
Guarded Recursion in Agda via Sized Types
Niccolò Veltri
Department of Computer Science, IT University of Copenhagen, Denmark
nive@itu.dk

Niels van der Weide
Institute for Computation and Information Sciences, Radboud University
Nijmegen, The Netherlands
nweide@cs.ru.nl

Abstract
In type theory, programming and reasoning with possibly non-terminating programs and potentially
infinite objects is achieved using coinductive types. Recursively defined programs of these types need
to be productive to guarantee the consistency of the type system. Proof assistants such as Agda
and Coq traditionally employ strict syntactic productivity checks, which often make programming
with coinductive types convoluted. One way to overcome this issue is by encoding productivity at
the level of types so that the type system forbids the implementation of non-productive corecursive
programs. In this paper we compare two different approaches to type-based productivity: guarded
recursion and sized types. More specifically, we show how to simulate guarded recursion in Agda
using sized types. We formalize the syntax of a simple type theory for guarded recursion, which is a
variant of Atkey and McBride’s calculus for productive coprogramming. Then we give a denotational
semantics using presheaves over the preorder of sizes. Sized types are fundamentally used to interpret
the characteristic features of guarded recursion, notably the fixpoint combinator.

2012 ACM Subject Classification Theory of computation → Type theory; Theory of computation
→ Categorical semantics

Keywords and phrases guarded recursion, type theory, semantics, coinduction, sized types

Digital Object Identifier 10.4230/LIPIcs.FSCD.2019.32

Funding Niccolò Veltri: Veltri was supported by a research grant (13156) from VILLUM FONDEN.

Acknowledgements We are thankful to Andreas Abel, Guillaume Allais, Herman Geuvers, Rasmus
Ejlers Møgelberg and Andrea Vezzosi for discussions and valuable hints. We thank the anonymous
referees for their useful comments.

1 Introduction

Dependent type theory is an expressive functional programming language that underlies the
deductive system of proof assistants such as Agda [22] and Coq [10]. It is a total language,
meaning that every program definable inside type theory is necessarily terminating. This is
an important requirement that ensures the consistency of the type system.

Possibly non-terminating computations and infinite structures, such as non-wellfounded
trees, can be represented in type theory by extending the type system with coinductive
types. Recursively defined elements of these types need to be productive in the sense that
every finite part of the output can be computed in a finite number of steps [15]. In Agda’s
encoding of coinductive types using “musical notation” [16], productivity is enforced via
a strict obligation: in the definition of a corecursive function, recursive calls must appear
directly under the application of a constructor. A similar syntactic check is used in Coq. This
restriction typically makes programming with coinductive types cumbersome, which spawned
the search for alternative techniques to ensure the well-definedness of corecursive definitions.

© Niccolò Veltri and Niels van der Weide;
licensed under Creative Commons License CC-BY

4th International Conference on Formal Structures for Computation and Deduction (FSCD 2019).
Editor: Herman Geuvers; Article No. 32; pp. 32:1–32:19

Leibniz International Proceedings in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by The IT University of Copenhagen's Repository

https://core.ac.uk/display/222785737?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
https://orcid.org/0000-0002-7230-3436
mailto:nive@itu.dk
https://orcid.org/0000-0003-1146-4161
mailto:nweide@cs.ru.nl
https://doi.org/10.4230/LIPIcs.FSCD.2019.32
https://creativecommons.org/licenses/by/3.0/
https://www.dagstuhl.de/lipics/
https://www.dagstuhl.de

32:2 Guarded Recursion in Agda via Sized Types

We focus on two of these techniques in which productivity is encoded at the level of types:
sized types and guarded recursion. A sized type is a type annotated with the number of
unfoldings that elements of this type can undergo [17]. Sized types have been implemented in
Agda and can be used in combination with coinductive records to specify coinductive types
[4, 6], as exemplified by Abel and Chapman’s work [3]. There also are other approaches to
sized types. One of those is developed by Sacchini [23], which allows less terms to be typed
compared to Agda’s approach.

Guarded recursion [21] is a different approach where the type system is enhanced with a
modality, called “later” and written B, encoding time delay in types. The later modality comes
with a general fixpoint combinator for programming with productive recursive functions and
allows the specification of guarded recursive types. These types can be used in combination
with clock quantification to define coinductive types [8, 9, 12]. Currently there is no
implementation of a calculus for guarded recursion.

Sized types and guarded recursion are different solutions to the same problem, but a
thorough study of the relation between these two disciplines is still missing. In this paper
we take a first step in this direction by showing how guarded recursion can be simulated in
Agda using sized types.

Utilizing techniques for representing “type theory in type theory” [7, 13], we present
an Agda formalization of the syntax of a simple type theory for guarded recursion. This
object language, which we call GTT, is a variant of Atkey and McBride’s type system for
productive coprogramming [8] in which the clock context can contain at most one clock.
The types of GTT include the aforementioned B modality and a � modality, a nameless
analogue of Atkey and McBride’s universal clock quantification. Clouston et al. [14] studied a
guarded variant of lambda calculus extended with a � operation, which they call “constant”.
Our object calculus differs from theirs in that our judgments are indexed by a clock context,
which can be empty or containing exactly one clock. The design of GTT has the benefit of
allowing a more appealing introduction rule for � than Clouston et al.’s. GTT also differs
from Clouston et al.’s calculus in the class of definable guarded recursive types. We follow
Atkey and McBride’s approach and restrict the least fixpoint operator µ to act on strictly
positive functors, while µ type former in Clouston et al.solely operates on functors in which
all variables are guarded by an occurrence of the B modality.

Afterwards we develop a categorical semantics for GTT using sized types. More precisely,
we define a presheaf model where the type formers of simply typed lambda calculus are
evaluated using the standard Kripke semantics. Typically, the semantics of a type theory
for guarded recursion is given in the topos of trees or variations thereof [11, 19, 20]. Here,
to clarify the connection between guarded recursion and sized types, we take the preorder
of sizes as the indexing category of our presheaves. This means that types and contexts of
GTT are interpreted as antitone sized types. The well-order relation on sizes is fundamental
for constructing a terminating definition of the semantic fixpoint combinator.

The decision to restrict the clock context of GTT to contain at most one clock variable
was dictated by our choice to use Agda with sized types as the metatheory. In Agda, it
is possible to encode semantic clock contexts containing multiple clocks as lists of sizes or
as functions from a finite interval of natural numbers into sizes. However, Agda’s support
for sized types is tailored to types depending on exactly one size, or on a finite but precise
number of sizes, which makes it cumbersome to work with types depending on clock contexts
containing an indefinite number of clocks. More technically, as it was privately communicated
to us by Agda implementors, Agda’s type inference only works properly for first-order size
constraints. We believe that if future Agda releases add the capability of handling multiple

N. Veltri and N. van der Weide 32:3

sizes, it would be possible to extend the semantics of GTT to include the full Atkey and
McBride’s type theory. We also believe that extending our formalization to the multiclock
case, while technically challenging, would not be conceptually harder.

GTT is stricly less expressive than Atkey and McBride’s calculus, since we are unable to
implement nested coinductive types. But the one clock variant of the calculus still allows the
construction of a large class of coinductive types and it is the subject of active research [14].

To summarize, the contributions of this paper are twofold:
1. We formalize syntax and semantics of a type theory for guarded recursion in Agda. This is

the first such denotational model developed using an extension of Martin-Löf intensional
type theory as the metalanguage, in contrast with the previous set-theoretic models of
guarded recursion.

