
Terrain Classification for a Quadruped Robot

Jonas Degrave∗, Robin Van Cauwenbergh∗, Francis wyffels∗, Tim Waegeman∗, and Benjamin Schrauwen∗
∗Electronics and Information Systems (ELIS), Ghent University

Sint-Pietersnieuwstraat 41, B-9000 Ghent, Belgium

Abstract—Using data retrieved from the Puppy II robot at
the University of Zurich (UZH), we show that machine learning
techniques with non-linearities and fading memory are effective
for terrain classification, both supervised and unsupervised, even
with a limited selection of input sensors. The results indicate
that most information for terrain classification is found in the
combination of tactile sensors and proprioceptive joint angle
sensors. The classification error is small enough to have a robot
adapt the gait to the terrain and hence move more robustly.

Keywords—terrain, classification, quadruped robot, reservoir
computing, proprioception

I. INTRODUCTION

Terrain classification plays an important role in the control
of legged robots, as it allows the robots to adapt to the terrain.
On different terrains, different gaits will be more suitable and
therefore a robot capable of switching from one gait to another
in reaction to a terrain change, will be able to locomote more
robustly.

There has been done some research on terrain classification
for robots through sensor data from advanced sensors, such as
camera imagery [1] or laser scanners [2]. This way, visual
features in the terrain are used to discover the terrain type and
subsequently the terrain properties.

Previous research also demonstrated the importance of
proprioceptive sensors for amphibian robots, such as inertia-
sensors, angle-encoders and current measurements on the mo-
tors [3]. Furthermore has it been shown for quadruped robots
that force-sensing in the legs and current-use in the motors
deliver reasonable results upon processing with an Adaboost
algorithm [4]. Even only using proprioceptive and contact
sensors proved effective in ground discrimination [5].

Firstly, perceiving and understanding the environment in
which the robot operates has a high impact on the performance
of the robot’s locomotion, making it important to add sensors
to the robot that provide information on the terrain. However,
it is unfavorable to add unnecessary or complex sensors to the
robot if they yield no further information. Those superfluous
sensors would only increase the complexity of the robot design,
while offering little possibilities for better control. Hence, it
is important to know which sensors actually provide the most
valuable data for terrain classification.

Secondly, instead of developing a single system which
takes in raw data to directly determine the robot’s actions, it
can be better to divide the problem and conquer the easier sub-
problems. One of the sub-problems is for the robot to recognize
in real time the type of terrain while walking on it, using
the data it receives from as few sensors as possible. Previous
research in this area includes for instance the application of
clustering techniques to detect transitions from one terrain to

the next in order to achieve unsupervised classification, applied
on the RHex-robot [6], [7].

Therefore the research in this paper is twofold. Firstly, we
want to identify which sensors provide most information on the
terrain. In order to achieve this, we try different combinations
of sensors often found in robots and evaluate the capability of
supervised and unsupervised machine learning techniques to
derive information from recorded data of those sensors. Sec-
ondly, we will also evaluate which machine learning techniques
work best to classify the terrain based on these sensors, and
which features are necessary for the techniques to function.

The rest of the paper is structured as follows. In Section II
we will review the machine learning techniques used in
this paper and go through Linear Regression (LR), Extreme
Learning Machines (ELM), Reservoir Computing (RC), Slow
Feature Analysis (SFA) and Independent Component Analy-
sis (ICA). In Section III we will present the hardware used to
retrieve the data and the methods used to process this data.
In section IV we will describe our experiments and results.
Finally, conclusions will be drawn in section V.

II. MACHINE LEARNING TECHNIQUES FOR TERRAIN
CLASSIFICATION

A. Linear Regression

Linear regression (LR) is a supervised approach to mod-
eling the relationship between K input variables and L scalar
output variables. The relation between the two is described as:

Wout = (XTX)−1XTy.

X is a matrix where every row is a time-step with in the
columns the different input variables and y is a matrix and
has in every row the corresponding desired outputs. With the
transformation matrix Wout we can now process new signals
X′:

ŷ = X′Wout. (1)

The sensor signals are very noisy however, therefore we first
low-pass filter these inputs with an exponential moving average
(see Figure 1a), as shown in the equation below:

x(n) = (1− α)x(n− 1) + αu(n). (2)

Here, x(n) and u(n) are respectively the input of the linear
regression and the sensor signal at time-step n. α is the leak
rate. As the resulting signals still contains a lot of noise, no
further regularization is needed.

