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Chapter 1

Introduction

The notion of a concept as a collection of objects sharing certain properties,
and the notion of a conceptual hierarchy are fundamental to both Formal
Concept Analysis (FCA) and Description Logics (DLs). However, the ways
concepts are described and obtained differ significantly between these two
research areas. In DLs, the relevant concepts of the application domain
are formalized by so-called concept descriptions, which are expressions built
from unary predicates (that are called atomic concepts), and binary predi-
cates (that are called atomic roles) with the help of the concept constructors
provided by the DL language. Then in a second step, these concept descrip-
tions are used to describe properties of individuals occurring in the domain,
and the roles are used to describe relations between these individuals. On
the other hand, in FCA, one starts with a so-called formal context, which
in its simplest form is a way of specifying which attributes are satisfied by
which objects. A formal concept of such a context is a pair consisting of a
set of objects called extent, and a set of attributes called intent such that
the intent consists of exactly those attributes that the objects in the extent
have in common, and the extent consists of exactly those objects that share
all attributes in the intent.

There are several differences between these approaches. First, in FCA
one starts with a purely extensional description of the application domain,
and then derives the formal concepts of this specific domain, which provide
a useful structuring. In a way, in FCA the intensional knowledge is obtained
from the extensional part of the knowledge. On the other hand, in DLs the
intensional definition of a concept is given independently of a specific do-
main (interpretation), and the description of the individuals is only partial.
Second, in FCA the properties are atomic, and the intensional description of
a formal concept (by its intent) is just a conjunction of such properties. DLs
usually provide a richer language for the intensional definition of concepts,
which can be seen as an expressive, yet decidable sublanguage of first-order
predicate logic.
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Despite these differences, there have been several attempts to bridge
the gap between these two formalisms, and attempts to apply methods
from one field to the other. For example, there have been efforts to enrich
FCA with more complex properties similar to concept constructors in DLs
[Zic91, PS99, Pre00, FRS05, RHNV07]. On the other hand, DL research
has benefited from FCA methods to solve some problems encountered in
knowledge representation using DLs [Baa95, Stu96b, BM00, BS04, Rud04,
BST04a, Rud06, Ser06, BST07, BGSS07b]. In the present work, we are
interested in the latter approach, namely applications of FCA methods in
DLs.

1.1 Description Logics

Description Logics are a class of knowledge representation formalisms that
are used to represent the terminological knowledge of an application do-
main in a structured way. They originated as a result of the efforts to give a
logic-based semantics to earlier knowledge representation formalisms called
semantic networks and frames. Semantic networks [Qui67] were developed
with the aim to represent knowledge and do reasoning by means of network-
shaped cognitive structures. Frame systems [Min81], on the other hand,
relied upon so-called “frames” for the same purposes. Although there are
significant differences between semantic networks and frames, they can both
be seen as network structures where the sets of individuals and relations
among these individuals are represented in the structure of the network.
From a practical point of view, these formalisms were easy to understand
and use. Unfortunately, on the theoretical side they suffered from their
lack of a precise semantics. As a result, different systems based on these
formalisms sometimes behaved differently upon the same input. Efforts to
overcome this problem led to the recognition that first-order logic could be
used to provide semantics to frame systems [Hay79]. Later, in [BL85], it
was realized that frames and semantic networks actually did not need the
full power of first-order logic, but they could be expressed in fragments of
it where reasoning is decidable. This realization initiated the research on
so-called KL-ONE-like representation languages, which were fragments of
first-order logic, and on developing specialized algorithms for reasoning with
these languages. Over time, the name KL-ONE-like languages first changed
to concept languages, then to terminological logics, and finally to Descrip-
tion Logics (DLs). Since their introduction, DLs have been used in various
application domains such as medical informatics, software engineering, con-
figuration of technical systems, natural language processing, databases and
web-based information systems. But their most notable success so far is
the adoption of the DL-based language OWL1[HPSvH03] as the standard

1Web Ontology Language. See http://www.w3.org/TR/owl-features
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ontology language for the semantic web [BLHL01].

Syntax

In DLs, one formalizes the relevant notions of an application domain by con-
cept descriptions. A concept description is an expression built from atomic
concepts, which are unary predicates, and atomic roles, which are binary
predicates, by using the concept constructors provided by the particular DL
language in use. The set of atomic concepts is usually represented with NC ,
and the set of atomic roles is usually represented with NR. DL languages are
identified with the concept constructors they allow. The language allowing
for the constructors u (conjunction), t (disjunction), ¬ (negation), ∀ (value
restriction) and ∃ (existential restriction) is called ALC [SSS91].

Typically, a DL knowledge base consists of a terminological box (TBox ),
which defines the terminology of an application domain, and an assertional
box (ABox ), which contains facts about a specific world. In its simplest form,
a TBox is a set of concept definitions of the form A ≡ C that assigns the
concept name A to the concept description C. The concept names occurring
on the left-hand side of a concept definition are called defined concepts, and
the others are called primitive concepts. We say that a TBox is acyclic
if no concept definition directly or indirectly refers to the name it defines.
We call a finite set of general concept inclusion (GCI) axioms a general
TBox . A GCI is an expression of the form C v D, where C and D are two
possibly complex concept descriptions. It states a subconcept/superconcept
relationship between the two concept descriptions. An ABox is a set of
concept assertions of the form C(a), which means that the individual a
is an instance of the concept C, and role assertions of the form R(a, b),
which means that the individual a is in R-relation with individual b. Let us
demonstrate these notions on a toy knowledge base:

Example 1.1.1. Assume our set of atomic concepts NC contains the con-
cepts Country, Land and Ocean, and the set of atomic roles NR contains the
role hasBorderTo, and we are using a DL that provides u, ∀ and ∃. The
following TBox contains the definition of a landlocked country, which is a
country that only has borders on land, and the definition of an ocean country
that has a border to an ocean.

T := {LandlockedCountry ≡ Country u ∀hasBorderTo.Land
OceanCountry ≡ Country u ∃hasBorderTo.Ocean}

The following ABox states the facts about the individuals Portugal, Austria,
and Atlantic Ocean.

A := {LandlockedCountry(Austria),
Country(Portugal),
Ocean(Atlantic Ocean),
hasBorderTo(Portugal, Atlantic Ocean)}
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Semantics

The meaning of DL concepts is given by means of an interpretation I, which
is a tuple consisting of a domain ∆I and an interpretation function ·I .
The interpretation function maps every concept occurring in the TBox to
a subset of the domain, every role to a binary relation on the domain, and
every individual name occurring in the ABox to an element of the domain.
The meaning of complex concept descriptions is given inductively based on
the constructors used in the concept description.

For instance, the concept description Country u ∃hasBorderTo.Ocean is
interpreted as the intersection of the set of countries and the set of elements
of the domain that have a border to an ocean. We say that an interpretation
I is a model of a TBox T if it satisfies all concept definitions in T , i.e., for
every concept definition A ≡ C in T , it maps A and C to the same subset
of the domain. Similarly, we say that I is a model of an ABox A, if it
satisfies all concept and role assertions in A, i.e., for every concept assertion
A(a) in A, the interpretation of a is an element of the interpretation of A,
and for every role assertion r(a, b) the interpretation of r contains the pair
consisting of the interpretations of a and b. The semantics of ABoxes is the
open-world semantics, i.e., absence of information about an individual is not
interpreted as negative information, but it only indicates lack of knowledge.

Inferences

In an application, once we get a description of the application domain using
DLs as described above, we can make inferences, i.e., deduce implicit conse-
quences from the explicitly represented knowledge. The basic inference on
concept descriptions is subsumption. Given two concept descriptions C and
D, the subsumption problem C v D is the problem of checking whether
the concept description D is more general than the concept description C.
In other words, it is the problem of determining whether the first concept
always, i.e., in every interpretation denotes a subset of the set denoted by
the second one. We say that C is subsumed by D w.r.t. a TBox T , if in
every model of T , D is more general than C, i.e., the interpretation of C is a
subset of the interpretation of D. We denote this as C vT D. For instance,
in Example 1.1.1 above, the concepts LandlockedCountry and OceanCountry
are both trivially subsumed by the concept Country.

Another typical inference on concept descriptions is satisfiability, which
is the problem of checking whether there is an interpretation that interprets
a given concept description as a nonempty set. We say that a concept is
satisfiable w.r.t. a TBox if the TBox has a model in which the interpretation
of the concept is not empty. In fact, the satisfiability problem can be reduced
to the subsumption problem. A concept is unsatisfiable if and only if it is
subsumed by bottom, which is the empty concept.
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The typical inference problems for ABoxes are instance checking and con-
sistency. Consistency of an ABox w.r.t. a TBox is the problem of checking
whether the ABox and the TBox have a common model. Instance checking
w.r.t. a TBox and an ABox is the problem of deciding whether the inter-
pretation of a given individual is an element of the interpretation of a given
concept in every common model of the TBox and the ABox. For instance,
in Example 1.1.1 above, it follows from T and A that Portugal is an ocean
country, although A does not contain the assertion OceanCountry(Portugal).
Modern DL systems, i.e., knowledge representation systems based on DLs,
like FaCT [Hor98] (its successor FaCT++ [TH06]), Racer [HM01b] (its suc-
cessor RacerPro), Pellet [SP04] and KAON2 [Mot06] provide their users
with inference services that solve these inference problems, which are also
known as standard inferences.

In Chapter 2 we are going to give a more formal introduction to DLs. A
broader introduction can be found in [NB03, BN03].