2. The interpretation of the characteristic features of guarded recursion crucially requires
the employment of sized types. This shows that guarded recursion can be reduced to sized
types and constitutes a stepping stone towards a clear understanding of the connections
between different approaches to productive coprogramming.

This paper only include the essential parts of our Agda formalization. The full code is
available at https://github.com/niccoloveltri/agda-gtt. The formalization uses Agda
2.5.4.2 and Agda standard library 0.16. The paper is extracted from a literate Agda file,
which implies that all the displayed code passed Agda’s type and termination checker.

The material is organized in the following way. In Section 2, we discuss the metatheory
and we give an overview of sized types. In Section 3, we introduce the syntax of GTT, our
object type theory for guarded recursion. Subsequently, we give a categorical semantics. In
Section 4, we show how to implement presheaves over sizes and how to model the fragment of
GTT corresponding to simply typed lambda calculus. In Section 5, we discuss the semantics
of the guarded recursive and coinductive features. In Section 6, we prove the object language
sound w.r.t. the categorical model, which in turn entails the consistency of the syntax. Finally,
in Section 7, we draw conclusions and suggest future directions of work.

2 The Host Type Theory

We work in Martin-Löf type theory extended with functional extensionality, uniqueness of
identity proofs (UIP), and sized types. Practically, we work in Agda, which supports sized
types and where UIP holds by default. In this section, we give a brief overview of these
principles and we introduce the basic Agda notation that we employ in our formalization.

We write = for judgmental equality and ≡ for propositional equality. Implicit arguments
of functions are delimited by curly brackets. We write ∀ {∆} for an implicit argument ∆
whose type can be inferred by Agda. We write Set, Set1 and Set2 for the first three universes
of types. We write ⊥ for the empty type.

We make extensive use of record types. These are like iterated Σ-types, in which each
component, also called field, has been given a name. We open each record we introduce,
which allows us to access a field by function application. For example, given a record type
R containing a field f of type A, we have f R : A. We use Agda’s copatterns for defining
elements of a record type. If a record type R contains fields f1 : A1 and f2 : A2, we construct
a term r : R by specifying its components f1 r : A1 and f2 r : A2.

The principle of functional extensionality states that every two functions f and g in the
same function space are equal whenever f x and g x are equal for all inputs x. This principle
is not provable in Agda, so we need to postulate it. UIP states that all proofs of an identity
are propositionally equal. Agda natively supports this principle, which is therefore derivable.

FSCD 2019

https://github.com/niccoloveltri/agda-gtt

32:4 Guarded Recursion in Agda via Sized Types

Agda also natively supports sized types [2, 6]. Intuitively, a sized type is a type annotated
with an abstract ordinal indicating the number of possible unfoldings that can be performed
of elements of the type. These abstract ordinals, called sizes, assist the termination checker
in assessing the well-definedness of corecursive definitions.

In Agda, there is a type Size of sizes and a type Size< i of sizes strictly smaller than i.
Every size j : Size< i is coerced to j : Size. The order relation on sizes is transitive, which
means that whenever j : Size< i and k : Size< j, then k : Size< i. The order relation is also
well-founded, which is used to define productive corecursive functions. There is a successor
operation ↑ on sizes and a size ∞ such that i : Size< ∞ for all i. Lastly, we define a sized
type to be a type indexed by Size.

3 The Object Type Theory

The object language we consider is simply typed lambda calculus extended with additional
features for programming with guarded recursive and coinductive types. We call this language
GTT. It is a variant of Atkey and McBride’s type system for productive coprogramming [8].
In Atkey and McBride’s calculus, all judgments are indexed by a clock context, which may
contain several different clocks. They extend simply typed lambda calculus with two additional
type formers: a modality B for encoding time delay into types and universal quantification
over clock variables ∀, which is used in combination with B to specify coinductive types. In
GTT, judgments are also indexed by a clock context, but in our case the latter can contain
at most one clock variable κ. The type system of GTT also includes a B modality, plus a
box modality corresponding to Atkey and McBride’s quantification over the clock variable κ.

In this section we introduce the syntax of GTT as in our Agda formalization. We give a
more standard presentation of the calculus in Appendix A.

GTT is a type theory with explicit substitutions [1]. It comprises well-formed types
and contexts, well-typed terms and substitutions, definitional equality of terms and of
substitutions. All of them depend on a clock context. In GTT, the clock context can either
be empty or contain a single clock κ.

data ClockCtx : Set where
∅ : ClockCtx
κ : ClockCtx

We refer to types and contexts in the empty clock context as ∅-types and ∅-contexts
respectively. Similarly, κ-types and κ-contexts are types and contexts depending on κ.

3.1 Types
The well-formed types of GTT include the unit type, products, coproducts, and function
spaces. Notice that 1 is a ∅-type.

data Ty : ClockCtx → Set where
1 : Ty ∅
� : ∀ {∆} → Ty ∆ → Ty ∆ → Ty ∆
� : ∀ {∆} → Ty ∆ → Ty ∆ → Ty ∆
→ : ∀ {∆} → Ty ∆ → Ty ∆ → Ty ∆

We include a modality B as an operation on κ-types similar to the one in Atkey and
McBride’s system. There also is a nameless analogue of clock quantification, which we call
“box” and denote by � following [14]. The box modality takes a κ-type and returns a ∅-type.

N. Veltri and N. van der Weide 32:5

The well-formed types of GTT include a weakening type former ↑, which maps ∅-types
to κ-types.

B : Ty κ → Ty κ
� : Ty κ → Ty ∅
↑ : Ty ∅ → Ty κ

Guarded recursive types are defined using a least fixpoint type former µ.

µ : ∀ {∆} → Code ∆ → Ty ∆

For µ to be well-defined, one typically limits its applicability to strictly positive functors.
We instead consider a grammar Code ∆ for functors, which has codes for constant functors,
the identity, products, coproducts, and the later modality. Since there is a code for constant
functors, the type family Code needs to be defined simultaneously with Ty.

data Code : ClockCtx → Set where
C : ∀ {∆} → Ty ∆ → Code ∆
I : ∀ {∆} → Code ∆
� : ∀ {∆} → Code ∆ → Code ∆ → Code ∆
� : ∀ {∆} → Code ∆ → Code ∆ → Code ∆
B : Code κ → Code κ

The constructors of Code ∆ suffice for the specification of interesting examples of guarded
recursive types such as streams. Nevertheless, it would not be complicated to add exponentials
with constant domain and the box modality to the grammar. In addition, this grammar does
not allow the possibility of defining nested inductive types.

