
Mechanical Verification of Interactive Programs

Specified by Use Cases

Guillaume Claret, Yann Régis-Gianas

To cite this version:

Guillaume Claret, Yann Régis-Gianas. Mechanical Verification of Interactive Programs Speci-
fied by Use Cases. 3rd IEEE/ACM FME Workshop on Formal Methods in Software Engineer-
ing, May 2015, FLoren, France. 2015, <10.1109/FormaliSE.2015.17>. <hal-01255107>

HAL Id: hal-01255107

https://hal.inria.fr/hal-01255107

Submitted on 13 Jan 2016

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Hal-Diderot

https://core.ac.uk/display/47085555?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
https://hal.archives-ouvertes.fr
https://hal.inria.fr/hal-01255107

Mechanical Verification of Interactive Programs
specified by Use Cases

Guillaume Claret∗, Yann Régis-Gianas∗
∗ Univ Paris Diderot, Sorbonne Paris Cité,

PPS, UMR 7126 CNRS,
PiR2, INRIA Paris-Rocquencourt,

F-75205 Paris, France
http://guillaume.claret.me/ and http://yann.regis-gianas.org/

Abstract—Interactive programs, like user interfaces,
are hard to formally specify and thus to prove cor-
rect. Some ideas coming from functional programming
languages have been successful to improve the way we
write safer programs, compared to traditional imper-
ative languages, but these ideas mostly apply to code
fragments without any inputs–outputs.
Using the purely functional language Coq, we present

a new technique to represent interactive programs and
formally verify use cases using the Coq proof engine
as a symbolic debugger. To this end we introduce the
notion of scenarios, well-typed schema of interactions
between an environment and a program.We design and
certify a blog system as an illustration. Our approach
generalizes unit-testing techniques and outlines a new
method for mechanically assisted checking of effectful
functional programs.

I. Introduction
Implementing and proving correct interactive programs

is challenging. Indeed, interactive programs are hard to
reason about because they communicate with an outer
environment (the operating system, the network, the
user, . . .) which may be under-specified and non determin-
istic. Moreover, the communications between the program
and the environment can happen at many points during
the execution and may depend on previous interactions.

Many techniques have been developed to model, specify
and prove correct interactive or concurrent programs[15].
For instance, process algebra and temporal logics are well
understood abstract models for such programs. In these
abstract models, some interesting behavioral properties
can be automatically proved by model-checkers. Yet, these
tools usually provide guarantees about the model of the
program, not its actual implementation.
In another approach, called software-proof co-design,

the specification and the verification of a program is
not disconnected from its actual implementation. In that
case, specifying, implementing and verifying are tightly
interleaved in the software development process. This
tight integration is possible within the Coq proof assistant
which is both a programming language and an assisted
prover. Yet, even if a realistic compiler for the C language
has already been developed in Coq[12], using Coq as a
general purpose programming language may be considered

a tour de force especially because it is purely functional
and only accepts total and terminating functions. Our
objective is to alleviate the cost of certified programming
(i) by importing monadic programming technique from
the Haskell programming language to express effectful and
partial computations ; (ii) by mechanizing mainstream
software engineering techniques inside Coq to ease the
migration from unverified to verified specifications.

In software development processes, use cases[10] are
commonly used to specify and verify programs with
inputs–outputs. A use case is basically a list of interaction
steps between a program and an environment, in order to
denote functional properties. A use case can be verified
by manually running the program or by automated unit-
testing. However, unit-testing methods are never complete
as soon as there is an infinite set of possible values for the
program inputs. We will show how to verify use cases on
infinitely many inputs using the notion of scenarios.
A lot of ideas coming from functional programming

languages changed the way we structure software today.
Among these ideas are the use of composable higher-order
functions as the main building block[9], referentially trans-
parent expressions, algebraic data types, polymorphic[16]
and dependent types[19]. Many programmers now use
these ideas to increase the modularity and the correctness
of their programs.

