
A Framework for Resource Dependent EDSLs in a
Dependently Typed Language
Jan de Muijnck-Hughes
University of Glasgow, United Kingdom
Jan.deMuijnck-Hughes@glasgow.ac.uk

Edwin Brady
University of St Andrews, United Kingdom
ecb10@st-andrews.ac.uk

Wim Vanderbauwhede
University of Glasgow, United Kingdom
Wim.Vanderbauwhede@glasgow.ac.uk

Abstract
Idris’ Effects library demonstrates how to embed resource dependent algebraic effect handlers into a
dependently typed host language, providing run-time and compile-time based reasoning on type-level
resources. Building upon this work, Resources is a framework for realising Embedded Domain
Specific Languages (EDSLs) with type systems that contain domain specific substructural properties.
Differing from Effects, Resources allows a language’s substructural properties to be encoded
within type-level resources that are associated with language variables. Such an association allows
for multiple effect instances to be reasoned about autonomically and without explicit type-level
declaration. Type-level predicates are used as proof that the language’s substructural properties
hold. Several exemplar EDSLs are presented that illustrates our framework’s operation and how
dependent types provide correctness-by-construction guarantees that substructural properties of
written programs hold.

2012 ACM Subject Classification Software and its engineering → General programming languages;
Software and its engineering → Language features; Software and its engineering → Domain specific
languages; Software and its engineering → System modeling languages

Keywords and phrases Dependent Types, Algebraic Effect Handlers, Domain-Specific Languages,
Embedded Domain Specific Languages, Idris, Substructural Type-Systems

Digital Object Identifier 10.4230/LIPIcs.ECOOP.2020.20

Category Pearl

Supplementary Material ECOOP 2020 Artifact Evaluation approved artifact available at
https://doi.org/10.4230/DARTS.6.2.2.

Funding This work was funded by EPSRC projects: Border Patrol: Improving Smart Device
Security through Type-Aware Systems Design (EP/N028201/1); and Type-Driven Verification of
Communicating Systems – EP/N024222/1.

Acknowledgements The authors would like to thank the anonymous reviewers for their excellent
reviews that served to better the work.

1 Introduction

Substructural Type-Systems allow type-systems to reason about abstract resources associ-
ated with the type-system’s domain of operation [65]. For general purpose programming
languages these resources typically capture, and reason quantitatively about, memory access,
variable usage, and erasure of non-essential terms. However, not all languages are general
purpose, nor are their abstract resources quantitative in nature cf.Linear Typing with Session

C
o
n
si
st

en
t *
Complete *

W
ell D

o
cu
m
ented*Easyt

oR

eu
se
* *

Evaluated

*
E
C
O
O
P
*

Ar
tifact

*
A
E
C

© Jan de Muijnck-Hughes, Edwin Brady, and Wim Vanderbauwhede;
licensed under Creative Commons License CC-BY

34th European Conference on Object-Oriented Programming (ECOOP 2020).
Editors: Robert Hirschfeld and Tobias Pape; Article No. 20; pp. 20:1–20:31

Leibniz International Proceedings in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

https://orcid.org/0000-0003-2185-8543
mailto:Jan.deMuijnck-Hughes@glasgow.ac.uk
https://orcid.org/0000-0002-9734-367X
mailto:ecb10@st-andrews.ac.uk
https://orcid.org/0000-0001-6768-0037
mailto:Wim.Vanderbauwhede@glasgow.ac.uk
https://doi.org/10.4230/LIPIcs.ECOOP.2020.20
https://doi.org/10.4230/DARTS.6.2.2
http://gow.epsrc.ac.uk/NGBOViewGrant.aspx?GrantRef=EP/N028201/1
http://gow.epsrc.ac.uk/NGBOViewGrant.aspx?GrantRef=EP/N024222/1
https://creativecommons.org/licenses/by/3.0/
https://www.dagstuhl.de/lipics/
https://www.dagstuhl.de

20:2 A Framework for Resource Dependent EDSLs in a Dependently Typed Language

Types [30]. Domain Specific Languages (DSLs) are special purpose languages tailored to a
specific application domain [26]. Embedded Domain Specific Languages (EDSLs) are DSLs
that have been embedded within a host language to capitalise upon the host language’s
functionality. Implementing an EDSL with a substructural type-system, however, requires an
implementation language that not only supports substructural typing but supports reasoning
about domain specific substructural properties.

Algebraic effect handlers support reasoning about a program’s side-effects [50] and several
programming languages such as OCaml and Haskell have been extended with them [33, 46].
Effects [11] is a general purpose resource dependent algebraic effect handler library for the
dependently typed programming language Idris [10]. Through Effects, developers can realise
EDSLs with substructural type-systems.

Effects has been realised as Resource Dependent EDSLs in which the EDSL is specified
as an algebraic data type whose type captures resources that are each associated with an
abstract state machine [11]. The EDSL’s type forms a Hoare monad [1, 7] and sequencing
of expressions captures valid transitions between individual states of these resources. Such
EDSL construction is a common design pattern seen within dependently typed programming
languages. For example, there are EDSLs for reasoning about: communicating systems [13,
Chp. 15]; communication protocols [19]; and hardware component interfaces [20].

Effects requires, however, that domain specific effects operate within a general purpose
effectful context, and effect management is not an autonomic aspect of the program and
is the responsibility of the programmer. That is, effect instances describe a single effect
within the program, and multiple same effect instances must be explicitly labelled. Figure 1
illustrates these issues with a simple copy function that opens two file handles and writes a
single line from one file to another1. Within the function’s body each same effect instance
must be labelled at both the value and type-level. Use of Effects is not ideal when designing
EDSLs with domain specific effect systems in which multiple same effect instances can occur,
nor does the Effects library support autonomic effect management.

copy : (o, n : String) -> Eff (Maybe FileError) [A ::: FILE (), B ::: FILE (), STDIO]
copy o n = do
Success <- A :- open o Read | FError e => do {printLn e; pure (Just e)}
Result s <- A :- readLine | FError e => do {printLn e; A :- close; pure (Just e)}
A :- close
Success <- B :- open n WriteTruncate | FError e => do {printLn e; pure (Just e)}
res <- B :- writeString s
case res of

Success => do {B :- close; pure Nothing}
FError e => do {printLn e; B :- close; pure (Just e)}

Figure 1 Example of labelled effects using Idris’ Effects library.

1.1 Contributions
We build on previous work in designing algebraic effect handlers in Idris [11, 10]. Rather
than associating an effect’s abstract resource with the program itself we associate it with
a bound variable within the EDSL. Further, the list of possible effects is now constrained
to an a priori set of domain specific effects. Such an association and restriction leads to
greater reasoning and manipulation of the effects within a Resource-Dependent EDSLs, thus
enabling autonomic effect management and reasoning about the state of an effect’s resource.
Given this principal idea, our contributions are:

1 Idris’ pattern match & bind notation reduces the number of case expressions required [11]. This notation
supports binding to a value and presentation of the remaining cases on the right.

J. de Muijnck-Hughes, E. Brady, and W. Vanderbauwhede 20:3

1. Resources, a general purpose framework for constructing Resource Dependent EDSLs
that have a domain specific substructural type-systems. Further, we illustrate using
effect handlers how EDSLs created using Resources can be operated on in a variety of
different evaluation contexts.

2. A collection of exemplar EDSLs demonstrating the ability of Resources to create
EDSLs. Files reasons about multiple concurrent File IO (Section 4.1); Wireless reasons
about domain specific bigraph construction (Section 4.2); and Sessions captures value
dependent global session descriptions – Section 4.3.

Resources is a step forward for developers and presents a new general framework
for realising domain specific substructural type-systems for resource dependent EDSLs.
Thus, supporting the exploration of novel type-systems similar to those seen in existing
systems [47, 28, 17, 32].

1.2 Outline
Section 2 discusses how dependent types support type-level abstract state machines, and
reasoning about such machines. Section 3 presents the framework itself, and exemplar EDSLs
appear in Section 4. Sections 2 and 3 describes how data types modelled after De Bruijn
indices [18] provide type-level assertions that certain substructural properties hold.

I Remark. Although not essential, before reading about our work we encourage readers not
familiar with Idris to learn more about the language, its syntactic constructs, auto-implicit
arguments, and semantic highlighting2.

2 Type-Level State Tracking and Reasoning

This section introduces the underlying technique for type-level reasoning about abstract
resources, through implementation of an EDSL that captures high-level file interactions.

Within our EDSL files are either: closed; open for reading; or open for writing. We
encapsulate these operations using the following four operations, and a helper function for
displaying showable data: Open – which opens a file for reading or writing; Read – which
reads a string from a file opened for reading; Write – which writes a string to a file opened
for writing; Close – which closes an already open file; and PrintLn – which prints showable
data.

Parameterised monads allow for language expressions to be associated with a type-level
state which we refer to as a resource [1]. Hoare monads allow for state transitions to be
presented at the type-level [7]. The type of each expression describes how the expressions
affects the abstract state. An operation and its type give a Hoare Triple [29]. Definition of
state machines within such a monadic construct ensures that any sequence of operations
which type checks is a valid sequence of operations. For our example, this means that any
operation on a file must respect the type-level state machine we define. Thus, attempting to
write to a file opened for reading should present itself as a type error.

Figure 2 presents an implementation of the EDSL within a Hoare monad. FileIO is
parameterised by the state of the file before and after each operation. The arguments to
FileIO are: a Type, which represents the return type of the operation; and two FileState

2 Differing from Idris’ existing colouring scheme, we use a more printer friendly set: Data constructors;
Type constructors; Bound variables; named Function; Idris Keywords; and Implicitly bound variables.
Agda style highlighting is used for typed holes .

ECOOP 2020

20:4 A Framework for Resource Dependent EDSLs in a Dependently Typed Language

instances, which represent the input state (the precondition) and the output state – the
postcondition. These invariants ensure that read and write operations only work when
the state of the file is correct: Open for their particular mode of operation. The PrintLn
operation should not affect the program’s abstract state. The type of Bind explains how
sequencing changes the file’s state based on a previous expression. Pure returns a pure
value. Thus, if a sequence of FileIO expressions type checks, then it is a valid sequence
of operations according to the stated protocol. Rather than use Bind and Pure directly,
do-notation is realised by overloading (»=) and pure, with Bind and Pure.

data Mode = R | W

data State = Open Mode | Closed

data FileIO : (type : Type) -> (pre : State) -> (post : State) -> Type where
Bind : FileIO a stA stB -> a -> FileIO b stB stC -> FileIO b stA stC
Pure : a -> FileIO a before after

Open : (fname : String) -> (m : Mode) -> FileIO () Closed (Open m)
Read : FileIO String (Open R) (Open R)
Write : (value : String) -> FileIO () (Open W) (Open W)
Close : FileIO () (Open m) Closed
PrintLn : Show a => a -> FileIO () curr curr

Figure 2 An EDSL for interacting with a single file.

Figure 3 presents a sample program written in FileIO. The program’s abstract state is
initialised to Closed. Each expression transitions the state according to the rules embedded
in the type of our EDSL. If an incorrect sequence of expressions were to be given, for example
opening two files or reading to a file opened for writing, then the program would fail to
type-check.

toFile : (fname : String) -> (contents : String) -> FileIO () Closed Closed
toFile fname str = do { Open fname W; Write str; Close}

Figure 3 An example program for interacting with a single file.

2.1 Files with Errors

The definition for FileIO is not sufficiently expressive: Operations on file handles are
naturally impure; FileIO is pure. The EDSL does not capture potential errors that occur
when interacting with a file. For example, being unable to open a file handle, or an error
occurring during a read/write operation.

Figure 4a illustrates how the type of FileIO can be redefined to address run-time errors.
The post-condition is now a function that computes the resulting state dependent on the
value returned by the expression. For example, Open changes the state to Closed in the
result of an error, otherwise the state remains the same. The remaining constructors for
FileIOE can be redefined accordingly. Figure 4b shows Figure 3 rewritten using FileIOE. If
the result of Open or Write is not checked, the subsequent interactions will not type check.
The next state would be unknown.