3.2 Contexts
The well-formed contexts of GTT are built from the empty context, context extension, and
context weakening. The last operation embeds ∅-contexts into κ-contexts. Notice that we
are overloading the symbol ↑, which is used for both type and context weakening.

data Ctx : ClockCtx → Set where
• : ∀ {∆} → Ctx ∆
, : ∀ {∆} → Ctx ∆ → Ty ∆ → Ctx ∆
↑ : Ctx ∅ → Ctx κ

3.3 Terms
The well-typed terms and substitutions of GTT are defined simultaneously. Terms include
constructors for variables and substitutions.

data Tm : ∀ {∆} → Ctx ∆ → Ty ∆ → Set where
var : ∀ {∆} (Γ : Ctx ∆) (A : Ty ∆) → Tm (Γ , A) A
sub : ∀ {∆} {Γ1 Γ2 : Ctx ∆} {A : Ty ∆} → Tm Γ2 A → Sub Γ1 Γ2 → Tm Γ1 A

We have lambda abstraction and application, plus the usual introduction and elimination
rules for the unit types, products, coproducts, and guarded recursive types. Here we only
show the typing rules associated to function types and guarded recursive types. The function

FSCD 2019

32:6 Guarded Recursion in Agda via Sized Types

eval evaluates codes in Code ∆ into endofunctors on Ty ∆. We use a categorical combinator
app for application. We derive the conventional application, taking additionally an element
in Tm Γ A and returning an inhabitant of Tm Γ B, in Section 3.4.

lambda : ∀ {∆} {Γ : Ctx ∆} {A B : Ty ∆} → Tm (Γ , A) B → Tm Γ (A → B)
app : ∀ {∆} {Γ : Ctx ∆} {A B : Ty ∆} → Tm Γ (A → B) → Tm (Γ , A) B
cons : ∀ {∆} {Γ : Ctx ∆} (P : Code ∆) → Tm Γ (eval P (µ P)) → Tm Γ (µ P)
primrec : ∀ {∆} (P : Code ∆) {Γ : Ctx ∆} {A : Ty ∆}
→ Tm Γ (eval P (µ P � A) → A) → Tm Γ (µ P → A)

The later modality is required to be an applicative functor, which means that we have
terms next and ~. The delayed fixpoint combinator dfix [9] allows defining productive
recursive programs. The usual fixpoint returning a term in A instead of B A is derivable.

next : {Γ : Ctx κ} {A : Ty κ} → Tm Γ A → Tm Γ (B A)
~ : {Γ : Ctx κ} {A B : Ty κ} → Tm Γ (B (A → B)) → Tm Γ (B A) → Tm Γ (B B)
dfix : {Γ : Ctx κ} {A : Ty κ} → Tm Γ (B A → A) → Tm Γ (B A)

We have introduction and elimination rules for the � modality. The rule box is the
analogue in GTT of Atkey and McBride’s rule for clock abstraction [8]. Notice that box
can only be applied to terms of type A over a weakened context ↑ Γ. This is analogous to
Atkey and McBride’s side condition requiring the universally quantified clock variable to not
appear freely in the context Γ. Similarly, the rule unbox corresponds to clock application.
The operation force is used for removing occurrences of B protected by the � modality.

box : {Γ : Ctx ∅} {A : Ty κ} → Tm (↑ Γ) A → Tm Γ (� A)
unbox : {Γ : Ctx ∅} {A : Ty κ} → Tm Γ (� A) → Tm (↑ Γ) A
force : {Γ : Ctx ∅} {A : Ty κ} → Tm Γ (� (B A)) → Tm Γ (� A)

The introduction and elimination rules for type weakening say that elements of Tm Γ A
can be embedded in Tm (↑ Γ) (↑ A) and vice versa.

up : {Γ : Ctx ∅} {A : Ty ∅} → Tm Γ A → Tm (↑ Γ) (↑ A)
down : {Γ : Ctx ∅} {A : Ty ∅} → Tm (↑ Γ) (↑ A) → Tm Γ A

Atkey and McBride assume the existence of certain type equalities [8]. Møgelberg, who
works in a dependently typed setting, considers similar type isomorphisms [20]. In GTT, we
follow the second approach. This means that we do not introduce an equivalence relation on
types specifying which types should be considered equal, as in Chapman’s object type theory
[13]. Instead, we include additional term constructors corresponding to functions underlying
the required type isomorphisms. For example, the clock irrelevance axiom formulated in our
setting states that every ∅-type A is isomorphic to � (↑ A). This is obtained by adding to
Tm a constructor �const.

�const : {Γ : Ctx ∅} (A : Ty ∅) → Tm Γ (� (↑ A) → A)

A function const� A in the other direction is derivable. When defining definitional equality
on terms, described in Section 3.5, we ask for �const and const� to be each other inverses.
The other type isomorphisms, listed in Appendix A are constructed in a similar way.

N. Veltri and N. van der Weide 32:7

3.4 Substitutions
For substitutions, we need the canonical necessary operations [7, 13]: identity and composition
of substitutions, the empty substitution, the extension with an additional term, and the
projection which forgets the last term.

data Sub : ∀ {∆} → Ctx ∆ → Ctx ∆ → Set where
ε : ∀ {∆} (Γ : Ctx ∆) → Sub Γ •
id : ∀ {∆} (Γ : Ctx ∆) → Sub Γ Γ
, : ∀ {∆} {Γ1 Γ2 : Ctx ∆} {A : Ty ∆} → Sub Γ1 Γ2 → Tm Γ1 A → Sub Γ1 (Γ2 , A)
◦ : ∀ {∆} {Γ1 Γ2 Γ3 : Ctx ∆} → Sub Γ2 Γ3 → Sub Γ1 Γ2 → Sub Γ1 Γ3

pr : ∀ {∆} {Γ1 Γ2 : Ctx ∆} {A : Ty ∆} → Sub Γ1 (Γ2 , A) → Sub Γ1 Γ2

We also add rules for embedding substitutions between ∅-contexts into substitutions
between κ-contexts and vice versa.

up : {Γ1 Γ2 : Ctx ∅} → Sub Γ1 Γ2 → Sub (↑ Γ1) (↑ Γ2)
down : {Γ1 Γ2 : Ctx ∅} → Sub (↑ Γ1) (↑ Γ2) → Sub Γ1 Γ2

In addition, we require the existence of two context isomorphisms. The context ↑ • needs
to be isomorphic to • and ↑ (Γ , A) needs to be isomorphic to ↑ Γ , ↑ A. For both of them,
we add a constructor representing the underlying functions.

•↑ : Sub • (↑ •)
,↑ : (Γ : Ctx ∅) (A : Ty ∅) → Sub (↑ Γ , ↑ A) (↑ (Γ , A))

An element ↑• in Sub (↑ •) • is derivable. In the definitional equality on substitutions, we
ask for •↑ and ↑• to be each other inverses. We proceed similarly with ,↑.

Using the term constructor sub, we can derive a weakening operation for terms and the
conventional application combinator.

wk : ∀ {∆} {Γ : Ctx ∆} {A B : Ty ∆} → Tm Γ B → Tm (Γ , A) B
wk {∆} {Γ} {A} x = sub x (pr (id (Γ , A)))

$: ∀ {∆} {Γ : Ctx ∆} {A B : Ty ∆} → Tm Γ (A → B) → Tm Γ A → Tm Γ B
$ {∆} {Γ} f x = sub (app f) (id Γ , x)

3.5 Definitional equalities
Definitional equalities on terms and substitutions are defined simultaneously. Here we only
discuss equality on terms and we refer to the formalization for the equality on substitutions.

data _∼_ : ∀ {∆} {Γ : Ctx ∆} {A : Ty ∆} (t1 t2 : Tm Γ A) → Set where

The term equality includes rules for equivalence, congruence, and substitution. There
also are β and η rules for the type formers. We only show the ones associated to the �
modality here. The rules state that box and unbox are each other’s inverses.