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Ghent University Academic Bibliography

https://core.ac.uk/display/55733614?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1


(a) Linear Regression (b) Extreme Learning Ma-
chine

(c) Reservoir Computing

SFA

SFA

ICA

ICA

(d) Reservoir Computing Slow Fea-
ture Analysis

SFA

SFA

ICA

ICA

(e) Quadratically Expanded
Slow Feature Analysis

Fig. 1. Visual representation of the machine learning techniques used. The circles depict nodes, the rectangles filtering. Circles with a hyperbolic tangent curve
have a non-linear activation; circles with a cross multiply inputs; rectangles with an exponential curve are low-pass filters. The solid arrows represent fixed
weights, the dashed arrows represent trained weights.

B. Extreme Learning Machine

With the goal of having LR model the non-linearities more
accurately, we first expand the sensor signals into a larger
space by adding a hidden layer of non-linear nodes. The
weights of these nodes are fixed, and are randomly selected
from the set {−1, 0, 1}. This technique is similar to Extreme
Learning Machine (ELM), a technique to train single-hidden
layer feedforward neural networks [8]. The only difference
from the standard implementation is that we use leaky nodes
in the hidden layer to filter the noise in their state, as we did
earlier with the linear regression. The update equations for
these leaky ELMs are therefore given by:

x(n) = (1− α)x(n− 1) + α tanh
(
Winu(n)

)
y(n) = Woutx(n).

Here, Win is an N×K matrix containing the fixed weights of
the N nodes in the hidden layer. We model the non-linearity
by using hyperbolic tangent nodes, as shown in Figure 1b.
The matrix Wout is obtained by using LR, as discussed in
section II-A, but this time with the expanded set of signals as
inputs.

C. Reservoir Computing

The ELM systems can be expanded further temporally and
non-linearly by adding fixed weight connections between the
nodes in the hidden layer, as shown in Figure 1c. The resulting
system is a Reservoir Computing system (RC). The term
Reservoir Computing has been introduced in [9] to cover mul-
tiple previous computing techniques developed independently:
Liquid State Machines (LSM) [10], Echo State Networks
(ESN) [11] and BackPropagation DeCorrelation (BPDC) [12].

The weights of recurrent connections in the hidden layer
nodes are fixed and randomly selected from a standard normal
distribution. Similarly to the ESN in [13], the update equations
of our reservoir computing systems are as follows:

x(n) = (1−α)x(n−1)+α tanh
(
Wresx(n−1)+Winu(n)

)
y(n) = Woutx(n).

Wres is an N × N matrix containing the fixed weights
between the nodes in the hidden layer. After sampling the
weights, the matrix is rescaled to have a spectral radius σ.
Typically, σ is a good indicator of the echo state property [14]
and is often chosen proximate to 1, close to the edge of chaos,

where reservoir computing systems possess high computational
power [15].

In Reservoir Computing, the hidden layer of recurrent
nodes is often referred to as the reservoir. Because of the
recurrent connections between the nodes, a fading memory is
introduced into the system. We already inserted some memory
with leaky nodes, but the hidden layer nodes in an ELM cannot
act dynamically at a certain time-step based on the result of
the previous time-step. Therefore, the type of memory used in
LR and ELM does not add dynamics, but merely serves as a
noise filter, opposed to the dynamic properties in a reservoir.
Consequently, RC has memory capacity [16] as RC systems
can learn relations with the past, while ELM has no memory
capacity due to the lack of recurrent connections between the
hidden-layer nodes.

D. Unsupervised learning

It would be interesting for an autonomous learning robot
to have it learn terrains autonomously as well, without being
shown a distinction between terrains in advance. To achieve
this, we continue from the non-linear, temporal expansion
created by the reservoir, as the dynamics generated in a
reservoir are suited for terrain classification, albeit supervised,
which we will establish in section IV-A2.