J. de Muijnck-Hughes, E. Brady, and W. Vanderbauwhede 20:5

data FileIOE : (type : Type) -> (pre : State) -> (post : type -> State) -> Type where
Open : (fname : String)

-> (m : Mode)
-> FileIOE (Maybe FileError)

Closed
(\res => case res of {Nothing => Open m; Just err => Closed})

...
(a) Partial redefinition of FileIO.
toFile : String -> String -> FileIOE (Maybe FileError) Closed (const Closed)
toFile fname str = do

Nothing <- Open fname W | Just err => do {PrintLn err; pure err}
Nothing <- Write fh "A string" | Just err => do {PrintLn err; Close fh; pure err}
Close fh
pure Nothing

(b) Figure 3 rewritten as an FileIOE instance.

Figure 4 Redefining FileIO to include type-level enforcement of error handling.

This pattern of state-aware EDSL construction allows reasoning about the abstract state
of an EDSL at compile-time, based on data obtained at run-time. However, FileIOE is not
expressive enough to reason about, nor interact with, multiple files.

2.2 Modelling Multiple File Access with Errors
Figure 5 extends the definition of FilesIOE with a list of abstract state machines: one per
open file.

data FilesIOE : (ty : Type) -> (old : List Item) -> (new : ty -> List Item) -> Type where
Pure : (val : a) -> FilesIOE a (st val) st

Bind : FilesIOE a first snd_fn
-> ((x : a) -> FilesIOE b (snd_fn x) third_fn)
-> FilesIOE b first third_fn

Open : (fname : String) -> (m : FMode)
-> FilesIOE (Either FileError Handle) old

(\res => case res of {Right hdl => MkItem hdl (Open m)::old; Left _=> old})

Read : (hdl : Handle) -> (prf : Any (IsOpenFor hdl R) item old)
-> FilesIOE (Either FileHandle String) old

(\res => case res of {Right _ => old; Left _ => update (closeHandle) old prf})

Write : (hdl : Handle) -> (str : String) -> (prf : Any (IsOpenFor hdl W) item old)
-> FilesIOE (Maybe FileError) old

(\res => case res of {Nothing => old; Just _ => update (closeHandle) old prf})

Close : (hdl : Handle) -> (prf : Any (IsHandle hdl) item old)
-> FilesIOE () old (const $ drop old prf)

PrintLn : Show a => (msg : a) -> FilesIOE () old (const old)

Figure 5 An EDSL to model multiple concurrent file interactions.

To help with reasoning about multiple files we introduce two helper data structures.

data Handle = MkHandle data Item = MkItem Handle FileState

Handle represents file handles at both the value and type level, and Item associates a
type-level file state with a particular handle. File handles are bound to names using the Bind
constructor. Although, we could use a nameless representation based on De Bruijn indicies

ECOOP 2020

20:6 A Framework for Resource Dependent EDSLs in a Dependently Typed Language

we can take advantage of Idris’ elaborator to distinguish between different instances of Handle
based on their bounded names and type-level values. During the type checking process Idris’
elaborator translates high level Idris code to the internal type theory representation [9] by
expanding high level language constructs such as case blocks and where clauses, and inferring
values for implicit arguments by unification and search. Further, by replacing the original
state that parameterises FileIOE with a list of these Item instances, the state of each open
file handle in our EDSL can be tracked.

Figure 6 presents two type-level predicates for reasoning about individual items in our
type-level context. IsOpenFor declares that the given file handle has been opened for reading
or writing; and IsHandle declares that the given file handle exists. To aid reasoning about
multiple file handles, i.e. any item in the program’s context, the list quantifier Any is used.
The Any represents existential quantification that the given predicate holds on a list item.

With Idris’ do-notation let-bindings are provided, however, let-bindings do not interact
with the type-level context. We can use the Any list quantifier in conjunction with Idris’
elaborator to ensure that aliased variables cannot be used. If an operation with an aliased
handle were to be used then proof (witness) cannot be given of the handle’s existence in
the type-level context as Idris’ elaborator will fail to associate the aliased named with an
abstract state.

data IsOpenFor : (hdl : Handle) -> (mode : FMode) -> (item : Item) -> Type where
FileIsOpenFor : (m : FMode) -> IsOpenFor hdl m (MkItem hdl (Open m))

(a) Predicate for reasoning about file handle mode.
data IsHandle : (hdl : Handle) -> (item : Item) -> Type where

FileExists : (hdl : Handle) -> IsHandle hdl (MkItem hdl st)

(b) Predicates for linking file handle to instance of Handle.

Figure 6 Predicates.

Figure 7 presents the type signatures for two helper functions that manipulate the type-
level context based on an expression’s associated predicates. The first function, update,
updates specific elements in our context dependent upon the supplied Any proof. Further,
the update function f facilitates access to the predicate that holds over the item we are
updating. The drop function removes an item from the context using the supplied Any proof
about the item.

update : (f : (i : Item)
-> (prf : p i)
-> Item)

-> (context : List Item)
-> (index : Any p item context)
-> List Item

(a) Updating an Item instance.

drop : (context : List Item)
-> (index : Any p item context)
-> List Item

(b) Removing an Item instance.

Figure 7 Functions for manipulating the type-level context.

With these extra data structures, and predicates, type-level operations on individual file
handles in FilesIOE becomes autonomic. Files are opened using Open which extends the
context with the new file handle, its initial state. The old context is retained if the operation
fails. Reading a file, using Read, requires proof that the file is already open for reading. We
do so using IsOpenFor and Any. If the read is successful then the old context is retained. If
the read is unsuccessful then the state of the file is updated to IsClosed. The definition of
Write is analogous to Read. Closing a file (Close) removes the file’s state from the context.
For a close operation to be allowed, evidence must be presented that the file is in the closed
state. With this evidence the file’s associated state can be removed.

J. de Muijnck-Hughes, E. Brady, and W. Vanderbauwhede 20:7

Figure 8a presents an example of a program written using FilesIOE. For each language
expression that requires a predicate a proof must also be given. With this approach value
level expressions become incredibly verbose. This is too verbose. Users should not be
expected to write such proofs by hand. Idris supports auto-implicit arguments, in which the
values for implicit arguments to a function can be automatically constructed using a greedy
constructor-based search to find a value that matches the arguments type. By wrapping each
language expression in a function that uses auto implicits we can automatically construct
the proofs.

copy : (old, new : String) -> FilesIOE (Maybe FileError) Nil (const Nil)
copy old new = do

Right fh <- Open old R | Left err => do {PrintLn err; Pure (Just err)}
Right str <- Read fh (H $ FileIsOpenFor R) | Left err => do

PrintLn err
Close fh (H $ FileExists fh)
Pure (Just err)

Close fh (H $ FileExists fh)
Right fh1 <- Open new W | Left err => do {PrintLn err; Pure (Just err)}
res <- Write fh1 str (H $ FileIsOpenFor W)
case res of

Nothing => do {Close fh1 (H $ FileExists fh); Pure (Nothing)}
Just err => do {PrintLn err; Close fh1 (H $ FileExists fh1); Pure (Just err)}

(a) With Proofs.
copy : (old, new : String) -> FilesIOE (Maybe FileError) Nil (const Nil)
copy old new = do

Right fh <- open old R | Left err => do {printLn err; pure (Just err)}
Right str <- read fh | Left err => do

printLn err
close fh
pure (Just err)

close fh
Right fh1 <- open new W | Left err => do {printLn err; pure (Just err)}
res <- write fh1 str
case res of

Nothing => do {close fh1; pure (Nothing)}
Just err => do {printLn err; close fh1; pure (Just err)}

(b) With Proofs calculated using auto-implicit arguments.

Figure 8 Figure 3 rewritten using FilesIOE.

For example, the wrapper function for Close would be written as:

close : (h : Handle) -> {auto idx : Any (IsHandle h) i o}
-> FileIOE () o (const (drop o idx))

close h {idx} = Close h idx

By convention, the function that calculates an auto-implicit argument is named using lower
case variants of the constructor name. Figure 8b presents the “cleaned” version of Figure 8a.

Notice that for each branch in our case-splits, and bind operations, we must close open
file handles. Here the type-level state requires us to exit functions with an empty context.
This ensures that all file handles are closed when we exit our program. To ensure that our
programs start and end with the correct states the type-synonym FilesIOE is defined to
ensure that the end state of the program must be empty, implying that all file handles that
were open, were also closed.

FileIO : Type -> Type
FileIO ty = FilesIOE ty Nil (const Nil)

ECOOP 2020

20:8 A Framework for Resource Dependent EDSLs in a Dependently Typed Language

3 The Framework

The definition of FilesIOE follows a pattern of EDSL construction seen in existing work [13,
19, 20]. This section describes the implementation of Resources that encapsulates the
common structures and definition common to these EDSLs.

3.1 Capturing Abstract State

Central to the framework’s operation is associating variables with an abstract state that
is reasoned about at the type-level. Figure 9 presents the definitions for variables, their
associated state, and an EDSLs’ context. The relationship between a variable and a state
is captured by indexing the type for variables (Var) and state items (StateItem) with a
data type that acts as a meta-type representing the type of the variable’s associated state.
Following from the Well-Typed Interpreter [3], the type of StateItem is further indexed by a
function to compute the concrete type associated with the type-level value. The definition
of StateItem associates an instance of Var with a specific instance of state. As we saw in
Section 2.2, Idris’ elaborator allows us to distinguish between different instances of Var. The
list of state items captured at the type level, the EDSLs context, is collected in a bespoke
data type Context.

data Var : (Ty : Type) -> (ty : Ty) -> Type where
MkVar : Var type value

data StateItem : (ty : Type) -> (calcSTy : ty -> Type) -> (value : ty) -> Type where
MkStateItem : (value : type)

-> (label : Var type value)
-> (state : calcSTy value)
-> StateItem type calcSTy value

data Context : (type : Type) -> (calcSTy : type -> Type) -> Type where
Nil : Context type calcSTy
(::) : (item : StateItem type calcSTy value)

-> (rest : Context type calcSTy)
-> Context type calcSTy

Figure 9 Definitions for variables, state items, and type-level context.

3.2 Sequencing Language Expressions

Figure 10 presents the parameterised data type that captures state transitions between
different abstract states. A type-synonym ensures that all languages defined using the
framework use the same signature. A language expression has an expression type (exprTy),
an existing Context instance pre, and a function postK to compute the new context from
the expression’s value. Lang is a function that constructs an instance of this type signature
with the meta-type and a function to compute concrete states indexing the signature.

Lang : (type : Type) -> (type -> Type) -> Type
Lang type calcSTy = (exprTy : Type)

-> (pre : Context type calcSTy)
-> (postK : exprTy -> Context type calcSTy)
-> Type

Figure 10 The type for all EDSLs.

J. de Muijnck-Hughes, E. Brady, and W. Vanderbauwhede 20:9

Figure 11 presents LANG, a single data type, to collate the: meta-type – (type); interpreter
(calcSTy); and Lang instance together.

data LANG : Type -> (type : Type) -> (calcSTy : type -> Type) -> Type where
MkLang : (type : Type)

-> (calcSTy : type -> Type)
-> Lang type calcSTy
-> LANG type calcSTy

Figure 11 Data Structure and accessors to hold EDSL Specifications.

Figure 12 presents LangM, the data structure that captures, generically, the sequencing
of EDSL language expressions. The data type LangM removes the need for each EDSL to
provide the same definitions for sequencing expressions. The constructor Value returns a
pure value. Let provides sequencing of expressions and insertion of computed values into
subsequent expressions. Expr provides embedding of EDSL language expressions into LangM.
The type of LangM is indexed by: m – a monadic context; exprTy – the type associated with
an expression; spec – the language specification that is being sequenced; pre – the original
context; and postK – the computed context.

data LangM : (m : Type -> Type)
-> (exprTy : Type)
-> (spec : LANG type calcSTy)
-> (pre : Context type calcSTy)
-> (postK : exprTy -> Context type calcSTy)
-> Type where

Value : (value : a) -> LangM m a spec (postK value) postK

Let : LangM m a spec old oldK
-> ((val : a) -> LangM m b spec (oldK val) postK)
-> LangM m b spec old postK

Expr : {eSig : Lang type calcSTy}
-> (expr : eSig a pre postK)
-> LangM m a (MkLang type calcSTy eSig) pre postK

Figure 12 Definition of LangM.