1.2 Formal Concept Analysis

Formal Concept Analysis (FCA) is a field of applied mathematics that aims
to formalize the notions of a concept and a conceptual hierarchy by means
of mathematical tools. It facilitates the use of mathematical reasoning for
conceptual data analysis and knowledge processing. FCA emerged around
1980 as a result of the attempts to restructure mathematical order and lat-
tice theory [Wil82]. Later on it has been developed as a subfield of applied
mathematics based on the mathematization of concepts and conceptual hi-
erarchies.

Formal context and formal concept

In FCA, one represents data in the form of a formal context, which in its
simplest form is a way of specifying which attributes are satisfied by which
objects. A formal context is usually visualized as a cross table, where the
rows represent the objects, and the columns represent the attributes of the
context. A cross in column m of row g means that the object g has the
attribute m, and the absence of a cross means that g does not have attribute
m. A formal context is usually denoted by K = (G,M, I) where G is the
set of objects, M is the set of attributes, and I is the relation between the
objects and the attributes. Let us give an example of a formal context.

Example 1.2.1. The formal context Kcountries in Table 1.1 below shows
the membership status of some countries to some international organisations,
and whether they have nuclear weapons or not. The attributes of the context
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are, has nuclear weapons,2 UN Security Council permanent member, UN
Security Council temporary member,3 G8 member, EU member,3 and UN
member. ¦

has nuclear UN Security Council G8 EU UN
Kcountries weapons permanent temporary mem. mem. mem.

USA X X X X
Germany X X X
France X X X X X

UK X X X X X
Turkey X
Qatar X X
Italy X X X X

Table 1.1: Formal context Kcountries.

Given such a formal context, the first step for analyzing this context is
usually computing the formal concepts of this context, which are “natural
clusterings” of the data in the context. A formal concept is a pair consisting
of an object set A and an attribute set B such that the objects in A share the
attributes in B, and B consists of exactly those attributes that the objects in
A have in common. The object set A is called the extent, and the attribute
set B is called the intent of the formal concept (A,B). Formal concepts of
the context given in Example 1.2.1 are listed below.

Example 1.2.2. The formal context Kcountries in Example 1.2.1 has 8 for-
mal concepts. In order to avoid redundant text while listing them, here we
are going to use the following abbreviations for the attribute names given in
the order in Example 1.2.1 above: nw, SCp, SCt, G8, EU, UN. The formal
concepts of Kcountries are:

• ({}, {nw, SCp, SCt, G8, EU , UN })

• ({Italy}, {SCt, G8, EU, UN})

• ({UK, France}, {nw, SCp, G8, EU, UN})

• ({Qatar, Italy}, {SCt, UN})

• ({Germany, UK, France, Italy}, {EU, G8, UN})

• ({USA, France, UK}, {nw, SCp, G8, UN})

• ({USA, Germany, France, UK, Italy}, {G8, UN})
2countries that have the internationally recognised status conferred by the NPT.

Source: http://en.wikipedia.org/wiki/List_of_countries_with_nuclear_weapons
3as of June 2007



1.2 Formal Concept Analysis 19

• ({Turkey, USA, Germany, Qatar, France, UK, Italy}, {UN}).

¦

Concept lattice

Once all formal concepts of a context are obtained, one orders them w.r.t.
the inclusion of their extents (equivalently, inverse inclusion of their intents).
This ordering gives a complete lattice, called the concept lattice of the con-
text. A concept lattice contains all information represented in a formal
context, i.e., we can easily read off the attributes, objects and the incidence
relation of the underlying context. Moreover, visualization of a concept lat-
tice makes it easier to see formal concepts of a context and interrelations
among them. Thus it helps to understand the structure of the data in the
formal context, and to query the knowledge represented in the formal con-
text.

The nodes of a concept lattice represent the formal concepts of the un-
derlying context. In order to improve readability of the lattice, we avoid
writing down the extent and intent of every single node. Instead, we label
the nodes with attribute and object names in such a way that every name
appears only once in the lattice. In this labelling, the intent of the formal
concept corresponding to a node can be determined by the attribute names
that can be reached by the ascending lines, and its extent can be determined
by the object names that can be reached by the descending lines. For in-
stance consider the concept lattice in Figure 1.1 that results from the formal
context Kcountries in Example 1.2.1: the intent of the formal concept marked
with the attribute name EU member and with the object name Germany
is {EU member, G8 member, UN member}, and its extent is {Germany,
France, UK, Italy}.

Given a formal context, one other common method to analyze it is to
find (a base) of the implications between attributes of this context. Impli-
cations between attributes are constraints between attributes that hold in
the given context. They are statements of the form “every object that sat-
isfies the attributes mi1, . . . ,mik also satisfies the attributes mj1, . . . ,mjl”.
The concept lattice of a context can be reconstructed from its implications.
Conversely, the implications between the attributes of a formal context can
be read off from the concept lattice.

Attribute exploration

Attribute exploration [Gan84, GW99] is a knowledge acquisition method of
FCA that is used to acquire knowledge from a domain expert by asking
successive questions. In many applications where the formal context is not
explicitly given, but it is only “known” to a domain expert, it has proved to
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Figure 1.1: Concept lattice of Kcountries

be a successful method for efficiently capturing the expert’s knowledge. At-
tribute exploration asks the expert questions of the form “is it true that ob-
jects having attributes mi1, . . . ,mik also have the attributes mj1, . . . ,mjl?”.
When such a question is asked, the expert is expected to either confirm the
question, in which case a new implication of the application domain is found,
or reject it. If the expert rejects such a question, she is expected to give
a counterexample, i.e., an object that has all the attributes mi1, . . . ,mik

but lacks at least one of mj1, . . . ,mjl. This counterexample is then added
to the application domain as a new object, and the next question is asked.
What makes attribute exploration an attractive method for capturing expert
knowledge is that it guarantees to make best use of the expert’s answers, and
to ask the minimum possible number of questions that suffices to acquire
complete knowledge about the application domain.

1.3 Existing work on DLs and FCA

DLs and FCA follow significantly different methodologies for obtaining and
defining the relevant concepts of a domain. In DLs, the (intensional) defini-
tion of a concept is given independently of a specific interpretation, and the
description of the objects is only partial. In FCA, one starts with a purely
extensional description of the domain, and then derives the formal concepts
of this specific domain. In a way, in FCA the intensional knowledge is ob-
tained from the extensional part of the knowledge. Despite these differences,
there have been several attempts towards bridging the gap between these
two formalisms, and attempts to apply methods from one field to the other.
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It is possible to collect these attempts roughly under two categories:

• efforts to enrich the language of FCA by borrowing constructors from
DL languages [Zic91, PS99, Pre00, FRS05, RHNV07]

• efforts to employ FCA methods in the solution of problems encoun-
tered in knowledge representation with DLs [Baa95, Stu96b, BM00,
Rud04, Rud06]

Below we are going to discuss some of these efforts briefly.

1.3.1 Enriching FCA with DL constructors

Theory-driven logical scaling

In [PS99], Prediger and Stumme have used DLs in Conceptual Information
Systems, which are data analysis tools based on FCA. They can be used to
extract data from a relational database and to store it in a formal context
by using so-called conceptual scales. Prediger and Stumme have combined
DLs with attribute exploration in order to define a new kind of conceptual
scale. In this approach, DLs provide a rich language to specify which FCA
attributes cannot occur together, and a DL reasoner is used during the at-
tribute exploration process as an expert to answer the implication questions,
and to provide a counterexample whenever the implication does not hold.

Terminological attribute logic

In [Pre00], Prediger has worked on introducing logical constructors into
FCA. She has enriched FCA with relations, existential and universal quan-
tifiers, and negation, obtaining a language like the DL ALC, which she has
called terminologische Merkmalslogik (terminological attribute logic4). In
the same work she has also presented applications of her approach in en-
riching formal contexts with new knowledge, applications in many valued
formal contexts, and applications for so-called scales, which are formal con-
texts that are used to obtain a standard formal context from a many valued
formal context.

Relational concept analysis

In [RHNV07], Rouane et al. have presented a combination of FCA and
DLs that is called relational concept analysis. It is an adaptation of FCA
that is intended for analyzing objects described by relational attributes in
data mining. The approach is based on a collection of formal contexts called
relational context family and relations between these contexts. The relations

4This translation is ours.
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between the contexts are binary relations between pairs of object sets that
belong to two different contexts. Processing these contexts and relations
with relational concept analysis methods yields a set of concept lattices (one
for each input context) such that the formal concepts in different lattices
are linked by relational attributes, which are similar to roles in DLs, or
associations in UML. One distinguishing feature of this approach from the
other efforts that introduce relations into FCA is that the formal concepts
and relations between formal concepts of different contexts can be mapped
into concept descriptions in a sublanguage of ALE , which is called FL−E
in [RHNV07]. FL−E allows for conjunction, value restriction, existential
restriction, and top and bottom concepts. In this approach, after the formal
concepts and relations have been obtained and mapped into FL−E concept
descriptions, DL reasoning is used to classify and check the consistency of
these descriptions.