However, to make the system unsupervised, we process the
output of the reservoir further with unsupervised techniques
instead of using LR. First, we apply slow feature analysis
(SFA) to derive the slow changing features in the output of the
reservoir. Secondly, we apply independent component analysis
(ICA) to these features in order to find the maximally statisti-
cally independent features. The complete setup is depicted in
Figure 1d. This method has already been used in the context
of robotics for robot localization [17]. There, they referred to
the output of the ICA-layer as place cells, because they behave
similarly to nodes found in the hippocampus of rodents [18].
Contrary to the place cells in rodents, which fire at a certain
location, we have created terrain cells, which fire on a certain
terrain.

As a baseline comparison for the terrain cells obtained
by using reservoir computing and slow feature analysis (RC-
SFA), we also expand the input signals quadratically instead
of using a reservoir. This means that we use the product of
each combination of 2 different input signals alongside the
original signals as input for the slow feature analysis, shown
in Figure 1e. We will refer to this system as SFA2.



1) Slow Feature Analysis: Slow Feature Analysis is an
unsupervised machine learning algorithm which extracts slow
varying signals from faster varying signals [19]. Suppose x(t)
is a multi-dimensional input signal. SFA generates a slow
varying output signal yi(t) = gi(x(t)) by searching for the
best functions gi in a certain space such that

∆(yi) = 〈ẏ2i 〉t (3)

is minimized under the following conditions:

〈yi〉t = 0 (4)

〈y2i 〉t = 1 (5)

∀j < i, 〈yiyj〉t = 0. (6)

This can be solved efficiently by the algorithm proposed
in [19].

2) Independent Component Analysis: Independent Compo-
nent Analysis [20] is an algorithm that separates multivariate
signals in order to achieve maximally uncorrelated signals. It
assumes there is a linear connection between the input signals
x(t) and the underlying uncorrelated signals s(t). Therefore,
the maximally uncorrelated signals can be regenerated using a
matrix WICA:

s(t) = WICAx(t). (7)

To find this matrix WICA, we use the FastICA-algorithm [21].

E. Covariance Matrix Adaptation Evolution Strategy

To optimize the parameters of the different techniques
described above, we use Covariance Matrix Adaptation Evo-
lution Strategy (CMA-ES). CMA-ES is an evolutionary opti-
mization algorithm which makes very few assumptions on the
nature of the system. Only the ranking between the candidates
is used in the learning process, no gradients or quantification
of the input is needed. CMA-ES proves to be useful for non-
separable, ill-conditioned or noisy objective functions [22].
Also, the different evaluations within one generation are in-
dependent, so the algorithm can easily be parallelized. In this
paper, we use the implementation of CMA-ES written by
Nikolaus Hansen [22].

CMA-ES has only one free parameter left, the population
size λ. For this parameter, we use λ = b4 + 3 ln(M)c with M
the number of parameters which need to be optimized. This
choice has been made as a balance between quick convergence
and the amount of parallelization possible, but is still arbitrary.
The λ-parameter functions on a meta-level and therefore has
little effect on the conclusions made in this paper.

III. METHODOLOGY

A. The Dataset

The dataset used in this work has been harvested at the
University of Zurich, using their quadruped robot, Puppy II
(Fig. 2) [23]. This robot has four identical legs, each controlled
by a single servomotor at the hip joint. The knee joints are
not directly controllable, but are passively moveable due to the
spring attached between the upper and lower limb. Underneath
the feet there is an adhesive skin attached with asymmetrical
friction. This aids the robot in moving its legs forward and
enforcing its grip while moving the legs backward. Puppy II

Fig. 2. Puppy II, from the Artificial Intelligence Laboratory, Department of
Informatics, University of Zurich. This is a side-view with the front of the
robot on the left.