3.3 Reasoning About Abstract State
Within dependently typed languages, list quantifiers such as All and Any are based on De
Bruijn indices and reasoning about all or specific elements within a standard list using
a provided predicate [18]. Figure 13 presents similar predicated quantifiers that can be
constructed for Context. The AllContext predicate mirrors All and allows one to present
a predicate that applies to all state items. Mirroring Any, InContext constructs a proof that
there is an element (searching from the head of the list) satisfying the provided predicate.

data AllContext : (p : (value : type) -> (item : StateItem type calcSTy value) -> Type)
-> (c : Context type calcSTy)
-> Type where

data InContext : (value : type)
-> (p : StateItem type calcSTy value -> Type)
-> (c : Context type calcSTy)
-> Type where

Figure 13 Quantifiers for reasoning about elements in Context.

ECOOP 2020

20:10 A Framework for Resource Dependent EDSLs in a Dependently Typed Language

Generic functions can be constructed using these quantifiers to operate on Context
instances. Specifically, instances of InContext provide type-safe transformations on specific
elements. Figure 14 presents the definition of several of these functions. The first function,
update, updates specific elements in our context dependent upon the supplied InContext
proof. Here, the update function f facilitates access to the predicate that holds over the item
being updated. The function drop removes an item from the context using the InContext
proof about the item. A third function setState allows the state to be replaced.

update : (context : Context type calcSTy)
-> (index : InContext value predicate context)
-> (f : (item : StateItem type calcSTy value)

-> (prf : predicate item)
-> StateItem type calcSTy value)

-> Context type calcSTy

drop : {predicate : StateItem type calcSTy value -> Type}
-> (context : Context type calcSTy)
-> (index : InContext value predicate context)
-> Context type calcSTy

setState : {predicate : StateItem type calcSTy value -> Type}
-> (context : Context type calcSTy)
-> (index : InContext value predicate context)
-> (item’ : calcSTy value)
-> Context type calcSTy

Figure 14 Functions acting on Context instances.

3.4 Language Evaluation
The Effects library uses Idris interfaces to link effect specifications (descriptions) to im-
plementation handlers that realise the specification for a specific implementation context.
This is the Handler interface. Figure 15 presents a similarly named interface to describe
EDSL evaluation and effect handling, together with a secondary interface, RealVar that
details how variables in an EDSL are to be translated to concrete types. Within Resources
our individual effect specifications will be subterms in our EDSL and their handlers the
corresponding body in the implementation.

The Handler interface is indexed by: the meta-type type; the meta-type interpreter; a
language expression specification; an accumulator; and a specific evaluation context. Similarly
to the Effects handler interface, instances of Handler detail how to evaluate EDSL expressions
in a specific evaluation context, and how the domain specific effects are to be handled. The
function handle takes an evaluation environment, the expression to be considered, an
accumulator, and a continuation to pass on the updated environment and accumulator.

Figure 16 presents the definition (Env) for evaluation environments to keep track of
variables and their abstract state. The type of Env is indexed by an evaluation context m
and the current state of the EDSL (ctxt) during evaluation. This ensures that the items in
the environment grows and shrinks as the type-level context (ctxt) grows and shrinks. The
data type Tag is a container for holding concrete variable representations. The function of
the RealVar interface computes the concrete type from the language’s meta-type.

Section 3.3 presented predicates for reasoning about state items in instances of Context.
These same predicates are used to provide operations on our computation environments; Env
is indexed by a context. Figure 17 presents the function definitions for lookup, update, and
drop that mirror the functions presented in Section 3.3. When specifying how EDSLs are
evaluated, type-level operations on the context must be mirrored at the value level for the
environment.

J. de Muijnck-Hughes, E. Brady, and W. Vanderbauwhede 20:11

interface RealVar (type : Type) where
CalcRealType : type -> Type

interface RealVar type
=> Handler (type : Type) (eSig : Lang type) (calc : type -> Type)

(tyAcc : Type) (m : Type -> Type) | type
where

handle : (env : Env m type pre)
-> (expr : eSig tyExpr pre postK)
-> (acc : tyAcc)
-> (cont : (value : tyExpr)

-> (env’ : Env m type (postK value))
-> (acc’ : tyAcc)
-> m tyRes)

-> m tyRes

Figure 15 Interfaces for evaluation.

data Tag : (type : Type) -> (value : type) -> Type where
MkTag : RealVar type => (real : CalcRealType value) -> Tag type value

data Env : (m : Type -> Type) -> (ty : Type) -> (ctxt : Context ty calcSTy) -> Type where
Nil : Env m type Nil
(::) : RealVar type

=> {item : StateItem type calcSTy value}
-> (tag : Tag type value)
-> (rest : Env m type items)
-> Env m type (item::items)

Figure 16 Evaluation environment definition.

lookup : RealVar ty
=> (env : Env m ty context)
-> {p : (item : StateItem ty calcSTy value) -> Type}
-> (idx : InContext value p context)
-> Tag ty value

(a) Lookup items from environment.
update : RealVar ty

=> (env : Env m ty ctxt)
-> (idx : InContext value p ctxt)
-> (up : (i : StateItem ty calcSTy value)

-> p i
-> StateItem ty calcSTy value)

-> Env m ty (update ctxt

(b) Update items from environment.

drop : (env : Env m ty ctxt)
-> (idx : InContext value p ctxt)
-> Env m ty (drop ctxt idx)

(c) Remove items from environment.

Figure 17 Functions operating over an execution environment.

Figure 18 presents the generic function run that evaluates languages defined in Resources.
As arguments the function run takes: a closed LangM program (prog); and an initial seed for
the accumulator – init. On successful evaluation the function returns the result of evaluating
prog and the final state of the accumulator. The type of the function has been further
constrained with Applicative to return the result of the evaluation within the context of
the environment m. For pure evaluation contexts, i.e. identity, a separate runPure function
can be defined that need not be constrained by Applicative.

ECOOP 2020

20:12 A Framework for Resource Dependent EDSLs in a Dependently Typed Language

run : (Applicative m, Handler type lang tyAcc m)
=> (init : tyAcc)
-> (prog : LangM m tyExpr lang c Nil (const Nil))
-> m (Pair tyExpr tyAcc)

Figure 18 Run function.

4 Exemplar Uses of Resources

This section explores use of Resources through the construction of three separate EDSLs.
For each EDSL presented we only present salient aspects of the construction. The complete
definitions are available in the accompanying artefact.

The first, Files, replicates the running example from Section 2 demonstrating how
to build the EDSL and specify a handler for the IO computation context. The second,
Wireless presents a EDSL for describing wireless connections between mobile devices, and
details a Handler instance for constructing a BiGraph representation. The last EDSL,
Sessions replicates salient aspects from, and extends the functionality, of Sessions an
EDSL for describing communication protocols [19], and shows a simpler construction using
Resources.

4.1 Exemplar 1: Reasoning About Multiple File Handles
This section demonstrates how to use Resources to re-implement the FilesIOE EDSL from
Section 2.1.

4.1.1 EDSL Definition
Figure 19 presents the type-level definitions required by the EDSL. Like FilesIOE, there
is a single state machine captured within the EDSL’s type. The type FH is a singleton
type acting as a meta-type for the state machine, and the type synonym FileHandle acts a
convenient wrapper when referring to file handles. FHStateType is the function that calculates
the state type based on FH, and FileStateItem is the type synonym for representing the
EDSLs abstract states. While this construction is cumbersome for single state-machine
EDSLs, Section 4.2 demonstrates how this construction can support multiple type-level state
machines.

data FH = MkFH

(a) EDSL Metatype.
FileHandle : Type
FileHandle = Var FH MkFH
(b) Alias to represent file handles.

FHStateType : FH -> Type
FHStateType _ = FileState

(c) Interpreter to compute state type.
FileStateItem : Type
FileStateItem = StateItem FH FHStateType MkFH

(d) Type synonym to represent state items.

Figure 19 Preliminary definitions and example predicate.

Figure 20 presents the algebraic data type (Files) that captures the language’s expressions.
Notice how the definitions mirror that of FilesIOE from Section 2.1. Rather than use explicit
case statements in anonymous functions, named functions are provided that compute the
state transitions. As an example we present the function definition for readTrans:

readTrans : Either FileError String
-> (old : Context FH FHStateType)

J. de Muijnck-Hughes, E. Brady, and W. Vanderbauwhede 20:13

data Files : Lang FH FHStateType where
Open : (fname : String)

-> (fm : FMode)
-> Files (Either FileError (FileHandle) old (\res => openTrans res fm old)

Read : (hdl : FileHandle)
-> (prf : InContext MkFH (IsOpenFor hdl R) old)
-> Files (Either FileError String) old (\res => readTrans res old prf)

Write : (hdl : FileHandle)
-> (msg : String)
-> (prf : InContext MkFH (IsOpenFor hdl W) old)
-> Files (Maybe FileError) old (\res => writeTrans res old prf)

Close : (hdl : FileHandle)
-> (prf : InContext MkFH (IsHandle hdl) old)
-> Files () old (const $ drop old prf)

PrintLn : Show a => a -> Files () old (const old)

Figure 20 Definition for Files.

-> InContext MkFH (IsOpenFor hdl R) old
-> Context FH FHStateType

readTrans (Right _) old _ = old
readTrans (Left _) old prf = update old prf (\i,p => closeHandle i p)

Files uses two predicates to reason about a file handle’s abstract state: IsOpenFor and
IsHandle. Their definition mirrors that to those provided in Figure 6. As an example, we
present only the new definition for IsOpenFor:

data IsOpenFor : FileHandle -> FMode -> FileStateItem -> Type where
FileIsOpenFor : (m : FMode)

-> IsOpenFor hdl m (MkStateItem MkFH hdl (Open m))

The language definition for Files is thus:

FILES : LANG FH FHStateType
FILES = MkLang FH FHStateType Files

The generic computation context LangM uses LANG instances to ensure correct embedding of
EDSL expressions. Expressions can then be embedded within LangM using expr as follows:

openFile : (fname : String) -> (fm : FMode)
-> LangM m (Either FileError (FileHandle)) FILES old

(\res => openTrans res fm old)
openFile fname fm = expr $ Open fname fm

4.1.2 Handler for the Files EDSL
Figure 21 presents the handler definition for the IO computation context. An implementation
of RealVar maps the singleton type FH to a real file handle. The accumulator has the unit
type as this implementation of Handler only evaluates File expressions. The accumulator
is not required. Each of the expression handlers realises the requisite file operations, and
follows that of the FILE effect [10]. Within our implementation, however, our environment
(env) keeps track of the open file handles.

ECOOP 2020

20:14 A Framework for Resource Dependent EDSLs in a Dependently Typed Language

RealVar FH where
CalcRealType MkFH = File

Handler FH FHStateType Files () IO where
handle env (Open fname fm) acc cont = do

let m = case fm of {R => Read; W => WriteTruncate}
res <- openFile fname m
case res of

Left err => cont (Left err) env acc
Right fh => cont (Right MkVar) (MkTag fh::env) acc

handle env (Read hdl prf) acc cont = do
let MkTag fh = lookup env prf
res <- fGetLine fh
case res of

Left err => cont (Left err) (update env prf (\i,p => closeHandle i p)) acc
Right str => cont (Right str) env acc

handle env (Write hdl str prf) acc cont = do
let MkTag fh = lookup env prf
res <- fPutStrLn fh str
case res of

Left err => cont (Just err) (update env prf (\i,p => closeHandle i p)) acc
Right _ => cont Nothing env acc

handle env (Close hdl prf) acc cont = do
let MkTag fh = lookup env prf
closeFile fh
cont () (drop env prf) acc

handle env (PrintLn a) acc cont = do
printLn a
cont () env acc

Figure 21 Handler instance for Files.

4.1.3 Example Programs
Figure 22 presents two example programs written using Files. The first (Figure 22a)
replicates the running example presented in Figures 1 and 8. The second example (Figure 22b)
demonstrates an incomplete program, indicated by the typed-hole, that will fail to type
check. This is because the file has been opened for reading and we are attempting to write
to the file. The typed hole is required in this example to ensure that the example can begin
to type-check. Resources ensures that the substructural checks are performed at compile
time.