�-β : ∀ {Γ} {A} (t : Tm (↑ Γ) A) → unbox (box t) ∼ t
�-η : ∀ {Γ} {A} (t : Tm Γ (� A)) → box (unbox t) ∼ t

FSCD 2019

32:8 Guarded Recursion in Agda via Sized Types

We include definitional equalities stating that B is an applicative functor w.r.t. the
operations next and ~. Furthermore, the delayed fixpoint combinator dfix must satisfy its
characteristic unfolding equation. We refer to Møgelberg’s paper [20] for a complete list of
the required definitional equalities for B and �.

For the type isomorphisms, we require term equalities exhibiting that certain maps are
mutual inverses. For example, we have the following two equalities about �const and const�:

const�const : ∀ {Γ} {A} (t : Tm Γ (� (↑ A))) → const� A $ (�const A $ t) ∼ t
�const� : ∀ {Γ} {A} (t : Tm Γ A) → �const A $ (const� A $ t) ∼ t

The last group of term equalities describes the relationship between the weakening
operations up and down and other term constructors. Here we omit their description and we
refer the interested reader to the Agda formalization.

3.6 Example: Streams
We give a taste of how to program with streams in GTT. Our implementation is based on
Atkey and McBride’s approach to coinductive types [8]. To define a type of streams, we first
define guarded streams over a ∅-type A. It is the least fixpoint of the functor with code C (↑
A) � B I.

F : Ty ∅ → Code κ
F A = C (↑ A) � B I

g-Str : Ty ∅ → Ty κ
g-Str A = µ (F A)

The usual type of streams over A is then obtained by applying the � modality to g-Str A.

Str : Ty ∅ → Ty ∅
Str A = � (g-Str A)

We compute the head and tail of a stream using a function decons, which destructs an
element of an inductive type. The term decons is the inverse of cons and it is derivable using
primrec. Note that in both cases we need to use unbox, because of the application of the box
modality in the definition of Str. For the tail, we also use box and force. The operations π1
and π2 are the projections associated to the product type former �.

hd : {Γ : Ctx ∅} {A : Ty ∅} → Tm Γ (Str A) → Tm Γ A
hd xs = down (π1 (decons (unbox xs)))

tl : {Γ : Ctx ∅} {A : Ty ∅} → Tm Γ (Str A) → Tm Γ (Str A)
tl xs = force (box (π2 (decons (unbox xs))))

Given a GTT term a of type A, we can construct the constant guarded stream over a
using the fixpoint combinator.

g-const-str : {Γ : Ctx ∅} {A : Ty ∅} → Tm Γ A → Tm (↑ Γ) (g-Str A)
g-const-str {Γ} {A} a = fix (lambda (cons (F A) [wk (up a) & var (↑ Γ) (B (g-Str A))]))

The constant stream over a is obtained by boxing the guarded stream g-const a.

N. Veltri and N. van der Weide 32:9

const-str : {Γ : Ctx ∅} {A : Ty ∅} → Tm Γ A → Tm Γ (Str A)
const-str a = box (g-const-str a)

In our Agda formalization, we also construct a function removing the elements at even indices
out of a given stream, which is an example of a non-causal function.

4 Categorical Semantics

Next we give a categorical semantics for the calculus introduced in Section 3. We take
inspiration from Møgelberg’s model [20] in which a (simple) type in a clock context containing
n clocks is interpreted as a presheaf in Set(ωn)op

, where ω is the preorder of ordered natural
numbers. In our model, we replace the category ω with the preorder of sizes. Moreover, we
only consider the cases where either the clock context is empty or it contains exactly one
clock. This means that a type in GTT is either interpreted as an element of Set or as a
presheaf over Size. In this section, we show how to implement presheaves and how to model
the fragment of GTT corresponding to simply typed lambda calculus. The interpretation of
the guarded recursive and coinductive features of GTT is given in Section 5.

4.1 Presheaves
Presheaves are defined as a record PSh. The fields Obj and Mor represent the actions on
objects and morphisms respectively, while MorId and MorComp are the functor laws. The
type Size< (↑ i) contains sizes smaller or equal than i. In the type of MorId we use the
reflexivity of the order on sizes, which means i : Size< (↑ i). In the type of MorComp we use
transitivity.

record PSh : Set1 where
field
Obj : Size → Set
Mor : (i : Size) (j : Size< (↑ i)) → Obj i → Obj j
MorId : {i : Size} {x : Obj i} → Mor i i x ≡ x
MorComp : {i : Size} {j : Size< (↑ i)} {k : Size< (↑ j)} {x : Obj i}
→ Mor i k x ≡ Mor j k (Mor i j x)

Beside presheaves, we also need natural transformations. These are defined as a record
NatTrans, consisting of a map nat-map and a proof of the usual commutativity requirement.

record NatTrans (P Q : PSh) : Set where
field
nat-map : (i : Size) → Obj P i → Obj Q i
nat-com : (i : Size) (j : Size< (↑ i)) (x : Obj P i)
→ Mor Q i j (nat-map i x) ≡ nat-map j (Mor P i j x)

Products and sums of presheaves are defined pointwise. More precisely, we define the
product as follows

ProdObj : Size → Set
ProdObj i = Obj P i × Obj Q i

The sum is defined similarly. The weakening type former ↑ of GTT is modeled using the
constant presheaf, which we denote by Const. Function spaces are defined as the exponential
of presheaves. The action on a size i of this presheaf consists of natural transformations
restricted to sizes smaller or equal than i.

FSCD 2019

32:10 Guarded Recursion in Agda via Sized Types

record ExpObj (P Q : PSh) (i : Size) : Set where
field
fun : (j : Size< (↑ i)) → Obj P j → Obj Q j
funcom : (j : Size< (↑ i)) (k : Size< (↑ j)) (x : Obj P j)
→ Mor Q j k (fun j x) ≡ fun k (Mor P j k x)

All in all, we get an operation Exp : PSh → PSh → PSh.

4.2 Modelling Simple Types
To interpret the fragment of GTT corresponding to simply typed lambda calculus, we use
Kripke semantics [18]. Semantic judgments, similar to their syntactic counterparts, are
indexed by a clock context. We reuse the type ClockCtx for the semantic clock contexts. The
semantic variable contexts are sets if the clock context is empty, and they are presheaves
otherwise.

SemCtx : ClockCtx → Set1

SemCtx ∅ = Set
SemCtx κ = PSh

Note that GTT is a simple type theory, thus types do not depend on contexts. For this
reason, we define the type SemTy of semantic types in the same way as SemCtx.

The semantic terms of type A in context Γ are functions from Γ to A if the clock context
is empty, and they are natural transformations between Γ and A otherwise.

SemTm : {∆ : ClockCtx} (Γ : SemCtx ∆) (A : SemTy ∆) → Set
SemTm {∅} Γ A = Γ → A
SemTm {κ} Γ A = NatTrans Γ A

Since GTT is a type theory with explicit substitutions, we must provide an interpretation
for them as well. Semantic substitutions are maps between contexts and we define the type
SemSub in the same way as SemTm. Definitional equality of semantic terms and substitutions
is modeled as propositional equality.

We also need to provide a semantic version of the context operations, the simple type
formers and the operations on substitutions. Since their definitions are standard, we do not
discuss them in detail. For each of them, we need to make a case distinction based on the
clock context. For example, the empty variable context • is interpreted as the unit type in
the clock context ∅, and it is interpreted as the terminal presheaf in the clock context κ. We
use the operations on presheaves defined in Section 4.1 to interpret simple type formers. In
the next section, we use the interpretation of function types, whose action of objects in the
clock context κ is given by ExpObj. This is denoted by A ⇒ B for semantic types A and B.