TABLE I. NUMBER OF AVAILABLE TRIALS IN FUNCTION OF TERRAIN
TYPE, GAIT FREQUENCY AND GAIT. (F: BLUE FOIL, S: STYROFOAM, L:

LINOLEUM, C: CARDBOARD, R: RUBBER)

bound right turn left random
F S L C R F S L C R F S L C R

0, 25Hz 3 1 - - - 2 1 - - - - - - - -
0, 50Hz 5 2 - - - 4 2 - - - - - - - -
0, 75Hz 4 2 - - - 4 2 - - - - - - - -
1, 00Hz 2 13 9 3 5 4 4 3 - - 4 3 4 - -
1, 25Hz 6 1 - - - - 3 - - - - - - - -
1, 52Hz 3 2 - - - - 6 - - - - - - - -
1, 72Hz 8 3 - - - - - - - - - - - - -

is fitted with a number of sensors. There is a potentiometer
attached to each joint, for a total of eight potentiometers. Each
leg has a tactile sensor which measures the force exerted on
the paw when touching the ground. The robot has an IMU and
there is also a single external sensor used, namely an overhead
camera. This camera is not used directly, but the position and
velocity derived from the camera footage is.

The trials have a varying length, many between 3000 and
6500 samples with a sampling rate of 50Hz. The measurements
have been made on five different terrains, at seven different
frequencies, with three different gaits. The bound right and
the turn left gait are generated by simple sine waves on the
joints, with a different offset, amplitude and phase for each
motor. In the bound right gait, the robot moves in a clockwise
circle due to a slightly higher amplitude on the left legs. In
the turn left gait, the robot moves counter-clockwise due to
a much larger amplitude on the right hind leg. The random
gait consists of random motor commands, sufficiently smooth
not to exceed the motor bandwidth. For an overview of the
trials available for each combination of parameters, we refer
to Table I.

After testing a few combinations of sensor signals, we
settle on a selection that delivers an optimal or near-optimal
performance for all techniques that we examine. In this paper,
we will mainly evaluate and compare the use of these eighteen
signals: the angles of the four hips, the angles of the four
knees, the tactile sensors on the four feet, the three-dimensional
accelerometer and the three-dimensional gyroscope. For com-
pleteness’ sake, we also evaluate the use of all information
available in the dataset. We normalize each sensor signal to
a zero mean and a unit variance. Then we select a total of
3000 samples for each terrain type and do this five times.
Three of these are used for threefold cross-validation while



TABLE II. THE DIFFERENT GROUPS OF SENSORS AND THE SENSOR
INFORMATION THEY CONTAIN

u
s
e
f
u
l

r
e
d
u
c
e
d

m
i
n
i
m
a
l

l
e
g

a
g
t

i
m
u

j
o
i
n
t
s

t
o
u
c
h

Number of dimensions 55 21 18 12 10 9 8 4

Tactile sensors × × × × × ×
Joint angle sensors × × × × ×
Accelerometer and gyroscope × × × × ×
Velocity × ×
Compass × ×
Distance to wall × ×
Magnetometer × ×
Other/derivative sensors ×

optimizing the parameters, the other two are used for twofold
cross-validation during the verification of the parameters. Any
remaining relevant trials are added to the test set during
verification. We split all trials into parts as a final step, with
lengths varying from 281 to 562 samples. Most of these are
about 375 samples long (7.5s).

These sensors were combined into a couple of groups
which we evaluate on how much information they contain on
the terrain type. For a detailed description of what sensor group
contains which sensors, we refer to Table II.

B. System Classification Score

To evaluate the accuracy of the methods, the terrain is
classified at each time-step. This means that we measure the
effectiveness of the techniques as a realtime sensor. For the
supervised techniques, we have 5 output nodes, the same as
the number of terrains in the dataset. We train the output nodes
to be 1 when the robot is walking on their respective terrain and
to be −1 when the robot is not walking on its terrain. At each
time-step, we classify by choosing the terrain corresponding
to the output node with the highest value. The score of the
system is the percentage of the time-steps correctly classified.

This approach however does not work for unsupervised
techniques, as they do not have corresponding output nodes,
as the system did not have any example data. To be able to
give meaning to the output of the ICA-layer, we reconstruct
the probability that the robot is on a certain terrain, given the
terrain cells, with Bayes’ theorem:

P (xr|yICA) =
P (yICA|xr)P (xr)

P (yICA)
(8)

where P (xr) is the prior on the terrain vector and is related
to our dataset and P (yICA) is a normalization factor which
does not need to be calculated explicitly. The classifier picks
the terrain with the highest probability of P (xr|yICA) as the
correct terrain. The score of the unsupervised system, is the
percentage of time-steps correctly classified this way.

