the underlying theorem prover during verification. For instance, given
the above qualifier, Morpheus generates axioms like:
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Axiom1: ∀ l1, l2 : α list. (empty(l1) ∨ empty (l2)) => ldisjoint (l1, l2) = true
Axiom2: ∀ xs, l2: α list, x : α. ldisjoint (xs, l2) = true ∧ member (x, l2) = false => ldisjoint ((x::

xs), l2) = true
Axiom3: ∀ l1, l2: α ldisjoint (l1, l2) <=> ldisjoint (l2, l1)

The specification (at line 28) also uses another qualifier, included(inp,h,h’), which captures
the monotonic consumption property of the input list inp. The qualifier is true when the
remainder inp after parsing in h’ is a suffix of the original inp list in h.

The types for other parsers in the figure can be specified as shown at lines 11, 40, etc.;
these types shown in gray are automatically inferred by Morpheus’s type inference algorithm.
For example, the type for the typename parser (line 40) returns an optional string (result
is a special option type) and records that when parsing is successful, the returned string is
added to the types list, and when unsuccessful, the input is still monotonically consumed.

2.2.2 Verification using Morpheus
Note that the pre-condition in the specification (ldisjoint (Id, Ty) = true)) and the type ascribed
to the membership checks in the implementation (line 35) are sufficient to conclude that the
addition of a typename to the types list (line 36) maintains the ldisjoint invariant as required
by the postcondition.

In contrast, an erroneous implementation that omits the membership check or replaces
the check at line 34 with the commented line above it will cause type-checking to fail.
The program will be flagged ill-typed by Morpheus. For this example, Morpheus generated
21 verification conditions (VCs) for the control-path representing a successful parse and
generated 5 VCs for the failing branch. We were able to discharge these VCs to the SMT
solver Z3 [7], which took 6.78 seconds to verify the former and 1.90 seconds to verify the
latter.

3 Morpheus Syntax and Semantics

3.1 Morpheus Syntax
Figure 4 defines the syntax of λsp, a core calculus for Morpheus programs. The language is a
call-by-value polymorphic lambda-calculus with effects, extended with primitive expressions
for common parser combinators and a refinement type-based specification language. A λsp

value is either a constant drawn from a set of base types (int, bool, etc.), as well as a special
Err value of type exception, an abstraction, or a constructor application. Variables bound to
updateable locations (ℓ) are distinguished from variables introduced via function binding
(x). A λsp expression e is either a value, an application of a function or type abstraction,
operations to dereference and assign to top-level locations (see below), polymorphic let
expressions, reference binding expressions, a match expression to pattern-match over type
constructors, a return expression that lifts a value to an effect, and various parser primitive
expressions that define parsers for the empty language (eps), a character (char) parser, and
⊥, a parser that always fails. Additionally, the language provides combinators to monadically
compose parsers (>>=), to implement parsers defined in terms of a non-deterministic choice
of its constituents (< | >), and to express parsers that have recursive (µ (x : τ).p) structure.

We restrict how effects manifest by requiring reference creation to occur only within
let expressions and not in any other expression context. Moreover, the variables bound
to locations so created (ℓ) can only be dereferenced or assigned to and cannot be supplied

ECOOP 2023
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Expression Language

c, unit, Err ∈ Constants
x ∈ Vars
inp, ℓ ∈ RefVars
v ∈ Value ::= c | λ (x : τ). e | Λ (α). e | Di tk vj

e ∈ Exp ::= v | x | p | e x | e [t] | deref ℓ | ℓ := e
| let x = v in e | let ℓ = ref e in e
| match v with Di α xj → e | return e

p ∈ Parsers ::= | eps | ⊥ | char e | (µ (x : τ). p)
| p >>= e | p <|> p

Specification Language

α ∈ TypeVariables
TN ∈ User Defined Types ::= α list, α tree, . . .

t ∈ Base Types ::= α | int | bool | unit | heap | TN | t
result | t ref | exc

τ ∈ Type ::= {ν : t | ϕ} | (x : τ)→ τ | PEε{ϕ1}ν : t {ϕ2}
ε ∈ Effect Labels ::= pure | state | exc | nondet | . . .

σ ∈ Type Scheme := τ | ∀α. τ

Q ∈ Qualifiers := QualifierName(xi)
ϕ, P ∈ Propositions ::= true | false | Q | Q1 = Q2

| ¬ ϕ | ϕ ∧ ϕ | ϕ ∨ ϕ | ϕ⇒ ϕ | ∀(x : t).ϕ
Γ ∈ Type Context ::= ∅ | Γ, x : σ | Γ, ℓ : τ ref | Γ, ϕ

Σ ∈ Constructors ::= ∅ | Σ, Di αk xj : τj → τ

Figure 4 λsp Expressions and Types.

as arguments to abstractions or returned as results since they are not treated as ordinary
expressions. This stratification, while arguably restrictive in a general application context, is
consistent with how parser applications, such as our introductory example are typically written
and, as we demonstrate below, do not hinder our ability to write real-world data-dependent
parser implementations. Enforcing these restrictions, however, provides a straightforward
mechanism to prevent aliasing of effectful components during evaluation, significantly easing
the development of an automated verification pathway in the presence of parser combinator-
induced computational effects.

3.2 Semantics
Figure 5 presents a big-step operational semantics for λsp parser expressions; the semantics
of other terms in the language is standard. The semantics is defined via an evaluation relation
(⇓) that is of the form (H; e) ⇓ (H′; v). The relation defines how a Morpheus expression e
evaluates with respect to a heap H, a store of locations to base-type values, to yield a value
v, which can be a normal value or an exceptional one, the latter represented by the exception
constant Err, and a new heap H′.
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(H; e) ⇓ (H′; v)

P-eps
(H; eps) ⇓ (H; ())

P-⊥
(H;⊥) ⇓ (H; Err) P-fix

(H; [µx : σ.p/x]p)) ⇓ (H′; v)
(H; µx : σ.p) ⇓ (H′; v)

P-char-true

(H; e) ⇓ (H; ‘c’) H(inp) = (‘c’ :: s)
H′ = H[inp 7→ s]

(H; char e) ⇓ (H′; ‘c’)

P-char-false

(H; e) ⇓ (H; ‘c’) H(inp) ̸= (‘c’ :: s)
H′ = H[inp 7→ inp]

(H; char e) ⇓ (H′; Err))

P-bind-success

(H; p) ⇓ (H′; v1) (H′; e) ⇓ (H′; (λ x : τ. e′))
(H′; [ v1/x]e′) ⇓ (H′′; v2)

(H; p»=e) ⇓ (H′′; v2)

P-bind-err
(H; p) ⇓ (H′; Err)

(H; p»=e) ⇓ (H′; Err))

P-choice-l
(H; p1) ⇓ (H′; v1)

(H; (p1 <|> p2)) ⇓ (H′; v1))
P-choice-r

(H; p2) ⇓ (H′′; v2)
(H; (p1 <|> p2)) ⇓ (H′′; v2))

Figure 5 Evaluation rules for λsp parser expressions.

