
Transfer Control for
Resilient End-to-End Transport

By

Copyright c© 2014

Truc Anh N. Nguyen

Submitted to the graduate degree program in Electrical Engineering &
Computer Science and the Graduate Faculty of the University of Kansas

School of Engineering in partial fulfillment of
the requirements for the degree of Master of Science

Thesis Committee:

Dr. James P.G. Sterbenz: Chairperson

Dr. Victor S. Frost

Dr. Gary J. Minden

Date Defended: June 05, 2014

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by KU ScholarWorks

https://core.ac.uk/display/213408315?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

The Thesis Committee for Truc Anh N. Nguyen certifies

that this is the approved version of the following thesis:

Transfer Control for Resilient End-to-End Transport

Committee:

Dr. James P.G. Sterbenz: Chairperson

Date Approved: September 09, 2014

ii

Abstract

Residing between the network layer and the application layer, the transport

layer exchanges application data using the services provided by the network. Given

the unreliable nature of the underlying network, reliable data transfer has become

one of the key requirements for those transport-layer protocols such as TCP.

Studying the various mechanisms developed for TCP to increase the correctness

of data transmission while fully utilizing the network’s bandwidth provides us a

strong background for our study and development of our own resilient end-to-end

transport protocol. Given this motivation, in this thesis, we study the different

TCP’s error control and congestion control techniques by simulating them under

different network scenarios using ns-3. For error control, we narrow our research to

acknowledgement methods such as cumulative ACK - the traditional TCP’s way of

ACKing, SACK, NAK, and SNACK. The congestion control analysis covers some

TCP variants including Tahoe, Reno, NewReno, Vegas, Westwood, Westwood+,

and TCP SACK.

iii

I like to dedicate this work to my parents for their continuous support and

guidance.

iv

Acknowledgements

I would like to thank to my comittee members, especially my advisor Dr.

James P.G. Sterbenz for his support and guidance. I would also like to thank all

ResiliNets group members for their help and kindness. Finally, many thanks to

my family and friends, especially my parents for always supporting me.

v

Contents

Acceptance Page ii

Abstract iii

1 Introduction and Motivation 1

1.1 Problem Statement . 2

1.2 Proposed Solution . 2

1.3 Contributions . 3

1.4 Organization . 4

2 Background and Related Work 5

2.1 Early TCP Implementations . 5

2.2 Error Control . 7

2.2.1 ACK . 8

2.2.2 SACK . 9

2.2.3 NAK . 11

2.2.4 SNACK . 13

2.2.5 Example of SACK, NAK, and SNACK 14

2.3 Congestion Control . 16

2.3.1 TCP Tahoe . 17

2.3.2 TCP Reno . 20

2.3.3 TCP NewReno . 20

2.3.4 TCP Vegas . 22

2.3.5 TCP SACK . 22

2.3.6 TCP Westwood . 23

2.3.7 TCP Westwood+ . 23

vi

2.4 Other Related Work . 24

3 Implementations 26

3.1 TCP Module and Class Interaction in ns-3 26

3.2 Implementation of SACK, NAK, and SNACK 28

3.2.1 SACK-Based Loss Recovery Algorithm 29

3.2.2 NAK-Based Loss Recovery Algorithm 34

3.2.3 SNACK-Based Loss Recovery Algorithm 39

3.3 Implementation of TCP Vegas . 39

3.3.1 Global Variables . 40

3.3.2 Algorithm . 41

4 Results and Analysis 44

4.1 Error Control Results and Analysis 45

4.2 Congestion Control Results and Analysis 48

4.2.1 Jain’s Fairness index . 55

4.2.2 Link Utilization . 56

4.2.3 RTT Fairness . 57

4.2.4 Friendliness . 58

4.2.5 Intra-Protocol Fairness . 59

4.2.6 Summary . 60

5 Conclusions and Future Work 62

5.1 Conclusions . 62

5.2 Future work . 63

References 64

vii

List of Figures

2.1 Evolution of TCP . 6

2.2 TCP retransmission mechanisms (adapted from [1]) 7

2.3 Sack-Permitted option [2] . 9

2.4 SACK option [2] . 10

2.5 NAK option [3] . 11

2.6 SNACK option [4] . 14

2.7 SACK, NAK, and SNACK Example 15

2.8 SACK option when segment 2 arrives 15

2.9 NAK option when segment 2 arrives 15

2.10 SNACK option when segment 2 arrives 15

2.11 SACK option when segment 5 arrives 16

2.12 NAK option when segment 5 arrives 16

2.13 SNACK option when segment 5 arrives 16

2.14 Tahoe congestion control state transition diagram 19

2.15 Reno congestion control state transition diagram 21

2.16 NewReno congestion control state transition diagram 21

3.1 TCP class diagram in ns-3 . 27

3.2 SACK scoreboard . 29

3.3 TCP SACK flowchart on receipt of a duplicate ACK 34

3.4 TCP SACK’s pipe estimation flowchart 35

3.5 TCP SACK flowchart on receipt of a new ACK 36

3.6 NAK scoreboard . 37

3.7 SNACK scoreboard . 39

3.8 TCP Vegas flowchart on receipt of a new ACK 42

viii

4.1 Single flow topology . 44

4.2 Throughput vs. increasing burst error rate 46

4.3 Overhead vs. increasing burst error rate 47

4.4 Average throughput vs. packet error rate 49

4.5 Average throughput vs. bottleneck speed 51

4.6 Average throughput vs. bottleneck delay 54

4.7 Dumbbell topology . 54

4.8 Utilization vs. increasing bottleneck delay 57

4.9 RTT fairness vs. increasing second flow’s delay 58

4.10 Friendliness vs. increasing bottleneck delay 59

4.11 Intraprotocol fairness vs. increasing bottleneck delay 60

ix

List of Tables

4.1 Simulation parameters for ACK mechanisms tests 45

4.2 Simulation parameters for single flow test on TCP protocols . . . 48

4.3 Performance of standard TCP in steady state 52

4.4 Parameters for congestion control simulations 56

x

Chapter 1

Introduction and Motivation

Residing between the network layer and the application layer, the transport

layer transfers data between two communicating processes running on two end

systems. The transport layer is an end-to-end analog of the hop-by-hop network

layer’s data delivery service [5]. The services provided by the transport layer en-

able application-layer processes to exchange information without having to worry

about the underlying network’s architecture. It is important to distinguish be-

tween a transport service and a transport protocol. While a transport service

refers to a set of functions the transport layer offers to the application layer, a

transport protocol specifies a set of rules that a pair of transport sender and re-

ceiver follows while cooperating with each other to provide a particular service [6].

Given the unreliable nature of the network layer, in order to provide reliable

data transfer–correct and in-order data delivery with no loss and no duplications,

a reliable transport-layer protocol such as the Internet’s Transmission Control

Protocol (TCP) [7] has to incorporate various mechanisms. The different features

of a reliable transport protocol include connection management, error control,

flow control, and congestion control. Connection management specifies how a

1

pair of sender and receiver synchronize their establishment and termination of a

connection to prevent data loss and duplication mainly caused by the confusion

between different connections. Error control consists of a set of algorithms to

detect and recover from data loss and corruption. Flow control is the technique

employed to prevent the sender from overflowing the receiver’s buffer. Finally,

congestion control ensures an appropriate sending rate to avoid overwhelming

the network while still being able to achieve reasonable bandwidth utilization.

Error control, flow control, and congestion control are referred as transport-layer

transfer control.

1.1 Problem Statement

The development of any new resilient end-to-end transport protocol requires

a thorough understanding of the existing reliable protocols, especially TCP, its

different features with the main focus on transfer control, and its proposed en-

hancements, variants, and extensions.

1.2 Proposed Solution

Using the open source network simulator ns-3 [8], we study transport-layer

transfer control mechanisms by simulating them under different network sce-

narios. For error control, we focus on the various acknowledgement techniques

including the traditional positive acknowledgment (ACK), selective acknowledg-

ment (SACK), negative acknowledgment (NAK), and a hybrid version of both

SACK and NAK called selective-negative acknowledgment (SNACK). For con-

gestion control, we study the different mechanisms employed in the well-known

2

TCP variants: Tahoe, Reno, NewReno, Vegas, Westwood, Westwood+, and TCP

SACK. We analyze their behaviors, weaknesses and strengths, and suggest possi-

ble ways to enhance them based on our analysis. The knowledge gained from this

study will contribute to the design of our resilient end-to-end transport protocol,

Res-TP whose initial development has been conducted on by other members in

the group [9,10].

TCP plays a central role in our analysis [6]; since its inception, TCP has been

the dominant reliable transport-layer protocol developed for the Internet. The

wide deployment of TCP has exposed it to many different issues that trigger

extensive study resulting in many enhancements and extensions. Hence, studying

TCP and its variants gives us significant insight to the evolvement of transport-

layer design. Finally, documents on TCP development are publicly available.

1.3 Contributions

The contributions of this thesis are listed below:

• implement the conservative SACK-based loss recovery algorithm for TCP [11]

in ns-3

• modify the above SACK-based algorithm to incorporate NAK and SNACK

in replacement of SACK to study the different acknowledgment techniques

• collaborate with other group members to implement TCP Westwood+

• implement TCP Vegas congestion control mechanism in ns-3

• implement a Burst Error Model in ns-3 based on the existing Rate Error

Model

3

• implement SCPS-TP and its essence relevant for this thesis is SNACK and

TCP Vegas

• analyze the performance of the various acknowledgment and congestion con-

trol mechanisms under different network environments

1.4 Organization

The organization of the thesis is as follows: Section 2 gives a general overview

on the error and congestion control features of a reliable transport layer proto-

col followed by a discussion on the specific mechanisms/protocols simulated and

studied in the thesis. Section 3 provides some details on how the transport layer

module and its different classes are organized and interact in ns-3. In this context,

we show how we implement all the mechanisms needed to accomplish our research

goal. In the next section, Section 4, we present our simulation model followed by

the results represented in terms of plots on different performance metrics and our

analysis on those results. We conclude the thesis in Section 5 in which we high-

light what we have learned from our research together with some directions for

future work.

4

Chapter 2

Background and Related Work

In this section, we explain the four key acknowledgment schemes ACK, SACK,

NAK, and SNACK together with the different congestion control mechanisms

employed in TCP Tahoe, Reno, NewReno, Vegas, Westwood, Westwood+, and

TCP SACK. To be comprehensive, we start our discussion with a timeline on the

evolution of TCP (Figure 2.1) and an overview on the early TCP implementations.

The section ends with a brief survey on other related work.

2.1 Early TCP Implementations

Early TCP implementations [7] used the Go-Back-N Automatic Repeat Re-

quest (ARQ) mechanism (Figure 2.2(b)) together with positive ACK and a re-

transmission timer on the sender’s side to recover from data loss. The Go-Back-

N allows multiple TCP segments to be in flight simultaneously, which is different

from the earlier Stop-and-Wait approach (Figure 2.2(a)). Associated with each

segment is a retransmission timer set by the sender when the segment is sent. To

prevent premature retransmission, the timer’s value is supposed to be greater than

5

1974	 1988	
1989	

1990	 1994	
1995	

1996	
1997	

TCP	
Vinton	 G.	 Cerf	
Robert	 E.	 Kahn	

SACK	 (RFC	 1072)	
Van	 Jacobson	
Bob	 Braden	

TCP	 Tahoe	
Van	 Jacobson	

NAK	
R.	 Fox	

TCP	 Reno	
Van	 Jacobson	

TCP	 Vegas	
Lawrence	 S.	 Brakmo	
Sean	 W.	 O’Malley	
Larry	 L.	 Peterson	

TCP	 NewReno	
Janey	 C.	 Hoe	

SACK	 (RFC	 2018)	
Mathew	 Mathis	
Jamshid	 Mahdavi	

Sally	 Floyd	
Allyn	 Romanow	

SCPS-‐TP	 &	 SNACK	
Robert	 C.	 Durst	
Gregory	 J.	 Miller	
Eric	 J.	 Travis	

2001	

TCP	 Westwood	
Saverio	 Mascolo	
Claudio	 CaseV	
Mario	 Gerla	
M.Y.	 Sanadidi	
Ren	 Wang	

TCP	 Westwood+	
Saverio	 Mascolo	

L.A.	 Grieco	
R.	 Ferorelli	
P.	 Camarda	
G.	 Piscitelli	

2004	

Figure 2.1. Evolution of TCP

the network’s round-trip delay to allow sufficient time for the segment to reach the

receiver and its acknowledgement to traverse back before the timer fires. On the

other end, the receiver is expected to acknowledge every received segment. When

an out-of-order segment arrives due to a lost or corrupted segment, the receiver

retransmits the previous ACK. The sender views a duplicate ACK as an indication

of data loss, but it does not retransmit the segment until its retransmission timer

expires. This behavior differentiates the Go-Back-N mechanism from the Fast

Retransmit (Figure 2.2(c)) explained in later section. Upon a timeout, the sender

goes back and retransmits all the segments starting with the oldest loss based on

the acknowledgment number in the received ACK. Early TCP implementations

employed no congestion control techniques.