One of the limitations of most functional programming
approaches is that they are often only effective on the
pure (as "without inputs and outputs") fragments of a
program. Other methodologies are required to write the
impure (or interactive) parts (see for example [11]). For
example, in the functional language Haskell, the impure
computations are represented into a monad[23] using some
special combinators. This monad isolates by typing the
pure and impure computations, but offers limited ways to
reason about the correctness of the inputs–outputs.

To extend and continue with the techniques developed
in Haskell, we chose the purely functional language Coq
to write and mechanically certify interactive programs.
Coq is both a purely functional language and a theo-
rem prover. The theory of Coq is based on the CIC[5]
(the Calculus of Inductive Constructions type theory). It

features rich inductive and dependent types, terminating-
by-construction expressions and the ability to mix proofs
and computations. Its advanced module system allows to
write large developments. Coq programs can be compiled
to native code for maximum efficiency.

We develop a new method to write and certify interac-
tive programs by formal use cases analysis using Coq. We
illustrate our method by programming and certifying a
blog engine with a web interface. The sources are available
online on https://github.com/clarus/coq-chick-blog.

In this paper we will introduce and present:
• the notion of computations to express interactive

computations in the purely functional language Coq;
• a semantics for the computations as the set of well-

typed runs. A run describes both the trace, which can
be built interactively, and the result of a computation;

• a new technique to express and prove functional
properties over interactive programs. To this end, we
introduce the concept of scenarios which are schema
of well-typed interactions between a program and an
environment. The scenarios are a mechanical formal-
ization of the reasoning by use cases for verifying a
program;

• a symbolic debugger for interactive programs, to as-
sist the writing of scenarios and to spot bugs. This
debugger relies on the existing tactics mode[6] of Coq,
using this mode to explore the execution paths of an
interactive computation;

• a blog system implemented and certified using our
method. In particular, the user can login, add, edit
or remove a post though a web interface. This blog
system is compiled to an executable version using
as an intermediate language the OCaml programming
language (see http://ocaml.org/).

II. A challenge
Our challenge is to both develop and certify a blog

engine in Coq. This challenge is interesting because a blog
is a realistic example of a system with interactive user
interactions.

Using this blog engine, the user is able to login, add, edit
or delete a post. We save the posts to the file system, with
one file per post. We take a very simple login system (no
passwords) to concentrate on the architecture. The user
interacts with the blog through HTTP requests.
We use an implementation of the HTTP protocol writ-

ten in OCaml, a general purpose programming language.
The blog itself is entirely written in Coq. We formally
express and prove some non-functional properties and
some functional properties reasoning by use cases. To
generate a runnable executable of the blog, we compile
the Coq code into OCaml code, and then to assembly code
using the OCaml compiler.
Our trust base is composed of:
• the Coq system
• the compilation process from Coq to OCaml

• the OCaml compiler and runtime
• the implementation of HTTP in OCaml

III. Computations and runs
We will introduce the notions of computations and runs

to represent and give a semantics to interactive programs
in Coq.

A. Computations
A command is the value emitted during a call of a

program to the outer environment. Let Command.t be a
type of command and:

answer : Command.t→ Type

the dependent type of the answers to these commands. The
set of interactive computations returning values of type A
is represented by the type C A, inductively defined in Coq
by:

Inductive C (A : Type) : Type :=
| Ret : ∀ (x : A), C A
| Call : ∀ (c : Command.t), (answer c→ CA)→ CA.

This means that a computation can be either:
• a pure expression x of type A;
• a call to the environment with an argument c of

type Command.t and a handler waiting for an answer
of type answer c, dependent on the value of the
command.

