988 research outputs found

    Tactile retina for slip detection

    Get PDF
    The interest in tactile sensors is increasing as their use in complex unstructured environments is demanded, like in telepresence, minimal invasive surgery, robotics etc. The array of pressure data provided by these devices can be treated with different image processing algorithms to extract the required information. However, as in the case of vision chips or artificial retinas, problems arise when the array size and the computation complexity increase. Having a look at the skin, the information collected by every mechanoreceptor is not sent to the brain for its processing, but some complex pre-processing is performed to fit the limited throughput of the nervous system. This is specially important for high bandwidth demanding tasks. Experimental works report that neural response of skin mechanoreceptors encodes the change in local shape from an offset level rather than the absolute force or pressure distributions. Something similar happens in the retina, which implements a spatio-temporal averaging. We propose the same strategy in tactile preprocessing, and we show preliminary results illustrated for the case of slip detection, which is certainly demanding in computing requirements.Ministerio de Ciencia y Tecnología TIC2003- 09817-C0

    Tactile on-chip pre-processing with techniques from artificial retinas

    Get PDF
    The interest in tactile sensors is increasing as their use in complex unstructured environments is demanded, like in tele-presence, minimal invasive surgery, robotics etc. The matrix of pressure data these devices provide can be managed with many image processing algorithms to extract the required information. However, as in the case of vision chips or artificial retinas, problems arise when the array size and the computation complexity increase. Having a look to the skin, the information collected by every mechanoreceptor is not carried to the brain for its processing, but some complex pre-processing is performed to fit the limited throughput of the nervous system. This is specially important for high bandwidth demanding tasks. Experimental works report that neural response of skin mechanoreceptors encodes the change in local shape from an offset level rather than the absolute force or pressure distributions. This is also the behavior of the retina, which implements a spatio-temporal averaging. We propose the same strategy in tactile preprocessing, and we show preliminary results when it faces the detection of the slip, which involves fast real-time processing.Ministerio de Ciencia y Tecnología TIC2003 - 09817-C0

    Integrated Circuitry to Detect Slippage Inspired by Human Skin and Artificial Retinas

    Get PDF
    This paper presents a bioinspired integrated tactile coprocessor that is able to generate a warning in the case of slippage via the data provided by a tactile sensor. Some implementations use different layers of piezoresistive and piezoelectric materials to build upon the raw sensor and obtain the static (pressure) as well as the dynamic (slippage) information. In this paper, a simple raw sensor is used, and a circuitry is implemented, which is able to extract the dynamic information from a single piezoresistive layer. The circuitry was inspired by structures found in human skin and retina, as they are biological systems made up of a dense network of receptors. It is largely based on an artificial retina , which is able to detect motion by using relatively simple spatial temporal dynamics. The circuitry was adapted to respond in the bandwidth of microvibrations produced by early slippage, resembling human skin. Experimental measurements from a chip implemented in a 0.35-mum four-metal two-poly standard CMOS process are presented to show both the performance of the building blocks included in each processing node and the operation of the whole system as a detector of early slippage.Ministerio de Economía y Competitividad TEC2006-12376-C02-01Gobierno de España TEC2006- 1572

    Neuromorphic event-based slip detection and suppression in robotic grasping and manipulation

    Get PDF
    Slip detection is essential for robots to make robust grasping and fine manipulation. In this paper, a novel dynamic vision-based finger system for slip detection and suppression is proposed. We also present a baseline and feature based approach to detect object slips under illumination and vibration uncertainty. A threshold method is devised to autonomously sample noise in real-time to improve slip detection. Moreover, a fuzzy based suppression strategy using incipient slip feedback is proposed for regulating the grip force. A comprehensive experimental study of our proposed approaches under uncertainty and system for high-performance precision manipulation are presented. We also propose a slip metric to evaluate such performance quantitatively. Results indicate that the system can effectively detect incipient slip events at a sampling rate of 2kHz (Δt=500μs\Delta t = 500\mu s) and suppress them before a gross slip occurs. The event-based approach holds promises to high precision manipulation task requirement in industrial manufacturing and household services.Comment: 18 pages, 14 figure