1.3.2 Applying FCA methods in DLs

Subsumption hierarchy of conjunctions of DL concepts

In [Baa95], Baader has used FCA for an efficient computation of an ex-
tended subsumption hierarchy of a set of DL concepts. More precisely, he
used attribute exploration for computing the subsumption hierarchy of all
conjunctions of a set of DL concepts. The main motivation for this work
was to determine the interaction between defined concepts, which might not
easily be seen by just looking at the subsumption hierarchy of defined con-
cepts. In order to explain this, the following example has been given: assume
that the defined concept NoDaughter stands for those people who have no
daughters, NoSon stands for those people who have no sons, and NoSmall-
Child stands for those people who have no small children. Obviously, there
is no subsumption relationship between these three concepts. On the other
hand, the conjunction NoDaughter u NoSon is subsumed by NoSmallChild,
i.e., if an individual a belongs to NoSon and NoDaughter, it also belongs to
NoSmallChild. However, this cannot be derived from the information that a
belongs to NoSon and NoDaughter by just looking at the subsumption hier-
archy. This small example demonstrates that runtime inferences concerning
individuals can be made faster by precomputing the subsumption hierar-
chy not only for defined concepts, but also for all conjunctions of defined
concepts.

To this purpose, Baader defined a formal context whose attributes were
the defined DL concepts, and whose objects were all possible counterex-
amples to subsumption relationships, i.e., interpretations together with an
element of the interpretation domain. This formal context has the property
that its concept lattice is isomorphic to the required subsumption hierarchy,
namely the subsumption hierarchy of conjunctions of the defined DL con-
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cepts. However, this formal context has the disadvantage that a standard
subsumption algorithm can not be used as expert for this context within
attribute exploration. In order to overcome this problem, the approach was
reconsidered in [BS04] and a new formal context that has the same proper-
ties but for which a usual subsumption algorithm could be used as expert
was introduced. We are going to talk about this approach in more detail in
Section 4.6.

Subsumption hierarchy of conjunctions and disjunctions of DL
concepts

In [Stu96b], Stumme has extended the abovementioned subsumption hierar-
chy further with disjunctions of DL concepts. More precisely, he presented
how the complete lattice of all possible combinations of conjunctions and
disjunctions of the concepts in a DL TBox can be computed by using FCA.
To this aim, he used another knowledge acquisition tool of FCA instead of
attribute exploration, namely distributive concept exploration [Stu98]. In
the lattice computed by this method, the supremum of two DL concepts in
the lattice corresponds to the disjunction of these concepts.

Subsumption hierarchy of least common subsumers

In [BM00] Baader and Molitor have used FCA for supporting bottom-up
construction of DL knowledge bases. In the bottom-up approach, the knowl-
edge engineer does not directly define the concepts of her application do-
main, but she gives typical examples of a concept, and the system comes
up with a concept description for these examples. The process of comput-
ing such a concept description consists of first computing the most specific
concepts that the given examples belong to, and then computing the least
common subsumer of these concepts. Here the choice of examples is crucial
for the quality of the resulting concept description. If the examples are too
similar, the resulting concept description will be too specific; conversely, if
they are too distinct, the resulting concept description will be too general. In
order to overcome this, Baader and Molitor have used attribute exploration
for computing the subsumption hierarchy of all least common subsumers of
a given set of concepts. In this hierarchy one can easily see the position
of the least concept description that the chosen examples belong to, and
decide whether these examples are appropriate for obtaining the intended
concept description. However, there may be exponentially many least com-
mon subsumers, and depending on the DL in use, both the least common
subsumer computation and subsumption test can be expensive operations.
The use of attribute exploration provides us with complete information on
how this hierarchy looks like without explicitly computing all least common
subsumers and classifying them. We are going to talk about this approach
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in more detail in Section 4.7.

Relational exploration

In his Ph.D thesis [Rud06], Rudolph has combined DLs and FCA for ac-
quiring complete relational knowledge about an application domain. In his
approach, which he calls relational exploration, he uses DLs for defining
FCA attributes, and FCA for refining DL knowledge bases. More precisely,
DLs makes use of the interactive knowledge acquisition method of FCA, and
FCA benefits from DLs in terms of expressing relational knowledge.

In [Rud04, Rud06], Rudolph uses the DL FLE for this purpose, which is
the DL that allows for the constructors conjunction, existential restriction,
and value restriction. In his previous work [Rud03], he uses the DL EL,
which allows for the constructors conjunction and existential restriction. In
both cases, he defines the semantics by means of a special pair of formal
contexts called binary power context family, which are used for expressing
relations in FCA. Binary power context families have also been used for
giving semantics to conceptual graphs. In order to collect information about
the formulae expressible in FLE , in [Rud04, Rud06] he defines a formal
context called FLE-context. The attributes of this formal context are FLE-
concept descriptions, and the objects are the elements of the domain over
which these concept descriptions are interpreted. In this context, an object
g is in relation with an attribute m if and only if g is in the interpretation
of m. Thus, an implication holds in this formal context if and only if in
the given model the concept description resulting from the conjunction of
the attributes in the premise of the implication is subsumed by the con-
cept description formed from the conclusion. This is how implications in
FLE-contexts give rise to subsumption relationships between FLE concept
descriptions.

In order to obtain complete knowledge about the subsumption relation-
ships in the given model between arbitrary FLE concepts, Rudolph gives a
multi-step exploration algorithm. In the first step of the algorithm, he starts
with an FLE-context whose attributes are the atomic concepts occurring in
a knowledge base. In exploration step i+ 1, he defines the set of attributes
as the union of the set of attributes from the first step and the set of concept
descriptions formed by universally quantifying all attributes of the context
at step i w.r.t. all atomic roles, and the set of concept descriptions formed
by existentially quantifying all concept intents of the context at step i w.r.t
all atomic roles. Rudolph points out that, at an exploration step, there can
be some concept descriptions in the attribute set that are equivalent, i.e.,
attributes that can be reduced. To this aim, he introduces a method that
he calls empiric attribute reduction. In principle, it is possible to carry out
infinitely many exploration steps, which means that the algorithm will not
terminate. In order to guarantee termination, Rudolph restricts the number
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of exploration steps. After carrying out i steps of exploration, it is then
possible to decide subsumption (w.r.t. the given model) between any FLE
concept descriptions up to role depth i just by using the implication bases
obtained as a result of the exploration steps. In addition, he also character-
izes the cases where finitely many steps are sufficient to acquire complete
information for deciding subsumption between FLE concept descriptions
with arbitrary role depth. Rudolph argues that his method can be used
to support the knowledge engineers in designing, building and refining DL
ontologies.

1.4 Contributions

Our contribution to the DL research by means of FCA methods falls mainly
under two topics: 1) supporting bottom-up construction of DL knowledge
bases, 2) completing DL knowledge bases. In Section 1.4.1 we briefly de-
scribe the use of FCA in the former, and in Section 1.4.2 we briefly describe
the use of FCA in the latter contribution. One other contribution of our
work, which is not to the field of applying FCA methods to DLs, but to
the FCA theory itself, is investigating the complexity of some decision and
counting problems related to minimal generators of closed sets. Our contri-
bution on this topic is briefly discussed in Section 1.4.3.

1.4.1 Supporting bottom-up construction

Traditionally, DL knowledge bases are built in a top-down manner, in the
sense that first the relevant notions of the domain are formalized by concept
descriptions, and then these concept descriptions are used to specify prop-
erties of the individuals occurring in the domain. However, this top-down
approach is not always adequate. On the one hand, it might not always be
intuitive which notions of the domain are the relevant ones for a particular
application. On the other hand, even if this is intuitive, it might not always
be easy to come up with a clear formal description of these notions, espe-
cially for a domain expert who is not an expert in knowledge engineering. In
order to overcome this, in [BK98, BKM99] a new approach, called “bottom-
up approach”, was introduced for constructing DL knowledge bases. In this
approach, instead of directly defining a new concept, the domain expert in-
troduces several typical examples as objects, which are then automatically
generalized into a concept description by the system. This description is
then offered to the domain expert as a possible candidate for a definition of
the concept. The task of computing such a concept description can be split
into two subtasks:

• computing the most specific concepts of the given objects,

• and then computing the least common subsumer of these concepts.
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The most specific concept (msc) of an object o is the most specific concept
description C expressible in the given DL language that has o as an instance.
The least common subsumer (lcs) of concept descriptions C1, . . . , Cn is the
most specific concept description C expressible in the given DL language
that subsumes C1, . . . , Cn. The problem of computing the lcs and (to a more
limited extent) the msc has already been investigated in the literature [CH94,
FP96, BK98, BKM99, KM01a, KM01b, KB01, Baa03a, Baa03b, Baa03c].

The methods for computing the least common subsumer are restricted
to rather inexpressive descriptions logics not allowing for disjunction (and
thus not allowing for full negation). In fact, for languages with disjunction,
the lcs of a collection of concepts is just their disjunction, and nothing
new can be learned from building it. In contrast, for languages without
disjunction, the lcs extracts the “commonalities” of the given collection of
concepts. Modern DL systems like FaCT [Hor98] (its successor FaCT++
[TH06]), Racer [HM01b] (its successor RacerPro), and Pellet [SP04] are
based on very expressive DLs, and there exist large knowledge bases that use
this expressive power and can be processed by these systems [RH97, SH00,
HM01a]. In order to allow the user to re-use concepts defined in such existing
knowledge bases and still support the user in defining new concepts with
the bottom-up approach sketched above, we propose the following extended
bottom-up approach: assume that there is a fixed background terminology
defined in an expressive DL; e.g., a large ontology written by experts, which
the user has bought from some ontology provider. The user then wants to
extend this terminology in order to adapt it to the needs of a particular
application domain. However, since the user is not a DL expert, he employs
a less expressive DL and needs support through the bottom-up approach
when building this user-specific extension of the background terminology.
There are several reasons for the user to employ a restricted DL in this
setting: first, such a restricted DL may be easier to comprehend and use for
a non-expert; second, it may allow for a more intuitive graphical or frame-
like user interface; third, to use the bottom-up approach, the lcs must exist
and make sense, and it must be possible to compute it with reasonable effort.