The role of a computation is to combine pure code
fragments to form more complex programs interacting
with the outer system.
Here is a computation printing the content of a file in

the console:
1 Definition print_readme : C unit :=
2 Call (ReadFile "README") (fun text⇒
3 match text with
4 | None⇒ Ret ()
5 | Some text⇒
6 Call (Log text) (fun _⇒
7 Ret ())
8 end).

assuming the following relations:

ReadFile : string→ Command.t
Log : string→ Command.t

answer ReadFile = option string
answer Log = unit

the unit type being a special type with just one value
(), used for function which do not return any meaningful
results.
We call an external procedure to read the file README on

line 2. The variable text is set to the answer of the call,
which is expected to be the content of the README file. If
the content is None (in case of error), we return the unit
value on line 4. If the content is some text, we print it

on the standard output using the command Log on line 6.
Once the printing function has terminated, we return the
unit value.

The values of the answers are left unspecified. We only
assume there will be one answer of the right type for
each call. We will see how to define execution traces and
characterize the answers more precisely.

B. Runs
To reason about interactive programs we need to give a

semantics to the computations. The semantics is defined
by all the runs of a program. A run is an execution of a
computation with explicit answers to the calls.

The type of the runs R is parametrized by a type A
and a computation c of type C A. We define it inductively
in Coq, by symmetry with the definition of computations:

Inductive R (A : Type) : C A→ Type :=
| RunRet : ∀ (x : A), RA (Retx)
| RunCall : ∀ (c : Command.t) (a : answer c),
∀ {handler : answer c→ CA}, (RA (handler a))→
RA (Call c handler).

A run can be either:
• a run of a Ret that carries the pure value x returned

by a computation;
• a run of a Call of a command c that received an

answer a of the corresponding type and a run of a
handler applied to the answer a.

We do not explicitly write the handler terms since they
are already in the definition of the computation and thus
can be automatically inferred by Coq. Implicit parameters
are declared into braces in Coq.
For the print_readme program, an example of run is:

Definition run_print_readme
: Run unit print_readme :=
RunCall (ReadFile "README") (Some "Blabla") (
RunCall (Log "Blabla") () (
RunRet ())).

This run tells us that the program will call a command
ReadFile "README". If we answer Some "Blabla", then
it will call the command Log "Blabla" to which the only
possible answer, of type unit, is (). Then the program
terminates without any other calls. We can see this run
as a form of very weak specification of the program
print_readme, describing its behavior only when we an-
swer Some "Blabla" to the ReadFile operation.
A run describes both an execution trace of a computa-

tion and the result of its evaluation with this trace. Thus,
we can extract the result of a run with the function eval:

Fixpoint eval {A : Type} {c : C A} (r : RAc) : A :=
match r with
| RunRet x⇒ x
| RunCall c a h r ⇒ eval r
end.

We define eval by induction over a run. We recurse until
we find the inner Ret and return its value. The eval
function returns a value of type A as expected.

Similarly, we can extract the trace of a run:
Fixpoint trace {A : Type} {c : C A} (r : RAc)

: list {c : Command.t & answer c} :=
match r with
| RunRet x⇒ []
| RunCall c a h r ⇒ (c, a) :: trace r
end.

A trace is a list of dependent couples of commands and
answers of the corresponding type. We recurse over a run,
accumulating the command and the answer of each call in
a list.

Notice that since Coq is a normalizing language, by
construction, the trace is always a finite list and the
evaluation of a run always terminates.

We have given a formal definition of interactive compu-
tations in Coq and defined the semantics of a computation
as the set of its runs. We will show how we used the notion
of computations to build a blog server.

IV. Programming the server
We will present the code of a blog engine, and how

we used the notion of computations to implement the
input/output operations.

A. The server handler
The main function of the blog server is:

server : Path.t→ Cookies.t→ C Response.t

This function handles one request from the client. A
request is a path (an URL, like /login) and the status
of the client’s cookies. A response is:

• a MIME type;
• a new set of cookies;
• a body, typically some HTML content.
The server function returns a computation of response

since it does calls to the system. The state of the blog is
saved on the file system and accessed through system calls.
In total, the blog system itself is made of 786 lines of Coq
code.