    A novel event-based incipient slip detection using Dynamic Active-Pixel Vision Sensor (DAVIS)

    Get PDF
    In this paper, a novel approach to detect incipient slip based on the contact area between a transparent silicone medium and different objects using a neuromorphic event-based vision sensor (DAVIS) is proposed. Event-based algorithms are developed to detect incipient slip, slip, stress distribution and object vibration. Thirty-seven experiments were performed on five objects with different sizes, shapes, materials and weights to compare precision and response time of the proposed approach. The proposed approach is validated by using a high speed constitutional camera (1000 FPS). The results indicate that the sensor can detect incipient slippage with an average of 44.1 ms latency in unstructured environment for various objects. It is worth mentioning that the experiments were conducted in an uncontrolled experimental environment, therefore adding high noise levels that affected results significantly. However, eleven of the experiments had a detection latency below 10 ms which shows the capability of this method. The results are very promising and show a high potential of the sensor being used for manipulation applications especially in dynamic environments

    The Role of Stereopsis in the Control of Grasp Forces during Prehension

    Get PDF
    Background: Binocular viewing is associated with a superior prehensile performance, which is particularly evident in the latter part of the reach as the hand approaches and makes contact with the target object. However, the visuomotor mechanisms through which binocular vision serves prehensile performance remains unclear. The present study was designed to investigate the role of stereopsis in the planning and control of grasping using outcome measures which reflect predictive control. It was hypothesized that binocular viewing will be associated with more efficient grasp execution because stereoacuity provides more accurate sensory input about the object’s material properties to plan appropriate grip forces to successfully lift the target object. In the case when binocular vision is reduced or unavailable, predictive control of grasping will be reduced, and subjects will have to rely on somatosensory feedback to successfully execute the grasp. Methods: 20 healthy participants (17-35 years, 11 male) with normal vision were recruited. Subjects performed a precision reach-to-grasp task which required them to reach, grasp, and transport a bead (~2 cm in diameter) to a specified location. Subjects were instructed to perform the task as fast as possible in the following viewing conditions: binocular, monocular, and two conditions with reduced stereoacuity: 200 arcsec stereo, 800 arcsec stereo, which were randomized in blocks. Results: Binocular, compared to monocular viewing had a greater influence on the grasp phase compared to the reach and transport phase. Specifically, there was a 36% increase in post-contact time, 29% decrease in grip force 50ms following object grasp, and 30% increase in grasp errors. In contrast, parameters of the reach and transport phase only demonstrated a 3-8% reduction in performance. Grasp performance was similarly disrupted during binocular viewing with reduced stereoacuity whereby a reduction in stereoacuity was associated with a proportional reduction in grasp performance. Notably, grip force at the time of object lift-off was comparable between all viewing conditions. Conclusion: The results demonstrate that binocular viewing contributes significantly more to the performance of grasping relative to the reach and transport phase. In addition, the results suggest that stereopsis provides important sensory information which enables the central nervous system to engage in predictive control of grasp forces. When binocular disparity information is reduced or absent, subjects take on a more cautious approach to the grasp and make more errors (i.e., collisions followed by readjustments). Overall, findings from the current study indicate that stereopsis provides important sensory input for the predictive control of grasping, and a progressive reduction in stereopsis is associated with increased uncertainty which results in a greater reliance on somatosensory feedback control

    Engineering data compendium. Human perception and performance. User's guide

    Get PDF
    The concept underlying the Engineering Data Compendium was the product of a research and development program (Integrated Perceptual Information for Designers project) aimed at facilitating the application of basic research findings in human performance to the design and military crew systems. The principal objective was to develop a workable strategy for: (1) identifying and distilling information of potential value to system design from the existing research literature, and (2) presenting this technical information in a way that would aid its accessibility, interpretability, and applicability by systems designers. The present four volumes of the Engineering Data Compendium represent the first implementation of this strategy. This is the first volume, the User's Guide, containing a description of the program and instructions for its use

