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Intensional Datatype Refinement

With Application to Scalable Verification of Pattern-Match Safety

EDDIE JONES, University of Bristol, UK

STEVEN RAMSAY, University of Bristol, UK

The pattern-match safety problem is to verify that a given functional program will never crash due to non-
exhaustive patterns in its function definitions. We present a refinement type system that can be used to
solve this problem. The system extends ML-style type systems with algebraic datatypes by a limited form of
structural subtyping and environment-level intersection. We describe a fully automatic, sound and complete
type inference procedure for this system which, under reasonable assumptions, is worst-case linear-time in the
program size. Compositionality is essential to obtaining this complexity guarantee. A prototype implementation
for Haskell is able to analyse a selection of packages from the Hackage database in a few hundred milliseconds.

CCS Concepts: • Theory of computation → Functional constructs; Program verification; Logic and
verification.
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1 INTRODUCTION

The pattern match safety problem asks, given a program with non-exhaustive (algebraic datatype)
patterns in its function definitions, is it possible that the program crashes with a pattern-match ex-
ception? Consider the example Haskell code in Figure 1. This code defines the two main ingredients
in a typical definition (see e.g. [Harrison 2009]) of conversion from arbitrary propositional formulas
to propositional formulas in disjunctive normal form (represented as lists of lists of literals). Using
these definitions, the conversion can be described as the composition dnf ≔ nnf2dnf ◦ nnf .
Notice that the definition of nnf2dnf is partial: it is expected only to be used on inputs that are

in negation normal form (NNF). Consequently, unless is can be verified that nnf always produces a
formula without any occurrence of Imp or Not, then any application of dnf to an expression of type
Fm 𝑎may result in a pattern match failure exception. In this paper we present a new refinement type
system that can be used to perform this verification statically and automatically. Type inference is
compositional and incremental so that it can be integrated with modern development environments:
open program expressions can be analysed and only the parts of the code that are modified need to
be re-analysed as changes are made.
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data L a =

Atom a

| NegAtom a

data Fm a =

Lit (L a)

| Not (Fm a)

| And (Fm a) (Fm a)

| Or (Fm a) (Fm a)

| Imp (Fm a) (Fm a)

nnf (Lit (Atom x)) = Lit (Atom x)

nnf (Lit (NegAtom x)) = Lit (NegAtom x)

nnf (And p q) = And (nnf p) (nnf q)

nnf (Or p q) = Or (nnf p) (nnf q)

nnf (Imp p q) = Or (nnf (Not p)) (nnf q)

nnf (Not (Not p)) = nnf p

nnf (Not (And p q)) = Or (nnf (Not p)) (nnf (Not q))

nnf (Not (Or p q)) = And (nnf (Not p)) (nnf (Not q))

nnf (Not (Imp p q)) = And (nnf p) (nnf (Not q))

nnf (Not (Lit (Atom x))) = Lit (NegAtom x)

nnf (Not (Lit (NegAtom x))) = Lit (Atom x)

nnf2dnf (Lit a) = [[a]]

nnf2dnf (Or p q) = List.union (nnf2dnf p) (nnf2dnf q)

nnf2dnf (And p q) = distrib (nnf2dnf p) (nnf2dnf q)

where distrib xss yss =

List.nub [ List.union xs ys | xs <− xss, ys <− yss ]

Fig. 1. Conversion to disjunctive normal form.

Contributions. Whilst there are other analyses in the literature that can also verify instances
of the foregoing example ours is, as far as we are aware, the only to offer strong guarantees on
predictability, which we believe to be key to the usability of such systems in practice.

• The analysis is characterised by the type system, which is a natural, yet expressive exten-
sion of ML-style type systems with algebraic datatypes. It combines polyvariance (through
environment-level intersection) and path-sensitivity (through conditional match typing).

• The analysis runs in time that is, in the worst-case, linear in the size of the program (under
reasonable assumptions on the size of types and the nesting of matching).

We do not know of any other system or reachability analysis combining polyvariance, path-
sensitivity, an intuitive characterisation of completeness, and a linear-time guarantee on the overall
worst-case complexity (in terms of program size). Furthermore, our prototype demonstrates excel-
lent performance over a range of packages from Hackage, processing each in less than a second.

1.1 A Type System for Intensional Datatype Refinements

Sound and terminating program analyses are conservative: there are always programs without
bugs that, nevertheless, cannot be verified. Identifying a large fragment for which the analysis is
complete, i.e. a class of safe programs for which verification is guaranteed, allows the programmer
to reason about the behaviour of the analysis on their code. In particular, when an analysis fails to
verify a program that the user believes to be safe, it gives them an opportunity to take action, such
as by programming more defensively, in order to put their program into the fragment and thus be
certain of verification success.
However, for this to be most effective, the fragment must be easily understood by the average

functional programmer. Our analysis is complete with respect to programs typable in a natural
extension of ML-style type systems with algebraic datatypes. Indeed it is characterised by this
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Intensional Datatype Refinement 55:3

system: the force of Theorems 25 and 28 is to say that it forms a sound and complete inference
procedure. The system is presented in full in Section 5, but the highlights are as follows:

(i) The datatype environment introduced by the programmer, e.g. L𝑎 and Fm𝑎, is completed:
every datatype whose definition can be obtained by erasing constructors from one of those
given is added to the environment for the purpose of type assignment. These new datatypes
are called intensional refinements. These additional types allow for the scrutinee of a match
to be typed with a datatype that is more precise than the underlying type provided by the
programmer. For example, the datatypes in Figure 2 are among the intensional refinements of
Fm 𝑎, where data A a = Atom a is an intensional refinement of L𝑎. Of course, the names of
the datatypes are irrelevant.

(ii) There is a natural notion of subtyping between intensional refinement datatypes which is
incorporated into the type system through an unrestricted subsumption rule. For example,
Clause𝑎 and Cube𝑎 are both subtypes of the intensional refinement:

data NFm = Lit (L a) | Or (NFm a) (NFm a) | And (NFm a) (NFm a)

which is itself a subtype of Fm𝑎. However, Clause𝑎, Cube𝑎 and STLC𝑎 are all incomparable.
(iii) The typing rule for the case analysis construct, by which pattern matching is represented,

enforces that matching is exhaustive with respect to the type of the scrutinee. This ensures that
the analysis of matching is sound: programs for which the match is not exhaustive will not be
typable. Moreover, the rule is path-sensitive, with the type of the match only depending on the
types of the branches corresponding to the type of the scrutinee. For example, the following
function can be assigned the type (𝑎 → 𝑏) → Cube𝑎 → Cube𝑏 and it can be assigned the
type (𝑎 → 𝑏) → Clause𝑎 → Clause𝑏, but not the type (𝑎 → 𝑏) → STLC𝑎 → STLC𝑏

because it does not handle the constructor Imp.

map f (Lit (Atom x)) = Lit (Atom (f x))

map f (Lit (NegAtom x)) = Lit (NegAtom (f x))

map f (And p q) = And (map p) (map q)

map f (Or p q) = Or (map p) (map q)

Path sensitivity is essential for handling typical use cases. Often a single large datatype is
defined but, locally, certain parts of the program work within a fragment (e.g. only on clauses).
Path sensitivity helps to ensure that transformations on values inside the fragment remain
inside the correct datatype refinement Ð otherwise map could only advertise that it returns
formulas in type NFm𝑎. For example, Elm-style web applications typically define a single,
global datatype of actions although the constituent pages may only be prepared to handle
certain (overlapping) subsets locally.

(iv) Finally, refinement polymorphism, and hence context-sensitivity, is provided by allowing for
environments that have more than a single refinement type binding for each free program
variable, i.e. an environment-level intersection. For example, suppose trivial : Clause𝑎 → Bool

checks a clause for complementary literals, sing : Cube𝑎 → Bool checks if a cube consists
of a single conjunct, and rn : String → String performs a renaming of propositional atoms.
Then the following expression1 is well typed:

𝜆𝑥𝑦. trivial (map rn𝑥) | | sing (map rn𝑦)

This is because the typing environment contains both of the aforementioned types for map.
Note: this is polymorphism in the class of formulas, not only in the type 𝑎 of their atoms.

1The example is rather contrived, but we may rather imagine such combinations occurring in different parts of the program.
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55:4 Eddie Jones and Steven Ramsay

data Clause a =

Lit (L a)

| Or (Clause a) (Clause a)

data STLC a =

Lit (A a)

| And (STLC a) (STLC a)

| Imp (STLC a) (STLC a)

data Cube a =

Lit (L a)

| And (Cube a) (Cube a)

Fig. 2. Some intensional refinements of Fm 𝑎.

To distinguish between the typing assigned to the program by the programming language (which
we consider part of the input to the analysis) from the types that can be assigned in our extended
system, we call the former the underlying typing of the program.
Characterising the analysis with a type system allows the programmer to reason about its

behaviour using typings as a kind of certificate. Returning to the above example, the programmer can
be certain that uses of dnf will be verifiably safe because they can synthesize the intensional datatype
refinement NFm, and check the typings nnf : Fm𝑎 → NFm𝑎 and nnf2dnf : NFm𝑎 → [[L𝑎]].

1.2 Compositionality and Complexity

Our analysis takes the form of a type inference procedure for the system described above. As
is typical, inference proceeds by generating and solving typing constraints. The constraints are
guarded inclusions, representing flow of data conditioned on the presence of certain constructors
in datatypes along a program path.

A key goal of our work is to give some guarantee of the scalability of the analysis to large, real-
world programs. We do this by ensuring that the whole of type inference ś constraint generation
and constraint solving ś runs in time that is worst-case linear in the size of the program (assuming
other parameters, such as the size of underlying types, are fixed).
We achieve this complexity guarantee by a careful exploitation of compositionality in the type

inference algorithm. The key is to ensure that the size of the constraint set used to summarise the
behaviour of a component 𝑐 is independent of the number of components that 𝑐 depends on.

The issues involved are the same for any kind of compositional program analysis so, to illustrate,
consider some abstract program 𝑝 = 𝑝1 ·𝑝2 · · · · ·𝑝𝑛 that has been broken down into 𝑛 łcomponentsž
𝑝𝑖 . In the interests of approaching the worst-case complexity in as simple a way as possible, assume
that each component uses only the component immediately preceding it in the chain Ð for example,
via a procedure call.

A compositional program analysis computes a summary 𝑆𝑖 of the behaviour of each component
𝑖 separately. For example, for constraint-based analyses, this is typically a set of constraints in a
solved form (e.g. a constrained type scheme). For each component, the size of 𝑆𝑖 can depend on the
size of component 𝑖 (i.e. its program text), but also the size of the summary 𝑆𝑖−1 already computed
for component 𝑖 − 1 on which it depends. By choosing the granularity of components to be small,
or otherwise by making some reasonable assumption, we can regard the size of the program text of
each component to be bounded by a constant. Hence, when we speak of program size, we will refer
to the number of components, 𝑛. A consequence of this is that we may assume that the number of
times that 𝑝𝑖 uses 𝑝𝑖−1 is bounded by some constant, say 𝑐 .
When analysing the worst-case complexity of polyvariant analyses, like HM(X)-style type

inference [Odersky et al. 1999], there is typically the possibility that the summary of component 𝑖
may be duplicated 𝑐 times inside the summaries of those components that depend on it, and thus
we arrive at the (well-known) conclusion that the łsummaryž for the entry point of the chain 𝑆𝑛
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may be of size exponential in 𝑛2. For non-polyvariant, non-path-sensitive analyses, there is no
duplication, but it is nevertheless typical that summaries are already quadratic in 𝑛: the cubic-time
fragment of set constraints (see e.g. [Fähndrich and Aiken 1996; Fähndrich et al. 1998; Heintze 1994;
Su et al. 2000]) is one example of this class.
Since this blow-up occurs even in typical cases, there is an extensive literature on powerful

simplification techniques by which large summaries may sometimes be replaced by more concise
equivalents, see particularly [Aiken et al. 1999; Dolan and Mycroft 2017; Fähndrich and Aiken
1996; Flanagan and Felleisen 1999; Pottier 2001; Rehof 1997; Trifonov and Smith 1996]. However,
getting just the right combination and tuning of heuristics is difficult, and the initial implementation
effort and subsequent maintenance is significant (e.g. regular benchmarking as the underlying
programming language evolves). Moreover, one will always be able to find reasonable programs on
which heuristic simplifications are not well tuned, the program analysis/type inference will stall,
and the program’s author will lose faith in the system.