6

0

0

A0

1

tack

1

RS

1

A1

(a) Stop-and-Wait

 	
A0	
A1	

A1	

0	
1	

2	
3	
4	
5	

6	

2	
3	
4	
5	

6	

A1	

A2	
A3	
A4	
A5	

A1	

0	
1	
2	
3	

5	
4	

tack	

R	 S	

(b) Go-back-n

4	
3	

2	

5	

3	

0	
0	
1	

1	
tack	

A1	
A1	

2	 3	

A3	
A4	

4	
5	

A5	

5	

2	

A2	

4	 A1	

A1	

A0	

5	

S	 R	

6	
6	

(c) Fast Retransmit

7	
6	

4	

2	

8	

2	

3	

0	
0	
1	

A0	

1	

A1	

tack	

A3	

A4	

43	
543	

A5	

A2	

5432	

A6	
A7	

8	
7	

A8	

3	

6	

S	 R	

5

(d) Selective Repeat

Figure 2.2. TCP retransmission mechanisms (adapted from [1])

2.2 Error Control

In order to detect and recover errors arising from packets being transferred

through the underlying unreliable network, a reliable transport protocol uses mul-

tiple approaches including sequence numbers, checksums, acknowledgments, and

retransmissions. A packet is marked as being errored if it is corrupted, misordered,

or duplicated. In this thesis, we focus on the various acknowledgment mechanisms:

positive ACK, selective ACK, negative ACK, and selective-negative ACK. Even

though we do not explicitly study the retransmission schemes, our analysis on

the TCP variants cover some of them. Fast Retransmit is part of Tahoe, Reno,

and NewReno while TCP SACK combines selective ACK and selective repeat

retransmission policy (Figure 2.2(d)).

7

2.2.1 ACK

TCP uses a cumulative acknowledgment (ACK) scheme in which the data

receiver sends a positive ACK to acknowledge all data octets that are below the

acknowledgment number. The acknowledgment number contained in the ACK

packet’s header indicates the receiver’s next expected data byte. Any new, but

unexpected data arriving at the receiver following a loss will be buffered, but

not acknowledged. Instead, out-of-order data triggers a retransmission of the last

ACK packet. TCP depends heavily on its ACK stream to decide when it should

introduce new packets into the network in order to maintain its throughput.

Despite of its simplicity, TCP’s cumulative acknowledgment mechanism has

many drawbacks, especially when TCP being deployed in long fat networks (LFNs)

– networks containing paths with high bandwidth × delay product. These net-

works require a large amount of unacknowledged data to fill the pipe that increases

the probability of having multiple segment losses per sending window. The use

of a single acknowledgment number in an ACK packet cannot give the sender a

complete view of the receiver’s buffer status. As mentioned earlier, the receiver

buffers out-of-order data but does not acknowledge them. The lack of knowledge

on the sender side may result in multiple unnecessary retransmissions that waste

the network bandwidth and drop the throughput.

A TCP sender has to wait at least a full round trip time (RTT) until a duplicate

ACK arrives to learn about each packet loss. In a long delay network environment,

by the time the sender realizes a loss and resends the missing segment, the sending

window may have already been exhausted. An empty window prevents the sender

from sending new data until the receiver receives the retransmitted packet and

sends a cumulative ACK back. In this case, after receiving the ACK, the sender

8

would have to refill the empty pipe due to the stall [3]. Furthermore, because

of the limited information carried by an ACK, TCP can only recover at most

one loss per window. The presence of multiple losses will cause TCP to loose its

ACK-based clock and degrade its performance.

2.2.2 SACK

Selective Acknowledgement (SACK) is a TCP extension that addresses the

cumulative ACK limitations in facing multiple segment losses. It was first pro-

posed in [12] and revised in [2] to enhance its robustness. Unlike ACK with a

single acknowledgement number, SACK carries a number of blocks specifying all

the data segments that have been received but not acknowledged due to a gap

in the receiver’s buffer. With this information, the sender can avoid duplicate

retransmissions. Furthermore, the sender is able to retransmit multiple segments

at once without having to wait for the next ACK to arrive if the receiver window

and the congestion window are not the constraints.

Length	 =	 2	 Kind	 =	 4	

Figure 2.3. Sack-Permitted option [2]

The TCP SACK extension consists of two TCP options; one is the Sack-

Permitted, and the other is the SACK option itself. The Sack-Permitted is a two-

byte option sent in the SYN segment at the beginning of a connection to inform

the receiver the sender’s capability of processing SACK information (Figure 2.3).

Only upon receiving the Sack-Permitted, the receiver is allowed to transmit SACK

options when needed. The SACK option itself contains multiple SACK blocks in

which each block represents a contiguous and isolated chunk of data after the first

9

gap in the receiver’s buffer. As shown in Figure 2.4, each SACK block is defined

by two 32-bit sequence numbers called left edge and right edge. The left edge

denotes the first sequence number of the block while the right edge is one number

after the last sequence number of the block. In other words, all sequence numbers

or data bytes that are smaller than the left edge, and those that are equal or

greater than the right edge are missing in the receiver’s buffer.

Length	 =	 varied	

Right	 Edge	 of	 1st	 Block	 	
Le8	 Edge	 of	 1st	 Block	 	

Right	 Edge	 of	 nth	 Block	 	
Le8	 Edge	 of	 nth	 Block	 	

⋯	

Kind	 =	 5	

Figure 2.4. SACK option [2]

The order of all SACK blocks within a SACK option is critical for this TCP

extension to achieve its full potential. The first SACK block has to cover the

most recently received segment to reveal the current network and receiver’s buffer

status. The remaining SACK blocks should be constructed by replicating the most

recently reported blocks first. The construction allows at least 3 notifications of

a single isolated chunk of data, which is redundant but useful in a lossy ACK

channel. In addition, when generating a SACK option, the receiver should include

as many SACK blocks as needed and allowed. Given the limitation of 40 bytes

for TCP options, with each SACK block occupies 8 bytes, each SACK option can

carry a maximum number of 4 blocks. In the presence of other TCP options, this

number will be reduced; there is typical with the TCP timestamp option using

the fourth.

10

2.2.3 NAK

Negative acknowledgement (NAK) [3] is another extension proposed to en-

hance TCP’s ACKing technique. Unlike SACK, NAK has never been under the

standardization process and has recently been moved to historic status due to

its lack of deployment [13]. Instead of acknowledging segments that have been

received successfully like SACK, a NAK option informs the sender of a missing

segment in the receiver’s buffer. A NAK option is 7 bytes in length consisting of

4 fields. In addition to the two 1-byte type and length fields that are common

in any TCP options, a NAK contains another 4-byte field specifying the first se-

quence number of the reported gap, and a 1-byte field specifying the size of the

gap in segments. While a SACK block may be sent multiple times, a NAK is

not repetitious to prevent unnecessarily NAKing and retransmitting only the first

missing segment.

#	 seg.	 NAKed	

Length	 =	 7	
Sequence	 Number	 of	 First	 Byte	 Being	 NAKed	 	

Kind	 =	 A	

Figure 2.5. NAK option [3]

Below are a few remarks on SACK and NAK:

• Both SACK and NAK are sent unreliably. The redundancy in SACK block

construction is the only means for recovering a lost SACK. However, a high

number of SACK drops may still cause unnecessary data retransmissions.

• Both SACK and NAK are advisory information. The sender is not required

to retransmit the missing segments upon a SACK or NAK receipt.

11

• By sending a SACK or a NAK whenever a gap exists in the buffer, the

receiver assumes that the missing segment is lost and will never arrive unless

being retransmitted. The assumption results in a waste of bandwidth in case

the segment is delayed. As stated in [3], if this scenario is rare, the drawback

is insignificant.

• In comparison between SACK and NAK, SACK is more complicated due to

the complex state information that needs to be maintained for constructing

SACK blocks, especially when the ACK delay mechanism is implemented.

On the other hand, under a lossy environment in which the spacing between

segment losses is close, the recovery process is much faster because many

lost segments can be reported in a single SACK option [3].

We briefly discuss the shortcomings of SACK and NAK in space communica-

tion that motivated the development of SNACK, another acknowledgment scheme

we study in this thesis:

• The shortcomings of SACK :

Given the capacity-limited, error-prone, and asymmetric channels of a space

communication network, the use of SACK poses two main issues: bit effi-

ciency and information constraint [14]. The limited bandwidth may not be

able to afford the use of 8 bytes for a single data chunk. Furthermore, in

an environment with a high corruption level, 3 SACK blocks per SACK

message may not be sufficient to give the sender a complete view of the re-

ceiver’s buffer. This restriction prevents the sender from reacting promptly

to the network’s dynamics. The scenario becomes worse if the ACK channel

is tuned to reduce the load on the small-capacity ACK link, which further

reduces the amount of SACK packets arrived at the sender. When SACK

12

is used with the Fast Retransmit algorithm, the probability of receiving a

certain number (usually 3) of duplicate ACKs on the bandwidth-constrained

ACK channel to trigger a retransmission is also lower. Upon the expiration

of the retransmission timeout, the existing SACK information held by the

sender must be cleared and the sender loses its benefits from SACK. In this

error-prone environment, ACK packets may also be lost.

• The shortcomings of NAK :

Similar to SACK, NAK has its own disadvantages in space communications

even though it is very bit-efficient. A single NAK message can only specify

one hole in the receiver’s buffer. In a lossy environment, it is desirable for

the receiver to be able to notify the sender as many missing segments as

possible. The effect is more significant when the ACK channel is tuned to

reduce the ACK frequency. Space networks have long delay, which is another

factor that limits the sender’s capability to efficiently recover from multiple

losses due to the very small amount of information it receives from the other

end [14].

2.2.4 SNACK

Developed in the context of SCPS-TP – a TCP extension for space communi-

cations [4, 15], Selective Negative Acknowledgment (SNACK) is a hybrid version

of both SACK and NAK. Similar to NAK, SNACK is a negative acknowledgment

that acknowledges missing segments in a bit-efficient manner. Inheriting from

SACK, a SNACK packet can inform multiple holes in the receiver’s buffer. While

SACK and NAK are advisory, SNACK is a request for a retransmission. When

the sender receives a SNACK message, it must stop its data transmission and

13

retransmit the missing segments before resuming its normal operation. In this

case, SNACK can operate without the need for Fast Retransmit.

SNACK	 Bit-‐Vector	 (op2onal)	 Hole1	 Size	
Length	 =	 varied	 Hole1	 Offset	 Kind	 =	 21	

Figure 2.6. SNACK option [4]

A length-varied SNACK option consists of 4 mandatory fields and an optional

field (Figure 2.6). Apart from the common type and length fields, the 2-byte

offset field specifies the displacement from the ACK sequence number of the first

reported hole, while the 2-byte size field specifies the hole’s length in maximum

segment size (MSS) unit. The last field in a SNACK option is an optional SNACK

Bit-Vector that is used to report additional holes in the receiver’s buffer. A 0 bit

represents a missing segment, and a 1 bit represents a received segment.

2.2.5 Example of SACK, NAK, and SNACK

In this section, we show an example to illustrate how SACK, NAK, and

SNACK options are generated. Part of the example is adapted from [2]. We

assume that the sender transmits a burst of six segments with 1460 bytes of

data in each to the receiver after establishing a connection through the three-way

handshake. Also, we assume that the initial sequence number for the connection

is 0. Due to the noisy channel, the second, the fourth, and the fifth segments are

dropped (Figure 2.7).