The server function is pure, expect for the uninterpreted
input/output operations. In particular, this function is
deterministic, cannot return any exceptions and always
terminates by construction. This is given to us for free,
thanks to the strict type-system of Coq.

The path of the request, initially a string URL, is parsed
by a pure Coq function to the sum type Path.t. A sum
type is a union of different types, each introduced by a
constructor. The constructors of the Path.t type are given
in the figure 1.

This explicit sum type also describes the web API of
the blog application. The NotFound and WrongArguments
constructors are for ill-formed requests. Static retrieves

Fig. 1. Constructors of the P ath.t type.
Constructor Arguments Root path

NotFound
WrongArguments

Static list string /static
Index /
Login /login
Logout /logout
PostAdd /posts/add

PostDoAdd string × date /posts/do_add
PostEdit string /posts/edit

PostDoEdit string × string /posts/do_edit
PostDoDelete string /posts/do_delete

PostShow string /posts/show

static content such as CSS files. Index shows the main
page. You use Login and Logout to login and logout (there
is no passwords or user names). PostAdd shows the form
to add a post, PostDoAdd effectively add a post. So do
PostEdit and PostDoEdit to edit a post. PostDoDelete
removes a post. Finally, PostShow shows the content of a
post.

B. Edit a post
We will see in details how we implemented the handler

for the PostDoEdit requests. This is the code extract of
the function post_do_edit, which generates a response
for a request of the form:

/posts/do_edit/url?content =content

1 Definition post_do_edit (is_logged : bool)
2 (url : string) (content : string) : C Response.t :=
3 if negb is_logged then
4 ret Response.Forbidden
5 else
6 let! is_success : bool := fun k ⇒
7 let! header := Helpers.header url in
8 match header with
9 | None⇒ k false

10 | Some header⇒
11 let file_name := posts_directory ++
12 Post.Header.file_name header in
13 call! is_success :=
14 UpdateFile file_name content in
15 k is_success
16 end in
17 ret (Response.PostDoEdit url is_success).

We check on line 3 if the user is logged. If so, we call the
function Helpers.header on line 7 which gets the meta-
data of a post from the file system. Its type is:

∀A, string→ (option Post.Header.t→ CA)→ CA

Fig. 2. Calls we use in the blog.
Command Arguments Answer
ReadFile string option string

UpdateFile string × string bool
DeleteFile string bool
ListPosts string option (list header)

Log string unit

This function Helpers.header waits for a continuation,
a function returning the next computation. The notation
let! on line 7 is just a syntactic sugar to call a function
with a continuation:

let! x := e1 in e2 ⇐⇒ e1 (λx. e2)

We program by continuations to compose computations.
Since the monads can generalize the continuation-passing
style[17], we could have added the operator bind operator:

Bind : ∀AB, C A→ (A→ CB)→ CB

but we preferred to keep our number of primitives as small
as possible. We believe it simplifies the reasoning over the
runs, but we are opened to discussions on this point.

If the header is not available, we return false for the
success status to the continuation k on line 9. Otherwise
we call the command UpdateFile on line 14 to update the
content of the post on the file system. The notation call!
on line 13 is a syntactic sugar for a call:

call! x := c in e ⇐⇒ Call c (λx. e)

The list of the calls we use is given on figure 2.
Finally, we return a page PostDoEdit on line 17 with

a link to the original post and the success status of the
update.

The Response.t type is a sum type, with one constructor
per kind of page. A purely functional pretty-printer then
renders the corresponding HTML content. The pretty-
printer is not verified.

We have seen how to program a blog engine in a type-
safe manner in Coq using the notion of computations. In
the next section, we will see how we verified this blog
system.

V. Specifying the server
The type-system of Coq already provides some safety

properties on the computations, like the termination. We
will go further, proving non-functional and functional
properties using our notion of scenarios.

