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Abstract

System Development of an Unmanned Ground Vehicle and
Implementation of an Autonomous Navigation Module in a Mine

Environment

Jonas Amoama Bredu Jnr

There are numerous benefits to the insights gained from the exploration and exploitation of un-
derground mines. There are also great risks and challenges involved, such as accidents that have
claimedmany lives. To avoid these accidents, inspections of the largemineswere carried out by the
miners, which is not always economically feasible and puts the safety of the inspectors at risk. De-
spite the progress in the development of robotic systems, autonomous navigation, localization and
mapping algorithms, these environments remain particularly demanding for these systems. The
successful implementation of the autonomous unmanned system will allow mine workers to au-
tonomously determine the structural integrity of the roof and pillars through the generation of
high-fidelity 3D maps. The generation of the maps will allow the miners to rapidly respond to
any increasing hazards with proactive measures such as: sending workers to build/rebuild support
structure to prevent accidents. The objective of this research is the development, implementation
and testing of a robust unmanned ground vehicle (UGV) that will operate in mine environments
for extended periods of time. To achieve this, a custom skid-steer four-wheeled UGV is designed
to operate in these challenging undergroundmine environments. To autonomously navigate these
environments, the UGV employs the use of a Light Detection and Ranging (LiDAR) and tactical
grade inertialmeasurement unit (IMU) for the localization andmapping through a tightly-coupled
LiDAR InertialOdometry via Smoothing andMapping framework (LIO-SAM).The autonomous
navigation module was implemented based upon the Fast likelihood-based collision avoidance
with an extension to human-guided navigation and a terrain traversability analysis framework. In
order to successfully operate and generate high-fidelity 3Dmaps, the system was rigorously tested
in different environments and terrain to verify its robustness. To assess the capabilities, several
localization, mapping and autonomous navigation missions were carried out in a coal mine envi-
ronment. These tests allowed for the verification and tuning of the system to be able to successfully
autonomously navigate and generate high-fidelity maps.
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1
Introduction



Humans have been exploring subterranean spaces such as caves and mines since our existence.
Theexplorationof subterranean spaces has immense value acrossmany applications andfields such
as resource extraction and planetary exploration. Although there are tremendous benefits to the
insights gained from exploring these spaces, there are also great risks and challenges involved. The
exploitation of these spaces have led to accidents that have claimedmany lives such as theQuecreek
Coal Mine [137] in Pennsylvania, the Daxing Coal Mine [92] in China, and the Karl Marx Mine
[113] in Ukraine.

Over the years, the National Institute for Occupational Safety and Health (NIOSH) has con-
ducted research to improve the structural design and working conditions in active mines. The re-
search being conducted is to prevent accidents, protect human lives, and improve and stabilize
structures. The guidelines detail modern pillar designs for all mines, including limestone mines
which are the focus of this thesis. Underground limestone mines generally have strong structures
and are generally stable, and the enhanced pillar designs developed by NIOSH have improved the
stability of these mines even more. Although the guidelines provided are being enforced, previ-
ously mined sections stay open for years and are uninspected. Over time, these sections undergo
time-dependent degradation which is not covered by the guidelines. The evolution of the cracks
and damages to the roof and pillars result from factors such as geology, excavation geometry, in-
situ stress state, mining-induced stress, and/or change in mechanical properties of the rock with
time [134]. Since the implementation of NIOSH’s guidelines are more recent, some sections of
the mines might have older pillar designs that may not be up to current safety specifications and
standards. Due to the outdated safety factors from the old designs and time degradation, over time
the pillars can be affected by sloughing as well as reported roof falls. This can pose a threat to the
miners, as they have to travel through some mined sections to get to the working face. In a lime-
stone mine in Whitney, Pennsylvania, there was a massive pillar collapse that injured miners due
to the air blast but luckily did not cause any fatalities [5, 46]. After investigations were conducted,
it was discovered that the area that had collapsed had not been mined for approximately 15 years.

From 1983 to 2021, the fall of ground has been the leading cause of fatalities in underground
mines, accounting for 40.20% [8] and more specifically 60% [9] for stone mines, reported by the
Centers for Disease Control and Prevention (CDC). Due to the severity of these occurrences, in-
spections are necessary to prevent any collapse, but current methods involve human inspections,
which are impractical due to the vast size of some mines as well as the risk to life to conduct the
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inspections.
By proactively inspecting the roofs and pillars, areas with elevated hazards can be repaired or

avoided to ensure the safety of all miners. In efforts to improve the safety conditions, continual re-
search has led to useful insights into understanding the structure, pillars, and roof ofmines [28, 88–
90, 126, 147]. These standards include improving roof support performance, maintaining safe tail-
gate escape ways from longwalls, optimizing pillar design for retreat mining, controlling multiple
seam interactions, predicting roof conditions during extended cuts, and preventing massive pillar
collapses [7]. But due to the vastness of stone mines, the inspections of entire mines are infeasible
due to the risks involved, the limited number of workers, and the economic impact.

1.1 Problem Statement

The goal of this research effort is to develop a robust and reliable autonomous unmanned ground
vehicle that can operate in stonemine-related subterranean environments to generate high-fidelity
3Dmaps that can be used to prevent accidents. Most importantly, the development of the robotic
platform is to reduce the human factor from the tedious and dangerous task of inspections which
can alleviate some of the risks faced by mine workers. Additionally, in the case of accidents, the
generated 3Dmaps can be used by search and rescue teams to help mine workers. The lack of such
systems motivates the objective of this research which is the following:

The implementation of a robust unmanned ground vehicle with localization, map-
ping, and autonomous navigation capabilities.

1.2 Contributions

The contribution to the research project is the development, implementation, system integration,
and field testing of a robust unmanned ground vehicle (UGV).The primary objective of the UGV
is to autonomously traverse the challenging terrain to create high-fidelity maps of subterranean
environments for extended periods. Another objective of the system is to provide power to an
unmanned aerial vehicle (UAV)when implemented in a stonemine to extend the operational time
aswell as themapping capabilities to theblind spots of theUGV.TheUGVautonomously navigates
to different locations and once stationary a UAV is deployed to scan the tall pillars. Since there are
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no weight limitations, the UGV can carry various sensors and electronics that can be used to infer
as much information about these environments, unlike the UAV. The research contributions are
summarized below:

1. Development and implementation of a robust and reliable system to complete all required
missions.

2. Autonomously localize and map the mine environment for extended periods.

3. Create high-fidelity 3Dmaps.

1.3 Broader Impact

Thegoal of the research is to develop and implementmodern robotic systems to enhancemonitor-
ing and warning systems of old workings in underground stonemines. Although the fall of ground
and pillar stability are necessary to be studied for all mines, these accidents account for a higher
fatality rate in stone mines. Therefore the proposed project focuses on underground stone mine
operations, with 60% [9] of fatalities and 11.5% [1] of injuries.

The successful implementation of the system will allow mine workers to autonomously deter-
mine the structural integrity of the roof and pillars. As the structural integrity of the roofs and
pillars are determined, it will allow the miners to rapidly respond to any increasing hazards with
proactive measures such as: sending workers to build/rebuild support structure to aid in the pre-
vention of accidents, warning miners of highly hazardous areas to allow for the use of alternate
routes or the evacuation of the mine. Insights gained from the high-fidelity 3D maps can also be
used to accurately determine the volumetric change of pillars over time, which can then be used to
update strength degradation in pillar models.

Therest of this thesiswill beorganizedas follows. InChapter 2, the relatedworks arediscussed to
motivate the research and the gaps. Chapter 3 details the state-of-the-art algorithms implemented
to complete the missions required. Chapter 4 discusses the considerations made for the develop-
ment of the system and the proposed approach. Finally, Chapter 5 details and discusses the exper-
iments conducted by the system.
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Localization, mapping, and operations in subterranean environments or GPS-denied environ-
ments such as caves and mines is a challenging task that requires knowledge and understanding of
different researchfields and topics. Over the years, advanceshavebeenmade in sensors, electronics,
and algorithms for research purposes that have led to innovative solutions and algorithms. These
advancements have also led to an increased interest for commercial purposes in applications such
as autonomous unmanned vehicles for warehouse applications, self-driving cars, search and rescue
applications, etc [14, 33, 136]. Although there is no solution that can be applied in all scenarios,
the continuous advancements have led to innovative solutions such as Simultaneous Localization
andMapping (SLAM),Visual and InertialNavigation (VIN) systems, etc. The application of these
solutions for autonomous vehicles must be robust, precise, and able to handle software and hard-
ware failures in challenging environments and scenarios [136].

Although there are innovative developments and advancements in localization and mapping al-
gorithms, these environments are still very challenging forunmanned systems toexplore autonomously.
The difficulties are due to the extreme, rugged, and unstructured terrain and environments which
can have reduced visibility, moisture, varying temperatures, and water which can be difficult to tra-
verse even when being teleoperated. In order for an autonomous system to successfully traverse
or operate in these environments, the hardware system has to be robust, reliable, and adaptable to
different terrain. The sections below give an overview of some of the techniques and algorithms
developed for GPS-denied environments. The section also details some of the unique robots de-
veloped, implemented, and tested in subterranean environments.

2.1 Overview of LocalizationMethods

Localization of unmanned and manned vehicles for autonomous operations is an essential and
fundamental area of research. Localization is the process of estimating an object’s position and ori-
entation with respect to its environment and is usually based on a map and reference point. The
process of localization requires both hardware (sensors) and algorithms to run in parallel for an
agent to determine its pose. The localization solution is vital for path planning, waypoint naviga-
tion, decision-making, and other tasks that are required by any mission. This section gives a brief
overview of localization models and the sensors that are commonly used.

Generally, localization algorithms can be described by their sensor perception modules, which
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are proprioceptive and exteroceptive sensors [142]. Proprioceptive sensors are responsible for ob-
servations of the state of the robot such as accelerometers, magnetometers, gyroscopes, etc. Al-
ternatively, exteroceptive sensors are responsible for the observations of the environment such as
cameras, LiDAR, sonar, etc. In order to localize an unmanned vehicle, researchers usually combine
both perception modules in various algorithms.

Fig. 2.1.1 characterizes some of the commonly used localization sensors. Tactile sensors are de-
vices that providemeasurements by responding to physical contact with the environment [29, 91].
These typesof sensors canbeused inAutonomousUnderwaterVehicles (AUV) instrumentedwith
tactile whiskers to generate haptic maps. The generation of the haptic maps allows operators to
gain insightful knowledge on features such as surface form, texture, and compliance when used in
the demining and maintenance of oil rigs [109]. Tactile sensors are usually of low complexity, but
the implementation cost depends on the operating area’s size and is more suitable for applications
with small operational areas. Since these sensors require physical interaction to produce measure-
ments, a disadvantage is their susceptibility to wear and damage [91]. Due to most conventional
tactile sensors having limited sensing range, researchers have found their application in localization
techniques to be inefficient for 3D outdoor applications [29]. Rotary sensors measure the angular
position and speed, which is used to determine the current position at time step k and the previous
time step k − 1 when used in wheeled robots, also known as dead reckoning. Dead reckoning is
the process of estimating the pose of an object based on estimates of speed, heading, and time from
previous estimates [123]. A disadvantage of these systems is their susceptibility to the accumula-
tion of errors due to sensor biases and drift after extended operational times.

External referencing systems position a target based on its relative pose with respect to a known
landmark. For indoor applications, external referencing systems require two types of hardware
components, which are signal transmitters and measurement units. A disadvantage of these types
of sensors in the case of Global Navigation Satellite Systems (GNSS) aremultipath issues that lead
to incorrect pose estimates, which can be detrimental in some applications [82]. Vision andActive
ranging sensors observe and takemeasurements of the surroundings and then localize. A disadvan-
tage of these sensors, when used in localization algorithms, is apparent in environments that have
ambiguous and/or lack features that lead to incorrect loop closures. This can cause the robot to
perceive the environment as an endless corridor [49, 72, 116]. Vision and active ranges can also
be affected in the presence of obscurants in environments such as dust, fog, and smoke, leading to
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Figure 2.1.1: Example of Localization Sensors. Recreated by author based on [142]

incorrect measurements [111]. Although these sensors are affected by some particular conditions
but not others, when used in a complementary manner in localization algorithms, they can yield
robust algorithms [85, 120, 148].

For localizing agents in indoor applications, onboard localization systems are widely used when
the environment is not modified with anchors. Onboard localization systems refer to the use of
a single modality system to localize an unmanned vehicle by using either the incremental and/or
relocalizationmodels. The use of either is based on the availability of resources and the complexity
of the application [142]. Incremental models refer to the gradual growth of the observation while
simultaneously localizing the agentusedwhenpriormaps areunavailable. Therelocalizationmodel
refers to agents that calculate the pose based on a known map and current observation [82]. This
model is usedprimarilywhen apriormap is available, for example, inwarehouse applications, while
the incremental model is used when a map is unavailable or for exploration. The following section
gives an overview of the techniques and algorithms that are widely used for unmanned vehicles.
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Section 2.2 reviews LiDAR-based localization algorithms used by researchers to reliably localize
unmanned vehicles in challenging environments without the use of external referencing such as
GPS.