When the third segment (segment 2) arrives, the receiver realizes a hole in its

buffer. When sending an ACK that re-acknowledges the first segment (segment

0), the receiver attaches a SACK, a NAK, or a SNACK option whose structure is

14

A0

A0

0

0

1

2

3

5

4

R S

A0

Figure 2.7. SACK, NAK, and SNACK Example

Length	 =	 10	

Right	 Edge	 of	 1st	 Block	 =	 4380	 	
Le9	 Edge	 of	 1st	 Block	 =	 2920	 	

Kind	 =	 5	

Figure 2.8. SACK option when segment 2 arrives

#	 seg.	 NAKed	 =	 1	

Length	 =	 7	
Sequence	 Number	 of	 First	 Byte	 Being	 NAKed	 =	 1460	 	

Kind	 =	 A	

Figure 2.9. NAK option when segment 2 arrives

Hole1	 Size	 =	 1	
Length	 =	 6	 Hole1	 Offset	 =	 0	 Kind	 =	 21	

Figure 2.10. SNACK option when segment 2 arrives

15

demonstrated in Figures 2.8, 2.9, and 2.10.

Length	 =	 20	

Right	 Edge	 of	 1st	 Block	 =	 8760	
Le:	 Edge	 of	 1st	 Block	 =	 7300	 	

Right	 Edge	 of	 2nd	 Block	 =	 4380	 	
Le:	 Edge	 of	 2nd	 Block	 =	 2920	

Kind	 =	 5	

Figure 2.11. SACK option when segment 5 arrives

#	 seg.	 NAKed	 =	 2	

Length	 =	 7	
Sequence	 Number	 of	 First	 Byte	 Being	 NAKed	 =	 4380	 	

Kind	 =	 A	

Figure 2.12. NAK option when segment 5 arrives

10010000	 Hole1	 Size	 =	 1	
Length	 =	 7	 Hole1	 Offset	 =	 0	 Kind	 =	 21	

Figure 2.13. SNACK option when segment 5 arrives

When segment 5 arrives, due to another 2 segments being dropped during the

transmission, the receiver sends another SACK, NAK, or SNACK option signifying

the gaps in its buffer (Figures 2.11, 2.12, 2.13). To better illustrate the option

generations, we assume that segment 1 is still missing by the time the receiver

receives segment 5.

2.3 Congestion Control

Since its inception, congestion control has been under extensive studies in the

research community due to its complexity, its importance, and the rapid growth of

16

the Internet. The expansion of the Internet to include networks with unique char-

acteristics such as mobile wireless and space raise the need for a re-investigation

of the existing mechanisms. Most of the time, a modification in the congestion

control algorithm forms a new variant, resulting in the numerous TCP versions at

the current time. As mentioned earlier, congestion control is a mechanism used

by a data sender to adjust its sending rate according to the network’s status. In

this section, we explain the congestion control algorithms we study in the thesis.

Congestion control algorithms can be classified into 4 categories [16]:

1. Loss-based algorithms interpret packet loss as a signal of network congestion.

The standard TCPs: Tahoe [17], Reno [18,19], NewReno [20,21] , SACK [11],

Westwood [22], and Westwood+ [23], and some of the high-speed protocols:

STCP [24], HSTCP [25], BIC [26], and CUBIC [27] fall into this class.

2. Delay-based algorithms (CARD [28], Vegas [29] , and FAST [30]) consider

the increasing in delay due to the queue build up when load exceeds network

capacity as an indication of congestion.

3. Hybrid algorithms employ both loss- and delay-based mechanisms. Africa [31],

Compound [32], and YeAH [16] are a few examples of mixed loss-delay-based

TCP variants.

4. Explicit congestion notification (ECN) relies on explicit signal from routers

to learn about network congestion; XCP [33] is an example.

2.3.1 TCP Tahoe

TCP Tahoe [17] is the earliest variant that implements Van Jacobson’s con-

gestion control algorithm after the occurrence of a series of congestion collapses

17

in 1986 [17]. The algorithm introduces a new congestion window parameter to

limit the sending rate and employs a principle of packet conservation. The sending

rate is the minimum of the receive window and the congestion window to avoid

overloading both the receiver and the network. A connection cannot run stably, or

be in equilibrium unless it obeys the conservation of packets principle in which a

new packet should not be placed into the network before previous packet has left.

Following the principle, TCP Tahoe comprises several new algorithms to handle

congested conditions, including:

• Slow-start : The algorithm allows a connection to get to equilibrium by

gradually increasing the amount of sending data to fill the pipe when the

connection starts or after a timeout.

• Round-trip-time variance estimation: The round trip time estimator con-

serves a connection’s equilibrium after slow start by accurately estimating

the sender’s retransmit timer, which controls when the sender places a new

packet into the network.

• Congestion avoidance: The algorithm is responsible for signaling the end-

points of a congestion event so that they can adjust utilization accordingly.

• Fast retransmit : The fast retransmit allows more timely loss recovery on

the sender’s side. Instead of waiting for the retransmission timer to fire, the

algorithm uses the receipt of a certain number of duplicate acknowledgments

(usually called dupACK threshold and set to 3) as a trigger for packet’s re-

send.

Figure 2.14 illustrates Tahoe’s congestion control state transition diagram.

Starting with the slow-start phase after establishing the connection, the conges-

18

Congestion
Avoidance	

Slow-Start	

Fast
Retransmit	

cWnd ≥ ssThresh

dupAckCount = 3

RTO

after retx. upon
3 dupACKs

or RTO

Figure 2.14. Tahoe congestion control state transition diagram

tion window is increased by one on the receipt of each ACK. This means that

the congestion window is double every RTT resulting in an exponential increase

of the sending rate. Tahoe remains in the slow start until the congestion win-

dow reaches the slow-start threshold upon which the sender moves to congestion

avoidance. While in the congestion avoidance phase, the congestion window is

increased by one every RTT resulting in a linear increase of the sending rate to

prevent network’s overwhelming. While in slow start or congestion avoidance, if

the sender receives up to 3 duplicate ACKs, it transfers to the fast retransmit

state, retransmits the missing segment, reduces the slow-start threshold to half of

the current congestion window, resets the congestion window to its initial value of

one, and switches back to slow start to re-fill the transmission pipe all over again.

Whenever a retransmission timer (RTO) fires, Tahoe transfers to slow start by

reseting the congestion window to 1 segment size.

19

2.3.2 TCP Reno

In addition to those algorithms proposed in TCP Tahoe, TCP Reno [18, 19]

introduces a new mechanism called Fast Recovery with an attempt to enhance

TCP performance in high bandwidth×delay product networks. After receiving

3 duplicate ACKs, retransmitting the lost packet, and reducing the slow start

threshold to half of the current congestion window, instead of performing slow

start as in Tahoe, TCP Reno goes through the fast recovery phase, transmitting a

new segment on the receiving of each additional duplicate ACK if the congestion

window and the receiver’s advertised window values allow. The fast recovery

phase ends when an ACK acknowledging new data arrives that causes the sender

to switch back to congestion avoidance by setting the congestion window to the

current slow start threshold instead of one as depicted in Figure 2.15. With this

algorithm, the transmission pipe does not empty after a loss, and we do not have

to waste time and resources re-filling it. Reno switches back to slow start only

upon the expiration of an RTO.

2.3.3 TCP NewReno

TCP NewReno [20,21] consists of a slight modification to its predecessor Reno’s

fast recovery algorithm resulting in higher throughput. While TCP Reno improves

the performance when there is a single packet loss per window, it functions poorly

in the presence of multiple losses. To address the issue, instead of leaving the fast

recovery state when receiving a partially new ACK as in Reno, TCP NewReno

remains in the state until all of the data transmitted before it enters fast recovery is

acknowledged. In other words, NewReno treats every partial ACK as an indication

that the packet following the ACK has been lost and needs to be retransmitted.

20

Congestion
Avoidance	

Slow-Start	

Fast
Recovery	

cWnd ≥ ssThresh

dupAckCount = 3 Fast
Retransmit	

new ACK received
RTO

RTO

Figure 2.15. Reno congestion control state transition diagram

Hence, it can recover from multiple packet losses without having to wait for the

retransmission timeout or to re-enter the fast recovery phase multiple times as in

Reno. Figure 2.16 illustrates the transition between its congestion control states.

NewReno transfers back to slow start only when an RTO fires.

Congestion
Avoidance	

Slow-Start	

Fast
Recovery	

cWnd ≥ ssThresh

dupAckCount = 3 Fast
Retransmit	

full new ACK received partial new
 ACK received

RTO

RTO

Figure 2.16. NewReno congestion control state transition diagram

21

2.3.4 TCP Vegas

As a delay-based congestion control algorithm, TCP Vegas [29] depends on

packets’ RTTs to detect congestion. While other loss-based algorithms such as

Reno and NewReno are reactive, only invoking their congestion control scheme

when a packet loss occurs, Vegas is more proactive by attempting to detect con-

gestion before losses actually happen. Vegas continuously samples packet’s RTT

and compare it to the base RTT, which is the minimum RTT recorded during

a connection lifetime. The base RTT along with the current congestion window

value give the expected throughput while the sampled RTT together with the total

number of bytes transferred during a sampling period allow Vegas to estimate the

actual throughput. Vegas then uses the difference between the two throughput

values to assess whether it is sending at the right rate. Since Vegas makes modifi-

cations on top of Reno, its congestion control state transition diagram is the same

as Reno’s. The Vegas algorithm is discussed again in terms of its implementation

in Section 3.3.

2.3.5 TCP SACK

In this thesis, TCP SACK refers to the conservative SACK-based loss recov-

ery algorithm described in [11]. Even though the SACK option (Section 2.2.2)

has been widely deployed since its inception, the earlier implementations did not

make a complete use of SACK information. Heavily based on Fall and Floyd’s pipe

algorithm for SACK [34], TCP SACK exploits the information carried by SACK

blocks to assist the sender in making the right retransmission decisions and fully

utilizing the available network’s bandwidth. The result is an improvement in the

overall TCP performance. In addition to NewReno’s fast recovery, TCP SACK’s

22

algorithm is another loss recovery algorithm developed to enhance TCP’s perfor-

mance in facing multiple losses. TCP SACK has the same congestion control state

transition diagram as NewReno’s. The algorithm is discussed in more depth in

Section 3.2. This is also the algorithm we use to incorporate NAK and SNACK

while performing comparison on different acknowledgment schemes.

2.3.6 TCP Westwood

TCP Westwood [22] is a sender-side modification to Reno’s fast recovery al-

gorithm to enhance TCP performance in heterogeneous networks. In a wireless

environment in which corruption-based losses happen more often than congestion-

based losses, the standard TCP variants (Tahoe, Reno, and NewReno) have

no mechanisms to determine the real cause of a loss. They treat every loss as

congestion-based and halve the congestion window causing a significant through-

put degradation. Westwood, on the other hand, tries to estimate the current

bandwidth based on the ACK rate and uses the estimation to adjust the sending

rate when a loss happens. Unless a loss is due to network congestion, the band-

width is not affected and the sending rate should not be reduced. The congestion

control state transition diagram for Westwood is similar to Reno’s.

2.3.7 TCP Westwood+

TCP Westwood+ [23] modifies Westwood’s bandwidth estimation algorithm

to reduce its aggressiveness in the presence of ACK compression [35]. Since West-

wood samples the bandwidth on every ACK receipt, the spacing between ACK

arrivals, which is alternated when ACKs are built up in the queue, impacts the

correct estimation of the real bandwidth. To handle the problem, Westwood+

23

performs bandwidth estimation every RTT. Similar to Westwood, Westwood+

has the same congestion control state transition diagram as Reno’s.

2.4 Other Related Work

Among all the acknowledgement schemes, SACK is the most popular in the

research community with extensive studies. SACK is extended to Duplicate-SACK

(D-SACK), which allows the receiver to report its receipt of duplicate segments

caused by network’s replication, packet reordering, ACK losses, or a premature

RTO [36]. The D-SACK option has the same structure as SACK’s, except its

first block is dedicated to specify the sequence numbers of the reported duplicate

packet. D-SACK is employed in Reordering-Robust TCP (RR-TCP) to improve

TCP performance in networks that suffer significant packet reordering [37].