    The Change in Fingertip Contact Area as a Novel Proprioceptive Cue

    Get PDF
    Humans, many animals, and certain robotic hands have deformable fingertip pads [1, 2]. Deformable pads have the advantage of conforming to the objects that are being touched, ensuring a stable grasp for a large range of forces and shapes. Pad deformations change with finger displacements during touch. Pushing a finger against an external surface typically provokes an increase of the gross contact area [3], potentially providing a relative motion cue, a situation comparable to looming in vision [4]. The rate of increase of the area of contact also depends on the compliance of the object [5]. Because objects normally do not suddenly change compliance, participants may interpret an artificially induced variation in compliance, which coincides with a change in the gross contact area, as a change in finger displacement, and consequently they may misestimate their finger’s position relative to the touched object. To test this, we asked participants to compare the perceived displacements of their finger while contacting an object varying pseudo-randomly in compliance from trial to trial. Results indicate a bias in the perception of finger displacement induced by the change in compliance, hence in contact area, indicating that participants interpreted the altered cutaneous input as a cue to proprioception. This situation highlights the capacity of the brain to take advantage of knowledge of the mechanical properties of the body and of the external environment

    Functional specificity of rat vibrissal primary afferents

    Get PDF
    In this study, we propose to analyze the peripheral vibrissal system specificity through its neuronal responses. Receiver operating characteristics (ROC) curve analyses were used, which required the implementation of a binary classifier (artificial neural network) trained to identify the applied stimulus. The training phase consisted of the observation of a predetermined amount of vibrissal sweeps on two surfaces of different texture and similar roughness. Our results suggest that the specificity of the peripheral vibrissal system easily permits the discrimination between perceived stimuli, quantified through neuronal responses, and that it can be evaluated through an ROC curve analysis. We found that such specificity makes a linear binary classifier capable of detecting differences between stimuli with five sweeps at most.Fil: Lucianna, Facundo Adrián. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Tucumán. Instituto Superior de Investigaciones Biológicas. Universidad Nacional de Tucumán. Instituto Superior de Investigaciones Biológicas; Argentina. Universidad Nacional de Tucumán. Facultad de Ciencias Exactas y Tecnología. Departamento de Bioingeniería. Laboratorio de Medios e Interfases; ArgentinaFil: Farfan, Fernando Daniel. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Tucumán. Instituto Superior de Investigaciones Biológicas. Universidad Nacional de Tucumán. Instituto Superior de Investigaciones Biológicas; Argentina. Universidad Nacional de Tucumán. Facultad de Ciencias Exactas y Tecnología. Departamento de Bioingeniería. Laboratorio de Medios e Interfases; ArgentinaFil: Pizá, Alvaro Gabriel. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Tucumán. Instituto Superior de Investigaciones Biológicas. Universidad Nacional de Tucumán. Instituto Superior de Investigaciones Biológicas; Argentina. Universidad Nacional de Tucumán. Facultad de Ciencias Exactas y Tecnología. Departamento de Bioingeniería. Laboratorio de Medios e Interfases; ArgentinaFil: Albarracin, Ana Lia. Universidad Nacional de Tucumán. Facultad de Ciencias Exactas y Tecnología. Departamento de Bioingeniería. Laboratorio de Medios e Interfases; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Tucumán. Instituto Superior de Investigaciones Biológicas. Universidad Nacional de Tucumán. Instituto Superior de Investigaciones Biológicas; ArgentinaFil: Felice, Carmelo Jose. Universidad Nacional de Tucumán. Facultad de Ciencias Exactas y Tecnología. Departamento de Bioingeniería. Laboratorio de Medios e Interfases; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Tucumán. Instituto Superior de Investigaciones Biológicas. Universidad Nacional de Tucumán. Instituto Superior de Investigaciones Biológicas; Argentin
    corecore