2.2 LiDAR Based Localization

LiDAR sensors are becoming crucial sensors in fully autonomous applications. Over the years,
advancements in electronics have led to the development of even more precise devices and with
high interest in autonomous applications, there has also been a decrease in the price and an increase
in their availability [21, 45, 136]. In addition to the development and improvement of sensors,
researchers have been developing algorithms to solve or improve state estimation techniques.

These algorithms use data frommultiple sensors, such as point clouds from the LiDAR for pose
estimation and velocity estimates (e.g., fusing sensor readings from IMUs and wheel encoders for
localizing unmanned ground vehicles). Prior to SLAM and LiDAR-based techniques, researchers
relied on odometry-based techniques which integrated wheel encoder readings. Due to sensor bi-
ases and noise, techniques that relied on wheel odometry would drift after a few meters which led
to unwanted behaviors andpoor state estimates [30]. However, there have also beendevelopments
in odometry algorithms that improve accuracy and robustness. Researchers have also been success-
fully improving visual and inertial-based algorithms that provide better state estimates [48, 81].

For autonomousexplorationandnavigation inundergroundenvironments, researchers arewidely
using LiDAR-based localization. Due to the versatility of LiDAR sensors, the ability to provide
high-fidelity 3Dmeasurements and work in various environments and conditions. Although there
is research ongoing and progressmade for this localizationmethod, it is still a challenging problem.
It requires in-depth knowledge of topics from different fields like signal processing, statistics, com-
puter vision, and many more. Research on sonar- or vision-based localization techniques has led
to the development and improvements of LiDAR-based localization methods and SLAM.

The inception of SLAM algorithms came about in 1986 when probabilistic methods were being
introduced to improve or solve problems in robotics and artificial intelligence [21]. There hadbeen
ongoing research on the application of estimation and theoreticmethods to solve problems inmap-
ping and localization. SLAMalgorithms aim to simultaneously estimate the pose of the unmanned
vehicle while creating a model/map of the environment utilizing sensors onboard an unmanned
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vehicle. The creation of a map supports other tasks such as path planning, obstacle avoidance, way-
point navigation and improves the state estimates. Themap improves the state estimates when the
robot revisits and recognizes known areas, known as loop closure. However, without loop closure,
SLAM reduces to odometry.

The typesof SLAMalgorithmscanbeclassified into twocategories, which arefilteringor smooth-
ing [54]. Filtering approaches model the localization problem as an online estimation. In online
estimation techniques, the states contain the current poses andmap solution which are updated in-
crementally as newmeasurements become available [23, 52]. Alternatively, smoothing techniques
solve the localization problem from a set of measurements and usually rely on least-square error
minimization techniques [38, 93].

Over time as interest and progress were made in the development of algorithms in SLAM, this
led to a formal characterization of SLAM.The structure of SLAM algorithms can be characterized
by two main areas: front-end and back-end, Fig. 2.2.1 shows an overview of a SLAM architecture.
The front-end is responsible for receiving data from sensors for feature extraction and data associ-
ation, while the back-end uses information from the front-end for state estimation. An essential

LiDAR 
IMU

 
Data association: 

short-term (feature tracking) 
long-term (loop closure)

MAP Estimation
Feature Extraction

SLAM Estimate
Back-End

Front-EndSensor Data 

Figure 2.2.1: SLAM Overview. Adapted from [21]

aspect of state estimation is the representation of the sensor measurements as analytic functions
required by maximum a posteriori (MAP) estimation, which is a challenging task. This makes the
front-end a crucial step in SLAM formulations. Advances in both components will be further dis-
cussed in the following paragraphs.

The back-end of SLAM is responsible for state estimation and is usually formulated as a MAP
estimation problem with the advantage of this formulation being that the observation andmotion
models are not explicitly defined, unlike the Kalman Filter approach. MAP estimation allows both
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models to be treated as factors in the graph allowing them to be seamlessly integrated into the
estimation process. Although in linear Gaussian applications, both the Kalman Filter and MAP
estimation methods provide the same estimates, but most problems in robotic applications are
nonlinear. MAP estimation computes the robot and landmark poses X∗, equivalent to the mode
of the posterior distribution, following Bayes theorem. The cost function for estimating the robot
and landmark poses (X∗) is:

X∗ = argmin
x

m∑
k=0

∥hk(Xk)− zk∥2Ωk
(2.1)

where hk is a nonlinear function, Xk is the unknown variable, zk represents the measurements and
Ωk represents the information matrix. MAP estimation, therefore, aims to minimize the negative
log-posterior a nonlinear least squares problem which can be solved using the Gauss-Newton or
Levenberg–Marquardt methods

Due to the interdependence of the variables required for state estimation, factor graphs are used
[38, 47, 53, 69, 118, 119]. Factor graphs characterize the unknown pose estimates as variables and
functions that represent constraints of the variables as factors [37]. The observation and motion
models, robot and landmark poses, calibration parameters, and factors that bound these variables
can be represented as factors in the graph. Theuse of factor graphsmakes it easier for researchers to
visualize the problemwhich can lead to improvements in computational complexity. The structure
of factor graphs also allows for the use of fast linear solvers [53, 69], as well as libraries of solvers
that are capable of processing thousands of data points in seconds [10, 37, 78, 102].

The front-end of SLAM is responsible for taking in sensor inputs for feature extraction, data
association, loop closure, and validation as well as providing an initial guess for the variables in
the nonlinear optimization step. Prior to the back-end, the front-end extracts the relevant infor-
mation from the sensor measurements to be used in the minimization in Equation 2.1. The data
association in the front-end is responsible for short-termdata associationwhich happens in concur-
rent sensor measurements. While, long-term data association is responsible for associating older
measurements with newer measurements, which occurs when there are loop closures. For loop
closures and validation, the back-end provides information to the front-end. An example of the im-
plementation of the front-end in vision-based SLAM is the extraction of important pixel locations
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from the environment. Once the pixel locations are extracted, the information can be modeled in
back-end for state estimation. An alternative formulation designed to solve SLAM is pose graph
optimization, which samples poses along the robot path and imposes constraints on pairs of poses
[23, 25, 26].

There have also been improvements in EKF-based SLAMsystems that have been able to achieve
great performance [34, 58, 76, 95] compared to earlier formulations. In [95], the measurement
model is capable of representing geometric constraints of static features observed from multiple
viewpoints. The performance of EKF-Based formulations and MAP estimation are similar when
there is accurate linearization and when sliding-window filters are implemented [61, 122].

In the design of any system and/or algorithms, there is a need for robustness. The robustness
of an algorithmmeans that the system can function properly even when there is an algorithmic or
hardware failure. Current formulations of SLAM can fail in the presence of challenging environ-
ments or highly dynamic environments. Theneed for robust systemsbecomesmore essentialwhen
there are long-termoperations. Awell-known source of failure in SLAMis the data association step,
which can either be in the short-term or long-term. The occurrence of short-term data association
failure can be easily addressed as compared to long-term data association which is harder to deal
with. An example of failures during data association that can occur in feature-based SLAM, is when
different sensor inputs register as the same, also known as perceptual aliasing. This occurrence can
lead to incorrect detection of outliers or false positives which are then fed into back-end thereby
compromising the state estimates from MAP algorithm [127]. Issues that occur during data as-
sociation can be addressed in both the front-end and the back-end. Problems in short-term data
association can be easily addressed, one method is to select a sensor that has a higher sampling
rate than the dynamics of the unmanned vehicle. This allows for the tracking of the features that
correspond to the same 3-D landmark in concurrent time steps but can increase the computational
complexity. To address the long-term data association issues different methods have been devel-
oped for both laser-based approaches [131] and visual-based approaches [31, 59, 86].

Loop closure validation is also another key aspect, especially for long-term data association,
since it is responsible for determining the quality of loop closures by using previously collected
sensor measurements and current sensor measurements. Loop closure validation is essential for
robust SLAM algorithms since incorrect closures that are fed back to the back-end will lead to in-
correct state estimates. Researchers have proposed several methods to validate loop closures, such
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as [39], commonly used for outlier detection and geometric verification. The calculation of the
residual by examining the current laser scan and the existing scan in laser-based approaches can
also be used to check the validity of a closure. Another area of research to deal with the issues
of long-term and short-term data association is by making the back-end more robust to incorrect
measurements [24, 80, 99]. A proposedmethod by [127] deals with incorrect loop closures in the
back-end by allowing the back-end tomake changes to the graph during the optimization step. This
allows the back-end to disregard incorrect closures and allow convergence even in the presence of
incorrect loop closures either in Pose Graph Optimization or Factor Graphs. All the approaches
described in the previous paragraphs involve prior knowledge and combination in many research
fields, such as sensor fusion, pointcloud registration, outlier detection, and loop closure detection.
With great interest and the development of numerous algorithms, the next sections will describe
some of the algorithms and their variations that are applied in localization techniques.

2.2.1 Point Cloud RegistrationMethods

In order to successfully localize and map, the techniques being implemented require the sensor
measurements to be registered to be used in the algorithms. In LiDAR-Based SLAM, the front-
end is responsible for the interpretation of range data from the LiDAR which is then used in the
back-end for state estimation [140] As sensors such as LiDARs generate range data while travers-
ing an environment or pixel location from cameras, the datamust be registered for state estimation.
Registration algorithms allow the integration of data from multiple sources by associating sets of
data into a common coordinate frame while minimizing the alignment error [103]. Registration
algorithms are used inmany applications and industries such as photography [128], 3D reconstruc-
tion and mapping, robotic exploration [60], organ reconstruction [132], and many more [16].

Point cloud registration methods are formulated to estimate the transformation (rotation and
translation) that best aligns corresponding data points into the same reference frame. Transforma-
tions can be defined as cost functions that aim to minimize errors using optimization techniques.
The Iterative Closest Point (ICP) Point-to-Point Algorithm [17] finds the unknown correspon-
dence by using the nearest-neighbor approach [18] and iteratively neglects outliers to improve the
previous translation and rotation estimates. However, the original ICP algorithm [17] has the limi-
tation of often falling into localminimadue to incorrect correspondences and sensitivity to outliers.
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Due to the limitation, several variations of the ICP algorithm have been developed to improve the
accuracy and robustness. The Generalized ICP (GICP) does not assume that the point clouds are
collected from known geometric surfaces, but rather through noisy sensor measurements [115].
GICP performs plane-to-plane matching by using a probabilistic interpretation of the optimiza-
tion problem [115]. However, the registration of point clouds directly can still be susceptible to
noisy sensor inputs, which can influence the accuracy of the estimation.

Analternative approach topointcloud registration is theNormalDistributionTransform(NDT)
algorithm proposed by [19] for 2D applications. NDT converts the pointclouds to a normal dis-
tribution map by converting them into grid cells. A Probability Density Function (PDF) is used
to calculate the likelihood of measuring a sample in each cell, as well as the covariance matrix and
average. Space segmentation is then used to generate a Gaussian distribution function to deter-
mine the dispersion of pointclouds. To determine the transformation, a cost function is updated
based on the gradient vector andHessianmatrix. For 3D application, [87] expanded the 2DNDT
algorithm by [19] and improved the accuracy by improving the cost function by implementing a
Gaussian approximation of the log-likelihood.

Although both NDT and ICP algorithms and their variations aim to solve the issue of point
cloud registration, NDT algorithms tend to be more robust and precise. As compared to ICP,
NDTdoes not need to establish a definitive correspondence between points or features to estimate
transformations. This makes NDT algorithms more robust since establishing correspondence is
the most error-prone step in the pointcloud registration process. The 3DNDT algorithm can also
execute appearance-based loop closures and requires no pose information [87] which is essential
in mapping applications. Nevertheless, both NDT and ICP can provide incorrect transformation
estimates when there are a number of sizable dynamic objects in the environment. Therefore, in
applications involving motion or dynamic objects, these algorithms cannot be implemented inde-
pendently for registration.

2.2.2 Sensor Fusion

Sensor fusion is the integration of data and readings frommultiple sources and sensors to produce
accurate and consistent data. The goal of sensor fusion in state estimation for autonomous appli-
cations is to reduce the probability of any perceptible errors and increase reliability by using infor-
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mation frommultiple sources and sensors. Sensor fusion is essential because navigation based on
sensors from a single source is insufficient. This has led to the development of some state-of-the-art
state estimation techniques such as Kalman Filters [70], Particle Filters[51, 83], Covariance Inter-
section [67], Factor Graphs [37], etc.

Kalman Filtering is a sensor fusion algorithm widely recognized in signal processing, control
systems, navigation, and control. Kalman filters are algorithms that receive data from noisy sensor
data recursively to produce statistically optimal estimates of the system’s state by computing the
Jacobians [70]. If the system can be modeled as a linear system and the error can be modeled as
Gaussian noise, the Kalman filter acquires the optimal estimates. Most engineering problems are
non-linear dynamic systems, therefore the development of variations of Kalman filters are required
for state estimation. A variation of the Kalman Filter that aims to reduce the errors of lineariza-
tion is the Iterated Kalman Filter (IKF), which continuously linearizes non-linear systems at every
timestep [15]. TheUnscented Kalman Filter solves the nonlinearity of systems by predetermining
the approximated state estimates throughGaussian Random variables by estimating themean and
covariances [66]. A variation of the Kalman Filter that is widely used in navigation systems and
nonlinear signal processing is the Extended Kalman Filter (EKF), which linearizes a nonlinear sys-
tem about the current state estimate [43]. Particle Filters, also known as sequential Monte Carlo
methods, solve for the posterior distributions from noisy and partial measurements from sensors
using particles for state estimation [51, 83].