Improved SACK (ISACK) [38] is another modification that addresses the bit-

efficient issue of SACK. Following a similar format as SACK, but instead of using

two 32-byte sequence numbers to represent one isolated, contiguous chunk of data,

ISACK uses a 1-byte offset and a 1-byte size fields to convey the same information.

The development of ISACK also leads to the proposal of a new adaptive selec-

tive acknowledgement (ASACK) strategy that allows a dynamic switch between

ISACK and SACK for performance enhancement purpose [38].

Another modification to SACK that consists of a small change in the SACK’s

behavior rather than the option format is called non-renegable SACK (NR-SACK).

NR-SACK prevents the receiver from discarding SACKed data, reducing the

amount of data the sender has to hold in its send buffer. When employing

in Stream Control Transmission Protocol (SCTP) [39], the use of NR-SACK

results in a better utilization of the send buffer’s memory because the sender

24

can free up its buffer space before receiving cumulative ACKs [40]. When us-

ing with MPTCP [41], NR-SACK improves the overall throughput in the case

where the send buffer’s size becomes the bottleneck in the presence of multiple

flows [42]. SACK motivated the development of another TCP variant called TCP

k-SACK that exploits SACK’s information in trying to detect congestion to im-

prove throughput over wireless channels [43].

To enhance performance in the presence of multiple losses, other than the

loss recovery mechanisms used in NewReno and the conservative TCP SACK,

the Forward Acknowledgment (FACK) congestion control algorithm [44] performs

congestion control while trying to recover from a loss by estimating the number of

outstanding data using the receiver’s forward-most data. The forward-most data

represents the highest sequence number received correctly by the receiver. Another

SACK-based approach proposed to replace the traditional fast recovery [19] is the

rate-halving with bounding parameters algorithm [45].

Similar to SACK with different variants, the Vegas group consists of many

versions: Vegas-A [46], AdaVegas [47], New Vegas [48], Vegas M [49], Gallop-

Vegas [50], Snug-Vegas [51], Vegas-W [52], Vegas-V [53], etc. The motivation

behind these Vegas variants is to address the original Vegas problems, especially

its fairness while competing for bandwidth resource with other flows in various

network environments. Vegas fairness has been studied extensively [54–57].

To the best of our knowledge, there have been only a few works on comparison

between the SACK, NAK, and SNACK as TCP acknowledgment mechanisms [14,

58, 59]. On the other hand, the amount of work related to comparison between

different TCP congestion control algorithms both analytically and experimentally

is numerous [60–64].

25

Chapter 3

Implementations

The standard ns-3 release comes with some existing TCP models, including

Tahoe, Reno, and NewReno. As a part of our research work, we implemented

Westwood and Westwood+ and contributed our code to the ns-3 community. We

also performed some simulation analysis of the two protocols and compare their

performance with others under different network scenarios to validate our imple-

mentations [65]. To accomplish the goals of this thesis, we performed additional

implementations that are explained in this chapter. We begin this chapter by

giving an overview of the TCP class structure in ns-3. We then present our imple-

mentation of the SACK-based loss recovery algorithm, followed by an explanation

on how we incorporate NAK and SNACK into the algorithm. Finally, we discuss

the implementation of TCP Vegas.

3.1 TCP Module and Class Interaction in ns-3

Residing in the Internet module that houses other protocols including IPv4,

IPv6, and UDP, the implementation of TCP in ns-3 consists of multiple classes

26

communicating with each other to provide reliable transfer of data received from

the underlying network to applications. We provide a brief discussion on each

of the main classes from which new implementations are extended and illustrate

their interaction in Figure 3.1 [66].

TcpSocketBase	

Tcp	 SACK	 Tcp	 Vegas	
m_cWnd	
m_ssThresh	
m_inFastRec	 	 	

m_cWnd	 	
m_ssThresh	
m_retxThresh	

TcpRxBuffer	

TcpSocket	
{absract}	

	

TcpL4Protocol	

TcpHeader	 TcpTxBuffer	

NewAck()	
DupAck()	
Retransmit()	

Tcp	 Tahoe	 Tcp	 Reno	 Tcp	 NewReno	

NewAck()	
DupAck()	
Retransmit()	

m_cWnd	
m_inFastRec	
m_recover	 	 	
NewAck()	
DupAck()	
Retransmit()	

m_alphaThresh	
m_betaThresh	
m_gammaThresh	 	 	
NewAck()	
DupAck()	
EsDmateRE()	

m_inFastRec	
m_recover	
m_pipe	 	 	
NewAck()	
DupAck()	
Retransmit()	

*	
m_sockets	

m_rWnd	 	
m_state	
m_nextTxSequence	

m_size	
m_nextRxSeq	
	

m_node	
m_endPoints	
m_sockets	

m_source	 	
m_sequenceNumber	
m_protocol	

m_size	 	
m_firstByteSeq	
	

SetSndBufSize()	 =	 0	
SetSSThresh()	 =	 0	
SetConnTimeout()	 =	 0	

Serialize()	
Deserialize()	
GetSerializedSize()	

Add()	
Available()	
	

Add()	
Available()	

Allocate()	
Send()	
Receive()	

ForwardUp()	
SendPendingData()	
SendEmptyPacket()	

Figure 3.1. TCP class diagram in ns-3

• TcpSocketBase: This class contains the key TCP features including con-

nection management and flow control, and a sockets interface to be called

by the upper application layer. Inherited from TcpSocket, TcpSocketBase

serves as the base for all TCP extensions.

• TcpSocket: This abstract class contains pure virtual functions for setting

the essential TCP socket attributes that can be shared among different im-

plementations.

• TcpHeader: This class implements the standard 20-byte TCP header.

27

• TcpTxBuffer: This class provides a buffer for the sender to store any data

received from the application before sending it across the network. The

buffer continues to hold the data segments until they are acknowledged.

• TcpRxBuffer: This class implements a buffer for the receiver to store and

reorder data received from the network layer before passing it onto the ap-

plication.

• TcpL4Protocol: Serving as an interface between the TCP socket and the

network layer, the TcpL4Protocol class sends and receives packets to and

from the network layer. It also performs checksum validation for incoming

data.

3.2 Implementation of SACK, NAK, and SNACK

To obtain a fair comparison between the different acknowledgment mecha-

nisms, we place NAK and SNACK in the loss recovery algorithm [11] that was

designed to be used with SACK (refered to as TCP SACK in the thesis) to under-

stand the impact of these options on the overall TCP performance. We choose this

algorithm because it contains intelligent mechanisms that exploit the information

carried by such TCP options. The different structures of NAK and SNACK in

comparison to SACK require some modifications to the original algorithm that we

will explain in the following subsections. While trying to incorporate NAK and

SNACK into the algorithm, we make sure that the other parts of the algorithm are

kept intact to preserve core congestion control principles [19, 67], and the spirits

of NAK and SNACK as described in their original documents [3, 4, 15] are fol-

lowed as closely as possible. We begin this section by explaining the TCP SACK

implementation before transitioning into the discussion of NAK and SNACK in-

28

corporation.

3.2.1 SACK-Based Loss Recovery Algorithm

The section starts with a discussion on how the algorithm’s important feature,

the scoreboard, was implemented. It is then followed with the implementation of

the main algorithm itself.

3.2.1.1 The Scoreboard

One of the important features of the algorithm, the scoreboard is a data struc-

ture used by the sender to keep track of SACK information. In this thesis, the

scoreboard was implemented as a list of lists that contains the first sequence num-

ber of a sent segment m sequenceNumber and a SACK flag m isSacked as depicted

in Figure 3.2. The sequence number is the key for iterating and searching through

the scoreboard. The scoreboard consists of five main functions explained below.

As a naming convention in ns-3, all global variables are named with a prefix m

while those without the prefix are local variable or parameter names.

 …

sequence	
number	 SACK	 flag	

sequence	
number	 SACK	 flag	

Figure 3.2. SACK scoreboard

29

• Update: Being called on the receipt of an ACK, Update takes the ACK

number and the list of received SACK blocks as its arguments. Update

discards all the ACKed segments (those segments whose initial sequence

numbers are less than the ACK number) and sets the SACK flags for those

reported in the SACK list as it iterates through the scoreboard. The function

also updates m highSack, a variable that keeps track of the highest sequence

number having been SACKed.

• IsLost: This function determines whether a particular segment with the

first sequence number seqNum has been lost. Based on the algorithm, the

segment is considered lost if there exist dupThresh SACKed segments whose

initial sequence numbers are greater than seqNum in the scoreboard.

• SetPipe: This function traverses the scoreboard to estimate the number

of outstanding segments or those that are still in the pipe. An outstanding

segment is the one whose initial sequence number falls between highAck and

highData that satisfies one of the two conditions: (1) It has not either been

SACKed or been determined to be lost; or (2) It has been retransmitted.

While highAck keeps track of the highest sequence number that has been

cumulatively ACKed, highData holds the highest sequence number that has

been transmitted at a given time.

• NextSeq: This function determines the next should-be-transmitted se-

quence number. NextSeq implements a set of three rules that must be

applied in the following order:

Rule 1 : This rule searches in the scoreboard for an unSACKed sequence

number that is greater than highRxt and less than m highSack and is de-

termined to be lost by IsLost. highRxt holds the highest sequence number

30

that has been retransmitted. This rule allows the algorithm to recover from

multiple losses due to a burst drop.

Rule 2 : When Rule 1 fails, Rule 2 allows the algorithm to transmit up to one

segment of newly unsent data stored in the sender’s transmit buffer. With

this rule, the algorithm can better utilize the available network’s bandwidth

by trying to keep the pipe full while recovering from losses.

Rule 3 : In case both Rule 1 and Rule 2 fail, Rule 3 is applied to search for

an unSACKed sequence number that is greater than highRxt and less than

m highSack. Unlike Rule 1, the sequence number returned by Rule 3 does

need to be a lost sequence determined by IsLost. The goals are to maintain

the ACK clock during the loss recovery phase and prevent the firing of the

retransmission (RTO) timer that causes a severe performance drop due to

the refilling of an empty pipe after another slow start phase.

3.2.1.2 The Algorithm

Using the information stored in the scoreboard, the sender responds to each

ACK receipt based on the type of ACK through the two main functions DupAck

and NewAck. Before going into the detail of these methods, we explain some

global variables used in our implementation.

Global variables:

• m cWnd represents the congestion window and is used by the sender to

control its sending rate.

• m ssThresh represents the slow-start threshold that marks the transition

between the slow start and the congestion avoidance phases.

31

• m retxThresh is the fast retransmit threshold that indicates the number of

duplicate ACKs (dupACK) received before fast retransmit is triggered and

is usually set to three [19]. This variable corresponds to the dupThresh

parameter in the scoreboard’s IsLost method.

• m recover stores the highest transmitted sequence number before the sender

enters fast recovery.

• m highRxt stores the highest sequence number that has been retransmitted.

This variable corresponds to highRxt when being passed to the scoreboard’s

member functions.

• m highTxMark stores the highest sequence number that has been transmit-

ted. This variable corresponds to highData when being passed to the score-

board’s member functions.

• m pipe stores the number of segments that are still in transit and is the

returned value of the scoreboard’s SetPipe.

The DupAck method: As illustrated in Figure 3.3, upon the receipt of a du-

pACK, the sender calls its scoreboard’s Update method to update the status of

all stored segments. After the update, if the sender is currently in fast recovery

phase, following Reno and NewReno’s behaviors [19, 21], the SACK sender in-

creases its m cWnd by a segment size and sends more new data if the congestion

window and the receiver’s advertised window allow. When the sender is not try-

ing to recover from any loss, the dupAck triggers a check on m retxThresh. If the

retransmit threshold has not reached, the DupAck method is exited with no ad-

ditional actions performed. Otherwise, similar to Reno and NewReno, the sender

enters fast retransmit, halving m cWnd and retransmitting the missing segment.

32

The SACK sender then lets its conservative loss recovery algorithm governs the

transmission of additional segments to make use of the available network’s band-

width in replacement of NewReno’s fast recovery phase.