The empty string parser (rule P-eps) always succeeds, returning a value of type unit,
without changing the heap. A “bottom” (⊥) parser on the other hand always fails, producing
an exception value, also without changing the heap. If the argument e to a character parser
char yields value (a char ‘c’), and ‘c’ is the head of the input string (denoted by inp) being
parsed, the parse succeeds (rule P-char-true), consuming the input and returning ‘c’,
otherwise, the parse fails, with the input not consumed and the distinguished Err value being
returned (rule P-char-false). The fixpoint parser µ x.p (P-fix) allows the construction
of recursive parser expressions. The monadic bind parser primitive (rule P-bind-success)
binds the result of evaluating its parser expression to the argument of the abstraction
denoted by its second argument, returning the result of the evaluating the abstraction’s body
(P-bind-success); the P-bind-err rule deals with the case when the first expression fails.
Evaluation of “choice” expressions, defined by rules P-choice-l and P-choice-r, introduce
an unbiased choice semantics over two parsers allowing non-deterministic choices in parsers.

4 Typing λsp Expressions

4.1 Specification Language
The syntax of Morpheus’s type system is shown in the bottom of Figure 4 and permits the
expression of base types such as integers, booleans, strings, etc., as well as a special heap type
to denote the type of abstract heap variables like h, h′ found in the specifications described
below. There are additionally user-defined datatypes TN (list, tree, etc.), a special sum type
(t result) to define two options of a successful and exceptional result respectively, and a
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special exception type. More interestingly, base types can be refined with propositions to
yield monomorphic refinement types. Such types [41, 38, 43] are either base refinement types,
refining a base typed term with a refinement; dependent function types, in which arguments
and return values of functions can be associated with types that are refined by propositions;
or a computation type specifying a type for an effectful computation.

Effectful computations are refined using an effect specification monad:

PEε {∀ h.ϕ1} ν : t {∀ h, ν, h′.ϕ2}

that encapsulates a base type t, parameterized by an effect label ε, with Hoare-style pre-
({∀ h.ϕ1}) and post- ({∀ h, ν, h′.ϕ2}) conditions. This type captures the behavior of a com-
putation that (a) when executed in a pre-state with input heap h satisfies proposition ϕ1;
(b) upon termination, returns a value denoted by ν of base type t along with output heap
h′; (c) satisfies a post-condition ϕ2 that relates h, ν, and h′; and (d) whose effect is over-
approximated by effect label ε [20, 45]. An effect label ε is either (i) a pure effect that records
an effect-free computation; (i) a state effect that signifies a stateful computation over the
program heap; (ii) an exception effect exc that denotes a computation that might trigger an
exception; (iii) a nondet effect that records a computation that may have non-deterministic
behavior; or (iv) a join over these effects that reflect composite effectful actions. The need
for the last is due to the fact that effectful computations are often defined in terms of a
composition of effects, e.g. a parser oftentimes will define a computation that has a state
effect along with a possible exception effect. To capture these composite effects, base effects
can be joined to build a finite lattice that reflects the behavior of computations which perform
multiple effectful actions, as we describe below.

Propositions (ϕ) are first-order predicate logic formulae over base-typed variables. Pro-
positions also include a set of qualifiers which are applications of user-defined uninterpreted
function symbols such as mem, size etc. used to encode properties of program objects, sel
used to model accesses to the heap, and dom used to model membership of a location in the
heap, etc. Proposition validity is checked by embedding them into a decidable logic that
supports equality of uninterpreted functions and linear arithmetic (EUFLIA).

A type scheme (σ) is either a monotype (τ) or a universally quantified polymorphic type
over type variables expressed in prenex-normal form (∀ α.σ). A Morpheus specification is
given as a type scheme.

There are two environments maintained by the Morpheus type-checker: (1) an environment
Γ records the type of variables, which can include variables introduced by function abstraction
as well as bindings to references introduced by let expressions, along with a set of propositions
relevant to a specific context, and (2) an environment Σ maps datatype constructors to their
signatures. Our typing judgments are defined with respect to a typing environment

Γ ::= . | Γ, x : σ | Γ, ℓ: τ ref

that is either empty, or contains a list of bindings of variables to either type schemes or
references. The rules have two judgment forms: (Γ ⊢ e : σ) gives a type for a Morpheus
expression e in Γ; and (Γ ⊢ σ1 <: σ2) defines a dependent subtyping rule under Γ.

Since our type expressions contain refinements, we generalize the usual notion of type
substitution to reflect substitution within refined types:

[xa/x]{ν : t|ϕ} = {ν : t|[xa/x]ϕ}
[xa/x](y : τ)→ τ ′ = (y : [xa/x]τ)→ [xa/x]τ ′, y ̸= x

[xa/x]PEε{ϕ1}{ν : t}{ϕ2} = PEε{[xa/x]ϕ1}{ν : t}{[xa/x]ϕ2}
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4.2 Typing Base Expressions

Figure 6 presents type rules for non-parser expressions. The type rules for non-reference
variables, functions, and type abstractions (T-typ-fun) are standard. The syntax for function
application restricts its argument to be a variable, allowing us to record the argument’s
(intermediate) effects in the typing environment when typing the application as a whole.

Base Expression Typing Γ ⊢ e : σ

T-var
Γ(x) = σ

Γ ⊢ x : σ
T-fun

Γ, x : τ1 ⊢ e : τ2

Γ ⊢ λ(x : τ1).e : τ1 → τ2
T-typApp Γ ⊢ Λα.e : ∀α.σ

Γ ⊢ Λα.e[t] : [t/α]σ

T-App
Γ ⊢ ef : (x : {ν : t | ϕx})→ PEε{ϕ} ν : t {ϕ′} Γ ⊢ xa : {ν : t | ϕx}

Γ ⊢ ef xa : [xa/x]PEε{ϕ} ν : t {ϕ′}

T-typFun
Γ ⊢ e : σ α /∈ F V (Γ)

Γ ⊢ Λα.e : ∀α.σ
T-let

Γ ⊢ v : ∀α.σ Γ, x : ∀α.σ ⊢ e2 : σ′

Γ ⊢ let x = v in e2 : σ′

T-return
Γ ⊢ e : {ν : t | ϕ}

Γ ⊢ return e : PEpure{∀h.true} ν : t {∀h, ν, h′.h′ = h ∧ ϕ}

T-capp
Σ(Di) = ∀αk.xj : τj → τ ∀i, j.Γ ⊢ vj : [tk/αk][vj/xj]τj

Γ ⊢ Di tkvj : [t/α][vj/xj]τ

T-match

Σ(Di) = ∀αk.xj : τj → τ0
Γ ⊢ v : τ0 Γi = Γ, αk, xj : τj

Γi ⊢ (Di αkxj) : τ0 Γi ⊢ ei : PEε{ϕi} ν : t {ϕi′}
Γ ⊢match v with Di αkxj → ei :

PEε{∀ h.
∧

i
(v = Di αkxj)⇒ ϕi} ν : t {∀ h, ν′, h′.