By contrast, our system is designed to guarantee that the worst-case size of any 𝑆𝑖 is independent
of the summaries that it depends on, and hence of the program size (though it is exponential in the
size of the largest underlying type). Therefore, with other parameters fixed, the size of each our
summaries 𝑆𝑖 is bounded by a constant.
We proceed component by component, first generating constraints and immediately putting

them into a solved form. However, computing a solved form so as to guarantee the above property
is not straightforward. Our constraint solver, which is inspired by the resolution-based approach
used in set constraint based program analysis [Aiken and Wimmers 1992, 1993; Aiken et al. 1994a;
Heintze et al. 1992] may take time exponential in the size of its input.
We are able to guarantee a linear time complexity overall because our compositional approach

ensures that each constraint set that is given to the solver is unrelated to the size of the program.
The size of the constraint set generated for a given component depends only on the size of the
summaries of the components it depends on Ð the solved forms Ð and each of these is bounded
by a constant. Therefore, the size of any constraint set supplied to the solver is also bounded by
a constant. Thus we solve a small (but exponential in the size of the underlying types) number
of constraints at every program point, rather than an enormous (exponential in the size of the
program) number of constraints when processing the program’s entry point.
This works only because we show that our constraint sets in solved form have the following

remarkable property, stated formally as Theorem 32.

Suppose 𝐶 is a set of constraints in solved form over variables 𝑉 and let 𝐼 ⊆ 𝑉
be arbitrary. Let 𝐶↾𝐼 , called the restriction of 𝐶 to 𝐼 be those constraints in 𝐶 in
which occur only variables from 𝐼 . Then every solution to𝐶↾𝐼 can be extended to
a solution of all 𝐶 .

In the restriction 𝐶 ↾𝐼 , entire constraints are culled, including those that involve a mixture of
variables from 𝐼 and 𝑉 \ 𝐼 . Such mixed constraints, intuitively, impose compatibility requirements
on the different components of a solution to 𝐶 . What is significant about the above property is that
it guarantees not only that the part of the constraint set only concerned with 𝑉 \ 𝐼 is internally
consistent but, moreover, that the mixed constraints will be satisfiable no matter which solution to
𝐶↾𝐼 is chosen.

We exploit compositionality in order to choose a minimal set of variables 𝐼 , the interface, with
which to restrict constraint sets. The interface of a program expression in context Γ ⊢ 𝑒 : 𝑇 consists
only of the those refinement variables that occur free in Γ and 𝑇 . The size of the interface depends

2However, note that Gustavsson and Svenningsson [2001] show that this can be reduced to cubic complexity in the case of
simple variable/variable constraints.
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55:6 Eddie Jones and Steven Ramsay

only on the size of the underlying type of 𝑒 , the size of definitions of any datatypes occurring
in that type and the nesting of pattern matching. Thus, if we make the (in our view, reasonable)
assumption that the sizes of these quantities are bounded by a constant, so too is the size of the
interface and, therefore, the size of any restricted constraint set Ð our component summary.

1.3 Implementation

Of course worst-case complexity is only part of the story, and especially so when the constant
factors depend upon several assumptions. Hence, we have implemented our System in Haskell as a
GHC Plugin and ran it on a selection of packages from the Hackage database. The plugin takes
a Haskell package to be compiled and runs our type inference algorithm over the whole code to
yield a constrained type assignment and a set of type errors. The average time taken to process
each module is in the order of milliseconds and the results show very stark contrast between the
number of refinement variables associated with the program points in the module (often > 10000)
and the number of refinement variables in the interfaces (typically < 20).

1.4 Outline

The rest of the paper is structured as follows. In Section 2 we describe a Haskell-like functional
programming language which forms the setting for our work. This is followed in Section 3 by
our definitions of refinement. Then in Sections 4 and 5 by the definition of the type system that
characterises the analysis. In Sections 6, 7 and 8we present our analysis as a type inference algorithm,
generating and solving constraints. We discuss the restriction operation and its complexity in
Section 9 and we report on our implementation in Section 10. Finally, we conclude and discuss
related work in Section 12.

2 LANGUAGE

Preliminaries. Given sets 𝑋 and 𝑌 , let us write 𝑋 → 𝑌 for the set of all functions from 𝑋 to
𝑌 and Map 𝑋 𝑌 for the set of all finite maps between 𝑋 and 𝑌 . As usual function arrows are
assumed to associate to the right. Additionally, we define the indexing of function arguments,
that is (𝑋1 → · · · → 𝑋𝑚 → 𝑌 ) [𝑖] = 𝑋𝑖 for all 𝑖 ∈ [1..𝑚]. Given a family of sets 𝑌𝑥 indexed by
𝑥 ∈ 𝑋 , let us write Π𝑥 ∈ 𝑋 . 𝑌𝑥 for the subset of 𝑋 →

⋃

𝑥 ∈𝑋 𝑌𝑥 that contains only functions that
are guaranteed to map each 𝑥 ∈ 𝑋 to some element of 𝑌𝑥 and let us write Σ𝑥 ∈ 𝑋 . 𝑌𝑥 for the subset
of 𝑋 ×

⋃

𝑥 ∈𝑋 𝑌𝑥 in which the second component of each pair (𝑥,𝑦) is guaranteed to belong to 𝑌𝑥 .
Given a family of sets 𝑌𝑥 indexed by 𝑥 ∈ 𝑋 , let us write

∐

𝑥 ∈𝑋 𝑌𝑥 for their disjoint sum and inj𝑥 for
each of the canonical injections.

Types. We assume a countable collection A of type variables, ranged over by 𝛼 ; a finite collection
B of base types, ranged over by 𝑏, and a countable collection D of algebraic datatype identifiers
ranged over by 𝑑 . These can be thought as the names of first-order type constructors. Each datatype
identifier has a fixed arity, and only forms a proper type when supplied with the appropriate
number of type arguments. We refer to a datatype identifier with its argument as a datatype, and
when it is clear from the context we will also write these as 𝑑 .

(Monotypes) 𝑇,𝑈 ,𝑉 F 𝛼 | 𝑏 | 𝑑
#»

𝑇 | 𝑇1 → 𝑇2
(Type schemes) 𝑆 F 𝑇 | ∀𝛼. 𝑆

We write Dt 𝐷 to stand for the set of all datatypes with datatype identifiers drawn from the set
𝐷 . Ty 𝐷 and Sch 𝐷 are defined similarly for monotypes and schemes. We consider monotypes to
be a trivial instance of type schemes where convenient. The purpose of distinguishing base types
from datatypes is that the former may not be refined. For example, we will consider Int to be a base
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Intensional Datatype Refinement 55:7

type, Fm a datatype identifier and Fm Int a datatype. Type schemes are identified up to renaming
of bound variables.

Lifting over types. Given a relation on datatypes 𝑅 ⊆ Dt 𝐷1 × Dt 𝐷2, we write Ty(𝑅) for the
relation on Ty 𝐷1 × Ty 𝐷2 defined inductively by the following:

Ty(𝑅) (𝛼, 𝛼) Ty(𝑅) (𝑏, 𝑏)
𝑅(𝑑1, 𝑑2)

Ty(𝑅) (𝑑1, 𝑑2)

Ty(𝑅) (𝑇3, 𝑇1) Ty(𝑅) (𝑇2, 𝑇4)

Ty(𝑅) (𝑇1 → 𝑇2, 𝑇3 → 𝑇4)

Expressions and modules. We assume a countable collection of term variables, ranged over by 𝑥 ,
𝑦, 𝑧, and variations. As well as a countable collection K of datatype constructors, ranged over by 𝑘 .
The arity of a constructor is denoted Arity(𝑘). The expressions of the language are:

𝑚 F 𝜖 | 𝑚 · ⟨𝑥 = 𝑒⟩
𝑒 F 𝑐 | 𝑘 | 𝑒1 𝑒2 | 𝑒 𝑇 | 𝜆𝑥 : 𝑇 . 𝑒 | Λ𝛼. 𝑒

| case 𝑒 of {𝑘1 ®𝑥1 ↦→ 𝑒1 p · · · p 𝑘𝑛 ®𝑥𝑛 ↦→ 𝑒𝑛}

Expressions are identified up to renaming of bound variables and we will adopt the Barendregt
variable convention in order to retain a simple notation. Since we are defining a refinement type
system, we will assume that the input program already has a typing assigned by the underlying
type system of the programming language. We assume that this is manifest, in part, by the insertion
of appropriate type abstraction Λ𝛼. 𝑒 and application 𝑒 𝑇 terms, and by the annotation of term
abstractions with their argument type 𝜆𝑥 : 𝑇 . 𝑒 . We also assume, as is the case for GHC Core, that
pattern matching has been preprocessed into case expressions in which patterns are 1 level deep,
i.e have the form 𝑘 𝑥1 · · · 𝑥𝑛 for some constructor 𝑘 . Since our analysis is path sensitive, this is not
a restriction and we could perform an equivalent, but clumsier, development allowing for syntax
containing nested patterns.
Modules 𝑚 are simply a sequence of variable definitions ⟨𝑥 = 𝑒⟩ that may be empty 𝜖 . For

simplicity of presentation, we allow recursive definitions but not mutually recursive definition sets.

Datatype environments. The meaning of datatypes is defined by an environment of datatype
definitions. Each datatype definition introduces a new datatype identifier along with a collection of
datatype constructors that can be used to build instances of the type.

Definition 1 (Datatype Environment). A datatype environment is a pair consisting of a set 𝐷 ⊆ D
of datatypes identifiers and a function Δ : 𝐷 → Map K (Sch 𝐷) mapping each datatype identifier
𝑑 to a finite map which records the associated constructors and their type. We assume these
types only concern the type variables that appear in datatype’s definition, and so is of shape:
∀#»𝛼 . 𝑈1 → · · · → 𝑈𝑚 → 𝑑 #»𝛼 , where𝑚 is the constructor’s arity. For convenience, and as the return
type of a constructor is predetermined, we will often identify Δ(𝑑) (𝑘) with just the sequence of
types corresponding to a constructor’s arguments, i.e. [𝑈1, .., 𝑈𝑚] where𝑈𝑖 = Δ(𝑑) (𝑘) [𝑖].

Since datatype environments are partial functions on D, they inherit the natural partial order in
which Δ1 ⊆ Δ2 just if the graph of the former is included in the graph of the latter. If Δ1 ⊆ Δ2 we
say that Δ1 is a subenvironment of Δ2.

Note that the notion of subenvironment only concerns the datatypes that are defined in an
environment and not the definitions of those datatypes (the constructors and their types), which
will be treated by the notion of refinement in the sequel.
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55:8 Eddie Jones and Steven Ramsay

3 DATATYPE REFINEMENT

Henceforth we will fix a particular datatype environment Δ : 𝐷 → Map K (Sch 𝐷) which we call
the underlying datatype environment. We think of Δ as the datatype environment that is provided
by the programmer by their datatype definitions.

Example 2. We will use the following as running example of underlying datatype environment.
Consider the datatype Lam of 𝜆-terms with arithmetic using a locally nameless representation:

data Arith = Lit Int | Add | Mul

data Lam = Cst Arith | BVr Int | FVr String | Abs Lam | App Lam Lam

These datatypes are slightly artificial, but they allow us to illustrate several features of the definitions
in one example. For simplicity, we will consider Int and String to be base types (which will, therefore,
not be refined).