A. Scenario
A scenario is a set of runs of a computation. A scenario

whose definition is accepted by Coq is a set of runs
validated by its computation. The idea is to specify the
behavior of the blog reasoning by use cases, verifying
functional requirements.

A scenario is usually described as a family of runs
parametrized by some user inputs. To be relevant, the use
case or the expression of the scenario should be as clear
as possible. An example of an informal use case is the
following:

1) I add a new post as an authenticated user
2) I edit this post with some content c
3) I show this post and check that this is the content c

I edited
We formally verified this use case by writing a well-formed
scenario. To keep the explanations short, we will study the
simpler use case of the index page service:

1) I connect to the index page URL
2) the blog calls the file system to list the available

posts
• in case of error, a log message is printed on the

server console
3) the index page is displayed with the list of posts

B. Symbolic debugger
To write scenarios we leverage the tactics mode of Coq.

The tactics mode is normally used to prove theorems rea-
soning step by step. By using this mode to define scenarios,
we get a kind of interactive debugger for computations:
it is possible to evaluate a computation stepping through
each call, like we would iterate into the reasoning steps of a
theorem. At each call an explicit answer must be provided
to go to the next call. The trace of the user interactions
with the debugger is then a run of a computation.
More important, this debugger is symbolic: Coq being

designed to manipulate symbolic expressions, we do not
need to instantiate variables with concrete values. So the
interactions with the debugger can actually describe sets
of runs, that is to say scenarios.
The scenario of the index page when there are no errors

is the following:

1 Definition index_ok (cookies : Cookies.t)
2 (headers : list Header.t)
3 : Run.t (Main.server Path.Index cookies).
4 simpl.
7 apply (RunCall (ListPosts _) (Some headers)).
8 apply (RunRet (Response.Index
9 (Cookies.is_logged cookies)

10 headers)).
11 Defined.

This scenario describes a run of the server handler for each
user cookie and list of post headers. We do not need to
execute these runs: because index_ok is well-typed, we
know they are all correct. They do just one call ListPosts
and display the list of posts. This is a big advantage
compared to unit-testing which would requires to run
the program on each possible input, what is exhaustively
impossible here since there are infinitely many inputs.

To construct this scenario using the debugger (the
tactics mode), we type the first three lines. The Coq
interpreter replies:

1 subgoals
cookies : Cookies.t
headers : list Header.t
______________________________________(1/1)
Run.t (Main.server Path.Index cookies)

This means that we have two symbolic parameters, cookies
and headers, and aim to construct a run of the server
handler applied to the index path and the cookies. We
enter the simpl command on line 4 to partially evaluate
the computation. Coq will use the fact that Path.Index
is a concrete value. We get:

1 subgoals
cookies : Cookies.t
headers : list Header.t
______________________________________(1/1)
Run.t (Main.Controller.index

(Cookies.is_logged cookies))

We can guess what will be the next call unfolding the
Main.Controller.index definition with the command
unfold or looking directly at its source code on line 3
on figure 3.

1 Definition index (is_logged : bool)
2 : C.t Response.t :=
3 call! posts := ListPosts posts_dir in
4 match posts with
5 | None =>
6 do_call! Log ("Cannot open the " ++
7 posts_dir ++ " directory.") in
8 ret (Response.Index is_logged [])
9 | Some posts =>

10 ret (Response.Index is_logged posts)
11 end.

Fig. 3. Source code of the index function

We guess it is ListPosts to some folder, to which we
answer Some headers on line 7:

apply (RunCall (ListPosts _) (Some headers)).

The Coq system validates our guess, unifying modulo
evaluation the computation:

Main.Controller.index (Cookies.is_logged cookies)

with a computation of the form:

Call (ListPosts . . .) (fun a⇒ . . .)
We continue the evaluation of the computation by one step
and get to:

1 subgoals
cookies : Cookies.t
headers : list Header.t
______________________________________(1/1)
Run.t (C.Ret (Response.Index

(Cookies.is_logged cookies)
headers))

Since we are on a Ret expression, the evaluation is termi-
nated and we can conclude by the line 8, which explicitly
states the expected result. In particular, we require the
response to be the index page and to include the list
of headers.