⇒ : ∀ {∆} (A B : SemTy ∆) → SemTy ∆
⇒ {∅} A B = A → B
⇒ {κ} A B = Exp A B

5 Modelling Guarded Recursion

In this section, we add the required guarded recursive and coinductive features to the
denotational semantics. We start by defining the semantic box modality together with its
introduction and elimination rule. Then we construct the semantic later modality. We show
how to define the fixpoint combinator and the force operation using sized types. In the end,
we discuss how to model guarded recursive types.

N. Veltri and N. van der Weide 32:11

5.1 Context Weakening and the Box Modality
Similarly to the weakening type former ↑, the weakening context former ↑ is modeled using
the constant presheaf Const.

⇑ : SemCtx ∅ → SemCtx κ
⇑ Γ = Const Γ

Møgelberg models universal clock quantification by taking limits [20]. We define the
semantic box modality � similarly: given a presheaf A, we take � A to be the limit of A.
Formally, the limit of A is constructed as a record with two fields. The field �cone is given
by a family f i in Obj A i for each size i. The field �com is a proof that the restriction of f i
to a size j smaller than i is equal to f j.

record � (A : SemTy κ) : SemTy ∅ where
field
�cone : (i : Size) → Obj A i
�com : (i : Size) (j : Size< (↑ i)) → Mor A i j (�cone i) ≡ �cone j

The semantic box modality is right adjoint to context weakening. In other words, the
types Tm (⇑ Γ) A and Tm Γ (� A) are isomorphic for all Γ and A. The function underlying
the isomorphism is sem-box and its inverse is sem-unbox, modeling box and unbox respectively.

sem-box : (Γ : SemCtx ∅) (A : SemTy κ) (t : SemTm (⇑ Γ) A) → SemTm Γ (� A)
�cone (sem-box Γ A t x) i = nat-map t i x
�com (sem-box Γ A t x) i j = nat-com t i j x

sem-unbox : (Γ : SemCtx ∅) (A : SemTy κ) (t : SemTm Γ (� A)) → SemTm (⇑ Γ) A
nat-map (sem-unbox Γ A t) i x = �cone (t x) i
nat-com (sem-unbox Γ A t) i j x = �com (t x) i j

5.2 The Later Modality
The semantic later modality is an operation I on semantic κ-types. Recall that the later
modality in the topos of trees [11] is defined as

(I A)(0) = {∗}
(I A)(n+ 1) = A(n)

We cannot directly replicate the latter in our setting since the preorder of sizes does not
possess a least element. However, we know from [11] that the definition above is equivalent
to (I A)(n) = limk<nA(k). Adapting this to our setting leads to the following action of I
on objects:

record IObjTry (A : SemTy κ) (i : Size) : Set where
field
Icone : (j : Size< i) → Obj A j
Icom : (j : Size< i) (k : Size< (↑ j)) → Mor A j k (Icone j) ≡ Icone k

However, with this definition, we are unable to implement a terminating semantic fixpoint
combinator. Later in this section we discuss why this is the case.

FSCD 2019

32:12 Guarded Recursion in Agda via Sized Types

There are several ways to modify the above definition and implement a terminating
fixpoint operation. A possible solution, which was suggested to us by Andrea Vezzosi, is
using an inductive analogue of the predicate Size<, which we call SizeLt.

data SizeLt (i : Size) : Set where
[_] : Size< i → SizeLt i

The type SizeLt is a mechanism for suspending computations. If we define a function f of
type (j : SizeLt i) → Obj A j by pattern matching, then f j does not reduce unless j is of
the form [j’] for some j’ : Size< i. This simple observation turns out to be essential for a
terminating implementation of the fixpoint combinator.

From an inhabitant of SizeLt, we obtain an actual size by pattern matching.

size : ∀ {i} → SizeLt i → Size
size [j] = j

Furthermore, functions with domain SizeLt i can be specified using functions on Size< i.

elimLt : {A : Size → Set1} {i : Size} → ((j : Size< i) → A j)
→ (j : SizeLt i) → A (size j)

elimLt f [j] = f j

We define the action on objects of the semantic later modality similarly to IObjTry but
with SizeLt in place of Size<. Before we do so, we introduce two auxiliary functions, which
turn out to be handy when modeling guarded recursive types. The first is a function Later,
which instead of a semantic κ-type, takes a sized type as its input. Its definition is the same
as the type of the field Icone in IObjTry but with Size< replaced by SizeLt.

Later : (Size → Set) → Size → Set
Later A i = (j : SizeLt i) → A (size j)

The second auxiliary function is LaterLim. It takes as input a sized type A together with
a proof that it is antitone. Again its definition is the same as the type of the field Icom in
IObjTry but with two applications of elimLt and Size< replaced by SizeLt.

LaterLim : (A : Size → Set) (m : (i : Size) (j : Size< (↑ i)) → A i → A j)
→ (i : Size) (x : Later A i) → Set

LaterLim A m i x = (j : SizeLt i)
→ elimLt (λ { j’ → (k : SizeLt (↑ j’))

→ elimLt (λ k’ → m j’ k’ (x [j’]) ≡ x [k’]) k }) j

Putting everything together, we obtain the following definition of the object part of
the semantic later modality I. We refer to the Agda formalization for the action on the
morphisms and the functor laws.

record IObj (A : SemTy κ) (i : Size) : Set where
field
Icone : Later (Obj A) i
Icom : LaterLim (Obj A) (Mor A) i Icone

We omit the semantic equivalents of next and ~. To interpret the delayed fixpoint
combinator dfix, we introduce an auxiliary term sem-dfix1, for which we only show how to
construct the field Icone. This is defined using self-application.

N. Veltri and N. van der Weide 32:13

sem-dfix1 : (A : SemTy κ) (i : Size) → ExpObj (I A) A i → IObj A i
Icone (sem-dfix1 A i f) [j] = fun f j (sem-dfix1 A j f)

This definition is accepted by Agda’s termination checker for two reasons:
every recursive call is applied to a strictly smaller size;
the usage of SizeLt in place of Size< in the definition of Later prevents indefinite unfolding,
which would have happened if we used IObjTry instead of IObj.

In fact, if we would replace IObj by IObjTry as the return type of sem-dfix1 while keeping
the same definition (with j in place of [j]), we would obtain the following non-terminating
sequence of reductions:

Icone (sem-dfix1 A i f)
= λ j → fun f j (sem-dfix1 A j f)
= λ j → fun f j (record { Icone = λ k → fun f k (sem-dfix1 A k f) ; Icom = . . . })
= . . .

The termination of the Icom component of sem-dfix1 additionally relies on the presence
of elimLt in the definition of LaterLim.