The underlying datatype environment contains definitions for all the datatypes declared by the
programmer. Some datatype definitions require the definitions of other datatypes to be understood
properly. For example, to understand Lam, one must also understand the definition of Arith since
one is defined in terms of the other. There is a notion of a subenvironment that contains all and
only those definitions that are needed to understand one particular datatype.

Definition 3 (Slice). Suppose Δ : 𝐷 → Map K (Sch 𝐷). One can always construct a subenvi-
ronment of Δ by starting from a given datatype 𝑑 ∈ 𝐷 and closing under transitive dependencies.
Define the slice of 𝑑 through Δ, written ⟨𝑑⟩Δ, as the least subenvironment of Δ containing 𝑑 .

For example, in the environment Δ described in Example 2, we have ⟨Lam⟩Δ being the whole
environment, and ⟨Arith⟩Δ being just the definition of Arith itself.

Definition 4 (Refinement). We say that a datatype environment Δ1 : 𝐷 → Map K (Sch 𝐷) is
a refinement of a datatype environment Δ2 : 𝐷 → Map K (Sch 𝐷) just if the definitions of the
datatypes in Δ1 are bounded above by the definitions in Δ2, that is: for all 𝑑 ∈ 𝐷 , Δ1 (𝑑) ⊆ Δ2 (𝑑)
(i.e. the graph of the first map is included in the graph of the second).

Suppose Δ1 (𝑑) (𝑘) is some type scheme 𝑆 and Δ1 is a refinement of Δ2, then Δ2 (𝑑) (𝑘) is the
same 𝑆 . So, the refinements of Δ : 𝐷 → Map K (Sch 𝐷) are in one-to-one correspondence
with choices of constructors for each of the constituent datatypes. More precisely, every function
𝑓 : Π𝑑 ∈ 𝐷. P(dom Δ(𝑑)) determines a refinement Δ𝑓 satisfying:

Δ𝑓 (𝑑) (𝑘) =

{

Δ(𝑑) (𝑘) if 𝑘 ∈ 𝑓 (𝑑)

⊥ otherwise

and each refinement arises in this way.

Example 5. The following refinement of the underlying environment from Example 2 describes
a type of closed, applicative terms over linear arithmetic.

data Arith = Lit Int | Add Arith

data Lam = Cst Arith | App Lam Lam

This refinement is determined by the choice 𝑓𝐿𝐿 satisfying:

𝑓𝐿𝐿 (Arith) = {Lit, Add} 𝑓𝐿𝐿 (Lam) = {Cst, App}
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For the purpose of assigning types to the program, we construct a new datatype environment
consisting of all possible refinements of the underlying environment supplied by the programmer3.

Definition 6 (The Intensional Refinement Environment). Given a family of datatype environments
Δ𝑖∈𝐼 : 𝐷𝑖 → Map K (Sch 𝐷𝑖 ) we define their coproduct as the environment:

∐

𝑖∈𝐼

Δ𝑖 : (
∐

𝑖∈𝐼

𝐷𝑖 ) → Map K (Sch (
∐

𝑖∈𝐼

𝐷𝑖 ))

whose domain is simply a disjoint sum of sets (as defined in the preliminaries). The coproduct
comes equipped with canonical injections inj𝑖 satisfying (

∐

𝑖∈𝐼 Δ𝑖 ) (inj𝑖𝑑) (𝑑) (𝑘) = inj𝑖 (Δ𝑖 (𝑑) (𝑘))
wherever the latter is properly defined.

The intensional refinement environment, written Δ
∗, is the coproduct of all the refinements of Δ:

Δ
∗
≔

∐

𝑓 ∈𝐼

Δ𝑓 : 𝐷
∗ → Map K (Sch 𝐷∗)

where 𝐼 is the set Π𝑑 ∈ 𝐷. P(dom Δ(𝑑)) of functions from underlying datatypes 𝑑 to appropriate
subsets of constructors. That is, the set of all possible refinements. We write the domain of this
coproduct as 𝐷∗.

Note that, formally, the datatype identifiers whose definitions are given in the intensional
refinement environment are of shape injΔ 𝑑 with 𝑑 ∈ D. This is convenient because one can read
such a name as łthe refinement of 𝑑 whose definition is Δž. However, we will continue to use more
friendly names (and Haskell notation) in our examples.

Example 7. The type of closed, applicative terms over linear arithmetic from Example 5 can be
found in Δ

∗ alongside the type LArith of linear arithmetic constants:

LATm0 ≔ inj𝑓𝐿𝐿 Lam LArith ≔ inj𝑓𝐿𝐴 Arith

the latter being defined by 𝑓𝐿𝐴 (Arith) = {Lit, Add} and 𝑓𝐿𝐴 (Lam) = ∅. This datatype could
equivalently be defined as inj𝑓𝐿𝐿 Arith (or in many other ways). Other refinement datatypes defined
include the type LLam0 of closed 𝜆-terms over linear arithmetic, the type ATm of applicative terms
and the type ATm0 of closed applicative terms, whose definitions we give in convenient notation:

data ATm0 = Cst Arith | App ATm0 ATm0

data ATm = FVr String | Cst Arith | App ATm ATm

data LLam0 = Cst LArith | BVr Int | Abs LLam0 | App LLam0 LLam0

Definition 8 (Refinement Type). A type (scheme) 𝑆 ∈ Sch 𝐷∗ is said to be a refinement type.
Refinement types come equipped with an underlying type, written U(𝑆), which is a type (scheme)
in Sch 𝐷 defined recursively as follows:

U(𝑎) = 𝑎

U(𝑏) = 𝑏

U(inj𝑓 𝑑
#»

𝑇 ) = 𝑑
#         »

U(𝑇 )

U(𝑇1 → 𝑇2) = U(𝑇1) → U(𝑇2)
U(∀𝑎. 𝑆) = ∀𝑎.U(𝑆)

3It would suffice to take all the refinements of all the slices (which itself still includes some redundancy, but this would
complicate the definitions for no practical gain)
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(SShape)
�

� U(𝑇1) ≠ U(𝑇2)
⊢ 𝑇1 ̸⊑ 𝑇2

(SMis)
�

� dom(Δ∗ (𝑑1)) ⊈ dom(Δ∗ (𝑑2))
⊢ 𝑑1

#»

𝑇1 ̸⊑ 𝑑2
#»

𝑇2

⊢ 𝑈1𝑖
[

#      »

𝑇1/𝛼] ̸⊑ 𝑈2𝑖
[

#      »

𝑇2/𝛽]
(SSim)

�

�

�

�

�

�

�

𝑚 = Arity(𝑘), 𝑖 ∈ [1..𝑚]

Δ
∗ (𝑑1) (𝑘) = ∀#»𝛼 . 𝑈11

→ · · ·𝑈1𝑚
→ 𝑑1

#»𝛼

Δ
∗ (𝑑2) (𝑘) = ∀

#»

𝛽 . 𝑈21
→ · · ·𝑈2𝑚

→ 𝑑2
#»

𝛽
⊢ 𝑑1

#»

𝑇1 ̸⊑ 𝑑2
#»

𝑇2

⊢ 𝑇 ′
1
̸⊑ 𝑇1

(SArrL)
⊢ 𝑇1 → 𝑇2 ̸⊑ 𝑇 ′

1
→ 𝑇 ′

2

⊢ 𝑇2 ̸⊑ 𝑇 ′
2

(SArrR)
⊢ 𝑇1 → 𝑇2 ̸⊑ 𝑇 ′

1
→ 𝑇 ′

2

Fig. 3. The complement of the subtyping relation on monotypes.

In the following, wewill assume that we are given a program equippedwith a complete underlying
typing, that is: every subterm𝑀 has an associated type 𝑆 ∈ Sch 𝐷 . Our task will be to find a new
refinement typing: an assignment to each subterm𝑀 of a refinement type 𝑆 ′ ∈ Sch 𝐷∗ that has the
same łshapež as the underlying type 𝑆 of𝑀 in the sense that U(𝑆 ′) = 𝑆 .

4 SUBTYPING

Refinement induces a natural ordering on refinement datatypes according to which constructors are
available in their definition. This ordering can then be lifted to all types built over those datatypes
in the obvious way.

Definition 9 (Subtyping). The judgement ⊢ 𝑇1 ⊑ 𝑇2 is defined coinductively, using the inductive
system of rules in Figure 3 to characterise the complement. We extend subtyping to two schemes
that have the same quantifier prefix, writing: ⊢ ∀#»𝛼 . 𝑇1 ⊑ ∀#»𝛼 . 𝑇2 whenever ⊢ 𝑇1 ⊑ 𝑇2. We say that
two types 𝑇1 and 𝑇2 are subtype equivalent and write ⊢ 𝑇1 ≡ 𝑇2 just if ⊢ 𝑇1 ⊑ 𝑇2 and ⊢ 𝑇2 ⊑ 𝑇2.

Intuitively, refinement specifies the possible shapes of types that are then interrelated by subtyp-
ing. Refinement is a covariant treatment of arrow types, since we have U(𝑇1 → 𝑇2) = 𝑇

′
1
→ 𝑇 ′

2

iffU(𝑇1) = 𝑇
′
1
andU(𝑇2) = 𝑇

′
2
. On the other hand, as can be seen from the definition, subtyping

interprets the argument type contravariantly. Consequently, there are someU(𝑇 ) = 𝑇 for which
𝑇 ⊑ 𝑇 and other U(𝑇 ) = 𝑇 for which 𝑇 ⊑ 𝑇 (viewing an underlying type as its own trivial
refinement).
We give the definition coinductively because, as usual, there is a notion of simulation that

arises naturally from our coalgebraic view of datatype environments. Consequently, it is most
straightforward to think of the defining rules as providing a system in which to construct finite
refutations of subtype inequalities 𝑇1 ̸⊑ 𝑇2, which will, ultimately, fail to hold either because the
types 𝑇1 and 𝑇2 have a different shape, or because 𝑇1 provides some constructor that 𝑇2 does not.
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Example 10. Following the running example, the judgement ⊢ LATm0 → String ̸⊑ ATm0 →
String follows by a simple refutation:

(SMis)
⊢ Arith ̸⊑ LArith

(SSim)
⊢ ATm0 ̸⊑ LATm0

(SArrL)
⊢ LATm0 → String ̸⊑ ATm0 → String

Conversely, we can use the coinduction principle to show that ⊢ 𝑇1 ⊑ 𝑇2, in which case we
require a model4 of ⊑ that contains (𝑇1, 𝑇2).

Example 11. For ⊢ ATm0 → String ⊑ LATm0 → String we provide the following witness:
{

(ATm0 → String, LATm0 → String), (String, String),
(LATm0,ATm0), (LArith,Arith), (Int, Int)

}

It can be easily verified that this set is a model of the defining rules for ⊑ and hence, by coinduction,
is contained within it.

However, such models can be a bit unwieldy in general as the types involved get more complex.
We can do better by observing that the definition can be approximated by a coinductive part,
concerning datatypes, and an inductive part, by which a subtyping relationship between datatypes
is lifted to all types. Consequently, we need only find a model of the coinductive part, which is
much neater since it only concerns Dt 𝐷 ×Dt 𝐷 . The following can be shown by a straightforward
coinduction.

Lemma 1 (Simulation). Let 𝑅 ⊆ Dt 𝐷 × Dt 𝐷 and suppose that, for all (𝑑1
#»

𝑇1, 𝑑2
#»

𝑇2) ∈ 𝑅, and for
all 𝑘 such that Δ(𝑑1) (𝑘) is defined:

• Δ(𝑑2) (𝑘) is defined.
• And, moreover, Ty(𝑅) (𝑈1𝑖

, 𝑈2𝑖
) for each 𝑖 ∈ [1..Arity(𝑘)], where

# »

𝑈1 and
# »

𝑈2 are the argument
types of Δ(𝑑1) (𝑘) and Δ(𝑑2) (𝑘) instantiated at

#»

𝑇1 and
#»

𝑇2 respectively.