Sensors that are used for navigation systems have varying rates and asynchronous can pose is-
sues for the variations of Kalman Filters. Although these methods employ curve fitting and in-
terpolation to align the data, the accuracy of the alignment cannot be guaranteed and can lead to
undesirable performances. This led to the development of the Factor Graph Methods, which al-
lows multi-sensor measurements with varying frequencies, delays, and noise distributions [38]. If
a sensor becomes unavailable during operation due to signal loss or faults, the algorithm will not
automatically add the associated data [57, 139]. Factor graph methods use bipartite graphs to rep-
resentmulti-variable global functions composed ofmultiple local functions. Using bipartite graphs
as a basis, variations of factor graphs have been developed for navigation [36, 38, 68]. Based on the
sensors required for the navigation task, factor graphs generate the state, measurement, prior, and
sensor models. A joint optimization algorithm is then designed for state estimation.

Along with the review of localization techniques, SLAM, and the different topics required to
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successfully implement SLAM, the upcoming section reviews some of the unique SLAMsolutions
and implementations. As well as some novelty mechanical systems that have been employed for
the exploration of subterranean and urban environments. The section also details an overview of
some of the other methods employed for surveying and mapping subterranean environments.

2.3 Techniques used for Subterranean Exploration

Thepriormethodsused to survey andmap subterranean spaces aredirect observation, borehole ob-
servation, and remote sensing. Direct observationmethods involve placing humans in these spaces
for first-hand observations and data collection, which can be dangerous and sometimes fatal. Bore-
hole observation probes involve drilling boreholes into the spaces and deploying structures that
carry a range of sensors like cameras, thermal sensors, gas sensors, etc. Remote sensing methods
use non-intrusive, geophysical procedures that employ the use of electromagnetic waves, and soil
composition to locate voids without drilling. Although remote sensing and borehole observations
provided satisfactory results, direct observationmethods provided themost sufficient information
without the applicationof robotic platforms. Using robots in subterranean environments allows for
the elimination of the human factor, safety concerns, and higher sensing capabilities. In the case of
exploring unknown or used caves/mines, there is greater uncertainty about the conditions, which
makes the use of unmanned vehicles an essential component. As mentioned in [94], all subter-
ranean spaces are different, and the choice of approach for exploration or data collection depends
on some key factors:

1. Limited ingress: either openings or boreholes

2. Constrained volume: the volume of the cave

3. Amount of water, gases, debris

4. Lack of illumination

5. Communication

Inearlier developmentsof instrumentswhere spaces are inaccessible andboreholes canbedrilled,
researchersdevelopedborehole-deployable lasers (BDL)[6] andborehole-deployable sonar (BDS).
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Thedesign of BDLs generally consists of laser rangemeasurement sensors, actuators that adjust the
laser range measurement sensors, inertial sensors for position information, and cameras that help
with the deployment of the BDLs. BDLs and BDS are functionally the same with the only differ-
ence being the use of sonar instead of lasers for range measurements. These devices are usually
tethered and remote-controlled by a human operator who monitors the scans. Because the device
is remotely operated by a human operator, it allows for in-field analysis. Data acquired from the
BDLs can be used to construct a 3D point-cloud representation of the environment surveyed. Al-
though BDLs and BDS’ can be useful, they are limited and rely heavily on the precise drilling of
boreholes which is also a challenging task.

Although there are many benefits to the exploitation and exploration of subterranean spaces,
initially there was not much interest by the robotics community [94]. One of the first robotic
platforms to perform mapping missions in coal mines was the Terragator mobile robot. The mo-
bile robot was a semi-autonomous six-wheeledmultipurpose robot equipped with sonar, and laser
scanners, for pose estimation and obstacle avoidance [27]. Alongwith the development of the Ter-
ragator, there were other efforts to adapt commercial all-terrain vehicles and bomb disposal robots
for autonomous navigation of subterranean spaces. Some of the first platforms developed were
Wolverine V2, Gemini Scout, Numbat, CSIRONumbat, Cave Crawler, and Groundhog [97, 106,
107, 130]. The designs of the Groundhog and Cave Crawler were geared toward the exploration
of abandoned coal mines. Groundhog had a structure comprised of an all-terrain vehicle, ground
clearance of 16cm, the ability to climb slopes of 30o, and a 1600lb payload of electronics. To enable
autonomous navigation, the robots had lasers, gyroscopes, encoders, tilt sensors for mapping and
localization, gas sensors for the detection of methane gas, and flotation switches to detect sinking
inwater ormud. For the navigation andmapping of coalmines, Groundhog used incremental scan
matching for short-term pose estimation and topological SLAM for global localization [124].

Despite the development of these robots being a step in the right direction for autonomous navi-
gation andexploration, these systemshad limited applicationsdue tobothmechanical and software
issues. Some of the issues were weight (hard to transport), communication limitations (use of teth-
ered systems), and the wireless communication systems used were unreliable for non-line-of-sight
operations. In the case of autonomous exploration, the SLAM system used did not have loop clo-
sure, which meant that Groundhog perceived the environment as an endless corridor and would
continue exploring previously visited areas. Recent developments in robotic systems can be used
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to improve survey methods, search and rescue [84], and planetary exploration [114].
In addition to the interests and benefits of exploration and exploitation of these environments,

there is an increase in interest in localization and mapping in GPS-denied environments. Despite
the fact there has been a lot of research into developing LiDAR-based solutions forGPS-denied en-
vironments and infrastructure that lack prior maps, these environments pose an added challenge
due to obscurants, lack of illumination, debris, lack of perceptual features, and extreme terrain.
Along with the Robotics Institute of Carnegie Mellon University’s developments of Terragator,
Groundhog, and Cave Crawler, the heightened interests have led to the evolution of many inno-
vative solutions and improvements in underground SLAM.The heightened interest can partly be
attributed to the introduction of robotic competitions held all over the world. Competitions such
as [35, 63, 77, 96, 98, 100] have led to innovative solutions and advances in robotics.

TheDefenseAdvancedResearchProjectsAgency (DARPA)with theSubterranean(SubT)Chal-
lenge has been amajor catalyst for the development of state-of-the-art solutions. DARPASubThas
led to innovation for mapping, navigation, cooperation of multiple robotic platforms for faster op-
eration, and exploration of these complex underground environments. The use of multiple robots
allows for the simultaneousmapping of larger areas, while the inter-agent interactions allow for the
minimization of mapping and localization errors through loop closures. The competition aims to
improve search and rescue efforts in these environments, where time and knowledge of environ-
mental hazards are critical to finding survivors. The implementation of robotic systems allows for
the rapid creation of maps, and the localization of artifacts can greatly help survivors and rescue
teams. The key technical areas of the DARPA SubT challenge are autonomy, perception, network-
ing, and mobility [2]. The competition enables participants to develop platforms that have the
capability of operating in varying and degraded environments such as areas with dust, fog, mist,
water, smoke, and low-light The challenge of SubT has also led to advances in robust communica-
tion systems in complex environments plaguedbyRFpropagation, limited line of sight, anddiverse
geology. Some of the systems and algorithms showcased in the tunnel and cave systems competi-
tion at DARPA SubT will be reviewed in the following subsections.
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2.3.1 Innovative Algorithms Showcased at DARPA SubT competition

The competition exhibited novel approaches to localization and mapping, especially multi-robot
SLAM[13, 41, 105, 133]. The use ofmultiple robots enhancedmapping and localization solutions
as well as the coverage of larger areas in a shorter period of time, the implementation ofmulti-robot
SLAMwas necessary for some teams [42].

Multirobot SLAM enables the data collected by multiple unmanned vehicles to simultaneously
build a consistent map of larger areas and improve localization estimates. Multirobot SLAM algo-
rithms can be classified as centralized, decentralized, or distributed [108]. Centralized algorithms
[40, 41, 133] depend on a base station to calculate pose, map estimates, and loop closure detection
from the data collected by the multi-robot system for all robots. While in decentralized systems
[13, 105], each robot is responsible for the calculation of pose, map estimates, and loop closure
using data collected individually and from other robots. Alternatively, in distributed multi-robot
SLAM there is a partial exchange of data with neighboring robots for individual pose and map es-
timation [108].

Although significant progress has been made in LiDAR, Visual-Inertial Odometry (VIO), and
Thermal-Inertial Odometry (TIO)-based localization and mapping techniques, they can still be
negatively impactedby someenvironmental factors. In the presence of obscurants such as dust, fog,
and smoke LiDAR and visual camera sensor measurements can be impacted compromising pose
estimates [111]. Thermal cameras in thermal inertial odometry can be also negatively impacted
by environments with minimal temperature gradients. Even though each sensor (LiDAR, visual,
and thermal) is affected by some particular adverse condition, but not by the other, when used in
a complementary manner in localization algorithms, yields robust algorithms [85, 120, 148].

To complete the missions in the allotted time required by the competition, CERBERUS [133]
designed a robust SLAM architecture known as CompSLAM. CompSLAM is a loosely-coupled
sensor fusion algorithm that uses visual and thermal sensor measurements to complement LiDAR
data for robust pose and map estimation in perception-degraded environments [73]. Although
CompSLAMprovided a unique solution for localization andmapping, CERBERUS’ implementa-
tion did not have loop closures on the individual robotic platforms. Loop closures were completed
using aMulti-RobotMapping andOptimization (M3RM), a centralizedmapping server and node
running on the base station, and deployed robots, respectively [133]. The M3RM server at the
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base station is responsible for tracking the local submaps for each robot, as well as integrating them
into a global map and transmitting them back to the robots. Since loop closures occur at the base
station, when robots are not within communication range, the errors in CompSLAMmay become
unbounded and may break the global map if an operator does not intervene.

Due to the deployment of multiple robots, for quick and ease of integration on different agents,
some teams developed modular perception systems that contained core sensors required for lo-
calization and mapping. The implementation of the modular perception system allowed for the
development of an innovative SLAM formulation used in the competition such as Team CSIRO’s
[62] Wildcat SLAM, a LiDAR-Inertial SLAM [105]. Team CSIRO [62], developed a modular
perception system known as the CatPack, which contained a spinning LiDAR mounted at a 45o

angle, multiple RGB cameras, and an IMU.The configuration of the CatPack enhanced the robot’s
perception of the floor and roof of narrow tunnels and allowed the use of planar surface elements
(surfels) which is a key feature for their localization algorithm. The use of the CatPack [62] in
Wildcat SLAMallowed the use of surfels as dense features for estimating the path of the unmanned
vehicle. WildCat SLAM employs the use of a sliding window filter to estimate the odometry and
local map of the system by integrating the LiDAR and inertial measurements by using continuous-
time representations of the trajectory. A unique feature of Wildcat SLAM is the use of surfels as
dense features for trajectory estimation. Althoughmost sensor fusion algorithms require extensive
calibration for different environments, the implementation of Wildcat SLAM and CatPack once
calibrated use the same parameters across multiple environments even when switched between
robots[42].

TeamExplorer developed a robustmultimodal sensor fusion algorithm that receives inputs from
LiDAR, thermal, and visual data by using a probabilistic factor graph known as Super Odometry
(SO) [146]. The SO framework combines the advantages of tightly- and loosely-coupled estima-
tors. SO is highly dependent on IMU sensor measurement due to its robustness to environmental
factors, unlike LiDAR, visual, and thermal sensors. Tomitigate errors caused by drifting and biases,
SO uses VIO and LIO to provide pose priors to constrain IMU biases.

The competition showcased some of the recent progress in localization andmapping algorithms
for subterranean spaces and environments that lack prior maps. Although there were similarities
in the mechanical and sensor systems used, there were some interesting systems that were used in
the competition. With interests in robotics growing there are emerging companies that sell com-
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mercial robotics that can be adapted to a variety of applications. Some teams decided to design
andmanufacture their robots while others opted to adapt commercially available products to their
algorithms. The subsection below showcases some of the interesting approaches such as the use of
legged robots and the commonly used roving robots with a variety of drivetrain systems.

2.3.2 Novel Platforms Showcased at DARPA SubT competition

The competition showcased the collaboration of a variety of systems, some of which were adapta-
tions of commercial products, aswell as customplatforms for unmannedground and aerial vehicles.
There was a variety of legged (walking and wheeled), hybrid (ground/aerial), tracked, and aerial
robots. Aerial vehicles were used to rapidly explore areas and spaceswhere unmanned ground vehi-
cles had difficulty accessing [11, 62, 110, 133]. Most teams deployed different types of unmanned
ground vehicles to traverse the challenging terrain of both the tunnel and urban circuits. Since the
tunnel circuit is the most relevant for this body of work, the innovations presented in the competi-
tion will be discussed.

Numerous teams chose to use legged robots due to their ability to adapt to the challenging ter-
rain, their ability to step over obstacles on their path [65], the modification of their stance to crawl
under obstacles [20], and their omnidirectional locomotion to traverse narrow spaces. For ease of
operation and implementation in different environments, [133] adapted their quadrupedal robot
to have flat feet for urban environments and actuated wheels for tunnel environments. Teams that
did not use quadrupedal robots employed either tracked or roving robots as their primary system.
Alternatively, some teams that used quadrupedal robots used roving or tracked robots as beacons
to improve their communication systems.

