
Lehigh University
Lehigh Preserve

Theses and Dissertations

1996

The object delivery transport protocol (ODTP)
Erik Andrew Moore
Lehigh University

Follow this and additional works at: http://preserve.lehigh.edu/etd

This Thesis is brought to you for free and open access by Lehigh Preserve. It has been accepted for inclusion in Theses and Dissertations by an
authorized administrator of Lehigh Preserve. For more information, please contact preserve@lehigh.edu.

Recommended Citation
Moore, Erik Andrew, "The object delivery transport protocol (ODTP)" (1996). Theses and Dissertations. Paper 415.

http://preserve.lehigh.edu?utm_source=preserve.lehigh.edu%2Fetd%2F415&utm_medium=PDF&utm_campaign=PDFCoverPages
http://preserve.lehigh.edu/etd?utm_source=preserve.lehigh.edu%2Fetd%2F415&utm_medium=PDF&utm_campaign=PDFCoverPages
http://preserve.lehigh.edu/etd?utm_source=preserve.lehigh.edu%2Fetd%2F415&utm_medium=PDF&utm_campaign=PDFCoverPages
http://preserve.lehigh.edu/etd/415?utm_source=preserve.lehigh.edu%2Fetd%2F415&utm_medium=PDF&utm_campaign=PDFCoverPages
mailto:preserve@lehigh.edu

Moore, Erik Andrew

The Object Delivery
Transport Protocol
(ODTP)

June 2, 1996

The Object Delivery
Transport Protocol (ODTP)

by

Erik Andrew Moore

A Thesis

Presented to the Graduate and Research Committee

of Lehigh University

in the Candidacy for the Degree of

Master of Science

10

Computer Science

Lehigh University

May 6,1996

Table of Contents

TABLE OF CONTENTS iii

LIST OF FIGURES v

ABSTRACT 1

INTRODUCTION 3

WWW ARCHITECTURE 4
HYPERTEXT TRANSFER PROTOCOL 4
TRANSMISSION CONTROL PROTOCOL : 7

CONGESTION AVOIDANCE 9
THREE-WAY HANDSHAKE 11

HTTPffCP PERFORMANCE 12
HTTPrrCp INTERACTION 13
TCP PERFORMANCE RESEARCH 15

PROACTIVE CONGESTION DETECTION : 16
INCREASED MAXIMUM WINDOW SIZE 17
S ELECTIVE AND NEGATIVE ACKNOWLEDGMENTS 18
ROUND-TRIP TIME MEASUREMENT 19

HTTP PERFORMANCE RESEARCH 21
HTTP/l.O PROTOCOL ENHANCEMENTS 21
HTTP/I.I 22

WWW INFRASTRUCTURE RESEARCH ~ 23
CACHING 23
REPLICATION AND MIGRATION 25
MULTICASTING 25

PROBLEM STATEMENT ~ 26
TRANSACTION-BASED TRANSPORT PROTOCOL 27

TRANSPORT PROTOCOL OVERVIEW '" 27
RELIABILITy : 28
FLOW CONTROL 28

CONNECTION MANAGEMENT REQUIREMENTS FOR PROTOCOL CORRECTNESS 30
TCP AND THE CONNECTION MANAGEMENT REQUIREMENTS 31

TRANSACTION-ORIENTED EXTENSIONS TO TCP 33
TIMER-BASED TRANSACTION-ORIENTED TRANSPORT PROTOCOLS 34

DELTA-T ~ 34
TP++ 35

CONGESTION AVOIDANCE 38
VMTP 38
NETBLT 41

MINIMIZATION OF SERVER LOAD AND SERVER PROCESSING TIME 42

OBJECT DELIVERY TRANSPORT PROTOCOL 46

iii

OVERVIEW 47

TRANSACTION (CONNECTION) MANAGEMENT 48

RELIABILITY 51
TRANSACTION IDENTIFIERS 51
CHECKSUM' 52
ACKNOWLEDGMENTS, RETRANSMISSIONS, AND TIMERS 53
RATE CONTROL 59

CONNECTION MANAGEMENT CORRECTNESS 60

LEMMA I 60

THEOREM 1 61

LEMMA 2 62

LEMMA 3 63

THEOREM 2 64

THEOREM 3 66

LEMMA4 66

LEMMAS 69

THEOREM 4 71

THEOREM 5 71

TIMER RULES 73

FORMAL DESCRIPTION 75

SERVER 75

CLIENT 86

HTTP SERVER 93

ANALYSIS/CONCLUSION 94

.BIBLIOGRAPHY 96

VITA ~ · 102

iv

List of Figures
FIGURE 1: WWW OVERVIEW 4

FIGURE 2: OSI STACK 5

FIGURE 3: HTTP REQUESTIRESPONSE ••.•••••••.•••.•••..•••••••.••••••••••••....•••.••.•.••••••••••••••.••••.••.•..•••• 6

FIGURE 4: HTTP REQUESTIRESPONSE WITH INTERMEDIARIES 7

FIGURE 5: HTTP REQUESTIRESPONSE WITH PROXY CACHING 7

FIGURE 6: HTTP REQUEST WITH PACKET CACHE 44

FIGURE 7: NACK WITH PACKET CACIlE••••••••••••••.••••••••••••••••••••.•• 45

FIGURE 8: MULTIPLE BROWSERS WITH PACKET CACHE 45

FIGURE 9: ODTP PACKET FORMAT ••.•••••••••••••••••••••••••••••••.••••••••••••• 49

FIGURE 10: CLIENT TIMER RULES .•••.•••••••••.••••••••••••••••••••••• 73

FIGURE 11: SERVER TIMER RULES•• 74

v

Abstract
With the increasing use of the World-Wide Web for delivering distributed multimedia

documents, the inadequacies of the' existing methods of transfer have become readily apparent.

This research analyzes the deficiencies of the current HTTPrrCp interaction and demonstrates

how existing solutions do not fully address the performance problems of the World-Wide Web.

The analysis reveals that existing research into HTTP protocol enhancements and infrastructure

research (caching, replication, and multicasting) provide only partial remedies to the WWW's

problems. To summarize, HTTP protocol enhancements, including persistent connections and

pipelining, reduce the impact of TCP's slow-start congestion avoidance algorithm but do not

improve the connection management overhead imposed by TCP. The WWW infrastructure

research reduces user latency by reducing the distance an object must travel through the network

with caching and/or replication or by increasing scalability through multicasting. These

improvements, however, do not affect user latency for a random object regardless of prior and

concurrent readership and rev,eal that a stronger foundation is necessary to provide clients with

low latency for a random object. This research establishes three objectives for an efficient

transport protocol for the WWW:

1. A transaction rather than stream-based protocol-this implies a low
connection management overhead on connection establishment and a
minimum transaction latency of one RTT for random objects regardless of
prior readership

2. Effective congestion avoidance for high-speed transmission rates and short
connection that will allow the protocol to scale with improvements in
network bandwidth.

3. Minimization of server load and server processing time (SPT)

1

The final contribution of this research is the specification of a new transport protocol that

addresses these objectives. This new protocol called the Object Delivery Transport Protocol

(ODTP) provides efficient connection-oriented, transport services for message transactions

between a client and server. ODTP utilizes the naming (port and address) from Tep, timer

based connection management from Delta-t and Fletcher, rate-based flow control from VMTP,

and an unique packet response cache that requires a modified HTTP server. A proof of

correctness of the protocol's connection management and a formal description of the protocol and

the HTTP modifications are provided.

2

Introduction
With the increasing use of the World-Wide Web for delivering distributed multimedia

documents, the inadequacies of the existing methods of transfer have become readily apparent.

The HyperText Transfer Protocol (HTTP) is an OSI application level protocol for retrieving the

distributed documents in the World-Wide Web. HTTP is generally layered over the reliable

connection-oriented Transmission Control Protocol (TCP) transport protocol. HTTP and TCP,

though, are an inefficient match because the connection-oriented, stream-based communication

of TCP limits the performance of the inherently transaction-based HTTP.

This research analyzes the deficiencies of the current HTTPfTCP interaction and

demonstrates that existing HTTP and TCP protocol enhancements, object caching and

replication, and multicasting provide only partial remedies to the WWW's problems. Hence, a

stronger foundation is necessary to provide clients with low latency for random access regardless

of what their prior readership may have been. This research establishes three objectives for an

efficient transport protocol for the WW and then specifies a transport protocol underlying HTTP

that addresses these objects. The new protocol called the Object Delivery Transport Protocol

(ODTP) provides efficient connection-oriented transport services for request/response

interactions between a client's browser and an HTTP server.

3

WWW Architecture
The World-Wide Web (WWW or W3) project was begun by the European Center for

High Energy Physics (CERN) in Geneva, Switzerland in 1989 for delivering documents to the

High Energy Physics community. Since its inception, the World-Wide Web has become an

international distributed hypermedia system. The Web consists of network hosts (or nodes)

containing objects (documents) with links to other objects on the same host or on any other host

in the WWW. A document is typically a HyperText Markup Language (HTML) file that

includes additional graphic files (which also must be retrieved) and links. Each object has a

unique Uniform Resource Identifier (URI) which is usually an Uniform Resource Locator

(URL) address. Using the client-server paradigm, client software known as a "browser" requests

an object using an URL from a WWW server and then presents the object to the user.

http://www.lehigh.edu/home.html

Figure 1: WWWOverview

HyperText Transfer Protocol
The HyperText Transfer Protocol (HTTP) which was developed by Berners-Lee et al.

(1992, 1994, ·1995, and 1996) is used for this communication between the client and server.
"

4

HTIP is an application-level protocol (according to the OSI model; see Figure 2) that is generic,

stateless, and object-oriented.

Host A HostB

....
- - - - - - - - - - - - . - - . - - . - - - - . - - - . - - - - - - - - - .. - - - - - - ..

Figure 2: OSI Stack

HTTP requires an underlying reliable communication method. On the Internet, TCP (Transport)

and IP (Network) are generally used. Two versions of HTTP, 1.0 and 1.1, exist in Internet Draft

form, and both are backwards-compatible with the initial HTTP/0.9 specification (Berners-Lee

"HTTPProtocol"). HTTP/l.O (Berners-Lee "HTTP/l.O") is in widespread use and is used for

this discussion.

As described above, HTTP/I.O uses the request/response paradigm and the following

four stages:

1. Connection
A client first establishes a connection with a server. If TCP/IP is employed as the
underlying protocol, a connection is made between the client and the HTTP
(TCP) port on the server (usually port 80).

5

2. Request
The client then sends the server a request with a request method, a Uniform
Resource Identifier (typically an URL), a protocol version and a Multipurpose
Internet Mail Extensions (MlME)-like message. Allowed request methods are
"GET," "HEAD," "POST," and specified extensions. A typical HTTP request
also contains a header that includes a number of "Accept" entries that tell the
server which object types that the client can handle. These "Accept" entries may
detail many more than the sample two illustrated below. An example request for
the home page at Lehigh University would be:

GET //www.lehigh.edu/home.html HTTP/l.O
ACCEPT: text/plain
ACCEPT: text/htrnl

3. Response
The server responds with a status line, including the protocol version and a 3
digit success or error code, and a MIME-like response message. The response
message from the server will contain the requested HTML document.

HTTP/1.0 200

4. Disconnect
The server closes the connection after sending the response.

Tne messages are called MIME-like because HTTP/1.0 reus,es many of the constructs

defined for Internet mail and MIME but is not a MIME-compliant application.

To illustrate the above, in the simplest request/response form, a client's browser software

requests a document on a WWW server and receives the document in the MIME-like message

response (see Figure 3).

Client Connection· Server

Request

Response

Figure 3: HTTP Request/Response

6

HITP also allows intermediaries to be present in the connection path between client and

server. An intermediary could be a proxy that forwards messages, a gateway that translates the

message, or a tunnel that simply relays the message (see Figure 4).

Client Tunnel .,. Connection····· Proxy Server

Request •

4 Response

Figure 4: HTTP Request/Response with Intennediaries

Any intennediary except for a tunnel may also cache responses to improve response

time. If an intennediary has a cached response for a request, the request will never reach the

server (see Figure 5).

Client Tunnel .,. Connection····· Proxy Server

Request •

4 Response

Figure 5: HTTP Request/Response with Proxy Caching

HTTP/l.l (Bemers-Lee, "HTTP/l.l ") improves upon HTIP/l.O by providing persistent

connections, hierarchical caching (and identifying when it is unsafe to cache), content

negotiation, partial retrieval, request preconditions, digest, and proxy authentication. Despite

these improvements, HTfP/l.l' s perfonnance is still limited due to its interaction with TCP.

Before examining the perfonnance issues of HTfP/l.O, a survey of TCP is useful to understand

the interactions between HTTP and TCP.

Transmission Control Protocol
TCP (PQstel "TCP") is a connection-oriented (through sockets), reliable, data stream

protocol that uses the communication services of a simple (and possible unreliable) datagram

7

protocol like the Internet Protocol (Postel "IP"), The Internet Protocol (lP) provides TCP with the

ability to send and receive variable-length segments through multiple heterogeneous networks

and interconnecting gateways. TCP transfers a continuous stream of octets (8-bits) in each

direction by packing the octets into segments (the maximum segment size [MSS] can be

negotiated-the default is 536 bytes) for transmission through the Internet system. IP then

packages and fragments (if necessary) these segments into IP datagrams (which have a

maximum size of 65,535 octets although most implementations use 576 octets for remote

connections as outlined in Braden ("Requirements"».

To guarantee the order of the transmissions and their reliability, TCP assigns a sequence

number to each octet and a checksum to each segment transmitted. TCP then requires the

reception of each octet to be acknowledged. The acknowledgments (ACK) may be cumulative

so that an acknowledgment of sequence number X indicates that all octets up to but not including

X have been received (postel "TCP"). If the sender does not receive an ACK for all the octets in

a segment within a specified timeout period, it resends the segment. The receiver checks the

integrity of the segment by verifying the checksum and uses the sequence numbers to order the

segments and eliminate any duplicates. Through these mechanisms, TCP provides a reliable

transport of information.

TCP, however, must restrict the flow of information to the receiver because of the

receiver's fixed buffer size and processing limitations. A receiver controls the transmission flow

by returning with each acknowledgment the number of octets that can be sent before an

acknowledgment is received. This "advertised window" (which is limited to 64 kilobytes)

indicates the number of unacknowledged octets that the receiver can handle before dropping

segments. The sender will stop sending segments when it reaches the limit until an

8

acknowledgment for a previously unacknowledged segment is received (a receiver in the ACK

could also increase the window size up to the maximum size). A receiver can cumulatively

acknowledge received segments by returning an ACK of the last consecutive segment received.

When a packet is lit, the sender reaches a point where it has sent as much data as the advertised

window allows and so it must block and wait for an ACK that will not arrive. Eventually, a

timeout (based on the measured round-trip time) will occur. TCP begins retransmissions at this

packet that is assumed to have been lost. This strategy, known as go-back-n, may lead to the

retransmission of segments transmitted to the receiver but not yet received (in the

communication channel).

Congestion Avoidance

TCP implementations will retransmit unacknowledged packets several times at

increasing time intervals until some upper limit is reached. A sudden load on the network,

though, can cause the actual segment round-trip time to rise faster than the sender's

measurement of the round-trip time can be updated. As a result, the sender will flood the

network with additional copies of the segments. The network will then experience "congestion

collapse" as packets are dropped because of full buffers at the routers and gateways and round

trip times reach a maximum (Nagle). To prevent congestion collapse, a sender must not transmit

a full window of segments when a network is already congested. TCP implementations handle

congestion through slow-start (SS) and congestion avoidance (CA) (Jacobson "Congestion").

These algorithms assume that a packet loss is due to congestion and not damage. For both

algorithms, a sender maintains a second "congestion window" (cwnd) of the unacknowledged

segments. Initially, a sender has

9

cWlld=l.

(I)

With SS, every time a segment (which may simply be an ACK) is acknowledged without a

retransmission,

cwnd=cwnd + I;
(2)

and every time a segment is lost and times out,

cwnd = cwnd.
2

(3)

This procedure results in an exponentially increasing window size. When the first segment is

acknowledged, the sender uses (1),

cwnd=l + I,
(4)

and sends two segments. When these segments are acknowledged, the sender increases the cwnd

to 4 and sends four segments. At some cwnd (called the slow-start threshold), TCP

implementations switch to using CA. With CA, every time a segment is acknowledged without a

retransmission,

I
cwnd = cwnd + -

cwnd
(5)

and every time a segment is lost and times out,

10

d
cWlld

CWll =--.
2

(6)

Additional modifications, Fast Retransmit and Fast Recovery, were introduced to change the

behavior ofTCP when duplicate ACKs are received (Jacobson "Modified").

Three-Way Handshake

To provide this reliability and flow control, the two processes communicating with TCP

must establish and maintain a connection and negotiate parameters such as the sequence number

and window sizes. TCP uses a three-way handshake with control flags (ACK, synchronize

sequence numbers [SYN], and no more data [FIN]) set in the message to establtsh a connection.

A minimal conversation is shown below.

1. The Client sends a Synchronize (SYN) control message with an initial sequence
number (ISN) to the Server.

2. The Server sends an ACK of the Client's ISN and a SYN with its own ISN in one
control message to the Client.

3. The Client sends an ACK of the Server's ISN to the Server.

4. The connection is terminated by exchanging FIN control messages.

Steps 1-3 establish the connection through the exchange of three messages.

Through the above mechanisms, TCP provides HTTP with a reliable, connection-

oriented service for transferring documents in the World-Wide Web. While HTTP/l.O is

designed to be a simple protocol, its inefficiency and interaction with TCP have led to several

serious performance problems as the WWW grows.

11

HTTPrrcp Performance
With an ever increasing number of users, the World-Wide Web faces challenges as

access latencies (or response times) continue.,to rise (Berners-Lee "Propagation," Pam). One

problem is "flash crowding" (Pam) in which large number requests from all over the world

simultaneously flood a server. A recent example of this problem was the ACM Chess Challenge

when World Champion Garry Kasparov played Deep Blue in Chess (February 1996). IBM tried

to provide "live" updates of the matches, but its servers were quickly overwhelmed during the

first match and additional servers had to be placed online for subsequent matches. Despite these

additional servers, the response time for updates was lengthy.