Then it follows that Ty(𝑅) is included in the subtype relation.

Using this result, it suffices to exhibit 𝑅 ≔ {(LATm0,ATm0), (LArith,Arith)} in order to conclude
e.g. ⊢ ATm0 → String ⊑ LATm0 → String. Intuitively, this witness determines the model Ty(𝑅),
which contains the model of Example 11.

5 REFINEMENT TYPE ASSIGNMENT

In this section, we present a refinement type system whose purpose is to exclude the possibility
of pattern-match failure. To achieve this, the typing rule for pattern-matching requires that cases
are exhaustive according to the type of the scrutinised expression. However, the system allows
for all refinement datatypes and incorporates the above notion of subtyping, which allows for the
scrutinised expression to be typed much more precisely than is possible in the underlying type
system.

For the purpose of defining the refinement type system, we make some standard Hindley-Damas-
Milner assumptions about the underlying type system, namely that type application happens
immediately after introducing a variable of polymorphic type and type abstraction happens only at
the point of definition. As a minor simplification, we assume that constants are monomorphic and
write C(𝑐) for the monotype assigned to 𝑐 axiomatically. Since this is a refinement type system, we
assume that all expressions have already been assigned an underlying type, which we will typically

4By which we mean a set of pairs of types satisfying all ̸⊑-defining rules.
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(TModE)
Γ ⊢ 𝜖 : Γ

Γ ⊢𝑚 : Γ′ Γ
′ ∪ {𝑥 : 𝑇 } ⊢ 𝑒 : 𝑇 ′ ⊢ 𝑇 ′ ⊑ 𝑇

(TModD)
Γ ⊢𝑚 · ⟨𝑥 = Λ

#»𝛼 . 𝑒⟩ : Γ′ ∪ {𝑥 : ∀#»𝛼 . 𝑇 }

Fig. 4. Typing for modules.

write with an underline to aid readability. We will only need to consult these underlying types
when they appear in the syntax, e.g. abstraction and type application.

Additionally, we relax the normal definition of a type environment from a function to a relation.
Program variables may, therefore, have many types as long as they refine the same underlying type.
This assumption is equivalent to allowing environment-level intersection types.

Definition 12 (Type assignment). A type environment, typically Γ or Δ, is a finite relation between
program variables 𝑥 and type schemes 𝑆 , whose elements are typically written 𝑥 : 𝑆 . We require
that 𝑥 : 𝑆1 ∈ Γ and 𝑥 : 𝑆2 ∈ Γ implies U(𝑆1) = U(𝑆2). This ensures that U(Γ) can be defined in
the obvious way. The type assignment system is divided into two sets of rules, for expressions
(Figure 5) and for modules (Figure 4), defining judgements, respectively:

Γ ⊢ 𝑒 : 𝑇 Γ ⊢𝑚 : Δ

in which U(Γ) ⊢ 𝑒 : U(𝑇 ) and U(Γ) ⊢ 𝑚 : U(Δ) are the underlying typings, provided by the
programming language, for the expression 𝑒 and the module𝑚 respectively.

The system is conceptually similar to an underlying ML-style system, but note:

• Any suitable refinement datatype 𝑑 can be used in order to type a datatype constructor or
the scrutinee of a case statement.

• The notion of subtyping from the previous section is incorporated through a subsumption
rule (recall that ⊢ 𝑇1 ⊑ 𝑇2 implies that 𝑇1 and 𝑇2 have the same shape according to U).

• The pattern-matching rule is restricted by a condition requiring that cases are exhaustive.
• The branches of the case expression only need to be typed if the branch is reachable, incorpo-
rating path-sensitivity. This relaxation onlymakes sense for a refinement type system, because
reachability is encoded by choosing an appropriate refinement 𝑑 in the rule (TCase) . From
an operational point of view it makes no difference to the set of computations expressible.

• Finally, everywhere a particular underlying type is required by the syntax, an arbitrary choice
of refinement type of the appropriate shape can be made in its place.

As discussed in the introduction, allowing several types for each term ensures they can be used
in different contexts. This approach is more lightweight than an intersection type system, and
arguably easier for programmers to reason about if types are to be considered as certificates. When
it comes to algorithmic inference, however, the non-deterministic aspect would be problematic.
Instead, in Section 7, we rely on refinement polymorphism to summarise every typing of a variable
in some environment compactly by a single constrained type scheme. The polymorphism of this
kind is no different from that of the Hindley-Milner system, which could equally be viewed as an
infinite intersection type system, or indeed allowing several typings of the same variable in an
environment. Likewise, it is simpler to define polymorphic constructors and datatypes, than to
consider each instantiation separately.
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(TVar)

�

�

�

�

�

U(
#»

𝑇 ) =
#»

𝑇

𝑥 : ∀#»𝛼 . 𝑇 ∈ ΓΓ ⊢ 𝑥
#»

𝑇 : 𝑇 [
#    »

𝑆/𝛼]
(TCst)

Γ ⊢ 𝑐 : C(𝑐)

(TCon)

�

�

�

�

�

�

�

U(
#»

𝑇 ) =
#»

𝑇

𝑘 ∈ dom (Δ∗ (𝑑))

Δ
∗ (𝑑) (𝑘) = ∀#»𝛼 . 𝑇Γ ⊢ 𝑘

#»

𝑇 : 𝑇 [
#    »

𝑆/𝛼]

Γ ⊢ 𝑒 : 𝑇1
(TSub)

�

� ⊢ 𝑇1 ⊑ 𝑇2
Γ ⊢ 𝑒 : 𝑇2

Γ ∪ {𝑥 : 𝑇1} ⊢ 𝑒 : 𝑇2
(TAbs)

�

�

�

�

�

U(𝑇1) = 𝑇1

𝑥 ∉ dom ΓΓ ⊢ 𝜆𝑥 :𝑇1 . 𝑒 : 𝑇1 → 𝑇2

Γ ⊢ 𝑒1 : 𝑇1 → 𝑇2 Γ ⊢ 𝑒2 : 𝑇1
(TApp)

Γ ⊢ 𝑒1 𝑒2 : 𝑇2

Γ ⊢ 𝑒 : 𝑑
#»

𝑇 (∀𝑖 ≤ 𝑚) Γ ∪ {
#                                          »

𝑥𝑖 : Δ
∗ (𝑑) (𝑘𝑖 ) [

#    »

𝑇 /𝛼]} ⊢ 𝑒𝑖 : 𝑇
(TCase)

�

� dom(Δ∗ (𝑑)) = {𝑘1, . . . , 𝑘𝑚}
Γ ⊢ case 𝑒 of {|𝑚𝑖=1 𝑘𝑖

#»𝑥𝑖 ↦→ 𝑒𝑖 } : 𝑇

Fig. 5. Type assignment for expressions.

Example 13. Recall the refinements of Example 7 and consider the function cloSub, with under-
lying type List (String × Lam) → Lam → Lam, whose purpose is to close an applicative term by
substituting closed terms everywhere.

cloSub m t =

case t of

FVr s → lkup m s

Cst c → Cst c

App u v→ App (cloSub m u) (cloSub m v)

To keep the example simple, we assume that the lookup function lkup has the following type:
∀𝛼. List (String × 𝛼) → String → 𝛼 in the environment. Consequently, in our official syntax, e.g.
the FVr case really contains an explicit type application: lkup Lam𝑚 𝑠 . Then the function cloSub

can be assigned the refinement type5: List (String × ATm0) → ATm → ATm0. Thus expressing
the fact that the application of a closing substitution to a arbitrary applicative term yields a closed
applicative term.

This is possible due to a combination of the features of the system. First, observe that it is possible,
in the abstraction rule, to assume that the bound variable𝑚 of underlying type List (String × Lam)
has type List (String × ATm0) in (TAbs) since it can easily be seen that the former is a refinement
of the latter. Then it follows that lkup Lam𝑚 𝑖 can be assigned the type Atm0 by choosing Atm0

for 𝑇 in (TVar) . Second, under the assumption that the bound variable 𝑡 has refinement type Atm,
it follows from (TCase) that the variable 𝑐 that is bound by the case Cst 𝑐 can be assigned the type
Arith. Note that the rule (TCase) is applicable only because we have chosen the refinement ATm

of Lam which guarantees that the input will not contain any abstractions. Then, in the body of the
case, we can choose instead the more specific typing Cst : Arith → ATm0. Similarly, 𝑢 and 𝑣 are
assigned the type ATm so that the subexpressions cloSub𝑚 𝑢 and cloSub𝑚 𝑣 in the body of the

5Here, List and × can be understood as the trivial refinements of their namesakes, i.e. with all constructors available.
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final case can be assigned the type ATm0. Then the type of the body as a whole, and therefore the
entire case analysis, is also Atm0.

The central problem is typability, for closed expressions: given an underlying datatype environ-
ment Δ and a closed module𝑚 which is typed in Δ, does there exist a refinement type assignment
to the functions of𝑚? Typically𝑚 will contain library functions whose source is not available to
the system, but for which an underlying type is known. To incorporate such functions we interpret
an underlying type environment Γ as containing trivial refinement types for each such function, i.e.
each 𝑑 occurring in such a type Γ denotes the refinement of 𝑑 that makes available all constructors.

Definition 14 (Typability). A triple Δ, Γ and𝑚 constitutes a positive instance of the refinement

typability problem just if there is a refinement type environment Γ′ such that Γ ⊢𝑚 : Γ′. In such a
case, we say that Δ; Γ ⊢𝑚 is refinement typable.

The rest of the paper concerns the algorithmic solution of the typability problem.

6 CONSTRUCTOR SET CONSTRAINTS

We assume a countable set of refinement variables, ranged over by 𝑋 , 𝑌 , 𝑍 and so on. The purpose
of a refinement variable 𝑋 is to represent a function in Π𝑑 ∈ 𝐷. P(domΔ(𝑑)). As described in
Section 3, such functions are in 1-1 correspondence with refinements of Δ. We will abuse notation
and write 𝑋 for both uses (thus the following rather strange-looking equation 𝑋 (𝑑) = dom(𝑋 (𝑑))
holds by interpreting each of the two occurrences of 𝑋 according to its context.)

Definition 15 (Constraints). A constructor set expression, typically 𝑆 , is either a finite set of con-
structors {𝑘1, . . . , 𝑘𝑚} or a pair 𝑋 (𝑑) consisting of a refinement variable 𝑋 and an underlying
datatype 𝑑 . The underlying type of the constructor set expression is (partially) defined as follows:

U(𝑋 (𝑑)) = 𝑑 U({𝑘1, . . . , 𝑘𝑚}) = 𝑑 if ∀𝑖 ∈ [1..𝑚] . 𝑘𝑖 ∈ domΔ(𝑑)

We consider only those constructor set expressions for which the underlying type is defined. We
write FRV(𝑆) for the set of refinement variables occurring anywhere in 𝑆 (which will either be
empty or a singleton).

An inclusion constraint is an ordered pair of constructor set expressions, written (suggestively) as
𝑆1 ⊆ 𝑆2. When 𝑆1 is a singleton {𝑘}, we will rather write the pair as 𝑘 ∈ 𝑆2. We shall only consider
inclusion constraints in which both set expressions have the same underlying type. The refinement
variables of an inclusion constraint FRV(𝑆1 ⊆ 𝑆2) are defined by extension from FRV(𝑆1) and
FRV(𝑆2) in the obvious way.
A conditional constraint, hereafter just constraint, is a pair 𝜙 ? 𝑆1 ⊆ 𝑆2 consisting of a set of

inclusion constraints 𝜙 and an inclusion constraint 𝑆1 ⊆ 𝑆2. The set 𝜙 is called the guard and the
inclusion 𝑆1 ⊆ 𝑆2 the body. We will only consider conditional constraints in which each element of
the guard has shape 𝑘 ∈ 𝑋 (𝑑). When the guard of a constraint ∅ ? 𝑆1 ⊆ 𝑆2 is trivial, we shall usually
omit it and write only the body 𝑆1 ⊆ 𝑆2. The set of refinement variables FRV(𝜙 ? FRV(𝑆1 ⊆ 𝑆2))
of a constraint is defined as usual.
Sometimes we shall guard a constraint set 𝐶 , and write 𝜙 ? 𝐶 for the set {𝜓 ∪ 𝜙 ? 𝑆1 ⊆ 𝑆2 |

𝜓 ? 𝑆1 ⊆ 𝑆2 an element of 𝐶}. We write FRV(𝐶) for the set of refinement variables occurring in 𝐶 .