∨
i
ϕi′}

T-deref
Γ ⊢ ℓ : PEstate{ϕ1} ν : t ref {ϕ2}

Γ ⊢ deref ℓ : PEstate{∀ h.dom(h, ℓ)} ν′ : t {∀ h, ν′, h′.sel(h, ℓ) = ν′ ∧ h = h′}

T-assign
Γ ⊢ e : {ν : t | ϕ}

Γ ⊢ ℓ := e : PEstate{∀h.dom(h, ℓ)} ν′ : t {∀ h, ν′, h′.sel(h′, ℓ) = ν′ ∧ ϕ(ν′)}

T-ref

Γ ⊢ v : { ν : t | ϕ }
Γ, ℓ : PEstate{∀ h.¬ dom(h, ℓ)} ν′ : t ref {∀ h, ν′, h′.sel(h′, ℓ) =

v ∧ ϕ(v) ∧ dom(h′, ℓ)} ⊢ eb : PEε{dom(h, ℓ)} ν′′ : t {ϕ′
b}

Γ , hi : heap ⊢ let ℓ = ref v in eb :
PEε⊔state{∀ h.¬ dom(h, ℓ)} ν′′ : t {∀ h, ν′′, h.dom(hi, ℓ) ∧ sel(hi, ℓ) = v ∧ ϕ(v) ∧ ϕ′

b}

Figure 6 Typing Semantics for Morpheus Base Expressions.

The type rule for the return expression (T-return) lifts its non-effectful expression
argument e to have a computation effect with label pure, thereby allowing e’s value to be
used in contexts where computational effects are required; a particularly important example
of such contexts are bind expressions used to compose the effects of constituent parsers.
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In the constructor application rule (T-capp), the expression’s type reflects the instanti-
ation of the type and term variables in the constructor’s type with actual types and terms.
A match expression is typed (rule T-match) by typing each of the alternatives in a corres-
ponding extended environment and returning a unified type. The pre-condition of the unified
type is a conjunction of the pre-conditions for each alternative, while the post-condition
over-approximates the behavior for each alternative by creating a disjunction of each of the
possible alternative’s post-conditions. Location manipulating expressions (T-deref and
T-assign) use qualifiers sel and dom to define constraints that reflect state changes on the
underlying heap. The argument ℓ of a dereferencing expression (rule T-deref) is associated
with a computation type over a tref base type. Its pre-condition requires ℓ to be in the
domain of the input heap, and its post-condition establishes that ℓ’s contents is the value
returned by the expression and that the heap state does not change. The assignment rule
(T-assign) assigns the contents of a top-level reference ℓ to the non-effectful value yielded
by evaluating expression e. The pre-condition of its computation effect type requires that
ℓ is in the domain of the input heap and that ℓ’s contents in the output heap satisfies the
refinement (ϕ) associated with its r-value. Finally, rule T-ref types a let expression that
introduces a reference initialized to a value v. The body is typed in an environment in which
ℓ is given a computational effect type. The pre-condition of this type requires that the input
heap, i.e., the heap extant at the point when the binding of ℓ to ref v occurs, not include ℓ

in its domain; its postcondition constrains ℓ’s contents to be some value ν′ that satisfies the
refinement ϕ associated with v, its initialization expression. The body of the let expression
is then typed in this augmented type environment.

4.3 Typing Parser Expressions
Figure 7 presents the type rules for Morpheus parser expressions. The (T-sub) rule defines
the standard type subsumption rule. The empty string parser typing rule (T-p-eps) assigns a
type with pure effect and unit return type, while the postcondition establishes the equivalence
of the input and the output heaps. The T-p-bot rule captures the always failing semantics
of ⊥ with an exception effect exc and corresponding return types and return values while
maintaining the stability of the input heap. The type rules governing a character parser
(T-p-char) is more interesting because it captures the semantics of the success and the failure
conditions of the parser. We use a sum type (α result) to define two options representing a
successful and exceptional result, resp. (with the Err exception value in the latter case), using
standard injection functions to differentiate among these alternatives. In the successful case,
the returned value is equal to the consumed character, captured by an equality constraint
over characters. In the successful case, the structure of the output heap with respect to the
parse string inp must be the same as the input heap except for the absence of the ’c’, the
now consumed head-of-string character. In the failing case, the input remains unconsumed.
Note that we also join the effect labels (state ⊔ exc), highlighting the state and exception
effect. These effect labels form a standard join semi-lattice with an ordering relation (≤) 5.

Rule T-p-choice defines the static semantics for a non-deterministic choice parser. It
introduces a non-determinism effect to the parser’s composite type. The effect’s precondition
requires that either of the choices can occur; we achieve this by restricting it to the conjunction
of the two preconditions for the sub-parsers. The disjunctive post-condition requires that
both the choices must imply the desired goal postcondition for a composite parser to be
well-typed. The effect for the choice expression takes a join over the effects of the choices
and the non-deterministic effect.

5 Details of the effect-labels and their join semi-lattice is provided in the accompanied technical report [28]
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Parser Expression Typing Γ ⊢ e : σ

T-sub Γ ⊢ e : σ1 Γ ⊢ σ1 <: σ2

Γ ⊢ e : σ2

T-p-eps
Γ ⊢ eps : PEpure {∀h. true} ν : unit {∀h, ν, h′.h′ = h}

T-p-bot
Γ ⊢ ⊥ : PEexc {∀h. true} ν : exc {∀h, ν, h′.h′ = h ∧ ν = Err}

T-p-char

Γ ⊢ e : {ν′ : char | ν′ = ‘c′}
ϕ2 = ∀h, ν, h′.∀x, y.

(Inl(x) = ν =⇒ x = ‘c′ ∧ upd(h′, h, inp, tail(inp)))∧
(Inr(y) = ν =⇒ y = Err ∧ sel(h, inp) = sel(h′, inp))

Γ ⊢ char e : PEstate ⊔ exc{∀h.true} ν : char result {ϕ2}

T-p-choice
Γ ⊢ p1 : PEε {ϕ1} ν1 : τ {ϕ′

1} Γ ⊢ p2 : PEε {ϕ2} ν2 : τ {ϕ′
2}

Γ ⊢ (p1<|>p2) : PEε ⊔ nondet {(ϕ1 ∧ ϕ2)} ν : τ {(ϕ′
1 ∨ ϕ′

2)}

T-p-fix
Γ, x : (PEε {ϕ} ν : t {ϕ′}) ⊢ p : PEε {ϕ} ν : t {ϕ′} x /∈ F V (ϕ, ϕ′)

Γ ⊢ µ x : (PEε {ϕ} ν : t {ϕ′}). p : PEε {ϕ} ν : t {ϕ′}

T-p-bind

Γ ⊢ p : PEε {ϕ1} ν : t{ϕ1′} Γ ⊢ e : (x : τ)→ PEε {ϕ2} ν′ : t′ {ϕ2′}
Γ′ = Γ, x : τ, hi : heap hi fresh

Γ′ ⊢ p »= e :
PEε {∀h. ϕ1 h ∧ ϕ1′ (h, x, hi)⇒ ϕ2 hi}

ν′ : t′ result
{∀h, ν′, h′, y. (x ̸= Err⇒ ν′ = Inl y ∧ ϕ1′ (h, x, hi) ∧ ϕ2′ (hi, y, h′))∧