Likewise, we have defined a scenario for the index page
with errors from the file system, by answering None to the
call ListPosts. We have also verified the add, edit and
show scenario.

In our experience, defining a scenario is similar to
writing a unit-test. Indeed, a unit-test for an interactive
program is basically a trace of all the responses of the
environment to the program. This is exactly the same
for a scenario, whereas the responses can be symbolic
(representing an infinite set of possible values) and not
only concrete (representing a single value).

C. Non-functional properties
We also verify some non-functional properties. Even

if this not the main goal of the article, it shows that
the notion of computations is not only useful for the
certification of use cases.

For example, we prove than an unauthenticated user
cannot make a request which generates calls modifying
the file system. To do so, we define a predicate:

is_read : Command.t→ bool

to check that a command does not modify the file system.
By induction over a computation, we define what is a
computation free of write operations:

Inductive read_only {A : Type} : C A→ Prop :=
| RoRet : ∀x : A, read_only (Retx)
| RoCall :
∀ (c : Command.t) (handler : answer c→ CA),
is_read c = true→
(∀ (a : answer c), read_only (handler a))→
read_only (Call c handler).

By disjunction on the path, we show in Coq that the
predicate read_only is valid for any computation handling
a request from an unauthenticated user:
∀ (path : Path.t),

read_only (Main.server pathCookies.LoggedOut)
which proves our claim.

We have seen how to show both functional and non-
functional properties over a computation. We can prove
functional properties in an interactive way using Coq as a
symbolic debugger.

VI. Compiling the server
We will explain how we compiled the computation of the

blog system to an executable program, using an automatic
translation to the OCaml language.
The Coq programming language is a purely functional

language. We can represent the input/output operations

but we cannot execute them. To do so, we use the extrac-
tion mechanism[13], which compiles Coq programs to the
impure programming language OCaml.

We introduce some uninterpreted constants and extract
them to specific OCaml impure expressions. For example:

Parameter printl : String.t -> t unit.
Extract Constant printl => "Lwt_io.printl".

declares the Coq constant printl and associates it to
the OCaml function Lwt_io.printl, which prints a line
on the standard output. After extraction, this function
will effectively display a line on the screen. As mentioned
earlier, this compilation process is part of the trusted base.

We link the extracted code to the OCaml library Co-
HTTP to handle the HTTP protocol. CoHTTP creates
the main program loop, waiting for HTTP requests. The
event-based concurrency model is managed by the Lwt
library[22], a cooperative lightweight threads library for
OCaml.

VII. Related work
Effectful functional programming have been intensively

studied by the Haskell community, and large real programs
have been written using this functional language. The
main technique popularized by Haskell is the IO monad to
express impure computations and to verify by typing the
isolation of pure and impure expressions. Simon Peyton
Jones gave a nice summary of the IO monad and other
techniques[11]. We wanted to build upon this experience
exploring new solutions, thanks to the more powerful type-
system of Coq featuring dependent-types and proposi-
tional types.

The Ynot project[18] studied the use of a parametrized
monad to represent and reason about impure computa-
tions in Coq. This project focused more on the imper-
ative and low-level memory management, using Hoare-
logic[8] with pre- and post-conditions together with sepa-
ration logic[21]. They explored extensions to reason about
inputs–outputs and have written and mechanically cer-
tified a web application[14]. Unlike our work, their ap-
plication is specified by an invariant over the execution
trace of the program. They do not study the verification
of functional properties, or use cases.

The algebraic effects and handlers[20], a generic frame-
work to represent effects in a compositional way in purely
functional languages, led to a lot of research about proven
safe effectful programs. This framework is more powerful
than ours because it can represent many different kinds
of effects, like non-determinism, exceptions, or states, and
can combine them in a generic way. This power has a cost:
the algebraic effects are also more complex to define and
understand. It could be interesting to see if our notion
of computations can be viewed as a particular case of
algebraic effect.