Intuitively, an inclusion 𝑆1 ⊆ 𝑆2 is satisfied by any assignment to the refinement variables that
makes 𝑆1 included in 𝑆2. A constraint 𝜙 ? 𝑆1 ⊆ 𝑆2 is satisfied if either some inclusion in the guard
is not satisfied or the body is satisfied.

Definition 16 (Satisfaction). A constructor set assignment, hereafter just assignment, is a total map
𝜃 taking each refinement variable 𝑋 to a constructor choice function from Π𝑑 ∈ 𝐷. P(domΔ(𝑑)).
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(ISBase)
⊢ 𝑏 ⊑ 𝑏 =⇒ ∅

(ISTyVar)
⊢ 𝛼 ⊑ 𝛼 =⇒ ∅

⊢ 𝑇21 ⊑ 𝑇11 =⇒ 𝐶1 ⊢ 𝑇12 ⊑ 𝑇22 =⇒ 𝐶2
(ISArr)

⊢ 𝑇11 → 𝑇12 ⊑ 𝑇21 → 𝑇22 =⇒ 𝐶1 ∪𝐶2

(∀𝑘𝑖.) ⊢ inj𝑋 (𝑈𝑖 ) [
#       »

𝑇𝑋 /𝛼] ⊑ inj𝑌 (𝑈𝑖 ) [
#       »

𝑇𝑌 /𝛼] =⇒ 𝐶𝑘𝑖
(ISData)

�

�

�

�

�

�

�

�

�

Δ(𝑑) (𝑘) =

∀#»𝛼 . 𝑈1 → · · ·𝑈𝑛 → 𝑑 #»𝛼

𝐶 = {𝑋 (𝑑) ⊆ 𝑌 (𝑑)} ∪
⋃

𝑘
⋃𝑛
𝑖=1 (𝑘 ∈ 𝑋 (𝑑)) ? 𝐶𝑘𝑖

⊢ inj𝑋 𝑑
# »

𝑇𝑋 ⊑ inj𝑌 𝑑
#»

𝑇𝑌 =⇒ 𝐶

Fig. 6. Inference for subtype inequalities.

The meaning of a constructor set expression 𝑆 under an assignment 𝜃 is a set of constructors 𝜃J𝑆K
defined as follows:

𝜃J𝑋 (𝑑)K = 𝜃 (𝑋 ) (𝑑) 𝜃J{𝑘1, . . . , 𝑘𝑚}K = {𝑘1, . . . , 𝑘𝑚}

An inclusion constraint 𝑆1 ⊆ 𝑆2 is satisfied by an assignment 𝜃 , written 𝜃 |= 𝑆1 ⊆ 𝑆2 just if 𝜃J𝑆1K is
included in 𝜃J𝑆2K. A constraint 𝜙 ? 𝑆1 ⊆ 𝑆2 is satisfied by an assignment 𝜃 , written 𝜃 |= 𝜙 ? 𝑆1 ⊆ 𝑆2
just if, whenever 𝜃 |= 𝑘 ∈ 𝑋 (𝑑) for every inclusion constraint 𝑘 ∈ 𝑋 (𝑑) in 𝜙 , then 𝜃 |= 𝑆1 ⊆ 𝑆2.

Definition 17 (Solutions). A solution to a constraint set 𝐶 is an assignment 𝜃 satisfying every
constraint in 𝐶 , we write 𝜃 |= 𝐶 . We say that 𝐶 is solvable, or satisfiable, just if it has a solution.

Remark 1. The full set constraint language is exactly the monadic class of first-order propo-
sitions [Bachmair et al. 1993]. By applying the translation of that paper, it can be shown that
guarded constraints of the form laid out above are (monadic) Horn clauses with constructors simply
interpreted as constants.

7 TYPE INFERENCE

Since our system is effectively syntax directed (the subsumption rule can be factored into the
other syntax-directed rules), type inference follows a standard pattern of constraint generation
and satisfiability checking (see e.g. [Odersky et al. 1999]). The constraints are subtype inequalities
over refinement variables, but it is easily seen that, in our restricted setting, such inequalities are
equivalent to conditional inclusion constraints between refinement variables and sets of datatype
constructors. To enable this approach, we extend the language of types so to allow datatypes
parametrised by refinement variables.

Definition 18 (Extended Types). The extended types are monotypes extended with datatypes built
over refinement variables:

𝑇, 𝑈 , 𝑉 F · · · | inj𝑋 𝑑
#»

𝑇

Note that the type arguments to an injected datatype identifier are also extended. Expressions
of the form (inj𝑋 List) (inj𝑍 Int) are, therefore, well-formed. Recall from Section 3 that refinement
datatype identifiers are of the form injΔ 𝑑 , with 𝑑 an underlying datatype identifier, and should be
thought of as specifying the refinement of 𝑑 whose datatype definition is given by Δ. The task of
inference is to determine constraints on these Δ that enable a typing to be assigned and check that
the constraints have a solution.
For convenience, we shall implicitly lift injections to any type, or sequence of types, written

inj𝑋 𝑇 , so that the injection is distributed over datatypes in 𝑇 . In the context of extended types,
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we will associate a substitution action 𝜃𝑇 with each constructor set assignment 𝜃 by lifting the
definition 𝜃 (inj𝑋 𝑑) ≔ inj𝜃 (𝑋 ) 𝑑 homomorphically over all extended types. Finally, we write FRV(𝑇 )
for the set of refinement variables occurring in injections in 𝑇 .

We also adopt an extension of type schemes that are constrained:

Definition 19 (Constrained Type Scheme). We subsume the type scheme 𝑆 by the constrained type
scheme, which has shape: ∀#»𝛼 . ∀

#»

𝑋 . 𝐶 ⊃ 𝑇 , where 𝐶 is a constraint set and 𝑇 is an extended type.
We define FRV(∀#»𝛼 . ∀

#»

𝑋 . 𝐶 ⊃ 𝑇 ) = (FRV(𝐶) ∪ FRV(𝑇 )) \
#»

𝑋 . A constrained type environment is a
finite mapping from program variables to constrained type schemes, whose elements are written
𝑥 : 𝑆 . We define FRV(Γ) in the obvious way.

As is typical, there is generally no łbestž monotype solution to a set of inclusion constraints, so
constrained type schemes give us an internal representation for the set of all types assignable to
a module-level function. For example, assuming constant combinator K defined as usual, it can
be seen that the module-level recursive function 𝑓 = 𝜆𝑥 :Lam.K [Lam, Lam] 𝑥 (𝑓 (𝑓 𝑥)) can be
assigned the constrained type scheme : ∀𝑋𝑌 . 𝐶 ⊃ inj𝑋 Lam → inj𝑌 Lam, with 𝐶:

𝑋 (Lam) ⊆ 𝑌 (Lam) 𝑌 (Lam) ⊆ 𝑋 (Lam)
Cst ∈ 𝑋 (Lam) ? 𝑋 (Arith) ⊆ 𝑌 (Arith) Cst ∈ 𝑌 (Lam) ? 𝑌 (Arith) ⊆ 𝑋 (Arith)

Intuitively, its input flows to its output and conversely, so we require inj𝑋 Lam ⊑ inj𝑌 Lam and
inj𝑌 Lam ⊑ inj𝑋 Lam (which is encoded by the above set constraints when we view the refinements
𝑋 and 𝑌 as functions specifying the choice of constructors). However, there is obviously no łbestž
instantiation of refinement variables 𝑋 and 𝑌 .
Constrained type environments can be understood as compact descriptions of łordinaryž type

environments (in the sense of Definition 12), which is made precise as follows.

Definition 20. Define LΓM for the type environment that can be obtained from the closed con-
strained type schemes in Γ, by instantiation of refinement quantifiers with every possible solution,
that is, supposing Γ is closed: LΓM ≔ { 𝑥 : ∀#»𝛼 . 𝜃𝑇 | 𝜃 |= 𝐶 ∧ (𝑥 : ∀#»𝛼 . ∀

#»

𝑋 . 𝐶 ⊃ 𝑇 ) ∈ Γ }.

Typical presentations of type inference by constraint generation involve choosing fresh type
variables, which are then constrained. Since we work with refinement types, it is more convenient
to choose fresh refinement type templates, which are just refinement types that are everywhere
parametrised by fresh refinement variables Ð in the setting of refinement types, at the point at
which inference would choose a fresh type, the underlying shape of the type is already known. We
write Fresh(𝑋 ) to assert that 𝑋 must be a fresh refinement variable (i.e. not already used in the
current scope). We extend the notion to fresh types 𝑇 of underlying shape 𝑇 .

Definition 21 (Fresh Types). We write Fresh𝑇 (𝑇 ) for the following inductive predicate.

• For all 𝛼 ∈ A, Fresh𝛼 (𝛼).
• For all 𝑏 ∈ B, Fresh𝑏 (𝑏).
• For 𝑑 ∈ 𝐷 , if Fresh𝑇 (𝑇 ) for every 𝑇 in

#»

𝑇 , and Fresh(𝑋 ) then Fresh𝑑 (inj𝑋 (𝑑)
#»

𝑇 )
• For all𝑇1,𝑇2 ∈ Ty𝐷∗,𝑇1,𝑇2 ∈ Ty𝐷 , if Fresh𝑇1 (𝑇1) and Fresh𝑇2 (𝑇2) then Fresh𝑇1→𝑇2 (𝑇1 → 𝑇2).

The definition guarantees that U(𝑇 ) = 𝑇 . We extend the notion to sequences of types, writing
Fresh #»

𝑇 (
#»

𝑇 ) to denote that the two sequences
#»

𝑇 and
#»

𝑇 have the same length and are related
pointwise by freshness.