Even though there are several algorithmsand techniques for localizationandmappingandunique
robotic systemsused for operations in subterranean environments such asmines, the systems show-
cased are for the development of search and rescue applications. The researchers realized most of
the applications are reactive instead of proactive whichwill further benefit operations in these envi-
ronments and save human lives. The lack of such proactive systems led to the motivation of this re-
search project which is the development, implementation, and testing of a robust and autonomous
hardware and software system that can operate in subterranean environments for extended periods
of time. The successful implementation of the proposed system will not only allow for the genera-
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tion of high-fidelity maps which will allow operators in these environments to proactively address
issues in areas with increasing hazards but will serve as an early warning system for miners. The
system will also allow for the further development of techniques and insights into furthering the
understanding of these environments.
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3
Fundamentals



In order to successfully complete all the missions required, for unmanned vehicles the mechan-
ical and software system needs to be robust. For unmanned vehicles designed to assist in local-
ization and mapping, an efficient sensor fusion module needs to be implemented. Prior to imple-
menting a state-of-the-art SLAMalgorithm, the sensors usedmust be calibrated to obtain accurate
measurements for sensor fusion. The localization and mapping module built on a tightly-coupled
LiDAR-inertial-odometry via smoothing and mapping (LIO-SAM) SLAM framework [118] for-
mulated as a Maximum a Prior (MAP) problem has demonstrated high accuracy and real-time
performance. To successfully implement LIO-SAM, the algorithm requires roll, pitch, and orien-
tation estimates inferred from sensor measurements from IMUs. Roll and pitch estimates are re-
quired to initialize the unmanned system at the correct attitude for accurate localization. Although
most MicroElectroMechanical Systems (MEM)’s IMUs instrumented in unmanned vehicles are
six-degree-of-freedom (accelerometer and gyroscope) inertial measurement units, the implemen-
tation of a complementary filter can provide attitude estimates. The complementary filter outputs
orientation estimates in quaternion form from inertial observations and optionally magnetic mea-
surements when available [135]. In order to support autonomous missions required for mapping,
there must be a robust navigation system that contains a terrain analysis, obstacle avoidance, way-
point, and path planning [22].

Fig. 3.0.1 shows an example of a navigation module needed to complete the missions required.
Thesubsectionsbelowwill detail anoverviewof someof the state-of-the-art solutions implemented
to complete the mission requirements.

3.1 IMUComplementary FilterOverview

Advancements in electronics have led toMEMs technology which has been used to develop mod-
ern miniaturized inertial sensors. The use of MEMS systems has been employed in navigation
systems for high-precision inertial and magnetic sensors. Most inertial sensors provide measure-
ments from three orthogonal rate gyroscopes (gyro) and three orthogonal accelerometers. The
readings from the accelerometer and gyroscope provide linear acceleration and angular velocity
measurements, respectively. Orientation estimates are then obtained by processing and integrat-
ing gyroscope readings. For orientation estimates, the implementation of a complementary filter
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or Extended Kalman Filter (EKF) [112] that provides quaternion estimates from inertial and/or
magnetic measurements [135] is essential. Although both complementary filters and EKFs are
widely used to acquire orientation estimates, complementary filters are used due to their simplic-
ity and are easier to understand [64]. EKFs are also complicated to implement robustly and can be
computationally expensive in comparison to complementary filters [141].

A complementary filter analyzes signals in the frequency domain to combine signals to infer es-
timations that are least affected by noise. The orientation estimates are represented as quaternions
to avoid the singularity state, which is affected by the orientation when represented as Euler angles
and Direction Cosine Matrices (DCM).The complementary filter [135], fuses attitude estimates
in the quaternion form from gyroscope readings with accelerometer readings in delta quaternion
form that serves as a correction for roll and pitch estimates only and maintains yaw estimates.

To attain these estimates, the angular velocity vector is used to predict an initial estimate of the
orientation. Prior to using the angular velocity measurements in the prediction step, a high-pass
filter is applied, since these readings are affected by low-frequency noise. To avoid filtering useful
information, the filter is only applied when the system is in a steady-state condition. If the system
is in a steady state condition, the bias is updated by averaging the readings over a period of time
and subtracted from the gyroscope measurements, if not the previous bias estimate is maintained.
Equations Eq. 3.1 [135] represents the orientation of the global frame relative to the local frame at
time tk, which can be computed by the integration of the quaternion derivative by using a sampling
time of the difference between the current and previous timestep.

L
Gqω,tk =

L
G qtk−1

+L
G
_qω,tkΔt (3.1)

The parameter L
Gqw,tk represents the orientation at the current time step, LGqtk−1

represents the ori-
entation at the previous timestep, LG_qw,tkΔt represents the derivative of the angular velocity (ω: an-
gular velocity) with respect to time.

The correction of roll and pitch estimates are computed using a multiplicative technique of the
delta quaternion obtained from accelerometer measurements as shown in Eq. 3.2 [135].

L
Gq =L

G qω ⊗ Δ̂qacc (3.2)

where Δ̂qacc represents the correction of the roll and pitch estimates from accelerometer measure-
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ments.
First, the ”predicted gravity” which will have a small variation from the real gravity vector is

obtained by finding the inverse predicted quaternion from the result of Eq. 3.1. In order to account
for the small variations, Δqacc is found due to the orientation estimates being represented in the
global frame relative to the local frame:

Δqacc =
[√

gz+1
2 − gy√

2(gz+1)
gx√

2(gz+1)
0
]T

(3.3)

Since the delta quaternion estimates from accelerometer measurements are affected by high-
frequency noise, before the multiplicative procedure in Eq 3.2 it is scaled down. The delta quater-
nion estimates are scaled down using an interpolation with the identity matrix qI:

qI =
[
1 0 0 0

]T
(3.4)

With accelerometers being affectedbyhigh-frequencynoise, a low-pass filter is implementedbefore
themeasurements are used. Thedelta quaternion is scaled downby usingΩ, the angle between the
identity quaternionqI andΔqacc derived from the spherical linear interpolation (slerp) formulation
[121].

Δ̂qacc =
sin (1− α)Ω

sinΩ
qI +

sin(αΩ)

sinΩ
Δqacc (3.5)

where α ∈ [0, 1] represents the gain for the cut-off frequency of the filter.
Although complementary filter produces accurate estimates, a typical drawback of these filters

occurwhen there is highly dynamicmotion [135]. Duringhighly dynamicmotion, the accelerome-
ter is unable toprovide accurate estimates of the gravitational direction [141], due to the accelerom-
eter not only detecting gravitational forces but also centrifugal forces leading to inaccurate orien-
tation estimates. Therefore, to mitigate orientation errors that occur when an unmanned vehicle
experiences highly dynamic motions due to the constant gain designed for static conditions, the
filter employs an adaptive gain component. These errors occur when the magnitude and direction
of the total measured acceleration vector are different as a result of high acceleration. The high ac-
celeration affects the magnitude and direction of the total measured acceleration vector by being
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different from gravity, which leads to a false reference in estimating the orientation resulting in sig-
nificant results. To address these issues, the gain factor must account for the error em [135] when
the system is in such state.

em =
|∥L̃a∥ − g|

g
(3.6)

In Eq. 3.6, ∥L̃a∥ is the norm of the acceleration in the local frame before normalization and
g = 9.81ms2 acceleration due to gravity. With themagnitude of the error known, it can be accounted
for in the computation of the filtering gain as [135]:

α = α(em) = αf(em) (3.7)

where α is the constant gain that attains the best filtering results in static conditions and f(em) repre-
sents the gain factor of a piecewise continuous function. The piecewise continuous function, f(em)
that provided the best results was empirically [135] found:

Therefore, the gain factor becomes constant and equal to 1 when themagnitude of the nongravi-
tational acceleration is below the acceleration due to gravity. In the case when there is a high accel-
eration, the nongravitational acceleration rises above a threshold of 1, the function f(em) decreases
the gain linearly. The gain is decreased linearly with the increase of themagnitude of the error until
zero. Once the roll, pitch, yaw, orientation estimates, and LiDARmeasurements are available, they
can be used as inputs for localization and mapping algorithm.

3.2 LIO-SAMOverview

To localize and map underground mining environments, a state-of-the-art and robust SLAM al-
gorithm is required. In determining the localization and mapping modules that would best suit
the application, several algorithms were evaluated based on accuracy, sensors required and ease of
implementation [117, 118, 143]. After conducting trade studies, along with insights gained from
Section 2.2 and prior experiences, the LiDAR-inertial-odometry (LIO) algorithms that were eval-
uated were either tightly- or loosely-coupled fusion methods.

In loosely-coupled LIO algorithms, such as [117, 143], the state estimates from the IMU are
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used as an initial guess for the LiDAR scan alignment but not for global optimization. Although
these methods are computationally efficient, they are less accurate since the estimates from the
IMU are ignored during global estimation. Alternatively, tightly-coupled methods such as [118],
offer improved accuracy and are more robust since estimates from LiDAR and IMU are utilized
during the global optimization through the implementation of factor graphs.

The localization and mapping module built on a tightly-coupled LiDAR-inertial-odometry via
smoothing andmapping (LIO-SAM) SLAM framework [118] formulated as aMaximum a Poste-
riori (MAP) problem has achieved highly accurate and real-time performance. LIO-SAM is built
on a factor graph formulation that allows multisensor input such as IMU, LiDAR, GPS, odometry,
etc., and allows for global optimization. Tomitigate issues with pointcloud deskewing due to high
acceleration, a nonlinear motion model that receives raw IMU measurements is used to estimate
themotion of the vehicle during the LiDAR scan. The estimatedmotion from the IMU is also used
as an initial guess in theLiDARodometry optimization and the approximationof IMUbiases in the
factor graph. For real-time performance and to improve computational complexity, the framework
utilizes scan matching at the local scale, as well as the use of selective keyframes. The keyframes
are efficiently introduced via a sliding window filter to a fixed-size set of prior sub-keyframes. With
the formulation being a MAP problem, a Gaussian noise model can be assumed and solved as a
linear least-squares problem. Nodes represent the robot state, while the factors in the graph are
IMU preintegration, LiDAR odometry, GPS, and loop closure factors. The factor graph has the
capability to be expanded with the addition of different sensors. Fig. 3.2.1 shows an example of a
factor graph with inputs from LiDAR and IMU, adapted from [118]. New nodes are added to the
graph by selecting keyframes, which are based on a user-defined threshold of robot poses between
xi and xi+1.

To optimize pose estimation with the introduction of new nodes, an incremental smoothing
and mapping using the Bayes tree (iSAM2) [69] solver is implemented in LIO-SAM [118]. The
use of iSAM2 improves computational efficiency by employing factor graphs, maintaining spar-
sity, identifying and updating key variables with the introduction of newmeasurements. With the
introduction of new measurements, iSAM2 using Bayes tree data structure, selectively solves for
some variables in the factor graph instead of all the variables. The use of iSAM2 allows real-time
performance and optimization. Inertial measurement units publish at high rates with average pub-
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lish rates of 100Hz to 1kHz, efficiently using data at such high rates is not feasible for optimization.
The IMU preintegration is responsible for integrating these measurements into single relative mo-
tion constraints to estimate the relative motion of the vehicle between two time steps [48]. Pre-
integration also allows the use of iSAM2, which strikes a balance between efficiency and accuracy
and the avoidance of linearization errors.

For the LiDAR odometry factor, feature extraction is performed in LIO-SAM [118] with the
arrival of new scans. Features are extracted by analyzing the roughness of the points in a local re-
gion. The types of features are classified by their roughness, with features with a large roughness
being edge features and smaller roughness being classified as planar features. The use of keyframes
allows themaintenance of a sparse factor graph,making it suitable for real-time nonlinear optimiza-
tion. The sliding-windowfilter is used in the creation of the pointcloudmap, which includes a fixed
number of LiDAR scans. For efficiency, a transformation is performed between the most recent
n keyframes (sub-keyframes) for estimation. After the selection of the sub-keyframes, there is a
translation from the LiDAR frame to the world frame which are then merged together to form a
voxel map. Since there is an extraction of planar and edge features, each feature is downsampled
for the removal of duplicates in the same voxel cell. For robust scan matching, a method based on
[144] is used. The predicted motion of the agent estimated from the IMU is used for the initial
transformation from the body to the world frame. The correspondences of both edge and planar
features are then found in themap frame. To compute the distance correspondences between edge
and planar features, equations Eq. 3.9 and Eq. 3.10 are used respectively. The indices e and p rep-
resent edge and planar features respectively.

dek =

∣∣(Pe
i+1,k − Pe

i,u

)
∗
(
Pe
i+1,k − Pe

i,v

)∣∣∣∣Pe
i,u − Pe

i,v

∣∣ (3.9)
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i,v
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∗
(
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i,w
)∣∣∣∣(Pp

i,u − Pp
i,v
)
∗
(
Pp
i,u − Pp

i,w
)∣∣ (3.10)

Indices k, u, v,w in Eq. 3.9 and Eq. 3.10 represent a feature and the corresponding features. For
example, for an edge feature, Pei+1,k, Pei,u, and Pei,v are the points that correspond to that edge on
the map. For optimal transformations, the Gauss-Newton method is used to minimize the cost
function as shown in Eq. 3.11
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min
Ti+1

∑
Pei+1,k

dek +
∑
Ppi+1,k

dpk

 (3.11)

With the optimal transformation evaluated, the LiDAR odometry factor between timesteps can
be computed using Eq. 3.12.