4.2 Exemplar 2: Constructing Domain Specific Bigraphs
This next example examines bigraphs, a mathematical model for representing the communica-
tion made between entities and said entities physical placement [40]. A bigraph comprises of
a place graph that denotes the spatial relations between entities, and a link graph that denotes
the communication relations. Each entity within a bigraph is typed with a domain specific
construct that dictates the entity’s: arity – number of links; and atomicity – containment
of other entities. Existing bigraph constructions make their bigraphs abstract (entities are
identifier-free) and refer to entities using singleton types [53].

Figure 23 presents a commonly used algebraic notation for bigraph specification. The
standard algebraic bigraph definition embeds the link graph within an entities definition in
which the type of the entity dictates the arity. The number of links K possesses is determined

J. de Muijnck-Hughes, E. Brady, and W. Vanderbauwhede 20:15

copy : (a,b : String) -> Files m (Maybe FileError)
copy a b = do

Right fh <- openFile a R | Left err => do {printLn err; pure (Just err)}
Right s <- readString fh | Left err => do {printLn err; closeFile fh; pure (Just err)}
closeFile fh
Right fh1 <- openFile b W | Left err => do {printLn err; pure (Just err)}
res <- writeString fh1 s
case res of

Nothing => do {closeFile fh1; pure Nothing}
Just err => do {printLn err; closeFile fh1; pure (Just err)}

(a) Example from Figures 1 and 8.
copy : (a,b : String) -> Files m (Maybe FileError)
copy a b = do

Right fh <- openFile a R | Left err => do {printLn err; pure (Just err)}
Right s <- readString fh | Left err => do {printLn err; closeFile fh; pure (Just err)}

writeString fh s
?remainder

(b) A failing example.

Figure 22 Example instances of Files.

by its arity. Bigraphs can be nested, situated beside each other using a merge product, or
associated together using parellel product. The internal structure of a bigraph entity can
be abstracted away using id. Closure of names allows one to define internal links between
entities, and free names represent external connections. Bigraphs also enjoy an expressive
graphical notation which we do not detail here.

P ·Q Nesting (1)
P | Q Merge product (2)
P || Q Parallel product (3)

id Identity (4)
Kx,y An entity of type K with names x, y (5)
/x P Closure of name x in P (6)

Figure 23 Algebraic Definition for Bigraphs.

The algebraic structure of bigraphs are general purpose and restrictions on the bigraph’s
shape is guided by a system of sorts. These sorts presents a series of side conditions on the
link and place graph. Application of this system is often left as an aside from the bigraph
itself. Using Resources we can show how to build an EDSL that encapsulates the system
of sorts and when interpreted produces a bigraph instance.

4.2.1 Domain Model
Existing work has introduce a bigraph model for representing Wireless Sensor Networks
(WSNs) [54]. In their model they use the place graph of bigraphs to model the physical
deployment of nodes, together with their configuration, and applications running on said
nodes. The link graph connects data, applications, and nodes together. In this example we
take a reduced version of their system of sorts to describe sending of messages between mobile
devices and laptops that are connected over a wireless network. For simplicity, we restrict
number of concurrent connects laptops have to ten, and mobile devices to two. Devices are
located in rooms that are within buildings.

ECOOP 2020

20:16 A Framework for Resource Dependent EDSLs in a Dependently Typed Language

Table 1 presents the description of our example’s types and sorts. Buildings can only
contain rooms and cannot be linked over for communication. Similarly, rooms can only
contain devices. Devices contain only messages, and laptops and mobiles have an arity
respective to their max number of connections. Messages cannot contain other entities.

Table 1 Types and Sorts for representing entities in Wireless.

Entity Arity Usage Restrictions

Building 0 Complex for Rooms only.
Room 0 Complex for Devices only.
Device Laptop 10 Complex for Messages only.
Device Mobile 2 Complex for Messages only.
Messages 0 Atomic

Figure 24 presents an example bigraph instance using the system from Table 1. We
situate two buildings that contain potentially many rooms next to each other, and describe
some rooms within them. Within one room in the first building, a laptop is situated that is
connected to another laptop in the other building, together with a mobile device (with a
message) that is connected to a laptop in an adjacent room in the same building.

/m/n (Building · (Room · (Laptop{n} | (Mobile{m} ·Message)) | (Room · (Laptop{m})) | id)

||(Building · (Room · Laptop{n} | id)))

Figure 24 Example Bigraph instance using algebraic notation.

4.2.2 EDSL Definition
Figure 25a presents a realisation for Table 1 using standard Idris constructs. Types are
presented as an enumerated type, in which we coalesce the definition for devices. For rooms
and messages we keep track of their allocation into entities, and for devices we keep track of
their allocation and number of free connections. Buildings do not have an associated abstract
state. The function maxConn calculates a devices arity, this function is used in secondary
function defState (not defined) that constructs StateD instances.

data DTy = MOBILE | LAPTOP

data Ty = ROOM | BLDG | MSG
| DEVICE DTy

(a) Metatypes.

maxConn : DTy -> Nat
maxConn MOBILE = 2
maxConn LAPTOP = 10
(b) Function to compute device arity.

data StateD : DTy -> Type where
MkD : Bool -> Nat -> StateD ty

(c) State for devices.

CalcStateType : Ty -> Type
CalcStateType ROOM = Bool
CalcStateType BLDG = ()
CalcStateType (DEVICE ty) = StateD ty
CalcStateType MSG = Bool

(d) Function to compute state types.

Figure 25 Preliminary definitions.

Figure 26 presents the language definition for Wireless. Introduction of entities extend
the abstract state: buildings have no state; rooms and messages are initially unassigned; and
devices are initialised not allocated and connection free.

J. de Muijnck-Hughes, E. Brady, and W. Vanderbauwhede 20:17

data Wireless : Lang Ty CalcStateType where
NewBuilding : Wireless (Var Ty BLDG) old (\lbl => MkStateItem BLDG lbl () :: old)

NewRoom : Wireless (Var Ty ROOM) old (\lbl => MkStateItem ROOM lbl False :: old)

NewDevice : (type : DTy)
-> Wireless (Var Ty (DEVICE type)) old

(\lbl => MkStateItem (DEVICE type) lbl (defState type) :: old)

NewMessage : Wireless (Var Ty MSG) old (\lbl => MkStateItem MSG lbl False :: old)

Insert : (varX : Var Ty x)
-> (varY : Var Ty y)
-> (prfValid : ValidAssign y x)
-> (prfFree : InContext x (Unassigned x varX) old)
-> (prfInsert : InContext y (CanAssign y varY) (update old prfFree Use))
-> Wireless () old (const $ update (update old prfFree Use)

prfInsert (Assign varX prfValid))

Link : (varX : Var Ty (DEVICE typeX))
-> (varY : Var Ty (DEVICE typeY))
-> (prfSpaceX : InContext (DEVICE typeX) (CanConnect varX) old)
-> (prfSpaceY : InContext (DEVICE typeY)

(CanConnect varY)
(update old prfSpaceX Connect))

-> Wireless () old
(const $ update (update old prfSpaceX Connect) prfSpaceY Connect)

End : Wireless () old (const Nil)

Figure 26 Definition for Wireless.

The constructor Insert is a generic expression that supports: insertion of rooms into
buildings; devices into rooms; and messages into devices. For insertion of entity varX into
varY to take place several checks are performed. First we check to see if the entities of type
x and y are valid assertions using ValidAssign defined in Figure 27b. We then check to see
if the child entity (varX) has already been inserted. The predicate Unassigned (Figure 28a)
attests to this, and the function Use (Figure 28b) updates the context accordingly. The
final check is to see if the parent entity (varY) can be assigned to. By design, the predicate
CanAssign (Figure 27a) uses type level pattern matching to reason about abstract states
that can contain other entities, and for a device that there is at least one free connection left.
The function Assign (Figure 27c) updates the context accordingly.

data CanAssign : (thisValue : Ty)
-> (thisVar : Var Ty valueThis)
-> (item : StateItem Ty CalcStateType valueThis)
-> Type where

ToABuilding : CanAssign BLDG bld (MkStateItem BLDG bld ())
ToARoom : CanAssign ROOM rm (MkStateItem ROOM rm True)
ToADevice : CanAssign (DEVICE ty) dev (MkStateItem (DEVICE ty) dev (MkD True (S n)))

(a) Predicate.
data ValidAssign : Ty -> Ty -> Type where

ValidBR : ValidAssign BLDG ROOM
ValidRD : ValidAssign ROOM (DEVICE ty)
ValidDM : ValidAssign (DEVICE ty) MSG

(b) Side-Condition.

Assign : Var Ty x
-> ValidAssign v x
-> (i : StateItem Ty CalcStateType v)
-> CanAssign value lbl i
-> StateItem Ty CalcStateType v

(c) Update Function.

Figure 27 Predicates and update function for reasoning about association of nodes.

ECOOP 2020

20:18 A Framework for Resource Dependent EDSLs in a Dependently Typed Language

data Unassigned : (value : Ty) -> (lbl : Var Ty value)
-> (item : StateItem Ty CalcStateType value) -> Type where

URoom : Unassigned ROOM rm (MkStateItem ROOM rm False)
UDevice : Unassigned (DEVICE ty) dev (MkStateItem (DEVICE ty) dev (MkD False c))
UMessage : Unassigned MSG msg (MkStateItem MSG msg False)

(a) Predicate.
Use : (item : StateItem Ty CalcStateType value)

-> (prf : Unassigned value lbl item)
-> StateItem Ty CalcStateType value

(b) Update Function.

Figure 28 Predicate and Function for Assigning Variables.

data CanConnect : (to : Var Ty (DEVICE type))
-> (item : StateItem Ty CalcStateType (DEVICE type))
-> Type where

HasSpace : CanConnect dev (MkStateItem (DEVICE type) lbl (MkD True (S n)))

(a) Predicate.
Connect : (item : StateItem Ty CalcStateType (DEVICE type))

-> (prf : CanConnect to item)
-> StateItem Ty CalcStateType (DEVICE type)

(b) Update Function.

Figure 29 Predicates and update function for reasoning about connection of devices.

Notice for Insert we have had to update the context twice. Once for prfInsert, and
again in the function to calculate the new context. For each assumption we make in the
type about the context we must ensure it holds for subsequent steps. Unfortunately, this can
result in verbose type signatures.

Devices are linked together using Link. For devices to be connected we must assert, using
CanConnect (Figure 29a), that they have free connections left to make. Like Insert we
must also update the context for each assertion we make about each devices state. With this
definition of Link we make no restrictions on linking devices to themselves.

4.2.3 Handler for the Bigraph EDSL
Given the algebraic notation for bigraphs their representation as an algebraic data type
naturally follows. Figure 30 presents our bigraph implementation. Entities are a simple data
structure capturing the arity of the entity and a unique identifier. Entity is parameterised by
the sort type as a value. Although, we can use the arity of an entity to inform the length of a
Vect instance to capture the link graph we must remember that bigraph’s are constructed by
interpretation of an instance of Wireless. Interpretation must ensure that the construction
of the place graph correctly matches the description from the specification, and that the
entities used in the place graph are embedded correctly within the final version of the link
graph. The final state of the link and place graphs will not be known until we end the
specification. Therefore we must delay construction of the bigraph model until then. Thus,
interpretation of Wireless specifications will return an intermediate bigraph representation
used for constructing the algebraic bigraph representation. This is the representation
presented in Figure 30.

The type, Bigraph, is indexed by the concrete type describing the bigraph’s “types” and
specification of the place graph follows the algebraic bigraph definition. Entity arity nor the
link graph are described within the Node constructor. Borrowing from existing algebraic
graph definitions [41] links and external names are represented using Connect and Outside.
Overlay describes the union of two bigraph descriptions into a single bigraph. Construction
of a more compact algebraic bigraph model from Bigraph is not described here.

J. de Muijnck-Hughes, E. Brady, and W. Vanderbauwhede 20:19

data Entity : (type : Type) -> (value : type) -> Type where
MkEntity : (n : Nat) -> (arity : Nat) -> Entity type value

data BiGraph a = Identity | Node (Entity a value)
| Nest (BiGraph a) (BiGraph a) | Merge (BiGraph a) (BiGraph a)
| Par (BiGraph a) (BiGraph a)
| Connect (BiGraph a) (BiGraph a) | Outside String
| Overlay (BiGraph a) (BiGraph a)

Figure 30 Naïve Algebraic Representation of a Bigraph.