This response time that users experience (or access latency, a) results from both server,

client, and network latencies (Padmanabhan and Mogul). Servers (f3s is server latency) and

clients (f3e is client latency) with slow hardware (CPUs and disks) will increase access latency.

The other component of access latency is network latency that has two factors: bandwidth and

propagation delay. Bandwidth (measured in bits per second) is a function of the transmission

speed of the network (R). Available bandwidth and the file size (N) contribute to the user

response time. Network latency (measured by round-trip time [RTT]) is affected by the distance

between client and server (the propagation delay (p) with the speed of light a constant) and

queuing delays (d) due to network traffic (including cross-traffic).

12

N
a = f3 J + f3 c + Ii. + x(p + d) .

(7)

where x is the RITs used for the transmission. Thus, one strategy to connect the growing

number of clients to the WWW servers is to improve latency due to bandwidth (N .j.) and
R

increase server speeds to reduce server latency (fts.j.). Scaling both the network and servers to

meet the demand is possible but prohibitively expensive. As bandwidth and CPU speeds rise,

though, the RTT per message exchange (p + d) and the number ofRTTs (x) necessary for

reliable delivery become the dominant factors limiting performance.

To address these performance issues, existing research has focused on relieving network

traffic and server loads through caching (per-client and proxy) and the reduction of network

latency (reducing the number of RTTs) through improvements to HTTP and TCP.

HTTP/TCP Interaction

Padmanabhan and Mogul and Spero illustrate the interaction between HTTP and TCP

that leads to some of these performance issues. As described above, a typical HTTP/l.O

transaction consists of four main components: the establishment of the connection, the request,

the response, and the termination of the connection. For the user, the response time is the time

between opening the connection and receiving the response. Below is a simple transaction with 2

RTTs in which both the request (REQ) and response (RESP) fit in one TCP segment.

:~:Stage' " 'r:cmcnt ".,' "Server" . ,,',,',:,.,"':. '(5omritents ' .. : '," " ,.. < " , \.' ':..: :~, " ,
1. one RTf SYN TCP 3-way handshake

SYN,ACK

2. one RTf ACK,REQ
ACK, RESP, FIN

3. one RTf ACK,FIN Not part of user response time

ACK

13

TCP's slow-start will affect the HTTP/l,O transaction if the request and response data

streams are larger than the advertised MSS, TCP must then break the stream into smaller

segments, With the initial congestion window of one segment, a request larger than the MSS will

require more than one acknowledgment. While the server's congestion window will increase as

it successfully acknowledges the receipt of the client's segments, the response may also require

more than one acknowledgment. If a server does not advertise a MSS, a default value of 536

bytes is used for remote hosts as detailed in Braden. Below is a transaction with 4 RTTs in

which the object request fits into three TCP segments: REQ), REQ2' and REQ3 and the response

fits into three TCP segments: RESP), RESP2, and RESP3.

~¥St?''::' "'\~'i~>~'\~'~:: ,,~;;A'~eer'" , f~)': :.>J.i'?~ ,,~,~,':;<\t J'0:;'ES ""';: <'~'.;iit~'~~)~~i/!~t;r*t<~"'1,'L(3')~ ,,",#, " 't'''<::r. >, <r~ '\i":~ \x'X~~7~~'I:~~~;fU2~~}if:"" age,·" ",t" lcn"" '''''1,'', .J,.' '.,"'" er\ en 1" ,,,,9,,,,)0.·, ",'"/i \-- omnlcn s" " >- ''', "'u'.:, >i'-"·'?;1><-·"

1. one RTf SYN TCP 3-way handshake
SYN,ACK

2. three RTfs ACK,REQI Client's congestion window
(cwnd) is 1; Server's cwnd is
initially 1

ACK When it receives the ACK, the
Client uses slow-start arid
increases its cwnd to 2

ACK, REQ2' REQ3 When it receives the ACK, the
Server uses slow-start and
increases its cwnd to 2

ACK, RESPJ, RESP2
ACK'

ACK, RESP3, FIN
3. one RTf ACK,FIN Not part of user response time

ACK

Thus, TCP affects the HTTP/l.O transaction in the follow ways:

1. When TCP sets up a connection, it sends the connection request to the server
and waits for the connection to be accepted or rejected. This procedure adds
a delay of one RTT.

2. Slow-start affects the first request on a new connection. If the request will
not fit into a single segment (the congestion window's initial size is one

14

segment), the client must wait extra RITs before it can finish sending the
request. (Slow-start could also affect the first response on a new connection
as illustrated above). Jacobson indicates that slow-start is not "that slow: it
takes Rlog2Wwhere R is the round-trip-time and W is the window size in
packets" ("Congestion" 2). When dealing with the modest-size files of the
WWW, though, the connection might not last enough time for the congestion
window to be fully opened.

3. A small MSS aggravates the slow-start algorithm by reducing the segment
size RTIs for the segments. Thus, the larger the MSS the better
performance until IP fragmentation occurs. With fragmentation, a damaged,
delayed, or lost IF packet fragment will cause the entire TCP segment to be
undeliverable. Braden ("Requirements") warns that the IP MSS for non
local networks should be 576 bytes to avoid fragmentation in any gateway
along the network path.

TCP also affects the server and client load by requiring them to maintain information about the

connection (window size and sequence number) for the duration of the connection. Additionally,

TCP requires a server to maintain connection information for a specified period of time after

termination to be sure the remote TCP has received the acknowledgment of its connection

termination request.

TCP Performance Research

Researchers have proposed improvements to se'veral aspects of TCP that will also affect

HTTP' s performance. These areas include more accurate round-trip time measurements,

selective and/or negative acknowledgments, larger window sizes, and proactive congestion

detection.

As Nagle and Jacobson ("Congestion Avoidance") discuss, without stable flow of

packets into and out of the network at the same rate, networks can succumb to congestion

collapse. TCP's current implementation of slow-start, though, as outlined by Jacobson

("Congestion Avoidance") is reactive rather than proactive. The algorithm uses a loss of a

15

segment as a signal that there is congestion in the network but has no means of preventing

congestion through detection and adjustments to the sending rate.

Proactive Congestion Detection

Current approaches for proactive congestion detection include Jain's CARD (Congestion

Avoidance using Round-Trip Delay), the Tri-S Scheme (Wang and Crowcroft), and TCP Vegas

(Brakmo et al.). In general, these procedures adjust the sending rate based on comparisons of

RTTs or throughput. Using TCP Vegas's algorithm (Brakmo et al. 30),

cwnd
Throughputexpecled = and

RTT;,ase
(8)

N
Throughputaclual = ---

RTI:ample

(9)

where N is the number bytes transmitted between the time the segment was sent and the ACK

was received for the segment, RTTsample is the difference between the time the segment was sent

and the ACK was received, and RTTbase is the minimum RTTsample.

Throughputdiff =Throughputexpecled - Throughputaclual

(10)

where Throughputdiff ;;::: 0 and a and f3 are thresholds. Brakmo outlines two rules for determining

the current condition of the throughput:

if Throughputdiff < a
then not utilizing bandwidth

end if

if Throughputdiff > f3

then congestion
end if

· 16

where a and f3 are thresholds.

Pink, however, indicates that all these algorithms fail if packets are lost for bit errors.

Jacobson argues that "loss due to damage is rare «< I%)" and slow-start will only take

w2

-packets to regain the window's original size (w) after a packet loss ("Congestion" 4).
3

Mishra et al. propose a method of distinguishing random loss from congestion loss. They create

a heuristic that regards a loss as random if it is the only loss in the window otherwise it is a

regarded as congestion related. As shown above, slow-start has a significant impact on HTTP's

performance because of the modest-sized files typically requested. The suggested

improvements, though, will not affect slow-start's initial impact on HTTP but will affect its

performance if a packet is damaged or lost by not closing the window.

Increased Maximum Window Size

Another aspect of TCP that affects HTTP' s performance is the limit on the window size.

Jacobson et al. ("Extensions for High Performance," "Extensions for Long-Delay Paths")

illustrate how the 16-bit field of TCP transmission window limits the effective bandwidth

2 16

to RTF and proposes increasing the window size to 30-bits using a scale option. TCPreliability,

however, depends upon the Maximum Segment Lifetime (MSL) (time is bounded by Time To

Live (TTL) field of IP datagrams) to prevent sequence numbers from an earlier incarnation

(same hosts and sockets) of a connection from affecting the same connection. Sequence numbers

will be reused because the sequence number field is finite at 32-bits. McKenzie explains that

while sequence numbers will wrap around after 65,536 (216
) RTTs with a 216 window size, they

will wrap around after only 4 (z2) RTTs with a 230 bit window size: Jacobson et al. ("Extensions

17

for High Performance") adds that high-speed connections alone can cause a sequence number

reliability problem. A Gigabit (1 Gbps) connection will wrap sequence numbers in only 17

seconds. Because TCP assumes a MSL of 120 seconds (Postel "TCP"), the reliability of

sequence numbers cannot be guaranteed. For HTTP, the limitation of the 16-bit window size

will harm performance as network bandwidths increase.

Selective and Negative Acknowledgments

TCP's cumulative acknowledgment mechanism only acknowledges a segment when it

has successfully received all the segments up to and induding the segment. As a result, a

receiver has no means of informing a sender that it has received and buffered a segment that is

received out of order. With cumulative acknowledgments, when a segment is lost, any segment

following it will not be acknowledged (even if it has been successfully received) until the

preceding segment is acknowledged. The sender, consequently, could timeout waiting for the

acknowledgments and unnecessarily retransmit the segments. Mathias et al. and Jacobson et ai.

("Extensions for Long-Delay Paths") propose improving the cumulative acknowledgments of

TCP by adding selective acknowledgments (SACK) to inform senders of non-contiguous blocks

of data that have been received (their implementations are limited to 10 blocks in one TCP .

segment). Fall and Floyd demonstrate through simulation both the strength and weaknesses of

SACKs with TCP. One key issue with SACK is the additional buffers required for storing the

out-of-sequence packets.

Fox discusses one of the disadvantages of selected acknowledgment schemes namely

that a receiver will wait a period of time before sending the selective acknowledgments so they

may be bundled together. This delay will underutilize bandwidth. Selective acknowledgments

18

also require complex state information to determine which packets have been acknowledged.

Fox offers an alternative method of negative acknowledgments (NACK) in which the notification

of a missing segment is made one at time. Fox argues that while SACKs are more effective than

NACKs when packets are lost close together, empirical studies have demonstrated that most lost

packets occur far enough apart that SACK's advantage is negligible. Improvements to the

cumulative acknowledgment mechanism of TCP are important to HTTP because it better utilizes

the available bandwidth by not unnecessarily retransmitting segments. NACKs are superior to

SACKs because of their simplicity and low segment and server overhead.

Round-Trip Time Measurement

Another aspect of TCP that affects the number of packets possibly unnecessarily

retransmitted is the measurement of the round-trip time. This measurement is used by TCP's

retransmission timer to determine when to assume a packet has been lost and must be

retransmitted. The accuracy of this timer will significantly affect TCP' s performance (Pink). If

the timer is too short, bandwidth is underutilized as packets are retransmitted that have already

arrived but whose acknowledgments have not been received. If the timer is too long, bandwidth

is also underutilized as the sender waits for acknowledgments that will not arrive. To determine

the timer value, TCP must estimate the RTT by using a transmission timer.

Jacobson ("Berkeley TCP"; "Congestion" 17) presents an analysis of the round-trip

estimator that differs from th~ original RTT measurement in the TCP specification (Postel

"TCP") by including both mean and variance. First, consider the mean RTT,

R = (l-g)R + geM),
(11)

19

"'

where R is the smoothed RTf (an estimator of the average), M is the round trip measurement

from the most recently acknowledged data packet, and g is the filter gain that is related to the

variance of M. Rearranging the terms,

R =R + g(M-R),
(12)

where M-R is the prediction error. Thus,

R =R + gEr + gEe,
(13)

where Er is the random error to unpredictable effects and Ee is the error due to poor prediction.

Jacobson suggests choosing a small g (0.1-0.2) to get mileage out of Ee but also to minimize the

damage of Er • For an approximation of the standard deviation, Jacobson uses the smoothed mean

deviation which is easier to compute,

D = D + h (lM-RI - D).
(14)

Hence, the retransmit timer (RTO) which incorporates both mean and variance is

RTO = R + f3*D,
(15)

where RTO is the retransmit timer, and f3 accounts for RTf deviation. Jacobson originally

suggested a f3 of 2 (Jacobson "Congestion") but later recommended a f3 of 4 (Jacobson

"Berkeley TCP"). Jacobson then develops a fast estimator of RTT ("Congestion" 17) using

integer only arithmetic and chooses a g of 0.125 and h of 0.25.

To measure RTT rather than estimate RTT, Jacobson et al. ("Extensions for Long-Delay

Paths") propose adding an echo option to TCP in which a sender places a timestamp in the

segment and the receiver returns that time stamp in the corresponding acknowledgment. The

20

difference is an accurate RTf. This improvement to TCP is significant because TCP requires an

accurate measurement of the average round-trip time. An inaccurate estimate of RTf will

degrade the performance of HTfP by waiting too long for acknowledgments that will not arrive

and by retransmitted segments that have already been received but have not been acknowledged.

HTTP Performance Research

HTfP/l.O itself adds additional RTTs by forcing connections to be reestablished

between requests and by allowing only one request per transaction-this procedure is

problematic because a typical HTML file contains many inline graphics. As a result, in the

simplest case of one HTML document and an inline graphic file in which both the requests and

responses fit in one TCP segment, each transaction will take 2 RTTs (for a total of 4 RTTs).

HTTP/l.O Protocol Enhancements

Padmanabhan and Mogul have proposed pipelining and persistent connection

improvements to HTTP/l.O to reduce the number of round trips necessary for multiple

transactions. With long-lived or persistent connections, a single connection may be utilized for

multiple HTTP transactions. Thus, the connection may stay open for all the inline images of a

single document. An added benefit of persistent connections is a reduction in a server's load.

Because a server normally forks a new process for each request, multiple requests over a single

process will eliminate the costs involved with forking new processes. Additionally, less

connection state records will be needed (and held onto in the TIME_WAIT delay-see

explanation below). To further reduce the number of RTTs, they suggest a request method called

GETALL that causes the server to parse the document and return all the objects included in the

original requested object (document). GETALL increases the server's load with the parsing step,

21

but the parsed infonnation could be cached for future requests. The pipelining of HTTP requests

with a persistent connection in which the same two objects (Requests REQ, and REQ2 each fit in

one segment; Responses RESP, and RESP2each fit in one seglpent) are requested as above

improves the situation to 2 RITs.

'~'Stagc,' , " , , ,j Clicllt ' " : , ' l' SCf.\'Cl~' , , ,: ' 1Conlnu~tits';,::"·: ',,' c.:' >; ,';"'.::,,,;:lr
1. one RTI SYN TCP 3-way handshake

SYN,ACK
2.oneRTI ACK, REQ I, REQ2 Client's cwnd is I; Server's cwnd

("GETALL") is 2
ACK,RESPl,
RESP2, FIN

3.oneRTI ACK,FIN Not part of user response time
ACK

-

Their expc~rimental results using a modified Mosaic v2.4 client and both a local (10 Mbit/sec

Ethernet) and a remote (1.544 Mbit/sec TI link) NCSA httpd v1.3 server reveal that:

1. With the number of inline images ranging from 0 to 10 with size 2,544 bytes, the
new protocol with pipelining had a 50% improvement over the original protocol.

2. With the number of inline images ranging from 0 to 10 with size 45,566 bytes, the
new protocol with pipelining had a 22% improvement over the original one.

3. Improvements were more significant for remote servers due to the reduction in round
trips rather than reduction in per-connection overheads.

HTTP/I.1

HTTPIl.l (Berners-Lee, "HTTP/I.l") resolves one of these issues by supporting

persistent connections. Pipelined requests, while not supported directly, are also allowable

according to the functional specification. These improvements lessen the impact of slow-start by

maintaining the connection for a longer period of time but do not address the performance

limitations of matching the transaction-style communications of HTTP to the stream-based,

connection-oriented TCP.

22

WWW Infrastructure Research
As described below, researchers have also examined improvements to the infrastructure

of the World-Wide Web including multicasting, replication (with a wide area filesystem) and

caching (both per-client and proxy).

Caching

Because of HTTP's inherent inefficiency when faced with frequent retrievals of the same

object (i.e., a duplicate request), researchers as discussed below have suggested that both server

and network loads can be alleviated by caching documents with per-client and/or proxy caches.

With a per-client cache (which may be persistent or non-persistent), a copy of an object retrieved

by a client's web browser is placed in a local cache. When a client accesses an object, the web

browser first checks the local cache. If the object is not found, the browser then accesses the file

through the network. With per-client caching, web users experience shorter delays when

requesting an object and the network sees less traffic. A proxy server caches copies of popular

objects on servers that are closer to the clients. A proxy server generates a cache hit when the

same user requests an object two or more times or two different users request the same object.

These second-level caches get only the misses left over from the web clients that use a per-client

cache. A proxy cache, though, saves disk space by not maintaining a copy of the same object on

multiple workstations. Both these caches may maintain consistency by issuing a conditional GET

method or using a time-to-live for cached files. A conditional GET transaction, however, suffers

the same inefficiencies as discussed above. Various authors (Glassman, Smith, Luotonen and

Altis) initially examined proxy caching but the following authors provide expanded analysis.

23

Pitkow and Recker study the access of objects in the WWW using psychological

research on human memory to develop an analytical foundation for proxy caching strategies.

Using data obtained over a three month period from the Georgia Tech WWW repository and 7

day window (the seven previous days are used when analyzing the accesses made on the eighth

day), they detenmne that the frequency and recency of past documents accesses are both strong

predictors of future access, but recency (92% of the variability in access probability is explained

by recency) has more of an impact than frequency (72% of!be variability in access probability is

explained by frequency). They suggest using the classic Least Recently Used (LRU) for object

replacement when the proxy cache is full.