ΔTi,i+1 = TT
i Ti+1 (3.12)

When a robot visits a previously known area, loop closures are determined in LIO-SAM [118]
using a Euclidean distance-based approach. By visiting a known location, the robot can improve
its state estimates When a new node xi+1 is added to the graph, prior states are searched to find
nodes that are close to the Euclidean space. Loop closures are detected based on a predetermined
distance. Once the close nodes are determined, scanmatching is applied to the LiDAR frames and
added as a loop closure factor on the graph.

3.3 AutonomousNavigationModuleOverview

In order to complete the missions autonomously, after the implementation of a localization and
mapping system the unmanned system requires an autonomous navigation module. The UGV
will have to autonomously navigate through different environments and terrains, to operate in un-
certain and unknown terrain, thus the surface assessment is an essential component for successful
missions.

Therefore, for successful autonomous missions, the navigation module must contain some es-
sential components such as terrain traversability analysis and a waypoint planner. The waypoint
planner should include a path planner and an obstacle avoidance module for both static and dy-
namic obstacles since the UGV might operate in environments with humans and other vehicles.
The Fast likelihood-based collision avoidance (FALCO) algorithm [145] plans paths by generat-
ing offline trajectories according to the constraints and parameters of the unmanned vehicle and
formulates the paths as a likelihood problem.

In order to complete the autonomous missions successfully, the terrain analysis module em-
ployed uses LiDAR data to determine the traversability of the local terrain around the vehicle [22].

30



As the vehicle traverses the terrain, themodule builds a cost map and determines the traversability
of each point in themap by assigning a traversal cost. The traversal cost is determined by represent-
ing the environment as a voxel gridwhich is then used to determine the ground height by analyzing
the distributions of the LiDAR points in adjacent voxels. Once the distributions of the voxels are
determined, the smoothness of the terrain is determined. The points that are determined to be fur-
ther apart from the ground are assigned a higher traversal cost.

The terrain traversability works in parallel with the FALCO algorithm to plan a collision-free
path to waypoints by dividing the likelihood problem into two subtasks. The first subtask is deter-
mining a global path plan that also ensures the paths donot fall into a localminimawhile the second
subtask runs in parallel with the global path planner to track paths as well as avoids obstacles. In
order to reduce the computational complexity, [145] avoids online searches of the graph that is
continuously updated by onboard sensors, while the planning problem is formulated as a likeli-
hood problem. The formulation of the algorithm does not seek to find the lowest cost (shortest
path) but maximizes the probability of reaching waypoints by modeling the configuration space
as two separate regions. Although most path planning algorithms seek to find a single path with
the lowest cost, the paths might lead the vehicle to narrower pathways. In the presence of dynamic
obstacles and narrower pathways, the probabilities of avoiding these obstacles become lower. The
FALCO algorithm, however, prefers paths with open areas in order to account for obstacles that
are not within the sensor field of view. Although this behavior leads to higher probabilities of com-
pleting the navigation task, the generated paths can be longer.

Equation 3.13, represents the probability of reaching waypoint B, pB given the state xs of the
vehicle [145]. As sensormeasurements become available, obstacles that arewithin sensor range are
considered to be known deterministically and probabilistically known beyond sensor range with
the availability of a prior map. During autonomous navigation, the vehicle travels through areas
covered by the LiDAR which can be represented by xf. The conditional distribution of xf given a
state, p(xf|xs) can be inferred from the LiDAR data.

pB(xs) ≈
1
n

n∑
i=1

pB(ξi) (3.13)

where pB(xs) represents the probability for the unmanned vehicle to successfully reach B from a
given start state xs.
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To distribute and group the trajectories across all probabilities, a trajectory library is usedwhich
is then evaluated during navigation to determine paths. Given a start state xs, the algorithm gener-
ates different paths that can reach the sensor frontier as cubic spline curves based on the vehicle
motion constraints. During operation, the paths that have occluded regions are considered to have
obstacles detected by the perception sensors are defined by a Boolean function. Thepath clearance
defined by the Boolean function ξi:

c(ξi) =

1, ξi = unocludded

0, otherwise.
(3.14)

With the path clearance function defined, Eq. 3.13 can be modified and applied to all the gener-
ated paths to determine the path with the highest probability of reaching B:

pB(xs) ≈

n∑
i=1

c(ξi)pB(ξi)

n∑
i=1

c(ξi).
(3.15)

Inorder to successfully complete all themissions required, the implementationof the algorithms
described in this chapter is essential for theUGV.With the localization,mapping, and autonomous
navigationmodule discussed, the design of theUGVwill be reviewed in the next chapter. The next
chapter will discuss the requirements of the missions, design considerations, and implementation
of the algorithms discussed in the paragraphs above.
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f(x) =


1, 0 ≤ x < 0.1
−10x+ 2, 0.1 ≤ x < 0.2
0, x ≥ 0.2

(3.8)
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4
Technical Approach



Since the UGV is being developed to assist in the monitoring of previously mined sections of
underground stone mines and a warning system, the system has to:

1. Traverse the mine terrain autonomously

2. Avoid obstacles and untraversable areas

3. Create high-resolution 3Dmaps of the mine and columns

4. Operate for extended periods of time of up to eight hours per day

With the desired mission specifications known, several systems were considered to successfully
complete the tasks. After conducting trade studies to determine the system(s) that will be em-
ployed, the three that stood out were the applications of UAV and/or UGV systems. With the
advancementsmade in UAV technology over the years, researchers considered the potential of the
UAV to conduct surveys quickly as well as the ability to scan tall columns. But due to the vast
size of both the columns and mines to be surveyed, the limitations in compact battery technology,
and the required operational time, a standalone UAV systemwould not be feasible without having
to recharge. Although the operational times of UAVs are limited due to the battery capacity, the
system is highly advantageous for the application due to its ability to survey quickly, and scan tall
columns. An additional benefit of the selection of the UAV by the researchers is their familiarity
with the system from other projects. With the UAV being a potential system, research was con-
ducted into potential charging setups being incorporated into the system.

In determining charging modules, some factors considered were the mission requirement of an
operational time of up to eight hours per day, and the average flight time ofmost UAVs being 15-20
minutes. In order to extend the flight times, several methods were considered to meet the require-
ments. Some potential solutions were swapping batteries, wireless charging, multiple drones, and
tethered power were considered. Although the mission requires an extended operational time of
eight hours, the mine is only available one day per week for surveys to be conducted. Considering
the limited availability of the mine, wireless charging will not be feasible since it will take several
hours for a complete charge. Alternatively, swapping batteries although an easier substitute, will
reduce the operational time since the drones will have to travel through previously scanned sec-
tions to the base station for the change to happen (same for wireless charging). Even though the
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deployment of multiple UAVs has the potential to survey larger areas of the mine, it complicates
the system.

Alternatively, the application of a standalone UGV system was considered due to its simplicity
and high payload capacity. In order to scan the tall columns, the UGV will have to be designed
with a telescoping boom which could be challenging for operators to transport easily. Therefore,
the researchers decided to investigate the use of tethered power systems which will extend the op-
erational time, with no downtime for charging or swapping batteries. The combination of theUAV
and tethered system lead to the introduction of an unmanned ground vehicle for providing power,
housing the tether system, and a stable platform.

To be able to successfully complete all these requirements, some desired specifications were
considered during the design process of theUGV [32]. These specifications were selected by lever-
aging experiences from previous projects, research conducted on current warning methods, and
the conditions in stone mines. The requirements:

1. Shall operate autonomously for eight hours per day

2. Shall operate in tandem with the UAV

3. Providing a support platform for the UAV

4. Size: to be able to fit standard service elevators

5. Drive-train system that maintains contact with terrain to allow for a stable platform

6. Robust and reliable system to allow for continual operations

(a) The robustness of a system means that the system can function properly even when
there is an algorithmic or hardware failure.

7. Relatively simple and serviceable system to allowmissions tobe conductedby twooperators

Due to the stated mission specifications and design requirements, the design of the unmanned
ground roverwas split into three sectionswhichare theMechanical, Electrical, andSoftwareoverview.
Themechanical overview consists of all the requirements needed to be able to drive the UGV in a
stone mine environment. The electrical overview comprises the sensors and instruments needed
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to operate the UGV autonomously and complete all its missions. The Software Overview delves
into methods applied to successfully complete its missions.

4.1 MechanicalOverview

Several drive train systems were considered by the research team in order to successfully complete
the missions. In the selection of the type of UGV to support the UAV, several types of unmanned
ground vehicles such as wheeled, tracked, and legged robots were considered. Although there has
been significant progress in the development and applications of legged robots, these systems are
more complex. After conducting research into systems that are currently available, the research
team soon discovered none of the readily available products have the payload capacity or the oper-
ational time required. Alternatively, tracked vehicles were considered, which can traverse steeper
slopes and obstacles easier than most suspension systems, but are not very robust, very heavy, and
require a lot of parts [71]. After conducting trade studies and from past experiences, researchers
decided to use unmannedwheeledmobile platforms to support theUAV for simplicity and service-
ability.

In the design of the structure of unmanned wheeled vehicles, there are several factors consid-
ered depending on the tasks needed to be completed. Some of the structural considerations are
the number of wheels, wheel orientation, and wheel arrangement. The number of wheels used is
important to ensure the stability of the system, with three nonaligned wheels being the minimum
to achieve stability [50]. There were several types of wheel arrangements that were considered in
the design process since this factor dictates the steering scheme and characteristics of the vehicle.
The steering schemes thatwere consideredwereAckerman, independent, and skid steering suspen-
sion systems. The Ackerman steering consists of a 4-bar trapezoidal mechanism that avoids wheel
slippage by allowing the front wheels to be steered. An advantage of this steering mechanism is
that it can be implemented with as few as two actuators with one for steering both wheels and the
other for traversing. Although the Ackerman steering mechanism is relatively simple, it has a large
turning radius which would be challenging for the systemwhenmaneuvering in tight spaces in the
mine environment. Alternatively, with the independent steering scheme, each wheel is controlled
individually andmoved to the desired rotational speed and angle. Although the scheme allows the
vehicle to have full mobility, it requires many parts and actuators, complex control algorithms, and
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can be very expensive. Consequently, the skid steering scheme which can also be considered as a
differential drive locomotion is the simplest structure for unmanned wheeled ground robots, con-
sisting of four fixed active wheels. Steering is accomplished by actuating each side at different rates
or in a different direction, causing the wheels to slip on the terrain. Differential drive locomotion
is commonly used in tracked vehicles, such as tanks and bulldozers.

Due to the simplicity, ease of serviceability, and familiarity of this system to the researchers, the
skid steer scheme was selected for the unmanned ground vehicle. The Unmanned Ground Rover
(UGV) named Rhino is designed to have a split-body chassis. The split body chassis means the
UGV consists of two halves with a turntable to connect both halves. This allows all four 0.5-meter
tires to come into contact with the ground even on uneven terrain. Rhino also has to be able to
house all the sensors and electronics to achieve autonomous operation. The UGV should also
be able to transport the UAV, tether system, and batteries to extend the operational time for the
UAV. Fig. 4.1.1 shows the 3D CAD rendering of the system which was used as a reference in the
manufacturing process. For ease of manufacturability, the chassis was designed to prioritize the
use of waterjet parts andminimize the number of ComputerizedNumerical Control (CNC) parts.
Rhino was manufactured and partially assembled by West Virginia University’s Lane Innovation
Hub [125].

The chassis is designed with four main compartments to carry all the sensors for the operations
of the UGV as shown in Fig. 4.1.3. One compartment is dedicated to housing all the power mod-
ules, the other for the computingmodule and the other two house themotor controllers and other
auxiliary electronics. For the protection of the chassis and sensors, bumpers for the front and back
as well as a roll cage were designed. The roll cage and the bumpers not only protect the UGV but
also serve asmounting points for some of the electronics. The rear chassis of Rhino also carries the
batteries, tether system, and landing platform of theUAV. To be able to operate for eight hours, the
rover has to be able to carry high-capacity batteries. The chassis of the rover is designed to carry
twelve 12V batteries with six dedicated to the operations of the UGV and six to the UAV and all its
components. Fig. 4.1.2 shows Rhino in full configuration with the UAV system.
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Figure 4.1.1: CAD Rendering of Rhino. Developed by Dylan Covell, Trevor Smith, and Gio
Molin
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Figure 4.1.2: Rhino in full configuration with Oxpecker (UAV). UGV was developed by Jonas
Amoama Bredu Jnr, Dylan Covell, Henry Vos, and Christopher Arend Tatsch. UAV system
developed by Bernardo Martinez, Rogerio Lima, and Jeremy Rathjen.
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Figure 4.1.3: Photograph showing Rhino with its components labeled

42



4.2 Electronics and Instrumentation

In order to complete its operation (autonomous missions) as well as have the basic capabilities of
being teleoperable, Rhino houses all the electronics and sensors to complete its mission. Fig. 4.2.2
and Fig. 4.2.3 show the layout of all the electronics needed to successfully complete its mission.
Leveraging experiences from previous projects the General Power Distribution Board (GPDB) is
used to power all the sensors. The GPDB is designed to receive inputs from batteries of different
voltages (18-75 VDC) and regulate them to a range of voltages. The GPDB’s regulators instru-
mented for Rhino are 12 VDC, 15 VDC, 24 VDC at 60Watts, 5 VDC at 30Watts, and 3.3 VDC at
13Watts. These are essential since all the sensors and electronics require different voltages to oper-
ate. To power sensors and/or electronics that are not within the voltage range of the regulators, an
external battery that provides the necessary voltage can be used as inputs in the unregulated section
of theGPDB. For safety and emergency situations, power to all the electronics in the regulated and
unregulated sections can be switched on or off via an emergency-stop (e-stop) switch.

