15 research outputs found

    Transport layer protocols and architectures for satellite networks

    Get PDF
    Designing efficient transmission mechanisms for advanced satellite networks is a demanding task, requiring the definition and the implementation of protocols and architectures well suited to this challenging environment. In particular, transport protocols performance over satellite networks is impaired by the characteristics of the satellite radio link, specifically by the long propagation delay and the possible presence of segment losses due to physical channel errors. The level of impact on performance depends upon the link design (type of constellation, link margin, coding and modulation) and operational conditions (link obstructions, terminal mobility, weather conditions, etc.). To address these critical aspects a number of possible solutions have been presented in the literature, ranging from limited modifications of standard protocols (e.g. TCP, transmission control protocol) to completely alternative protocol and network architectures. However, despite the great number of different proposals (or perhaps also because of it), the general framework appears quite fragmented and there is a compelling need of an integration of the research competences and efforts. This is actually the intent of the transport protocols research line within the European SatNEx (Satellite Network of Excellence) project. Stemming from the authors' work on this project, this paper aims to provide the reader with an updated overview of all the possible approaches that can be pursued to overcome the limitations of current transport protocols and architectures, when applied to satellite communications. In the paper the possible solutions are classified in the following categories: optimization of TCP interactions with lower layers, TCP enhancements, performance enhancement proxies (PEP) and delay tolerant networks (DTN). Advantages and disadvantages of the different approaches, as well as their interactions, are investigated and discussed, taking into account performance improvement, complexity, and compliance to the standard semantics. From this analysis, it emerges that DTN architectures could integrate some of the most efficient solutions from the other categories, by inserting them in a new rigorous framework. These innovative architectures therefore may represent a promising solution for solving some of the important problems posed at the transport layer by satellite networks, at least in a medium-to-long-term perspective. Copyright (c) 2006 John Wiley & Sons, Ltd

    Transfer Control for Resilient End-to-End Transport

    Get PDF
    Residing between the network layer and the application layer, the transport layer exchanges application data using the services provided by the network. Given the unreliable nature of the underlying network, reliable data transfer has become one of the key requirements for those transport-layer protocols such as TCP. Studying the various mechanisms developed for TCP to increase the correctness of data transmission while fully utilizing the network's bandwidth provides us a strong background for our study and development of our own resilient end-to-end transport protocol. Given this motivation, in this thesis, we study the different TCP's error control and congestion control techniques by simulating them under different network scenarios using ns-3. For error control, we narrow our research to acknowledgement methods such as cumulative ACK - the traditional TCP's way of ACKing, SACK, NAK, and SNACK. The congestion control analysis covers some TCP variants including Tahoe, Reno, NewReno, Vegas, Westwood, Westwood+, and TCP SACK

    SCPS-TP, TCP, and Rate-Based Protocol Evaluation

    Get PDF
    Tests were performed at Glenn Research Center to compare the performance of the Space Communications Protocol Standard Transport Protocol (SCPS TP, otherwise known as "TCP Tranquility") relative to other variants of TCP and to determine the implementation maturity level of these protocols, particularly for higher speeds. The testing was performed over reasonably high data rates of up to 100 Mbps with delays that are characteristic of near-planetary environments. The tests were run for a fixed packet size, but for variously errored environments. This report documents the testing performed to date

    A Comparative Analysis of Transmission Control Protocol Improvement Techniques over Space-Based Transmission Media

    Get PDF
    The purpose of this study was to assess the throughput improvement afforded by the various TCP optimization techniques, with respect to a simulated geosynchronous satellite system, to provide a cost justification for the implementation of a given enhancement technique. The research questions were answered through model and simulation of a satellite transmission system via a Linux-based network topology; results of the simulation were analyzed primarily via a non-parametric method to ascertain performance differences between the various TCP optimization techniques. It was determined that each technique studied, which included the Space Communication Protocol Standard-Transport Protocol (SCPS-TP), window scale, selective acknowledgements (SACKs), and combinational use of the window scale and SACK mechanisms, provided varying levels of improvement as compared to a standard TCP implementation. In terms of throughput, SCPS-TP provided the greatest overall improvement, with window scale and window scale/SACK techniques providing significant benefits at low levels of bit error rate (BER). The SACK modification improved throughput performance at high levels of BER, but performed at levels comparable to standard TCP during scenarios with lower BER levels. These findings will be of assistance to communications planners in deciding whether or not to implement a given enhancement or deciding which technique to utilize

    JTP, an energy-aware transport protocol for mobile ad hoc networks (PhD thesis)

    Full text link
    Wireless ad-hoc networks are based on a cooperative communication model, where all nodes not only generate traffic but also help to route traffic from other nodes to its final destination. In such an environment where there is no infrastructure support the lifetime of the network is tightly coupled with the lifetime of individual nodes. Most of the devices that form such networks are battery-operated, and thus it becomes important to conserve energy so as to maximize the lifetime of a node. In this thesis, we present JTP, a new energy-aware transport protocol, whose goal is to reduce power consumption without compromising delivery requirements of applications. JTP has been implemented within the JAVeLEN system. JAVeLEN [RKM+08], is a new system architecture for ad hoc networks that has been developed to elevate energy efficiency as a first-class optimization metric at all protocol layers, from physical to transport. Thus, energy gains obtained in one layer would not be offset by incompatibilities and/or inefficiencies in other layers. To meet its goal of energy efficiency, JTP (1) contains mechanisms to balance end-toend vs. local retransmissions; (2) minimizes acknowledgment traffic using receiver regulated rate-based flow control combined with selected acknowledgments and in-network caching of packets; and (3) aggressively seeks to avoid any congestion-based packet loss. Within this ultra low-power multi-hop wireless network system, simulations and experimental results demonstrate that our transport protocol meets its goal of preserving the energy efficiency of the underlying network. JTP has been implemented on the actual JAVeLEN nodes and its benefits have been demonstrated on a real system