(x = Err⇒ ν′ = Inr Err ∧ ϕ1′ (h, x, hi))}

Subtyping Γ ⊢ σ1 <: σ2

T-Sub-Base

Γ ⊢ {ν : t | ϕ1} Γ ⊢ {ν : t | ϕ2}
Γ ⊨ ϕ1 ⇒ ϕ2

Γ ⊢ {ν : t | ϕ1} <: {ν : t | ϕ2}
T-Sub-Schema Γ ⊢ σ1 <: σ2

Γ ⊢ ∀α.σ1 <: ∀α.σ2

T-Sub-Arrow Γ ⊢ τ21 <: τ11 Γ ⊢ τ12 <: τ22

Γ ⊢ (x : τ11)→ τ12 <: (x : τ21)→ τ22

T-Sub-TVar
Γ ⊢ α <: α

T-Sub-Comp
Γ ⊨ ϕ2 ⇒ ϕ1 Γ ⊢ τ1 <: τ2 Γ ⊢ ε1 ≤ ε2 Γ, ϕ2 ⊨ (ϕ1′ ⇒ ϕ2′ )

Γ ⊢ PEε1 {ϕ1} τ1 {ϕ1′} <: PEε2 {ϕ2} τ2 {ϕ2′}

Figure 7 Typing semantics for primitive parser expressions and subtyping rules.

Rule (T-P-Fix) defines the semantics for the terminating recursive fix-point combinator.
Given an annotated type τ for the parameter x, if the type of the body p in an extended
environment which has x mapping to τ , is τ , then τ is also a valid type for a recursive
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fixpoint parser expression. The T-p-bind rule defines a typing judgement for the exceptional
monadic composition of a parser expression p with an abstraction e. The composite parser is
typed in an extended environment (Γ’) containing a binding for the abstraction’s parameter
x and an intermediate heap hi that acts as the output/post-state heap for the first parser
and the input/pre-state for the second. The relation between these heaps is captured by the
inferred pre-and post-conditions for the composite parser. There are two possible scenarios
depending upon whether the first parser p results in a success (i.e. x ̸= Err) or a failure (x =
Err).

In the successful case, the inferred conditions capture the following properties: a) the
output of the combined parser is a success; b) the post-condition for the first expression over
the intermediate heap hi and the output variable x should imply the precondition of the
second expression (required for the evaluation of the second expression); and, c) the overall
post-condition relates the post-condition of the first with the precondition of the second using
the intermediate heap hi. The case when p fails causes the combined parser to fail as well,
with the post-condition after the failure of the first as the overall post-condition. Note that
the core calculus is sub-optimal in size since λsp supports both return and eps, even though
the latter could be modeled using return. However, this design choice enables decidable
typechecking by limiting the combination of higher-order functions, combinators and states.
This is achieved using a limited bind p >>= e, rather than the general e >>= e, allowing
for the definition of semantic actions e that only perform limited state manipulation, i.e.,
reading and updating locations. Thus >>= and < | > only take parser arguments; thus, eps
<|> p is not equivalent to (return () <|> p), in fact the latter is disallowed. Another such
design restriction shows up in the typing rules, e.g., the typing rule for function application
(T-APP) restricts the arguments to be of basetype, thus disallowing expressions returning
abstractions or computations, like return (λx. e) or return (x := e) A more general definition
for >>= will allow valid HO arguments, like λx. e »= e1, but translating such general HO
stateful programs to decidable logic fragments is not always feasible, as is discussed in other
fully dependent type systems [41].

The subtyping rules enable the propagation of refinement type information and relate
the subtyping judgments to logical entailment. The subtyping rule for a base refinement
(T-Sub-Base) relates subtyping to the logical implication between the refinement of the
subtype and the supertype. The (T-Sub-Arrow) rule defines subtyping between two
function refinement types. The (T-Sub-Comp) rule for subtyping between computation
types follows the standard Floyd-Hoare rule for consequence, coupled with the subtyping
relation between result types and an ordering relation between effects(≤). The subtyping
rule for type variables (T-Sub-TVar) relates each type variable to itself in a reflexive way,
while the subtyping for a type-schema lifts the subtyping relation from a schema to another
schema.

4.4 Properties of the Type System
▶ Definition 1 (Environment Entailment Γ |= ϕ). Given Γ = . . . , ϕi, the entailment of a
formula ϕ under Γ is defined as (

∧
i ϕi) =⇒ ϕ

In the following, Γ |= ϕ(H) extends the notion of semantic entailment of a formula over
an abstract heap Γ |= ϕ (h) to a concrete heap using an interpretation of concrete heap H to
an abstract heap h and the standard notion of well-typed stores (Γ ⊢ H).6

To prove soundness of Morpheus typing, we first state a soundness lemma for pure
expressions (i.e. expressions with non-computation type).

6 Details are provided in the accompanied technical report [28].
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▶ Lemma 2 (Soundness Pure-terms). If Γ ⊢ e : {ν : t | ϕ } then:
Either e is a value with Γ |= ϕ ( e)
OR Given there exists a v, such that (H; e) ⇓ (H; v) then Γ ⊢ v : t and Γ |= ϕ (v)

▶ Theorem 3 (Soundness Morpheus). Given a specification σ = ∀α. PEε {ϕ1} ν : t {ϕ2}
and a Morpheus expression e, such that under some Γ, Γ ⊢ e: σ, then if there exists H such
that Γ |= ϕ1(H) then:
1. Either e is a value, and: Γ, ϕ1 |= ϕ2 (H, e, H)
2. Or, if there exists an H′ and v such that (H; e) ⇓ (H′; v), then
∃ Γ′, Γ ⊆ Γ′ and (consistent Γ Γ′), such that:
a. Γ′ ⊢ v : t.
b. Γ′, ϕ1 (H) |=ϕ2 (H, v, H′)

where (consistent Γ Γ′) is a Boolean-valued function that ensures that ∀ x ∈ (dom (Γ) ∩
dom (Γ′)). Γ ⊢ x : σ =⇒ Γ′ ⊢ x : σ. Additionally, ∀ϕ. Γ |= ϕ =⇒ Γ′ |= ϕ.

Proof. The soundness proof is by induction on typing rules in Figures 6 and 7, proving the
soundness statement against the evaluation rules in Figures 5.7 ◀

5 Evaluation

5.1 Implementation
Morpheus is implemented as a deeply-embedded DSL in OCaml8 equipped with a refinement-
type based verification system. It encodes the typing rules given in Section 4 and a parser
translating an OCaml-based surface language of the kind presented in our motivating example
to the Morpheus core, described in Section 3. To allow Morpheus programs to be easily
used in an OCaml development, its specifications can be safely erased once the program has
been type-checked. Note that a Morpheus program, verified against a safety specification is
guaranteed to be safe when erased since verification takes place against a stricter memory
abstraction; in particular, since Morpheus programs are free of aliasing by construction and
thus remain so when evaluated as an ML program. This obviates the need for a separate
interpreter/compilation phase and gives Morpheus-verified parsers efficiency comparable to
the parsers written using OCaml parser-combinator libraries [30, 3].