P (yICA|xr) can be obtained as follows, since the outputs
of the ICA layer are statistally independent:

P (yICA|xr) =

NICA∏
i=1

P (yiICA|xr) (9)

with yiICA the output of terrain cell i. Finally, we can estimate
P (yiICA|xr) based on our train set, by creating a histogram of
the terrain cells given a certain terrain.

TABLE III. TRAIN AND TEST RESULTS FOR EIGHT SIGNAL
SELECTIONS (IN PERCENTAGE, MORE IS BETTER). THE ENTIRE TABLE HAS

A SINGLE COLOR GRADIENT: MAXIMAL VALUE IS GREEN, MINIMAL IS
RED, AVERAGE OF THE TWO IS YELLOW.

TRAIN TEST
LR RC LR RC

useful 89.06 95.16 71.53 76.30
reduced 79.66 96.27 64.08 79.36
minimal 82.28 95.96 67.36 81.62
leg 75.70 95.42 63.63 81.53
agt 73.36 95.68 66.69 82.84
imu 53.35 91.47 43.98 72.25
joints 59.85 91.99 47.52 74.12
touch 64.45 93.84 57.89 84.69

IV. EXPERIMENTS

A. Supervised

1) Sensor Selection: The first experiment determines which
sensor combinations provide the best information for super-
vised terrain classification. We test the eight different sensor
combinations ranging from 4 to 55 signals out of 64 available
in the dataset.

We process the sensor data of these combinations with PCA
to compress the input signals, with the dimension reduction
rate as a parameter. The compressed signals are then classified
with LR and RC. All parameters of the different techniques
are optimized using CMA-ES for each combination of sensors.
In Table III the percentage of correctly classified time-steps is
shown.

Note that the dataset has few trials for each combina-
tion of terrain, gait and gait frequency. Only some of these
combinations are included in the training set, which increases
the difficulty of correctly classifying the entire test set as
the algorithms need to generalize over gaits and frequencies.
Consequently there is a gap between the performance on the
train set and the performance on the test set. This demonstrates
the correlation of terrain classification performance and the
actions of the robot, confirming the findings in [5].

As can be expected, LR performs better when it has a
higher input dimensionality, as additional, less useful signals
do not interfere with useful signals. On the other hand, RC
combines its input signals and needs a good balance between
the input dimensionality and the actual useful information
these signals contain.

If we take a look at imu and joints in Table III, we
notice a poor performance compared to the other results. These
are the only signal selections without the tactile sensors. leg
and agt are exactly the same as joints and imu with
the exclusion of the tactile sensors (and the inclusion of the
magnetometer in imu). This clearly indicates the importance
of the tactile sensors for supervised terrain classification. RC
even achieves the best result solely using the tactile sensors.

2) Selection of the Processing System: In order to compare
the different supervised systems discussed before (LR, ELM
and RC), we compare their performance for two sensor combi-
nations: touch and minimal. We picked minimal because
it seemed to strike a good balance between dimensionality and
performance across both techniques. Since RC achieved its
best score on the sensor combination touch, it was added



TABLE IV. TRAIN AND TEST RESULTS FOR COMPARISON OF RC AND
ELM WITH VARYING NUMBER OF NODES IN THE HIDDEN LAYER (IN
PERCENTAGE, MORE IS BETTER). SIGNAL SELECTIONS TOUCH AND

MINIMAL ARE TESTED, USING THE ENTIRE DATASET.

TOUCH MINIMAL
50N 100N 200N 50N 100N 200N

T
R

A
IN LR 64.45 82.28

ELM 83.04 84.19 85.75 87.32 91.84 94.38
RC 88.17 90.40 92.99 88.27 91.73 95.01

T
E

ST

LR 57.89 67.36
ELM 72.83 72.47 75.52 74.58 79.82 80.80
RC 80.30 83.04 85.19 74.09 77.28 81.43

F S L C R
Predicted

F

S

L

C

R

Ac
tu

al

56 5 471 127 55

60 230 1 9 0

- - - - -

- - - - -

- - - - -

F S L C R
Predicted

F

S

L

C

R

Ac
tu

al

64 53 146 72 43

6 86 69 84 7

7 12 213 65 39

- - - - -

- - - - -

Fig. 3. Reservoir computing confusion matrix for testing gait frequency (left)
and gait (right) generalization.

as well. From the results in Table IV it is clear that the
non-linearities introduced by expanding the input sensors are
necessary for a good result, as linear regression has over 10%
more misclassifications then any other technique with 100
hidden nodes. The results also show that given enough input
signals (minimal: 18 dimensions), RC and ELM achieve
virtually the same performance. Using only four tactile sensors
on the other hand, requires a system with recurrent nodes,
as RC outperforms ELM roughly 10%, and at the same time
achieves the best result overall, even while having less input
information.