Before discussing SACK’s method to recover from losses, it is important to

mention its behavior when an RTO occurs. The expiration of an RTO is considered

as an indication of a severe loss. Because comparing to NewReno, SACK transmits

more data segments during its recovery phase. Hence, to prevent itself from being

too aggressive, a SACK sender performs an additional action to make sure the loss

that caused an RTO to fire is fully recovered before entering a new fast recovery. In

the DupAck function, this is implemented through a quick comparison between

the highest ACKed sequence number m highAck and m recover. In addition, if an

RTO occurs while the sender is executing its pipe mechanism, the sender has to

immediately terminate the algorithm.

Figure 3.4 illustrates SACK’s loss recovery algorithm that we usually refers to

the pipe technique throughout this thesis due to its origin [34]. This is the case

in which the SACK sender tries to utilize the network’s bandwidth by using the

SACK information that it has been trying to keep track from the received SACK

blocks. The loss recovery phase begins with a call to the scoreboard’s SetPipe

that estimates the number of segments currently in the network. The returned

value is stored in m pipe. The number of additional segments that the sender

will transmit equals to the difference between m cWnd (after being converted

from bytes to segments) and m pipe. The NextSeq function in the scoreboard

determines which should be the next segment to be sent according to the three

rules explained in the previous section.

33

Start

Update scoreboard

In fast

recovery?

no

yes

m_retxThresh
reached?

yes

After RTO?

highACK

>=
m_recover?

m_recover =

m_highTxMark

no

Stop
no

yes

no

Reduce m_cWnd by 1/2

and
enter new fast recovery

yes

Retransmit packet and

update m_highRxt

Estimate “pipe” and

transmit more packets

Increase m_cWnd by 1

Send pending data

Figure 3.3. TCP SACK flowchart on receipt of a duplicate ACK

The NewAck method: As depicted in Figure 3.5, SACK’s behavior on the

receipt of a new ACK is very similar to NewReno’s [21] except the addition of the

pipe algorithm when a partial ACK is received.

3.2.2 NAK-Based Loss Recovery Algorithm

Based on the format of a NAK option and the TCP ACKing technique, we

make two observations that allowed us to enhance NAK’s capability beyond its

original description [3].

34

Start

SetPipe()

m_cWnd -

m_pipe
 >= 1?

yes

NextSeq()

Update m_highTxMark,

m_highRxt, and
m_nextTxSequence

Stop

Increment m_pipe by 1

no

Figure 3.4. TCP SACK’s pipe estimation flowchart

Observation 1: The arrival of a NAK option indicates that at least one segment

immediately before the first segment and immediately after the last segment being

NAKed in the option have left the network and arrived at the receiver successfully.

That is, if the sender receives a NAK option that contains 4380 as the first byte

being NAKed and 2 as the number of segments NAKed as in Figure 2.12, given

the segment size of 1460 bytes, the sender can assume that the segments whose

initial sequence numbers are 2920 and 7300 have been received.

If we assume that NAK options can be retransmitted, we have the second

observation:

35

Start

Update scoreboard

in fast

recovery?

yes

ACK

number <
m_recover?

yes,
 partial ACK

no, full
ACK

Deflate m_cWnd partially

Stop

Reset m_cWnd and
exit fast recovery

Discard ACKed data and

update
m_nextTxSequence

Retransmit packet and

update m_highRxt

Estimate “pipe” and

transmit more packets

no

m_cWnd <
m_ssThresh

?

yes,
 slow start

Increase m_cWnd

exponentially

Increase m_cWnd linearly

no,
congestion
avoidance

Figure 3.5. TCP SACK flowchart on receipt of a new ACK

Observation 2: Upon the receipt of two consecutive and distinct NAK options,

the sender can assume that all segments between the two NAKs have left the

network and arrived at the receiver. For example, if the sender receives the first

NAK option that reports 1 missing segment with the first byte of 1460 and the

second segment that reports another missing segment with the first byte of 7300,

it can assume that all segments whose initial sequence numbers fall between the

two NAKed bytes have been received.

Following the SACK design philosophy, we say that those segments in our

observations as being implicitly SACKed. The observations also suggest an im-

plementation of the NAK-based loss recovery algorithm with two different modes:

36

unreliable and quasi-reliable. In the unreliable mode, NAK options are not re-

transmitted. In this case, only the first observation holds. In the quasi-reliable

mode, retransmission of NAK options up to a certain threshold is allowed, in-

creasing the chance for at least one copy of an option is received by the sender.

With this assumption, both observations hold.

3.2.2.1 The Scoreboard

As shown in Figure 3.6, the NAK scoreboard contains two flags in addition

to the sequence number field, a NAK m isNaked and an ISACK m isISacked flag.

A set NAK flag indicates that the corresponding segment has been reported as

missing while a segment with an ISACK flag set to true is assumed to have left

the network based on the previous observations. ISACKed data is similar to

SACKed; they remain in the scoreboard until they are explicitly ACKed by the

acknowledgment number, but they should not be retransmitted.

 …

sequence	
number	 NAK	 flag	

sequence	
number	 NAK	 flag	

ISACK	 flag	

ISACK	 flag	

Figure 3.6. NAK scoreboard

The implementation of NAK scoreboard includes three main functions:

• Update: Similar to the SACK scoreboard, this function discards all ACKed

segments and updates all the NAK and ISACK flags depending on the NAK

37

transmission mode. m highNak that holds the highest NAKed sequence num-

ber is also kept track.

• SetPipe: To determine the amount of outstanding data, this function scans

the scoreboard to search for any segment whose initial sequence number falls

between highAck and highData that satisfies one of the two conditions: (1) it

has not been NAKed or implicitly SACKed, or (2) it has been retransmitted.

• NextSeq: Following the SACK algorithm, this function implements the

three rules for determining the next transmitted sequence, in which the first

and the third rules are slightly different from those in SACK while the second

rule is the same:

Rule 1 : This rule searches for a segment in the scoreboard whose initial

sequence number falls between highRxt and m highNak that has been NAKed

(thus the ISACK flag is not set).

Rule 3 : Similar to rule 1, except that the NAK flag needs not be set.

3.2.2.2 The Algorithm

Given the two NAK modes, we implemented an additional 3-byte option

NakMode that is appended to the SYN-ACK message during the connection es-

tablishment. The option allows the receiver to notify the sender which NAK mode

it is going to use during the connection so that the sender knows how to update

its scoreboard accordingly. The option contains a 1-byte option type field, a 1-

byte length field, and a 1-byte mode field. For our experiment, we use 253 as

the NakMode type. The rest of the algorithm is similar to the SACK algorithm

discussed in the previous section.

38

3.2.3 SNACK-Based Loss Recovery Algorithm

The implementation of the SNACK-based loss recovery algorithm is a combi-

nation of the previous two algorithms. The scoreboard for SNACK is depicted in

Figure 3.7.

 …

sequence	
number	 NAK	 flag	

sequence	
number	 NAK	 flag	

ISACK	 flag	

ISACK	 flag	

SACK	 flag	

SACK	 flag	

Figure 3.7. SNACK scoreboard

3.3 Implementation of TCP Vegas

The implementation of TCP Vegas in this thesis follows the Linux kernel’s

implementation [68] with the following key differences when comparing to the

original Vegas paper [29] and the original implementation under the University of

Arizona x-kernel framework [69]:

• The retransmission mechanism described in the paper is not implemented.

Similar to Linux, ns-3 already uses fine-grained timers that are deployed in

all ns-3’s TCP variants including Tahoe, Reno, and NewReno.

• Instead of increasing the congestion window every other RTT during slow

start phase as suggested by the authors in the paper, this implementation

39

adjusts the window every RTT as in other variants to avoid performance

penalty.

• To calculate the actual throughput, minimum RTT sample is used to prevent

the impact of delayed ACKs on the measurements.

3.3.1 Global Variables

Our Vegas implementation consists of the following important global variables:

• m alpha is the threshold on the lower bound of packets in the network used

to adjust m cWnd during congestion avoidance phase.

• m beta is the threshold on the upper bound of packets in the network used

to adjust m cWnd during congestion avoidance phase.

• m gamma is the threshold used to limit the exponential increase of m cWnd

during slow start phase.

• m baseRtt keeps track of the minimum of all RTT measurements during the

whole connection. This value is the propagation delay.

• m minRtt keeps track of the minimum RTT measured during a Vegas cycle

to find the current propagation delay and queuing delay.

• m cntRtt is the number of RTT measurements taken during a Vegas cycle.

• m begSndNxt stores the right edge of the window at the beginning of a Vegas

cycle.

• m cntBytes stores the number of data bytes transmitted during a Vegas

cycle.

40

• m doingVegasNow is a boolean variable that is set to TRUE during a Vegas

cycle, starting from the time a distinguished segment is sent to the time that

segment is acknowledged.

3.3.2 Algorithm

A Vegas cycle begins with the transmission of a distinguished segment and

ends when that segment is acknowledged by an ACK. Every time a data packet

is sent, the sender checks the value of m doingVegasNow. If m doingVegasNow is

TRUE, a cycle is already in action and all we need to do is to update m cntBytes by

adding the size of the transmitted packet to it. Otherwise, when m doingVegasNow

is FALSE, a new Vegas cycle will begin with the recording of the window’s right

edge into m begSndNxt. The sender uses this value to detect the arrival of the ACK

for the distinguished segment. Furthermore, the sender sets m doingVegasNow to

TRUE and starts counting m cntBytes. Since Vegas is a delay-based congestion

control algorithm, accurate RTT measurement plays an important role. Upon

the receipt of an ACK, the sender also needs to update m baseRtt and m minRtt.

While m minRtt is reset every Vegas cycle, m baseRtt is never reset during a

connection lifetime.

Figure 3.8 shows the steps that TCP Vegas takes upon the receipt of a new

ACK. For every new ACK that arrives, Vegas checks to see if it can terminate its

current cycle by comparing the ACK sequence number and m begSndNxt. If the

ACK sequence number is greater than m begSndNxt, the distinguished segment is

acknowledged and the cycle is completed. Vegas then checks to see if it has taken

enough RTT samples during the operation of the cycle. The reason Vegas sets a

threshold (which is 3 in our implementation) on the RTT samples is to avoid the

41

Start

Do nothing

Is Vegas

Cycle
Completed

?

yes

Calculate diff

Stop

Follow Vegas Algo.

no

Enough

RTT
samples

?

yes

Follow Reno Algo.

Figure 3.8. TCP Vegas flowchart on receipt of a new ACK

impact of delayed ACK on the RTT values. If this condition is met, Vegas triggers

its own congestion algorithm. Otherwise, it follows the normal Reno congestion

algorithm with exponential or linear window increase depending on the current

phase. Once Vegas uses its algorithm, it calculates the difference diff between the

expected sending rate and the actual rate as shown in Equation 3.1 and uses diff

along with the 3 threshold values, m alpha, m beta, and m gamma, to estimate

and control the amount of extra data being sent to the network. Specifically,

Vegas switches from slow start mode to congestion avoidance mode whenever the

actual rate falls below the expected rate by m gamma, that is when diff exceeds

m gamma. While in congestion avoidance mode, Vegas compares diff with m alpha

42

and m beta. m alpha corresponds to having too little extra data packets in the

network while m beta corresponds to having too much data. Hence, when diff is

smaller than m alpha, Vegas increments its m cWnd by 1 segment size to speed up

its sending rate. When diff is greater than m beta, Vegas decrements its m cWnd

by 1 segment size to avoid overflowing the network.

diff = expected− actual (3.1)

where

expected = m cWnd/m baseRtt (3.2)

actual = m cntBytes/m minRtt (3.3)

43

Chapter 4

Results and Analysis

In this section, we present the results obtained from simulating the different ac-

knowledgment schemes and congestion control algorithms under various scenarios

and then analyze the behaviors of each mechanism. The error control analysis cov-

ers the normal TCP ACKing method as implemented in NewReno, the selective

ACK in TCP SACK, the negative ACK in our TCP NAK, and the selective-

negative ACK in our TCP SNACK. For congestion control analysis, we study 7

different algorithms including Tahoe, Reno, NewReno, Vegas, Westwood, West-

wood+, and TCP SACK. We also explain in details the topology and parameters

used in each simulation scenario.

router! router!sender ! receiver !

bottleneck link!

10 Mb/s!

0.1 ms!

10 Mb/s!

0.1 ms!

2 Mb/s – 8 Mb/s!

10 ms – 250 ms!

