4,283 research outputs found

    Terrain classification for a quadruped robot

    Get PDF
    Using data retrieved from the Puppy II robot at the University of Zurich (UZH), we show that machine learning techniques with non-linearities and fading memory are effective for terrain classification, both supervised and unsupervised, even with a limited selection of input sensors. The results indicate that most information for terrain classification is found in the combination of tactile sensors and proprioceptive joint angle sensors. The classification error is small enough to have a robot adapt the gait to the terrain and hence move more robustly

    Connecting Look and Feel: Associating the visual and tactile properties of physical materials

    Full text link
    For machines to interact with the physical world, they must understand the physical properties of objects and materials they encounter. We use fabrics as an example of a deformable material with a rich set of mechanical properties. A thin flexible fabric, when draped, tends to look different from a heavy stiff fabric. It also feels different when touched. Using a collection of 118 fabric sample, we captured color and depth images of draped fabrics along with tactile data from a high resolution touch sensor. We then sought to associate the information from vision and touch by jointly training CNNs across the three modalities. Through the CNN, each input, regardless of the modality, generates an embedding vector that records the fabric's physical property. By comparing the embeddings, our system is able to look at a fabric image and predict how it will feel, and vice versa. We also show that a system jointly trained on vision and touch data can outperform a similar system trained only on visual data when tested purely with visual inputs

    Shear-invariant Sliding Contact Perception with a Soft Tactile Sensor

    Full text link
    Manipulation tasks often require robots to be continuously in contact with an object. Therefore tactile perception systems need to handle continuous contact data. Shear deformation causes the tactile sensor to output path-dependent readings in contrast to discrete contact readings. As such, in some continuous-contact tasks, sliding can be regarded as a disturbance over the sensor signal. Here we present a shear-invariant perception method based on principal component analysis (PCA) which outputs the required information about the environment despite sliding motion. A compliant tactile sensor (the TacTip) is used to investigate continuous tactile contact. First, we evaluate the method offline using test data collected whilst the sensor slides over an edge. Then, the method is used within a contour-following task applied to 6 objects with varying curvatures; all contours are successfully traced. The method demonstrates generalisation capabilities and could underlie a more sophisticated controller for challenging manipulation or exploration tasks in unstructured environments. A video showing the work described in the paper can be found at https://youtu.be/wrTM61-pieUComment: Accepted in ICRA 201

    Soft Morphological Processing of Tactile Stimuli for Autonomous Category Formation

    Get PDF
    Sensor morphology is a fundamental aspect of tactile sensing technology. Design choices induce stimuli to be morphologically processed, changing the sensory perception of the touched objects and affecting inference at a later processing stage. We develop a framework to analyze the filtered sensor response and observe the correspondent change in tactile information. We test the morphological processing effects on the tactile stimuli by integrating a capacitive tactile sensor into a flat end-effector and creating three soft silicon-based filters with varying thickness (3mm, 6mm and 10mm). We incorporate the end-effector onto a robotic arm. We control the arm in order to apply a calibrated force onto 4 objects, and retrieve tactile images. We create an unsupervised inference process through the use of Principal Component Analysis and K-Means Clustering.We use the process to group the sensed objects into 2 classes and observe how different soft filters affect the clustering results. The sensor response with the 3mm soft filter allows for edges to be the feature with most variance (captured by PCA) and induces the association of edged objects. With thicker soft filters the associations change, and with a 10mm filter the sensor response results more diverse for objects with different elongation. We show that the clustering is intrinsically driven by the morphology of the sensor and that the robot’s world understanding changes according to it.This work was funded by the UK Agriculture and Horticulture Development Board and by The United Kingdom Engineering and Physical Sciences Research Council (EPSRC) MOTION grant [EP/N03211X/2]

    Methods and strategies of object localization

    Get PDF
    An important property of an intelligent robot is to be able to determine the location of an object in 3-D space. A general object localization system structure is proposed, some important issues on localization discussed, and an overview given for current available object localization algorithms and systems. The algorithms reviewed are characterized by their feature extracting and matching strategies; the range finding methods; the types of locatable objects; and the mathematical formulating methods

    3D Visual Data-Driven Spatiotemporal Deformations for Non-Rigid Object Grasping Using Robot Hands

    Get PDF
    Sensing techniques are important for solving problems of uncertainty inherent to intelligent grasping tasks. The main goal here is to present a visual sensing system based on range imaging technology for robot manipulation of non-rigid objects. Our proposal provides a suitable visual perception system of complex grasping tasks to support a robot controller when other sensor systems, such as tactile and force, are not able to obtain useful data relevant to the grasping manipulation task. In particular, a new visual approach based on RGBD data was implemented to help a robot controller carry out intelligent manipulation tasks with flexible objects. The proposed method supervises the interaction between the grasped object and the robot hand in order to avoid poor contact between the fingertips and an object when there is neither force nor pressure data. This new approach is also used to measure changes to the shape of an object’s surfaces and so allows us to find deformations caused by inappropriate pressure being applied by the hand’s fingers. Test was carried out for grasping tasks involving several flexible household objects with a multi-fingered robot hand working in real time. Our approach generates pulses from the deformation detection method and sends an event message to the robot controller when surface deformation is detected. In comparison with other methods, the obtained results reveal that our visual pipeline does not use deformations models of objects and materials, as well as the approach works well both planar and 3D household objects in real time. In addition, our method does not depend on the pose of the robot hand because the location of the reference system is computed from a recognition process of a pattern located place at the robot forearm. The presented experiments demonstrate that the proposed method accomplishes a good monitoring of grasping task with several objects and different grasping configurations in indoor environments.The research leading to these result has received funding from the Spanish Government and European FEDER funds (DPI2015-68087R), the Valencia Regional Government (PROMETEO/2013/085) as well as the pre-doctoral grant BES-2013-062864
    • …
    corecore