Morpheus specifications typically require meaningful qualifiers over inductive data-types,
beyond those discussed in our core language; in addition to the qualifiers discussed previously,
typical examples include qualifiers to capture properties such as the length of a list, member-
ship in a list, etc. Morpheus provides a way for users to write simple inductive propositions
over inductive data types, translating them to axioms useful for the solver, in a manner
similar to the use of measures and predicates in other refinement type works [38, 42]. For
example, a qualifier for capturing the length property of a list can be written as:

qualifier len [] → 0 | len (x :: xs) → len (xs) + 1.

Morpheus generates the following axiom from this qualifier:

∀ xs : α list, x : α. len (x :: xs) = len (xs) + 1 ∧ len [] = 0

7 The decidability theorem and proofs for all the theorems are provided in the technical report [28].
8 https://github.com/aegis-iisc/morpheus.git
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Morpheus is implemented in approximately 9K lines of OCaml code. The input to the
verifier is a Morpheus program definition, correctness specifications, and any required qualifier
definitions. Given this, Morpheus infers types for other expressions and component parsers,
generates first-order verification conditions using the typing semantics discussed earlier, and
checks the validity of these conditions.

5.2 Results and Discussions
We have implemented and verified the examples given in the paper, along with a set of
benchmarks capturing interesting, real-world safety properties relevant to data-dependent
parsing tasks. The goal of our evaluation is to consider the effectiveness of Morpheus with
respect to generality, expressiveness and practicality. Table 1 shows a summary of the
benchmark programs considered. Each benchmark is a Morpheus parser program affixed
with a meaningful safety property (last column). The first column gives the name of the
benchmark. The second column of the table describes benchmark size in terms of the number
of lines of Morpheus code, without the specifications. The third column gives a pair D/P,
showing the number of unique derived (D) combinators (like count, many, etc.) used in the
benchmark from the Morpheus library, and the number of primitive (P) parsers (like string,
number, etc.) from the Morpheus library used in the benchmark; the former provides some
insight on the usability of our design choices in realizing extensibility. The fourth column
lists the size of the grammar along with the number of production rules in the grammar.
The fifth column gives the number of verification conditions generated, followed by the time
taken to verify them (sixth column). The overall verification time is the time taken for
generating verification conditions plus the time Z3 takes to solve these VCs. All examples
were executed on a 2.7GHz, 64 bit Ubuntu The next column quantifies the annotation effort
for verification. It gives a ratio (#A/#Q) of required user-provided specifications (in terms
of the number of conjuncts in the specification) to the total specification size (annotated
+ inferred). User-provided specifications are required to specify a top-level safety property
and to specify invariants for fix expressions akin to loop invariants that would be provided
in a typical verification task. Finally, the last column gives a high-level description of the
data-dependent safety property being verified.

Our benchmarks explore data-dependent parsers from several interesting categories.9
The first category, represented by Idris do-block, Haskell case-exp and Python while-statement,
capture parsing activities concerned with layout and indentation introduced earlier. Languages
in which layout is used in the definition of their syntax require context-sensitive parser
implementations [1, 2]. We encode a Morpheus parser for a sub-grammar for these languages
whose specifications capture the layout-sensitivity property.

The second category, represented by png and ppm consider data-dependent image formats
like PNG or PPM. Verifying data-dependence is non-trivial as it requires verifying an invariant
over a monadic composition of the output of one parser component with that of a downstream
parser component, interleaved with internal parsing logic.

The next category, captured by xauction, xprotein, and health, represent data-dependent
parsing in data-processing pipelines over XML and CSV databases. For xauction and
xprotein, we extend XPath expressions over XML to dependent XPath expressions. Given
that XPath expressions are analogous to regular-expressions over structured XML data,
dependent XPath expressions are analogous to dependent regular-expressions over XML.

9 The grammar for each of our implementations is given in the technical report [28].



A. Mishra and S. Jagannathan 20:17

Table 1 Summary of Benchmarks : #Loc Loc defines the size of the parser implementation in
Morpheus; D/P gives the number of derived/primitive combinator uses in the parser implementation;
grammar size G(# prod) defines size of the grammar along with the number of production rules in
the grammar; #VCs defines number of VCs generated; T(s) is the time for discharging these VCs in
seconds; (#A/#Q) defines the ratio of number of conjuncts used in the specification provided by the
user (#A) to the total number of conjuncts (#Q) across all files in the implementation; Property
gives a high-level description of the data-dependent safety property.

Name # Loc D/P G(#prod) # VCs T (s) (#A/#Q) data-dependence
haskell 110 5/4 20 (7) 17 8.11 9/39 layout-sensitivity

idris 115 5/5 22(8) 33 10.46 7/26 layout-sensitivity

python 47 3/3 25 (7) 23 7.44 6/20 layout-sensitivity

ppm 46 5/2 21 (7) 20 5.33 4/9 tag-length-data

png chunk 30 3/4 10 (2) 12 3.38 2/7 tag-length-data

xauction 54 4/4 31 (10) 19 6.70 2/8 data-dependent
XPath expression

xprotein 45 3/3 24(6) 22 6.23 4/10 data-dependent
XPath expression

health 40 4/3 15(5) 13 4.56 2/8 data-dependent CSV
pattern-matching

c typedef 60 4/4 14 (5) 21 6.78 4/16 context-sensitive dis-
ambiguation

streams 51 4/2 12 (4) 16 5.21 2/9 safe stream manipu-
lation

We use these expressions to encode a property of the XPath query over XML data for an
online auction and protein database, resp. Note that verifying such properties over XPath
queries is traditionally performed manually or through testing. In the case of health, we
extend regular custom pattern-matching over CSV files to stateful custom pattern-matching,
writing a data-dependent custom pattern matcher. We verify that the parser correctly checks
relational properties between different columns in the database.

The next two categories have one example each: we introduced the c typedef parser in
Section 2 that uses data dependence and effectful data structures to disambiguate syntactic
categories (e.g., typenames and identifiers) in a language definition. Benchmark streams
defines a parser over streams (i.e. input list indexed with natural numbers).

5.2.1 Annotation overhead vs inference

There are some interesting things to note in the second to last column(#A/#Q); First, as
the benchmarks (grammars) become more complex, i.e., have a greater number of functions
(sub-parsers), the ratio decreases (small is better). In other words, the gains of type-inference
become more visible (e.g., haskell, idris, c typedef). The worst (highest) ratio is for the
PPM parser. This parser is interesting because, even though the grammar is small, it makes
multiple calls to fixpoint combinators. Thus, the user must provide specifications for the
top-level parser and each fix-point combinator, thus increasing (#A). Additionally, given a
small number of functions (sub-parsers) due to small grammar size, the gains due to inference
are also low. In summary, these trends show that the efforts needed for verification are at
par with other Refinement typed languages like, Liquid Types [38], FStar [41], etc, and as
the parsers become bigger, the benefits of inference become more prominent.
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DoBlock ::= ’do’ OpenBlock Do∗
CloseBlock;

Do ::=
’let’ Name TypeSig’ ’=’ Expr

| ’let’ Expr’ ’=’ Expr
| Name ’← ’ Expr
| Expr’ ’← ’ Expr
| Ext Expr
| Expr

(a) An Idris grammar rule for a do block.

expr = do
t ← term
symbol "+"
e ← expr
pure t + e

symbol ’∗’

(b) An input to the parser.