Abrams et al. analyze cache performance and replacement strategies using the

simulation of three workloads. They determine that LRU is not the best policy because when the

cache is full and a document is replaced, LRU does not consider the size of the objects. They

contend that if the cache size is limited, the replacement of many small files with one large file is

notthe best strategy. A better strategy, they call LRU-MIN, applies LRU only to the largest

documents and then to groups of successively smaller documents. Abrams et al. note that the

proxy cache hit rate tends to decline with time because browsers use their own caches and the

proxy acts as a second level cache. They determine an upper bound of 30-50% on the proxy

cache's hit rate given an infinite cache and an eight day interval. Thus, despite these strategies,

50-70% of all objects accessed through a proxy server will still result in accesses through the

network.

In analyzing server traces at the School of Computer Science at Carnegie-Mellon

University, Spasojevic et at. also conclude that there exists only a small set of cacheable

documents that they term the "hot set." They contend that information browsing also exhibits

24

many read-once patterns. An effective caching strategy should then be proactive rather than

reactive and prefetch certain objects based upon usage statistics. Even though the client's cache

may be satisfying requests that will never reach the proxy server, caching has an overall limited

impact on reducing network traffic. Additionally, caching strategies are not effective for dynamic

WWW pages with updated sports scores, news, and query responses. To accommodate the

growing number of users on the WWW that caching alone cannot manage, Spasojevic et al.

propose a wide-area file system for the WWW with object transparency, migration, and

replication.

Replication and Migration

As Spasojevic et al. indicate, the WWW still suffers from the "flash crowding" problem

(discussed above) with proxy and per-client caches. Thus, Spasojevic et ai. propose a location

independent wide-area file system (their system uses AFS). With a wide-area file system,

information can be migrated from a busy server to an idle server to balance the load. Objects can

also be replicated across several file servers. The challenge of using a wide-area file system is

that objects in the WWW are specified by a Universal Resource Locator (URL) which specifies

one and only one object. If an object is moved, the URL will continue to point to the old location

and not the new one.

Multicasting

Another method for reducing network and server loads is multicasting. With Clark and

Ammar's multicasting research, requests for the same object can be grouped together and the

response can be transmitted using a single multicast connection between the server and multiple

clients. This procedure reduces both server and network loads. A key issue with multicasting is

25

the time to wait for additional requests for the object to arrive at the server so the response can

be multicasted rather than unicasted. Clark and Ammar's results indicate a 50% improvement

over unicast connections with 20 users using a local network. With less than 10 simultaneous

users, though, they found that unicast connections were slightly faster because of the delays

involved with grouping the requests. Multicasting for the WWW is an important research area

for improving performance when faced with "flash crowding." With the read-once pattern of

many clients, though, multicasting is not a complete solution to the performance issues of the

World-Wide Web.

Problem Statement
The above analysis reveals that existing research into HTTP protocol enhancements,

caching, replication, and multicasting provide partial remedies to the WWW·sproblems.To

summarize, the HTTP protocol enhancements, including persistent connections and pipelining,

lessen the impact of TCP's slow-start congestion avoidance algorithm but do not improve the

connection management overhead (in the synchronization of ISNs) imposed by TCP. The WWW

infrastructure research improves user latency by reducing the distance an object must travel

through the network with caching and/or replication or by increasing scalability through

multicasting. These improvements, however, do not affect user latency for a random object

regardless of prior and concurrent readership. Thus, a stronger foundation is necessary to

provide clients with low latency for a random object. The goals for a new transport protocol to

address the problems of HTTPrrCp include:

26

Objectives

1. A transaction rather than stream-based protocol-this implies a low
connection management overhead on connection establishment and a
minimum transaction latency of one RTf for random objects regardless of
prior readership

2. Effective connection avoidance for high-speed transmission rates and short
connection that will allow the protocol to scale with improvements in
network bandwidth.

3. Minimization of server load and server processing time (SPT)

Transaction-Based Transport Protocol

To satisfy the first objective above (OBJl), a transport protocol must be chosen that

minimizes the connection management overhead while providing a transaction-based transport

servIce.

Transport Protocol Overview

The WWW requires a transport layer protocol similar to TCP that provides a connection-

oriented, reliable end-to-end transfer of data over potentially unreliable lower layer protocols. (If

the lower layer protocols guarantee reliability, the transport protocol's complexity is significantly

reduced). A reliable connection-oriented protocol provides a data stream service and/or a

transaction-oriented service for client/server interactions (a request followed by a response).

TCP, for example, is a data stream service. With a transaction-oriented service, a transaction

begins with the transmission of a request from a client to a server and terminates with the

response from the server. A transaction-oriented service typically does not have any explicit

connection establishment procedures.

27

Reliability

Overall, there are three fundamental criteria of reliability for these transport protocols

(Doeringer et al.):

1. In-sequence delivery

2. Complete delivery

3. Freedom from errors

To provide the in-sequence and complete delivery of user data, transport protocols

typically use sequence numbers to detect missing or out-of-sequence data. For bit-error

detection, the protocols use a checksum of the entire segment (the Transport Data Protocol Unit

[TPDUD or the header and data separately. Some protocols use error reporting with negative or

selective acknowledgments to inform the sender of missing or out-of-sequence data. For high-

speed networks, NACKs provide the receiver with the necessary error reporting with little

overhead. Transport protocols correct errors by using positive acknowledgments with

retransmissions (PAR) [TCP uses PAR] or automatic repeat request (ARQ) in which the

receiver informs the sender that the data must be retransmitted. Because ARQ limits the

additional traffic introduced into the network, ARQ is superior to PAR.

Flow Control

Transport protocols must also maintain end-to-end flow control to guarantee data is

transmitted at a rate that the receiver can receive and process the data (without buffer overflow

and data loss). Flow control has an increased importance for high-performance networks in

which a link could supply data faster than the receiver can consume it (Doeringer et al.). The

network itself also imposes a restriction on the rate of transmission. Thus, a sender must

28

maintain access control to avoid network congestion caused by exceeding the data-rate of the

network.

TCP, described earlier, uses a window or credit-based flow control. When the window is

full, new data will not be transmitted until a "credit" or acknowledgment is received. As

transmission rates increase and the whole window can be transmitted, the sender must remain

silent and wait at least 2 propagation delays for new credits to arrive. Thus, as Dabbous

indicates, for window-based flow control to be effective, the window size (W) must be

W>2DC
L '

(16)

where D is delay, C is the capacity of the link in bits per second, and L is the size of the packets

in bits.

With the small initial window size due to slow-start, the resulting throughput is less than

the potential throughput even in the absence of congestion. Thus, window-based flow control in

which transmissions start and stop according to the demands of the flow control window is

inefficient in networks with high transmission rates and/or long propagation delays.

To provide access control to avoid network congestion, TCP uses estimates of the round-

trip delay for detection and then slow-start for avoidance. Zhang et al. describe a problem with

using ACKs as credits that is known as "ACK-compression." With ACK-compression,

acknowledgments coming back to the senders are caught behind data in the gateway queues.

Thus, they claim it is invalid to assume that acknowledgments always provide a reliable clocking

method for data transmissions. Grouping of these acknowledgments also leads to bursty traffic

on the network.

29

Instead of relying on credit-based flow control in which the sender must block waiting

for new credits, rate control maintains the flow of packets to the receiver through the

intermediate nodes by modifying the rate of transmission and the size of the data (burst)

transmitted. A sender must know the maximum rate at which data can be transmitted (to not

overflow the receiver's buffer and/or the networks and gateways) and the maximum burst size.

A sender can directly specify the transmission rate and burst rate, or the sender can control the

flow of packets by estimating and adjusting the time between packet transmissions (the

interpacket gap time). For reduced overhead and better performance, these adjustments may take

place between groups of packets. Determining the initial values for the burst size and

transmission rate and the adjustments necessary for rate control, though, is difficult without

network support. With current and future networks using ISDN and ATM that enforce access

control based on data rates, rate control will become an ideal flow-control mechanism (Doeringer

et al.).

Connection Management Requirements for Protocol Correctness

For connection-oriented communications, the transport layer protocol is responsible for

setting up the connection, reliably transferring the data, and then destroying the connection. The

protocol must protect against the connection management hazards introduced by lost, duplicated,

or out-of-sequence packets. Watson ("Delta-t" 7-8) outlines the connection management

requirements for transport protocols:

30

General (G)

1. An identifier of an information unit used for error control must not be reused
while one or more copies of that unit or its ACK are alive.

2. The error control information must itself be error corrected.

3. If the crash of an end can cause it to lose its state, then appropriate crash
recovery mechanism must assure the other requirements (GI, G2, 01, 02,
CI, C2, and C3).

Connection Opening (0)

1. If no connection exists and the receiver is willing to receive, no duplicate
packets from a previously closed connection should cause a new connection
to be established and duplicate data to be accepted unless the operations
represented by the data are known to be idempotent.

2. If a connection exists, then no packets from a previously closed connection
should be acceptable within a current connection.

Connection Closing (C)

1. No packet from a previous connection should cause an existing connection to
close.

2. A receiving side should not close until it has received all of a sender's
possible retransmissions and can respond to them.

3. A sending side should not close until it has received acknowledgment of all
that it has sent. In particular, it should allow time for an acknowledgment of
its final retransmission, if needed, before reporting a failure to its client
program.

TCP and the Connection Management Requirements

For example, a handshaking transport protocol like TCP satisfies 01 with its three-way

handshake in which each side sends an initial sequence number (ISN) and acknowledges the

other's ISN for the conversation. Through this procedure, the two TCPs synchronize on each

other's ISN. The sequence numbers prevent packets that are delayed in the network from being

delivered late and then misinterpreted as part of an existing connection. The ISNs are based on a

32-bit counter whose value is incremented every 4 microseconds and cycle every 4.55 hours

(Postel "TCP"). To prevent an ISN from being confused with a SN from an earlier .incarnation of

the connection (there is a non-zero probability of the ISN chosen being identical to the current

31

SN that exists in the network), TCP specifies a "quiet time" interval of one MSL upon start-up

after a crash to ensure the packets have expired. This "quiet time" is unnecessary if the start-up

time for the host exceeds one MSL. These ISNs also provide crash recovery (G3).

TCP addresses G2 by applying the CRC to the entire TOPU.

02 and Cl require the sequence numbers from one incarnation (same hosts and sockets)

of a connection from not being used while the same sequence numbers still exist in the network

from an earlier incarnation. TCP depends upon selection of unique ISNs and the Maximum

Segment Lifetime (MSL) to guarantee a packet cannot exist in the network after a specified

length of time. This time is bounded by the Time To Live (TTL) field of IP datagrams to prevent

a violation of 02 and Cl.

To ensure that sequence numbers do not wrap within a connection and thus, satisfy GI,

ISM >MSL
B '

(17)

where ISM denotes the size of the sequence number space and B is the bandwidth of the

connection in bytes per unit of time. Recall, each byte (octet) transmitted requires a sequence

number. The 16-bit window of Tep, though, effectively limits B to

RTT
(18)

Thus, if the RTT is large enough, Jacobson et at. state that (17) is satisfied ("Extensions for

High Performance"). As bandwidth increases, (17) and consequently, Gl may fail.

To satisfy requirements C2 and C3, the sender of the last close-ACK must wait an

interval (in the TIME_WAIT state of TCP) to guarantee it can resend the final ACK in case it is

32

lost. TCP remains in the TIME_WAIT state for 2*MSL. Remaining in this state requires TCP to

maintain a connection's infonnation for a period of time after the connection is tenninated.

Researchers have improved TCP's handshake mechanism and reduced the time spent in

TIME_WAIT by caching certain infonnation from one incarnation to the next.

Transaction-Oriented Extensions to TCP

Braden ("TrrCp") proposes a TCP extension for an efficient transaction-oriented

transport protocol. TrrCp (Transaction TCP) improves upon TCP by bypassing the 3-way

handshake (in certain situations) and reducing the delay in the TIME_WAIT state. Braden uses a

32-bit "connection count" (CC) in TrrCp that is incremented monotonically in successive

connections to distinguish connections and prevent segments from an earlier incarnation of the

same connection from affecting the existing one. TrrCp again relies on the MSL to guarantee

that two identical CCs values (one from wrap around) for the same connection cannot exist in the

network at the same time. A TrrCp server caches these CC values for use in later requests (if

any). This caching eliminates the 3-way handshake while still satisfying 01. Shankar et al.

mathematically determine the minimum bound on the incarnation numbers and the optimal

residency time. By comparing the cached CC value with the CC value received in the SYN

connection request segment, the TrrCp server can distinguish a new incarnation of a connection

(it has a larger CC than the cached CC) from a duplicate or out of order connection request. If

the TrrCp implementation determines that the connection request is not a new request, it falls

back to the nonnal3-way handshake of TCP. Because the server can distinguish incarnations of

a connection through these cached CC values, the TIME-WAIT delay can be reduced by

33

allowing a new incarnation of a connection before the TIME-WAIT has expired. A minimal

conversation is shown below:

"St-' ,,' , , 1 Clicnt . ," I Sel'Vcr. '. ,'. ui, Connnents'~:',"":'\.;,,'i>:/, I,;;<; "N~~J....lgC. ' , r ' ,,' <l ,"/ '. ~ ~<, ,,' " <, < " 'S ,->: < l-

1. one RTI SYN, REQ, FIN TffCP
SYN, ACK, RESP, FIN

2. one RTI ACK Not part of user response time

Thus, TrrCp partially addresses OBjl but worsens OBj3 by requiring cached information for

each unique connection (unique host and socket). TrrCp does not fully satisfy OBjl because a

random object access could result in a fallback to the 3-way handshake if the cached value is

unknown (from a crash or no prior access) or has wrapped around.

Timer-Based Transaction-Oriented Transport Protocols

An alternative to handshaking protocols is a timer-based protocol such as Delta-t

(Watson "Delta-t", Fletcher). With a timer-based protocol, the connection is established when

the first packet is received. This mechanism eliminates the minimum one round-trip time

required by the setup mechanism of a handshaking protocol and thus, reduces the round-trip time

for a minimal conversation to only 1. A deficiency in timer-based protocols is that they do not

allow the negotiation of parameters during connection setup so default ("safe") values must be

chosen (but they be modified later).

Delta-t

Delta-t relies on the network layer for guaranteeing a packet will not exceed its time-to-

live-a time-to-live field is decremented during routing, retransmission, and acknowledgment to

ensure that the lifetime of a packet is bounded (similar to the MSL of TCP). Watson ("Delta-t"

11) outlines the connection management requirements for a timer-based protocol.

34

The receiver maintains a receive-timer that is started each time a new connection is

made. To meet requirements 01, 02, Cl, and e2, the receive-timer will expire only after all

sender retransmissions and other duplicates have a chance to be recognized. If a receiver crashes

and loses state, it must wait a specified period of time (which should be greater than the sender's

"give-up" timer plus the maximum TPDU lifetime) before accepting a new connection to meet

Gl, G3, 01, 02, and Cl in order for retransmissions and duplicates sent before the crash to

expIre.

The sender maintains a send-timer ("give-up") that is activated upon transmission of a

segment. Requirements Gland C3 demand that this timer expire only after all the data that has

been transmitted or retransmitted has a chance to be acknowledged. If a sender crashes, it must

wait a specified period to satisfy requirements G1 and G3. Thus, a timer-based protocol

addresses OBJI (transaction-oriented and RTTs are the same for random access) and OBJ3

(server just maintains a timer). Delta-t maintains flow control by using a sliding window and

provides error reporting through negative acknowledgments with go-back-n retransmission. The

chief problem with a timer-based protocol such as Delta-t is finding accurate values of the timers

using network delays and packet lifetimes (Tawbi e.t at.). The heterogeneous Internet makes

determining these values difficult. Inaccurate timer values will either be inefficient because they

expire after all the packets from the connection have left the network or violate G1, 01, 02, C1,

C2, and C3 by expiring before all the data that has been transmitted or retransmitted has a

chance to be acknowledged.

TP++
, ,

Another example of a timer-based protocol is Feldmeier's TP++, whicn is a transport

protocol for multimedia applications that operates across heterogeneous high-speed networks

35

("TP++") but relies on the network for congestion control. The connection management protocol

used by TP++ is Connection Management with Synchronized Clocks (CMSC) (Biersack and

Feldmeier). Using synchronized clocks, a TP++ sender timestamps each segment (TDPU) with

an expiration timer. The receiver then discards TPDUs that arrive after their expiration time. The

expiration time is maintained on retransmitted TPDUs. Each host maintains an E-synchronized

clock (E bounds the clock skew) that is kept synchronized by executing a clock synchronization

protocol such as the Network Time Protocol (Mill). Each connection is assigned a Connection

Identifier (CID) by the sender and every message carries this CID. To satisfy 02 and Cl, aCID

must not be reused while there exists a connection record with the CID at the receiver or

messages exist that carry this CID.

TP++ has two timers at the receiver (TRl and TR2) and three at the sender (Ts1, TS2, and

TS3)' TS1 maintains the connection as long as there exists a sequence number whose lifetime that

has not yet expired; this satisfies C3. To satisfy G1, TS2 prevents the reuse of a sequence number

by suspending the transmission of a message with sequence number x (from wrap around) if an

existing message with sequence number x has not been acknowledged.

To partially satisfy 01, 02, and Cl, TRl maintains the connection as long as there is an

ongoing transmission from the sender (it waits enough time for another message or

retransmission to have arrived). To fully satisfy 01, 02, and Cl and safely reuse CIDs, TS3

maintains the connection until the receiver has released it (TS3 ;::: TRl). TR2 handles the safe reuse

of a CID by maintaining the connection until the sender is no longer waiting for a sequence

number to expire (TR2;::: TS1). When the sender loses state, it must also not reuse a CID until the

TS3 would have expired. Thus, to satisfy G3, Feldmeier proposes using stable storage of the

36

lifetime of each connection or the maximum lifetime that no existing connection exceeds. If the

receiver loses state, it must not accept duplicate packets. Stable storage of the highest expiration

time of any message will prevent the receiver from accepting duplicates. G2 is satisfied through

error detection and correction.