To make this more precise, consider a background terminology (TBox)
T defined in an expressive DL L2. When defining new concepts, the user
employs only a sublanguage L1 of L2, for which computing the lcs makes
sense. However, in addition to primitive concepts and roles, the concept
descriptions written in the DL L1 may also contain names of concepts defined
in T . Let us call such concept descriptions L1(T )-concept descriptions.
Given L1(T )-concept descriptions C1, . . . , Cn, we want to compute their lcs
in L1(T ), i.e., the least L1(T )-concept description that subsumes C1, . . . , Cn

w.r.t. T . In [BST04a, BST07] we have considered the case where L1 is the
DL ALE and L2 is the DL ALC, and shown the following result:

• If T is an acyclic ALC-TBox, then the lcs w.r.t. T of ALE(T )-concept
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descriptions always exists.

Unfortunately, the proof of this result does not yield a practical algorithm.
Due to this, in [BST04a, BST07] we have developed a more practical ap-
proach. Assume that L1 is a DL for which least common subsumers (with-
out background TBox) always exist. Given L1(T )-concept descriptions
C1, . . . , Cn, one can compute a common subsumer w.r.t. T by just ignoring
T , i.e., by treating the defined names in C1, . . . , Cn as primitive and com-
puting the lcs of C1, . . . , Cn in L1. However, the common subsumer obtained
this way will usually be too general. In the present work we present a prac-
tical method for computing “good” common subsumers w.r.t. background
TBoxes, which may not be the least common subsumers, but which are bet-
ter than the common subsumers computed by ignoring the TBox. As a tool,
this method uses attribute exploration [Gan84] (possibly with background
knowledge [Gan99, GK99, GK05]). The application of attribute exploration
for this purpose is the main topic of Chapter 4.

1.4.2 Completing DL knowledge bases

The most notable success of DLs so far is due to the fact that they pro-
vide the logical underpinning of OWL [HPSvH03], the standard ontology
language for the semantic web [BLHL01]. As a consequence of this stan-
dardization, several ontology editors like Protégé [KFNM04], and Swoop
[KPS+06] now support OWL, and ontologies written in OWL are employed
in more and more applications. As the size of these ontologies grows, tools
that support improving their quality become more important. The tools
available until now use DL reasoning to detect inconsistencies and to infer
consequences, i.e., implicit knowledge that can be deduced from the explic-
itly represented knowledge. There are also promising approaches that allow
to pinpoint the reasons for inconsistencies and for certain consequences, and
that help the ontology engineer to resolve inconsistencies and to remove un-
wanted consequences [SC03, KPSG06]. These approaches address the qual-
ity dimension of soundness of an ontology, both within itself (consistency)
and w.r.t. the intended application domain (no unwanted consequences). In
the present work, we consider a different quality dimension: completeness.
We provide a basis for formally well-founded techniques and tools that sup-
port the ontology engineer in checking whether an ontology contains all
the relevant information about the application domain, and to extend the
ontology appropriately if this is not the case.

As already mentioned, a DL knowledge base (nowadays often called on-
tology) usually consists of two parts, the terminological part (TBox), which
defines concepts and also states additional constraints (GCIs) on the inter-
pretation of these concepts, and the assertional part (ABox), which describes
individuals and their relationship to each other and to concepts. Given an
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application domain and a DL knowledge base describing it, we can ask
whether the knowledge base contains all the relevant information about the
domain:

• Are all the relevant constraints that hold between concepts in the
domain captured by the TBox?

• Are all the relevant individuals existing in the domain represented in
the ABox?

As an example, consider the OWL ontology for human protein phos-
phatases that has been described and used in [WBH+05]. This ontology was
developed based on information from peer-reviewed publications. The hu-
man protein phosphatase family has been well characterised experimentally,
and detailed knowledge about different classes of such proteins is available.
This knowledge is represented in the terminological part of the ontology.
Moreover, a large set of human phosphatases has been identified and doc-
umented by expert biologists. These are described as individuals in the
assertional part of the ontology. One can now ask whether the informa-
tion about protein phosphatases contained in this ontology is complete: are
all the relationships that hold among the introduced classes of phosphatases
captured by the constraints in the TBox, or are there relationships that hold
in the domain, but do not follow from the TBox? Are all possible kinds of
human protein phosphatases represented by individuals in the ABox, or are
there phosphatases that have not yet been included in the ontology or even
not yet have been identified?

Such questions cannot be answered by an automated tool alone. Clearly,
to check whether a given relationship between concepts—which does not fol-
low from the TBox—holds in the domain, one needs to ask a domain expert,
and the same is true for questions regarding the existence of individuals not
described in the ABox. The rôle of the automated tool is to ensure that the
expert is asked as few questions as possible; in particular, she should not
be asked trivial questions, i.e., questions that could actually be answered
based on the represented knowledge. In the above example, answering a
non-trivial question regarding human protein phosphatases may require the
biologist to study the relevant literature, query existing protein databases,
or even to carry out new experiments. Thus, the expert may be prompted
to acquire new biological knowledge.

The attribute exploration method of FCA has proved to be a success-
ful knowledge acquisition method in various application domains. One of
the earliest applications of this approach is described in [Wil82], where the
domain is lattice theory, and the goal of the exploration process is to find,
on the one hand, all valid relationships between properties of lattices (like
being distributive), and, on the other hand, to find counterexamples to all
the relationships that do not hold. To answer a query whether a certain
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relationship holds, the lattice theory expert must either confirm the rela-
tionship (by using results from the literature or by carrying out a new proof
for this fact), or give a counterexample (again, by either finding one in the
literature or constructing a new one).

Although this sounds very similar to what is needed in our case, we can-
not directly use this approach. The main reason is the open-world semantics
of description logic knowledge bases. Consider an individual i from an ABox
A and a concept C occurring in a TBox T . If we cannot deduce from the
TBox T and A that i is an instance of C, then we do not assume that i
does not belong to C. Instead, we only accept this as a consequence if T
and A imply that i is an instance of ¬C. Thus, our knowledge about the
relationships between individuals and concepts is incomplete: if T and A
imply neither C(i) nor ¬C(i), then we do not know the relationship between
i and C. In contrast, classical FCA and attribute exploration assume that
the knowledge about objects is complete: a cross in row g and column m of
a formal context says that object g has attribute m, and the absence of a
cross is interpreted as saying that g does not have m.

There has been some work on how to extend FCA and attribute explo-
ration from complete knowledge to the case of partial knowledge [Gan99,
BH00, Hol04a, Hol04b, BH05, Rud06], and how to evaluate formulas in for-
mal contexts that do not contain complete information [Obi02]. However,
this work is based on assumptions that are different from ours. In par-
ticular, they assume that the expert cannot answer all queries and, as a
consequence, the knowledge obtained after the exploration process may still
be incomplete and the relationships between concepts that are produced in
the end fall into two categories: relationships that are valid no matter how
the incomplete part of the knowledge is completed, and relationships that
are valid only in some completions of the incomplete part of the knowledge.
In contrast, our intention is to complete the knowledge base, i.e., in the end
we want to have complete knowledge about these relationships. What may
be incomplete is the description of individuals used during the exploration
process. In Chapter 5 we introduce our variant of FCA that can deal with
partial knowledge, describe an attribute exploration procedure that works
in this setting, and present in detail how it can be used to complete DL
knowledge bases.

1.4.3 On the generators of closed sets

In FCA, so-called closed sets play an important rôle. For example the con-
cept intents of a formal context are the sets closed under the closure operator
induced by this formal context. In addition, the sets closed under a set of
implications are fundamental to the attribute exploration algorithm. Here
we investigate a natural problem for closed sets, namely the problem of
finding the generators of a closed set. More precisely, we are interested in



30 Introduction

finding “small” sets that generate a given closed set under a given closure
operator. In particular we consider the closure operator induced by a set
of implications, and the closure operator induced by a formal context. By
saying small sets, we mean two notions of minimality: sets minimal w.r.t
set inclusion order, and sets minimal w.r.t cardinality.

Solving the first problem, which is finding the minimal generators and
minimum cardinality generators of a set closed under a set of implications,
can help the expert during attribute exploration by making the implication
questions “simpler”. The attribute exploration algorithm asks the minimum
number of questions to the expert. This implies that none of the questions
asked is redundant. However, it is still possible that a question can be
shortened by removing redundant attributes. A similar problem has been
considered in the field of relational databases a long time ago. The problem
considered there is known as finding keys of a relation. In [LO78] it has been
shown that checking whether a relation has a key of size less than a specified
integer is np-complete. Here we show that the problem of checking whether
a set closed under implications has a generator of cardinality less than a
specified size is np-complete. We also show that determining the number
of minimal generators of an implication closed set is #p-complete, i.e., this
counting problem is intractable. Moreover, we show that determining the
number of minimum cardinality generators is #·conp-complete, i.e., even
harder than counting minimal generators.

The second problem, which is the problem of finding small generators of a
set closed under the closure operator induced by a formal context, is known
as finding the minimal generators of a concept intent. Different aspects
of it have been considered in the literature [NVRG05, FVG05]. Minimal
generators of a concept intent play an important rôle in incremental lattice
construction, and lattice merge algorithms. In [NVRG05], the behaviour of
minimal generators upon additions to the underlying context’s attribute set
has been investigated, and a method for computing the family of minimal
generators has been presented. Here, we show that the problem of checking
whether a concept intent has a generator of cardinality less than a specified
size is np-complete. Moreover, we show that counting minimal generators
of a concept intent is #p-complete. Actually it is not surprising that the
mentioned problems about generators of concept intents and generators of
an implication closed set are of the same complexity. In fact, the closure
operator induced by a formal context, and the closure operator induced by
the set of implications that are valid in this formal context coincide. The
proofs of these complexity results are given in Chapter 6.
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1.5 Structure of the thesis

• In Chapter 2 we give a brief introduction to DLs. We only introduce
the notions we are going to use in the later chapters. We define the syn-
tax and semantics of the DLs we are going to use in the later chapters,
define the standard inferences subsumption and instance checking, and
the non-standard inference least common subsumer.