Definition 22 (Inference). Inference is split into three parts: for subtyping (Figure 6), for expressions
(Figure 7) and for modules (Figure 8) using three judgement forms, respectively:

⊢ 𝑇1 ⊑ 𝑇2 =⇒ 𝐶 Γ ⊢ 𝑒 : 𝑇 =⇒ 𝑇, 𝐶 Γ ⊢𝑚 =⇒ Γ
′, 𝐶
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(ICst)
Γ ⊢ 𝑐 : 𝑇 =⇒ 𝑇, ∅

(ICon)

�

�

�

�

�

𝑘 ∈ dom (Δ(𝑑))

Fresh(𝑋 ) and Fresh #»

𝑇 (
#»

𝑇 )Γ ⊢ 𝑘
#»

𝑇 : 𝑉 =⇒ inj𝑋 𝑉
#»

𝑇 , {𝑘 ∈ 𝑋 (𝑑)}

(IVar)

�

�

�

�

�

𝑥 : ∀#»𝛼 . ∀
#»

𝑋 . 𝐶 ⊃ 𝑈 ∈ Γ

Fresh(
#»

𝑌 ) and Fresh #»

𝑇 (
#»

𝑇 )
Γ ⊢ 𝑥

#»

𝑇 : 𝑉 =⇒ 𝑈 [
#     »

𝑌/𝑋 ] [
#    »

𝑇 /𝛼], 𝐶 [
#     »

𝑌/𝑋 ]

Γ ∪ {𝑥 : 𝑇1} ⊢ 𝑒 : 𝑇2 =⇒ 𝑇2, 𝐶
(IAbs)

�

�

�
Fresh𝑇1 (𝑇1)

Γ ⊢ 𝜆𝑥 :𝑇1 . 𝑒 : 𝑇1 → 𝑇2 =⇒ 𝑇1 → 𝑇2, 𝐶

Γ ⊢ 𝑒1 : 𝑇1 → 𝑇2 =⇒ 𝑇1 → 𝑇2, 𝐶1 Γ ⊢ 𝑒2 : 𝑇1 =⇒ 𝑇3, 𝐶2 ⊢ 𝑇3 ⊑ 𝑇1 =⇒ 𝐶3

(IApp)
Γ ⊢ 𝑒1 𝑒2 : 𝑇2 =⇒ 𝑇2, 𝐶1 ∪𝐶2 ∪𝐶3

(∀𝑖 ≤ 𝑚) ⊢ 𝑇𝑖 ⊑ 𝑇 =⇒ 𝐶 ′
𝑖

Γ ⊢ 𝑒 : 𝑑
#»

𝑇 =⇒ inj𝑋 𝑑
#»

𝑇 , 𝐶0

(∀𝑖 ≤ 𝑚) Γ ∪ #»𝑥𝑖 : (inj𝑋
#»

𝐴 ) [
#    »

𝑇 /𝛼] ⊢ 𝑒𝑖 =⇒ 𝑇𝑖 , 𝐶𝑖
(ICase)

�

�

�

�

�

�

�

�

�

�

�

Fresh𝑇 · · ·𝑇 (𝑇 ·
#»

𝑇𝑖 )

𝐶 = 𝐶0 ∪ {𝑋 (𝑑) ⊆ {𝑘1, . . . , 𝑘𝑚}}

∪
⋃𝑚
𝑖=1 (𝑘𝑖 ∈ 𝑋 (𝑑) ? (𝐶𝑖 ∪𝐶

′
𝑖 ))

Δ(𝑑) (𝑘𝑖 ) =

∀#»𝛼 . 𝐴1 → · · ·𝐴𝑛 → 𝑑 #»𝛼Γ ⊢ case 𝑒 of {|𝑚𝑖=1 𝑘𝑖
#»𝑥𝑖 ↦→ 𝑒𝑖 } : 𝑇 =⇒ 𝑇, 𝐶

Fig. 7. Inference for expressions.

Given two (extended) types𝑇1 and𝑇2 we infer a set of constraints𝐶 under which the former will be
a subtype of the latter using the system of judgements ⊢ 𝑇1 ⊑ 𝑇2 =⇒ 𝐶 . For expressions in context
Γ ⊢ 𝑒 : 𝑇 , we infer (extended) monotypes𝑇 and the constraints𝐶 under which they are permissible
using a system of judgements of the form Γ ⊢ 𝑒 : 𝑇 =⇒ 𝑇, 𝐶 . In such judgements, Γ a constrained
type environment, i.e. a finite map from term variables to constrained type schemes. We will omit
the underlying type when not important. The rules are given in Figure 7. Constrained refinement
type schemes are inferred for module-level definitions using a system of judgements of shape
Γ ⊢𝑚 =⇒ Γ

′, 𝐶 . The definitions are given in Figure 8. The systems can be read algorithmically by
regarding the quantities before the =⇒ as inputs the quantities afterwards as outputs (however, it
should be noted that, assuming regular datatypes only, the subtyping relation must be computed
by achieving a fixed point explicitly).

Constrained type generation via these systems of rules follows a well established pattern for
expressions andmodules (see e.g. [Odersky et al. 1999] for a general treatment of the non-refinement
case), so we concentrate on the inference rules for subtyping. Like the more standard inference
rules for expressions and modules, the inference rules for subtyping generate a derivation tree and
a system of constraints whose solution guarantees the correctness of the corresponding instance
of the derivation tree. However, in the case of subtyping, the derivation tree is not a proof in the
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(IModE)
Γ ⊢ 𝜖 =⇒ Γ

Γ ⊢𝑚 =⇒ Γ
′

Γ
′ ∪ {𝑥 : 𝑇 } ⊢ 𝑒 =⇒ 𝑇 ′, 𝐶1 ⊢ 𝑇 ′ ⊑ 𝑇 =⇒ 𝐶2

(IModD)

�

�

�

�

�

Fresh𝑇 (𝑇 )
#»

𝑋 = FRV(𝑇 )Γ ⊢𝑚 · ⟨𝑥 : ∀#»𝛼 . 𝑇 = Λ
#»𝛼 . 𝑒⟩ =⇒ Γ

′ ∪ {𝑥 : ∀#»𝛼 . ∀
#»

𝑋 . 𝐶1 ∪𝐶2 ⊃ 𝑇 }

Fig. 8. Inference for modules.

system of Figure 3, which is for the complement of the subtyping relation, but rather a proof that the
solution constitutes a simulation in the sense of Lemma 1. For example, the conclusion of (ISData)
yields the constraints {𝑋 (𝑑) ⊆ 𝑌 (𝑑)} ∪

⋃

𝑘∈K

⋃𝑛
𝑖=1 (𝑘 ∈ 𝑋 (𝑑)) ?𝐶𝑘𝑖 . The first part of this constraint

encodes the first bullet of Lemma 1: the environment Δ∗ at inj𝑌 𝑑 must include all constructors
included by the same environment at inj𝑋 𝑑 . Since, for any refinement 𝑋 , dom(Δ∗ (inj𝑋 𝑑)) = 𝑋 (𝑑)
(recall the notational abuse adopted at the start of Section 6), we arrive at 𝑋 (𝑑) ⊆ 𝑌 (𝑑). The
second part of this constraint encodes the second bullet of the lemma: if 𝑘 ∈ dom(Δ∗ (inj𝑋 𝑑)) (and,
therefore, 𝑘 ∈ dom(Δ∗ (inj𝑌 𝑑))), then the corresponding argument types are again related Ð in
inference we recursively infer constraints on the relationship between the types and guard the
constraints by 𝑘 ∈ 𝑋 (𝑑).

Theorem 23 (Soundness and completeness of ⊑-inference). Let 𝑇1 and 𝑇2 be extended types and
suppose ⊢ 𝑇1 ⊑ 𝑇2 =⇒ 𝐶 . Then, for all assignments 𝜃 : ⊢ 𝜃𝑇1 ⊑ 𝜃𝑇2 iff 𝜃 |= 𝐶 .

The following states the correctness of type inference for expressions in a closed environment
(e.g. for module-level definitions). The appendix contains a proof for the general case.

Theorem 24 (Soundness and completeness of expression inference). Let Γ be a constrained type
environment, 𝑒 an expression,𝑉 an extended refinement,𝐶 a set of constraints and let Γ ⊢ 𝑒 =⇒ 𝑉 , 𝐶 .
Then, for all refinement types 𝑇 : LΓM ⊢ 𝑒 : 𝑇 iff ∃𝜃 . 𝜃 |= 𝐶 ∧ ⊢ 𝜃𝑉 ⊑ 𝑇 .

Finally, we can state the overall correctness of inference for modules.

Theorem 25 (Soundness and completeness of module inference). Suppose Γ and Γ
′ are closed

constrained type environments,𝑚 a module and Γ ⊢𝑚 =⇒ Γ
′. Then, for all type environments Δ:

LΓM ⊢𝑚 : Δ iff LΓ′M ⊑ Δ

8 SATURATION

The solvability of constraints can be determined by a process of saturation under all possible
consequences. This is a generalisation of the transitive closure of simple inclusion constraint
graphs, and a particular instance of Horn clause resolution more generally. For our constraint
language, saturated constraint sets have a remarkable property: they can be restricted to any subset
of their variables whilst preserving solutions.

Definition 26 (Atomic constraints). A constraint is said to be atomic just if its body is one of the
following four shapes:

𝑋 (𝑑) ⊆ 𝑌 (𝑑) 𝑋 (𝑑) ⊆ {𝑘1, . . . , 𝑘𝑚} 𝑘 ∈ 𝑋 (𝑑) 𝑘 ∈ ∅

An atomic constraint is said to be trivially unsatisfiable if it is of shape ∅ ? 𝑘 ∈ ∅. A constraint set is
said to be trivially unsatisfiable just if it contains a trivially unsatisfiable constraint.
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𝜙 ? 𝑆1 ⊆ 𝑆2 𝜓 ? 𝑆2 ⊆ 𝑆3
(Transitivity)

𝜙 ∪𝜓 ? 𝑆1 ⊆ 𝑆3

𝜙 ? 𝑘 ∈ 𝑋 (𝑑) 𝜓, 𝑘 ∈ 𝑋 (𝑑) ? 𝑆1 ⊆ 𝑆2
(Satisfaction)

𝜙 ∪𝜓? 𝑆1 ⊆ 𝑆2

𝜙 ? 𝑋 (𝑑) ⊆ 𝑌 (𝑑) 𝜓, 𝑘 ∈ 𝑌 (𝑑) ? 𝑆1 ⊆ 𝑆2
(Weakening)

𝜙 ∪𝜓, 𝑘 ∈ 𝑋 (𝑑) ? 𝑆1 ⊆ 𝑆2

Fig. 9. Saturation rules.

By applying standard identities of basic set theory, every constraint is equivalent to a set of
atomic constraints. In particular, a constraint of the form 𝑘 ∈ {𝑘1, . . . , 𝑘𝑚} is equivalent to the
empty set of atomic constraints (i.e. can be eliminated) whenever 𝑘 is one of the 𝑘𝑖 .

Definition 27 (Saturated constraint sets). An atomic constraint set, i.e. one that only contains
atomic constraints, is said to be saturated just if it is closed under the saturation rules in Figure 9. We
write Sat(𝐶) for the saturated atomic constraint set obtained by iteratively applying the saturation
rules to 𝐶 . Note, c.f. Remark 1, all three rules correspond to special cases of resolution.

The (Transitivity) rule closes subset inequalities under transitivity, but must keep track of the
associated guards by taking the union. The (Satisfaction) rule allows for a guard atom 𝑘 ∈ 𝑋 (𝑑) to
be dropped whenever the same atom constitutes the body of another constraint in the set (but the
other guards from both must be preserved). Finally, the (Weakening) rule allows for replacing 𝑌 (𝑑)
in a guard by 𝑋 (𝑑) when it is known to be no larger, thus weakening the constraint. Saturation
under these rules preserves and reflects solutions:

Theorem 28 (Saturation equivalence). For any assignment 𝜃 , 𝜃 |= 𝐶 iff 𝜃 |= Sat(𝐶).

If there are no trivially unsatisfiable constraints in Sat(𝐶), then a solution can be constructed as
follows. For each variable 𝑋 occurring in 𝐶 , define a function 𝜃𝑋 as follows:

(𝜃𝑋 ) (𝑑) ≔ {𝑘 | 𝑘 ∈ 𝑋 (𝑑) is in Sat(𝐶)}

Then 𝜃 solves Sat(𝐶). Conversely, if there is a trivially unsatisfiable constraint in Sat(𝐶), then
Sat(𝐶) is unsolvable and, by the equivalence theorem, it follows that 𝐶 has no solution either.

Theorem 29. 𝐶 is unsatisfiable iff Sat(𝐶) is trivially unsatisfiable.

9 RESTRICTION AND COMPLEXITY

In practice, having established that a constraint set is solvable, we are only interested in the solutions
for a certain subset of the refinement variables. For example if, as we have seen, the constraints 𝐶
describe a set of types {𝑇𝜃 | 𝜃 solves 𝐶} of the module level functions, then we may consider two
solutions 𝜃1 and 𝜃2 to be the same whenever they agree on FRV(𝑇 ). We call the free refinement
variables of 𝑇 , in this case, the interface variables.