TP++ performs ARQ error correction and uses selective acknowledgments. An

additional feature of TP++ is Forward Error Correction (FEC) codes. These FEC codes reduce

retransmission latency by providing enough information to correct packet drops. TP++ segments

the TPDU into (Forward Error Correction Blocks) FECBs. TP++ computes a FEC parity code

by "striping" across the FECBs. The receiver then has enough information to reconstruct a

TPDU if one of the FECBs is lost. Both Delta-t and TP++ improve upon TCP (and TfTCP) by

providing a transaction-oriented transport service with minimal RTTs. They address OBJI

(transaction-oriented and RTTs are the same for random access) and OBJ3 (server maintains

timer(s». TP++'s assumption of a synchronized clock and network layer congestion control

makes implementation rather difficult over the heterogeneous Internet. As described earlier, the

window-based flow control of Delta-t, TCP, and TfTCP will not provide the user with

acceptable performance as transmissions start and stop in accordance with the demands of the

flow control window. The rate-based flow control of the following transaction-oriented protocols

prevent overrunning a host or any intermediate network nodes by estimating and adjusting the

time between packet transmissions (the interpacket gap time).

37

Congestion Avoidance

VMTP and NETBLT are transport protocols with similar features to those described

earlier but they provide effective congestion avoidance for high-speed connections using rate

based flow control to satisfy (OBJ2).

VMTP

The Versatile Message Transaction Protocol (VMTP) (Cheriton) is a transaction

oriented (client/server) transport protocol designed for quick responses with small amounts of

data. VMTP's design originated from a need for efficient Remote Procedure Calls (RPC).

VMTP, while providing simple rate-based flow control and negative acknowledgments, also

requires both an integrated management module for providing information and notifications and

host address-independent naming for what are termed network-visible entities. By sending a

request to a server, a client initiates the transaction. The response from the server then terminates

the connection. The server does not need to hold any state about the client between transactions.

VMTP provides a minimal two packet exchange for short simple transactions and streaming of

multi-packet requests and responses. Each message is segmented into one or more packet

groups that contain up to a maximum of 32 packets. VMTP groups these packets for

acknowledgment, sequencing, selective retransmission, and rate control.

A client uses a monotonically increasing 32-bit transaction number to identify each

request. The response to the request will carry the transaction identifier of the request.

Consecutive transaction identifiers between packet groups are used as sequence numbers for

error control. This transaction identifier is incremented at the end of each message transaction.

The transaction identifier is also used by the server to suppress duplicate transaction requests. A

server maintains a state record for each client for which it is processing a request and discards

38

requests with duplicate transaction identifiers (satisfying 02 and C1). To satisfy G1 and 01,

VMTP normally retains this record for a period of time to allow the server to filter out any

duplicate requests whose time-to-live has not yet expired. To satisfy G3 and 01, if a request

arrives and the server does not currently have a state record for the client, the server will perform

one of the following:

1. The server may send a probe request to the client to determine the client's
current transaction identifier.

2. If the maximum lifetime of packets in the network (plus the maximum
VMTP retransmission time) has expired for a previous connection, the
server determines that the request is valid.

3. If the operation is specified as idempotent (can be safely redone), the server
will simply send the response. The client must then determine the usefulness
of the response.

VMTP also provides reliable sequenced transfer of request and response messages

through error detection (satisfying G2), positive acknowledgment of messages, and timeout and

retransmission of lost packets. The response to a request is normally the acknowledgment for a

request. The response is acknowledged by either an explicit acknowledgment or another request.

An unacknowledged request or response is retransmitted periodically up to some maximum

number of retransmissions until it is acknowledged. If a response is idempotent, the response is

neither retransmitted nor stored for retransmission-the client must retransmit the request to get

the response retransmitted. In other cases, the server maintains a copy of the response until the

response is acknowledged or the connection times out.

When a request is sent to a server, each client initializes a timer with the expected time

of arrival of the response. If the timer expires before a response arrives, the request is

retransmitted. Upon receiving the first packet of a multi-packet response, the client resets the

39

timer based upon the expected arrival time of the next packet in the response packet group. This

timer satisfies C2 when the client is the receiver and C3 (the acknowledgment is the response)

when the client is the sender.

Each server also maintains a timer for each client whose request is active. The timer

determines how long the server waits before timing out between subsequent request packets

within a packet group (satisfies C2 when the server is the receiver). It also determines how long

the server waits after sending a response before the server deletes the client's state record (ifthe

last response packet has been transmitted). This timer also satisfies C3 when the server is the

sender.

VMTP uses rate-based flow control to prevent overrunning a host or any intermediate

network nodes. By estimating and adjusting the time between packet transmissions (the

interpacket gap time), the sender controls the flow of packets to the receiver through

intermediate nodes. When the receiver transmits a selective retransmission, the sender may have

to increase the interval because packets are being dropped by an intermediate gateway or bridge

or the server has been overrUn. A sender may use a conservative policy and increase the

interpacket gap whenever a packet is lost as part of a multi-packet packet group. With selective

retransmissions, the recovery cost to retransmit dropped packets when the packet transmission

exceeds the rate of the channel or the receiver is typically less than retransmitting from the first

dropped packet. The interpacket gap is expressed in 1I32nds of the Maximum Transmission

Unit (MTU) packet transmission time with the range 0 to 8 packet times.

40

NETBLT

The Network Block Transfer Protocol (NETBLT) (Clark "NETBLT") is another

example of a protocol that uses rate control. NETBLT is a unidirectional transport protocol for

transmitting large buffers that uses a two-way handshake to setup a connection. A two-way

handshake (OPEN and RESPONSE packets) is necessary to negotiate NETBLT's rate-based

flow control parameters. NETBLT uses timers to recover from lost OPEN and RESPONSE

packets and to determine how long the connection is maintained without a termination message

(satisfying C2 and C3). To prevent duplication of OPEN and RESPONSE packets, the OPEN

packet contains a unique 32-bit connection ID that is also transferred in the RESPONSE packet

(satisfying Gl, G3, 01, 02, and Cl). Thus, the sender will not confuse the response to the

current request with a response from an earlier incarnation of the connection.

NETBLT breaks each buffer up into DATA packets that are then sent using a datagram

service. The end of the buffer is indicated by a LDATA packet. If the LDATA packet is lost, the

receiver will not know when the end of the buffer has been transmitted. The expiration of a data

timer at the receiver, which is reset when the first DATA packet arrives, indicates the end of

transmission if the LDATA packet is lost. Retransmission takes place upon completion Qf the

transfer using a RESEND message in a CONTROL packet containing all the missing packets.

Another timer is used by the receiver to handle missing CONTROL messages. When this control

timer expires, the receiver resends the control message and resets the timer. After a

predetermined number of resends, the receiver assumes that the sender has died and resets the

connection. Error detection with checksums satisfies G2.

David Clark ("NETBLT") describes how flow control using windows will result in low

throughput because the window must be kept small to avoid overflowing hosts and gateways.

41

Updating this window also requires an end-to-end exchange of messages. With NETBLT's rate

control, the transmission rate is negotiated by the senders and receivers during connection setup

and after the transmission of a burst of packets. The sender uses timers, rather than messages

from the receiver, to maintain the negotiated rate. The sender transmits a burst of packets over a

negotiated time interval and then sends another burst. The average transmission time per packet

. . d b burst size Th b d k .. dIS deterrrune y . ese parameters are ase on pac et tranSITIlSSlOn spee ,
burst rate

processing speed, available buffer space, and capacities of the gateways and networks used for

the transmission. Each host makes a best guess and tunes the values with subsequent transfers.

Clark outlines initial values of five to ten packets (the packet size should be small enough to

avoid network layer fragmentation and large enough to limit packet overhead) for the burst size

and 60 to 100 milliseconds for the burst rate. Both NETBLT and VMTP use rate-based flow

control to prevent the sender from overwhelming the receiver as well as the network and any

intermediate nodes. The advantage of rate-based flow control is higher performance without the

end-to-end exchange of messages. The key difficulty is determining the appropriate burst size

and data transmission rates.

Minimization of Server Load and Server Processing Time

Each connection between a client's browser and a HTTP server requires resources at

both the application (HTTP) and transport layers. At the transport layer (regardless of the

protocol utilized), the server must maintain the connection information for sequencing, flow

control, and packet buffers to provide a reliable transfer of both the HTTP request and the

response. The HTTP server must parse and process each request delivered by the transport

layer, retrieve or generate the response, and pass a buffer with response onto the transport layer

42

for delivery to the client's browser. If multiple users request the same object, the transport layer

must maintain a separate transmission buffer for each connection containing the same object

response. Additionally, the transport layer must segment the response into packets sized for

transmission through the network layer.

This research proposes a persistent packet cache to minimize the processing and

buffering requirements of both the transport and application layers. Instead of the HTTP server

transferring every response to the transport layer, the transport layer will maintain a cache of

responses pre-segmented into packets that meet the requirements for Internet hosts. If a

transaction desires a larger packet size for efficiency (a local Ethernet transaction, for example),

a small buffer may be kept which maps a packet's multiple contents into the cache. After parsing

the request, the modified HTTP server will query the transport layer if the response for the object

being requested is currently in the cache and is the most updated version (based on the original

response file and cache timestamps.) If the cache does not contain the latest version of the

response, the HTTP server passes the response onto the transport layer which then caches it. If

the transport layer uses rate-based flow control as discussed above to satisfy OBJ2, the transport

protocol does not rely on the acknowledgment of each octet transmitted and thus, does not have

to maintain a window of unacknowledged octets. The transport layer then may forgo a

transmission buffer and transmit the response packets (with an appropriate header added)

directly from the cache. The sequencing of the packets will reflect their position within the cache.

If the transport protocol uses negative acknowledgments exclusively, a NACK will indicate the

damaged or lost packet and its position in the cache. Overall, this persistent cache minimizes the

resources required by both the transport layer and the HTTP server.

43

oQuery (OBl,)

e' Serve from Cache (OBl,)

8 Add RESPONSE,
to Cache (0Bh)

-+
I
I
I
I
I

: Lower OSI Layers t
I I
I ~~~~B!~ ~

I I
I RESPlo(O) RESPIll) RESPli2) IL J

Figure 6: HIT? Request with Packet Cache

As shown in Figure 6, after the HTTP request for OBh is delivered by the transport layer to the

HITP server, the HTIP server determines the object(s) being requested. The HITP server then

queries the transport protocol (8) if the latest response (a three packet response: RESP]0,

RESP]" and RESP]2) for the object(s) is cached. If the cache contains the latest response, the

transport protocol delivers the response directly from the cache (8). Otherwise, HTTP

adds/replaces the response in the transport protocol's response cache (__) before the transport

protocol can deliver it. As shown in Figure 7, a NACK indicates the lost packet RES?] , and its

position in the cache (1). Figure 8 illustrates two client browsers requesting the same object

(OBh) while another client requests a different object (OBh).

44

HTTPServer -I

li ~
,;,.,..,..,."':"':":";."

...
I
J
I
I
I

I Lower OS1 Layers
I I I

: REQ(OB11) : I
I ------------------------- I I

I
I RESPlo(O) RESPli2) I IL J I

NACK(1) IL J

Iwww BrowserI
i l

Figure 7: NACK with Packet Cache

li
+,
I I

: ~ _R§gLO!{IJ.
I

I l_B§~!~~ __
I REQ(OB12)I L +

J RESP2o(O) RESP2ll)L .

,
REQ(OB12) J I________________________________ J I

RESP2o(O) RESP2ll) IL ~

Lower OS1 Layers

Figure 8: Multiple Browsers with Packet Cache

45

Object Delivery Transport Protocol
Through the analysis above, this research established the deficiencies of the current

HTIPfTCP interaction, demonstrated how existing solutions do not fully address the needs of

the World-Wide Web, and established the three objectives for an efficient transport protocol for

theWWW.

The final contribution of this research is in the specification of a new transport protocol

that addresses OBJl, OBJ2, and OBJ3. This new protocol called the Object Delivery Transport

Protocol (ODTP) utilizes the naming (port and address) from TCP, timer-based connection

management from Delta-t and Fletcher, rate-based flow control from VMTP, and the server

response cache proposed above. The Object Delivery Transport Protocol (ODTP) provides

connection-oriented, transport services for message transactions between a client and server on

the WWW. VMTP's model provides the core transport mechanisms of ODTP with its rate

based flow control and negative acknowledgments. ODTP, however, removes the overhead of

the explicit management module of VMTP and provides only a simple acknowledgment

mechanism to verify that a server has received the request. ODTP also uses the naming of TCP

with ports and Internet address. ODTP also differs from VMTP through its use of group

sequence numbers (and the GroupMask) to identify the position of the packet within the

response cache. Like TCP, ODTP uses the network services of a simple (and possibly

unreliable) datagram protocol such as IP. To satisfy the connection management requirements

outlined above, ODTP relies exclusively on the timer mechanisms of Delta-t and Fletcher.

ODTP specifies the following features to address all the objectives above:

46

1. ODTP is a transaction oriented transport protocol model after VMTP that
uses timers exclusively to handle duplicate data detection and minimize the
connection management overhead on connection establishment. The
minimum transaction latency for ODTP is one RTf plus SPT for random
object access regardless of prior readership.

2. ODTP like VMTP incorporates rate-based flow control for effective
congestion avoidance for high-speed transmission rates and short
connections.

3. Through a response packet cache, ODTP places minimal responsibility on
the HTTP and ODTP servers for handling the requests. The cache enables
ODTP servers to forgo a transmission buffer in certain situations and send
directly from the cache and also access the cache directly for
retransmissions.

An overview of the protocol is given below. A proof of the correctness of the protocol's

transaction (connection) management and its formal description (including the necessary

modifications to the HTTP server) follow. The proof of correctness verifies that while providing

the minimum latency of one RTf + SPT, the protocol's transaction management results in its

correct operation. Finally, the protocol is analyzed for its ability to address the objectives.

Overview

Following VMTP's model, the ODTP client begins a transaction by creating a unique

transactionidentifier (TI) and segmenting its request into a fixed number of packets groups with

up to 32 packets per group. The ODTP client then sends the request to a server. To ensure

reliability, ODTP sequences and verifies the checksums of the packets within the packet groups.

The server responds to any missing or damaged packets within each group in the request by

sending a negative acknowledgment. After a specified interval, if the packet has still not arrived

undamaged, these negative acknowledgments are repeated up to a maximum number of times

before the transaction fails. These negative acknowledgments also update the rate-based flow

control. The server responds to the request by sending the response. If the client does not receive

47

the response within a specified interval, it sends a message querying the server if it is still

processing the request. After a maximum number of queries, the transaction fails. Upon

successful reception of the response, the client transfers the message to the application layer.

Transaction (Connection) Management

A transaction is identified by the tuple (Internet Host Address, Port Identifier, Tl). Each

message carries the transaction identifier, source port, and destination port. A transaction is

active at the client while it sends the requests, waits for a response from the server, and receives

the response. While receiving and servicing a request, a server will not accept any messages

from the (Host, Port) with a TI different from the initial request's TI (02). Like Delta-t, timers

in ODTP ensure that the client and server maintain a transaction record with the TI while packets

(including duplicates) with that TI exist in the network. Thus, if no transaction exists and the

server is willing to receive, no duplicate packets from a previously closed incarnation of a

transaction will cause a new transaction to be established and duplicate data to be accepted (01),

and no packets from previous transactions will cause an existing transaction to close (Cl). The

client and server will also maintain the transaction record long enough for transmissions,

retransmissions, NACKs, and ACKs to have arrived at the destination (if they are ever going to

arrive). Thus, the receiver will not close until it has received all of a sender's possible

retransmissions (C2). The client will not close until it has received an explicit acknowledgment

of all that it has sent in the form of the response or after a fixed number of requests for ACK, the

expected time of arrival of the response has expired. The server will not close until it has

received an additional request from the client or sufficient time has passed for any final NACKs

to have arrived (C3).

48

To effectively handle these duplicate HTTP responses and packet (re)transmissions with

minimal overhead and also significantly enhance the performance of HTTP, the OOTP server

maintains a cache of the transaction response packets. The cache contains the response di vided

into 512 octet segments. The implications of various caching policies is reserved for future

research.

For transmission, OOTP segments a message into packet groups that consist of up to 32

individual packets. A packet consists of a 24 octet header and segment data in increments of 512

octets (see Figure 9).

012 3
012 3 4 5 6 7 8 9 012 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 890 1

Source Port I Destination Port

Transaction Identifier

Group Sequence Number
N N A N

~ Interpacket IM M C A Checksums E K C T GapK

Group Mask

Message Length

Data

Figure 9: aDTP Packet Format

Following VMTP' s design, each packet may contain up to 32 data segments--the entire packet

group. The packet size will be determined by the underlying protocols Maximum Transmission

Unit (MTU). A 32-bit field in the header call GroupMask indicates which data segments (or

members of the packet group) are present in the packet with each bit representing one data

segment of the 32 possible data segments. If the message is smaller than the packet group's

maximum size, the remaining bits are set in the field. If the message does not fit in only one

49

packet group, the sender utilizes group sequence numbers (GSN) on each packet group to

enforce the order of the segments. The sender also utilizes two bit fields in the packet header,

Not Message Start (NMS) and Not Message End (NME). The first packet group's header will

have the NMS bit cleared and the NME bit set. The last packet group's header will have the

NME bit cleared and the NMS bit set. Any packet groups sent in between will have both bits set.

Thus, a single packet group that is both the start and end of a message will have both bits

cleared. After preparing the packet group(s), a sender will transmit the packets within each

group at a rate to avoid congesting the network or overwhelming the receiver. A default

Interpacket Gap (IPG) is initially used but the receiver may send a packet with the SET bit set

and indicate an appropriate IPG in the IPG field in the packet header.

