837 research outputs found

    System Development of an Unmanned Ground Vehicle and Implementation of an Autonomous Navigation Module in a Mine Environment

    Get PDF
    There are numerous benefits to the insights gained from the exploration and exploitation of underground mines. There are also great risks and challenges involved, such as accidents that have claimed many lives. To avoid these accidents, inspections of the large mines were carried out by the miners, which is not always economically feasible and puts the safety of the inspectors at risk. Despite the progress in the development of robotic systems, autonomous navigation, localization and mapping algorithms, these environments remain particularly demanding for these systems. The successful implementation of the autonomous unmanned system will allow mine workers to autonomously determine the structural integrity of the roof and pillars through the generation of high-fidelity 3D maps. The generation of the maps will allow the miners to rapidly respond to any increasing hazards with proactive measures such as: sending workers to build/rebuild support structure to prevent accidents. The objective of this research is the development, implementation and testing of a robust unmanned ground vehicle (UGV) that will operate in mine environments for extended periods of time. To achieve this, a custom skid-steer four-wheeled UGV is designed to operate in these challenging underground mine environments. To autonomously navigate these environments, the UGV employs the use of a Light Detection and Ranging (LiDAR) and tactical grade inertial measurement unit (IMU) for the localization and mapping through a tightly-coupled LiDAR Inertial Odometry via Smoothing and Mapping framework (LIO-SAM). The autonomous navigation module was implemented based upon the Fast likelihood-based collision avoidance with an extension to human-guided navigation and a terrain traversability analysis framework. In order to successfully operate and generate high-fidelity 3D maps, the system was rigorously tested in different environments and terrain to verify its robustness. To assess the capabilities, several localization, mapping and autonomous navigation missions were carried out in a coal mine environment. These tests allowed for the verification and tuning of the system to be able to successfully autonomously navigate and generate high-fidelity maps

    THE METHODOLOGY FOR INTEGRATING ROBOTIC SYSTEMS IN UNDEGROUND MINING MACHINES

    Get PDF
    Roof bolting is a critical operation in ensuring the safety and stability of underground mines by securing the roof strata with bolts. The process involves moving and manipulating heavy tools while being vigilant about the safety of the area. During the installation of roof bolts, operators are exposed to hazardous conditions due to challenging working conditions in underground mines, extensive working hours, and demanding shift schedules leading to personnel fatigue and influencing operators to take shortcuts that may increase the risk of injuries and fatal accidents. The successful completion of roof bolting tasks depends heavily on operator judgment and experience to perform these tasks. To mitigate the occupational hazards inherent in roof bolting operations, a six-axis ABB IRB 1600 robotic arm was integrated into the roof bolter machine to imitate human functions during the roof bolting operation. The integration process involves selecting a suitable robot that can perform human activities and has the potential to handle the tasks at hand. The ultimate goal of implementing the robotic system into the roof bolter machine is to minimize human involvement during the roof bolting operation by converting the machine from manual operations to a partially automated roof bolter machine. The integration enhances the safety of personnel by moving humans away from the face where roof bolting takes place to a safe distance. The operator is then assigned a new role to control and supervise all the operational tasks of the automated roof bolting operation via a human-machine interface (HMI). During the laboratory testing of the automation process, the robotic arm cooperates with some novel specialized technologies to imitate human activities during roof bolting operations. The developed systems include the plate feeder, the bolt feeder, and the wrench. These systems were built to support automation and minimize human intervention during roof bolting operations. These components were linked to the Programmable Logic Controller (PLC) and controlled by the HMI touchpad. An HMI was developed for the operator to control and monitor the automated process away from the active face. This study establishes robust communication paths among all the components. The design communication network links the robotic arm and other components of the roof bolter machine, leading to a smooth and sequential roof bolting process. The EtherNet/IP protocol is used to pass messages between the components of the automated roof bolter machine through a Controller Area Network (CAN) bus device installed to enable communication using CAN protocols. Establishing a robust communication network between the components prevents collision and manages the movement of the robotic arm and other developed automated systems during the bolting process. The outcome of the study shows that the robotic arm has the potential to mimic human activities during the roof bolting operation by performing bolt grasping, holding, lifting, placing, and removal of drill steels during the roof bolting operations. As a result, humans can be moved away from hazardous areas to a safe location and control the roof bolting operation through an Human Machine Interface (HMI) touchpad. The HMI controls the bolting process with start and stop buttons from the subroutine of all the components to perform the roof bolting operation. These buttons enable the operator to stop the operation in the event of unsafe acts

    Proceedings of the NASA Conference on Space Telerobotics, volume 1

    Get PDF
    The theme of the Conference was man-machine collaboration in space. Topics addressed include: redundant manipulators; man-machine systems; telerobot architecture; remote sensing and planning; navigation; neural networks; fundamental AI research; and reasoning under uncertainty

    Robotic autonomous systems for earthmoving equipment operating in volatile conditions and teaming capacity: a survey