Figure 4.1. Single flow topology

44

4.1 Error Control Results and Analysis

Parameter Values
Access link bandwidth 10 Mb/s

Bottleneck link bandwidth 2 Mb/s to 8 Mb/s
Access link propagation delay 0.1 ms

Bottleneck link propagation delay 10 ms to 250 ms
Packet MTU size 1500 B

Delayed ACK count 2 segments
Delayed ACK timeout 200 ms

Error model BurstErrorModel
Burst error rate 10−7 to 10−2

Burst size 1 to 4
Application type Bulk send application
Simulation time 5000 s
Number of runs 10

Table 4.1. Simulation parameters for ACK mechanisms tests

To study the four acknowledgment mechanisms, we use a topology that con-

sists of a single source and a single sink interconnected through two gateways as

depicted in Figure 4.1. We refer the two endpoint-router links as the access links

and the router-router link as the error-prone, long-delay bottleneck link. All links

are constructed using ns3::PointToPointHelper class while errors are introduced

into the bottleneck link using the BurstErrorModel. The BurstErrorModel that

we implement as part of this thesis determines a burst of packets as being errored

based on the burst rate and the burst size. The burst rate specifies the spacing

between error events while the burst size determines the number of packets being

flagged as errored at each error event. The burst error rate ranges from 10−7 to

10−2. Each access link has a bandwidth of 10 Mb/s and a negligible propagation

delay of 0.1 ms. The bottleneck link takes the bandwidth values of 2 Mb/s to 8

Mb/s and its delay is varied from 10 ms to 250 ms (equivalent to 20 ms to 500 ms

45

RTT). We use BulkSendApplication to generate traffic across the network with

an MTU size of 1500 bytes. Each simulation has a 5000 second duration and is

run 10 times to achieve a 95% confidence interval. These simulation parameters

are summarized in Table 4.1.

av
er

ag
e

th
ro

ug
hp

ut
 [M

b/
s]

Burst error rate

SNACK

NAK

SACK

NewReno
0

0

1

2

2

2

3

4

4

1E-07 1E-06 1E-05 1E-04 1E-03 1E-02

Figure 4.2. Throughput vs. increasing burst error rate

Figure 4.2 shows the throughput of the protocols as the burst rate increases.

In this scenario, the bottleneck link has a bandwidth of 4 Mb/s and a delay of

50 ms. Overall, with the increasing error rate, the performance of all protocols

degrade due to the high number of retransmissions required. When the error

reaches 10−2, SNACK performs the best. The bit vector allows SNACK receiver

to convey more information about its buffer state per SNACK packet than the

other protocols, which helps fasten the recovery process.

46

ov
er

he
ad

 [b
yt

es
]

Burst error rate

NewReno

NAK

SACK

SNACK
0E+00

1E+07

2E+07

3E+07

4E+07

5E+07

6E+07

1E-07 1E-06 1E-05 1E-04 1E-03 1E-02

Figure 4.3. Overhead vs. increasing burst error rate

Figure 4.3 shows the overhead of the protocols with the increasing error rate.

With its compact option format and its ability to carry more information in the

option, SNACK has the lowest overhead. While it costs 24 bytes for a SACK

packet to inform 3 isolated data chunks in the receiver buffer, a 1-byte bit vector

in SNACK can inform more than 3 such chunks. Although a NAK option is

only 7 bytes in length, the small NAK packet size when compared to SACK does

not lower NAK overhead because a NAK option can only inform a single hole in

the receiver buffer. When the error rate is high, more packets are corrupted, a

NAK receiver needs to generate more NAK packets resulting in a high cumulative

overhead.

47

4.2 Congestion Control Results and Analysis

In this part, we simulate Tahoe, Reno, NewReno, Vegas, SACK, Westwood,

and Westwood+ under 2 different network environments. In the first scenario,

we set up a single flow topology similar to the one depicted in Figure 4.1 in

which the bottleneck link is prone to errors. We study how well the protocols

handle corruption-based losses that are very common in wireless networks using

throughput as the performance metric. The access links have a bandwidth of 100

Mb/s while the bottleneck link bandwidth ranges from 10 Mb/s to 50 Mb/s on an

increment of 10 Mb/s. The delay on the access links are negligible and the delay

on the bottleneck link is varied from 50 ms to 250 ms (100 ms to 500 ms RTT).

The packet error rates (PER) are generated using RateErrorModel and have a

range from from 10−7 to 10−2. Due to the randomness in the error generation,

each simulation which has a duration of 600 seconds is replicated 20 times to

achieve a 95% confidence interval. These simulation parameters are summarized

in Table 4.2.

Parameter Values
Access link bandwidth 100 Mb/s

Bottleneck link bandwidth 10 Mb/s to 50 Mb/s
Access link propagation delay 0.1 ms

Bottleneck link propagation delay 10 ms to 250 ms
Packet MTU size 1500 B

Delayed ACK count 2 segments
Delayed ACK timeout 200 ms

Error model RateErrorModel
Packet error rate 10−7 to 10−2

Buffer size BDP
Application type Bulk send application
Simulation time 600 s

Table 4.2. Simulation parameters for single flow test on TCP pro-
tocols

48

av
er

ag
e

th
ro

ug
hp

ut
 [M

b/
s]

PER

Westwood
Westwood+

Reno
NewReno

SACK
Vegas
Tahoe

0.00

1.00

2.00

3.00

4.00

5.00

6.00

7.00

8.00

9.00

10.00

1E-07 1E-06 1E-05 1E-04 1E-03 1E-02

Figure 4.4. Average throughput vs. packet error rate

Figure 4.4 plots the average throughput as the packet error rate increases from

10−7 to 10−2. In this scenario, the bottleneck link has a bandwidth of 10 Mb/s

and a delay of 100 ms. When the error rate is high causing more packet drops, all

protocols have to retransmit missing data to provide reliable service, resulting in

a throughput degradation. Reno, NewReno, and SACK behave similarly. They

treat all packet losses as congestion-based and halve their sending rate upon the

receipt of 3 duplicate ACKs. Hence, comparing to Westwood and Westwood+,

Reno, NewReno, and SACK achieve much lower throughput even when the error

rate is as low as 10−7. Their throughput is halved (from 8 Mb/s to 4 Mb/s)

when the PER increases from 10−5 to 10−4 and continues to drop to about 0.5

Mb/s when the PER reaches 10−2 due to them continuing to reduce their sending

49

rate unnecessarily. Furthermore, with the increasing error rate, the number of

retransmission timeouts also increases because retransmitted packets have a high

possibility of being corrupted. This causes the sender to transfer back to slow-start

phase during which it has to refill the transmission pipe. Tahoe performs worse

than Reno and NewReno because the Tahoe sender switches back to slow start

even when it receives 3 duplicate ACKs. On the other hand, both Westwood and

Westwood+ outperform all the other protocols. While Tahoe, Reno, NewReno,

and SACK blindly halve their sending rates upon a loss or switch back to slow

start when an RTO expires, Westwood and Westwood+ try to estimate the net-

work’s bandwidth and use the estimated value to adjust its sending rate. The

network’s bandwidth is not affected unless congestion occurs. Hence, Westwood

and Westwood+ are able to maintain their high throughput when all losses are

due to packet corruptions. Westwood and Westwood+ achieve a high throughput

of about 9.3 Mb/s when the PER is 10−7 and their throughputs are not degraded

until the PER reaches 10−4. When the PER is above 10−4, Westwood performs

better than Westwood+. While Westwood samples the bandwidth every received

ACK, Westwood+ performs its sampling every RTT. The higher sampling interval

takes Westwood+ a longer time to stabilize to the correct bandwidth when com-

paring to Westwood. In the presence of high error rate, there is a higher chance

for 3 duplicate ACKs or an RTO to occur before Westwood+ stabilizes, causing

the use of a low, incorrect bandwidth estimate in adjusting the sending rate.

Figure 4.5 plots the average throughput as the bottleneck speed increases

from 10 Mb/s to 50 Mb/s while the PER is fixed at 10−5 and the bottleneck

delay is 100 ms. Both Westwood and Westwood+ are able to utilize the available

bandwidth better than the other protocols. For the standard TCP variants such as

50

av
er

ag
e

th
ro

ug
hp

ut
 [M

b/
s]

bottleneck bandwidth [Mb/s]

Westwood+
Westwood
NewReno

Reno
SACK
Vegas
Tahoe

0.00

5.00

10.00

15.00

20.00

25.00

30.00

35.00

40.00

10 15 20 25 30 35 40 45 50

Figure 4.5. Average throughput vs. bottleneck speed

Tahoe, Reno, and NewReno, in a steady-state environment, the average congestion

window w is inversely proportional to the square root of the packet loss rate p as

given in Equation 4.1 [25].

w =
1.2
√
p

(4.1)

From Equation 4.1, the packet loss rate p is roughly 1.5
w2 . Furthermore, Equa-

tion 4.2 specifies the average congestion window w required for a TCP flow with

round-trip time R in seconds and packet length of D bytes to achieve an average

throughput of B b/s [25].

51

w =
BR

8D
(4.2)

A packet loss rate p implies that there is at most 1 loss every 1
p

packets, which

is equivalent to at most 1 loss event every 1
pw

RTTs. Combining this result with

Equations 4.1 and 4.2, we have Equation 4.3 that specifies the number of RTTs

between loss events required to achieve an average throughput of B in b/s [25].

RTTs between losses =
BR

12D
(4.3)

Using Equations 4.1, 4.2, and 4.3, we derive Table 4.3 that calculates the

number of RTTs between losses, the average congestion window w, and the packet

loss rate p corresponding to each value of the bandwidth B from 10 Mb/s to 50

Mb/s. Here, our R is 0.2 seconds and our D is 1500 bytes.

Throughput (Mb/s) RTTs between losses w (segments) p
10 111.1 166.7 5×10−5

20 222.2 333.3 10−5

30 333.3 500 6×10−6

40 444.4 666.7 3×10−6

50 555.6 833.3 2×10−6

Table 4.3. Performance of standard TCP in steady state

From Table 4.3, with our PER being fixed at 10−5, Tahoe, Reno, and NewReno

are unable to fully utilize the link, especially when the bottleneck bandwidth is

equal to or greater than 30 Mb/s. At 10 Mb/s, Reno and NewReno can achieve a

throughput of about 8 Mb/s whereas Tahoe throughput is much smaller because

its lack of the Fast Recovery phase that helps prevent the transmission pipe from

being drained completely after a loss. When the available bandwidth increases

from 10 Mb/s to 20 Mb/s, Reno and NewReno throughputs are improved, even

52

though not as much as we expect based on our theoretical calculation in Table 4.3.

However, after that, Reno and NewReno throughputs stay almost constant when

the available bandwidth goes above 20 Mb/s. In order for Tahoe, Reno, and

NewReno to achieve higher throughput in our testing scenario, the PER has to be

smaller than 10−5, or at most 10−6 as indicated in the table. On the other hand,

because Westwood and Westwood+ actually estimate the network’s bandwidth

and use it to adjust the sending rate, they perform better than the other protocols.

While Westwood+ continues to improve its throughput as more bandwidth is

available, Westwood behavior is quite unstable, especially when the bottleneck

speed is higher than 10 Mb/s. Performing the sampling based on ACK inter-

arrival times causes Westwood to overestimate the available bandwidth, resulting

in lots of packet drops at the queue. In addition to retransmitting packets that

are dropped due to errors, Westwood has to retransmit many packets that are

dropped due to queue overloading. Based on our statistics, the average number

of Westwood’s retransmitted packets is about three times larger than those in

Westwood+ when the bottleneck bandwidth exceeds 10 Mb/s.

Figure 4.6 plots the average throughput achieved by each of the protocols when

the bottleneck delay increases from 50 ms to 250 ms. In this scenario, the PER

is fixed at 10−5 and the bottleneck speed is 50 Mb/s. Overall, when the network

delay is high, it takes longer for a packet to arrive at the destination. It also

takes longer for the sender to receive feedback from the other end, which in turn

delay the updating of the sending rate. We again see the superior performance of

Westwood+ over the other protocols. We also notice that with 50 Mb/s speed,

Westwood performs even worse than Reno and NewReno when the delay exceeds

100 ms.