• In Chapter 3 we briefly introduce FCA. We first recall preliminaries
from order theory, and then give the definitions of the basic notions
of FCA. Then we describe attribute exploration, which is going to be
our main tool in the later chapters, and give a small example that
demonstrates how the exploration algorithm works.

• In Chapter 4 we describe how tools from Formal Concept Analysis can
be used to support the bottom-up construction of Description Logic
knowledge bases. We address the problem of supporting bottom-up
construction in a more general setting, where the user is allowed to
re-use concepts from an existing knowledge base that is written in an
expressive Description Logic. To this purpose, we introduce a practical
method that uses Formal Concept Analysis as a tool. We report the
first experimental results of the method. We also recall two other uses
of Formal Concept Analysis in the literature in a similar setting, and
show that all these approaches are, from a lattice-theoretic point of
view, instances of a more general approach.

• In Chapter 5 we present an approach for extending both the termino-
logical and the assertional part of a Description Logic knowledge base
by using information provided by the knowledge base and by a do-
main expert. Our approach provides a basis for formally well-founded
techniques and tools that support the knowledge engineer in checking
whether a knowledge base contains all the relevant information about
the application domain, and to extend the knowledge base appropri-
ately if this is not the case. The use of techniques from Formal Concept
Analysis ensures that, on the one hand, the interaction with the expert
is kept to a minimum, and, on the other hand, it enables us to show
that the extended knowledge base is complete in a certain, well-defined
sense. Due to the open-world semantics of Description Logic knowl-
edge bases, we cannot use existing tools of Formal Concept Analysis.
For our approach, we introduce our own variant of Formal Concept
Analysis that can deal with partial knowledge.

• In Chapter 6 we investigate the problem of finding the generators of
a closed set. More precisely, we are interested in finding “small” sets
that generate a given closed set under a given closure operator. In



32 Introduction

particular we consider the closure operator induced by a set of impli-
cations (Section 3.3), and the closure operator induced by a formal
context (Section 3.2). By saying small sets, we mean two notions of
minimality, namely, sets minimal w.r.t. set inclusion, and sets minimal
w.r.t. cardinality. We analyze the computational complexity of some
decision and counting problems related to these two problems. We
show that for both of these closure operators, the problem of deciding
whether a generator with cardinality less than a given integer exists is
np-complete, and the problem of counting minimal generators is #p-
complete. We also show that for the first closure operator, the problem
of counting generators with minimum cardinality is #·conp-complete.

• In Chapter 7 we give a summary of our results, and discuss possible
future directions and extensions of our work.

Some of the results presented in this work have already been published.
The results on supporting bottom-up construction of DL knowledge bases
presented in Chapter 4 have appeared in [BST04a, BST04b, BST07]. The
improvement of the method mentioned in the same chapter has appeared in
[Ser06], and the more general view of the approach, also presented in that
chapter, has been published in [BS04]. The results on completing DL knowl-
edge bases presented in Chapter 5 have appeared in [BGSS06, BGSS07a,
BGSS07b].



Chapter 2

Description Logics

In the present chapter we introduce Description Logics as a formal language for
representing knowledge and reasoning about knowledge. We start with Section
2.1, where we define the syntax of the languages we are going to use in the later
chapters. In Section 2.2 we define the semantics of these languages. In Section
2.3 we define the inference problems subsumption, satisfiability, consistency and
instance checking, which are also called standard inferences. We conclude the
chapter with Section 2.4, where we define the non-standard inference problem
of computing the least common subsumer.

2.1 Syntax

In order to define concepts in a DL knowledge base, one starts with a set NC

of unary predicates called concept names and a set NR of binary predicates
called role names, and builds more complex concept descriptions using the
constructors provided by the particular description language used. In the
present work, we consider the DL ALC and its sublanguages ALE and EL,
which allow for concept descriptions built from the indicated subsets of the
constructors shown in Table 2.1 (for a comprehensive source on DLs, see
[BCM+03]). In this table, r stands for a role name, A for a concept name,
and C,D for arbitrary concept descriptions. According to this table concept
descriptions expressible by ALC are: bottom-concept (⊥), top-concept (>),
A (where A ∈ NC), conjunction (C uD), disjunction (C tD), full negation
(¬C), existential restriction (∃r.C) and value restriction (∀r.C). Note that,
while ALC allows for negation of arbitrary concept descriptions, ALE allows
only for atomic negation, i.e., negation of concept names, and EL not even
that.

Definition 2.1.1 (Concept definition, GCI). A concept definition is
an expression of the form A ≡ C, where A is a concept name, and C is
a complex concept description. It assigns the concept name A to the con-
cept description C. The concept names occurring on the left-hand side of
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DL > ⊥ ¬A ¬C C uD C tD ∃r.C ∀r.C
EL √ √ √

ALE √ √ √ √ √ √

ALC √ √ √ √ √ √ √ √

Table 2.1: Syntax of EL, ALE and ALC

a concept definition are called defined concepts, and the others are called
primitive concepts. A general concept inclusion (GCI) is an expression of
the form C v D, where C and D are two possibly complex concept descrip-
tions. It states a subconcept/superconcept relation between the two concept
descriptions. ¦

Typically, a DL knowledge base consists of two components called ter-
minological box and assertional box, or TBox and ABox for short.

Definition 2.1.2 (TBox, ABox). A TBox is a finite unambiguous set of
concept definitions, i.e., each name has at most one definition. It is called
an acyclic TBox if none of the concept definitions inside the TBox refers
directly or indirectly to the name it defines. Otherwise, it is called a cyclic
TBox . A finite set of GCIs is called a general TBox .

An ABox is a finite set of concept and role assertions. A concept asser-
tion is an expression of the form C(a) where C is a concept description and
a is an individual name. A role assertion is an expression of the form r(a, b)
where r is a role name, and a and b are individual names. We represent a
knowledge base as K = (T ,A) where T is a TBox and A is an ABox. ¦

2.2 Semantics

The semantics of DL concept descriptions is defined in terms of interpreta-
tions, which are defined as follows:

Definition 2.2.1 (Interpretation). An interpretation is a tuple I =
(∆I , ·I) where ∆I is called the domain, and ·I is called the interpreta-
tion function of I. The domain is a non-empty set and the interpretation
function maps each concept name A ∈ NC to a set AI ⊆ ∆I , and each role
name r ∈ NR to a binary relation rI ⊆ ∆I×∆I . The extension of ·I to
arbitrary concept descriptions is inductively defined as shown in the upper
part of Table 2.2. ¦

Definition 2.2.2 (Model). We say that an interpretation I is a model of
a TBox T iff it satisfies all concept definitions in T , i.e., AI = CI holds for
all A ≡ C in T . It is a model of a general TBox T iff it satisfies all concept
inclusions in T , i.e., CI ⊆ DI holds for all C v D in T .
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Constructor name Syntax Semantics

top-concept > ∆I

bottom-concept ⊥ ∅
atomic negation ¬A ∆I \AI

negation ¬C ∆I \ CI

conjunction C uD CI ∩DI

disjunction C tD CI ∪DI

existential restriction ∃r.C {x ∈ ∆I | ∃y : (x, y) ∈ rI ∧ y ∈ CI}
value restriction ∀r.C {x ∈ ∆I | ∀y : (x, y) ∈ rI → y ∈ CI}

concept definition A ≡ C AI = CI

concept inclusion C v D CI ⊆ DI

concept assertion C(a) aI ∈ CI

role assertion r(a, b) (aI , bI) ∈ rI

Table 2.2: Syntax and semantics of commonly used constructors

Similarly, we say that an interpretation I is a model of an ABox A iff it
satisfies all concept and roles assertions, i.e., for every C(a) in A, aI ∈ CI

holds and for every r(a, b) in A, (aI , bI) ∈ rI holds. I is said to be a model
of the knowledge base (T ,A) iff it is a model of both T and A. ¦

2.3 Standard inferences

DLs are not only used for storing concept definitions, and concept or role as-
sertions, but also for reasoning about them, i.e., deducing implicit knowledge
from the explicitly represented knowledge. One of the most traditional infer-
ence problems in DLs is the problem of deciding subconcept/superconcept
relationships between concept descriptions, namely subsumption.

Definition 2.3.1 (Subsumption). We say that a concept description D
subsumes the concept description C (or equivalently C is subsumed by D)
w.r.t. the TBox T iff CI ⊆ DI holds for all models of T . We write it as
C vT D. If C is subsumed by D w.r.t. the empty TBox, we just write
C v D. Two concept descriptions are called equivalent w.r.t. T (written
C ≡T D) iff they subsume each other w.r.t. T , i.e., C vT D and D vT C.
¦

The subsumption relation vT is a quasi order (i.e., reflexive and transi-
tive), but in general not a partial order since it need not be antisymmetric,
i.e., there may exist equivalent descriptions that are not syntactically equal.
As usual, the quasi order vT induces a partial order v≡

T on the equivalence
classes of concept descriptions:

[C]≡ v≡
T [D]≡ iff C vT D,
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where [C]≡ := {E | C ≡T E} is the equivalence class of C, and [D]≡ is
defined respectively. When talking about the subsumption hierarchy of a
set of concept descriptions, we mean this induced partial order.