The first packet received by a server will begin the transaction. The server will create a

transaction record (TR) for the port and source and TI in the packet header and initialize a 32-bit

DeliveryMask for the packet group to O. This mask denotes the members of the packet group

that have not yet been received. The sender then modifies the DeliveryMask to indicate the data

segments in the received packet. The sever also checks if there is more than one packet in the

message by examining the bit fields for NMS and NME. If packets are still outstanding (the

DeliveryMask is not 1 or there are additional packet groups remaining-packets with the NME

flag cleared have not arrived), the server sets a reception timer to record when it expects the next

packet to arrive. If a packet within a packet group is received out of order, the server simply

places it in the correct position in the buffer based on the bit position in the GroupMask or if it

belongs to a different packet group, it is queued until the current packet group is complete. If the

reception timer expires, the server transmits a packet with the NACK bit set and the GSN and

50

GroupMask set to the expected packet. Subsequent packets update the DelivelyMask. Reception

is complete when the DeliveryMask is 1and no additional packet groups remain. The server then

passes the message onto the application layer. The response is sent using the same methods. A

client waits a fixed time interval (defined below) for the response to arrive before requesting an

acknowledgment of the request from the server (a packet with the ACK bit set). This request is

repeated a maximum number of times until either the response to the request or the response to

the ACK arrives.

~~Ii~l>ilitJT

ODTP provides reliable sequenced delivery of both the request and the response by

using sequencing with the GSN and the DeliveryMask bits (discussed above), transaction

identifiers, checksums, and negative acknowledgment and timeout and retransmission of missing

packets.

Transaction Identifiers

The ODTP protocol does not restrict the number of incarnations of the same pair

(Internet Host Address, Port Identifier). All packets (request, response, and retransmissions)

that are part of the same transaction contain the same TI. To satisfy G3, 02, and CI, and prevent

duplicate packets from a previous incarnation from affecting the existing transaction (even if an

ODTP host crashes), each transaction must have a TI that does not already exist in the network

from a previous incarnation. Therefore, the initial TI on startup (due to a system reset or crash)

must be created in the same manner as TCP's initial sequence number. Subsequent TIs may be

obtained by performing

(TI+1) mod ITII.
(19)

51

The generation of the initial TI is bounded to a 32-bit clock whose low order bit is incremented

roughly every 4 microseconds. As a result, the initial TI will cycle every 4.77 hours. A proof

(G3) is given below. Thus, if the MSL is assumed to be the upper bound on a packet's life in the

network, the initial TI chosen on startup (due to a system reset or crash) wil\ be unique as long as

the MSL is less than 4.77 hours. This research assumes that start-up time of a host after a crash

is sufficient to ensure any packets that could have the initial TI (from a previous connection) have

expired.

For a packet from a previous incarnation of a connection to affect an existing connection,

the packet must contain the identical transaction identifier. Hence, to satisfy 02 and CI, TIs may

cycle at the following maximum rate,

(20)

This upper bound is established below (02, CI).

To satisfy GI and prevent the reuse of an Group Sequence Number (and its

GroupMask) while the same GSN (and GroupMask) still exists in the network, the maximum

rate of creation of the Group Sequence Numbers must be

R < IGSNI
GSN_MAX MSL

(21)
This upper bound is established below (GI).

Checksum

Damage is handled by adding a 16-bit checksum (identical to Tep) to the entire packet

transmitted, checking it at the receiver, and discarding damaged segments.

52

Acknowledgments, Retransmissions, and Timers

ODTP, like TCP, uses the communication services of a simple (and possible unreliable)

datagram protocol like the Internet Protocol. IP provides ODTP with the ability to send and

receive variable-length segments through multiple heterogeneous networks and interconnecting

gateways. Thus, to guarantee the reliability of ODTP's transport services, the protocol must

provide mechanisms for retransmitting missing or damaged packets. The client must also receive

notification that its request was successfully received so it does not unnecessarily send a

duplicate request. The response itself provides this notification.

Each transaction record of a client has a transmission response timer (TCl). TCI is the

estimated time to receive a response from the server after transmitting its final request or

retransmission packet. This timer prevents a client from waiting for a response that will never

arrive due to a busy server or network failure. To guarantee the client receives all the server's

NACKs, the client must wait upon ending its transmissions and retransmissions for the server to

utilize the maximum NACK interval to request retransmission of a damaged or lost packet (when

the server's reception timer, TS2 described below, has expired). The client must also wait for the

server to process the request and receive the first response packet. Thus, the client must wait the

maximum of these two intervals. If all the propagation delays are known ahead of time, TCI is

initialized upon transmission of the last packet to

Dreq + max(DreJP + SPY, MaxRetrieSNACK . (DretrallJ + DNACK)),
(22)

where Dreq is the propagation delay of the request (or retransmission), DreJp is the propagation

delay of the first response packet to arrive at the client, and MaxRetrieSNAcK' (DretrallJ + DNACK) is

the time to wait for any final NACK requests to arrive. Because the propagation delays are not

53

known ahead of time, an estimate of the RTf is detennined and utilized in the timer. TC, does

not include any waiting time for duplicates-this delay is reserved for the lifetime timer (TC3).

TCI is reset to (22) upon receiving a NACK and cleared upon reception of the first response

packet.

Following VMTP closely, while TCI may expire due to a poor estimate of the server's

processing time, the cost of an additional acknowledgment when the server receives the response

is significant for short transactions. If TCI expires before the response is received, an ACK

request packet is transmitted with the ACK bit set. If the server is still processing the request

when the ACK request arrives, the server replies with an ACK to infonn the client that its

estimate of SPT is incorrect. If the server has finished processing the original request, the ACK

request is discarded. If the client does not receive the response or the ACK within an estimate of

the RTF (=o,eq + o,esp), the ACK request is transmitted again. This procedure is repeated for a

maximum number of retransmissions. If unsuccessful, the transaction request fails. Thus, a

request is acknowledged by the client receiving the response from the server.

Each transaction record of a client also has a reception timer (TC2) that is used with

multi-packet responses. TC2 is initialized upon reception of the first packet in a multi-packet

response to

IPGmax,
(23)

where IPGmax is the maximum interpacket gap or the maximum amount of time between packet

transmissions. TC2 is reset to (23) upon the successful reception of each packet. If the timer

expires before receiving the next packet in the response, a negative acknowledgment is

transmitted to the server indiqlting the packet group and expected packet number. A NACK for

S4

the same packet is repeated a fixed number of times (MaxRetrieSNAcK) before the transaction

fails.

Each transaction record of a client has a lifetime timer (TC]) that is used to maintain the

transaction record as long as the client is known to be sending a request, waiting for a response,

receiving a response, or waiting for packets with the TI to expire in the network. The transaction

itself, though, may be completed before the transaction record is released. Initially, the

assumption is made that no duplicates are created within the network or more precisely, all the

packets arrive within a known propagation delay. Hence, when transmitting a request and then

waiting for the response, TC3 is the time spent on transmissions, retransmissions, TCl, and the

time spent on ACK requests. TC3 is updated as the transmission progresses as shown below

n

TC3 =CTUTulient = 'IJPGi + T + TCI + RetrieSACKreq . (Dack + DackJesp),
i=2

(24)

where n is the number of packets in the request, IPGi is the interpacket gap for the ith packet in

the request (the first packet is assumed to not require an interpacket gap), RetrieSACKreq is the

number ofACK requests transmitted, Dack is the propagation delay of the ACK request, DackJesp is

the propagation delay of the ACK response, and T is the time spent on retransmissions

r

L IPGremaining_j +r j ,
j=!

(25)

where r is the number of packets retransmitted, IPGremaining-J is the time remaining in the

interpacket gap when the jth NACK arrives, and nis the time between the last packet

transmission and the reception of the jth NACK. For example, if the NACK arrives during the

transmission of the message, nis simply the time that has expired already in the IPG. Thus,

55

IPGwllaillillli-l +}} =IPGk•

(26)

where IPGk is the interpacket gap of the next packet to transmit. If the NA CK arrives when the

client is waiting for the response, }} resets the wait time interval to the time that had already

elapsed. The proof (Lemma 5) (67) given below extends (24) to include the waiting time

necessary to receive all duplicates. Initially this waiting time is represented by a factor K. Hence,

the lifetime of the transaction record when the client is the sender, CTUTs, is

II

TC3 =CTUTs = 2/PG; + T + Dreq + max(Dresp + SPT,
;=2

MaxRetrieSNACK . (DretrallS + DNACK)) + RetrieSACKreq . (Dack + DackJesp) + K =CTCLTuliellt + K,

(27)

where K is the waiting time necessary to ensure all packets (including duplicates) transmitted

during the request from either the client or the server (NACKs) have arrived at their destination if

they are ever going to arrive as shown in (67).

As soon as the client receives a response packet, assuming STUTuerver is known by the

client, the timer is reset to

TC3 =CTCLTr ~ STCLTuerver - L + K'
(28)

where STUT_server is the server's lifetime timer when transmitting the response (32) when all

packets arrive within a known propagation delay, L is the time the server waits to receive any

final NACKs from the client (the last term of (32)), and K' is the waiting time necessary to

ensure all packets transmitted during the response from either the client (NACKs) or the server

(including duplicates) have arrived at their destination if they are ever going to arrive as shown in

56

(64). SrUT.Utrwr, however, is not known by the client so an upper bound, Srur,_/IIlLU lllp. (62)

which includes K' is developed in Lemma 4.

Each client transaction record on the server has a transaction timer (TSI). If TSIexpires

before the response is sent, the server assumes the transaction has failed at the client. TS I then

does not include the propagation delay or transmission of the response. If all propagation delays

are known ahead of time, TS1 is initialized upon successfully receiving the request to

max(SPT, MaxRetrieSNACK' (Dretrans + DNACK)) + MaxRetrieSACKreq . (Dack + DackJesp),
(29)

where Dack is the propagation delay of the ACK request, DackJesp is the propagation delay of the

ACK response, and MaxRetrieSACKreq is the maximum number of ACK requests. TSI is cleared

upon transmission of a response packet. Because the propagation delays are not known ahead of

time, an estimate of the RIT is determined.

Each client transaction record on the server has a recep~~er (TS2) that is used with

multi-packet requests. TS2 is initialized upon reception of the first packet in a multi-packet

request to

IPGmax.
(30)

where IPGmax is the maximum interpacket gap or the maximum amount of time between packet

transmissions by the client. TS2 is reset to (30) upon the successful receipt of each packet. If the

timer expires before the next packet in the request arrives, a negative acknowledgment is

transmitted to the client indicating the packet group and expected packet number.

Each client transaction record on the server has a lifetime timer (TS3) that is used to

maintain the transaction record as long as the client is known to be receiving, processing, sending

57

the response, or waiting for packets with the TI to expire in the network. As soon as the server

receives a request packet, assuming CTUTulieli1 is known by the server, the timer is reset to

(31)

where CTUTulieli1 is the client's lifetime timer while transmitting and waiting for the response

(24) when all packets arrive within a known propagation delay, L is the time the client waits to

receive any final NACKs from the server, and K is the waiting time necessary to ensure all

packets transmitted during the request from either the client or the server (NACKs) (including

duplicates) have arrived at their destination if they are ever going to arrive as shown in (61).

CTUTulielll, however, is not known by the server so an upper bound, CTUTs_max_dup, (59) which

includes K is developed in Lemma 4. When ready to transmit the response, TS3 is reset as

described below.

When transmitting the response, TS3 is the time spent on transmissions, retransmissions,

and the time spent waiting for any final NACKs. TS3 is updated as the transmission progresses as

shown below

m

TS3 =STCLTuerver = '2.JPG i + Oresp + T + MaxRetriesNACK . (ONACK +Orelralls)
i=2

(32)

where m is the number of packets in the response, IPGi is the interpacket gap for the ith packet

in the response or NACK, Oresp is the propagation delay of the response, MaxRetriesNACK' (ONACK

+ Orelralls) is the time to wait for any final NACKs request to arrive, and T is the time spent on

retransmissions

S8

,

I IPG,rmmmllLJ +YJ
J= I

(33)

where r is the number of packets retransmitted, IPGWllllillilll:..J is the time remaining in the

interpacket gap when the jth NACK arrives, and J:1 is the time between the last packet

transmission and the reception of the jth NACK. The proof (Lemma 5) (69) given below extends

(32) to include the waiting time necessary to receive all duplicates. Initially this waiting time is

represented by a factor K'. Hence, the lifetime of the transaction record when the server is the

sender, STUTs, is

m

TS] =STUTs = 'l/PG; + Oresp + T + MaxRetrieSNACK . (ONACK +OretrallS) + K' =.
;=2

(34)

where K' is the waiting time necessary to ensure all packets (including duplicates) transmitted

during the response from either the client (NACKs) or the server have arrived at their destination

if they are ever going to arrive as shown in (70).

Rate Control

ODTP, like VMTP, uses rate-based flow control to maintain the flow of packets without

overrunning either the server or any intermediate network nodes. ODTP varies the interpacket

gap to modify the transmission rate-this research assumes that a default ~"safe") rate can be

determined, IPGmax. The sending ODTP host uses the reception of negative acknowledgments as

an indication that the receiver is either experiencing a buffer overflow or that congestion exists

on the network. Without any communication between the network and the transport protocol

S9

about network conditions and transmission rates, rate-based flow control must rely on the

NACKs arriving and not being held up in queues in the network.

Connection Management Correctness

ODTP uses TCP (Postel "TCP"), VMTP (Cheriton), and the mechanisms of Timer-

Based protocols outlined by Fletcher as its models. The correctness of ODTP's connection

management can be established by proving the connection management requirements discussed

above.

Assumption 1 The maximum packet lifetime is bounded at MSL.

Assumption 2 Possibility with low probability ofout-oj-sequence arrivals through store-and
forward subnetworks, lost or damaged packets, and creation ofduplicates within the network.

Assumption 3 The client and server have infinite buffers and processing capacity.

The following parameters are used:

Parameter 1 The number ofavailable Transaction Identifiers is ITIl.

Parameter 2 The number ofavailable Group Sequence Numbers is IGSM.

Parameter 3 The minimum Interpacket Gap is IPGmill.

Parameter 4 The estimate ofserver processing time is SPT.

Lemma 1

The minimum time interval between generation ojsequence numbers for a consecutive
packet group X and Y is bounded by IPGmill. Hence, the maximum rate ojgeneration of

GSNs is RGSN max = 1
- IPGmill

Proof: Let n denote the minimum number of packets to send a packet group X. Packets are

transmitted with an interpacket gap of IPGi 2 IPGmill' Thus, the time interval between generation

60

of the group sequence number for X and Y is the time to send group X and the time to wait

before sending group Y,

n

L. IPGj + IPGj .

;=2

(35)

If n= 1, the minimum time interval between generation of group sequence numbers for a

consecutive packet group X and Y becomes IPGj which is bounded by IPGmin• If the minimum

interval between generation of consecutive group sequence numbers is IPGmin, the maximum

rate of generation of group sequence number, RcsN_max, is

I

(36)

Theorem 1

ODTP satisfies Transaction (Connection) Management General Requirement 1.

Generall
An identifier ofan information unit usedfor error control must not be reused while one
or more copies ofthat unit or its NACK are alive.

Proof: By Lemma 1, RcsN_max is the maximum rate at which packet groups are generation.

Thus, group sequence numbers will wrap around if the GSN number space is smaller than the

product of the rate creation of the GSNs and their lifetimes in the network,

(37)

where LT is the lifetime of the identifiers. Recall, a packet has a network LT of MSL. Therefore,

to prevent wrap around

61

(38)

Thus, because MSL is defined by the network, the choice of IGSNl and RGSN-"u!X must satisfy

IGSNI > MSL
RGSN_max

(39)

but IGSNl is fixed. Thus,

(
1 R J IGSNI

IPG . = GSN_max < MSL
nun

(40)

Hence, to prevent an identifier of an infonnation unit used for error control (the group sequence

number) from being reused while one or more copies of that unit or its NACK are alive, the

minimum interpacket gap must be large enough to satisfy (40).

Lemma 2

The minimum time interval between generation ofconsecutive/TIs at the client is
bounded by RIT + SPT. Hence, the minimum lifetime ofa TI at the client (CrUT) is
also RIT + SPT.

Proof: Let Ddenote the transfer delay of packets between the client and server. Let nand m

denote the number of packets in the request and response, respectively. Thus, with no

retransmissions and acknowledgment requests, the transaction at the client takes

n m

2./PGi + Dreq+ SPT + "2./PGj + Dresp

;=2 ;=2

(41)

where IPGi is the interpacket gap for the ith packet in the request, IPGj is the interpacket gap for

the jth packet in the response, Dresp is the propagation delay of the response, and Dreq is the

propagation delay of the request. The client does need to wait for any final NACKs as shown in

62

(22) because the lifetime timer is cleared when the first response packet is received. Any waiting

time for duplicates occurs after the transaction is completed. At the minimum nand m of I, (4 I)

becomes

8 req+ 8 resp+ SPT
(42)

and

8 req+ 8 resp = RTT,
(43)

where RTT is an estimate of the round-trip time. Hence,

RTT+ SPT,
(44)

is the minimum interval between generation of TIs. Equation (44) also indicates the minimum

lifetime of the TI at the client (CTUT_min).

Lemma 3

The minimum lifetime ofthe transaction identifier for a client's transaction record at
the server is bounded by STl_LT_min ~ CTULmin + MaxRetriesNAcK . RTT + K'.

Proof: From (31) and (35) the lifetime of the client's transaction record at the server is the time

spent receiving and processing the request and the time spent sending the response,

TS3 ~ CTCLTuliellt - L + K + STun
(45)

where L is the time the client waits to receive any final NACKs from the server and K is the

waiting time necessary to ensure all packets transmitted during the request from either the server

(NACKs) or the client (induding duplicates) have arrived at their destination if they are ever

going to arrive. With no retransmissions, acknowledgment requests, and a minimum nand m of

63

I as assumed in Lemma 2 and the reset of the server's timer when the request has completely

arrived, the minimum TS3 becomes

(46)

From (41) with no retransmissions and m of I,

STCLTs= Oresp+ MaxRetriesNACK . (ONACK +Ore/rans) + K'
(47)

where K' is the waiting time necessary to ensure all packets transmitted during the response

from either the client (NACKs) or the server (including duplicates) have arrived at their

destination if they are ever going to arrive. Hence,

(48)

From Lemma 2 using (43),

(49)

Theorem 2

ODTP satisfies Transaction (Connection) Management Transaction Opening
Requirement 2 and Transaction Closing 1. When an initial Transaction Identifier is
chosen for the transaction, it must be such that no duplicates from previous
transactions can be accepted within the current transaction. Hence, the rate ofcreation

of the Transaction Identifiers must be bounded by . ITIl ,
MaxRetrzes NACK . RTT + K

Transaction Opening 2
Ifa transaction exists, then no packets from a previously closed transaction should be
acceptable within a current connection.