Figure 31 presents the complete instance of Handler for Wireless. We use the accumula-
tor of Handler to capture the bigraph instance being constructed, and a counter to generate
fresh identifiers. An instance of RealVar translates variables into Entity instances, the
type Ty has been reused for entity types. Variables are turned into entities and extend the
environment for each new variable definition. Insertion of entities creates a Nest instruction
and each variable definition is inserted into a Node constructor. Although the definition of
the handler for Insert looks repetitive, dependent pattern matching on the side-condition
(prfValid) is required to ensure that the correct proofs are considered at the type level [38].
Each lookup and proof used for each case have different types. Further, for each operation
that updates the context we must also update the environment accordingly. With the updates
to the environment mirroring the updates made at the type level. The Overlay instruction
combines the existing bigraph (acc) with a new nesting of parent and child. Interpretation
of Link follows that for Insert by updating the environment for each change in the context,
and appends to the accumulated bigraph using Overlay, a new edge in the link graph using
Connect.

4.2.4 Example Bigraph Instances
Figure 32 illustrates how several example bigraphs can be specified using Wireless. The type-
synonym WirelessDesc sets the expected initial and end states – cf. Files in Section 4.1.
Figure 32a replicates the example from Figure 24. Figure 32b presents a failing example that
will not type-check as the domain model specifies that models only support two connections.
The final link expression will fail to type-check as the abstract state for mobileA will have
decremented the number of free connections to zero.

4.3 Exemplar 3: Global Session Descriptions
Multi-Party Session Types (MPST) are a typing discipline that allows formal protocol
narrations to dictate the type checking process such that implementations of the protocol are
known to adhere to a given formal narration [30]. Global session types present an overview
of the interactions made between entities, and entities have local types that describes their
known interactions. Existing work has seen to extend MPST implementation and theory
to support reasoning on message values [30, 61, 6]. When looking to realise global session
types in a dependently typed language care must be taken that values introduced in the
description are used by roles that know about the value.

Sessions is an EDSL for describing global session descriptions [19]. Figure 33 illustrates
how Sessions can be written using Resources as Sessions, and Figure 34 details accom-
panying data types and functions. For brevity, we have not included the creation of value
dependent messages. We have, however, extended the EDSL with expressions to reason
explicitly about channels, that borrows from existing work [31]. The type of Sessions is

ECOOP 2020

20:20 A Framework for Resource Dependent EDSLs in a Dependently Typed Language

RealVar Ty where
CalcRealType ROOM = Entity Ty ROOM
CalcRealType BLDG = Entity Ty BLDG
CalcRealType (DEVICE x) = Entity Ty (DEVICE x)
CalcRealType MSG = Entity Ty MSG

Handler Ty CalcStateType Wireless (Nat, BiGraph Ty) (Basics.id) where
handle env NewBuilding (ctr,g) cont =

cont MkVar (MkTag (MkEntity ctr Z)::env) (S ctr,g)
handle env NewRoom (ctr,g) cont = cont MkVar (MkTag (MkEntity ctr Z)::env) (S ctr,g)
handle env (NewDevice ty) (ctr,g) cont =

cont MkVar (MkTag (MkEntity ctr (maxConn ty))::env) (S ctr,g)
handle env NewMessage (ctr,g) cont = cont MkVar (MkTag (MkEntity ctr Z)::env) (S ctr,g)

handle env (Insert varX varY prfValid prfFree prfInsert) (ctr,g) cont with (prfValid)
handle env (Insert varX varY prfValid prfFree prfInsert) (ctr,g) cont | ValidBR = do

let MkTag rm = lookup env prfFree
let env’ = (update env prfFree Use)
let MkTag bld = lookup env’ prfInsert
let env’’ = update env’ prfInsert (Assign varX ValidBR)
cont () env’’ (ctr,Overlay (Nest (Node bld) (Node rm)) g)

handle env (Insert varX varY prfValid prfFree prfInsert) (ctr,g) cont | ValidRD = do
let MkTag dev = lookup env prfFree
let env’ = (update env prfFree Use)
let MkTag rm = lookup env’ prfInsert
let env’’ = update env’ prfInsert (Assign varX ValidRD)
cont () env’’ (ctr,Overlay (Nest (Node rm) (Node dev)) g)

handle env (Insert varX varY prfValid prfFree prfInsert) (ctr,g) cont | ValidDM = do
let MkTag msg = lookup env prfFree
let env’ = (update env prfFree Use)
let MkTag dev = lookup env’ prfInsert
let env’’ = update env’ prfInsert (Assign varX ValidDM)
cont () env’’ (ctr,Overlay (Nest (Node dev) (Node msg)) g)

handle env (Link varX varY prfSpaceX prfSpaceY) (ctr,g) cont = do
let MkTag x = lookup env prfSpaceX
let env’ = update env prfSpaceX Connect
let MkTag y = lookup env’ prfSpaceY
let env’’ = update env’ prfSpaceY Connect
cont () env’’ (ctr,Overlay (Connect (Node x) (Node y)) g)

handle env End (ctr,g) cont = cont () Nil (ctr,g)

Figure 31 Handler instance for Wireless.

further parameterised by a list of participants in the protocol, allowing the EDSL to utilise
this information for each expression. Sessions expression’s include message creation, channel
construction and destruction, sending of messages, allowing access to message values, and
termination of session descriptions.

Central to the operation of Sessions is reasoning about the abstract state associated
with messages and communication channels. Messages have metatype DATA capturing the
type of the message, and an associated state listing the actors aware of the message. Channels
have metatype CHAN capturing the involved actors, and an associated state denoting the
connection state: Bound or Free. The function CalcStateType maps meta types to concrete
state types.

The construction of Sessions follows that of Sessions but in a more general framework.
Message creation extends the list of state with a new abstract state asserting that the creator a
knows of the message, and the expression’s use is restricted to actors listed in the descriptions
type. Similarly channel creation extends the list of states with a new abstract state asserting
the channel is Bound, and restricts channel creation to actors listed in the description’s type.

J. de Muijnck-Hughes, E. Brady, and W. Vanderbauwhede 20:21

example : WirelessDesc m
example = do

buildingA <- newBuilding
buildingB <- newBuilding

roomA <- newRoom
roomB <- newRoom
roomC <- newRoom

laptopA <- newDevice LAPTOP
laptopB <- newDevice LAPTOP
laptopC <- newDevice LAPTOP
mobile <- newDevice MOBILE

msg <- newMessage

insert roomA buildingA
insert laptopA roomA
insert mobile roomA
insert msg mobile
insert roomB buildingA
insert laptopB roomB
insert roomC buildingB
insert laptopC roomC

link laptopA laptopC
link mobile laptopB

end
(a) Example Bigraph from Figure 24.

example : WirelessDesc m
example = do

buildingA <- newBuilding
roomA <- newRoom

insert roomA buildingA

mobileA <- newDevice MOBILE
mobileB <- newDevice MOBILE
mobileC <- newDevice MOBILE
mobileD <- newDevice MOBILE

insert mobileA roomA
insert mobileB roomA
insert mobileC roomA
insert mobileD roomA

link mobileA mobileB
link mobileA mobileC
link mobileA mobileD
end

(b) Example Failing Bigraph.

Figure 32 Example Specifications using Wireless.

This specification implies that we are free to make connections between any two actors in ps.
We could add a predicate to Sessions that restricts channel creation to specific pairings of
actors. Closing a channel changes the channel’s abstract state to Free. Sending messages
along a channel requires an active channel guaranteed by the predicate ChannelHasState,
and proof (using KnowsData) that the sender (s) knows about the message. Once a message
has been sent the abstract state of the message is updated to reflect that the receiver is now
aware of the message.

Figure 35 presents the definition for these and other predicates used in Sessions. The
expression ReadMsg facilitates reasoning using message values that are known to all par-
ticipants. Session descriptions conclude if all abstract states are in a valid end state. For
messages, this is immaterial and for connections they must have been closed.

It is reasonable to assume that we can define a projection function as an instance of
Handler. The type for handle, however, requires that we build a continuation that can
be applied to a value associated with the expression. When projecting global types in a
multi-party session some expressions are irrelevant if the role being projected for is not
involved [14]. The type for handle is too constrained for Sessions implementation. Future
work will be to investigate how a projection function for Sessions can be constructed.

Figure 36 present several example session descriptions. The function Session is a type-
synonym to restrict the starting and ending type-level context to Nil. Figure 36a models
the salient aspects of the TCP handshake [51]. Here Alice and Bob establish a channel,
and Alice sends to Bob a sequence number (x) that Bob must return incremented by one.
Similarly, Bob sends Alice a sequence (y) that Alice must return incremented by one. In our
description we use dependent pairs to reason about the message contents.

ECOOP 2020

20:22 A Framework for Resource Dependent EDSLs in a Dependently Typed Language

data Sessions : (participants : List Actor) -> Lang Ty CalcStateType where

NewData : (a : Actor) -> (type : Type) -> (prf : Elem a ps)
-> Sessions ps (Var Ty (DATA type)) old

(\lbl => MkStateItem (DATA type) lbl (MkDataState [a] type) :: old)

NewConnection : (a,b : Actor) -> (prfS : Elem a ps) -> (prfR : Elem b ps)
-> Sessions ps (Var Ty (CHAN (a,b))) old

(\lbl => MkStateItem (CHAN (a,b)) lbl (MkChanState Bound) :: old)

EndConnection : (chan : Var Ty (CHAN (a,b)))
-> (prf : InContext (CHAN (a,b)) (ChannelHasState Bound chan) old)
-> Sessions ps () old (const $ update old prf (SetChannelState Free))

SendLeft : (chan : Var Ty (CHAN (s,r)))
-> (msg : Var Ty (DATA type))
-> (prfActive : InContext (CHAN (s,r)) (ChannelHasState Bound chan) old)
-> (prfKnows : InContext (DATA type) (KnowsData s msg) old)
-> Sessions ps () old (const $ update old prfKnows (ExpandWhoKnows r))

SendRight : (chan : Var Ty (CHAN (s,r)))
-> (msg : Var Ty (DATA type))
-> (prfActive : InContext (CHAN (s,r)) (ChannelHasState Bound chan) old)
-> (prfKnows : InContext (DATA type) (KnowsData r msg) old)
-> Sessions ps () old (const $ update old prfKnows (ExpandWhoKnows s))

ReadMsg : (msg : Var Ty (DATA type))
-> (prf : InContext (DATA type) (AllKnow ps msg) old)
-> Sessions ps type old (const old)

StopSession : AllContext EndState old -> Sessions ps () old (const Nil)

Figure 33 An EDSL for describing Global Multi-Party Session Types.

data Actor = MkActor String
data Usage = Free | Bound

data Ty = CHAN (Actor, Actor) | DATA Type

(a) Actors,Usage, and Metatypes.

data ChanState = MkChanState Usage
data DataState =

MkDataState (List Actor) Type

(b) Abstract States.

CalcStateType : Ty -> Type
CalcStateType (CHAN _) = ChanState
CalcStateType (DATA _) = DataState

(c) Function to compute state types.

Figure 34 Core accompanying data types and functions.

Figures 36b and 36c present two examples that fail to type-check. The first Figure 36b
demonstrates how sending on the wrong channel will result in a type error. Here Alice is not
involved in the communication between Bob and Charlie. The second example Figure 36c
shows an example that will fail as the message (m) is not yet known by all participants.

5 Related Work

The implementation of Resources builds upon existing techniques developed for Effects [11]
that realise well studied theoretical models [1, 43, 50]. These models were realised in a
dependently typed language using straightforward idiomatic constructs: Hoare monads as a
parameterised data type; and algebraic effect handlers using interfaces.