The field nat-map of sem-dfix is defined using sem-dfix1. We omit the nat-com component.

sem-dfix : (Γ : SemCtx κ) (A : SemTy κ) (f : SemTm Γ (I A ⇒ A)) → SemTm Γ (I A)
nat-map (sem-dfix Γ A f) i γ = sem-dfix1 A i (nat-map f i γ)

Finally, we show how to interpret force. To this aim, we introduce an auxiliary function
sem-force’, which, given a type A and an inhabitant t of �(I A), returns a term in � A. For
the field �cone of sem-force’ A t, we are required to construct an element of Obj A i for
each size i. Notice that �cone t, when applied to a size i’, gives a term t’ of type IObj A i’.
Furthermore, the component Icone of t’, when applied to a size j’ smaller than i’, returns a
term of type Obj A j’. Hence, in order to construct the required inhabitant of Obj A i, it
suffices to find a size j greater than i. An option for such a size j is ∞. The field �com is
defined in a similar way.

sem-force’ : (A : SemTy κ) → � (I A) → � A
�cone (sem-force’ A t) i = Icone (�cone t ∞) [i]
�com (sem-force’ A t) i j = Icom (�cone t ∞) [i] [j]

The semantic force operation follows immediately from sem-force’.

sem-force : (Γ : SemCtx ∅) (A : SemTy κ) (t : SemTm Γ (� (I A))) → SemTm Γ (� A)
sem-force Γ A t x = sem-force’ A (t x)

5.3 Guarded Recursive Types
For semantic guarded recursive types, we introduce a type of semantic codes for functors. We
cannot reutilize the syntactic grammar Code since the code for the constant functor should
depend on SemTy rather than Ty. Instead we use the following definition.

data SemCode : ClockCtx → Set1 where
C : ∀ {∆} → SemTy ∆ → SemCode ∆
I : ∀ {∆} → SemCode ∆

FSCD 2019

32:14 Guarded Recursion in Agda via Sized Types

� : ∀ {∆} → SemCode ∆ → SemCode ∆ → SemCode ∆
� : ∀ {∆} → SemCode ∆ → SemCode ∆ → SemCode ∆
I : SemCode κ → SemCode κ

In the remainder of this section, we only discuss guarded recursive κ-types. The inter-
pretation of µ in the clock context ∅ is standard and therefore omitted. Given a semantic
code P, our goal is to construct the action on objects and morphisms of a presheaf mu-κ P.

A first naïve attempt would be to define the action on objects muObj P as the initial
algebra of sem-eval P, where sem-eval evaluates a code as an endofunctor on SemTy κ. This
means defining muObj P as an inductive type with one constructor taking in input sem-eval P
(muObj P). This idea does not work, since muObj P is a sized type while sem-eval P expects
a semantic κ-type.

Another possibility would be to define muObj P by induction on P. However, there is a
problem when we arrive at the I constructor. In this case, we would like to make a recursive
call to muObj applied to the original code P, which is unavailable at this point. We solve the
issue by introducing an auxiliary inductive type family muObj’, which depends on two codes
instead of one. The first code is the original one used to define the guarded recursive type
and we do induction on the second one. Then we define muObj P to be muObj’ P P.

The constructors of muObj’ P Q follow the structure of Q. If Q is a product we have a
pairing constructor, if it is a sum we have the two injections. When Q is the code for the
identity functor, we make a recursive call. For the I case, we have a constructor later taking
two arguments with the same types as the two fields of IObj. Since LaterLim depends both
on a sized type and a proof that it is antitone, we need to define muObj’ mutually with its
own proof of antitonicity muMor’. This construction works since Later and LaterLim take in
input part of the data of a presheaf and they crucially do not depend on the functor laws.

mutual
data muObj’ (P : SemCode κ) : SemCode κ → Size → Set where
const : {X : PSh} {i : Size} → Obj X i → muObj’ P (C X) i
rec : ∀{i} → muObj’ P P i → muObj’ P I i
, : ∀{Q R i} → muObj’ P Q i → muObj’ P R i → muObj’ P (Q � R) i
in1 : ∀{Q R i} → muObj’ P Q i → muObj’ P (Q � R) i
in2 : ∀{Q R i} → muObj’ P R i → muObj’ P (Q � R) i
later : ∀{Q i} (x : Later (muObj’ P Q) i)
→ LaterLim (muObj’ P Q) (muMor’ P Q) i x → muObj’ P (I Q) i

muMor’ : (P Q : SemCode κ) (i : Size) (j : Size< (↑ i)) → muObj’ P Q i → muObj’ P Q j
muMor’ P (C X) i j (const x) = const (Mor X i j x)
muMor’ P I i j (rec x) = rec (muMor’ P P i j x)
muMor’ P (Q � R) i j (x , y) = muMor’ P Q i j x , muMor’ P R i j y
muMor’ P (Q � R) i j (in1 x) = in1 (muMor’ P Q i j x)
muMor’ P (Q � R) i j (in2 x) = in2 (muMor’ P R i j x)
muMor’ P (I Q) i j (later x p) = later x (λ { [k] → p [k] })

We define muMor P to be muMor’ P P. Since muMor preserves the identity and composition,
we get a presheaf mu-κ P for each P. This is used to interpret µ in the clock context κ. We
write mu for the interpretation of µ in a general clock context.

N. Veltri and N. van der Weide 32:15

6 Soundness and Consistency

We now define the notion of interpretation of GTT. To interpret types, one must give a type
of semantical types and a function mapping each syntactic type to its semantical counterpart.
Similarly for contexts, terms, substitutions and definitional equalities. This leads to the
following record where we only show the fields related to types.

record interpret-syntax : Set2 where
field
semTy : ClockCtx → Set1

_J_KTy : ∀ {∆} → Ty ∆ → semTy ∆

Now we prove GTT sound w.r.t. the categorical semantics. We only show the inter-
pretation of the types whose semantics were explicitly discussed in Sections 4 and 5. Since
syntactic types are defined mutually with codes, the interpretation of types J_Ktype has to
be defined simultaneously with the interpretation of codes J_Kcode, which we omit here.

J_Ktype : ∀ {∆} → Ty ∆ → SemTy ∆
J A → B Ktype = J A Ktype ⇒ J B Ktype
J B A Ktype = I J A Ktype
J � A Ktype = � J A Ktype
J µ P Ktype = mu J P Kcode

Similarly, Ctx, Tm and Sub are mapped into SemCtx, SemTm and SemSub respectively.
Definitional equality of terms is interpreted as Agda’s propositional equality, the same for
definitional equality of substitutions.

sem : interpret-syntax
semTy sem = SemTy
_J_KTy sem = J_Ktype

Using the interpetation sem, we can show that GTT is consistent, by which we mean
that not every definitional equality is deducible. We first define a type bool : Ty ∅ as 1 �
1 and two terms TRUE and FALSE as in1 tt and in2 tt respectively, where in1 and in2 are
the two constructors of �. We say that GTT is consistent if TRUE and FALSE are not
definitionally equal.

consistent : Set
consistent = TRUE ∼ FALSE → ⊥

This is proved by noticing that if TRUE were definitionally equal to FALSE, then their
interpretations in sem would be equal. However, they are interpreted as inj1 tt and inj2 tt
respectively, and those are unequal. Hence, GTT is consistent.

7 Conclusions and Future Work

We presented a simple type theory for guarded recursion that we called GTT. We formalized
its syntax and semantics in Agda. Sized types were employed to interpret the characteristic
features of guarded recursion. From this, we conclude that guarded recursion can be simulated
using sized types. We greatly benefited from the fact that sized types constitute a native
feature of Agda, so we were able to fully develop our theory inside a proof assistant.

FSCD 2019

32:16 Guarded Recursion in Agda via Sized Types

This work can be extended in several different directions. Various type theories for
guarded recursion in the literature include dependent types. Currently, there exist two
disciplines for mixing dependent types with guarded recursion: delayed substitutions [12]
and ticks [9]. It would be interesting to extend the syntax and semantics of GTT with
dependent types following one of these two methods.