Definition 30. Let 𝐶 be a saturated constraint set and let 𝐼 be some set of refinement variables,
called the interface variables. Then define the restriction of 𝐶 to 𝐼 , written 𝐶↾𝐼 , as the set {𝜙 ? 𝑆1 ⊆
𝑆2 ∈ 𝐶 | FRV(𝜙) ∪ FRV(𝑆1) ∪ FRV(𝑆2) ⊆ 𝐼 }.
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The restriction of𝐶 to 𝐼 is quite severe, since it simply discards any constraint not solely comprised
of interface variables. However, a remarkably strong property of the rules in Figure 9 is that,
whenever 𝐶 is solvable, every solution of Sat(𝐶)↾𝐼 may be extended6 to a solution of Sat(𝐶) (and
therefore of 𝐶) Ð independent of the choice of 𝐼 ! Since every solution of Sat(𝐶) trivially restricts
to a solution of Sat(𝐶)↾𝐼 (the latter has fewer constraints over fewer variables), it follows that the
solutions of Sat(𝐶)↾𝐼 are exactly the restrictions of the solutions of 𝐶 .

Example 31. Consider the following constraint set 𝐶 by way of an illustration:

★ Cst ∈ 𝑋1 (Lam) 𝑋1 (Lam) ⊆ 𝑋2 (Lam)
FVr ∈ 𝑋2 (Lam) ? 𝑋2 (Lam) ⊆ 𝑋3 (Lam) ★ 𝑋3 (Lam) ⊆ {FVr, Cst}

This set is not saturated and, consequently, there is no guarantee that the restriction of this set to
an interface results in a constraint system whose solutions can generally be extended to solutions
of the original set 𝐶 . For example, if we restrict this set to the interface 𝐼 = {𝑋1, 𝑋3}, the effect will
be to retain the two starred constraints. But then

𝜃 (𝑋 ) (𝑑) ≔

{

{Cst, FVr, App} if 𝑋 = 𝑋1 and 𝑑 = Lam

∅ otherwise

is a solution of 𝐶↾𝐼 that does not extend to any solution of 𝐶 . However, after saturation, Sat(𝐶)
consists of the following:

★ Cst ∈ 𝑋1 (Lam) 𝑋1 (Lam) ⊆ 𝑋2 (Lam)

Cst ∈ 𝑋2 (Lam) FVr ∈ 𝑋2 (Lam) ? 𝑋2 (Lam) ⊆ 𝑋3 (Lam)

FVr ∈ 𝑋2 (Lam) ? 𝑋1 (Lam) ⊆ 𝑋3 (Lam) FVr ∈ 𝑋2 (Lam) ? Cst ∈ 𝑋3 (Lam)

FVr ∈ 𝑋1 (Lam) ? 𝑋2 (Lam) ⊆ 𝑋3 (Lam) ★ FVr ∈ 𝑋1 (Lam) ? 𝑋1 (Lam) ⊆ 𝑋3 (Lam)

★ FVr ∈ 𝑋1 (Lam) ? Cst ∈ 𝑋3 (Lam) ★ 𝑋3 (Lam) ⊆ {FVr, Cst}

FVr ∈ 𝑋2 (Lam) ? 𝑋2 (Lam) ⊆ {FVr, Cst} FVr ∈ 𝑋2 (Lam) ? 𝑋1 (Lam) ⊆ {FVr, Cst}

FVr ∈ 𝑋1 (Lam) ? 𝑋2 (Lam) ⊆ {FVr, Cst} ★ FVr ∈ 𝑋1 (Lam) ? 𝑋1 (Lam) ⊆ {FVr, Cst}

In particular, the constraint FVr ∈ 𝑋1 (𝐿𝑎𝑚) ? 𝑋1 (𝐿𝑎𝑚) ⊆ 𝑋3 (𝐿𝑎𝑚) which will be retained in the
restriction Sat(𝐶)↾𝐼 , which consists of the starred constraints. Consequently, the above assignment
𝜃 is ruled out. Indeed, one can easily verify that every solution of Sat(𝐶)↾𝐼 extends to a solution of
Sat(𝐶) and hence of 𝐶 .

Theorem 32 (Restriction/Extension). Suppose 𝐶 is a saturated constraint set and 𝐼 is a subset of
variables. Let 𝜃 be a solution for 𝐶↾𝐼 . Then there is a solution 𝜃 ′ for 𝐶 satisfying, for all 𝑋 ∈ 𝐼 :

𝜃 ′(𝑋 ) (𝑑) = 𝜃 (𝑋 ) (𝑑)

Although our inference procedure is compositional, i.e. it breaks modules down into top-level
definitions, and terms down into sub-terms that can be analysed in isolation, this is no guarantee
of its efficiency. As we have described it in Section 7, the number of constraints associated with
a function definition depends on the size of the definition Ð constraints are generated at most
syntax nodes and propagated to the root. In fact, as is well known for constrained type inference,
the situation is worse than simply this, because a whole set of constraints is imported from the
environment when inferring for a program variable 𝑥 . The number of constraints associated with
𝑥 will again depend on the size of the definition of 𝑥 and the number of constraints associated with
any functions that 𝑥 depends on, and so the number of constraints can become exponential in the
number of function definitions7.
6In the sense of Theorem 32.
7Although it is known that this can be avoided by a clever representation in the case of constraints that are only simple
variable/variable inclusions [Gustavsson and Svenningsson 2001].
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Let us fix 𝑁 to be the number of module-level function definitions, 𝐾 the maximum number of
constructors associated with any datatype and 𝐷 the maximum number of datatypes associated
with any slice (for Lam, this is 2). A simple analysis of the shape of constraints yields the bound:

Lemma 2. There are O(𝐾𝑣2𝐷 · 2𝑣𝐾𝐷+𝐾 ) atomic constraints over 𝑣 refinement variables.

Suppose Γ ⊢ 𝑒 =⇒ 𝑇, 𝐶 . As it stands, the number of variables 𝑣 occurring in 𝐶 will depend upon
the size of 𝑒 and the size of every definition that 𝑒 depends on. We use restriction to break this
dependency between the size of constraint sets and the size of the program. We compute 𝐶↾𝐼 for
each constraint set 𝐶 generated by an inference (i.e. at every step) with the interface 𝐼 taken to
be the free variables of the context FRV(Γ) ∪ FRV(𝑇 ). Consequently, the number of variables 𝑣
occurring in𝐶↾𝐼 only depends on the number of refinement variables that are free in Γ and𝑇 . Since
all the refinement variables of module level function types are generalised by (IModD) (assuming,
as is usual, that inference for modules occurs in a closed environment), it follows that the only free
refinement variables in Γ are those introduced during the inference of 𝑒 , as a result of inferring
under abstractions and case expressions. Thus 𝑣 becomes independent of the number of function
definitions.
Moreover, if we assume that function definitions are in 𝛽-normal form and that the maximum

case expression nesting depth within any given definition is fixed (i.e. does not grow with the size
of the program) then it follows that the number of refinement variables free in the environment is
bounded by the size of the underlying type of 𝑒 . Clearly, the number of free refinement variables in
𝑇 is also bounded by its underlying type.

Consequently, for a constraint set𝐶 arising by an inference Γ ⊢ 𝑒 =⇒ 𝑇, 𝐶 and then restricted to
its context, the number of constraints given by Lemma 2 only depends on the size of the underlying
types assigned to the 𝑒 and, in the case of datatypes, the size of their definitions (slices). If we
consider scaling our analysis to larger and larger programs to mean programs consisting of more
and more functions, with bounded growth in the size of types and the size of individual function
definitions then we may reasonably consider all these parameters fixed. Recall that 𝑁 is the number
of function definitions in the module. We have:

Theorem 33. Under the assumption that the size of types and the size of individual function
definitions is bounded, the complexity of type inference is O(𝑁 ).

10 IMPLEMENTATION

We implemented a prototype of our inference algorithm for Haskell as a GHC plugin. The user
can run our type checker as another stage of compilation with an additional command line flag. In
addition to running the type checker on individual modules, an interface binary file is generated,
enabling other modules to use the constraint information in separate compilations. It is available
from: https://github.com/bristolpl/intensional-datatys.
Our plugin processes GHC’s core language [Sulzmann et al. 2007], which is significantly more

powerful than the small language presented here. Specifically, it must account for higher-rank types
(including existentials), casts and coercions, type classes. We have not implemented a treatment of
these features in our prototype and so any occurrences are not analysed. Furthermore, we disallow
empty refinements of single-constructor datatypes (e.g. records). This relatively small departure
from the theory is a substantial improvement to the efficiency of the tool due to the number of
records and newtypes that are found in typical Haskell programs.
Since we do not analyse the dependencies of packages, datatypes that are defined outside the

current package are treated as base types and not refined The resulting analysis provides a certificate
of safety for some package modulo the safe use of its dependencies.
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In addition to missing cases, the tool uses the results of internal analyses in GHC to identify
pattern matching cases that will throw an exception. For example, the following code will be
considered as potentially unsafe.

nnf2dnf (Lit a) = [[a]]

nnf2dnf (Or p q) = List.union (nnf2dnf p) (nnf2dnf q)

nnf2dnf (And p q) = distrib (nnf2dnf p) (nnf2dnf q)

nnf2dnf _ = error "Impossible case!"

10.1 Performance

We recorded benchmarks on a 2.20GHz Intel®Core™i5-5200U with 4 cores and 8.00GB RAM. We
used the following selection of projects from the Hackage database:

• aeson is a performant JSON serialisation library.
• The containers package provides a selection of classic functional data structures such as sets
and finite maps. The Data.Sequence module from this package contains machine generated
code that lacks the typical modularity and structure of hand written code. For example,
it contains an automatically generated set of 6 mutually recursive functions8, each with a
complex type and deeply nested matching. The corresponding interface is in excess of 80
refinement variables. This module could not be processed to completion in a small amount
of time and so we have omitted it from the results. We will explore how best to process
examples that violate our complexity assumptions in follow-up work.

• extra is a collection of common combinators for datatypes and control flow.
• fgl (Functional Graph Library) provides an inductive representation of graphs.
• haskeline is a command-line interface library
• parallel is Haskell’s default library for parallel programming
• sbv is an SMT based automatic verification tool for Haskell programs.
• The time library contains several representations of time, clocks and calendars.
• unordered-containers provides hashing-based containers, for either performant code or
datatypes without a natural ordering.

For each module we recorded the average time elapsed in milliseconds across 10 runs and the
number of top-level definitions (N).We note both the total number of refinement variables generated
during inference (V) and the largest interface (I). The contrast between these two figures gives
some indication of how intractable the analysis may become be without the restriction operator.
Naturally, constant factors will vary considerably between modules (not in correspondence with
their size) and so our results also include the number of constructors (K) that appear in the largest
datatype, and the number of datatypes (D) in the largest slice.
The benchmarks in Figure 1 provide a summary of the results for each project, i.e. the total

time taken9 , the total number of top-level definitions, the total number of refinement variables,
the maximum interface size, the largest number of constructors associated with a datatype, and
the largest slice. The full dataset can be found in the appendices and a virtual machine image for
recreating the benchmarks can be downloaded from: https://doi.org/10.5281/zenodo.4072906.

Figure 1 also contains the number of warnings found in each packages. However, many of them
stem from the same incomplete pattern. For example, 70 of the warnings from the sbv package are
located in one function. All of these warnings were due to the tools limited, and thus extremely
conservative, approach to handle features of GHC outside of its scope, such as typeclasses and
encapulsation via the module system, so we are optimistic about future work.

8Since they are mutually recursive, they are processed together before generalisation and thus act as a single complex type.
9The total time taken is the sum of the time taken to analyse each module independently doesn’t include start up costs etc.
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Table 1. Benchmark Summaries

Name N K V D I Warnings Time (ms)
aeson 728 13 20466 6 14 0 79.37
containers 1792 5 25237 2 23 18 118.26
extra 332 3 5438 3 7 0 61.53
fgl 700 2 18403 2 12 8 94.32
haskeline 1384 15 29389 19 27 0 111.67
parallel 110 1 959 2 18 0 10.18
pretty 222 8 3675 4 16 11 23.86
sbv 5076 44 171869 49 46 79 518.91
time 484 7 9753 6 10 9 134.16
unordered-containers 474 5 7761 3 24 2 30.56

These packages were selected to test the tool in a range of contexts and at scale. We did not find
any true positives, but it is not surprising since large packages with many downloads on Hackage
are likely to be quite mature.