    JTP, an energy-aware transport protocol for mobile ad hoc networks

    Full text link
    Wireless ad-hoc networks are based on a cooperative communication model, where all nodes not only generate traffic but also help to route traffic from other nodes to its final destination. In such an environment where there is no infrastructure support the lifetime of the network is tightly coupled with the lifetime of individual nodes. Most of the devices that form such networks are battery-operated, and thus it becomes important to conserve energy so as to maximize the lifetime of a node. In this thesis, we present JTP, a new energy-aware transport protocol, whose goal is to reduce power consumption without compromising delivery requirements of applications. JTP has been implemented within the JAVeLEN system. JAVeLEN~\cite{javelen08redi}, is a new system architecture for ad hoc networks that has been developed to elevate energy efficiency as a first-class optimization metric at all protocol layers, from physical to transport. Thus, energy gains obtained in one layer would not be offset by incompatibilities and/or inefficiencies in other layers. To meet its goal of energy efficiency, JTP (1) contains mechanisms to balance end-to-end vs. local retransmissions; (2) minimizes acknowledgment traffic using receiver regulated rate-based flow control combined with selected acknowledgments and in-network caching of packets; and (3) aggressively seeks to avoid any congestion-based packet loss. Within this ultra low-power multi-hop wireless network system, simulations and experimental results demonstrate that our transport protocol meets its goal of preserving the energy efficiency of the underlying network. JTP has been implemented on the actual JAVeLEN nodes and its benefits have been demoed on a real system

    End-to-End Resilience Mechanisms for Network Transport Protocols

    Get PDF
    The universal reliance on and hence the need for resilience in network communications has been well established. Current transport protocols are designed to provide fixed mechanisms for error remediation (if any), using techniques such as ARQ, and offer little or no adaptability to underlying network conditions, or to different sets of application requirements. The ubiquitous TCP transport protocol makes too many assumptions about underlying layers to provide resilient end-to-end service in all network scenarios, especially those which include significant heterogeneity. Additionally the properties of reliability, performability, availability, dependability, and survivability are not explicitly addressed in the design, so there is no support for resilience. This dissertation presents considerations which must be taken in designing new resilience mechanisms for future transport protocols to meet service requirements in the face of various attacks and challenges. The primary mechanisms addressed include diverse end-to-end paths, and multi-mode operation for changing network conditions

    Utvikling av TCP og RED-moduler i en Javabasert Nettverkssimulator

    Get PDF
    Oppgaven beskriver i hovedsak arbeidet med å utvikle en TCP (Transmition Control Protocol)-modul og en RED (Random Early Detection)-modul i en Javabasert "discrete event" nettverkssimulator. Målet var at de to modulene skulle muliggjøre eksekveringsdrevne simuleringer, slik at TCP-trafikk kunne sendes over et RPR (Resilient Packet Ring, IEEE P802.17)-nettverk. Flyt og metningskontroll står derfor sentralt. Innledningsvis gis en innføring i de tre teknologiene (TCP, RED og RPR). Deretter beskrives simulatoren og de nye modulene i detalj. Det gjøres også rede for utfordringer som oppstod underveis, og valg som måtte tas diskuteres. Seks testsimuleringer presenteres, som viser at modulene svarer til forventningene i testscenariene. Avslutningsvis konkluderes det med at mer testing er nødvendig før man kan slå fast at modulene er klare til bruk

    THE APPLICATION OF REAL-TIME SOFTWARE IN THE IMPLEMENTATION OF LOW-COST SATELLITE RETURN LINKS

    Get PDF
    Digital Signal Processors (DSPs) have evolved to a level where it is feasible for digital modems with relatively low data rates to be implemented entirely with software algorithms. With current technology it is still necessary for analogue processing between the RF input and a low frequency IF but, as DSP technology advances, it will become possible to shift the interface between analogue and digital domains ever closer towards the RF input. The software radio concept is a long-term goal which aims to realise software-based digital modems which are completely flexible in terms of operating frequency, bandwidth, modulation format and source coding. The ideal software radio cannot be realised until DSP, Analogue to Digital (A/D) and Digital to Analogue (D/A) technology has advanced sufficiently. Until these advances have been made, it is often necessary to sacrifice optimum performance in order to achieve real-time operation. This Thesis investigates practical real-time algorithms for carrier frequency synchronisation, symbol timing synchronisation, modulation, demodulation and FEC. Included in this work are novel software-based transceivers for continuous-mode transmission, burst-mode transmission, frequency modulation, phase modulation and orthogonal frequency division multiplexing (OFDM). Ideal applications for this work combine the requirement for flexible baseband signal processing and a relatively low data rate. Suitable applications for this work were identified in low-cost satellite return links, and specifically in asymmetric satellite Internet delivery systems. These systems employ a high-speed (>>2Mbps) DVB channel from service provider to customer and a low-cost, low-speed (32-128 kbps) return channel. This Thesis also discusses asymmetric satellite Internet delivery systems, practical considerations for their implementation and the techniques that are required to map TCP/IP traffic to low-cost satellite return links
    corecore