The dependently typed programming language Idris[1]
proposes an implementation of algebraic effects[2]. Edwin

Brady and Simon Fowler show how to specify the rules
of a game or a web protocol and how to verify by typing
their implementations in Idris (see [3] and [7]). These works
mostly focus on expressing invariants and building the
right primitives to write correct-by-construction programs.
By contrast, we focused on specifications by use cases and
on a tool, the symbolic debugger, to express these cases
interactively.

Ur/Web[4] is a functional programming language and a
platform for the web development made by Adam Chli-
pala. We can cite the BazQux Reader, a commercial RSS
feed reader, as a successful application of the Ur/Web
platform. The language Ur does not feature full dependent
types, but can generate formally valid and unexploitable
web pages and SQL requests thanks to its rich type system
and its integrated platform. Combining our notion of
scenarios with the ideas of the Ur/Web platform could be
an interesting subject.

VIII. Conclusion
We have presented the notions of computations and

runs to represent and to give a semantics to interactive
programs in the purely functional language Coq. We have
shown how to define and prove non-functional properties
on a computation using predicates inductively defined on
the combinators of the computations. We have introduced
the notion of scenarios to denote and verify functional
properties or use cases of a program. The usage of the
tactic mode of Coq provides a symbolic debugger to write
these scenarios interactively. To illustrate this approach,
we developed and certified a blog system in Coq.

We would like to extend our techniques to a wider
class of programs. In particular, we want to support
asynchronous calls and concurrent computations. To add
concurrency, we could use a fork primitive or an actor
model. As an application, this would allow us to certify
together the blog system, its HTTP front-end and its
database or file system back-end, even in the case of
concurrent user requests.

References
[1] Edwin Brady. Idris, a general-purpose dependently typed pro-

gramming language: Design and implementation. J. Funct.
Program., 23(5):552–593, 2013.

[2] Edwin Brady. Programming and reasoning with algebraic effects
and dependent types. In Greg Morrisett and Tarmo Uustalu, ed-
itors, ACM SIGPLAN International Conference on Functional
Programming, ICFP’13, Boston, MA, USA - September 25 - 27,
2013, pages 133–144. ACM, 2013.

[3] Edwin Brady. Resource-dependent algebraic effects. In Jur-
riaan Hage and Jay McCarthy, editors, Trends in Functional
Programming, Lecture Notes in Computer Science, pages 18–
33. Springer International Publishing, 2015.

[4] Adam Chlipala. Ur/web: A simple model for programming
the web. In Sriram K. Rajamani and David Walker, editors,
Proceedings of the 42nd Annual ACM SIGPLAN-SIGACT Sym-
posium on Principles of Programming Languages, POPL 2015,
Mumbai, India, January 15-17, 2015, pages 153–165. ACM,
2015.

[5] T. Coquand and Gérard Huet. The calculus of constructions.
Technical Report RR-0530, May 1986.

[6] David Delahaye. A tactic language for the system coq. In Michel
Parigot and Andrei Voronkov, editors, Logic for Programming
and Automated Reasoning, 7th International Conference, LPAR
2000, Reunion Island, France, November 11-12, 2000, Proceed-
ings, volume 1955 of Lecture Notes in Computer Science, pages
85–95. Springer, 2000.

[7] Simon Fowler and Edwin Brady. Dependent types for safe and
secure web programming. In Rinus Plasmeijer, editor, Proceed-
ings of the 25th Symposium on Implementation and Application
of Functional Languages, Nijmegen, The Netherlands, August
28-30, 2013, page 49. ACM, 2013.

[8] C. A. R. Hoare. An axiomatic basis for computer programming.
Commun. ACM, 12(10):576–580, 1969.