J. de Muijnck-Hughes, E. Brady, and W. Vanderbauwhede 20:23

data ChannelHasState : (assumedState : Usage)
-> (chan : Var Ty (CHAN (s,r)))
-> (actual : StateItem Ty CalcStateType (CHAN (s,r)))
-> Type where

ChanHasState : ChannelHasState st ch (MkStateItem (CHAN (s,r)) ch (MkChanState st))

(a) Asserting Channel State.
data AllKnow : (as : List Actor)

-> (var : Var Ty (DATA type))
-> (item : StateItem Ty CalcStateType (DATA ty))
-> Type where

NilKnows : (prf : Elem x as)
-> AllKnow [x] msg (MkStateItem (DATA ty) msg (MkDataState as ty))

ConsKnows : (prf : Elem x as)
-> (later : AllKnow xs msg (MkStateItem (DATA type) msg (MkDataState as ty)))
-> AllKnow (x::xs) msg (MkStateItem (DATA type) msg (MkDataState as ty))

(b) Asserting that all participants know a value.
data KnowsData : (actor : Actor)

-> (var : Var Ty (DATA type))
-> (item : StateItem Ty CalcStateType (DATA type))
-> Type where

DoesKnow : (prf : x = y) -> (prfE : Elem x actors)
-> KnowsData y var (MkStateItem (DATA type) var (MkDataState actors type))

(c) Asserting that a participant know a value.
data EndState : (ty : Ty) -> StateItem Ty CalcStateType ty -> Type where

EndData : EndState (DATA type) state
EndConn : EndState (CHAN (s,r)) (MkStateItem (CHAN (s,r)) lbl (MkChanState Free))

(d) Asserting final end states.

Figure 35 Predicates used in Sessions.

5.1 Theoretical-Oriented Approaches

First we examine other theoretical approaches to realising substructural type-systems for
EDSLs that use expressive logics as a base formalism.

Hoare Type Theory. Hoare Type Theory [43] has been used to describe programs with
substructural type systems [7]. Here types are associated with Hoare triples that are translated
to refinement types [23, 27] to ensure triple satisfaction. Ynot is an extension of the Coq
proof assistant to provide reasoning about programs using Hoare Type Theory [42]. Similar
work has presented a variant of the State Monad that provides Hoare style reasoning on
the captured state [60]. Our approach also utilises Hoare triples but not to reason about
individual types per se, but rather about the entire type-level state of our program. This is
much similar to existing work [8, 7] in which the authors were restricted to reasoning about
the program’s state, described as a state monad, in its entirety. Use of quantifiers over our
abstract state allows us to reason about specific aspects of a program’s state.

Typestates. Typestates [56, 22, 5] have been shown to provide a formal basis for building
substructural type-systems [39]. Using their approach the authors also show how to incorpo-
rate behavioural typing [16] as well. Here each type in their formalism is associated with
a type-level state and value level operations apply, at the type level, state transitions to
the modelled state. This is a more formal treatment compared to our approach, however,
we acknowledge the similarity in associating types with a type-level state. Rather than use
typestates as a base formalism we utilise parameterised monads.

ECOOP 2020

20:24 A Framework for Resource Dependent EDSLs in a Dependently Typed Language

TCPHandshake : Session m [Alice, Bob]
TCPHandshake = do

chan <- setup Alice Bob

m1 <- msg Alice (Packet, Nat)
sendLeft chan m1

(p,x) <- read m1
m2 <- msg Bob

(Packet, (x’ ** x’ = S x),
Nat)

sendRight chan m2

(p,xplus,y) <- read m2

m3 <- msg Alice
(Packet, (x’ ** x’ = S x),

(y’ ** y’ = S y))
sendLeft chan m3
destroy chan
end

(a) TCP Handshake.

WrongChan : Session m [Alice,Bob,Charlie]
WrongChan = do

chan <- setup Alice Bob
net <- setup Bob Charlie

m <- msg Alice String
sendRight net m
?end

(b) Sending on a wrong channel.
UnableToRead : Session m

[Alice,Bob,Charlie]
UnableToRead = do

chan <- setup Alice Bob

m <- msg Alice String
sendLeft chan m

val <- read m
?end

(c) Invalid Read Access.

Figure 36 Example Global Session Descriptions.

Seperation Logics. Separation logic [45] has been used to provide another formal treatment
towards customising standard substructural type-systems with custom resources [34]. This
work supports customisation of resources, and controls on said resource to be specified on a
per-module or per-library basis. Similarly, the authors use state-transition systems by way of
commutative monoids, to reason about substructural properties.

Very recent work has investigated the use of separation logics to build intrinsically-typed
definitional interpreters for linear/session-typed languages [52]. Developed in Agda [44] the
authors present a collection of reusable and composable abstractions to support interpreter
construction. Our approach differs in that we ground our work in hoare logic and provide a
singular unified framework to capture common language expressions common to all EDSLs,
and integrated support for reasoning on abstract program state. We will carefully study the
use of separation logics and see how Resources can be bettered. Of interest will be the
ability of the author’s approach to realise global MPST.

Quantitative Type-Systems. Substructural Type-Systems [65] support various different
styles of reasoning about variable usage at the type level. Linear typing providing exactly once
semantics [64, 63], and Affine systems at most once [62, 15]. Generally speaking, Quantitative
Type-Theory (QTT) [2] provides a more general framework to reason about resource usage.
However it is not clear how state-based substructural properties (cf. nesting for Bigraphs
– Section 4.2.1) can be modelled within QTT. Their substructural properties are not all
about quantitative usage. Regardless, QTT is a promising direction for reasoning about
quantitative resource usage.

5.2 Practical-Oriented Approaches
Resources is highly dependent on Idris specific features such as interfaces and proof search,
as well as dependent types. Realising Resources in disimilar languages would require more
complicated work arounds to realise a similar framework, or require direct modification
to the compiler. Like Effects, Resources is a plain-old-library that does not require any

J. de Muijnck-Hughes, E. Brady, and W. Vanderbauwhede 20:25

language extensions, and leverages a language in which dependent types were not retrofitted.
This gives us static compile time guarantees that our framework, and thus our EDSLs,
are well-typed. We now examine other practical approaches that involve expressive host
languages which support construction of bespoke substructural type-systems within the host
language itself.

Substructural Type-Systems. There exist several general purpose languages that provide
full or experimental support for substructural type-systems. Linear typing has been realised
for ATS [55]. Clean has implemented uniqueness typing [21] that influenced Rust’s ownership
types [35, 36]. An extension is being developed for Haskell that leverages linearity for correct
variable usage [4]. Interestingly, this extension also uses a parameterised type to replicate
typestates when reasoning about a socket example. Idris itself has experimental support for
linear typing [37], and Clean’s Uniqueness types [14]. Future iterations of Idris3, however,
will support Quantitative Type-Theory [2]. As we described in Section 5.1, it is not clear
how we can use these quantitative systems to describe state-based substructural properties.

Expressive Type-Systems. Construction of domain specific substructural type systems for
EDSLs can be achieved using other as expressive non-dependently typed host languages.
Racket is a general purpose language that supports EDSL creation through fine-grained
control over the language’s type-system [25]. The original version of F ? was a general
purpose language with value-dependent types [57, 58]. Whereas Idris provides full-spectrum
dependent types, F ? provides value-dependencies using refinement types. F ? was extended
to provide better support for dependently typed and effectful programming [59]. Such
languages provide novel, alternate, environment in which to construct “value-dependently-
typed” programs. How the approach behind Resources is transferable to these languages is
worth investigating.

Dependent-Type Systems. Although, the framework has been realised using Idris the
techniques presented are agnostic to dependently typed languages. Any other dependently
typed language that supports full-spectrum dependent types, such as Agda [44], will be
suitable for implementing the ideas. It has been shown how Dependent Haskell [66] can realise
Idris’ Effects library [24, § 3.2.3]. Existing work has investigated embedding linear type-
systems for EDSLs into Haskell [49]. In their implementation the author’s make extensive use
of Haskell’s typeclass mechanism, a Higher Order Abstract Syntax embedding, and Dependent
Haskell [48].

ST is an improvement upon Effects by not only associating resources with variables, but
facilitating vertical and horizontal effect composition [12]. ST is a resource dependent EDSL,
and makes extensive use of Idris’ Interface mechanism for effect definition. Resources sits
in between these two implementations, borrowing the algebraic language definition from
Effects and associating abstract state with variables from ST. We position Resources as
a framework for defining EDSLs with domain specific substructural type-systems. ST and
Effects are general purpose.

3 https://github.com/edwinb/idris2

ECOOP 2020

https://github.com/edwinb/idris2

20:26 A Framework for Resource Dependent EDSLs in a Dependently Typed Language

6 Future Work

Resources is a promising framework for constructing EDSLs with interesting type-systems.
However, there are a few limitations to our current approach.

Each EDSL requires that the complete set of resource types to be used be known at EDSL
design time. Our EDSL are closed worlds. This impacts upon the composability of resources
between EDSL instances. For example, state resources have to be created per EDSL. This
limitations originate from the framework’s design. It was not designed for resource reuse in
mind. A promising direction will be to look at how Idris’ interfaces can look to better the
specification and use of resources in EDSLs.

Similarly, our type-level state holds too much information. If we were to call out to
sub-programs we must be careful about the effect that the resulting state (of the callee
program) has on the caller program. We see this in the design of Files (Section 4.1)
when passing around file handles we need to ensure that closed files remain closed. While
one can state that sub-programs are closed it will be interesting to investigate how to deal
with interactions of states between programs. When looking at program composition, and
resource reuse between EDSLs, how we interact with type-level state is important. Our use
of Hoare logics prohibits the inspection, individually, of resources in isolation. By basing
the framework on separation logics rather than Hoare triples, we can look to address these
limitations.

Updating the type-level context multiple times in a type signature, can lead to a more
verbose style of type-level programming. For example, consider the type-signatures for Link
and Insert for Wireless in Section 4.2.2. The limitation here is Idris’ own syntax: type
signatures are not equivalent to a function body. Future work will be to see how we can
reason better about the transformations made to the abstract state within a type signature.

7 Conclusions

Resources has been developed to explore construction of EDSLs with substructural type-
systems supporting autonomic management of domain specific abstract resources and type-
level reasoning on such resources. Idris’ support for auto-implicit arguments allows languages
to be presented cleanly, where proofs that properties hold are hidden but present during
type-checking. Resources and their state need not be listed explicitly at the type-level.

We have demonstrated the use of Resources through construction of several exemplar
EDSLs. Type-level predicates provided compile time guarantees over various substructural
properties. Providing static compile time checks that correct EDSL instances are constructed.
We have demonstrated how Handler instances can: run interactive programs – Section 4.1.2;
and construct data types – Section 4.2.3. When we construct data structures, however, the
correctness-by-construction guarantees are not necessarily carried over. It will be interesting
to see how we can use Resources to do so. This would be useful for our Bigraph example.
This is future work. Further, we have seen when the Handler interface was not enough
for our needs (Section 4.3), and noted limitations on program and resource composition –
Section 6.

We are using Resources to develop EDSLs for reasoning about the structural and
behavioural aspects of System-on-a-Chip Designs. Within these languages a substructural
type-system allows one to constrain expressions using type-level resources derived from finite
sources and behavioural specifications. Ensuring, for example, that ports can be connected
to only once, and that interfaces and connections are well-formed respective to a given
specification. Resources helps by providing a common framework to explore different model
designs without specifying the same boilerplate again and again.

J. de Muijnck-Hughes, E. Brady, and W. Vanderbauwhede 20:27

References
1 Robert Atkey. Parameterised notions of computation. J. Funct. Program., 19(3-4):335–376,

2009. doi:10.1017/S095679680900728X.
2 Robert Atkey. Syntax and semantics of quantitative type theory. In Anuj Dawar and

Erich Grädel, editors, Proceedings of the 33rd Annual ACM/IEEE Symposium on Logic in
Computer Science, LICS 2018, Oxford, UK, July 09-12, 2018, pages 56–65. ACM, 2018.
doi:10.1145/3209108.3209189.

3 Lennart Augustsson and Magnus Carlsson. An Exercise in Dependent Types: A Well-Typed
Interpreter. In In Workshop on Dependent Types in Programming, Gothenburg, 1999.

4 Jean-Philippe Bernardy, Mathieu Boespflug, Ryan R. Newton, Simon Peyton Jones, and
Arnaud Spiwack. Linear haskell: practical linearity in a higher-order polymorphic language.
PACMPL, 2(POPL):5:1–5:29, 2018. doi:10.1145/3158093.