Figure 8 An Idris grammar rule for a do block and an example input.

5.3 Case Study: Indentation Sensitive Parsers
As a case study to illustrate Morpheus’s capabilities, we consider a particular class of stateful
parsers that are indentation-sensitive. These parsers are characterized by having indentation
or layout as an essential part of their grammar. Because indentation sensitivity cannot be
specified using a context-free grammar, their specification is often specified via an orthogonal
set of rules, for example, the offside rule in Haskell.10 Haskell language specifications define
these rules in a complex routine found in the lexing phase of the compiler [26]. Other
indentation-sensitive languages like Idris [4] use parsers written using a parser combinator
libraries like Parsec or its variants [25, 19] to enforce indentation constraints.

Consider the Idris grammar fragment shown in Figure 8a. The grammar defines the rule
to parse a do-block. Such a block begins with the do keyword, and is followed by zero or
more do statements that can be let expressions, a binding operation (←) over names and
expressions, an external expression, etc. The Idris documentation specifies the indentation
rule in English governing where these statements must appear, saying that the “indentation of
each do statement in a do-block Do* must be greater than the current indentation from which
the rule is invoked [13].” Thus, in the Idris code fragment shown in Figure 8b, indentation
sensitivity constraints require that the last statement is not a part of the do-block, while the
inner four statements are. A correct Idris parser must ensure that such indentation rules are
preserved.

Figure 9 presents a fragment of the parser implementation in Haskell for the above
grammar, taken from the Idris language implementation source, and simplified for ease of
explanation. The implementation uses Haskell’s Parsec library, it implements indentation
rules using a state abstraction (called IState) that stores the current indentation level as
parsing proceeds. The parser then manually performs reads and updates to this state
and performs indentation checks at appropriate points in the code (e.g. line 24, 53). The
IdrisParser (line 8) is defined in terms of Parsec’s parser monad over an Idris state (here,
IState), which along with other fields has an integer field (ist) storing the current indentation
value. A typical indentation check (e.g. see lines 22 - 24) fetches the current value of ist
using getIst, fetches the indentation of the next lexeme using the Parsec library function
indent, and compares these values.

The structure of the implementation follows the grammar (Figure 8a): the doBlock
parser parses a reserved keyword “do” followed by a block of do_ statement lists. The
indentation is enforced using the parser indentedDoBlock (defined at line 49) that gets the

10 https://www.haskell.org/onlinereport/haskell2010/haskellch10.html

https://www.haskell.org/onlinereport/haskell2010/haskellch10.html
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1 data IState = IState {
2 ist :: Int
3 . . .
4 } deriving (Show)
5 data PTerm = PDoBlock [PDo]
6 data PDo t = DoExp t | DoExt t
7 | DoLet t t | . . .
8 type IdrisParser a = Parser IState a
9

10 getIst :: IdrisParser IState
11 getIst = get
12 putIst :: (i : Int) → IdrisParser ()
13 pustIst i = put {ist = i}
14
15 doBlock :: IdrisParser PTerm
16 doBlock = do
17 reserved "do"
18 ds ← indentedDoBlock
19 return (PDoBlock ds)
20 indentedDo :: IdrisParser (PDo PTerm)
21 indentedDo = do
22 allowed ← ist getIst
23 i ← indent
24 if (i <= allowed)
25 then fail ("end of block")
26 else do_
27 indent :: IdrisParser Int
28 indent =
29 do
30 if (lookAheadMatches (operator)) then
31 do
32 operator
33 return (sourceColumn.getSourcePos)
34 else
35 return (sourceColumn.getSourcePos)

36do_ :: IdrisParser (PDo PTerm)
37do_ = do
38reserved "let"
39i ← name
40reservedOp "="
41e ← expr
42return (DoLet i e)
43<|> do
44e ← expr
45return (DoExt i e)
46<|> do e ← expr
47return (DoExp e)
48indentedDoBlock :: IdrisParser [PDo PTerm]
49indentedDoBlock =
50do
51allowed ← ist getIst
52lvl’ ← indent
53if (lvl’ > allowed) then
54do
55putIst lvl’
56res ← many (indentedDo)
57putIst allowed
58return res
59else fail "Indentation error"
60
61lookAheadMatches :: IdrisParser a →

IdrisParser Bool
62lookAheadMatches p =
63do
64match ← lookAhead (optional p)
65return (isJust match)

Figure 9 A fragment of a Parsec implementation for Idris do-blocks with indentation checks.

current indentation value (allowed) and the indentation for the next lexeme using indent,
checks that the indentation is greater than the current indentation (line 53) and updates
the current indentation so that each do statement is indented with respect to this new
value. It then calls a parser combinator many (line 56), which is the Parsec combinator for
the Kleene-star operation, over the result of indentedDo, i.e., indentedDo∗. The indentedDo
parser again performs a manual indentation check, comparing the indentation value for the
next lexeme against the block-start indentation (set earlier by indentedDoBlock at line 55)
and, if successful, runs the actual do_ parser (line 26). Finally, indentedDoBlock resets the
indentation value to the value before the block (line 57).

Unfortunately, it is non-trivial to reason that these manual checks suffice to enforce
the indentation sensitivity property we desire. Since they are sprinkled throughout the
implementation, it is easy to imagine missing or misplacing a check, causing the parser to
misbehave. More significantly, the implementation make incorrect assumptions about the
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1 expr = do
2 t ← term
3 do
4 symbol "+"
5 e ← expr
6 pure t + e
7 ‘‘mplus’’ pure t

Figure 10 An input expression that is incorrectly parsed by the implementation shown in Figure 9.

effectful actions performed by the library that are reflected in API signatures. In fact, the
logic in the above code has a subtle bug [1] that manifests in the input example shown in
Figure 10.

Note that the indentation of the token “mplus” is such that it is not a part of either do
block; the implementation, however, parses the last statement as a part of the inner do-block,
thereby violating the indentation rule, leading to the program being incorrectly parsed.

The problem lies in a mismatch between the contract provided by the library’s indent
function and the assumptions made about its behavior at the check at line 24 in the indentedDo
parser (or similarly at line 53). Since checking indentation levels for each character is costly,
indent is implemented (line 28) in a way that causes certain lexemes (user defined operators
like “mplus”) to be ignored during the process of computing the next indentation level. It
uses a lookAdheadMatches parser to skip all lexemes that are defined as operators. In this
example, indent does not check the indentation of lexeme “mplus”, returning the indentation
of the token pure instead. Thus, the indentation of the last statement is considered to start
at pure, which incorrectly satisfies the checks at line 24 or line 53, and thus causes this
statement to be accepted as part of indentedDoBlock. Unearthing and preventing such bugs is
challenging. We show how implementing the same parser in Morpheus allows us to catch the
bug and verify a correct version of the parser. Figure 11 shows a Morpheus implementation
for a portion of the Idris doBlock parser from Figure 9 showing the implementation of three
parsers for brevity, doBlock, indentedDo, and indent, along with other helper functions. The
structure is similar to the original Haskell implementation.