It should be noted that subsumption w.r.t. acyclic TBoxes can be re-
duced to subsumption of concept descriptions by expanding the TBox, i.e.
by replacing the defined concepts by their definitions until no more defined
concepts occur in the concept descriptions to be tested for subsumption.
However, this reduction cannot be used to obtain the complexity results
for subsumption w.r.t. acyclic TBoxes mentioned above since the expan-
sion process may cause an exponential blow-up of the concept descriptions
[Neb90].

In addition to subsumption, there are other important standard infer-
ences, which are formally defined as follows:

Definition 2.3.2 (Satisfiability, consistency, instance). We say that a
concept description C is satisfiable w.r.t. a TBox T iff there is a model I of
T such that CI 6= ∅. We say that a knowledge base (T ,A) is consistent iff T
and A have a common model. We say that an individual a is an instance of
a concept description C w.r.t. T and A iff aI ∈ CI holds for every common
model I of T and A. We write it as T ,A |= C(a). ¦

The inferences mentioned above, namely subsumption, satisfiability, con-
sistency and instance are also called standard inferences. In a DL that al-
lows for conjunction and full negation, the subsumption and the satisfiability
problems are inter-reducible in polynomial time, and the same is true for the
instance and the consistency problems. In addition, the satisfiability prob-
lem can always be reduced in polynomial time to the consistency problem.
For concept descriptions C, D and individual name a, these reductions are
shown below:

• subsumption to (un)satisfiability : C is subsumed by D w.r.t. T iff
C u ¬D is unsatisfiable w.r.t. T .

• (un)satisfiability to subsumption: C is unsatisfiable w.r.t. T iff C is
subsumed by ⊥ w.r.t. T .

• instance to (in)consistency : a is an instance of C w.r.t. T and A iff
(T ,A ∪ {¬C(a)}) is inconsistent.

• (in)consistency to instance: (T ,A) is inconsistent iff T ,A |= C(a) and
T ,A |= ¬C(a) where C and a are arbitrarily chosen.

• satisfiability to consistency : C is satisfiable w.r.t. T iff (T , {C(a)}) is
consistent, where a is arbitrarily chosen.

The complexity of the problems mentioned above depends on the DL un-
der consideration, and on what kind of TBox formalism is used. For the DL
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ALC, these problems are pspace-complete if the TBox is empty [SSS91], or
if it is acyclic [Lut99, Lut02]. It becomes exptime-complete in the presence
of general TBoxes [Sch91]. For ALE , subsumption w.r.t. the empty TBox is
np-complete [DLN+92], and it is exptime-complete w.r.t. general TBoxes
[BBL05a, BBL05b]. For the DL EL, subsumption is polynomial w.r.t. the
empty TBox [BKM99], and w.r.t. (a)cyclic TBoxes [Baa03d]. Later on in
[Bra04] it has been shown that it stays polynomial even in the presence of
general TBoxes. In his Ph.D thesis [Bra06], Brandt has investigated the
borders of tractability for various extensions of EL.

Investigating the trade-off between the expressivity of DLs and the com-
plexity of their inference problems is one of the most important issues of
DL research. As a consequence of this, the complexity of reasoning in vari-
ous DLs of different expressive power is now well-known (see [Don03] for an
overview of these complexity results). In addition, there are now highly op-
timized DL reasoners like FaCT [Hor98] (its successor FaCT++ [TH06]),
Racer [HM01b] (its successor RacerPro), Pellet [SP04] and KAON2
[Mot06], which—despite their high worst-case complexity—behave very well
in practice for DLs that are considerably more expressive than ALC. For a
comprehensive list of DL reasoners, see the web page1 maintained by Sattler.

2.4 Non-standard inferences

In addition to the standard inferences mentioned in the previous section,
so-called non-standard inferences have been introduced and investigated in
the DL community. In the present work, we are only interested in the non-
standard inference problem of computing the least common subsumer (lcs).
For an overview on non-standard inferences, see [Küs01, Bra06]. In the
following definition, let L be some DL.

Definition 2.4.1 (Least common subsumer). Given a collection C1, . . . ,
Cn of L-concept descriptions, the least common subsumer (lcs) of C1, . . . , Cn

in L is the most specific L-concept description that subsumes C1, . . . , Cn,
i.e., it is an L-concept description D such that

1. Ci v D for each i = 1, . . . , n (D is a common subsumer);

2. if E is an L-concept description satisfying Ci v E for each i = 1, . . . , n,
then D v E (D is the smallest such concept description).

¦

The problem of computing the lcs was originally introduced for concept
descriptions, i.e., w.r.t. the empty TBox. In the presence of acyclic TBoxes,
one can first expand the concept descriptions in question, and apply this

1http://www.cs.man.ac.uk/~sattler/reasoners.html
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inference. As an easy consequence of Definition 2.4.1, when it exists, then lcs
is unique up to equivalence, which justifies talking about the lcs. In addition,
the n-ary lcs as defined above can be reduced to the binary lcs (the case n = 2
above). Indeed, it is easy to see that the lcs of C1, . . . , Cn can be obtained
by building the lcs of C1, C2, then the lcs of this concept description with
C3, etc. Thus, it is enough to devise algorithms for computing the binary
lcs.

It should be noted, however, that the lcs need not always exist. This can
have different reasons: (a) there may not exist a concept description in L
satisfying item (1) of the definition (i.e., subsuming C1, . . . , Cn); (b) there
may be several subsumption incomparable minimal concept descriptions sat-
isfying (1) of the definition; (c) there may be an infinite chain of more and
more specific descriptions satisfying (1) of the definition. Obviously, (a)
cannot occur for DLs containing the top concept. It is easy to see that, for
DLs allowing for conjunction of descriptions, (b) cannot occur.

It is also clear that in DLs allowing for disjunction, the lcs of C1, . . . , Cn

is their disjunction C1t . . .tCn. In this case, the lcs is not really of interest.
Instead of extracting properties common to C1, . . . , Cn, it just gives their
disjunction, which does not provide us with new information. This means, it
makes sense to look at the lcs in EL and ALE , but not in ALC. Both for EL
and ALE , the lcs always exists, and can be effectively computed [BKM99].
For EL, the size and computation time for the binary lcs is polynomial, but
exponential in the n-ary case. For ALE , already the size of the binary lcs
may be exponential in the size of the input concept descriptions.

The Sonic2 system [TK04a, TK04b] implements an lcs algorithm, as
well as some other non-standard inferences. It can be plugged into the
ontology editors Protégé [KFNM04] and OilEd [BHGS01], and accesses a
DL reasoner like FaCT or Racer over the DIG3 interface.

2Simple Ontology Non-standard Inference Component
3Description Logic Implementation Group



Chapter 3

Formal Concept Analysis

In the present chapter we introduce Formal Concept Analysis. We start with
Section 3.1, where we recall some notions from order theory. In Section 3.2 we
introduce the basic notions of Formal Concept Analysis, namely formal context,
formal concept, and concept lattice. In Section 3.3 we introduce implications
between the attributes of a formal context, and a method to compute a canon-
ical base of all implications that hold in a formal context, namely the stem
base. In Section 3.4 we introduce attribute exploration, which is the interac-
tive knowledge acquisition method of Formal Concept Analysis. In the coming
chapters, it is going to be our main tool for supporting bottom-up construction
and completion of Description Logic knowledge bases.

3.1 Order-theoretic preliminaries

We start with introducing order-theoretic notions that we are going to use
in the coming sections of this chapter.

Definition 3.1.1 (Partial order). A binary relation ≤ on a set M is
called a partial order if it satisfies the following conditions for all elements
x, y, z ∈M :

1. x ≤ x,

2. x ≤ y and y ≤ x imply x = y,

3. x ≤ y and y ≤ z imply x ≤ z.

These conditions are referred to, respectively as reflexivity , antisymmetry
and transitivity . A set M equipped with a partial order relation ≤ is said
to be a partially ordered set , or poset for short. A relation ≤ on a set M
which is reflexive and transitive but not necessarily antisymmetric is called
a quasi-order . ¦
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Definition 3.1.2 (Infimum, supremum). Let (M,≤) be a poset and A
a subset of M . A lower bound of A is an element s of M with s ≤ a for
all a ∈ A. An upper bound of A is defined dually. If it exists, the largest
element in the set of all lower bounds of A is called the infimum of A and it
is denoted by inf A or ∧A; dually a least upper bound is called supremum
and denoted by sup A or ∨A. Infimum and supremum are often also called
meet and join. ¦
Definition 3.1.3 (Lattice, complete lattice). A partially ordered set
V = (V,≤) is called a lattice if, for any two elements in V , the infimum and
the supremum always exist. V is called a complete lattice if, for any subset
of V , the supremum and the infimum exist. Every complete lattice V has
a largest element ∨V , called the unit element , denoted by 1V . Dually, the
smallest element 0V is called the zero element . ¦

The definition of a complete lattice assumes that supremum and infimum
exist for every X ⊆ V . For X = ∅, we have ∧∅ = 1V , and ∨∅ = 0V , from
which follows that V 6= ∅ for every complete lattice. Every non-empty finite
lattice is a complete lattice.

Definition 3.1.4 (Closure operator). Let S be a set and ϕ a mapping
from the power set of S into the power set of S. Then ϕ is called a closure
operator on S if it is

• extensive: A ⊆ ϕ(A) for all A ⊆ S;

• monotone: A ⊆ B implies ϕ(A) ⊆ ϕ(B) for all A,B ⊆ S; and

• idempotent: ϕ(ϕ(A)) = ϕ(A).