5 Kevin Bierhoff and Jonathan Aldrich. Modular typestate checking of aliased objects. In
Richard P. Gabriel, David F. Bacon, Cristina Videira Lopes, and Guy L. Steele Jr., editors,
Proceedings of the 22nd Annual ACM SIGPLAN Conference on Object-Oriented Programming,
Systems, Languages, and Applications, OOPSLA 2007, October 21-25, 2007, Montreal, Quebec,
Canada, pages 301–320. ACM, 2007. doi:10.1145/1297027.1297050.

6 Laura Bocchi, Kohei Honda, Emilio Tuosto, and Nobuko Yoshida. A theory of design-by-
contract for distributed multiparty interactions. In CONCUR 2010 - Concurrency Theory,
21th International Conference, CONCUR 2010, Paris, France, August 31-September 3, 2010.
Proceedings, pages 162–176, 2010. doi:10.1007/978-3-642-15375-4_12.

7 Johannes Borgström, Juan Chen, and Nikhil Swamy. Verifying stateful programs with substruc-
tural state and hoare types. In Ranjit Jhala and Wouter Swierstra, editors, Proceedings of the
5th ACM Workshop Programming Languages meets Program Verification, PLPV 2011, Austin,
TX, USA, January 29, 2011, pages 15–26. ACM, 2011. doi:10.1145/1929529.1929532.

8 Johannes Borgström, Andrew D. Gordon, and Riccardo Pucella. Roles, stacks, histories: A
triple for hoare. J. Funct. Program., 21(2):159–207, 2011. doi:10.1017/S0956796810000134.

9 Edwin Brady. Idris, a general-purpose dependently typed programming language: Design and
implementation. J. Funct. Program., 23(5):552–593, 2013. doi:10.1017/S095679681300018X.

10 Edwin Brady. Programming and reasoning with algebraic effects and dependent types. In
Greg Morrisett and Tarmo Uustalu, editors, ACM SIGPLAN International Conference on
Functional Programming, ICFP’13, Boston, MA, USA - September 25 - 27, 2013, pages
133–144. ACM, 2013. doi:10.1145/2500365.2500581.

11 Edwin Brady. Resource-dependent algebraic effects. In Jurriaan Hage and Jay McCarthy,
editors, Trends in Functional Programming - 15th International Symposium, TFP 2014,
Soesterberg, The Netherlands, May 26-28, 2014. Revised Selected Papers, volume 8843 of Lecture
Notes in Computer Science, pages 18–33. Springer, 2014. doi:10.1007/978-3-319-14675-1_2.

12 Edwin Brady. State Machines All The Way Down: An Architecture for Dependently Typed
Applications. Unpublished Draft., 2016.

13 Edwin Brady. Type-Driven Devlopment with Idris. Manning, 1st edition, 2016.
14 Edwin Brady. Type-driven development of concurrent communicating systems. Computer

Science (AGH), 18(3), 2017. doi:10.7494/csci.2017.18.3.1413.
15 Michele Bugliesi, Stefano Calzavara, Fabienne Eigner, and Matteo Maffei. Affine refinement

types for secure distributed programming. ACM Trans. Program. Lang. Syst., 37(4):11:1–11:66,
2015. doi:10.1145/2743018.

16 Luís Caires and João Costa Seco. The type discipline of behavioral separation. In Roberto
Giacobazzi and Radhia Cousot, editors, The 40th Annual ACM SIGPLAN-SIGACT Symposium
on Principles of Programming Languages, POPL ’13, Rome, Italy - January 23 - 25, 2013,
pages 275–286. ACM, 2013. doi:10.1145/2429069.2429103.

17 Elias Castegren and Tobias Wrigstad. Reference capabilities for concurrency control. In
Shriram Krishnamurthi and Benjamin S. Lerner, editors, 30th European Conference on
Object-Oriented Programming, ECOOP 2016, July 18-22, 2016, Rome, Italy, volume 56
of LIPIcs, pages 5:1–5:26. Schloss Dagstuhl - Leibniz-Zentrum für Informatik, 2016. doi:
10.4230/LIPIcs.ECOOP.2016.5.

ECOOP 2020

https://doi.org/10.1017/S095679680900728X
https://doi.org/10.1145/3209108.3209189
https://doi.org/10.1145/3158093
https://doi.org/10.1145/1297027.1297050
https://doi.org/10.1007/978-3-642-15375-4_12
https://doi.org/10.1145/1929529.1929532
https://doi.org/10.1017/S0956796810000134
https://doi.org/10.1017/S095679681300018X
https://doi.org/10.1145/2500365.2500581
https://doi.org/10.1007/978-3-319-14675-1_2
https://doi.org/10.7494/csci.2017.18.3.1413
https://doi.org/10.1145/2743018
https://doi.org/10.1145/2429069.2429103
https://doi.org/10.4230/LIPIcs.ECOOP.2016.5
https://doi.org/10.4230/LIPIcs.ECOOP.2016.5

20:28 A Framework for Resource Dependent EDSLs in a Dependently Typed Language

18 N.G de Bruijn. Lambda calculus notation with nameless dummies, a tool for automatic formula
manipulation, with application to the church-rosser theorem. Indagationes Mathematicae
(Proceedings), 75(5):381–392, 1972.

19 Jan de Muijnck-Hughes, Edwin Brady, and Wim Vanderbauwhede. Value-dependent session
design in a dependently typed language. In Francisco Martins and Dominic Orchard, editors,
Proceedings Programming Language Approaches to Concurrency- and Communication-cEntric
Software, PLACES@ETAPS 2019, Prague, Czech Republic, 7th April 2019, volume 291 of
EPTCS, pages 47–59, 2019. doi:10.4204/EPTCS.291.5.

20 Jan de Muijnck-Hughes and Wim Vanderbauwhede. A typing discipline for hardware interfaces.
In Alastair F. Donaldson, editor, 33rd European Conference on Object-Oriented Programming,
ECOOP 2019, July 15-19, 2019, London, United Kingdom, volume 134 of LIPIcs, pages
6:1–6:27. Schloss Dagstuhl - Leibniz-Zentrum für Informatik, 2019. doi:10.4230/LIPIcs.
ECOOP.2019.6.

21 Edsko de Vries, Rinus Plasmeijer, and David M. Abrahamson. Uniqueness typing simplified.
In Olaf Chitil, Zoltán Horváth, and Viktória Zsók, editors, Implementation and Application of
Functional Languages, 19th International Workshop, IFL 2007, Freiburg, Germany, September
27-29, 2007. Revised Selected Papers, volume 5083 of Lecture Notes in Computer Science,
pages 201–218. Springer, 2007. doi:10.1007/978-3-540-85373-2_12.

22 Robert DeLine and Manuel Fähndrich. Typestates for objects. In Martin Odersky, editor,
ECOOP 2004 - Object-Oriented Programming, 18th European Conference, Oslo, Norway, June
14-18, 2004, Proceedings, volume 3086 of Lecture Notes in Computer Science, pages 465–490.
Springer, 2004. doi:10.1007/978-3-540-24851-4_21.

23 Ewen Denney. Refinement types for specification. In David Gries and Willem P. de Roever,
editors, Programming Concepts and Methods, IFIP TC2/WG2.2,2.3 International Conference
on Programming Concepts and Methods (PROCOMET ’98) 8-12 June 1998, Shelter Island,
New York, USA, volume 125 of IFIP Conference Proceedings, pages 148–166. Chapman &
Hall, 1998.

24 Richard A. Eisenberg. Dependent types in haskell: Theory and practice. CoRR, abs/1610.07978,
2016. arXiv:1610.07978.

25 Matthias Felleisen, Robert Bruce Findler, Matthew Flatt, Shriram Krishnamurthi, Eli Barzilay,
Jay A. McCarthy, and Sam Tobin-Hochstadt. A programmable programming language.
Commun. ACM, 61(3):62–71, 2018. doi:10.1145/3127323.

26 Martin Fowler. Domain-Specific Languages. Addison-Wesley Signature Series. Addison-Wesley
Professional, 1 edition, October 2010.

27 Timothy S. Freeman and Frank Pfenning. Refinement types for ML. In David S. Wise, editor,
Proceedings of the ACM SIGPLAN’91 Conference on Programming Language Design and
Implementation (PLDI), Toronto, Ontario, Canada, June 26-28, 1991, pages 268–277. ACM,
1991. doi:10.1145/113445.113468.

28 Colin S. Gordon, Matthew J. Parkinson, Jared Parsons, Aleks Bromfield, and Joe Duffy.
Uniqueness and reference immutability for safe parallelism. In Gary T. Leavens and Matthew B.
Dwyer, editors, Proceedings of the 27th Annual ACM SIGPLAN Conference on Object-Oriented
Programming, Systems, Languages, and Applications, OOPSLA 2012, part of SPLASH 2012,
Tucson, AZ, USA, October 21-25, 2012, pages 21–40. ACM, 2012. doi:10.1145/2384616.
2384619.

29 C. A. R. Hoare. An axiomatic basis for computer programming. Commun. ACM, 12(10):576–
580, 1969. doi:10.1145/363235.363259.

30 Kohei Honda, Nobuko Yoshida, and Marco Carbone. Multiparty asynchronous session types.
J. ACM, 63(1):9:1–9:67, 2016. doi:10.1145/2827695.

31 Raymond Hu and Nobuko Yoshida. Explicit connection actions in multiparty session types.
In Fundamental Approaches to Software Engineering - 20th International Conference, FASE
2017, Held as Part of the European Joint Conferences on Theory and Practice of Software,
ETAPS 2017, Uppsala, Sweden, April 22-29, 2017, Proceedings, pages 116–133, 2017. doi:
10.1007/978-3-662-54494-5_7.

https://doi.org/10.4204/EPTCS.291.5
https://doi.org/10.4230/LIPIcs.ECOOP.2019.6
https://doi.org/10.4230/LIPIcs.ECOOP.2019.6
https://doi.org/10.1007/978-3-540-85373-2_12
https://doi.org/10.1007/978-3-540-24851-4_21
http://arxiv.org/abs/1610.07978
https://doi.org/10.1145/3127323
https://doi.org/10.1145/113445.113468
https://doi.org/10.1145/2384616.2384619
https://doi.org/10.1145/2384616.2384619
https://doi.org/10.1145/363235.363259
https://doi.org/10.1145/2827695
https://doi.org/10.1007/978-3-662-54494-5_7
https://doi.org/10.1007/978-3-662-54494-5_7

J. de Muijnck-Hughes, E. Brady, and W. Vanderbauwhede 20:29

32 Wei Huang, Werner Dietl, Ana Milanova, and Michael D. Ernst. Inference and checking of
object ownership. In James Noble, editor, ECOOP 2012 – Object-Oriented Programming – 26th
European Conference, Beijing, China, June 11-16, 2012. Proceedings, volume 7313 of Lecture
Notes in Computer Science, pages 181–206. Springer, 2012. doi:10.1007/978-3-642-31057-7_
9.

33 Ohad Kammar, Sam Lindley, and Nicolas Oury. Handlers in action. In Greg Morrisett and
Tarmo Uustalu, editors, ACM SIGPLAN International Conference on Functional Programming,
ICFP’13, Boston, MA, USA - September 25 - 27, 2013, pages 145–158. ACM, 2013. doi:
10.1145/2500365.2500590.

34 Neelakantan R. Krishnaswami, Aaron Turon, Derek Dreyer, and Deepak Garg. Superfi-
cially substructural types. In Peter Thiemann and Robby Bruce Findler, editors, ACM
SIGPLAN International Conference on Functional Programming, ICFP’12, Copenhagen,
Denmark, September 9-15, 2012, pages 41–54. ACM, 2012. doi:10.1145/2364527.2364536.

35 Amit A. Levy, Michael P. Andersen, Bradford Campbell, David E. Culler, Prabal Dutta,
Branden Ghena, Philip Levis, and Pat Pannuto. Ownership is theft: experiences building an
embedded OS in rust. In Shan Lu, editor, Proceedings of the 8th Workshop on Programming
Languages and Operating Systems, PLOS 2015, Monterey, California, USA, October 4, 2015,
pages 21–26. ACM, 2015. doi:10.1145/2818302.2818306.

36 Nicholas D. Matsakis and Felix S. Klock II. The rust language. In Michael Feldman and
S. Tucker Taft, editors, Proceedings of the 2014 ACM SIGAda annual conference on High
integrity language technology, HILT 2014, Portland, Oregon, USA, October 18-21, 2014, pages
103–104. ACM, 2014. doi:10.1145/2663171.2663188.