To specify an indentation-sensitivity safety property, we first define an inductive type for
a parse-tree (tree) and refine this type using a dependent function type, (offsideTree i), that
specifies an indentation value for each parsed result.

type tree = Tree {term : pterm; indentT : int; children : tree list}
type offsideTree i = Tree {term : pterm; indentT : { v : int | v > i }; children : (offsideTree i) list}

This type defines a tree with three fields:
A term of type pterm.
The indentation (indentT) of a returned parse tree, the refinement constraints on indentT
requires its value to be greater than i.
A list of sub-parse trees (children) for each of the terminals and non-terminals in the
current grammar rule’s right-hand side, each of which must also satisfy this refinement.

Morpheus additionally automatically generates qualifiers like, indentT, children, etc, for each
of the datatype’s constructors and fields with the same name that can be used in type
refinements. However, this type is not sufficiently expressive to specify the required safety
property for doBlock that requires “the indentation of the parse tree returned by doBlock
must be greater than the current value of ist” because ist is an effectful heap variable.
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1 type α pdo = DoExp of α
2 | DoExt of α | . . .
3 type pterm =
4 PDoBlock of ((pterm pdo) list)
5 let ist = ref 0 . . .
6

doBlock :
PEstexc

{∀ h, I. sel(h, ist) = I}
ν : (offsideTree I) result

{∀ h, ν, h’, I, I’.
( ν = Inl (_) => (sel (h, ist) = I ∧
sel (h’, ist) = I’) => I’ = I)
∧ ν = Inr (Err) =>
(sel (h’, inp) ⊆ sel (h, inp)) }

7 let doBlock =
8 dom
9 dot ← reserved "do"

10 ds ← indentedDoBlock
11 return Tree {term = PDoBlock ds;
12 indentT = indentT (dot);
13 children = (dot :: ds) }
14

do_ : PEstexc {∀ h, I. sel(h, inp) = I}
ν : tree result

{∀ h, ν, h’, I, I’.
(ν = Inl(_) =>
indentT(ν)= pos (sel (h, inp))
children (ν) = nil )
∧ ν = Inr (Err) =>
(sel (h’, inp) ⊆ sel (h, inp)) }

15 let do_ = . . .
16

lookAheadMatches : PEpure {true}
ν : bool {[h’=h]}

17 lookAheadMatches p =
18 dom
19 match ← lookAhead (optional p)
20 return (isJust match)

21

indentedDo :
PEstexc {∀ h, I.sel(h, ist) = I }

ν : tree result
{∀ h, ν, h’, I, I’.
∀ i :int.(i <= I ⇒ sel (h’, inp) ⊆ sel (h, inp)) ∧

(i > I ⇒ indentT (ν) = pos (sel (h, inp) ∧
children (ν) = nil}

22let indentedDo =
23dom
24allowed ← !ist
25i ← indent
26if (i <= allowed ) then
27fail ("end of block")
28else
29do_
30

sourceColumn : (char * int) list -> int

31let sourceColumn = . . .
32

indent : PEstate{true}
ν : int

{∀ h, ν, h’.
sel (h’, inp) ⊆ sel (h, inp) }

33let indent =
34dom
35if (lookAheadMatches (operator)) then
36dom
37operator
38return (sourceColumn !inp)
39else
40return (sourceColumn !inp)

Figure 11 Morpheus implementation and specifications for a portion of an Idris Do-block with
indentation checks, dom is a syntactic sugar for Morpheus’s monadic bind. Specifications given in
Blue are provided by the parser writer; Gray specifications are inferred by Morpheus. Line number 21
represents the complete multiline type specification.

We can specify a safety property for a doBlock parser as shown on line 6 in Figure 11.
Again, the type specification in blue are provided by the programmer. The type should be
understood as follows: The effect label (stexc) defines that the possible effects produced
by the parser include state and exc. The precondition binds the value of the mutable state
variable ist, a reference to the current indentation level, to I via the use of the built-in qualifier
sel that defines a select operation on the heap [27]. The return type (offsideTree I result)
obligates the computation to return a parse tree (or a failure) whose indentation must be
greater than I. The postcondition constraints that the final value of the indentation is to be
reset to its value prior to the parse (a reset property) when the parser succeeds (case ν = Inl
(_)) or that the input stream inp is monotonically consumed when the parser fails (case ν

= Inr (Err)). The types for other parsers in the figure can be specified as shown at lines
14, 21, 32, etc.; these types shown in gray are automatically inferred by Morpheus’s type
inference algorithm.
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5.3.1 Revisiting the Bug in the Example

The bug described in the previous paragraph is unearthed while typechecking the indentedDo
implementation or the indentedDoBlock implementation. We discuss the case for indentedDo
case here. To verify that doBlock satisfies its specification, Morpheus needs to prove that the
type inferred for the body of indentedDo (lines 22- 29):
1. has a return type that is of the form, offsideTree I. Concretely, the indentation of the

returned tree must be greater than the initial value of ist (i.e. indentT (ν) > I).
2. asserts that the final value of ist is equal to the initial value.

Goal (1) is required because indentedDo is used by indentedDoBlock (see Figure 9), which
is then invoked by doBlock, where its result constructs the value for children, whose type is
offsideTree I list. Goal (2) is required because doBlock’s specified post-condition demands it.
Type-checking the body for indentedDo yields the type shown at line 21. The two conjuncts
in the post-condition correspond to the then (failure case) and else (success case) branch in
the parser’s body.

The failure conjunct asserts that the input stream is consumed monotonically if the
indentation level is greater than ist. The success conjunct is the post-condition of the do_
parser. This inferred type is, however, too weak to prove goal (1) given above, which requires
the combinator to return a parse tree that respects the offside rule. The problem is that
indent’s type (line 32), inferred as:

indent : PEstate{true} ν : int {∀ h, ν, h’. sel (h’, inp) ⊆ sel(h, inp)}

does not allow us to conclude that indentedDo satisfies the indentation condition demanded
by doBlock, i.e., that it returns a well-typed (offsideTree I). This is because the type imposes
no constraint between the integer indent returns and the function’s input heap, and thus
offers no guarantees that its result gives the position of the first lexeme of the input list.

We can revise indent’s implementation such that it does not skip any reserved operators
and always returns the position of the first element of the input list, allowing us to track the
indentation of every lexeme:

indent : PEstate {true} ν : int{∀ h, ν, h’.ν = pos (sel (h, inp)) ∧ sel (h’, inp) ⊆ sel (h, inp)}

let indent = dom s ← !inp
return (sourceColumn s)

This type defines a stronger constraint, sufficient to type-check the revised implementation
and raise a type error for the original. For this example, Morpheus generated 33 Verification
Conditions (VCs) for the revised successful case and 6 VCs for the failing case. We were able
to discharge these VCs to the SMT Solver Z3 [7], yielding a total overall verification time of
10.46 seconds in the successful case, and 2.06 seconds in the case when type-checking failed.

