819 research outputs found

    Get my pizza right: Repairing missing is-a relations in ALC ontologies (extended version)

    Full text link
    With the increased use of ontologies in semantically-enabled applications, the issue of debugging defects in ontologies has become increasingly important. These defects can lead to wrong or incomplete results for the applications. Debugging consists of the phases of detection and repairing. In this paper we focus on the repairing phase of a particular kind of defects, i.e. the missing relations in the is-a hierarchy. Previous work has dealt with the case of taxonomies. In this work we extend the scope to deal with ALC ontologies that can be represented using acyclic terminologies. We present algorithms and discuss a system

    Ontology-based semantic interpretation of cylindricity specification in the next-generation GPS

    Get PDF
    Cylindricity specification is one of the most important geometrical specifications in geometrical product development. This specification can be referenced from the rules and examples in tolerance standards and technical handbooks in practice. These rules and examples are described in the form of natural language, which may cause ambiguities since different designers may have different understandings on a rule or an example. To address the ambiguous problem, a categorical data model of cylindricity specification in the next-generation Geometrical Product Specifications (GPS) was proposed at the University of Huddersfield. The modeling language used in the categorical data model is category language. Even though category language can develop a syntactically correct data model, it is difficult to interpret the semantics of the cylindricity specification explicitly. This paper proposes an ontology-based approach to interpret the semantics of cylindricity specification on the basis of the categorical data model. A scheme for translating the category language to the OWL 2 Web Ontology Language (OWL 2) is presented in this approach. Through such a scheme, the categorical data model is translated into a semantically enriched model, i.e. an OWL 2 ontology for cylindricity specification. This ontology can interpret the semantics of cylindricity specification explicitly. As the benefits of such semantic interpretation, consistency checking, inference procedures and semantic queries can be performed on the OWL 2 ontology. The proposed approach could be easily extended to support the semantic interpretations of other kinds of geometrical specifications

    Addressing the tacit knowledge of a digital library system

    Get PDF
    Recent surveys, about the Linked Data initiatives in library organizations, report the experimental nature of related projects and the difficulty in re-using data to provide improvements of library services. This paper presents an approach for managing data and its "tacit" organizational knowledge, as the originating data context, improving the interpretation of data meaning. By analyzing a Digital Libray system, we prototyped a method for turning data management into a "semantic data management", where local system knowledge is managed as a data, and natively foreseen as a Linked Data. Semantic data management aims to curates the correct consumers' understanding of Linked Datasets, driving to a proper re-use

    Formal Concept Analysis Methods for Description Logics

    Get PDF
    This work presents mainly two contributions to Description Logics (DLs) research by means of Formal Concept Analysis (FCA) methods: supporting bottom-up construction of DL knowledge bases, and completing DL knowledge bases. Its contribution to FCA research is on the computational complexity of computing generators of closed sets

    Expressing the tacit knowledge of a digital library system as linked data

    Get PDF
    Library organizations have enthusiastically undertaken semantic web initiatives and in particular the data publishing as linked data. Nevertheless, different surveys report the experimental nature of initiatives and the consumer difficulty in re-using data. These barriers are a hindrance for using linked datasets, as an infrastructure that enhances the library and related information services. This paper presents an approach for encoding, as a Linked Vocabulary, the "tacit" knowledge of the information system that manages the data source. The objective is the improvement of the interpretation process of the linked data meaning of published datasets. We analyzed a digital library system, as a case study, for prototyping the "semantic data management" method, where data and its knowledge are natively managed, taking into account the linked data pillars. The ultimate objective of the semantic data management is to curate the correct consumers' interpretation of data, and to facilitate the proper re-use. The prototype defines the ontological entities representing the knowledge, of the digital library system, that is not stored in the data source, nor in the existing ontologies related to the system's semantics. Thus we present the local ontology and its matching with existing ontologies, Preservation Metadata Implementation Strategies (PREMIS) and Metadata Objects Description Schema (MODS), and we discuss linked data triples prototyped from the legacy relational database, by using the local ontology. We show how the semantic data management, can deal with the inconsistency of system data, and we conclude that a specific change in the system developer mindset, it is necessary for extracting and "codifying" the tacit knowledge, which is necessary to improve the data interpretation process
    • …
    corecore