37 Conor McBride. I got plenty o’ nuttin’. In Sam Lindley, Conor McBride, Philip W. Trinder,
and Donald Sannella, editors, A List of Successes That Can Change the World - Essays
Dedicated to Philip Wadler on the Occasion of His 60th Birthday, volume 9600 of Lecture Notes
in Computer Science, pages 207–233. Springer, 2016. doi:10.1007/978-3-319-30936-1_12.

38 Conor McBride and James McKinna. The view from the left. J. Funct. Program., 14(1):69–111,
2004. doi:10.1017/S0956796803004829.

39 Filipe Militão, Jonathan Aldrich, and Luís Caires. Substructural typestates. In Nils Anders
Danielsson and Bart Jacobs, editors, Proceedings of the 2014 ACM SIGPLAN Workshop
on Programming Languages meets Program Verification, PLPV 2014, January 21, 2014,
San Diego, California, USA, Co-located with POPL ’14, pages 15–26. ACM, 2014. doi:
10.1145/2541568.2541574.

40 Robin Milner. The Space and Motion of Communicating Agents. Cambridge University Press,
2009.

41 Andrey Mokhov. Algebraic graphs with class (functional pearl). In Proceedings of the 10th
ACM SIGPLAN International Symposium on Haskell, Oxford, United Kingdom, September
7-8, 2017, pages 2–13, 2017. doi:10.1145/3122955.3122956.

42 Aleksandar Nanevski, Greg Morrisett, Avraham Shinnar, Paul Govereau, and Lars Birkedal.
Ynot: dependent types for imperative programs. In Proceeding of the 13th ACM SIGPLAN
international conference on Functional programming, ICFP 2008, Victoria, BC, Canada,
September 20-28, 2008, pages 229–240, 2008. doi:10.1145/1411204.1411237.

43 Aleksandar Nanevski, J. Gregory Morrisett, and Lars Birkedal. Hoare type theory, poly-
morphism and separation. J. Funct. Program., 18(5-6):865–911, 2008. doi:10.1017/
S0956796808006953.

44 Ulf Norell. Dependently typed programming in agda. In Andrew Kennedy and Amal Ahmed,
editors, Proceedings of TLDI’09: 2009 ACM SIGPLAN International Workshop on Types in
Languages Design and Implementation, Savannah, GA, USA, January 24, 2009, pages 1–2.
ACM, 2009. doi:10.1145/1481861.1481862.

45 Peter W. O’Hearn. Separation logic. Commun. ACM, 62(2):86–95, 2019. doi:10.1145/
3211968.

ECOOP 2020

https://doi.org/10.1007/978-3-642-31057-7_9
https://doi.org/10.1007/978-3-642-31057-7_9
https://doi.org/10.1145/2500365.2500590
https://doi.org/10.1145/2500365.2500590
https://doi.org/10.1145/2364527.2364536
https://doi.org/10.1145/2818302.2818306
https://doi.org/10.1145/2663171.2663188
https://doi.org/10.1007/978-3-319-30936-1_12
https://doi.org/10.1017/S0956796803004829
https://doi.org/10.1145/2541568.2541574
https://doi.org/10.1145/2541568.2541574
https://doi.org/10.1145/3122955.3122956
https://doi.org/10.1145/1411204.1411237
https://doi.org/10.1017/S0956796808006953
https://doi.org/10.1017/S0956796808006953
https://doi.org/10.1145/1481861.1481862
https://doi.org/10.1145/3211968
https://doi.org/10.1145/3211968

20:30 A Framework for Resource Dependent EDSLs in a Dependently Typed Language

46 Dominic A. Orchard and Tomas Petricek. Embedding effect systems in haskell. In Wouter
Swierstra, editor, Proceedings of the 2014 ACM SIGPLAN symposium on Haskell, Gothenburg,
Sweden, September 4-5, 2014, pages 13–24. ACM, 2014. doi:10.1145/2633357.2633368.

47 Johan Östlund and Tobias Wrigstad. Multiple aggregate entry points for ownership types. In
James Noble, editor, ECOOP 2012 - Object-Oriented Programming - 26th European Conference,
Beijing, China, June 11-16, 2012. Proceedings, volume 7313 of Lecture Notes in Computer
Science, pages 156–180. Springer, 2012. doi:10.1007/978-3-642-31057-7_8.

48 Jennifer Paykin. Linear/non-Linear Types for Embedded Domain-Specific Languages. PhD
thesis, University of Pennsylvania, 2018. Publicly Accessible Penn Dissertations. 2752. URL:
https://repository.upenn.edu/edissertations/2752.

49 Jennifer Paykin and Steve Zdancewic. The linearity monad. In Proceedings of the 10th ACM
SIGPLAN International Symposium on Haskell, Oxford, United Kingdom, September 7-8,
2017, pages 117–132, 2017. doi:10.1145/3122955.3122965.

50 Gordon D. Plotkin and Matija Pretnar. Handlers of algebraic effects. In Giuseppe Castagna,
editor, Programming Languages and Systems, 18th European Symposium on Programming,
ESOP 2009, Held as Part of the Joint European Conferences on Theory and Practice of
Software, ETAPS 2009, York, UK, March 22-29, 2009. Proceedings, volume 5502 of Lecture
Notes in Computer Science, pages 80–94. Springer, 2009. doi:10.1007/978-3-642-00590-9_7.

51 Jon Postel. Transmission control protocol. RFC, 793:1–91, 1981. doi:10.17487/RFC0793.
52 Arjen Rouvoet, Casper Bach Poulsen, Robbert Krebbers, and Eelco Visser. Intrinsically-typed

definitional interpreters for linear, session-typed languages. In Jasmin Blanchette and Catalin
Hritcu, editors, Proceedings of the 9th ACM SIGPLAN International Conference on Certified
Programs and Proofs, CPP 2020, New Orleans, LA, USA, January 20-21, 2020, pages 284–298.
ACM, 2020. doi:10.1145/3372885.3373818.

53 Michele Sevegnani and Muffy Calder. Bigrapher: Rewriting and analysis engine for bi-
graphs. In Computer Aided Verification - 28th International Conference, CAV 2016,
Toronto, ON, Canada, July 17-23, 2016, Proceedings, Part II, pages 494–501, 2016. doi:
10.1007/978-3-319-41540-6_27.

54 Michele Sevegnani, Milan Kabác, Muffy Calder, and Julie A. McCann. Modelling and
verification of large-scale sensor network infrastructures. In 23rd International Conference on
Engineering of Complex Computer Systems, ICECCS 2018, Melbourne, Australia, December
12-14, 2018, pages 71–81, 2018. doi:10.1109/ICECCS2018.2018.00016.

55 Rui Shi and Hongwei Xi. A linear type system for multicore programming in ATS. Sci.
Comput. Program., 78(8):1176–1192, 2013. doi:10.1016/j.scico.2012.09.005.

56 Robert E. Strom. Mechanisms for compile-time enforcement of security. In Conference Record
of the Tenth Annual ACM Symposium on Principles of Programming Languages, Austin, Texas,
USA, January 1983, pages 276–284, 1983. doi:10.1145/567067.567093.

57 Nikhil Swamy, Juan Chen, and Ravi Chugh. Enforcing stateful authorization and information
flow policies in fine. In Andrew D. Gordon, editor, Programming Languages and Systems,
19th European Symposium on Programming, ESOP 2010, Held as Part of the Joint European
Conferences on Theory and Practice of Software, ETAPS 2010, Paphos, Cyprus, March 20-28,
2010. Proceedings, volume 6012 of Lecture Notes in Computer Science, pages 529–549. Springer,
2010. doi:10.1007/978-3-642-11957-6_28.

58 Nikhil Swamy, Juan Chen, Cédric Fournet, Pierre-Yves Strub, Karthikeyan Bhargavan, and
Jean Yang. Secure distributed programming with value-dependent types. J. Funct. Program.,
23(4):402–451, 2013. doi:10.1017/S0956796813000142.

59 Nikhil Swamy, Joel Weinberger, Cole Schlesinger, Juan Chen, and Benjamin Livshits. Ver-
ifying higher-order programs with the dijkstra monad. In ACM SIGPLAN Conference on
Programming Language Design and Implementation, PLDI ’13, Seattle, WA, USA, June 16-19,
2013, pages 387–398, 2013. doi:10.1145/2491956.2491978.

https://doi.org/10.1145/2633357.2633368
https://doi.org/10.1007/978-3-642-31057-7_8
https://repository.upenn.edu/edissertations/2752
https://doi.org/10.1145/3122955.3122965
https://doi.org/10.1007/978-3-642-00590-9_7
https://doi.org/10.17487/RFC0793
https://doi.org/10.1145/3372885.3373818
https://doi.org/10.1007/978-3-319-41540-6_27
https://doi.org/10.1007/978-3-319-41540-6_27
https://doi.org/10.1109/ICECCS2018.2018.00016
https://doi.org/10.1016/j.scico.2012.09.005
https://doi.org/10.1145/567067.567093
https://doi.org/10.1007/978-3-642-11957-6_28
https://doi.org/10.1017/S0956796813000142
https://doi.org/10.1145/2491956.2491978

J. de Muijnck-Hughes, E. Brady, and W. Vanderbauwhede 20:31

60 Wouter Swierstra. A hoare logic for the state monad. In Theorem Proving in Higher Order
Logics, 22nd International Conference, TPHOLs 2009, Munich, Germany, August 17-20, 2009.
Proceedings, pages 440–451, 2009. doi:10.1007/978-3-642-03359-9_30.

61 Bernardo Toninho and Nobuko Yoshida. Certifying data in multiparty session types. J. Log.
Algebraic Methods Program., 90:61–83, 2017. doi:10.1016/j.jlamp.2016.11.005.

62 Jesse A. Tov and Riccardo Pucella. Practical affine types. In Proceedings of the 38th ACM
SIGPLAN-SIGACT Symposium on Principles of Programming Languages, POPL 2011, Austin,
TX, USA, January 26-28, 2011, pages 447–458, 2011. doi:10.1145/1926385.1926436.

63 Philip Wadler. Linear types can change the world! In Manfred Broy, editor, Programming
concepts and methods: Proceedings of the IFIP Working Group 2.2, 2.3 Working Conference
on Programming Concepts and Methods, Sea of Galilee, Israel, 2-5 April, 1990, page 561.
North-Holland, 1990.

64 Philip Wadler. Is there a use for linear logic? In Charles Consel and Olivier Danvy,
editors, Proceedings of the Symposium on Partial Evaluation and Semantics-Based Program
Manipulation, PEPM’91, Yale University, New Haven, Connecticut, USA, June 17-19, 1991,
pages 255–273. ACM, 1991. doi:10.1145/115865.115894.

65 David Walker. Advanced Topic in Types and Programming Languages, chapter Substructural
Type Systems, pages 3–43. The MIT Press, 2004.

66 Stephanie Weirich, Antoine Voizard, Pedro Henrique Avezedo de Amorim, and Richard A.
Eisenberg. A specification for dependent types in haskell. PACMPL, 1(ICFP):31:1–31:29,
2017. doi:10.1145/3110275.

ECOOP 2020

https://doi.org/10.1007/978-3-642-03359-9_30
https://doi.org/10.1016/j.jlamp.2016.11.005
https://doi.org/10.1145/1926385.1926436
https://doi.org/10.1145/115865.115894
https://doi.org/10.1145/3110275

	Introduction
	Contributions
	Outline

	Type-Level State Tracking and Reasoning
	Files with Errors
	Modelling Multiple File Access with Errors

	The Framework
	Capturing Abstract State
	Sequencing Language Expressions
	Reasoning About Abstract State
	Language Evaluation

	Exemplar Uses of Resources
	Exemplar 1: Reasoning About Multiple File Handles
	EDSL Definition
	Handler for the Files EDSL
	Example Programs

	Exemplar 2: Constructing Domain Specific Bigraphs
	Domain Model
	EDSL Definition
	Handler for the Bigraph EDSL
	Example Bigraph Instances

	Exemplar 3: Global Session Descriptions

	Related Work
	Theoretical-Oriented Approaches
	Practical-Oriented Approaches

	Future Work
	Conclusions