The fourmotors instrumentedonRhinoareLST11P24VDC120 revolutionsperminute (RPM)
wheelchair motors with a gear reduction of 45.5:1 with electromagnetic brakes. In order to control
the brakes during Rhino’s missions, the electromagnetic brakes are interfaced with a relay. Themo-
tor controllers that were chosen to interface with the motors are the Roboteq MDC2460, which
are dual-channel brushed direct motor controllers.

The initial setup was to power all the components through the GPDB but it could not handle
such a high current draw from the motors. The high current demand of the motors damaged the
GPDB as shown in Fig. 4.2.1, by burning traces as well as desoldering a Schottky diode designed
to protect the board.

To allow themotors to draw asmuch current as it needs to operate, another circuit was designed.
The circuit involves adding a relay, fuse, fly-back diode, an emergency-stop (e-stop) button, and
an In-Rush current limiter. The In-Rush Current limiter protects the motor controllers from the
large impulse of current when the device is switched on. Without the In-Rush current limiters,
as the systems continuously start and stop during operations would lead to damage to the motor
controllers. The relay and e-stop act as a switch to power the motors on and off and also allows
power to the motors to be cut off in emergency situations. Fig. 4.2.2 shows the circuitry designed
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Burnt TraceDesoldered diode

Figure 4.2.1: Damage caused by the high current draw of motors

to power the motors as well as the back Electromotive Force (EMF) protection circuitry.

Figure 4.2.2: Motor Power Circuit. S1: switch, D1: diode, RLY1: relay, ICL1: inrush current
limiter, MCU: motor controller unit, D2: TVS diode

During initial testing, it was observed that when the Rhino was brought to an abrupt stop when
driving, the motor controller would shut down. After investigations, it was discovered that this
behavior was a result of a high voltage transient caused by the back EMF due to the collapsingmag-
netic field inside of themotors. Themagnitude of this back EMFwas exacerbated by the size of the
motors and the high inertia of Rhino due to its large mass. To stop the back EMF from the motors
frombeing fed back into themotor controller, a circuit was designed for protection. The back EMF
would cause themotor controllers to shut downas a safetymechanismbecause the backEMFpulse
exceeded the motor controller’s maximum voltage input. The circuit designed is isolated from the
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General PowerDistributiondue to the sensitivity of the rest of the sensors. Todealwith the issue of
the back EMF shutting down the motor controllers, a transient voltage suppression (TVS) diode
and a bypass capacitor were put in parallel with each motor’s leads. The TVS diode protects sensi-
tive electronics (motor controllers) fromhigh-voltage transients and overvoltage events faster than
most other types of circuit protection devices [4]. While the capacitor reduces the voltage pulsa-
tion and also provides a low-impedance path for the back EMF to be dissipated.

Rhino is equipped with Dual Carbine lightbars for improved visibility for the operator during
teleoperation missions. The lightbar interfaces with a relay which allows the operators to control
the lights when conducting missions in low lightning conditions in the mine. The system allows
operators to send commands via a joystick to either turn on or off the lights.

The next paragraph delves into the sensors selected to complete the mission successfully. The
core sensors required to complete the mission are segmented into five sections which are

1. Localization and Perception

2. Communications

3. Actuators

4. Processing Unit

5. Accessories

The actuators, electronics, and sensors have been described in the paragraphs above. For local-
ization and perception, the sensors selected are a Light Detection and Ranging (LiDAR) sensor,
an inertial measurement unit (IMU), a fiber optic gyroscope, and depth sensing cameras. The sen-
sormeasurements will be fused for localization, path planning, obstacle avoidance, object tracking,
mapping, and object classification. Fig. 4.2.3 displays the overview of the rover’s electronics and
sensors.

Data is collected and processed using a 3.6 GHz Intel i7-9700K processor with eight cores, a
Corsair 32 Gigabyte (GB) RAM with a speed of 2400 MHz in a GIGABYTE Z390 M Mini Atx
computer. For processes that require graphical computation and visualization like SLAM, there is
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Figure 4.2.3: Schematic for Electronics and Sensors

a Gigabyte GeForce GTX 1650 OC Low Profile 4G Graphics Card with a four gigabytes ofRAM
and 8002MHz graphics processing unit (GPU) speed.

TheLiDARhas the ability to generate point clouds that provides updateddistancemeasurement,
with centimeter-level accuracy, between the robot and the surroundingobjects. This sensor’s ability
to operate is not impeded by low lighting conditions, so will be operable in mines. The LiDAR is
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an essential sensor for this project because of its many capabilities and uses. The LiDAR selected is
a 64-channel Ouster OS-1 [101] with a 100m range, range accuracy of±3cm, range resolution of
0.1cm, and interfaceswith the computingunit via thenetwork switch. Thedepth camerasmounted
in the front and the rear of the UGV have a similar purpose as the LiDAR but are mounted in the
blind spots of the LiDAR.With the combination of LiDAR and depth cameras, the rover can have
a better perception of the environment.

The selected IMU is the ADIS16495 by Analog Devices [12], a tactical grade six degrees of free-
dom inertial sensor. The sensor has a triaxial digital gyroscope and a triaxial accelerometer. The
specifications provided by the manufacturer are in-run bias and angular random walk values are
1.6o/hr, 0.1o/

√
hr for the gyroscope, and 3.2 μg, 0.008m/sec/

√
hr for the accelerometer, respec-

tively. The IMUmeasures the angular velocitywhich is integrated to infer the orientation and linear
acceleration of the vehicle. There is a second IMUmounted in the back half of the chassis mainly
to estimate the orientation. The IMUs interface with the system via the Autopilot Gen vii, [56]
which uses the Netburner MOD54115 microcontroller that collects and processes the data. The
implementation of the Netburner which has a 250 MHz processor, allows the system to receive
IMU data at a rate of 100 Hz via the Serial Peripheral Interface (SPI).

Fiber optic gyroscopes offer higher sensitivity, its rotational sensitivity is high grade and faster in
comparison to the gyroscope from the IMU.The fiber optic gyroscope senses changes in orienta-
tion using the Sagnac effect tomeasure the angular velocity of theUGV.The selected gyroscope is a
KVHDSP-1760 single-axis fiber optic gyroscope [79] with the specifications of an in-run bias and
angular random walk values are 0.05o/hr − 1δ, 0.012o/

√
hr for the gyroscope, respectively. Both

the fiber-optic gyroscope and the IMU allow the measurement of the angular velocity and linear
acceleration to provide an estimation of the orientation of the UGV in its environment.

The communication systemwas selected based on previous experiences by TeamMountaineers
at the University Rover Challenge where long-distance non-line of sight communication is a re-
quirement [55]. The system runs off a 2.4 GHz and 900MHz frequency radio system by Ubiquiti.
The 2.4 Ghz radio system consists of a high-gain directional antenna at the base station and for the
rover side, there are two omnidirectional antennas. Prior to testing in the mine, the 2.4 gigahertz
radio system provided up to 0.5 kilometers of non-line-of-sight communication. The communica-
tion system will be able to transmit crucial information back to the base station while the rover is
operating autonomously or teleoperated. Information like the health status, orientation, battery
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level, and also the point cloud data are transmitted back to the base station for monitoring.
The complete instrumentation of Rhino, including all sensors, electronics, and batteries, weighs

approximately 190 kilograms. Table 5 presents the breakdown of the weight the system required
to complete all the tasks required.

Table 4.2.1: Weight Estimates of Rhino

Component Value (kg)
Chassis 56.41
DriveMotors 14.47
Wheels and Tires 36.46
Sensors and Electronics 10.64
Batteries 73.21
Total weight 191.20

4.3 SoftwareOverview

To complete the required tasks required by the project, the actuators, sensors, and software have
to work seamlessly. The researchers elected to use the RobotOperating System (ROS) framework,
which defines components, interfaces, and tools for building robots [3]. Since the UGV is made
up of the frame, batteries, actuators, sensors, control systems, etc, ROS allows for their intercon-
nectivity through topics and messages which makes development and testing easier. Figure 4.3.1
shows the software the researchers developed and implemented for the hardware interface, state
estimation, planner, traverse, and teleoperation modules. The software is structured to allow for
basic missions such as teleoperation and more challenging tasks such as autonomous navigation,
planning, and mapping. The developed software allows the different sensor measurements and
modules to have individual nodes, topics, and messages. The nodes are responsible for computa-
tions and can receive inputs from sensor measurements [104]. Different nodes may publish or
subscribe to messages through topics to exchange information. Figure 4.3.1 shows the software
overview for Rhino for all missions.
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Figure 4.3.1: Software Overview

Thehardware interface layer of Figure 4.3.1, involves developing software that allows for commu-
nicationwith the sensors and electronics onRhinowhich are essential for all themodules. In order
to communicate with the actuators, custom software was developed to allow formotor commands
to be sent to the motors by either a user or the planner. Once a motor command is sent, the node
sends feedback messages from the encoder to determine the state of the motor. For the safety of
operators and the system, a node was developed to allow users to engage and disengage the brakes.
The node publishes the state of the brakes and can also receive inputs from users. To interpret sen-
sor outputs from the LiDAR and IMU, nodeswere also developed to allow themeasurements to be
used. The IMU node converts sensor readings from the gyroscope and accelerometer into angular
velocity and linear acceleration measurements which can then be used by the state estimation and
plannermodules. While the rangemeasurements from the LiDAR are converted into points by the
LiDAR node and are also used by state estimation and planner modules as well.

The teleoperation module receives inputs from users and sensor data which are converted to
command velocities to control Rhino remotely. It also receives user inputs via joy commands that
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are then converted into command velocity messages. During teleoperation tasks, if the brakes are
engaged, the command velocities are not sent to the motors.

Prior to the implementation of the autonomous navigation, localization and mapping modules
in Chapter 3, it is essential to calibrate the intrinsic and extrinsic parameters of the sensors. The
accuracy of the calibration performed directly affects the performance of the algorithm being im-
plemented. To effectively fuse all sensors, especially for localization, mapping, and autonomous
navigation, the sensors required need to be spatially and temporally registered with respect to each
other. IMUs are particularly affected by errors that lead to inaccurate sensor readings. Errors such
as constant bias, white noise/angle random walk, bias stability, and calibration errors. Most non-
mechanical IMUs are affected themost by intrinsic errors such as white noise and uncorrected bias
errors. White noise-introduced errors cause an angular randomwalk whose standard deviation in-
creases proportionally to the square root of time [138]. While uncorrected bias causes errors in
orientation estimates that increase linearly over time [138]. To mitigate these unavoidable errors,
the IMUwas calibratedby calculating thewhite noise andbias instability of both the gyroscope and
the accelerometer using the Allan Variance method. The Allan Variance method is a time domain
analysis technique that represents the rootmean square (RMS) random-drift error as a function of
averaging time [44]. To calibrate these sensors, data was collected for a period of two hours when
the robot was not undergoing any rotation or translation. An example of the bias and noise charac-
teristics of the ADIS 16495 used on Rhino are shown in Table. 4.3.1.

Table 4.3.1: ADIS 16495 Error Parameters

Parameter Value Symbol Unit
AccelerometerWhite Noise 1.813e−02 δa m

s2
1√
Hz

GyroscopeWhite Noise 9.204e−04 δg rad
s

1√
Hz

Accelerometer Bias Instability 8.293e−05 δba m
s2
√
Hz

Gyroscope Bias Instability 7.414e−06 δbg rad
s

√
Hz

With white noise and bias instability identified, they can reduce errors when determining atti-
tude and position estimates by fusing LiDAR and IMU estimates in the state estimation module.
Although these parameters have been identified, the IMU cannot be fully relied upon for pose es-
timates because the noise will drift over time. To mitigate the errors caused by drift and noise, the
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state estimation module also estimates the biases to avoid errors which will be discussed in the
paragraphs below. As discussed in Chapter 3, measurements from the IMU are used to infer roll,
pitch, and yaw estimates.