53

av
er

ag
e

th
ro

ug
hp

ut
 [M

b/
s]

bottleneck delay [ms]

Westwood+
Reno

NewReno
SACK

Vegas
Westwood

Tahoe

0.00

5.00

10.00

15.00

20.00

25.00

30.00

35.00

40.00

45.00

50.00

50 100 150 200 250

Figure 4.6. Average throughput vs. bottleneck delay

router! router!

sender 1!

sender 2!

receiver 1!

receiver 2!

bottleneck link!

10 Mb/s!

10 ms – 250 ms!

Figure 4.7. Dumbbell topology

54

In the second set of experiments, we study the performance of the protocols in

a congested environment. We set up a dumbbell network topology as illustrated

in Figure 4.7. At each edge of the network are two nodes serving as the sources

at one end and the sinks at the other end. Traffic across the network is generated

using BulkSendApplication with an MTU size of 1500 bytes. At the core of the

network are two nodes serving as the routers that are interconnected through a

bottleneck link with a fixed bandwidth of 10 Mb/s and a delay varied from 10

ms to 250 ms (20 ms to 500 ms RTT). The buffer size of the bottleneck link is

set to the bandwidth × delay product (BDP). All the access links that connect

the endpoints with the routers have a bandwidth of 100 Mb/s. Each simulation

generates two flows of traffic that may or may not use the same TCP variant,

depending on our testing scenarios. Since NewReno is the current standard TCP,

it is used as the baseline in any scenarios that require different TCP variants on

different flows. The duration of each simulation is 600 seconds. To reduce the

impact of synchronization and phase effects, especially when Drop Tail queues are

used at the bottleneck, we let the 2 flows start at different times and vary the

start time of the second flow and average the results. Simulation parameters are

summarized in Table 4.4. We evaluate the congestion control protocols based on

the following properties: intra-protocol fairness, RTT fairness, friendliness, and

link utilization.

4.2.1 Jain’s Fairness index

We evaluate the fairness and friendliness of the protocols using the Jain’s

fairness index metric [70]. The index is computed using Formula 4.4 where xi

denotes the throughput of flow i and n denotes the total number of flows. The

55

Parameter Values
Access link bandwidth 100 Mb/s

Bottleneck link bandwidth 10 Mb/s
Bottleneck link propagation delay 10 ms to 250 ms

Packet MTU size 1500 B
Delayed ACK count 2 segments

Application type Bulk send application
Queue type Drop tail
Queue size BDP

Simulation time 600 s

Table 4.4. Parameters for congestion control simulations

index can take any value in the [0,1] interval with 1 showing the best fairness.

J (x1, x2, . . . , xn) =
(
∑n

i=1 xi)
2

n ·
∑n

i=1 xi
2

(4.4)

4.2.2 Link Utilization

We measure how well the protocol can utilize the available bottleneck band-

width by simulating two flows of the same TCP variants. The plot in Figure 4.8

illustrates the ratio between the total throughput and the bottleneck bandwidth

as the bottleneck delay increases from 10 ms to 250 ms.

Overall, for all protocols, the high delay causes the throughput of both flows to

be dropped, which is reflected through the degradation in the total utilization. At

a small delay (less than 100 ms), all protocols can achieve more than 90% utiliza-

tion of the link capacity. Westwood suffers the most as delay increases. Because

Westwood determines its sending rate based on ACK receipts, the longer the de-

lay, the longer the ACK inter-arrival times, which results in the lower estimated

bandwidth.

56

ut
ili

za
tio

n

bottleneck delay [ms]

Westwood+
Vegas
Reno

NewReno
Westwood

Tahoe

0.40

0.50

0.60

0.70

0.80

0.90

1.00

0 50 100 150 200 250

Figure 4.8. Utilization vs. increasing bottleneck delay

4.2.3 RTT Fairness

We measure the fairness in sharing the bottleneck bandwidth of two flows

running the same variant but having different delays. While the first flow’s delay

varies from 10 ms to 250 ms, the second flow’s is fixed at 250 ms. In this scenario,

the bottleneck delay is set to 100 ms. We compute Jain’s fairness index using the

throughput obtained from each flow.

Figure 4.9 shows that the closer the second flow’s delay to the first flow’s,

the better the fairness, especially when second flow’s delay reaches 250 ms, all

protocols achieve the greatest fairness of 1. Vegas is fairer than all the other

protocols, which is explained by the unaggressiveness of Vegas algorithm. While

57

fa
irn

es
s

in
de

x

bottleneck delay [ms]

Vegas
Westwood

Reno
Westwood+

NewReno
Tahoe

0.55

0.60

0.65

0.70

0.75

0.80

0.85

0.90

0.95

1.00

0 50 100 150 200 250

Figure 4.9. RTT fairness vs. increasing second flow’s delay

the other protocols always try to throttle the link to get feedback on network

condition, Vegas tries to anticipate congestion using network’s delay. Hence, a

Vegas flow rarely causes a loss by trying to overwhelm the queue.

4.2.4 Friendliness

We measure how friendly the protocols are when trying to compete with TCP

NewReno over a bottleneck link with varying delays. The plot in Frigure 4.10

shows that Tahoe, Reno, and Westwood+ are very friendly when competing with

NewReno. Actually, unless we simulate Reno and NewReno under a scenario

where multiple losses per sending window occur, they should behave very similar

to each other. Westwood and Vegas have the most interesting behavior in this

58

case. Vegas has the lowest fairness index throughout the whole simulation because

Vegas bandwidth is stolen by the much more aggressive NewReno flow. In our

simulations, we set the queue size to be the bandwidth × delay product, hence

it is proportional to the bottleneck delay. At small delay values, the queue sizes

are also small. However, due to its way of adjusting the sending rate upon a loss,

Westwood causes more losses, especially with small queue sizes, resulting in its

unfriendly behavior when competing with NewReno.

fa
irn

es
s

in
de

x

bottleneck delay [ms]

Tahoe
Westwood+

Reno
Westwood

Vegas

0.55

0.60

0.65

0.70

0.75

0.80

0.85

0.90

0.95

1.00

0 50 100 150 200 250

Figure 4.10. Friendliness vs. increasing bottleneck delay

4.2.5 Intra-Protocol Fairness

We measure the intra-protocol fairness of TCP variants by simulating two flows

of the same TCP over the bottleneck link. All the protocols achieve very high

59

fairness regardless of the increasing in the bottleneck delay. Again, at a very low

delay, Westwood suffers due to the small queue size and the flow’s high sending

rate.

fa
irn

es
s

in
de

x

bottleneck delay [ms]

Reno
Westwood+

Tahoe
Vegas

NewReno
Westwood

0.40

0.50

0.60

0.70

0.80

0.90

1.00

0 50 100 150 200 250

Figure 4.11. Intraprotocol fairness vs. increasing bottleneck delay

4.2.6 Summary

In summary, based on the results we obtain in our simulations, as long as the

PER does not exceed 10−4, Westwood+ performs much better than Westwood. In

the high bandwidth and high delay scenarios, Westwood exhibits a very unstable

behavior due to its use of ACK interarrival as the bandwidth sampling interval

although to fully understand this instability, we need further investigations. The

Vegas mechanism in trying to predict congestion before it actually occurs prevents

60

Vegas from fully utilize the available bandwidth and becomes uncompetitive with

the existence of other TCP flows even though it has the best performance in

the RTT fairness case. The additive increase, multiplicative decrease (AIMD)

method in Tahoe, Reno, NewReno, or even in SACK degrades their performance

in network environments with lossy links. For these protocols to be able to utilize

the bandwidth, the PER has to be very small, which is normally impractical.

The poor performance of Tahoe indicates the importance of the Fast Recovery

mechanism, which allows the sender to go back to the congestion avoidance phase

after a loss instead of starting over from the slow start phase, in improving TCP

performance. However, these protocols are fair and friendly when they have to

compete with other protocols, except Vegas. Among all the protocols studied in

this thesis, we would suggest the use of Westwood+ in either a wired environment

in which congestion is normally the main cause of packet drops or a wireless

environment in which corruption-based losses occur more often.

61

Chapter 5

Conclusions and Future Work

This chapter concludes the thesis with some remarks and highlights based on

the performance comparison results in the previous Chapter and gives directions

for future work.

5.1 Conclusions

The thesis provides a baseline performance comparison work on different reli-

able transport-layer mechanisms to prepare the knowledge for future development

of our resilient transport protocol ResTP. The results on the different mechanisms

suggest that SNACK, the hybrid version of SACK and NAK, has the best perfor-

mance due to its ability to inform more information about the receiver buffer than

the other protocols. For congestion control algorithms, we simulate the standard

TCP variants including Tahoe, Reno, NewReno, Vegas, Westwood, and West-

wood+. While Westwood is known for improving TCP in facing corruption-based

losses, its bandwidth estimation mechanism and its ACK-based sampling method

result in some fairness issues. Vegas, on the other hand, highlights the difference

62

between a loss-based and a delay-based congestion control algorithm.

5.2 Future work

For future work, we would like to consider introducing background traffic into

our congestion control testing to make the scenarios more realistic. Synchroniza-

tion and phase effects could be studied at a deeper level. The impacts of different

queue types other than drop tail on the protocols are also our interests. With the

existing high-speed protocols currently available in the kernel, we also consider

performing a more comprehensive analysis of the congestion control algorithms

using more metrics.

63

References

[1] James P.G. Sterbenz. End-to-End Transport.

http://www.ittc.ku.edu/ jpgs/courses/nets/lecture-transport-nets-

display.pdf, February 2011.

[2] M. Mathis, J. Mahdavi, S. Floyd, and A. Romanow. TCP Selective Acknowl-

edgment Options. RFC 2018 (Proposed Standard), 1996.

[3] R. Fox. TCP big window and NAK options. RFC 1106, June 1989.

[4] CCSDS-The Consultative Committee for Space Data Systems. Space Com-

munications Protocol Specification (SCPS)-Transport Protocol (SCPS-TP).

http://public.ccsds.org/publications/archive/714x0b2.pdf, October 2006.

[5] Jim Kurose and Keith Ross. Computer Networking: A Top-Down Approach.

Pearson Addison Wesley, 5th edition, 2010.

[6] Sami Iren, Paul D. Amer, and Phillip T. Conrad. The transport layer: tutorial

and survey. ACM Computing Surveys, 31(4):360–404, December 1999.

[7] J. Postel. Transmission Control Protocol. RFC 793 (Standard), 1981. Up-

dated by RFCs 1122, 3168.

[8] The ns-3 network simulator. http://www.nsnam.org, July 2009.

64

[9] Justin P. Rohrer, Erik Perrins, and James P.G. Sterbenz. End-to-End

Disruption-Tolerant Transport Protocol Issues and Design for Airborne

Telemetry Networks. In Proceedings of the International Telemetering Con-

ference, San Diego, CA, October 27–30 2008.

[10] Justin P. Rohrer, Abdul Jabbar, Egemen K. Çetinkaya, Erik Perrins, and

James P.G. Sterbenz. Highly-Dynamic Cross-Layered Aeronautical Network

Architecture. Aerospace and Electronic Systems, IEEE Transactions on,

47(4):2742 –2765, October 2011.

[11] E. Blanton, M. Allman, K. Fall, and L. Wang. A Conservative Selective

Acknowledgment (SACK)-based Loss Recovery Algorithm. RFC 3517 (Stan-

dard), 2003.

[12] V. Jacobson and R.T. Braden. TCP extensions for long-delay paths. RFC

1072, 1988. Obsoleted by RFCs 1323, 2018, 6247.

[13] L. Eggert and Nokia. Moving the Undeployed TCP Extensions RFC 1072,

RFC 1106, RFC 1110, RFC 1145, RFC 1146, RFC 1379, RFC 1644, and RFC

1693 to Historic Status. RFC 6247 (Informational), May 2011.

[14] Ruhai Wang. A novel acknowledgment scheme for space Internet. In Vehicu-

lar Technology Conference, 2004. VTC2004-Fall. 2004 IEEE 60th, volume 6,

pages 4056–4060 Vol. 6, 2004.

[15] Robert C. Durst, Gregory J. Miller, and Eric J. Travis. TCP extensions for

space communications. Wireless Networks, 3(5):389–403, October 1997.

[16] Andrea Baiocchi, Angelo P Castellani, and Francesco Vacirca. YeAH-TCP:

yet another highspeed TCP. In Proc. PFLDnet, volume 7, pages 37–42, 2007.