This example highlights several key properties of Morpheus verification: The specification
language and the type system allows verifying interesting properties over inductive data
types (e.g., the offsideTree property over the parse trees). It also allows verifying properties
dependent on state and other effects such as the input consumption property over input
streams (inp). Secondly, the annotation burden on the programmer is proportional to the
complexity of the top-level safety property that needs to be checked. Finally, the similarities
between the Haskell implementation and the Morpheus implementation minimize the idiomatic
burden placed on Morpheus users.
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6 Related Work

Parser Verification. Traditional approaches to parser verification involve mechanization
in theorem provers like Coq or Agda [29, 6, 10, 21, 39, 23, 15]. These approaches trade-off
both automation and expressiveness of the grammar they verify to prove full correctness.
Consequently, these approaches cannot verify safety properties of data-dependent parsers,
the subject of study in this paper. For instance, RockSalt [29] focuses on regular grammars,
while [21, 10] present interpreters for parsing expression grammars (without nondeterminism)
and limited semantic actions without data dependence. Jourdan et al. [16] gives a certifying
compiler for LR(1) grammars, which translates the grammar into a pushdown automaton
and a certificate of language equivalence between the grammar and the automaton. More
recently CoStar [23] presents a fully verified parser for the ALL(*) fragment mitigating some
of the limitations of the above approaches. However, unlike Morpheus, CoStar does not handle
data-dependent grammars or user-defined semantic actions.

Deductive synthesis techniques for parsers like Narcissus [8] and [37] focus mainly
on tag-length-payload, binary data formats. Narcissus [8] provides a Coq framework (an
encode_decode tactic) that can automatically generate correct-by-construction encoders and
decoders from a given user format input, albeit for a restricted class of parsers. Notably, the
system is not easily extensible to complex user-defined data-dependent formats such as the
examples we discuss in Morpheus. This can be attributed to the fact that the underlying
encode_decode Coq tactic is complex and brittle and may require manual proofs to verify a
new format. In contrast, Morpheus enables useful verification capabilities for a larger class of
parsers, albeit at the expense of automatic code generation and full correctness. Writing a
safe parser implementation for a user-defined format in Morpheus is no more difficult than
manually building the parser in any combinator framework with the user only having to
provide an additional safety specification. EverParse [37] likewise focuses mainly on binary
data formats, guaranteeing full-parser correctness, albeit with some expressivity limitations.
For example, it does not support user-defined semantic actions or global data-dependences
for general data formats. Compared to these efforts, the properties Morpheus can validate
are more high-level and general. E.g., “non-overlapping of two lists of strings” in a C-decl
parser; “layout-sensitivity properties”, etc,. Verifying these properties requires reasoning
over a challenging combination of rich algebraic data types, mutable states, and higher-order
functions.

[22] also explore types for parsing, defining a core type-system for context-free expressions.
However, their goals are orthogonal to Morpheus and are targeted towards identifying
expressions that can be parsed unambiguously.

Data-dependent and Stateful Parsers. Morpheus allows writing parsers for data-dependent
and stateful parsers. There is a long line of work aimed at writing such parsers [14, 1, 2, 24].
None of these efforts, however, provide a mechanism to reason about the parsers they can
express. Further, many of these systems are specialized for a particular class/domain of
problems, such as [14] for data-dependent grammars with trivial semantic actions, or [1]
for indentation sensitive grammars, etc. Morpheus is sufficiently expressive to both write
parsers and grammars discussed in many of these approaches, as well as verifying interesting
safety properties. Indeed, several of our benchmarks are selected from these works. In
contrast, systems such as [14] argue about the correctness of the input parsed against the
underlying CFG, a property challenging to define and verify as a Morpheus safety property,
beyond simple string-patterns and regular expressions. We leave the expression of such
grammar-related properties in Morpheus as a subject for future work.
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Refinement Types. Our specification language and type system builds over a refinement
type system developed for functional languages like Liquid Types [38] or Liquid Haskell [43].
Extending Liquid Types with bounds [42] provides some of the capabilities required to realize
data-dependent parsing actions, but it is non-trivial to generalize such an abstraction to
complex parser combinators found in Morpheus with multiple effects and local reasoning over
states and effects.

Effectful Verification. Our work is also closely related to dependent-type-based verification
approaches for effectful programs based on monads indexed with either pre- and post-
conditions [31, 32] or more recently, predicate monads capturing the weakest pre-condition
semantics for effectful computations [41]. As we have illustrated earlier, the use of expressive
and general dependent types, while enabling the ability to write rich specifications (certainly
richer than what can be expressed in Morpheus), complicates the ability to realize a fully
automated verification pathway.

Verification using natural proofs [36] is based on a mechanism in which a fixed set of
proof tactics are used to reason about a set of safety properties; automation is achieved via a
search procedure over in this set. This idea is orthogonal to our approach where we rather
utilize the restricted domain of parsers to remain in a decidable realm. Both our effort and
these are obviously incomplete. Another line of work verifying effectful specifications use
characteristic formulae [5]; although more expressive than Morpheus types, these techniques
do not lend themselves to automation.

Local Reasoning over Heaps. Our approach to controlling aliasing is distinguished from
substructural typing techniques such as the ownership type system found in Rust [17]. Such
type systems provide a much richer and more expressive framework to reason about memory
and effects, and can provide useful guarantees like memory safety and data-race freedom
etc. Since our DSL is targeted at parser combinator programs which generally operate
over a much simplified memory abstraction, we found it unnecessary to incorporate the
additional complexity such systems introduce. The integration of these richer systems within
a refinement type framework system of the kind provided in Morpheus is a subject we leave
for future work.

Parser Combinators. There is a long line of work implementing Parser Combinator Libraries
and DSLs in different languages [11]. These also include those which provide a principled
way for writing stateful parsers using these libraries [1, 24]. As we have discussed, none of
these libraries provide an automated verification machinery to reason about safety properties
of the parsers. However, since they allow the full expressive power of the host language, they
may, in some instances, be more expressive than Morpheus. For example, Morpheus does not
allow arbitrary user-defined higher-order functions and builds only on the core API discussed
earlier. This may require a more intricate definition for some parsers compared to traditional
libraries. For example, traditional parser combinator libraries typically define a higher-order
combinator like many_fold_apply with the following signature and use this combinator to
concisely define a Kleene-star parser:

many_fold_apply : f : (’b → ’a → ’b) → (a : ’a) → (g : ’a → ’a) → p : (’a, ’s) t → (’b, ’s) t
let many p = many_fold_apply (fun xs x → x :: xs) [] List.rev p

Contrary to this, in Morpheus, we need to define Kleene-star using a more complex, lower-level
fixpoint combinator.
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7 Conclusions

This paper presents Morpheus, a deeply-embedded DSL in OCaml that offers a restricted
language of composable effectful computations tailored for parsing and semantic actions and
a rich specification language used to define safety properties over the constituent parsers
comprising a program. Morpheus is equipped with a rich refinement type-based automated
verification pathway. We demonstrate Morpheus’s utility by using it to implement a number
of challenging parsing applications, validating its ability to verify non-trivial correctness
properties in these benchmarks.
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