Transaction Closing 1
No packet from a previous transaction should cause an existing transaction to close.

Proof: Assuming there has been no crash with loss of memory, a client will choose the next Tl

by performing

64

(TI+ 1) mod ITll.
(50)

TIs, though, suffer from the same wrap around problem as GSNs. Thus, TIs will wrap around

and duplicates from previous transactions with the same TI could be accepted within the current

transaction if

(51)

1where RTCmax = is the rate of generation of TIs by the client using Lemma 2 and
C TI LT min

ST/_LT_min is the minimum lifetime of the transaction at the server from Lemma 3. To prevent

wrap around,

1
ITIl> STI LT min' ---

CTI _ LT_min

(52)
but ITM is fixed. By Lemma 3, to prevent wrap around

ITII>(CTI LT min +MaxRetrieSNACK ·RTT + K'). 1
C TI LT min

ITIl> MaxRetriesNACK • RTT + K'

CTI _LT_min

(53)

Therefore, the TIs will not wrap around if the rate of creation of the identifiers by the client
(RT/_max) is

(
. 1 J ITIlR = < .

TCmax CTI_LT_min MaxRetrieSNACK • RTT + K'

(54)

65

Theorem 3

DDTP satisfies Transaction (Connection) Management General Requirement 2.

General 2
The error control information must itselfbe error corrected.

Proof The 16-bit checksum is applied to the entire packet including the TIs and GSNs.

Lemma 4

To receive all the sender's transmissions, retransmissions, and ACKs including
duplicates, the receiver must maintain its transaction record for

(55)

where senderTuTs_nuu_dup is the maximum lifetime of the sender and ensures all packets
including duplicates transmitted by the receiver and sender (NACKs) have arrived at
their destination if they are ever going to arrive and L is the time the sender waits to
receive any final NACKs from the receiver. Thus, while the client is sending, the server
must maintain its transaction record (and identifier) for the client for

STLLTr~ CTLLTs_max_dup - L,
STUTr = (n-l) . IPGmax + T + 2 MSL + SPT + MaxRetriesAcKreq ·2 MSL.

While the server is sending, the client must maintain the transaction record for

CTLLTr~ STLLTcnuu - L
l

CTuTr=(m-l) . IPGmax + T + MSL.

Proof The transmission of a request with n packets by the client requires at most

n

L IPGi + T + Dreq,
i=2

(56)

where T is the time spent on retransmissions as shown in Equation (25) and IPGmax is the

maximum interpacket gap as shown in Equation (23). Recall, the response from the,server

serves as the acknowledgment of the request. Thus, from (22), the client will wait for the

response at most

66

ma.x(8resp + SPT, Ma.xRetrieSNACK . (8retrc/llJ+ 8NACK)),
(57)

before requesting an immediate acknowledgment (ACK request) at most Ma.xRetries times-to

check if the server is down or simply slow, from (24),

Ma.xRetrieSACKreq . (8ack + 8ackJeJP)'
(58)

Thus, the lifetime of the transaction record when the client is the sender, CTCLTJ, is (27) as shown

earlier.

The server, though, does not have the advanced knowledge necessary to accurately set

its lifetime timer when the initial request is received. Recall, with rate-based flow control, the

sender does not rely on acknowledges to continue the transmission of packets. Thus, if a link

temporarily fails or there is an intermittent delay, the sender will continue the flow of packets to

the receiver until all the packets have been transmitted. The receiver, therefore, -must maintain

the transaction for the duration of the expected transmission. Any missing segments may be

requested using NACKs. Thus, while the server will update (reduce) its lifetime timer as

additional packets are received, it must set an upper bound to ensure any temporary link failures

and intermittent delays to do not incorrectly terminate the transaction. If the server knows only

the length of the request (the MessageLength field in the header), the server will bound IPGi

with IPGmax and determine that the client will maintain its transaction record while transmitting

the requesting and waiting for the response at most

CTUTJ_TnaX = (n-l) . IPGmax + T + 8req + ma.x(8resp + SPT, Ma.xRetriesNACK . (8retrallJ + 8NACK)] +
Ma.xRetriesACKreq . (8ack + 8ackJeJP))

(59)

67

8 is also not known in advance but is bounded by MSL (a packet or its duplicate wJIl not arrive if

8 >MSL) so the lifetime of the client's transaction record including the time for any duplicate

packets from the server (NACKs) or the client to arrive if they are ever going to is

CTUTs_nllu_dup = (n-l) ·IPGl1Illx + T + MSL + max[MSL + SPT, MaxRetriesNACK ·2 MSL] +
MaxRetrieSACKreq ·2 MSL.

(60)

Lis MaxRetrieSNAcK ·2 MSL. Therefore, if the server maintain the client's transaction record for

STl_LTr:::: CTCLTs_l1IllX_dup - L,
STUTr= (n-l) . IPGmllx + T + 2 MSL + SPT + MaxRetriesACKreq ·2 MSL,

(61)

the server will receive all the client's transmissions, retransmissions, and ACKs including

duplicates.

Similarly, the lifetime of the transaction record when the server is the sender STuTsis

(34). If the client knows only the length of the response (the MessageLength field in the header),

the client will bound IPG j with IPGl1Illx and determine that the server will maintain its transaction

record while transmitting the response at most

STUTs_11IllX = (m-l) . IPGl1Illx + 8resp + T + MaxRetriesNACK . (8NACK +8retrans),
(62)

8 is also not known in advance but is bounded by MSL (a packet or its duplicate will not arrive if

8 >MSL) so the lifetime of the server's transaction record including the time for any duplicate

packets from the client (NACKs) or the server to arrive if they are ever going to is

STUTs_l1IllX_dllp = (m-l) . IPGmllx + T + MSL + MaxRetrieSNAcK' 2 MSL.
(63)

L is MaxRetrieSNAcK . 2 MSL. Therefore, if the client maintains the transaction record for

CTCLTr:::: STCLTUIIlU_dup - L,
CTUTr =(m-l) . IPGmllx + T + MSL,

(64)
68

the client will receive all the server's transmissions, retransmissions, ACKs, and duplicates.

LemmaS

To receive all the receiver's NACKs (including duplicates), the sender must maintain
its transaction record for

senderTuT:2 IT + K..
(65)

where IT is the maximum transmission time (including propagation delays) and K is
the time the sender must wait to receive any final NACKs.

Thus, while the server is sending, the server must maintain its transaction record (and
identifier) for the client for

STUTs:2IT + K',
m

STUTs = ''2,}PGi + MSL + T + MaxRetriesNAcK . 2 MSL.
;=2

While the client is sending the request, the client must maintain its transaction record
for

CTUTs:2 IT+ K.
n

CTUTs = 2/PGj + T + MSL + max(MSL + SPT, MaxRetriesNAcK ·2 MSL) +
i=2

RetriesAcKreq . 2 MSL.

Proof From (27), the transmission of a request with n packets by the client and the waiting time

for the response is

n

CrUT_client =L IPG j + T + 8req + max(8resp + SPT, MaxRetriesNAcK . (8retrans + 8NACK)) +
i=2

MaxRetriesAcKreq . (8ack + 8ackJesp)
(66)

and 8 is bounded by MSL (a packet or its duplicate will not arrive if 8 >MSL) so the lifetime of

the client's transaction record including the time to receive any NACKs and duplicates is

69

/I

CTcm = 2/PG; + T + MSL + max(MSL + SPT, MaxRetrieSNAcK ·2 MSL) + RetrieSACKreq ·2
;=2

MSL = CTCLTJlieli1 + K.
(67)

Therefore, if the client maintain its transaction record for

CTUTs;? IT + K,
/I

CTUTs= "'2./PG; + T + MSL + max(MSL + SPT, MaxRetrieSNACK' 2 MSL) +
;=2

RetrieSACKreq . 2 MSL,
(68)

the client will receive all the server's NACKs including duplicates.

From (32), the transmission of a response with m packets by the server and the waiting

time for the response is

m

STI_LT_server = I IPGi + 8resp + T + MaxRetrieSNACK . (8NACK +8relralls),
;=2

(69)

8 is bounded by MSL so the lifetime of the server's transaction record plus the time to receive

any NA CKs and duplicates is

m

STUTs= IIPG; + MSL + T + MaxRetrieSNACK' 2 MSL =STUT_server + K'
;=2

(70)

Therefore, if the server maintains its transaction record for

m

STcm =IIPGj + MSL + T + MaxRetrieSNACK' 2 MSL.
;=2

(71)

the server will receive all the client's NACKs including duplicates.

70

Theorem 4

ODTP satisfies Transaction (Connection) Management Transaction Opening
Requirement 1, Transaction Closing Requirement 2, and Transaction Closing
Requirement 3. Thus, both sides must maintain the transaction long enough so
duplicates can be detected, and transmissions, retransmissions, NACKs, and ACKs
have arrived at their destination (if they are ever going to arrive).

Transaction Opening 1
Ifno connection exists and the receiver is willing to receive, no duplicate packets from
a previously closed connection should cause a new connection to be established.

Transaction Closing 2
A receiving side should not close until it has received all ofa sender's possible
retransmissions and can respond to them.

Transaction Closing 3
A sending side should not close until it has received acknowledgment ofall that it has
sent.

Proof By Lemma 4, the receiver will not release its transaction record until all the sender's

packets including duplicates have arrived at the receiver (C2). Also from Lemma 4, no duplicate

packets from an earlier incarnation of a connection will cause a new connection to be established

(01).

By Lemma 5, if the client is the sender, it will maintain the transaction until it either

receives the response (the acknowledgment) or the transaction fails and enough time has expired

for any NACKs (and duplicates) to have been sent and expired in the network. If the server is the

sender, it will maintain the connection until enough time has expired for any NACKs (including

duplicates) to have been sent and expired in the network. Thus, C3 is true.

Theorem 5

ODTP satisfies Transaction (Connection) Management General Requirement 3.

General 3
If the crash ofan end can cause it to lose its state, then appropriate crash recovery
mechanism must assure the other requirements G1, G2, 01, 02, C1, C2, and C3.

71

Proof If a crash occurs, the client or server may lose their connection state. G2 will not be

affected by a loss of connection state and is satisfied if a crash occurs. To ensure that all the other

requirements are met Gl, 01, 02, Cl, C2, and C3, we must ensure that all packets that

currently exist in the communication network or are being transmitting (recall, with ODTP's

rate-based flow control, there is no flow of acknowledgments back to the sender.) Thus, the

protocol must maintain the transaction until its lifetime would have expired. Hence, some stable

storage is required for the transaction records.

Additionally, when a new transaction is initiated, an initial 32-bit Transaction Identifier is

generated by using a 32-clock which is possibly fictitious. The low order bit of this 32-bit clock

is incremented roughly every 4 microseconds (Postel ''TCP''). Thus, the clock values will wrap

around after

232 • 4 J1S = 2
34

= 17179.869s = 4.772h.

106 J1S 3600~
s h

(72)

Therefore, the initial Transaction Identifiers will cycle approximately after 4.772 hours. If

MSL < 4.772 hours
(73)

the initial Transaction Identifiers will be unique. Postel ("TCP") specifies the MSL is 2 minutes.

Hence, the initial Transaction Identifiers will be unique even after a crash.

72

Timer Rules

ClientTimers• .- (Re)setEvent- Reset/Initial Value ; Timer Event
Transmission [1] Transmission [1] Oreq + max(OWl' + SPT, [1] Expiration: Transmit
Timer (TC/) of last request and MaxRetriesNACK . (Ormans + ACK request up to

retransmission ONACK)) (22) MaxRetries times, reset
packet TC I each time to [2]

[2] Transmission [2] Oreq + OWl' (RTT) [2] If ACK request has
of ACK request been sent MaxRetries

times, transaction failure

[3] If ACK response is

received, reset TCI to [1]
Reception Timer Reception of a IPGmax (23) Transmit NACK with
(TC2) packet packet group and expected

packet number
Lifetime Timer on Transmission of MSL + max(MSL + SPT, [1] Expiration:
Transmitting last request or MaxRetriesNACK . 2 MSL) + Transaction failure
Request and retransmission RetriesACKreq ·2 MSL (68)
Waiting for packet
Response (TC3)

Lifetime Timer on Reception of first (packets remaining-l)· [1] Expiration: if
Receiving response IPGmax + T + MSL (64) transaction completed,
Response (TC3) packet transaction success

otherwise, failure
[2] Updated after
reception of each packet:

Figure 10: Client Timer Rules

73

ServerTimers (Re)setEvent ResetlInitialValue Timer Event

Transaction Timer Reception of last max(SPT, MaxRetriesNACK' [1] Transaction failure
(TS/) request packet (DmraTIJ + DNACK)) +

MaxRetriesACKrrq . (Dack +
Dack ma) (29)

Reception Timer Reception of a IPGmeu (30) [1] Transmit NACK with
(TS2) packet packet group and expected

packet number
Lifetime Timer on Transmission of MSL + T + MaxRetriesNACK . [1] Transaction completed
Transmitting last response or 2 MSL (70)
Response (TS3) retransmission

packet
Lifetime Timer on Reception of first (packets remaining-I) . [1] Transaction failed
Receiving Request request IPGmeu + T + 2 MSL + SPT +
(TS3) packet MaxRetriesACKreq ·2 MSL (61)

Figure 11: Server Timer Rules

74

Formal Description

Note: E9 denotes addition mod ITII or IC5M
TR is a transaction record
P is a packet

Global Variables for both Client and Server
TI
IPG
IPCmill

IPGmax

IPGAdjustmellt

SPT
RTF
HostAddr
MSS
MSL
MaxSegsPerCroup
MaxRetries
HeaderSize
MTU
MaxRetriesAckReq
Cache

Server

/* transaction identifier */
/* interpacket gap [transmission rate] */
/* minimum interpacket gap [maximum transmission rate] */
/* maximum interpacket gap [minimum transmission rate] */
/* interpacket gap adjustment [transmission rate adjustment]*/
/* estimate of Server Processing Time in milliseconds */
/* estimate of Round Trip Time in milliseconds */
/* host's Internet address */
/* maximum segment size */
/* maximum segment lifetime */
/* maximum segments per packet group */
/* maximum retransmissions */
/* size of ODTP packet header */
/* maximum transmission unit */
/* maximum number of retries for ack */
/* cache of data segments */

RPGB

CSN
TPGB

The transaction record TRs at the server contains the following components for each transaction:
TI /* transaction identifier */
RTF /* estimate of Round Trip Time */
SPT /* estimate of Server Processing Time */
TS1 /* transmission timer */
TS2 /* reception timer */
TS3 /* lifetime */
TS4 /* data rate timer */
RetransmissionCount /* retransmission counter (for each packet) */
AckRequestCount /* ACK request count */
GrpTransmissionMask /* bit mask indicating the portions of the group transmitted; */

/* set before entering the transmission queue and cleared */
/* incrementally as the 512-octet packets ofthe group */
/* are transmitted. */

DeliveryMask1\ /* bit mask indicating the portions of the group received; */
/* cleared as the 512-octet packets of the group are received. */
/* group sequence number */
/* transmission buffer of packet groups and the headers and */
/* cache indices of its members */
/* reception buffer of packet groups */

75

WQ
RTQ
State
P
DirectCache
Currentlndex
PacketCount
ServerAddr
ServerPort
ClientAddr
ClientPort

/* waiting queue */
/* retransmission queue of packet groups */
/* state ={Transmitting, Processing, Receiving, Waiting} */
/* a packet */

/* send directly from cache? */
/* current index into cache if sending directly from the cache */
/* number of packets received so far */
/* server's address */
/* server's port */
/* client's address */
/* client's port */

Initialization:
IPG f- system default interpacket gap
IPGmin f- system default minimum interpacket gap
IPGmax f- system default maximum interpacket gap
IPGadjustment f- system default interpacket gap adjustment
SPT f- default estimate of server processing time
RTF f- default estimate of round trip time
HostAddrf- host's Internet address
MSS f-512
MSL f-120 s
MaxSegsPerGroup f- 32
MaxRetries f- 3
HeaderSize f- 24
MTU f- 536 (IP), 1536 (Ethernet)
MaxRetriesAckReq f- 3
Cachef- 0

Receive Request Packet (P)
/* does current source (port and address) and P.Hdr.TI already have a TR */
if not TRs(P.Hdr.ClientAddr, P.Hdr.ClientPort, P.Hdr.TI) exists

then
Allocate a transaction record TRs(srcAddr, srcPort, TI)
/* initialize variables */
TRs.SPT f- SPT
TRs.TI f- P.Hdr. TI
TRs.RTF f- RTF
TRs.!PG f- IPG
TRs.ClientAddrf- P.Hdr. ClientAddr
TRs.ClientPort f- P.Hdr. ClientPort
TRs.ServerAddr f- HostAddr
TRs.ServerPortf- port
TRs.AckRequestCountf- 0

76

TR.r.PacketCOlllltf- 0
TR.I.State f- Receiving
/* == TIMERS === */
/* transaction timer TS j is cleared, reception timer TSJis set to expected arrival*/
TR.r. TSj f- 00

TR.r. TS2 f- IPGmax

/* set lifetime timer to upper bound of client's lifetime based */
/* on message length and number of packets received so far */