We say that a set A ⊆ S is ϕ-closed if A = ϕ(A). The set of all ϕ-closed
sets, i.e. {A ⊆ S | A = ϕ(A)} is called a closure system. ¦

3.2 Formal contexts and formal concepts

Formal Concept Analysis (FCA) [GW99] is a field of applied mathematics
that is based on a lattice-theoretic formalization of the notions of a concept
and of a hierarchy of concepts. It aims to facilitate the use of mathematical
reasoning for conceptual data analysis and knowledge processing.

In FCA, one represents data in form of a formal context, which in its
simplest form is a way of specifying which attributes are satisfied by which
objects. Formally, a formal context is defined as follows:

Definition 3.2.1 (Formal context). A formal context is a triple K =
(G,M, I), where G is a set of objects, M is a set of attributes, and I ⊆ G×M
is a relation that associates each object g with the attributes satisfied by g.
In order to express that an object g is in relation I with an attribute m, we
write gIm. ¦
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A formal context is usually visualized as a cross table, where the rows
represent the objects, and the columns represent the attributes of the con-
text. A cross in column m of row g means that object g has attribute m,
and the absence of a cross means that g does not have attribute m. In the
present work we consider formal contexts with finite attribute sets.

Definition 3.2.2 (Derivation operator). Let K = (G,M, I) be a formal
context. For a set of objects A ⊆ G, we define the set of attributes that are
satisfied by all objects in A as follows:

A′ := {m ∈M | ∀g ∈ A. gIm}.

Similarly, for a set of attributes B ⊆ M , we define the set of objects that
satisfy all attributes in B as follows:

B′ := {g ∈ G | ∀m ∈ B. gIm}.

¦
For A1 ⊆ A2 ⊆ G (resp. B1 ⊆ B2 ⊆M), it is easy to see that

• A′
2 ⊆ A′

1 (resp. B′
2 ⊆ B′

1),

• A1 ⊆ A′′
1 and A′

1 = A′′′
1 (resp. B1 ⊆ B′′

1 and B′
1 = B′′′

1 ).

As an easy consequence one obtains that the (·)′′ operation is a closure
operator on both G and M .

Definition 3.2.3 (Formal concept). Let K = (G,M, I) be a formal con-
text. A formal concept of K is a pair (A,B) where A ⊆ G, B ⊆ M such
that A′ = B and B′ = A. We call A the extent , and B the intent of (A,B).
If (A1, B1) and (A2, B2) are two formal concepts of a context, and A1 ⊆ A2

(or, equivalently B2 ⊆ B1), we say that (A1, B1) is a subconcept of (A2, B2),
and write (A1, B1) ≤ (A2, B2). The relation ≤ is called the hierarchical
order of formal concepts. ¦

The set of all formal concepts of a context K = (G,M, I) ordered with
the hierarchical order form a complete lattice, called the concept lattice of K

and it is denoted by B(G,M, I). The Basic Theorem on Concept Lattices
[GW99] shows that a concept lattice is a complete lattice, and gives the
definition of infimum and supremum in a concept lattice.

Theorem 3.2.4 (The Basic Theorem on Concept Lattices). The con-
cept lattice B(G,M, I) is a complete lattice in which infimum and supremum
are given by the following equations:

∧
t∈T (At, Bt) =

(⋂
t∈T At,

(⋃
t∈T Bt

)′′)
,

∨
t∈T (At, Bt) =

((⋃
t∈T At

)′′
,
⋂

t∈T Bt

)
.
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The following is an easy consequence of the definition of formal concepts
and the properties of the (·)′ operator:

Lemma 3.2.5. All formal concepts are of the form (A′′, A′) for a subset A
of G, and any such pair is a formal concept.

The dual of this lemma is also true, i.e., all formal concepts are of the
form (B′, B′′) for a subset B of M , and any such pair is a formal concept.

Given a formal context, the first step for analyzing this context is usually
to compute the concept lattice. If the context is finite, then Lemma 3.2.5
implies that the concept lattice can, in principle, be computed by enumer-
ating the subsets A of G, and applying the operators (·)′ and (·)′′. However,
this näıve algorithm is usually very inefficient. It is well known that the
set of all formal concepts of a context can be exponential in the size of
the considered context (i.e., |G| × |M |), e.g., when the resulting concept
lattice is a Boolean lattice. In [Kuz01], it was shown that the problem of
determining the size of a concept lattice is #p-complete (see Section 6.1 for
counting complexity classes), i.e., even determining the number of concepts
of a context is intractable. There are several polynomial-delay algorithms for
computing the set of all concepts [Nor78, Gan84, Bor86, Kuz93, GMA95,
NR99, STB+00, VM01]. For a detailed analysis and evaluation of these
algorithms, see [KO02].

In the present work, we are going to use the most popular of the above-
mentioned algorithms, namely Ganter’s next closure algorithm [Gan84] as
the main tool from FCA. The algorithm is not specifically tailored for com-
puting the set of all concepts of a context. It computes all closed sets of
a given closure operator. Given the closure operator (·)′′ on the attribute
(object) set of a formal context K, it computes all concept intents (resp.
extents) of K in a certain lexicographic order, called the lectic order.

Definition 3.2.6 (Lectic order). Assume that M = {m1, . . . ,mn} and
fix some linear order m1 < m2 < · · · < mn on M . This order imposes a
linear order on the power set of M , called the lectic order , which we also
denote by <. For mi ∈M and A,B ⊆M we define:

A <i B iff mi ∈ B, mi 6∈ A and ∀j < i. (mj ∈ A⇔ mj ∈ B).

The order < is the union of these orders <i, i.e.,

A < B iff A <i B for some i ∈M.

¦

Obviously, < extends the strict subset order, and thus ∅ is the smallest
and M is the largest set w.r.t. <. The following proposition shows how one
can find the smallest closed set lectically greater than a given set.
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Proposition 3.2.7 (Next closure). Given a closure operator ϕ on M and
a set A ( M , the smallest ϕ-closed set greater than A w.r.t. the lectic order
is

ϕ((A ∩ {m1, . . . ,mj−1}) ∪ {mj})
where j is maximal such that A <j ϕ((A ∩ {m1, . . . ,mj−1}) ∪ {mj}).

In order to find all closures of ϕ, one starts with the lectically smallest
ϕ-closed set ϕ(∅), and applies the proposition successively until the lectically
largest ϕ-closed set M is reached.

3.3 Implications between attributes

Given a formal context, one other common method to analyze it is to find (a
canonical base of) the implications between the attributes of this context.
Implications between attributes are constraints that hold in a given context.
They are statements of the form

“Every object that satisfies the attributes mi1, . . . ,mik also sat-
isfies the attributes mj1, . . . ,mj`.”

Formally, an implication between attributes is defined as follows:

Definition 3.3.1 (Implication between attributes). Let K = (G,M, I)
be a formal context. An implication between the attributes in M is a pair of
sets L,R ⊆ M , usually written as L → R. An implication L → R holds in
K if every object of K that has all of the attributes in L also has all of the
attributes in R, i.e., if L′ ⊆ R′. We denote the set of all implications that
hold in K by Imp(K), and call it the implicational theory of K. ¦

Example 3.3.2. Consider Kcountries given in Example 1.2.1. In this con-
text, the implication {nw, SCp} → {G8} holds since the countries that
have nuclear weapons, and that are permanent members of the UN Security
Council, namely USA, France and UK, are also members of G8. However
the implication {G8} → {nw, SCp} does not hold since Italy, which is a G8
member, neither has nuclear weapons, nor is a permanent member of the
UN Security Council. ¦

It is easy to see that an implication L→ R holds in K iff R is contained
in the (·)′′-closure of L, i.e., if R ⊆ L′′. A set of implications induces its own
closure operator.

Definition 3.3.3 (Implicational closure). Let L be a set of implications.
For a set P ⊆M , the implicational closure of P with respect to L, denoted
by L(P ), is the smallest subset Q of M such that

• P ⊆ Q, and
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• Li → Ri ∈ L and Li ⊆ Q imply Ri ⊆ Q.

It is easy to see that L(·) is indeed a closure operator. ¦

From the point of view of logic, computing the implicational closure of
a set of attributes P is just computing consequences in propositional Horn
logic. In fact, the notions we have just defined can easily be reformulated in
propositional logic. To this purpose, we view the attributes as propositional
variables. An implication L → R can then be expressed by the formula
φL→R :=

∧
r∈R(

∧
`∈L ` → r). Let ΓL be the set of formulae corresponding

to the set of implications L. Then

L(P ) = {b ∈M | ΓL ∪ {
∧

p∈P

p} |= b},

where |= stands for classical propositional consequence. Obviously, the for-
mulae in ΓL are Horn clauses. For this reason, the implication closure L(B)
of a set of attributes B can be computed in time linear in the size of L and B
using methods for deciding satisfiability of sets of propositional Horn clauses
[DG84]. Alternatively, these formulae can be viewed as expressing functional
dependencies in relational database, and thus the linearity result can also be
obtained by using methods for deriving new functional dependencies from
the given ones [Mai83].

Definition 3.3.4 (Implication base). The implication L → R is said to
follow from a set J of implications if R ⊆ J (L). The set of implications
J is called complete for a set of implications L if every implication in L
follows from J . It is called sound for L if every implication that follows
from J is contained in L. A set of implications J is called a base for a set
of implications L if it is both sound and complete for L, and no strict subset
of J satisfies this property. ¦

Again, the consequence operation between implications coincides with
the usual logical notion of consequence if one translates implications into
Horn clauses, as described above.

