29 research outputs found

    Mechanical Verification of Interactive Programs Specified by Use Cases

    Get PDF
    International audienceInteractive programs, like user interfaces, are hard to formally specify and thus to prove correct. Some ideas coming from functional programming languages have been successful to improve the way we write safer programs, compared to traditional imperative languages, but these ideas mostly apply to code fragments without any inputs–outputs. Using the purely functional language Coq, we present a new technique to represent interactive programs and formally verify use cases using the Coq proof engine as a symbolic debugger. To this end we introduce the notion of scenarios, well-typed schema of interactions between an environment and a program. We design and certify a blog system as an illustration. Our approach generalizes unit-testing techniques and outlines a new method for mechanically assisted checking of effectful functional programs. I. Introduction Implementing and proving correct interactive programs is challenging. Indeed, interactive programs are hard to reason about because they communicate with an outer environment (the operating system, the network, the user,. . .) which may be under-specified and non determin-istic. Moreover, the communications between the program and the environment can happen at many points during the execution and may depend on previous interactions. Many techniques have been developed to model, specify and prove correct interactive or concurrent programs[15]. For instance, process algebra and temporal logics are well understood abstract models for such programs. In these abstract models, some interesting behavioral properties can be automatically proved by model-checkers. Yet, these tools usually provide guarantees about the model of the program, not its actual implementation. In another approach, called software-proof co-design, the specification and the verification of a program is not disconnected from its actual implementation. In that case, specifying, implementing and verifying are tightly interleaved in the software development process. This tight integration is possible within the Coq proof assistant which is both a programming language and an assisted prover. Yet, even if a realistic compiler for the C language has already been developed in Coq[12], using Coq as a general purpose programming language may be considere

    Guarded recursion in Agda via sized types

    Get PDF
    In type theory, programming and reasoning with possibly non-terminating programs and potentially infinite objects is achieved using coinductive types. Recursively defined programs of these types need to be productive to guarantee the consistency of the type system. Proof assistants such as Agda and Coq traditionally employ strict syntactic productivity checks, which often make programming with coinductive types convoluted. One way to overcome this issue is by encoding productivity at the level of types so that the type system forbids the implementation of non-productive corecursive programs. In this paper we compare two different approaches to type-based productivity: guarded recursion and sized types. More specifically, we show how to simulate guarded recursion in Agda using sized types. We formalize the syntax of a simple type theory for guarded recursion, which is a variant of Atkey and McBride\u27s calculus for productive coprogramming. Then we give a denotational semantics using presheaves over the preorder of sizes. Sized types are fundamentally used to interpret the characteristic features of guarded recursion, notably the fixpoint combinator

    A Typing Discipline for Hardware Interfaces

    Get PDF
    Modern Systems-on-a-Chip (SoC) are constructed by composition of IP (Intellectual Property) Cores with the communication between these IP Cores being governed by well described interaction protocols. However, there is a disconnect between the machine readable specification of these protocols and the verification of their implementation in known hardware description languages. Although tools can be written to address such separation of concerns, the tooling is often hand written and used to check hardware designs a posteriori. We have developed a dependent type-system and proof-of-concept modelling language to reason about the physical structure of hardware interfaces using user provided descriptions. Our type-system provides correct-by-construction guarantees that the interfaces on an IP Core will be well-typed if they adhere to a specified standard

    A Framework for Resource Dependent EDSLs in a Dependently Typed Language (Pearl)

    Get PDF
    Idris' Effects library demonstrates how to embed resource dependent algebraic effect handlers into a dependently typed host language, providing run-time and compile-time based reasoning on type-level resources. Building upon this work, Resources is a framework for realising Embedded Domain Specific Languages (EDSLs) with type systems that contain domain specific substructural properties. Differing from Effects, Resources allows a language’s substructural properties to be encoded within type-level resources that are associated with language variables. Such an association allows for multiple effect instances to be reasoned about autonomically and without explicit type-level declaration. Type-level predicates are used as proof that the language’s substructural properties hold. Several exemplar EDSLs are presented that illustrates our framework’s operation and how dependent types provide correctness-by-construction guarantees that substructural properties of written programs hold

    Intensional Refinement Datatypes:With Application to Scalable Verification of Pattern-Match Safety

    Get PDF
    corecore