Abel and Vezzosi [5] formalized a simple type theory extended with the later modality
in Agda. They focus on operational properties of the calculus and give a certified proof
of strong normalization. As future work, we plan to investigate the metatheory and the
dynamic behavior of GTT by formalizing a type checker and a normalization algorithm.
This would also set up the basis for a usable implementation of GTT.

In GTT we restrict the least fixpoint operator µ to act exclusively on strictly positive
functors. This restriction is already present in Atkey and McBride’s calculus, which is
aimed at encoding coinductive types using the later modality and it does not allow solving
general guarded recursive domain equations. GTT is a variant of Atkey and McBride’s type
theory, therefore the similar restriction to stricly positive functors. From the formalization
perspective, this restriction allows us to use Agda’s inductive types to model the guarded
recursive types of GTT, as shown in Section 5.3. In future work, we plan to extend GTT
with the possibility of solving general guarded recursive domain equations. This could be
done in two ways: extending the language with a universe, which allows the encoding of
guarded recursive types as fixpoints in the universe as shown e.g. by Møgelberg [20]; or
considering a µ type former which, besides stricly positive functors, also operates on functors
where all variables are guarded by an occurrence of the later modality. In the second option
we have to consider strictly positive functors to encode usual inductive types, such as the
natural numbers.

Finally, we would like to understand whether sized types can be simulated using guarded
recursion. This could either be done by modeling sized types in a topos of trees-like category
[11, 19] or via the encoding of a type theory with sized types into a dependent type theory
for guarded recursion such as Clocked Type Theory [9].

References
1 Martín Abadi, Luca Cardelli, Pierre-Louis Curien, and Jean-Jacques Lévy. Explicit Substitu-

tions. J. Funct. Program., 1(4):375–416, 1991. doi:10.1017/S0956796800000186.
2 Andreas Abel. MiniAgda: Integrating Sized and Dependent Types. In Partiality and Recursion

in Interactive Theorem Provers, PAR@ITP 2010, Edinburgh, UK, July 15, 2010, pages 18–32,
2010. URL: http://www.easychair.org/publications/paper/51657.

3 Andreas Abel and James Chapman. Normalization by Evaluation in the Delay Monad: A
Case Study for Coinduction via Copatterns and Sized Types. In Proceedings 5th Workshop on
Mathematically Structured Functional Programming, MSFP@ETAPS 2014, Grenoble, France,
12 April 2014., pages 51–67, 2014. doi:10.4204/EPTCS.153.4.

4 Andreas Abel, Brigitte Pientka, David Thibodeau, and Anton Setzer. Copatterns: Program-
ming Infinite Structures by Observations. In The 40th Annual ACM SIGPLAN-SIGACT
Symposium on Principles of Programming Languages, POPL ’13, Rome, Italy - January 23 -
25, 2013, pages 27–38, 2013. doi:10.1145/2429069.2429075.

5 Andreas Abel and Andrea Vezzosi. A Formalized Proof of Strong Normalization for Guarded
Recursive Types. In Programming Languages and Systems - 12th Asian Symposium, APLAS
2014, Singapore, November 17-19, 2014, Proceedings, pages 140–158, 2014. doi:10.1007/
978-3-319-12736-1_8.

6 Andreas Abel, Andrea Vezzosi, and Théo Winterhalter. Normalization by Evaluation for Sized
Dependent Types. PACMPL, 1(ICFP):33:1–33:30, 2017. doi:10.1145/3110277.

http://dx.doi.org/10.1017/S0956796800000186
http://www.easychair.org/publications/paper/51657
http://dx.doi.org/10.4204/EPTCS.153.4
http://dx.doi.org/10.1145/2429069.2429075
http://dx.doi.org/10.1007/978-3-319-12736-1_8
http://dx.doi.org/10.1007/978-3-319-12736-1_8
http://dx.doi.org/10.1145/3110277

N. Veltri and N. van der Weide 32:17

7 Thorsten Altenkirch and Ambrus Kaposi. Type Theory in Type Theory using Quotient
Inductive Types. In Proceedings of the 43rd Annual ACM SIGPLAN-SIGACT Symposium on
Principles of Programming Languages, POPL 2016, St. Petersburg, FL, USA, January 20 -
22, 2016, pages 18–29, 2016. doi:10.1145/2837614.2837638.

8 Robert Atkey and Conor McBride. Productive Coprogramming with Guarded Recursion. In
ACM SIGPLAN International Conference on Functional Programming, ICFP’13, Boston, MA,
USA - September 25 - 27, 2013, pages 197–208, 2013.

9 Patrick Bahr, Hans Bugge Grathwohl, and Rasmus Ejlers Møgelberg. The Clocks are Ticking:
No More Delays! In 32nd Annual ACM/IEEE Symposium on Logic in Computer Science,
LICS 2017, Reykjavik, Iceland, June 20-23, 2017, pages 1–12, 2017. doi:10.1109/LICS.2017.
8005097.

10 Bruno Barras, Samuel Boutin, Cristina Cornes, Judicaël Courant, Jean-Christophe Filliatre,
Eduardo Gimenez, Hugo Herbelin, Gerard Huet, Cesar Munoz, Chetan Murthy, et al. The
Coq Proof Assistant Reference Manual: Version 6.1. PhD thesis, Inria, 1997.

11 Lars Birkedal, Rasmus Ejlers Møgelberg, Jan Schwinghammer, and Kristian Støvring. First
Steps in Synthetic Guarded Domain Theory: Step-Indexing in the Topos of Trees. Logical
Methods in Computer Science, 8(4), 2012. doi:10.2168/LMCS-8(4:1)2012.

12 Aleš Bizjak, Hans Bugge Grathwohl, Ranald Clouston, Rasmus E Møgelberg, and Lars Birkedal.
Guarded Dependent Type Theory with Coinductive Types. In International Conference on
Foundations of Software Science and Computation Structures, pages 20–35. Springer, 2016.

13 James Chapman. Type Theory Should Eat Itself. Electr. Notes Theor. Comput. Sci., 228:21–36,
2009. doi:10.1016/j.entcs.2008.12.114.

14 Ranald Clouston, Ales Bizjak, Hans Bugge Grathwohl, and Lars Birkedal. Programming and
Reasoning with Guarded Recursion for Coinductive Types. In Foundations of Software Science
and Computation Structures - 18th International Conference, FoSSaCS 2015, Held as Part of
the European Joint Conferences on Theory and Practice of Software, ETAPS 2015, London, UK,
April 11-18, 2015. Proceedings, pages 407–421, 2015. doi:10.1007/978-3-662-46678-0_26.

15 Thierry Coquand. Infinite Objects in Type Theory. In Types for Proofs and Programs,
International Workshop TYPES’93, Nijmegen, The Netherlands, May 24-28, 1993, Selected
Papers, pages 62–78, 1993. doi:10.1007/3-540-58085-9_72.

16 Nils Anders Danielsson and Thorsten Altenkirch. Subtyping, Declaratively. In Mathematics
of Program Construction, 10th International Conference, MPC 2010, Québec City, Canada,
June 21-23, 2010. Proceedings, pages 100–118, 2010. doi:10.1007/978-3-642-13321-3_8.

17 John Hughes, Lars Pareto, and Amr Sabry. Proving the Correctness of Reactive Systems
Using Sized Types. In Conference Record of POPL’96: The 23rd ACM SIGPLAN-SIGACT
Symposium on Principles of Programming Languages, Papers Presented at the Symposium, St.
Petersburg Beach, Florida, USA, January 21-24, 1996, pages 410–423, 1996. doi:10.1145/
237721.240882.