Once the intrinsic parameters for the IMU were identified, the extrinsic calibration parameters
for the IMUandLiDARwere calculated. ForLiDAR-based localization techniques, LiDARcalibra-
tion is essential for successful operations. During operation, LiDARs generate 3Dpoints which are
grouped in scans, if the sensor is not properly calibrated the readings are affected bymotion distor-
tions when the agentmoves through the environment. In order to obtain accurate localization and
mapping estimates, the sensor is extrinsically calibrated with an IMU to track the motion distor-
tion in each LiDAR scan. Through a factor included in the LIO-SAM framework [118] to deskew
the LiDAR pointcloud, the angular rate from the IMU must be provided to the localization and
mapping module in a frame aligned with the LiDAR plane. To make the transformation between
the LiDAR and IMU simple to compute for this purpose, the robot was designed so that IMUwas
placed below the LiDARwith only a translation offset in the Z-direction. After the development of
the hardware interface and calibration, the measurements from proprioceptive and exteroceptive
sensors are used in the implementation of the algorithms in Chapter 3.

For the localization and mapping, LIO-SAM [118], the module requires IMU measurements
that provide roll, pitch, and orientation estimates as well as LiDAR pointcloud data. The task of
localization andmapping can be categorized into four sub-modules which are IMUpreintegration,
imageprojection, feature extraction, andmapoptimization. The roll andpitch estimates are used to
initialize theunmannedvehicle at the correct attitude. The IMUpreintegration factor receives IMU
measurements and LiDAR odometry from the map optimization module which are then used for
graphoptimization andestimationof the IMUbiases andoutputs of the IMUodometry. The image
projectionmodule receivesLiDARpoint cloudmeasurements, IMUmeasurements, andodometry
estimates from the IMU preintegration for the initial transformation and organizing of the point
clouddata. Due to the accelerationof the unmanned vehicle, theLiDARmeasurement canbecome
deskewed which may lead to incorrect measurements. To mitigate the deskewing of the LiDAR
point clouds, the image projection module is also responsible for deskewing the point cloud data.
The feature extraction module is responsible for extracting the edge and planar features which can
be used for state estimation. The goal of the map optimizationmodule is for the registration of the
point clouds, attaining the LiDAR odometry, and optimizing the graph.
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For autonomous navigation missions, the planner [145] can also be categorized into three sub-
modules that work in parallel with each other in order to complete the missions. The three sub-
modules are the terrain analysis, local planner, and the waypoint following modules. The terrain
analysis receives the registered point cloud data from the state estimationmodule which is used to
assess the traversability of the terrain. The terrain analysis module accesses the traversability of the
terrain by using LiDAR data to represent the environment as a voxel grid. The voxel grid is then
used to determine the ground height by analyzing the distribution of the adjacent voxels which
then determines the smoothness of the terrain. With the smoothness of the terrain determined,
points that are further from the ground are assigned a higher traversal cost. With the traversabil-
ity of the terrain determined, the local planner uses the cost map generated and state estimates
to determine paths to the waypoints which are determined by the user. The local planner gener-
ates plans offline in the sensor frontier for obstacle avoidance while the global planner ensures the
plannedpaths donot fall into a localminima in order to reach thewaypoints. Theplanner generates
collision-free paths by pre-computingmotions the systemcan take and associates themotionswith
3D locations close to the system. If a location is occupied by an obstacle, themodule can determine
pre-computedmotions that are collidedwith obstacles and avoids those paths. Themodule instead
selects a group of motion primitives with the maximum likelihood of reaching the waypoint

After the implementation of the state estimation and the planner, Rhinowas tested in several en-
vironments and terrain to assess its capabilities and limitations which will be discussed in Chapter
5.
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5
Experiments and Results



To successfully and reliably complete the tasks of localization, mapping, and autonomous nav-
igation of subterranean environments, several tests were conducted to verify the capabilities and
robustness of Rhino. To evaluate the performance of the system prior to missions in the limestone
mines, several tests were carried out on theWest Virginia University campus to validate the perfor-
mance, expose issues, and fine-tune the system. The tests on the campus were carried out for both
indoor and outdoor environments, which allows the assessment of the performance of the robot
on a variety of terrain and environments. After conducting several tests, validating and fine-tuning
the system, Rhino was deployed in a coal mine to perform localization, mapping, and autonomous
navigation missions.

5.1 Experiments on theWest Virginia Campus

Several tests were carried out on the West Virginia University Campus, to validate, expose issues,
and fine-tune the performance of the unmanned ground robot Rhino. Initial tests were conducted
to assess the capabilities through teleoperation by conducting tests on concrete, grass, tiled indoor
surfaces, gravel, and muddy terrain. Once the performance of the drivetrain system was assessed,
localization and mapping experiments were conducted to verify the state estimates and then au-
tonomous navigation missions.

Initial tests were conducted indoors to validate and tune the response of the system to motor
commands via user inputs to access its driving capabilities. Due to the weight and inertia of Rhino,
acceleration limits were set to prevent damage to the gearbox caused by the system starting and
stopping which was observed from initial tests. As a consequence of the current and acceleration
limits set for hardware safety, themotor speed control was tuned according to the limitations, mass,
start, and stop inertia. Tuning of these parameters are particularly important for autonomous mis-
sions where it will be critical for Rhino to come to a complete stop when a waypoint is reached or
in the vicinity of an obstacle.

After initial parameter tuning, several teleoperation tests were carried out to assess the capabili-
ties of the system on different terrain and slopes. With all the components and batteries required
for localization, mapping autonomous navigation, and extended operational times, the weight of
the robot (190 kg) is a significant factor in the ability of the actuator to move the robot. While the
tiled surfaces are not representative of the intended surfaces in the mine, testing on these surfaces
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at WVU was convenient for initial testing and for validating that the overall system was working.
The system was able to handle the tiled surfaces well but marginally struggled when turning. After
performing such tests, Rhino was driven outdoors to be tested on concrete, gravel, and grass. Al-
though Rhino was able to be driven on different terrain, researchers realized the system struggled
when commanded to turn as well as traverse inclined terrain. Even though full power was being
commanded to the robots, Rhino was unable to turn in place on concrete and grass. It was then
determined that themotors were not able to provide enough torque to overcome the weight of the
robot and the coefficient of friction of the terrain. The researchers determined that Rhino was able
to traverse on tiled surfaces easily due to these surfaces having a lower coefficient of friction in com-
parison to the other terrain. The system also struggled on such terrain due to the steering scheme
being skid-steer, which requires the wheels to slip in order to turn. As a result of the skid-steer sys-
tem, the higher friction coefficient of the other terrain and high weight made turning on concrete,
grass, and gravel a challenge for the system.

The ability to turn on different terrain is essential for any and all operations, therefore research
was conducted to improve the systems driving capabilities and turning ability on different terrain.
The solutions that were considered were switching the tires or upgrading to higher torque motors.
The researchers chose to upgrade the motors to higher torque motors since it did not require any
significant change in the system. The actuatorswere upgraded frommotorswith a gear ratio of 32:1
with a torque specification of 30N · m to motors with a gear ratio of 45.5:1 and a torque rating of
42.66N · m.

After the upgrade of the motors, the researchers saw a significant improvement in the driving
capabilities of the system, with the system being able to turn on grass, concrete, gravel, and the
ability to traverse inclined terrain. Experiments to verify and assess the capabilities of Rhino re-
quired extensive testing and extended periods of time, which allowed validation of the operational
time of the 12V 42 Ah batteries. The researchers discovered that after extensive testing, the battery
modules will allow for up to 3-4 hrs of continuous power supply to the system. But some issues
were discovered after such tests, if the batteries are continuously used without being charged, once
the batteries are fully drained the modules go into a peculiar state. As discussed in Chapter 4, the
batteries are in series to provide 24V power to the system, so one of the batteries drains faster than
the other. From further examinations and quantitative experiments, the researchers realized that
the battery monitoring systems go into an error state whereby it falsely indicates a full charge. To
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mitigate these issues, the batteries were upgraded to 24V 50 Ah batteries which simplified the bat-
tery system without the need to put the system in series. The upgrade allowed the researchers to
conduct more tests without the need to worry about issues with the power module.

Once the issues discussed in the previous paragraphs were addressed, the localization and map-
pingmodule [118]was tested in several indoor andoutdoor environments. Although ground truth
was not available for indoor tests, the generated 3D maps were evaluated qualitatively. The tests
were carried out to access Rhino’s localization and mapping capabilities prior to autonomous nav-
igation missions. During the missions, the SLAM parameters were tuned in order to improve the
performance of Rhino. The first parameter that was tuned was the voxel size which is different for
indoor and outdoor experiments. The voxel size determines how granular or coarse the system
interprets the environment, by using smaller voxel parameters more features can be extracted. Al-
though more features can be extracted, the system will become more computationally expensive
if there are too many features. To reduce the computational complexity and processing time, it
was determined that the indoor parameters performed better with smaller voxel parameters than
the outdoor parameters since there were usually more features. The loop closure parameters were
then tuned to avoid inaccurate loop closures such as thedistance fromthe current positionofRhino
to consider a loop closure and the number of keyframes that are fused into the submap for a loop
closure. Fig. 5.1.1 demonstrates a map generated indoors, with multiple loop closures, where the
yellow lines represent multiple loop closures.
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Figure 5.1.1: 3D Map of Advanced Engineering Building, WVU Second Floor

Fig. 5.1.2 shows a comparison of an outdoor 3Dmap generated by LIOSAM and Google Earth
on theWest Virginia University campus.
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(a) 3D generated Map of West Virginia Uni-
versity, Evansdale Campus

(b) West Virginia University, Evansdale Cam-
pus, Google Earth view for comparison

Figure 5.1.2: Comparison of 3D generated map of the Evansdale Campus, West Virginia
University

After theperformanceof the localizationandmappingmodule [118]was assessed, the autonomous
navigationmodule [22, 145]was tuned for thedynamics ofRhino. ForRhino to autonomouslynav-
igate to the differentwaypoints provided by the user, the terrain analysismodule [22]was tuned for
Rhino’s setup such as the dimensions of the vehicle, the height of the LiDAR from the ground, the
obstacle height thresholdwhichdetermineswhichobstacles the systemcan traverse over, the speed
and accelerationwhen autonomously navigating. To verify the state estimates from the localization
and mapping module the user-given waypoints were used as inputs in the autonomous navigation
module to allow the system to drive tomultiple waypoints for an extended period of time and com-
pared with ground truth from GPS measurements. The truth reference solution is determined by
a carrier-phase differential GPS (DGPS) setup. The setup for the DGPS solution consists of two
dual-frequency Novatel OEM-615 GPS receivers, and L1/L2 Pinwheel antennas, one mounted to
the rover and the other mounted on a base station [74, 75]. The solution is collected with 1 Hz
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GPS pseudo-range and GPS carrier phase on both base station and rover computer, then it is post-
processed using RTKLIB 2.4.2 [129].

In order to compare the GPS truth and the pose estimates, the initial time of the estimates from
LIO-SAM had to be synchronized to align data. Since the GPS solution was published at a rate of
1Hz and the localization at a rate of 10Hz, the GPS data had to be interpolated in order to have an
equal number of data points for comparison.

In an effort to access the capabilities of the system, one of the tests conducted involved Rhino
autonomously navigating between two waypoints. During the tests, Rhino traversed 9km for 3.6
hours with the longest autonomous mission being 2.5 hours. In the course of the 2.5 hr mission,
Rhino autonomously traversed 4.5 km on gravel and sandy terrain. Fig. 5.1.3 shows the map gen-
erated by the LIO-SAM [118], the planner and the trajectory Rhino travelled. The blue lines rep-
resent the trajectories traveled and the yellow arcs represent the free paths from the local planner
[145]. Although the trajectories were different for each run, Rhino consistently arrived at the way-
point each time.

Fig. 5.1.4 and Fig. 5.1.6 show the comparison of the pose estimates between the GPS truth, the
optimizedLIOSAModometry, andLiDARodometry estimates over the timeperiod the testswere
conducted. The figure shows that although both odometry estimates were similar in the beginning,
as the test continued, the LiDAR odometry slowly drifted.

Fig. 5.1.5 and Fig. 5.1.7 represent the difference between the GPS truth and the pose estimates
from the odometry solutions from the localization and mapping module. The figure confirms the
trend that can be seen in Fig. 5.1.4, which shows that as the tests continued, the LiDAR odome-
try becomes less reliable after an extended period of time. The Fig. 5.1.4, Fig. 5.1.6, Fig. 5.1.7 and
Fig. 5.1.5 shows that by fusing IMUmeasurements in the graph optimization improves the odom-
etry estimates.
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Figure 5.1.3: Map generated during the mission where Rhino traveled between 2 waypoints.
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Figure 5.1.4: Comparison of x pose estimates between GPS truth and the odometry solu-
tions from LIOSAM for back and forth test
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Figure 5.1.6: Comparison of y pose estimates between GPS truth and the odometry solu-
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Figure 5.1.7: Error comparison of y pose estimates between GPS truth and the odometry
solutions from LIOSAM for back and forth test
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Table 5.1.1 compares the LIO-SAM [118] optimized pose estimates against the uncorrected
LiDAR odometry which drifts in comparison to the optimized estimates.