[9] P. Hudak, S. Peyton Jones, and P. Wadler (editors). Report
on the Programming Language Haskell, A Non-strict Purely
Functional Language (Version 1.2). ACM SIGPLAN Notices,
27(5), May 1992.

[10] Ivar Jacobson, Magnus Christerson, Patrik Jonsson, and Gun-
nar Övergaard. Object-oriented software engineering - a use
case driven approach. Addison-Wesley, 1992.

[11] Simon Peyton Jones. Tackling the awkward squad: monadic in-
put/output, concurrency, exceptions, and foreign-language calls
in haskell. In Engineering theories of software construction,
pages 47–96. Press, 2001.

[12] Xavier Leroy. Formal verification of a realistic compiler. Com-
munications of the ACM, 52(7):107–115, 2009.

[13] Pierre Letouzey. Extraction in coq: An overview. In Arnold
Beckmann, Costas Dimitracopoulos, and Benedikt Löwe, edi-
tors, Logic and Theory of Algorithms, 4th Conference on Com-
putability in Europe, CiE 2008, Athens, Greece, June 15-20,
2008, Proceedings, volume 5028 of Lecture Notes in Computer
Science, pages 359–369. Springer, 2008.

[14] Gregory Malecha, Greg Morrisett, and Ryan Wisnesky. Trace-
based verification of imperative programs with i/o. J. Symb.
Comput., 46(2):95–118, February 2011.

[15] Zohar Manna and Amir Pnueli. The Temporal Logic of Reactive
and Concurrent Systems. Springer-Verlag New York, Inc., New
York, NY, USA, 1992.

[16] Robin Milner. A theory of type polymorphism in programming.
J. Comput. Syst. Sci., 17(3):348–375, 1978.

[17] Eugenio Moggi. Computational lambda-calculus and monads.
In Proceedings of the Fourth Annual Symposium on Logic in
Computer Science (LICS ’89), Pacific Grove, California, USA,
June 5-8, 1989, pages 14–23. IEEE Computer Society, 1989.

[18] Aleksandar Nanevski, Greg Morrisett, Avi Shinnar, Paul Gov-
ereau, and Lars Birkedal. Ynot: Reasoning with the awkward
squad. In In ACM SIGPLAN International Conference on
Functional Programming, 2008.

[19] Ulf Norell. Dependently typed programming in agda. In Andrew
Kennedy and Amal Ahmed, editors, Proceedings of TLDI’09:
2009 ACM SIGPLAN International Workshop on Types in
Languages Design and Implementation, Savannah, GA, USA,
January 24, 2009, pages 1–2. ACM, 2009.

[20] Gordon D. Plotkin and Matija Pretnar. Handlers of algebraic
effects. In Giuseppe Castagna, editor, Programming Languages
and Systems, 18th European Symposium on Programming,
ESOP 2009, Held as Part of the Joint European Conferences
on Theory and Practice of Software, ETAPS 2009, York, UK,
March 22-29, 2009. Proceedings, volume 5502 of Lecture Notes
in Computer Science, pages 80–94. Springer, 2009.

[21] John C. Reynolds. Separation logic: A logic for shared mutable
data structures. In 17th IEEE Symposium on Logic in Computer
Science (LICS 2002), 22-25 July 2002, Copenhagen, Denmark,
Proceedings, pages 55–74. IEEE Computer Society, 2002.

[22] Jérôme Vouillon. Lwt: a cooperative thread library. In Eijiro
Sumii, editor, Proceedings of the ACM Workshop on ML, 2008,
Victoria, BC, Canada, September 21, 2008, pages 3–12. ACM,
2008.

[23] Philip Wadler. The essence of functional programming. In Ravi
Sethi, editor, Conference Record of the Nineteenth Annual ACM
SIGPLAN-SIGACT Symposium on Principles of Programming
Languages, Albuquerque, New Mexico, USA, January 19-22,

1992, pages 1–14. ACM Press, 1992.