65

[17] Van Jacobson. Congestion Avoidance and Control. In Symposium proceedings

on Communications architectures and protocols, SIGCOMM ’88, pages 314–

329, New York, NY, USA, 1988. ACM.

[18] Van Jacobson. Modified TCP congestion avoidance algorithm.

ftp://ftp.ee.lbl.gov/email/vanj.90apr30.txt, April 1990.

[19] M. Allman, V. Paxson, and W. Stevens. TCP Congestion Control. RFC 2581

(Proposed Standard), April 1999. Obsoleted by RFC 5681, updated by RFC

3390.

[20] Janey C. Hoe. Start-up dynamics of TCP’s congestion control and avoidance

schemes. Master’s thesis, University of California at Berkeley, USA, 1995.

[21] S. Floyd and T. Henderson. The NewReno Modification to TCP’s Fast Re-

covery Algorithm. RFC 2582 (Experimental), April 1999. Obsoleted by RFC

3782.

[22] S. Mascolo, C. Casetti, M. Gerla, M.Y. Sanadidi, and R. Wang. TCP west-

wood: Bandwidth estimation for enhanced transport over wireless links. In

MOBICOM 2001, pages 287–297. ACM.

[23] S. Mascolo, L.A. Grieco, R. Ferorelli, P. Camarda, and G. Piscitelli. Per-

formance evaluation of Westwood+ TCP congestion control. Performance

Evaluation, 55(1-2):93–111, January 2004.

[24] Tom Kelly. Scalable TCP: improving performance in highspeed wide area

networks. SIGCOMM Comput. Commun. Rev., 33(2):83–91, April 2003.

[25] S. Floyd. HighSpeed TCP for Large Congestion Windows. RFC 3649 (Ex-

perimental), December 2003.

66

[26] Lisong Xu, Khaled Harfoush, and Injong Rhee. Binary increase congestion

control (BIC) for fast long-distance networks. In INFOCOM 2004. Twenty-

third Annual Joint Conference of the IEEE Computer and Communications

Societies, volume 4, pages 2514–2524, 2004.

[27] Sangtae Ha, Injong Rhee, and Lisong Xu. CUBIC: a new TCP-friendly high-

speed TCP variant. SIGOPS Oper. Syst. Rev., 42(5):64–74, July 2008.

[28] Raj Jain. A delay-based approach for congestion avoidance in intercon-

nected heterogeneous computer networks. SIGCOMM Comput. Commun.

Rev., 19(5):56–71, October 1989.

[29] Lawrence S. Brakmo, Sean W. O’Malley, and Larry L. Peterson. TCP Vegas:

new techniques for congestion detection and avoidance. SIGCOMM Comput.

Commun. Rev., 24(4):24–35, 1994.

[30] David X. Wei, Cheng Jin, Steven H. Low, and Sanjay Hegde. FAST TCP: mo-

tivation, architecture, algorithms, performance. IEEE/ACM Trans. Netw.,

14(6):1246–1259, December 2006.

[31] Ryan King, Richard Baraniuk, and Rudolf Riedi. TCP-Africa: an adaptive

and fair rapid increase rule for scalable TCP. In INFOCOM 2005. 24th An-

nual Joint Conference of the IEEE Computer and Communications Societies.

Proceedings IEEE, volume 3, pages 1838–1848, 2005.

[32] Kun Tan, Jingmin Song, Qian Zhang, and M. Sridharan. A Compound

TCP Approach for High-Speed and Long Distance Networks. In INFOCOM

2006. 25th IEEE International Conference on Computer Communications.

Proceedings, pages 1–12, 2006.

67

[33] Dina Katabi, Mark Handley, and Charlie Rohrs. Congestion control for high

bandwidth-delay product networks. SIGCOMM Comput. Commun. Rev.,

32(4):89–102, August 2002.

[34] Kevin Fall and Sally Floyd. Simulation-based Comparisons of Tahoe, Reno

and SACK TCP. SIGCOMM Computer Communication Review, 26(3):5–21,

July 1996.

[35] Jeffrey C. Mogul. Observing TCP dynamics in real networks. SIGCOMM

CCR, 22(4):305–317, October 1992.

[36] S. Floyd, J. Mahdavi, M. Mathis, and M. Podolsky. An Extension to the

Selective Acknowledgement (SACK) Option for TCP. RFC 2883 (Proposed

Standard), July 2000.

[37] Ming Zhang, Brad Karp, Sally Floyd, and Larry Peterson. RR-TCP: a

reordering-robust TCP with DSACK. In 11th IEEE International Conference

on Network Protocols, 2003. Proceedings, pages 95–106, 2003.

[38] Rajkumar Kettimuthu and William Allcock. Improved Selective Acknowl-

edgment Scheme for TCP. Technical report, Argonne National Laboratory,

Globus Alliance, June 2004.

[39] R. Stewart. Stream Control Transmission Protocol. RFC 4960 (Proposed

Standard), September 2007.

[40] Preethi Natarajan, Nasif Ekiz, Ertugrul Yilmaz, Paul D. Amer, Janardhan

Iyengar, and Randall Stewart. Non-Renegable Selective Acknowledgments

(NR-SACKs) for SCTP. In IEEE International Conference on Network Pro-

tocols, 2008. ICNP 2008, pages 187–196, 2008.

68

[41] A. Ford, C. Raiciu, M. Handley, S. Barre, and J. Iyengar. Architectural

Guidelines for Multipath TCP Development. RFC 6182 (Informational),

2011.

[42] Fan Yang and Paul Amer. Non-renegable Selective Acknowledgments (NR-

SACKs) for MPTCP. In 27th International Conference on Advanced In-

formation Networking and Applications Workshops (WAINA), 2013, pages

1113–1118, 2013.

[43] Abhay Chrungoo, Vishu Gupta, Huzur Saran, and Rajeev Shorey. TCP k-

SACK: a simple protocol to improve performance over lossy links. In Global

Telecommunications Conference, 2001. GLOBECOM ’01. IEEE, volume 3,

pages 1713–1717 vol.3, 2001.

[44] Matthew Mathis and Jamshid Mahdavi. Forward Acknowledgement: Refin-

ing TCP Congestion Control. SIGCOMM Computer Communication Review,

26(4):281–291, August 1996.

[45] Matt Mathis and Jamshid Mahdavi. TCP Rate-Having with Bounding Pa-

rameters. Technical report, Pittsburgh Supercomputer Center, October 1996.

[46] K. N. Srijith, LiUykutty Jacob, and A. L. Ananda. TCP Vegas-A: solving

the fairness and rerouting issues of TCP Vegas. In Performance, Computing,

and Communications Conference, 2003. Conference Proceedings of the 2003

IEEE International, pages 309–316, 2003.

[47] Amir Maor and Yishay Mansour. AdaVegas: adaptive control for TCP Vegas.

In Global Telecommunications Conference, 2003. GLOBECOM ’03. IEEE,

volume 7, pages 3647–3651 vol.7, 2003.

69

[48] Joel Sing and Ben Soh. TCP New Vegas: Improving the Performance of TCP

Vegas Over High Latency Links. In Network Computing and Applications,

Fourth IEEE International Symposium on, pages 73–82, 2005.

[49] Hong fei Liu, Li jun Li, Zu yuan Yang, and Xi yue Huang. TCP Vegas M:

A Novel TCP Algorithm in Mobile Ad hoc Network. In 6th International

Conference on ITS Telecommunications Proceedings, 2006, pages 629–633,

2006.

[50] Cheng-Yuan Ho, Yi-Cheng Chan, and Yaw-Chung Chen. Gallop-Vegas: An

enhanced slow-start mechanism for TCP Vegas. Journal of Communications

and Networks, 8(3):351–359, 2006.

[51] C. Y Ho and Y.-C. Chen. Snug-Vegas and Snug-Reno: efficient mechanisms

for performance improvement of TCP over heterogeneous networks. Commu-

nications, IEE Proceedings-, 153(2):169–176, 2006.

[52] Lianghui Ding, Xinbing Wang, Youyun Xu, Wenjun Zhang, and Wen Chen.

Vegas-W: An Enhanced TCP-Vegas for Wireless Ad Hoc Networks. In Com-

munications, 2008. ICC ’08. IEEE International Conference on, pages 2383–

2387, 2008.

[53] Wei Zhou, Wei Xing, Yongchao Wang, and Jianwei Zhang. TCP Vegas-V:

Improving the performance of TCP Vegas. In Automatic Control and Artifi-

cial Intelligence (ACAI 2012), International Conference on, pages 2034–2039,

2012.

[54] Thomas Bonald. Comparison of {TCP} reno and {TCP} vegas: efficiency

and fairness. Performance Evaluation, 36â37(0):307 – 332, 1999.

70

[55] Go Hasegawa, Kenji Kurata, and Masayuki Murata. Analysis and improve-

ment of fairness between TCP Reno and Vegas for deployment of TCP Vegas

to the Internet. In Network Protocols, 2000. Proceedings. 2000 International

Conference on, pages 177–186, 2000.

[56] Catherine Boutremans and Jean-Yves Le Boudec. A note on the fairness of

TCP Vegas. In Broadband Communications, 2000. Proceedings. 2000 Inter-

national Zurich Seminar on, pages 163–170, 2000.

[57] Steven H. Low, Larry L. Peterson, and Limin Wang. Understanding TCP

Vegas: a duality model. J. ACM, 49(2):207–235, March 2002.

[58] Rung-Shiang Cheng and Hui-Tang Lin. TCP Selective Negative Acknowl-

edgment over IEEE 802.11 Wireless Networks. In International conference

on Networking and Services, 2006. ICNS ’06, pages 98–98, 2006.

[59] Ru H. Wang, Satinderbir Singh, Sreelakshmi Bonasu, and Guangbin Fan.

An experimental evaluation of a novel acknowledgment scheme over GEO-

satellite links. In Wireless Communications and Networking Conference, 2005

IEEE, volume 3, pages 1491–1496 Vol. 3, 2005.

[60] Anurag Kumar. Comparative performance analysis of versions of TCP in

a local network with a lossy link. IEEE/ACM Trans. Netw., 6(4):485–498,

August 1998.

[61] Michele Zorzi, A. Chockalingam, and Ramesh R. Rao. Throughput analy-

sis of TCP on channels with memory. IEEE Journal on Selected Areas in

Communications, 18(7):1289–1300, 2000.

71

[62] Haewon Lee, Soo-Hyeong Lee, and Yanghee Choi. The influence of the large

bandwidth-delay product on TCP Reno, NewReno, and SACK. In Informa-

tion Networking, 2001. Proceedings. 15th International Conference on, pages

327–334, 2001.

[63] Luigi A. Grieco and Saverio Mascolo. Performance evaluation and comparison

of Westwood+, New Reno, and Vegas TCP congestion control. SIGCOMM

Comput. Commun. Rev., 34(2):25–38, April 2004.

[64] Alaa Seddik-Ghaleb, Yacine Ghamri-Doudane, and Sidi-Mohammed Senouci.

A performance study of TCP variants in terms of energy consumption and av-

erage goodput within a static ad hoc environment. In Proceedings of the 2006

international conference on Wireless communications and mobile computing,

IWCMC ’06, pages 503–508, New York, NY, USA, 2006. ACM.

[65] Siddharth Gangadhar, Truc Anh N. Nguyen, Greeshma Umapathi, and

James P.G. Sterbenz. TCP Westwood Protocol Implementation in ns-3. In

Proceedings of the ICST SIMUTools Workshop on ns-3 (WNS3), Cannes,

France, March 2013.

[66] The ns-3 Network Simulator Doxygen Documentation.

http://www.nsnam.org/doxygen/group tcp.html, July 2012.

[67] S. Floyd. Congestion Control Principles. RFC 2914 (Best Current Practice),

September 2000.

[68] Linux Kernel Organization. The Linux Kernel Archives.

https://www.kernel.org, 2013.

72

[69] Larry Peterson. The x-kernel Protocol Framework.

http://www.cs.arizona.edu/projects/xkernel/, 2013.

[70] Dah-Ming Chiu and Raj Jain. Analysis of the increase and decrease algo-

rithms for congestion avoidance in computer networks. Computer Networks

and ISDN systems, 17(1):1–14, 1989.

73