Table 5.1.1: RMSE in East-axis and North-axis for Autonomous Navigation between two
waypoints (2.5 hrs)

Reference System LIOSAMOptimized LIOSAMLiDAROdometry
East (meters) 0.207 0.571
North (meters) 0.0896 0.821

For better visualization of the test, Fig. 5.1.8 shows the pose estimates from a shorter run time.
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Figure 5.1.8: LIOSAM Odometry vs LIOSAM LiDAR Odometry vs GPS Truth between 2
Waypoints (shorter test)

Table 5.1.2 shows the same trend as the results from the test conducted for 2.5 hours.
For a more challenging experiment in comparison to the previous back-and-forth experiment,

the system was given a set of waypoints to drive in a zigzag pattern. The set of zigzag waypoints al-
lowed the researchers to verify the hardware (actuators and chassis) and the planner’s [145] ability

64



Table 5.1.2: RMSE in East-axis and North-axis for Autonomous Navigation between two
waypoints (shorter test)

Reference System LIOSAMOptimized LIOSAMLiDAROdometry
East (meters) 0.335 0.571
North (meters) 0.105 0.821

to handle more challenging missions. During the zigzag missions, Rhino operated for an hour and
traveled 2.3 km. Fig. 5.1.9 shows a segment of the mission where Rhino autonomously traversed
475 meters.
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Figure 5.1.9: LIOSAM Odometry vs LIOSAM LiDAR Odometry vs GPS Truth between
ZigZag

Table 5.1.3 compares the LIO-SAM [118] optimized pose estimates against the uncorrected
LiDARodometrywhich drifts in comparison to the optimized estimates and shows the same trend
as the other tests.

AlthoughRhino successfully completedothermissions, during thefinal zigzag test, the researchers
realized the robot began having issues that were not seen in the prior tests. The localization, map-
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Table 5.1.3: RMSE in East-axis and North-axis for Autonomous Navigation for zigzag test

Reference System LIOSAMOptimized LIOSAMLiDAROdometry
East (meters) 0.365 0.358
North (meters) 1.061 1.0058

ping and autonomous navigation modules’ performances had not diverged but the hardware was
facing challenges traversing to the waypoints. There was also a perceivable smell of smoke coming
from the robot, which made the researchers concerned about the state of the robot. After taking
the robot back to the lab, for examinations the researchers noticed that although all actuators were
hotter than usual the back right motor was considerably hotter than the others. Although the ac-
tual cause of the behavior is yet to be determined, the zigzag tests were the toughest challenge the
systemhad undergone during autonomousmissions andRhinowas at its heaviest configuration by
carrying backup batteries.

Fig. 5.1.10 shows the current draw from the right side of the robot when given the same motor
command. The graph further confirms the damage caused to themotor where there are significant
random current spikes. As a result of the damage, the motor was replaced to allow for continued
testing.
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Figure 5.1.10: Current draw of Motor Front Right and Back Right

Fig. 5.1.11 shows the temperatures of the front right motor and the damaged back right motors.
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(a) Temperature of Back Right Motor (b) Temperature of Front Right

Figure 5.1.11: Temperatures of the right side of Rhino’s motors

By extensively testing Rhino on theWest Virginia University campus, it allowed the researchers
to evaluate the performance and limitations of the system. Due to the limited accessibility of the
mine, these tests allowed the researchers to address issues and fine-tune the system prior to visit-
ing the mines. After conducting several tests, Rhino was deployed in a coal mine to perform lo-
calization, mapping and autonomous navigation missions. The insights gained from conducting
missions in the mine will be further discussed in the upcoming section.

5.2 Experiments in CoalMine Environment

To access the capabilities in GPS-denied and subterranean environments, Rhino was deployed in
the NIOSH Safety Research Coal mine as seen in Fig. 5.2.1 and Fig. 5.2.2. Two experiments were
carried out to demonstrate and verify the robustness of the software and hardware of Rhino in the
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mine. The initial tests carried out in the mine allowed the researchers to evaluate the capabilities
and robustness of the system to handle the challenging terrain via teleoperation, remote operations
via the communications setup, and localization and mapping module. After verifying the robust-
ness of the mechanical systems, localization and mapping modules, and the autonomous naviga-
tion module was assessed.

In an effort to demonstrate the capabilities of the system, Rhino was teleoperated to verify its
ability to handle subterranean surfaces. The system successfully traversed a variety of terrain in
the mine which were gravel, dry, andmuddy terrain. While conducting these tests, the researchers
demonstrated the capacity for split body chassis to maintain a stable platform for the system to
traverse over some obstacles.

Fig. 5.2.1 and Fig. 5.2.2 show Rhino operating in the NIOSH Safety Research Coal Mine, Pitts-
burgh, Pennsylvania.
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(a) Rhino in front of NIOSH Safety Research Coal Mine

(b) Rhino in the coal mine on loose soil terrain

Figure 5.2.1: Rhino operating in NIOSH Safety Research Coal Mine (video)
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(a) Rhino operating in NIOSH Safety Research Coal Mine with the help of the
instrumented lights

(b) Rhino in the coal mine on muddy terrain

Figure 5.2.2: Rhino operating in NIOSH Safety Research Coal Mine (video)
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Although Rhino was able to traverse the mine terrain there was some damage caused to the
frame, due to a defect in the chassis. The frame that allows themotors to bemounted to the chassis
received a considerable amount of stresswhich led to thewelds of the framebeingbroken. Fig. 5.2.3
shows the damage to the frame with the broken welds shown.

Broken Weld

Broken Weld

Broken Weld

Figure 5.2.3: Broken Chassis Frame

To strengthen and reinforce the chassis, Rhino had to be completely disassembled to allow the
welds to be fixed. The damage sustainedwas fixed by reinforcing the framewith stronger welds and
brackets that allow the stress induced by the wheels and motors to be distributed across the frame
as shown in Fig. 5.2.4. The process of reconstructing and rebuilding Rhino can be seen here.
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Reinforcement Bracket 

Figure 5.2.4: Reinforcement Brackets

AlthoughRhinowas fixed and reinforced, the damage sustainedmeant one of thewheels was no
longer perfectly aligned with the forward direction of the robot. This results in additional friction
while driving which requires more torque for that wheel.

To test the capabilities of the communication setup, a ground station with a base station com-
puter and 2.4 GHz 90o directional antenna was set up. The goal of the communications test was to
verify the capabilities of the communications (comms) setup instrumented onRhino. The test was
set up to allow operators to teleoperate Rhino from a base station through the user interface which
transmits camera feedback, orientation, current draw from actuators, the status of the brakes, and
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lights. The operators were able to drive line-of-sight over the communications setup by using the
camera feed and controller. Although the operators could drive Rhino andmonitor the generation
of the 3D map, some limitations were discovered. The limitations were a result of the harsh mine
environment attenuating the radio signals. This was discovered when the robot was driven out-of-
line-sight of the base station directional antenna, the operators would instantly lose connection to
the system.

In order to generate the high-fidelity maps, Rhino’s localization and mapping module was used
to generate a 3D map and traversed 1,018 meters as seen in Fig. 5.2.5. During the mapping mis-
sions, the loop closure detectionwas qualitatively evaluated by driving in several loops to assess the
system’s ability to recognize loop closures. For autonomous missions, waypoints were selected by
inputting the robot’s pose as reported by the LIOSAM’s [118] state estimates and used as inputs
for the FALCO planner [145]. Prior to conducting the missions, the planner was tuned for the
mine terrain, some of the parameters tuned were the autonomous navigation speed, acceleration,
and maximum yaw rate. Some of the initial waypoints selected were for Rhino to autonomously
drive tomultiple waypoints in a straight line. Rhinowas able to successfully traverse to the selected
waypoints, after which the researchers decided to select more challenging waypoints. The team de-
cided to select waypoints that allowed Rhino to autonomously navigate to waypoints that form
a square pattern. Although the system was able to create high-fidelity maps, there were some mis-
sionswhere the localization estimateswere observed to be inaccurate as a result of Rhino traversing
to an inaccurate waypoint. The researchers noticed that the system would autonomously navigate
to incorrect waypoints, and soon discovered that the localization andmappingmodule had drifted
significantly. After analyzing the data collected during these missions, the researchers realized an
issue with incorrect timestamps from the LiDAR.The incorrect timestamps would cause the state
estimates to drift drastically since the estimates are used in the global optimization step. In an ef-
fort to debug the issues with the localization and mapping, the data collected was used to adjust
the algorithms to improve the solution. After tuning the parameters, the mission was replayed in
a simulation environment and showed improved pose and map estimates as Rhino would traverse
to the selected waypoints.
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Figure 5.2.5: 3D Generated Map of NIOSH Safety Research Coal Mine by Rhino
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Thetest conducted in theNIOSHSafetyResearchMineallowed the researchers to verifyRhino’s
ability to operate in a challenging GPS-denied environment. The missions conducted showcased
the ability of Rhino’s hardware to handle the harsh and challenging terrain. By performing exper-
iments in the mine, the researchers were able to verify and improve the performance of Rhino.
Although Rhino’s chassis’ got damaged in one of the experiments, once the issue was addressed
and reinforced, the system was able to traverse without issues. By conducting localization, map-
ping, and autonomous navigation missions, the researchers were able to successfully complete its
missions.
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6
Conclusion and Future Work



6.1 Conclusion

Thegoal of the research presented is to develop and implementmodern robotic systems to enhance
monitoring and warning systems of old workings in underground stonemines. In order to success-
fully complete autonomous navigation and generate high-fidelity maps, the goal of the project was
the development and testing of a robust unmanned ground vehicle in several environments and
terrain. During the development of the system, research was conducted to gain insight into some
of the state-of-the-art solutions and the gaps in the current systems. In order to successfully com-
plete the autonomous navigation missions, a robust robotic platform was developed to operate in
the harsh and challenging stone mine environment.

The research being conducted is to aid in the prevention of accidents, protect human lives, im-
prove and stabilize structures. Underground limestonemines generally have strong structures and
are generally stable, and the enhanced pillar designs developed by NIOSH have improved the sta-
bility of these mines even more. Although the guidelines provided are being enforced, previously
mined sections stay open for years and are uninspected. Due to the outdated safety factors from
the old designs and time degradation, over time the pillars can be affected by sloughing as well as
reported roof falls. This can pose a threat to the miners, as they have to travel through somemined
sections to get to the working face. Due to the severity of the accidents that occur in these mines,
inspections are necessary to prevent any collapse, but currentmethods involve human inspections,
which are impractical due to the vast size of some mines as well as the risk to life to conduct the
inspections.

In efforts to aid in the prevention of accidents, the development of the system presented in this
research had to be tested extensively. In order to successfully operate and conduct missions in the
mine, the system developed will have to be robust and reliable. Rhino is an unmanned ground ve-
hicle with a split-body chassis based on the skid-steer driving scheme with the ability to operate
for extended periods of time. The robot is instrumented with a variety of sensors and electron-
ics that were selected based on insights gained from research into current systems implemented
in mine environments and previous projects. The design and instrumentation of Rhino were to
allow for ease of serviceability during field experiments. To complete the autonomous missions in
stonemine environments, a state-of-the-art tightly-coupled LiDAR-inertial-odometry via smooth-
ing and mapping (LIO-SAM) SLAM framework [118] is implemented. For autonomous naviga-
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tion missions, a terrain analysis module [22] is implemented to allow the system to autonomously
access the terrain. To navigate to waypoints and areas of interest duringmissions the FALCOplan-
ner [145] is implemented. The FALCO plans paths by generating offline trajectories according to
the constraints and parameters of the unmanned vehicle and formulates the paths as a likelihood
problem. The results in this thesis shows the extensive testing and successful implementation of
Rhino in these environments. Although there were some issues, by extensively testing and iterat-
ing the system, the missions were able to be completed.

The successful implementation of the system will allow mine workers to autonomously deter-
mine the structural integrity of the roof and pillars. As the structural integrity of the roofs and
pillars are determined, it will allow the miners to rapidly respond to any increasing hazards with
proactive measures such as: sending workers to build/rebuild support structure to prevent acci-
dents, warning miners of highly hazardous areas to allow for the use of alternate routes or the evac-
uation of the mine. Insights gained from the high-fidelity 3D maps can also be used to accurately
determine the volumetric change of pillars over time, which can then be used to update strength
degradation in pillar models. By updating the models, workers can immediately and proactively
respond to possibly catastrophic or fatal pillar and/or roof failures.

6.2 FutureWork

Currently, there are several limitations to the system presented in the thesis that needs to be ad-
dressed in the future.

Although Rhino can complete the required missions, some changes can be made to improve
the performance of the system. Due to the combination of the high weight of the system and the
damage sustained in the mine, Rhino’s driving capabilities can be further improved by reducing
the weight. The researchers plan on upgrading the battery system for the sensors and electronics to
four 40VGreenworks batteries and removing four of the 12Vbatteries. From initial tests conducted
on the West Virginia University Campus, the driving capabilities improve when the weight of the
system is reducedby removing thebackupbatteries. Byupgrading to the 40VGreenworks batteries,
issues discovered from the battery monitoring system of the 12V batteries will also be alleviated.

Research will also be conducted to further improve the performance of the localization and
mapping estimates. Although a fiber optic gyroscope is instrumented on the platform, its mea-
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surements are only used for the dead reckoning odometry estimates. Since the fiber optic gyro-
scope measurements have high accuracy, the development of a sensor fusion algorithm that re-
ceives inputs from the fiber optic gyro and IMU will improve the attitude estimates. In efforts to
improve the localization and mapping module, research will be conducted into the addition of a
visual-inertial odometrymodule. By implementing a robust tightly-coupled-LiDAR-visual-inertial
odometry, if one of the exteroceptive sensors fails the system can function during missions.
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