3) Generalizability: Lastly we investigate the generaliz-
ability of the methods to other gaits or gait frequencies. We
train the system on the single gait ‘bound right’ at the single
frequency 1Hz. Subsequently we test it on other frequencies
of the same gait on the one hand and other gaits at the
same frequency on the other hand. Figure 3 depicts both these
approaches for RC. The extent of this experiment is limited by
the available trials in the dataset, as can be seen in Table I. The
dataset contains only three terrains for the gait generalization
and two terrains for the gait frequency.

Looking at the gait frequency we notice a high performance
for styrofoam (S) but a complete misclassification for foil (F),
with a similar result for LR. Looking back at table I we notice
that only 2 trials on foil are available for training, while there
are 13 trials on styrofoam (only 5 used during training). This
explains the poor performance for foil, meaning the perfor-
mance for styrofoam might indicate a possible generalization
to different frequencies.

Gait generalization on the other hand seems less feasible.
The result for foil can again be attributed to its limited train set,
but styrofoam has an equally poor performance. Only linoleum
(L) achieves a fairly decent classification. If we would have

TABLE V. TRAIN AND TEST RESULTS FOR EIGHT SIGNAL SELECTIONS
(IN PERCENTAGE, MORE IS BETTER). THE ENTIRE TABLE HAS A SINGLE

COLOR GRADIENT: MAXIMAL VALUE IS GREEN, MINIMAL IS RED,
AVERAGE OF THE TWO IS YELLOW.

TRAIN TEST
SFA2 RC-SFA SFA2 RC-SFA

useful 58.11 79.75 38.94 51.69
reduced 60.98 81.03 36.27 58.28
minimal 61.72 79.26 37.90 57.29
leg 53.71 72.25 33.82 58.33
agt 51.49 75.21 26.99 52.75
imu 44.45 70.83 29.16 55.29
joints 38.22 71.15 27.50 54.58
touch 48.09 75.53 35.97 50.29

TABLE VI. TRAIN AND TEST RESULTS FOR COMPARISON OF RC-SFA
AND ELM-SFA WITH VARYING NUMBER OF NODES IN THE HIDDEN LAYER

(IN PERCENTAGE, MORE IS BETTER). THE BOUND RIGHT GAIT AT ALL
FREQUENCIES WERE USED.

MINIMAL
50N 100N 200N

T
R

A
IN SFA2 61.72

ELM-SFA 81.92 82.93 86.24
RC-SFA 83.97 82.71 86.60

T
E

ST

SFA2 37.90
ELM-SFA 63.16 70.31 72.64
RC-SFA 65.64 68.62 71.92

a larger dataset and use multiple gaits during training, gait
generalization might be possible. Only a single gait and gait
frequency on the other hand does not carry enough information
to correctly classify new gaits.

B. Unsupervised

1) Sensor selection: Table V depicts the results for the
experiment with the unsupervised techniques, similarly as the
experiment with supervised techniques. The entire dataset is
used and PCA is applied for compacting the input signals.

Even though SFA2 and RC-SFA are mostly the same
system, the different expansion of the input signals clearly
has a large impact on the performance. This indicates that the
way reservoirs expand the dynamics of the system is beneficial
for classifying terrains. SFA2 performs relatively close to a
random terrain sensor (25%), while RC-SFA performs about
10 to 20% better. The signal selections imu and joints seem
to perform rather well, unlike with the supervised techniques.
Solely using the tactile sensors still achieves a decent perfor-
mance, but SFA seems to benefit from more input sensors.