TR.r.TSJ f- P.Hdr.MessageLength.JPGmax + 2 MSL +
SPT + MaxRetriesAckReq ·2 MSL

/* data rate timer (for transmission) is cleared */
TRs.TS4 f- 00

TRs.RetransmissionCount f- 0
TRs.DeliveryMaskf- 0
TRs.GSN f-O

end if
/* Retrieve Transaction Record */
TR f- TRs(P.Hdr.ClientAddr, P.Hdr.ClientPort, P.Hdr.TI)
if TR.State =Receiving
then

/* increment count of packets received, update upper bound on */
/* client's lifetime, reset reception timer, and either place in buffer in the */
/* correct spot or place in the waiting queue */
TR.PacketCount f- TR.PacketCount + 1
TR.TS] f- (P.Hdr.MessageLength-TR.PacketCount)-IPGmax + 2 MSL +

SPT + MaxRetriesAckReq . 2 MSL
/* reset reception timer */
TR.TS2 f- IPGmax

/* if packet belongs to current group */
if P.Hdr.GSN = TR.GSN

then /* add to reception buffer and update delivery mask */
TR.RPBQ[i,P.Hdr.GroupMask] f- P
TR.DeliveryMask f- TR.DeliveryMask + P.Hdr.GroupMask
/* if DeliveryMask is 1 then packet group is complete */
if TR.DeliveryMask =1

then TR.GSN (- TR.GSN EEl 1
move any TR. WQ packets with TR. GSN to

TR.RPBQ[GSN]
end if

/* otherwise out-of-sequence and add to Waiting Queue */
else add P to TR. WQ

end if

77

/* if the last packet, process the request */
if not P.Hdr.NME and TR.DeliveryMask = 1

/* clear reception timer TS2, set transaction timer TS, */
TR.TS2 ~oo

TR.TS, ~ max(TR.SPT, MaxRetries· TR.RIT) + MaxRetriesAckReq-TR.RIT
/* process the request */
TR.State ~ Processing
cacheIndex f- HTTP Server Process Request (TR.RPBQ, responseMsg)
/* is element in cache already? if no, cache it*/
if cachelndex < 0

then cacheIndex f- Cache Message (responseMsg)
end if
TR. Cachelndex f- cacheIndex
/* done processing, clear transaction timer and lifetime timers */
TR.TS, ~oo
TR.TS3~oo

TR.State f- Transmitting
TR.RetransmissionCount f- 0
TR.GrpTransmissionMask f- 0
TR.GSN~O

send packet groups (TR, responseMsg)
end if

end if

Find Cache Index (objects)
if objects in Cache

then
return objects index

else
return -1

end if

Is Latest Version (objects, timestamp)
if objects in Cache

then
return objects.timestamp=timestamp

else
return FALSE

end if

78

Cache Message (msg)
find free position i
use a cache replacement strategy if necessary
split the msg of size n bytes (octets) into m MSS-sized octet segments
'tIj: i={O.. m-l j, Cache[i,j} f- msglj,MSS)

/* store the last segment size with each segment */
Cache[i}.LastSegmentSize =sizerCache[i,m-l])

/* store the total number of packets required for the message */
Cache[i}.NumPackets = m
return i

Send Packet Groups (TR, msg)
/* initialize default Packet Header */
TR.P.Hdr.SegmentSize f- 0
TR.P.Hdr.ServerAddr f- TR.ServerAddr
TR.P.Hdr.ServerPort f- TR.ServerPort
TR.P.Hdr.ClientAddr f- TR.ClientAddr
TR.P.Hdr.ClientPort f- TR.ClientPort
TR.P.Hdr.TI f- TR.T!
TR. P.Hdr. GSN f- 0
TR.P.Hdr.Data f- 0
TR.P.Hdr.ACKf- 0
TR.P.Hdr.NACK f- 0
TR.P.Hdr.NMS f- I
TR.P.Hdr.NME f-l
/* current index into cache-used if transmitting directly from the cache */
TR. Currentlndex f- 0
/* if MTU is larger than the MSS-sized segments in the cache, create a queue of the */
/* packet headers with multiple mappings into the cache */
Queue packet groups (TR, msg)
TR.GSNf-O
Set Transmission Mask (TR, TR. GSN)
Send Packet (TR, TR.GSN)

Send Packet Directly From Cache (TR, index)
if first packet group

then
TR.P.Hdr.NMS f- 0
TR.P.Hdr.NME f-l

end if

79

if last packet group
then

TR.P.Hdr.NMS f- 1
TR.P.Hdr.NME (-()

end if

/* set packet group mask */
TR.P.Hdr.GroupMaskf- 2 indexnJod(MaxSegsPerGroup-l)

TR.P.Hdr.Data f- Cache[TR.Cachelndex, index]
if last packet in last packet group .,....

then
TR.P.Hdr.GroupMask f-l

end if

if index f- Cache[TR.Cachelndex].NumPackets-l
then

TR.P.Hdr.SegmentSizef- TR. Cache[TR. Cachelndex, index].LastSegmentSize
else

TR.P.Hdr.SegmentSizef- MSS
end if

Queue Packet Groups (TR, msg)
/* more than one data segment per packet */
if MTU>MSS + HeaderSize

then
TR.DirectCache = FALSE
create a queue of m packet groups TR.TPGB[m,j] and their j elements (E) of
packet headers and cache indices
each packet may contain more than one cache segment but each packet may
contain at most one entire packet group [all MaxSegsPerGroup
segments]

/* update group mask for segments i =0.. (MaxSegsPerGroup-l) */
/* in the packet added, k is the cache index */
E.Hdr.GroupMask f-E.Hdr.GroupMask + i
E.Hdr.SegmentSize f- E.Hdr.SegmentSize + (MSS or LastSegmentSize)
E.Data[i] f- k
if last packet in last packet group, E.Hdr. GroupMask f- 1

map a packet's contents to the cache
set first packet group's headers with E.Hdr.NMS f- 0 and E.Hdr.NME f-l
set last packet group's headers with E.Hdr.NMS f-l and E.Hdr.NME f- 0
all others E.Hdr.NMS f-l and E.Hdr.NME f- 1

else
/* Send directly from cache */
TR.DirectCache = TRUE

end if
80

Set Transmission Mask (TR, i)
/* set the transmission mask to indicate all the packets to be transmitted in */
/* this packet group */
if TR.DirectCache = FALSE

then
determine how many elements are in the buffer for the ith packet group
set Group Transmission Mask (i)

else
determine how many elements are in the cache for the ith packet group
set Group Transmission Mask (i)

end if

Send Packet (TR)
/* if nothing {ACK or NACK} is waiting to be retransmitted */
if ITR.RTQI = 0 and TR.State = Transmitting

then
/* send directly from cache */
if TR.DirectCache = TRUE

then
/* are there more packets to send from the cache */
if TR.Currentlndex < Cache[TR.Cachelndex}.NumPackets

1* transmit next packet in the group (if any) */
/* otherwise move onto next group */
if TR.Currentlndex. mod (MaxSegsPerGroup-l)= 0

then
TR. GSN f- TR.GSN (9 1
Set Transmission Mask (TR, TR. GSN)

end if
clear TR.GrpTransmissionMask bit

TR. Currentlndex mod (MaxSegsPerGroup-l)

/* transmit Currentlndex cache element */
Send Packet Directly From Cache (TR, TR.Currentlndex)

TR. Currentlndex f- TR. Currentlndex + 1
end if

else

81

/* not directly from cache, are there more packets to send */
if ITR.TPGB[GSNjl> 0

then
/* transmit next packet in the group (if any) */
/* find first bit set in this group otherwise move onto next grp*/
if-find first TR.GrpTransmissionMask bit set
if i <0

then
TR. GSN (- TR. GSN ffi 1
Set Transmission Mask CrR, TR.GSN)

end if
clear TR.GrpTransmissionMask bit i
TR.P f- TR.TPGB[GSN,ij

end if
end if
/* set the data rate timer-expiration indicates the server is ready */
/* to send another packet */
TR. TS4 f- TR.IPG
TR.P.Hdr.IPG f- TR.IPG
/* checksum and send the packet */
checksum TR.P
send TR.P

else
/* set the data rate timer-expiration indicates the client is */
/* ready to send another packet */
TR. TS4 f- TR.IPG
/* remove head of retransmit queue and send it */
tempP (- head(TR.RTQ)
tempP.Hdr.IPG f- TR.IPG
/* checksum and send the packet */
checksum tempP
send tempP

end if

End Transmission (TR)
TR.State f- Waiting
/* remaining lifetime */
TR.TS] f-MSL + MaxRetriesNAcK' 2 MSL

/* transaction timer */
TSI for transaction record TRs expires:

TRs.TSJ f- 00

TRs.State f- Waiting
FAILURE
end if

82

/* reception timer */

TSz for transaction record TRs expires:
TRs.TSz f- 00

/* expected packet was not received within IPGI/Illx, send NACK */

tempP. Hdr. SegmentSizef- 0 __
tempP.Hdr.ServerAddrf- TRs.ServerAddr
tempP.Hdr.ServerPortf- TRs.ServerPort
tempP.Hdr. ClientAddrf- TRs.HostAddr
tempP.Hdr. ClientPortf- TRs.HostPort
tempP.Hdr.Tl f- TR.T!
tempP.Hdr.GSNf- TRs.GSN
if-find next bit in TRs.DeliveryMask
tempP.Hdr. GroupMaskf- i
tempP.Hdr.NACK f- I
tempP.Hdr.ACK f- 0
add tempP to head of TRs.RTQ
/* expect NACK within the estimate of RTT */

TRs.RetransmissionCount[TRs.GSN, i] f- TR.RetransmissionCount[TRs.GSN, i] + 1
if TRs.RetransmissionCount[TRs.GSN, i] > MaxRetries

then
TRs.TS1 f- 00

TRs.State f- Waiting
FAILURE

else
TRs.TSz f-RIT
/* increment lifetime timer */

TRs.TS3 f- TRs.TS3 + TRs.RIT
/* send the NACK */
Send Packet (TRs)

end if

/* lifetime timer */
TS3 for transaction record TRs expires:

TRs•TS3 f- 00

if TRs.State =Waiting
then

SUCCESS
release transaction record TRs

else
FAILURE

end if

83

/* data rate timer */
T54 for transaction record TRs expires:

TRs.TS4(- 00

if (TRs.DirectCaclze=TRUE and TRs.Cllrrelltlndex <
Caclze[TRs.Caclzelndex].NllmPackets) or ITRs.RPBQ[GSNjI>O or ITRs.RTQI>O
then

Send Packet (TRs)

else
End Transmission (TRs)

end if

NACK is received (P)

TR (- TRs(P.Hdr.ClientAddr, P.Hdr.ClientPort, P.Hdr.TI)
/* reset lifetime timer */
TR.TS3 (- 00
TR.IPG (- TR.IPG + IPGAdjustment
if TR.IPG > IPGmax

then
FAILURE

end if
if DirectCache=FALSE

then
add TR.RPGB[P.Hdr.GroupMask, P.Hdr.GSNj to TR.RTQ

else
add Cache[TR.Cachelndex, xl to TR.RTQ, where x is position in the

cache for packet {P.Hdr.GroupMask, P.Hdr.GSN}

/* if ready to send, send the packet */
if TR.TS4 =00

then
Send Packet (TR)

end if

84

Send ACK (TR)
if TR.AckRequestCount > MaxRetriesAckReq

then
/* halt Transmissions and wait until lifetime expires */
FAILURE
TR.TS4 =00
TR.State =Waiting

else
TR.AckRequestCount f- TR.AckRequestCount + 1
/* send ACK */
tempP.Hdr.SegmentSizef- 0
tempP.Hdr.ServerAddrf- TR.ServerAddr
tempP.Hdr.ServerPortf- TR.ServerPort
tempP.Hdr. ClientAddrf- TR.HostAddr
tempP.Hdr. ClientPortf- TR.HostPort
tempP.Hdr.TI f- TR. TI
tempP.Hdr.GSNf- 0
tempP.Hdr.NACK f- 0

tempP.Hdr.ACK f-1

add P to head of TR.RTQ
Send Packet (TR)

end if

ACK is received (P)
TR f- TRlP.Hdr.ClientAddr, P.Hdr.ClientPort, P.Hdr.TI)
if TR.State=Processing

then
Send ACK (TRs)

end if

85

Client

The transaction record TRc at the client contains the following components for each transaction:
Tl /* transaction identifier */
RTT /* estimate of Round Trip Time */
SPT /* estimate of Server Processing Time */
TCI /* transmission timer */
TC2 /* reception timer */
TC3 /* lifetime */
TC4 /* data rate timer */
RetransmissionCount /* retransmission counter (for each packet)*/
AckRequestCount /* ACK request counter */
RPGB /* reception buffer of packet groups */
WQ /* waiting queue*/
RTQ /* retransmission queue of packet groups */
State /* state ={Transmitting, WaitingForResponseReceiving,

WaitingForDuplicates} */
P /* a packet */
PacketC;ount /* number of packets received so far */
ServerAddr /* server's address */
ServerPort /* server's port */
ClientAddr /* client's address */
ClientPort /* client's port */
GrpTransmissionMask/* bit mask indicating the portions of the group transmitted; */

/* set before entering the transmission queue and cleared */
/* incrementally as the 512-byte packets of the group */
/* are transmitted. */

GSN /* group sequence number */

Initialization:
TI f- transaction identifier generated from 32-bit clock
IPG f- system default interpacket gap
IPGmin f- system default minimum interpacket gap
IPGmaxf- system default maximum interpacket gap
IPGAdjustment f- system default interpacket gap adjustment
SPT f- default estimate of server processing time
RTT f- default estimate of round trip time
HostAddr f- host's Internet address
MSS (--512
MSL (--120 s
MaxSegsPerGroup (-- 32
MaxRetries (-- 3
HeaderSize (-- 24
MTU (-- 536 (IP), 1536 (Ethernet)
MaxRetriesAckReq (-- 3

86

Transaction Setup (port, ServerAddr, ServerPort, 11lsg):
TI f- TI ffi 1
Allocate a transaction record TRe(ServerAddr, ServerPort, TI)

TRe.ClientPort f- port
TRe.ClientAddr f- HostAddr
TRe.ServerAddr f- ServerAddr
TRe.ServerPortf- ServerPort
TRe.SPT f- SPT
TRe.RTT f- RTT
TRe.IPG f- IPG
TRe.State f- Transmitting
TRe.RetransmissionCount f- 0
TRe.AckRequestCount f- 0
TRe•TCI f- 00

TRe.TC2 f- 00

TRe•TC] f- 00

TRe•TC4 f- 00

TRe.GSN f-O
Send Packet Groups (TRe, msg)

Send Packet Groups (TR, msg)
/* initialize default Packet Header */
TR.P.Hdr.SegmentSize f- 0
TR.P.Hdr.ServerAddr f- TR.ServerAddr
TR.P.Hdr.ServerPort f- TR.ServerPort
TR.P.Hdr. ClientAddr f- TR.HostAddr
TR.P.Hdr.ClientPort f- TR.ClientPort
TR.P.Hdr.TI f- TR.TI
TR.P.Hdr. GSN f- 0
TR.P.Hdr.Data f- 0
TR.P.Hdr.ACKf- 0
TR.P.Hdr.NACK f- 0
TR.P.Hdr.NMS f- 1

TR.P.Hdr.NME f-1

Queue packet groups (TR, msg)
TR.GSNf-O
Set Transmission Mask (TR, TR. GSN)
Send Packet (TR, TR. GSN)

87

Queue Packet Groups (TR, msg)
create a queue of m packet groups TR.TPGB[m,j} and their j elements (E) of packets
each packet may contain more than one cache segment
one packet may contain at most one entire packet group [all MaxSegsPerGroup segments]

/* update delivery mask for segment i = 0.. (MaxSegsPerGroup-J) in the group added */
TR. TPGB[x,y}.Hdr. GroupMask<- TR.TPGB[x,y}.Hdr.GroupMask + i
TR. TPGB[x,y].Hdr.SegmentSize<- TR. TPGB[x,y}.Hdr.SegmentSize + segmentSize
TR.Data <- TR.Data + msg(offset,segmentSize)
if last packet in last packet group, P.Hdr.GroupMask <- J
set first packet group's headers with TR.TPGB[x,y}..Hdr.NMS <- 0 and

TR.TPGB[x,y}.Hdr.NME <- J
set last packet group's headers with TR.TPGB[x,y}.Hdr.NMS <- J and

TR.TPGB[x,y}.Hdr.NME <- 0
all others TR.TPGB[x,y}.Hdr.NMS <- J and TR.TPGB{x,y].Hdr.NME <- J

Set Transmission Mask (TR, i)
determine how many elements are in the buffer for the ith packet group
set Group Transmission Mask (i)

Send Packet (TR)
/* if nothing waiting to be retransmitted */
if ITR.RTQI = 0

then
if ITR.TPGB{GSN}I > 0

then
/* transmit next packet in the group (if any) */
/* find first bit set in this group otherwise move onto next grp*/
i <- find first TR.GrpTransmissionMask bit set
if i <0

then
TR. GSN <- TR. GSN (j) J
Set Transmission Mask (TR, TR.GSN)

end if
clear TR.GrpTransmissionMask bit i
/* set the data rate timer-expiration indicates the client is ready */

"/* to send another packet */
TR. TC4 <- TR./PG
TR.P.Hdr./PG <- TR./PG
/* checksum and send the packet */
checksum TR.P
send TR.P

end if

88

else
/* set the data rate timer-expiration indicates the client is */
/* ready to send another packet */
TR. TC4 f- TR./PG
/* remove head of retransmit queue and send it */
tempP f- head(TR.RTQ)
tempP.Hdr./PG f- TR.IPG
send tempP

end if

Receive Response Packet (P)
/* does current source (port and address) and P.Hdr.TI already have a TR */
if not TRc (P.Hdr.ServerAddr,P.Hdr.ServerPort,P.Hdr.TI) exists

then
discard P

else
TR f- TRc (srcAddr,srctPort,P.T/)
if TR.State =WaitingForResponse

then
TR.PacketCountf- 0
TR.State =Receiving

end if

if TR.State = Receiving
then

/* increment count of packets received, update upper bound on */
/* server's lifetime, reset reception timer, and either place in buffer in the */
/* correct spot or place in the waiting queue */