    Full text link
    Abstract There has been an increasing interest in the application of robotic autonomous systems (RASs) for construction and mining, particularly the use of RAS technologies to respond to the emergent issues for earthmoving equipment operating in volatile environments and for the need of multiplatform cooperation. Researchers and practitioners are in need of techniques and developments to deal with these challenges. To address this topic for earthmoving automation, this paper presents a comprehensive survey of significant contributions and recent advances, as reported in the literature, databases of professional societies, and technical documentation from the Original Equipment Manufacturers (OEM). In dealing with volatile environments, advances in sensing, communication and software, data analytics, as well as self-driving technologies can be made to work reliably and have drastically increased safety. It is envisaged that an automated earthmoving site within this decade will manifest the collaboration of bulldozers, graders, and excavators to undertake ground-based tasks without operators behind the cabin controls; in some cases, the machines will be without cabins. It is worth for relevant small- and medium-sized enterprises developing their products to meet the market demands in this area. The study also discusses on future directions for research and development to provide green solutions to earthmoving.</jats:p

    Seamless Positioning and Navigation in Urban Environment

    Get PDF
    L'abstract è presente nell'allegato / the abstract is in the attachmen

    Advancing self-escape training : a needs analysis based on the National Academy of Sciences report "improving self-escape from underground coal mines."

    Get PDF
    "This report summarizes a needs analysis and actions taken by NIOSH based on the National Academy of Sciences recommendations specific to advancing self-escape training, with an emphasis on preparing rank-and-file mineworkers for self-escape. This report also provides the foundation for the practical guidance offered in its sister publication, the NIOSH Information Circular (IC) "Self-escape Core Competency Profile: Guidance for Improving Underground Coal Miners' Self-escape Competency" [NIOSH 2023], which offers an evidence-based self-escape competency framework derived from the results of this work." - NIOSHTIC-2NIOSHTIC no. 20067688Suggested citation: NIOSH [2023]. Advancing self-escape training: a needs analysis based on the National Academy of Sciences report, \u201cImproving Self-escape from Underground Coal Mines.\u201d By Hoebbel CL, Bellanca JL, Ryan ME, Brnich MJ. Pittsburgh PA: U.S. Department of Health and Human Services, Centers for Disease Control and Prevention, National Institute for Occupational Safety and Health, DHHS (NIOSH) Publication No. 2023-134, https://doi.org/10.26616/NIOSHPUB2023134

    Space Science Opportunities Augmented by Exploration Telepresence

    Get PDF
    Since the end of the Apollo missions to the lunar surface in December 1972, humanity has exclusively conducted scientific studies on distant planetary surfaces using teleprogrammed robots. Operations and science return for all of these missions are constrained by two issues related to the great distances between terrestrial scientists and their exploration targets: high communication latencies and limited data bandwidth. Despite the proven successes of in-situ science being conducted using teleprogrammed robotic assets such as Spirit, Opportunity, and Curiosity rovers on the surface of Mars, future planetary field research may substantially overcome latency and bandwidth constraints by employing a variety of alternative strategies that could involve: 1) placing scientists/astronauts directly on planetary surfaces, as was done in the Apollo era; 2) developing fully autonomous robotic systems capable of conducting in-situ field science research; or 3) teleoperation of robotic assets by humans sufficiently proximal to the exploration targets to drastically reduce latencies and significantly increase bandwidth, thereby achieving effective human telepresence. This third strategy has been the focus of experts in telerobotics, telepresence, planetary science, and human spaceflight during two workshops held from October 3–7, 2016, and July 7–13, 2017, at the Keck Institute for Space Studies (KISS). Based on findings from these workshops, this document describes the conceptual and practical foundations of low-latency telepresence (LLT), opportunities for using derivative approaches for scientific exploration of planetary surfaces, and circumstances under which employing telepresence would be especially productive for planetary science. An important finding of these workshops is the conclusion that there has been limited study of the advantages of planetary science via LLT. A major recommendation from these workshops is that space agencies such as NASA should substantially increase science return with greater investments in this promising strategy for human conduct at distant exploration sites

    Space Science Opportunities Augmented by Exploration Telepresence

    Get PDF
    Since the end of the Apollo missions to the lunar surface in December 1972, humanity has exclusively conducted scientific studies on distant planetary surfaces using teleprogrammed robots. Operations and science return for all of these missions are constrained by two issues related to the great distances between terrestrial scientists and their exploration targets: high communication latencies and limited data bandwidth. Despite the proven successes of in-situ science being conducted using teleprogrammed robotic assets such as Spirit, Opportunity, and Curiosity rovers on the surface of Mars, future planetary field research may substantially overcome latency and bandwidth constraints by employing a variety of alternative strategies that could involve: 1) placing scientists/astronauts directly on planetary surfaces, as was done in the Apollo era; 2) developing fully autonomous robotic systems capable of conducting in-situ field science research; or 3) teleoperation of robotic assets by humans sufficiently proximal to the exploration targets to drastically reduce latencies and significantly increase bandwidth, thereby achieving effective human telepresence. This third strategy has been the focus of experts in telerobotics, telepresence, planetary science, and human spaceflight during two workshops held from October 3–7, 2016, and July 7–13, 2017, at the Keck Institute for Space Studies (KISS). Based on findings from these workshops, this document describes the conceptual and practical foundations of low-latency telepresence (LLT), opportunities for using derivative approaches for scientific exploration of planetary surfaces, and circumstances under which employing telepresence would be especially productive for planetary science. An important finding of these workshops is the conclusion that there has been limited study of the advantages of planetary science via LLT. A major recommendation from these workshops is that space agencies such as NASA should substantially increase science return with greater investments in this promising strategy for human conduct at distant exploration sites

    Advanced technologies for productivity-driven lifecycle services and partnerships in a business network

    Get PDF
    • …
    corecore