2) Selection of the Processing System: Similarly as in
section IV-A2, we investigate the importance of the recurrent
connections in the reservoir. To do this, we compare the
results of reservoir computing with leaky ELM’s. In Table VI,
RC-SFA is compared with ELM-SFA using the sensor group
minimal and the bound right gait at all frequencies.

So with unsupervised learning techniques, the same con-
clusion of the supervised techniques holds as well. Here,
the recurrent connections do not seem to make a significant
difference either on the minimal sensor group. Note on the
other hand the decent results for unsupervised classification



when only using a single gait, as opposed to the results of the
complete dataset from Table V.

V. CONCLUSION

In this paper, we showed that a limited but appropriate
selection of input sensors is sufficient to perform terrain
classification on our legged robot. We have demonstrated that
good results are achievable with nearly all methods tested,
using the combination of a 6 DoF IMU, joint angle sensors
and tactile sensors on the feet. The fact that linear regression
performed badly on the data, indicates the importance of
adding non-linearities. For these non-linearities, we found that
reservoirs perform better than quadratically expanding, as is
demonstrated by the unsupervised classification method. For
supervised learning, reservoir computing led to drastic better
performance when using few sensors, which indicates that the
richness of the non-linear temporal expansion is beneficial
for classification with less information. The memory capacity
seems to be an important element, as the filtering used in the
ELMs proved to be insufficient.

How generally applicable this conclusion is, cannot be
reliably determined from this study, since only one robot was
used to obtain the data. We note that this observation was
reached on all tested terrains and gaits. Given sufficient data
in the train set, it was possible to classify terrains even at
unseen frequencies. However, when trained on a single gait, the
methods studied here were not very effective at generalizing
to unseen gaits.

We want to conclude that the challenge is to find an ap-
propriate set of input sensors to classify terrains in quadruped
robots. On the Puppy II robot, we found that a limited set
of sensor inputs were enough to perform good quality terrain
classification, when using methods which take into account
that there are underlying dynamics and non-linearities in the
system. We found that reservoir computing is a good way to
take these dynamics and non-linearities into account, since
the fading memory introduced by the recurrent connections
between the nodes improved performance when few sensors
are available, compared to other similar techniques.

VI. ACKNOWLEDGMENTS

The authors would like to thank Matej Hoffmann of the
University of Zurich again for lending us the dataset obtained
from the Puppy II robot. The research leading to these results
has received funding from the European Community’s Seventh
Framework Programme FP7/2007-2013 – Challenge 2 – Cog-
nitive Systems, Interaction, Robotics – under grant agreement
No 248311 - AMARSi.

REFERENCES

[1] J. Buchli, M. Kalakrishnan, M. Mistry, P. Pastor, and S. Schaal, “Com-
pliant quadruped locomotion over rough terrain,” in Intelligent Robots
and Systems, 2009. IROS 2009. IEEE/RSJ International Conference on,
oct. 2009, pp. 814 –820.

[2] C. Plagemann, S. Mischke, S. Prentice, K. Kersting, N. Roy, and
W. Burgard, “Learning predictive terrain models for legged robot
locomotion,” in Intelligent Robots and Systems, 2008. IROS 2008.
IEEE/RSJ International Conference on, sept. 2008, pp. 3545 –3552.

[3] P. Giguere, G. Dudek, C. Prahacs, and S. Saunderson, “Environment
identification for a running robot using inertial and actuator cues,” Proc.
of Robotics Science and System, August 2006.

[4] M. Hoepflinger, C. Remy, M. Hutter, L. Spinello, and R. Siegwart,
“Haptic terrain classification for legged robots,” in Robotics and Au-
tomation (ICRA), 2010 IEEE International Conference on, may 2010,
pp. 2828 –2833.

[5] M. Hoffmann, N. M. Schmidt, R. Pfeifer, A. K. Engel, and A. Maye,
“Using sensorimotor contingencies for terrain discrimination and adap-
tive walking behavior in the quadruped robot puppy,” in From Animals
to Animats 12. Springer, 2012, pp. 54–64.