TR.PacketCountf- TR.PacketCount + 1
TR.TC] f- (P.Hdr.MessageLength-TR.PacketCount).JPGmax + MSL
/* reset reception timer */
TR. TCz f- IPGmax

/* if packet belongs to current group */
if P.GSN =TR.GSN

then
/* add to reception buffer and update delivery mask */
TR.RPBQ[i, P.Hdr. GroupMask] =P
TR.DeliveryMask f- TR.DeliveryMask + P.Hdr.GroupMask
if TR.DeliveryMask =1

then
TR. GSN f- TR. GSN tB 1
move any TR. WQ packet's with TR. GSN to

TR.RPBQ[GSN]
end if

89

/* otherwise add to Waiting Queue */
else

add P to TR. WQ
end if

/* if the last packet, all done*/
if not P.Hdr.NME and TR.DeliveryMask = 1

/* clear reception timer, set transaction timer */
TR.TC2 f-oo
TR.TC3 f-oo
TR.State f- WaitingForDuplicates

end if
end if

Request For ACK (TR)
P.Hdr.SegmentSizef- a
P.Hdr.ServerAddrf- TR.ServerAddr
P.Hdr.ServerPortf- TR.ServerPort
P.Hdr. ClientAddrf- TR. ClientAddr
P.Hdr. ClientPortf- TR. ClientPort
P.Hdr.TI f- TR.TI
P.Hdr.GSNf- a
P.Hdr.NACK f- a
P.Hdr.ACK f- I
add P to head of TR.RTQ
Send Packet (TR)

ACK is received (TR)
TR.AckRequestCount f- a
TR.TCl f-RIT + SPT

NACK is received (P)
TR f- TR(P.Hdr.ServerAddr, P.Hdr.ServerPort, P.Hdr.TI)
/* reset lifetime timer */
TR.TC3 f- 00

TR.IPG f- TR.IPG + IPGAdjustment
if TR.IPG > IPG,nax

then
FAILURE

end if
add TR.RPGB[P.Hdr.GroupMask, P.Hdr.SN] to TR.RTQ
if TR. TC4 =00

then
Send Packet (TR)

end if
90

End Transmission (TR)
TR.State f- WaitillgForRespollse
TR.AckRequestCoUlzt f- 0
TR. TCI f- RTT+ SPT
TR. TC] f- MSL + max(MSL + SPT, MaxRetriesNACK ·2 MSL) + RetriesACKreq ·2 MSL

/* transaction timer */
TC I for transaction record TRc expires:

TRe.TCI f- 00

TRe.AckRequestCount f- TRe.AckRequestCount + 1
if TRe.AckRequestCount > MaxRetriesAckReq

then
FAILURE

else
TRe.TCI f- TRe.RTT
/* increment lifetime timer */
TRe.TC] f- TRe.TC] + 2 MSL
Request For ACK (TRe)

end if

/* reception timer */
TC2 for transaction record TRc expires:

TRe.TC2 f- 00

/* send NACK */
/* expect NACK within the estimate of RTT */

TRe.RetransmissionCount[GSN, i] f- TRe.RetransmissionCount[GSN, i] + 1
if TRe.RetransmissionCount[GSN,i] > MaxRetries

then
TRe.TCI f- 00

TRe.State f- Waiting
FAILURE

else
TRe.TC2 f- TRc.RTT
/* increment lifetime timer */

TRe.TC] f- TRe.TC3 + TRe.RTT
/* send the NACK */
Send Packet (TRe)

end if

91

/* lifetime timer */
TC3 for transaction record TRc expires:

TRc.TC3 f- 00

if TRc.State =WaitingForDuplicates
then SUCCESS

release transaction record TRc

else FAILURE
end if

/* data rate timer */
TC4 for transaction record TRc expires:

TRc.TC4 f- 00

if ITRe.RPBQ[GSNjl>O or ITRe.RTQI>O
then

Send Packet (TRe)

else
End Transmission (TRe)

end if

92

HTTPServer

Process Request (reqllestMsg, respollseMsg)
Detennine Requested Object(s)
/* Check if objects(s) are present in the cache */
index f- ODTP Server Find Cache Index (objects)
if index<O

responseMsg f- Process Object (objects)
return -1

else
latest f- ODTP Server Is Latest Version (objects, objects. timestamp)
if latest=FALSE

then
responseMsg f- Process Object (objects)
return -1

else
return index

end if
end if

93

Analysis/Conclusion
Through the analysis above, this research established the deficiencies of the current

HTTPrrcp interaction, demonstrated how existing solutions do not fully address the needs of

the World-Wide Web, and established the three objectives for an efficient transport protocol for

the WWW. These objectives for a new transport protocol to address the performance problems

of HTTPrrCp were:

1. A transaction rather than stream-based protocol -- this implies a low
connection management overhead on connection establishment and a
minimum transaction latency of one RTT for random objects regardless of
prior readership

2. Effective connection avoidance for high-speed transmission rates and short
connection that will allow the protocol to scale with improvements in
network bandwidth.

3. Minimization of server load and server processing time (SPT)

The final contribution of this research was the specification of a new transport protocol

that addresses these objectives. The new ODTP protocol provides efficient connection-oriented,

transport services for message transactions between a client and server. ODTP utilizes the

naming (port and address) from TCP, timer-based connection management from Delta-t and·

Fletcher, rate-based flow control from VMTP, and an unique packet response cache that requires

a modified HTIP server. A proof of correctness of the protocol's connection management and a

formal description of the protocol and the HTTP modifications are provided.

ODTP specifies the following features to address all the objectives above:

1. ODTP is a transaction-oriented transport protocol modeled after VMTP
but ODTP uses timers exclusively to handle duplicate data detection. Hence,
this reduced connection management overhead leads to the minimum
transaction latency for ODTP of one RTT plus SPT for random object access
regardless of prior readership.

94

2. ODTP like VMTP incorporates rate-based flow control for effective
congestion avoidance for high-speed transmission rates and short
connections.

3. Through a response cache, ODTP places minimal responsibility on the
HTTP and ODTP servers for handling the requests. If objects are added to
the cache when they are published online, all responses can be served from
the cache. The cache also enables ODTP servers to forgo a transmission
buffer and send directly from the cache and also access the cache directly for
retransmissions.

ODTP provides reliable sequenced delivery of both the request and the response by using

sequencing, transaction identifiers, checksums, and negative acknowledgment and timeout and

retransmission of missing packets. Overall, these enhancements also lessen the burden on the

HTTP server and increase server scalability by reducing the per-connection information that the

server must maintain (which provide no performance benefits). Thus, ODTP is one specification

for a simple transaction protocol for HTTPfor delivering documents efficiently over both

networks with high bandwidth and/or long round-trip delays and conventional Local and Wide

Area Networks.

95

/

Bibliography
Abrams, Marc, Charles R. Standridge, Ghaleb Abdulla, Stephen Williams, and Edward A. Fox.

"Caching Proxies: Limitations and Potentials." Proceedings of the Fourth International

World-Wide Web Conference (December 1995).

Adie, Chris. Network Access to Multimedia Information. Second edition. Amsterdam: RARE

Project, 1993.

Berners-Lee, Tim. "The HTTP Protocol as Implemented in W3." (1992).

Berners-Lee, Tim, R. Cailliau, 1. Groff, and B. Pollermann. "World-Wide Web: The information

universe," Electronic Networking: Research, Applications, and Policy 1.2 (1992): 52-

58.

Berners-Lee, Tim, R. Cailliau, A. Luotonen, H. Nielsen, and A. Secret. "The World-Wide Web."

Communications of the ACM 37.8 (1994): 76-82.

Berners-Lee, Tim, Roy T. Fielding, and Henrik Frystyk Nielsen. "Hypertext Transfer Protocol-

HTTP/l.O." Fourth Edition. (1995).

Berners-Lee, Tim. "Propagation, Replication,. and Caching." W3C Proposal (March 15, 1995).

Berners-Lee, Tim, Roy T. Fielding, and Henrik Frystyk Nielsen. "Hypertext Transfer Protocol-

HTTP/1.1." First edition. (1996).

Biersack, Ernst W. and David C. Feldmeier. "A Timer-Based Connection Management Protocol

with Synchronized Clocks and Its Verification." (July 7, 1992).

Braden, Richard. "Requirements for Internet Hosts-Comrnunication Layers." RFC 1122.

(1989).

96

Braden, Richard. "TrrCp-TCP Extensions for Transactions Functional Description." RFC

1644. (July 1994).

Brakmo, Lawrence S., Sean W. O'Malley, and Larry L. Peterson. "TCP Vegas: New Techniques

for Congestion Detection and Avoidance." Proceedings ofthe SIGCOMM '94

Symposium (August 1994): 24-35.

Cheriton, David. "VMTP: Versatile Message Transaction Protocol." RFC-1045. (February

1988).

Clark, David, Mark Lambert, and Lixia Zhang. "NETBLT: A Bulk Data Transfer Protocol."

RFC-988. (March 1989).

Clark, Russell 1. and Mostafa H. Ammar. "Providing Scalable Web Services Using Multicast

Communication." Proceedings ofthe IEEE Workshop on Services in Distributed and

Networked Environment (June 1995).

Crovella, Mark E. and Azer Bestavros. "Explaining World Wide Web Traffic Self-Similarity."

Technical Report TR-95-015, Boston University Computer Science Department

(October 12, 1995).

Dabbous, Walid S. "On High Speed Transport Protocols." Protocols for High-Speed Networks.

Eds. H. Rudin and R. Williamson. North Holland: Elsevier Science Publishers B.V.,

1989.

Doeringer, W.A., H. D. Dykeman, M. Kaiserswerth, B. W. Meister, H. Ruden, and R.

~illiamson. "A Survey of Light-Weight Protocols For High-Speed Networks.". High

Performance Networks: Technology and Protocols Ed. Ahmed N. Tantaway. Boston:

Kluwer Academic Publishers, 1994.

Fall, K. and S. Floyd. "Comparisons of Tahoe, Reno, and Sack TCP." (December 1995).

97

Feldmeier, David C. "An Overview of the TP++ Transport ProtocoL" High Pelformallce

Networks: Fromiers and Experience. Ed. Ahmed N. Tantawy. Boston: Kluwer

Academic Publishers, 1994.

Fletcher, John G. and Richard W. Watson. "Mechanism for a Reliable Timer-Based ProtocoL"

Computer Networks 2 (1978): 271-290.

Floyd, S. "Issues ofTCP with SACK." (January 1996).

Fox, Richard. "TCP Big Window and NAK Options." RFC 1106. (June 1989).

Glassman, Steve. "A Caching Relay for the World-Wide Web." Proceedings ofthe First

International Conference on the WWW(May 1994).

Heywood, Drew, Janos (John) Jemey, Jon Johnson, et ai. Connectivity: Local Area Networks.

Carmel: New Riders Publishing, 1992.

Jacobson, Van. "Congestion Avoidance and Control." Proceedings ofSIGCOMM '88 (August

1988).

Jacobson, Van. "Modified TCP Congestion Avoidance Algorithm." (April 1990).

Jacobson, Van. "Berkeley TCP Evolution from 4.3-Tahoe to 4.3-Reno." Proceedings of the

Eighteenth Internet Engineering Task Force (September 1990).

Jacobson, Van, and R. Braden. "TCP Extensions for Long-Delay Paths." RFC 1072. (October

1988).

Jacobson, Van, R. Braden, and D. Borman. "TCP Extensions for High Performance." RFC

1323. (May 1992).

Jain, R. "A Delay-Based Approach for Congestion Avoidance in Interconnected Heterogeneous

Computer Networks." ACM Computer Communications Review 19.5 (October 1989):

56-71.

98

Luotonen, A. and K. Altis. "World-Wide Web Proxies." Proceedings of the First International

Conference on the WWW (May 1994).

Mathias, Matt, Jamshid Mahdavi, Sally Royd, and Allyn Romanow. "TCP Selective

Acknowledgment Options." First Edition Draft. (January 24, 1996).

Mishra, Partho P., Dheeraj Sanghi, and Satish K. Tripathi. "TCP Flow Control in Lossy

Networks: Analysis and Enhancement." Computer Networks: Architecture and

Applications Eds. S.Y. Raghavan, G. v. Bochmann, and G. Pujolle. North Holland:

Elsevier Science Publishers B.Y., 1993.

McKenzie, Alex. "A Problem with the TCP Big Window Option." RFC 1110. (August 1989).

Mill, D.L. "Internet Time Synchronization: The Network Time Protocol." IEEE Transactions on

Communication 39.10 (October 1991): 1482:1493.

Nagle,1. "Congestion Control in IPrrCp Internetworks." RFC 896. (January 1984).

Padmanabhan, Venkata N. and Jeffrey C. Mogul. "Improving HTTPLatency." Second

International WWWConference (July 1994).

Pam, Andrew. "Where World Wide Web Went Wrong." Asian Pacific World Wide Web

Regional Conference (September 1995).

Pink, Stephen. "TCP/IP on Gigabit Networks" High Peiformance Networks: Frontiers and

Experience. Ed. Ahmed N. Tantawy. Boston: Kluwer Academic Publishers, 1994.

Pitkow, James E. and Margaret M. Recker. "A Simple Yet Robust Caching Algorithm Based on

Dynamic Access Patterns." Proceedings ofthe Second International WWWConference

(1994).

Postel, 1. (ed.). "Internet Protocol-DARPA Internet Program Protocol Specification." RFC 791.

(September 1981).

99

Postel, 1. (ed.). "Transmission Control Protocol-DARPA Internet Program Protocol

Specification." RFC 793. (September 1981).

Sanghi, Dheeraj and Ashok K. Agrawala. HDTP: An Efficient Transport Protoco1." Computer

Networks: Architectures and Applications. Eds. S.Y. Raghavan, G. v. Bochmann, and

G. Pujolle. North Holland: Elsevier Science Publishers B.Y., 1993.

Shankar, A. Udaya and David Lee. "Minimum-Latency Transport Protocols with Modulo-N

Incarnation Numbers." Technical Report UMIACS-TR-93-24.J, Institute for Advanced

Computer Studies and Department of Computer Science, University of Maryland

(December 15, 1994).

Smith, N. "What can Archives Offer the World-Wide Web?" Proceedings ofthe First

International World-Wide Web Conference (March 1994).

Spasojevic, Mirjana, Mic Bowman, and Alfred Spector. "Using a Wide-Area File System Within

the World-Wide Web." Second International WWW Conference (July 1994).

Spero, Simon E. "Analysis ofHTTPPerformanceProblems" (July 1994).

Stevens, W. Richard. "TCP/IP Illustrated, Volume 1." Reading: Addison-Wesley Publishing

Company, Incorporated, 1994.

Tanenbaum, Andrew S. Computer Networks. Englewood Cliffs: P T R Prentice Hall, 1989.

Tawbi, Wassim, Sylvie Dupuy, and Eric Horlait. "High Speed Protocols: State of the Art in

Multimedia Applications." Information Network and Communications IV. Eds. Martti

Tienari and Dipak Khakhar (March 1992).

Wang, Z. and 1. Crowcroft. "A New Congestion Control Scheme: Slow Start and Search (Tri

S)." ACM Computer Communications Review 22.2 (ApriI1992): 9-16.

100

Watson, Richard W. 'The Delta-T Transport Protocol: Features and Experience." Protocols for

High-Speed Networks. Eds. H. Rudin and R. Williamson. North Holland: Elsevier

Science Publishers B.Y., 1989.

Zhang, Lixia, Scott Shenker, and David D. Clark. "Observations on the dynamics of a

congestion control algorithm: The effects of two-way traffic." Proceedings of

SIGCOMM '9J Conference, Computer Communications Review 21:4 (September

1991): 133-147.

101

Vita
Born October 6, 1972 in Allentown, PA to Janice R. Moore and Andrew H. R. Moore

Graduate of Parkland High School (Orefield, PA) in June 1990

Graduate of Ursinus College (Collegeville, PA) in May 1994 with a Bachelor of Science Degree
_ in Mathematics/Computer Science and Economics

• Valedictorian
• Summa cum laude

• Phi Beta Kappa
• Honors in Economics, "Optimal Production Portfolio Theory"
• Best paper award (1992) for "The United States Income Tax: The Effects of the

1986 Tax Refonn Act on Lawyers" at Regional Undergraduate Economics
Conference

Experience
RPR Pharmaceuticals, Collegeville, PA

• C Programmer (May 1993-May 1994)

Ursinus College, Collegeville, PA
• Administrative Computing User Support Assistant (Sept 1990-Sept 1992)
• Network System Assistant (Sept 1992-Aug 1994)

Lehigh University, Bethlehem, PA
• Research Assistant for Network Management (Sept 1994-Dec 1994)
• Research Assistant for Advanced Manufacturing Software (Jan 1995

present)

102

ENDOF
TITLE

	Lehigh University
	Lehigh Preserve
	1996

	The object delivery transport protocol (ODTP)
	Erik Andrew Moore
	Recommended Citation

	00625
	00626
	00628
	00629
	00630
	00631
	00632
	00633
	00634
	00635
	00636
	00637
	00638
	00639
	00640
	00641
	00642
	00643
	00644
	00645
	00646
	00647
	00648
	00649
	00650
	00651
	00652
	00653
	00654
	00655
	00656
	00657
	00658
	00659
	00660
	00661
	00662
	00663
	00664
	00665
	00666
	00667
	00668
	00669
	00670
	00671
	00672
	00673
	00674
	00675
	00676
	00677
	00678
	00679
	00680
	00681
	00682
	00683
	00684
	00685
	00686
	00687
	00688
	00689
	00690
	00691
	00692
	00693
	00694
	00695
	00696
	00697
	00698
	00699
	00700
	00701
	00702
	00703
	00704
	00705
	00706
	00707
	00708
	00709
	00710
	00711
	00712
	00713
	00714
	00715
	00716
	00717
	00718
	00719
	00720
	00721
	00722
	00723
	00724
	00725
	00726
	00727
	00728
	00729
	00730
	00731
	00732
	00733