18 Saunders MacLane and Ieke Moerdijk. Sheaves in geometry and logic: A first introduction to
topos theory. Springer Science & Business Media, 1992.

19 Bassel Mannaa and Rasmus Ejlers Møgelberg. The Clocks They Are Adjunctions Denotational
Semantics for Clocked Type Theory. In 3rd International Conference on Formal Structures
for Computation and Deduction, FSCD 2018, July 9-12, 2018, Oxford, UK, pages 23:1–23:17,
2018. doi:10.4230/LIPIcs.FSCD.2018.23.

20 Rasmus Ejlers Møgelberg. A Type Theory for Productive Coprogramming via Guarded
Recursion. In Joint Meeting of the Twenty-Third EACSL Annual Conference on Computer
Science Logic (CSL) and the Twenty-Ninth Annual ACM/IEEE Symposium on Logic in
Computer Science (LICS), CSL-LICS ’14, Vienna, Austria, July 14 - 18, 2014, pages 71:1–
71:10, 2014. doi:10.1145/2603088.2603132.

21 Hiroshi Nakano. A Modality for Recursion. In 15th Annual IEEE Symposium on Logic in
Computer Science, Santa Barbara, California, USA, June 26-29, 2000, pages 255–266, 2000.
doi:10.1109/LICS.2000.855774.

FSCD 2019

http://dx.doi.org/10.1145/2837614.2837638
http://dx.doi.org/10.1109/LICS.2017.8005097
http://dx.doi.org/10.1109/LICS.2017.8005097
http://dx.doi.org/10.2168/LMCS-8(4:1)2012
http://dx.doi.org/10.1016/j.entcs.2008.12.114
http://dx.doi.org/10.1007/978-3-662-46678-0_26
http://dx.doi.org/10.1007/3-540-58085-9_72
http://dx.doi.org/10.1007/978-3-642-13321-3_8
http://dx.doi.org/10.1145/237721.240882
http://dx.doi.org/10.1145/237721.240882
http://dx.doi.org/10.4230/LIPIcs.FSCD.2018.23
http://dx.doi.org/10.1145/2603088.2603132
http://dx.doi.org/10.1109/LICS.2000.855774

32:18 Guarded Recursion in Agda via Sized Types

22 Ulf Norell. Dependently Typed Programming in Agda. In Proceedings of TLDI’09: 2009
ACM SIGPLAN International Workshop on Types in Languages Design and Implementation,
Savannah, GA, USA, January 24, 2009, pages 1–2, 2009.

23 Jorge Luis Sacchini. Type-Based Productivity of Stream Definitions in the Calculus of
Constructions. In 28th Annual ACM/IEEE Symposium on Logic in Computer Science, LICS
2013, New Orleans, LA, USA, June 25-28, 2013, pages 233–242, 2013. doi:10.1109/LICS.
2013.29.

A Syntax of GTT

Contexts

− `∆

Γ `∆ Γ `∆ A type
Γ, x : A `∆

Γ `∅
↑Γ `κ

Codes

Γ `∆ I code
Γ `∆ A type
Γ `∆ A code

Γ `∆ P code Γ `∆ Q code
Γ `∆ P ×Q code

Γ `∆ P code Γ `∆ Q code
Γ `∆ P +Q code

Γ `κ P code
Γ `κ .P code

Types

Γ `∅ 1 type
Γ `∆ A type Γ `∆ B type

Γ `∆ A×B type

Γ `∆ A type Γ `∆ B type
Γ `∆ A+B type

Γ `∆ A type Γ `∆ B type
Γ `∆ A→ B type

↑Γ `κ A type
Γ `∅ �A type

Γ `∅ A type
↑Γ `κ ↑A type

Γ `κ A type
Γ `κ .A type

Γ `∆ P code
Γ `∆ µP type

Substitutions

Γ `∆
`∆ ε : Γ→ −

Γ `∆
`∆ id : Γ→ Γ

`∆ s : Γ1 → Γ2, A

`∆ pr s : Γ1 → Γ2

`∆ s : Γ1 → Γ2 Γ1 `∆ t : A
`∆ s, t : Γ1 → Γ2, A

`∆ s1 : Γ1 → Γ2 `∆ s2 : Γ2 → Γ3
`∆ s2 ◦ s1 : Γ1 → Γ3

`∅ s : Γ1 → Γ2

`κ up s : ↑Γ1 → ↑Γ2

`κ s : ↑Γ1 → ↑Γ2
`∅ down s : Γ1 → Γ2

http://dx.doi.org/10.1109/LICS.2013.29
http://dx.doi.org/10.1109/LICS.2013.29

N. Veltri and N. van der Weide 32:19

Terms

x : A ∈ Γ
Γ `∆ x : A

`∆ s : Γ1 → Γ2 Γ2 `∆ t : A
Γ1 `∆ t[s] : A

Γ, x : A `∆ t : B
Γ `∆ λx. t : A→ B

Γ `∆ f : A→ B Γ `∆ t : A
Γ `∆ f t : B

Γ `∅ tt : 1
Γ `∅ t : A

Γ, x : 1 `∅ unitrec t : A

Γ `∆ t : A×B
Γ `∆ π1t : A

Γ `∆ t : A×B
Γ `∆ π2t : B

Γ `∆ t : A
Γ `∆ in1t : A+B

Γ `∆ t : B
Γ `∆ in2t : A+B

Γ `∆ t1 : A Γ `∆ t2 : B
Γ `∆ (t1, t2) : A×B

Γ, x : A `∆ t1 : C Γ, y : B `∆ t2 : C
Γ, z : A+B `∆ plusrec t1 t2 : C

↑Γ `κ: t : A
Γ `∅ box t : �A

Γ `∅: t : �A
↑Γ `κ unbox t : A

Γ `∅ t : A
↑Γ `κ up t : ↑A

↑Γ `κ t : ↑A
Γ `∅ down t : A

Γ `κ t : A
Γ `κ next t : .A

Γ `κ f : .(A→ B) Γ `κ t : .A
Γ `κ f ~ t : .B

Γ `κ f : .A→ A

Γ `κ dfix f : .A
Γ `∅ t : � . A

Γ `∅ force t : �A

Γ `∆ t : FP (µP)
Γ `∆ cons t : µP

Γ ` f : FP (µP ×A)→ A

Γ `∆ primrec f : µP → A

where FP is the evaluation of the code P into endofunctors on types, called eval P in
Section 3. We omit the presentation of the definitional equalities of terms and substitutions,
which can be found in our Agda formalization.

Type Isomorphisms

�(↑A) ∼= A �(A+B) ∼= �A+�B ↑(A→ B) ∼= ↑A→ ↑B ↑(µP) ∼= µ(↑P)

Context Isomorphisms

− ∼= ↑− ↑Γ, ↑A ∼= ↑(Γ, A)

FSCD 2019

	Introduction
	The Host Type Theory
	The Object Type Theory
	Types
	Contexts
	Terms
	Substitutions
	Definitional equalities
	Example: Streams

	Categorical Semantics
	Presheaves
	Modelling Simple Types

	Modelling Guarded Recursion
	Context Weakening and the Box Modality
	The Later Modality
	Guarded Recursive Types

	Soundness and Consistency
	Conclusions and Future Work
	Syntax of GTT