[6] P. Giguere and G. Dudek, “Clustering sensor data for autonomous
terrain identification using time-dependency,” Auton. Robots, vol. 26,
no. 2-3, pp. 171–186, Apr. 2009. [Online]. Available: http:
//dx.doi.org/10.1007/s10514-009-9114-2

[7] P. Giguere, “Unsupervised learning for mobile robot terrain classifica-
tion,” 2009.

[8] G.-B. Huang, Q.-Y. Zhu, and C.-K. Siew, “Extreme learning machine:
Theory and applications,” Neurocomputing, vol. 70, no. 1-3, pp. 489 –
501, 2006. [Online]. Available: http://www.sciencedirect.com/science/
article/pii/S0925231206000385

[9] D. Verstraeten, B. Schrauwen, M. d’Haene, and D. Stroobandt, “An
experimental unification of reservoir computing methods,” Neural Net-
works, vol. 20, no. 3, pp. 391–403, 2007.

[10] W. Maass, T. Natschläger, and H. Markram, “Real-time computing
without stable states: A new framework for neural computation based
on perturbations,” Neural computation, vol. 14, no. 11, pp. 2531–2560,
2002.

[11] H. Jaeger and H. Haas, “Harnessing nonlinearity: Predicting chaotic
systems and saving energy in wireless communication,” Science, vol.
304, no. 5667, pp. 78–80, 2004.

[12] J. J. Steil, “Backpropagation-decorrelation: Online recurrent learning
with o (n) complexity,” in Neural Networks, 2004. Proceedings. 2004
IEEE International Joint Conference on, vol. 2. IEEE, 2004, pp. 843–
848.

[13] H. Jaeger, M. Lukoševičius, D. Popovici, and U. Siewert, “Optimization
and applications of echo state networks with leaky-integrator neurons,”
Neural Networks, vol. 20, no. 3, pp. 335–352, 2007.

[14] K. Caluwaerts, F. wyffels, S. Dieleman, B. Schrauwen et al., “The
spectral radius remains a valid indicator of the echo state property for
large reservoirs,” in International Joint Conference on Neural Networks
(IJCNN-2013), 2013.

[15] M. Lukoševičius and H. Jaeger, “Survey: Reservoir computing ap-
proaches to recurrent neural network training,” Computer Science
Review, vol. 3, no. 3, pp. 127–149, 2009.

[16] M. Hermans and B. Schrauwen, “Memory in linear recurrent neural
networks in continuous time,” Neural Networks, vol. 23, no. 3, pp.
341–355, 2010.

[17] E. Antonelo and B. Schrauwen, “Learning slow features with reservoir
computing for biologically-inspired robot localization,” NEURAL
NETWORKS, vol. 25, pp. 178–190, 2012. [Online]. Available:
http://dx.doi.org/10.1016/j.neunet.2011.08.004

[18] E. I. Moser, E. Kropff, and M.-B. Moser, “Place cells, grid cells, and
the brain’s spatial representation system,” Annu. Rev. Neurosci., vol. 31,
pp. 69–89, 2008.

[19] L. Wiskott and T. J. Sejnowski, “Slow feature analysis: Unsupervised
learning of invariances,” Neural computation, vol. 14, no. 4, pp. 715–
770, 2002.

[20] P. Comon, “Independent component analysis, a new concept?” Signal
Processing, vol. 36, no. 3, pp. 287 – 314, 1994. [Online]. Available:
http://www.sciencedirect.com/science/article/pii/0165168494900299

[21] A. Hyvärinen and E. Oja, “Independent component analysis: algorithms
and applications,” Neural Networks, vol. 13, no. 4-5, pp. 411 –
430, 2000. [Online]. Available: http://www.sciencedirect.com/science/
article/pii/S0893608000000265

[22] N. Hansen, “The CMA evolution strategy: a comparing review,” in
Towards a new evolutionary computation. Advances on estimation of
distribution algorithms, J. Lozano, P. Larranaga, I. Inza, and E. Ben-
goetxea, Eds. Springer, 2006, pp. 75–102.

[23] N. M. Schmidt, M. Hoffmann, K. Nakajima, and R. Pfeifer,
“Bootstrapping perception using information theory: Case studies in a
quadruped robot running on different grounds,” Advances in Complex
Systems, p. 1250078. [Online]. Available: http://www.worldscientific.
com/doi/abs/10.1142/S0219525912500786