11 RELATED WORK

The goal of our system is to automatically, statically verify that a given program is free of pattern
match exceptions, and we have phrased it as a type inference procedure for a certain refinement
type system with recursive datatype constraints. We have shown that it works well in practice,
although a more extensive investigation is needed. Our primary motivation has been to ensure
predictability by giving concrete guarantees on its expressive power and algorithmic complexity.

Recursive types, subtyping and set constraints. Our work sits within a large body of literature on
recursive types and subtyping. As a type system, ours is not directly comparable to others in the
literature: on the one hand, the intensional refinement restriction is quite severe, but on the other
we allow for path sensitivity. One of the first works to consider subtyping in the setting of recursive
types was that of Amadio and Cardelli [1993]. They proposed an exponential time procedure for
subtype checking, but this was later improved to quadratic by Kozen, Palsberg, and Schwartzbach
[1995]. Neither of these works gave a treatment of the combination with polymorphism, which is
the subject of e.g. Castagna and Xu [2011]; Dolan and Mycroft [2017]; Hoang and Mitchell [1995];
Pottier [1998]. However, to the best of our knowledge, all the associated type inference algorithms
are exponential time in the size of the program. In particular, Hoang and Mitchell [1995] shows that
a general formulation of typing with recursive subtyping constraints has a PSPACE-hard typability
problem. However, we mention as a counterpoint that when constraints are restricted to simple
variable-variable inequalities, Gustavsson and Svenningsson [2001] show that there is a cubic-time
algorithm. Being based on unification, inference for polymorphic variants is efficient [Garrigue
2002], but Castagna, Petrucciani, and Nguyen [2016] point out instances where programmers find
the results to be unpredictable. None of the above allow for path-sensitive treatment of matching.
Our main inspiration has been the seminal body of literature of work on set constraints in

program analysis, see particularly Aiken, Wimmers, and Lakshman [1994b], Aiken [1999] and
Heintze [1992], and in particular, the line of work on making the cubic-time fragments scale in
practice [Fähndrich and Aiken 1996; Fähndrich et al. 1998; Heintze 1994; Su et al. 2000]. Through an
impressive array of sophisticated optimisations, the fragment can be made to run efficiently onmany
programs. However, the fundamental worst-case complexity is not changed and implementing and
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tuning heuristics requires a large engineering effort. Moreover, this fragment does not accommodate
path sensitivity.
An interesting new approach to full set constraints language is that of Eremondi [2019], who

attempts to use SMT to circumvent the extremely high worst-case complexity in some practical
cases. However, experiments are limited to programs less than a few hundred lines.
Many of the analyses and or type inference procedures discussed so far are compositional, i.e.

parts of the program are analysed independently to yield summaries of their behaviour and then
the summaries are later combined. However, it has been frequently observed that compositionality
does not lead to scalability if the summaries are themselves large and complicated. In particular,
it is not uncommon for łsummariesž that grow with the square of the size of the program in the
worst case. This has led to many works that attempt to simplify summaries, typically according
to ingenious heuristics [Aiken et al. 1999; Dolan and Mycroft 2017; Fähndrich and Aiken 1996;
Flanagan and Felleisen 1999; Pottier 2000, 2001; Rehof 1997; Trifonov and Smith 1996]. Since our
primary motivation was predictability, we have designed our system so that heuristics are avoided10:
in particular the size of summaries (i.e. constrained type schemes) only depends only on the size of
the underlying types and not the size of the program. It is plausible that many of these heuristic
optimisations are nevertheless applicable in order to help improve the overall efficiency. Note
also that, if we are not concerned with a compositional analysis, then our class of constraints
can be checked for solvability using a linear time algorithm due to Rehof and Mogensen [1999].
However, as explained in the introduction, compositionality is essential to obtaining overall linear
time complexity.

Refinement types. Refinement types originate with the works of Freeman and Pfenning [1991]
and Xi and Pfenning [1999]. Their distinguishing feature is that they attempt to assign types to
program expressions for which an underlying type is already available. Typically, as here, the
refinement type is also required to respect the shape of the underlying type. One can use this
restriction, as in loc cit to ensure some independence of the the size of the type from the size of
the program. However, as remarked in the final section, the constant factors are enormous since
there is unrestricted intersection and union of refinements of the same underlying type which is
represented explicitly.
The work of Freeman and Pfenning [1991] requires that the programmer declare the universe

of refinement types up-front (where our universe is determined automatically as a completion of
the underlying datatype environment). A disadvantage of this requirement is that it burdens the
programmer with a kind of annotation that they would rather not have to clutter their programwith,
in many simple cases. A great advantage is that, by defining a refinement datatype explicitly, the
programmer can indicate formally in the code her intention that a certain invariant is (somehow)
important within a certain part of the program. It seems like a very fruitful idea to allow the
programmer this freedom also in our system and we are actively working on an extension to allow
for this as part of our future work. In particular, we would like to take advantage of several new
advances in this line that relieve a lot of programmer burden, such as those of Dunfield [2007, 2017].
An incredibly fruitful recent evolution of refinement types are the Liquid Types of Rondon,

Kawaguci, and Jhala [2008] (see especially Vazou, Bakst, and Jhala [2015] for a version with
constrained type schemes) and similar systems (e.g. those of Terauchi [2010]; Unno and Kobayashi
[2009]). Such technology is already accessible to the benefit of the average programmer through
the Liquid Haskell system of Vazou, Seidel, Jhala, Vytiniotis, and Peyton-Jones [2014]. Due to the
rich expressive power of these systems, which typically include dependent product, efficient and

10Heuristic-based optimisations can be the enemy of predictability since small changes in the program can lead to great
changes in performance if the change causes the program to fall outside of the domain on which the heuristic is tuned.
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fully-automatic type inference is not typically a primary concern and predictability can be ensured
by liberal use of annotations.

Pattern match safety and model checking. The pattern match safety problem was also addressed
by Mitchell and Runciman [2008], which was used to verify a number of small Haskell programs
and libraries. The expressive power and algorithmic complexity are, however, unclear.

Safety problems arewithin the scope of higher-ordermodel checking (Kobayashi [2013]; Kobayashi
and Ong [2009]; Ong [2006]) and a system for verifying pattern match safety, built on higher-order
model checking was presented in [Ong and Ramsay 2011]. Higher-order model checking approaches
reduce verification problems to model checking problems on a certain infinite tree generated by a
higher-order grammar. Although the higher-order model checking problem is linear-time in the
size of the grammar, the constant factors are enormous because, formally, it is 𝑛-EXPTIME complete
(tower of exponentials of height 𝑛) with 𝑛 the type-theoretic order of the functions in the grammar.
Moreover, many of the transformations from program to grammar incur a large blow-up in size.
Two promising evolutions of higher-order model checking are the approach of Kobayashi, Tsukada,
and Watanabe [2018] based on the higher-order fixpoint logic of Viswanathan and Viswanathan
[2004] and that of Cathcart Burn, Ong, and Ramsay [2017] via higher-order constrained Horn
clauses.

Contract checking. Like pattern-match safety, static contract checking problems such as those
considered by Xu, Jones, and Claessen [2009], Vytiniotis, Jones, Claessen, and Rosén [2013] and
Nguyen, Tobin-Hochstadt, and Van Horn [2014] typically also reduce to reachability. However,
giving guarantees on scalability via worst-case complexity does not seem to be a priority for this
area and experiments are correspondingly limited to programs of only a few hundred lines.

Pattern match coverage checking. A related problem is the pattern match coverage checking

problem, which asks, with respect to the type of the function: if a given set of patterns is exhaustive,
non-overlapping and irredundant (a classic paper on this subject is that of Maranget [2007], but see
Graf, Jones, and Scott [2020] for more recent developments). To illustrate the difference between
the two problems: a program containing the following definition is always a no-instance of the
coverage checking problem, since 𝑓 :: Bool → Bool has non-exhaustive patterns:

𝑓 True = False

However, such a program may or may not be a no-instance of the pattern-match safety problem,
since it depends on how 𝑓 is actually used in the rest of the program. Like all safety problems, the
latter can be reduced to reachability: is there an execution of the program that reaches a call of the
form 𝑓 False. If no execution of the program containing this definition ever calls 𝑓 with False, then
this program will be a yes-instance of the safety problem, i.e. pattern-match safe.
On the one-hand, if every pattern-matching expression covers all cases, then the program is

already safe, since no execution can trigger a pattern-match violation. On the other, a program
may be safe and yet not cover every case in its patterns Ð indeed these are really the focus from a
program verification perspective. The proliferation of exotic kinds of pattern allowed in a complex
language such as Haskell (e.g. pattern synonyms [Pickering et al. 2016]), mean that coverage
checking may sometimes benefit from reasoning about program executions in a localised way.
However, as the authors of [Graf et al. 2020] point out, it is łunreasonable to expect a coverage
checking algorithm to prove [a property of arbitrary program executions]ž.
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12 CONCLUSION

We have presented a new extension of ML-style typing with intensional refinements of algebraic
datatypes. Since type inference is fully automatic, the system can be used as a program analysis
for verifying the pattern-match safety problem. Viewed this way, it incorporates polyvariance
and path-sensitivity and yet we have shown that, under reasonable assumptions, the worst-case
time complexity is linear in the size of the program. To achieve this we have shifted exponential
complexity associated with HM(X)-style inference from the size of the program to the size of the
types of the program. Moreover, we have shown that our assumptions on the size of types are
reasonable in practice (equivalently: that the constant factors are not prohibitive) by demonstrating
excellent performance of a prototype.

This was only possible because we have made a compromise on the space of invariants that we
can synthesize: typings are built from intensional refinements. Although our analysis is polyvariant
and path-sensitive, these features are ultimately limited by the shape of these refinements. We
have given examples, (e.g. in Figure 2 and Example 7) of datatypes for which there are many
useful intensional refinements that are expressible in our system. However, there are also common
datatypes for which there are no useful intensional refinements. For example, the four intensional
refinements of the datatype of lists correspond to: the empty type, the type of infinite lists, the type
containing only the empty list and the original list datatype. However, none of these is especially
useful in practice, and one would much rather have a refinement like the type of non-empty lists.

In any fully automatic program analysis, there will always be some compromise on expressivity.
We believe it is important that one can understand, before using the tool on a program, whether the
compromise will be a real limitation. The power of our analysis is characterised as a type system
that can be understood by programmers familiar with usual ML-style typing. If the (user believes
that their) program would be typable in this system (i.e. there exist intensional refinements of
the datatypes under which a typing can be assigned), then the analysis will be able to verify it.
Note that the user does not need to know anything about constraints, which occur only in the
inference algorithm, in order to determine this. For example, if the user believes that the safety of
their program relies on a invariant to do with the non-emptiness of lists then, since non-emptiness
is not an expressible refinement of lists, they should not expect the program to be verifiable.
Our future work concerns such cases. We would like to enable the user to specify their own

non-intensional refinements of datatypes to extend the space of expressible program invariants.
For example, using some syntax, the programmer could indicate that the non-emptiness of lists is
an important refinement. Under the hood, the system can extend the original definition of lists in
such a way that (a) the new definition is extensionally equivalent to the original, but (b) non-empty
lists is now an intensional refinement. The following is an example of such a redefinition:

List a = Nil | Cons a (List' a)

List' a = Nil | Cons a (List' a)

From which the non-empty list refinement arises by erasing Nil from the List datatype. This would
put the trade-off between expressive power and efficiency in the hands of the user, and since the
type system is familiar, they are well equipped to reason about when it makes sense.
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