If J is sound and complete for Imp(K), then the two closure operators
that we have introduced until now coincide, i.e., B ′′ = J (B) for all B ⊆M .
Consequently, given a base J for Imp(K), any question of the form “B1 →
B2 ∈ Imp(K)?” can be answered in time linear in the size of J ∪{B1 → B2}
since it is equivalent to asking whether B2 ⊆ B′′

1 = J (B1).
The implicational theory Imp(K) of a formal context K can be large.

Thus, one is interested in small bases generating Imp(K). There may exist
different bases of Imp(K), and not all of them need to be of minimum car-
dinality. A base J of Imp(K) is called minimum base iff no base of Imp(K)
has a cardinality smaller than the cardinality of J . Duquenne and Guigues
have given a description of such a minimum base [GD86] for formal contexts
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with a finite set of attributes. It is called the Duquenne-Guigues Base or
the stem base of a formal context.1 The description is based on the notion
of pseudo-intent.

Definition 3.3.5 (Pseudo-intent). A set P ⊆M is called a pseudo-intent
of K = (G,M, I) if P 6= P ′′ and Q′′ ⊆ P holds for all pseudo-intents Q′′ ( P .
¦

The Duquenne-Guigues Base of a formal context K consists of the im-
plications that have the pseudo-intents of K as left-hand sides.

Theorem 3.3.6 (Duquenne-Guigues Base). The set of implications

L := {P → P ′′ | P a pseudo-intent of K}

is a minimum base of Imp(K).

Example 3.3.7. The Duquenne-Guigues Base of Kcountries given in Exam-
ple 1.2.1 is the set of implications

Lcountries =

{
{} → {UN}

{nw,UN} → {SCp,G8}
{SCp,UN} → {nw,G8}

{SCt,G8, UN} → {EU}
{EU,UN} → {G8}

}

The implication {nw, SCp} → {G8} we have mentioned in Example 3.3.2
follows from Lcountries, since the closure Lcountries({nw, SCp}) = {nw,UN,
SCp,G8} contains the conclusion of the implication. ¦

The recursive definition of pseudo-intents does not yield a practical al-
gorithm for generating them. The following property enables us to find the
pseudo-intents of a formal context.

Lemma 3.3.8 (Closure system of intents and pseudo-intents). The
set of all intents and pseudo-intents of a formal context is a closure system.

By using the next closure algorithm, we can compute the closed sets of
this closure system, i.e., the intents and the pseudo-intents of the underlying
formal context. We start with the lectically smallest intent or pseudo-intent,
which is the closure of ∅, and apply Proposition 3.2.7 successively until we
reach the lectically largest intent M . What we need is the closure operator
inducing the closure system of intents and pseudo-intents. It is obtained by
a modification of the implicational closure operator L(·) given in Definition
3.3.3.

1From now on we will simply say Duquenne-Guigues Base of a formal context instead
of saying Duquenne-Guigues Base of the implicational theory of a formal context.
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Algorithm 1 Duquenne-Guigues Base computation

1: Initialization
2: K {the input formal context}
3: L0 := ∅ {initial empty set of implications}
4: P0 := ∅ {lectically smallest L0-closed subset of M}
5: i := 0
6: while Pi 6= M do
7: Compute P

′′

i w.r.t. K

8: if Pi 6= P
′′

i then {Pi is a pseudo-intent}
9: Li+1 := Li ∪ {Pi → P

′′

i \ Pi}
10: end if
11: Pi+1 := Li+1((Pi ∩ {m1, . . . ,mj−1}) ∪ {mj}) for the max. j that

satisfies Pi <j Li+1((Pi ∩ {m1, . . . ,mj−1}) ∪ {mj})
12: i := i+ 1
13: end while

Definition 3.3.9 (Implication pseudo-closure). For a set P ⊆ M , the
implication pseudo-closure of P with respect to a set of implications L,
denoted by L∗(P ), is the smallest subset Q of M such that

• P ⊆ Q, and

• Li → Ri ∈ L and Li ( Q imply Ri ⊆ Q.

¦

Note that we actually need implication pseudo-closure for computing
the Duquenne-Guigues Base of a formal context K, but the definition of
implication pseudo-closure itself refers to the set of valid implications of
K. This does not cause a problem since we compute the intents and the
pseudo-intents in the lectic order. The lectic order makes sure that it is
sufficient to use the already computed part of the Duquenne-Guigues Base
when computing the pseudo-closure. Given L, the pseudo-closure of a set
B ⊆ M can again be computed in time linear in the size of L and B (e.g.,
by adapting the algorithms in [DG84, Mai83] appropriately).

Based on these considerations, Duquenne-Guigues Base computation is
described in Algorithm 1. One may wonder, why in step 11 we compute the
usual implication closure Li+1 rather than the implication pseudo-closure
L∗

i+1 from Definition 3.3.9. This is due to the fact that the algorithm enu-
merates the closed and pseudo-closed sets in the lectic order. Since the lectic
order extends the strict subset order, in practice it does not matter whether
usual implication closure or implication pseudo-closure is used.

Note that while computing the pseudo-intents, we are enumerating all
concept intents as well, of which there may be exponentially many in the size
of the input context. Unfortunately, currently we do not have a more efficient
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algorithm that can enumerate pseudo-intents with polynomial-delay. It is
well known that the number of pseudo-intents of a formal context can be
exponential in the size of the attribute set, i.e., |M |. However, in this case
|G| as well as |I| are also exponential in |M |. For a long time, it was not
known whether the number of pseudo-intents can also be exponential in
|G| × |M |. In [Kuz04], it was shown that this can be the case. There, it
was also shown that determining the number of pseudo-intents is #p-hard.
Another interesting problem about pseudo-intents is how difficult it is to
decide whether a given set is a pseudo-intent. In [KO06] it was shown that
this problem is in conp. However, a lower bound for the complexity of this
problem is still unknown.

3.4 Attribute exploration

In the previous section, we have seen how to compute the Duquenne-Guigues
Base of a given formal context. What if the formal context is not available,
or it is only partly available?

In many applications, one needs to classify a large (or even infinite) set
of objects with respect to a relatively small set of attributes. Moreover, it
is often the case that the formal context is not given explicitly as a cross
table, but it is only “known” to a domain expert. In such cases, Ganter’s
interactive attribute exploration algorithm [Gan84] has proved to be a use-
ful method to compute the Duquenne-Guigues Base and efficiently capture
the expert’s knowledge. Assume we have the following setting. There is an
application domain represented as a formal context K, and a domain expert
that knows only part of K. However, (s)he is able to answer if an implication
holds in K and, in case it does not hold he is able to give a counterexample.
By asking implication questions to the domain expert, the attribute explo-
ration method computes a base for Imp(K) and a subcontext K′ of K such
that Imp(K′) = Imp(K). For each implication question, the expert either
says that it holds in K, in which case the implication is added to the base,
or he gives a counterexample from K, which is then added to K′.

The following proposition shows that the method for computing the
Duquenne-Guigues Base of a context K from the previous section, works
correctly even if K is extended during the computation.

Proposition 3.4.1. Let K be a formal context and let P1, P2, . . . , Pn be the
lectically first n pseudo-intents of K. If K is extended to K′ such that all the
previously accepted implications Pi → P ′′

i for i ∈ {1, . . . , n} still hold in K′,
then P1, P2, . . . , Pn are also the lectically first n pseudo-intents of K′.

Based on these considerations, the attribute exploration algorithm is
described in Algorithm 2.
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Algorithm 2 Attribute exploration

1: Initialization
2: K0 {initial formal context, possibly empty set of objects}
3: L0 := ∅ {initial empty set of implications}
4: P0 := ∅ {lectically smallest L0-closed subset of M}
5: i := 0
6: while Pi 6= M do
7: Compute P

′′

i w.r.t. Ki

8: if Pi 6= P
′′

i then
9: Ask the expert if Pi → P

′′

i holds
10: if yes then
11: Ki+1 := Ki

12: Li+1 := Li ∪ {Pi → P
′′

i \ Pi}
13: Pi+1 := Li+1((Pi ∩ {m1, . . . ,mj−1}) ∪ {mj}) for the max. j that

satisfies Pi <j Li+1((Pi ∩ {m1, . . . ,mj−1}) ∪ {mj})
14: else
15: Get an object o from the expert s.t: Pi ⊆ o′ and P

′′

i 6⊆ o′

16: Ki+1 := Ki ∪ {o}
17: Pi+1 := Pi

18: Li+1 := Li

19: end if
20: else {Pi is an intent, compute the lectically next one}
21: Ki+1 := Ki

22: Li+1 := Li

23: Pi+1 := Li+1((Pi ∩ {m1, . . . ,mj−1}) ∪ {mj}) for the max. j that
satisfies Pi <j Li+1((Pi ∩ {m1, . . . ,mj−1}) ∪ {mj})

24: end if
25: i := i+ 1
26: end while

Example 3.4.2. A closer look at the Duquenne-Guigues Base Lcountries in
Example 3.3.7, reveals that some of the implications do not actually reflect
the case in the real life. For example, the implication {} → {UN} says that
every country is a UN member. In the context Kcountries this holds, however
in real life it does not hold. There are countries that are not members of the
UN, for instance State of Palestine. Similarly, the implication {SCp,UN} →
{nw,G8} does not hold in real life either, because China is a member of the
UN and it is a permanent member of the UN Security Council, however it is
not a member of G8. Table 3.1 shows step by step how Algorithm 2 helps us
to complete Kcountries such that, at the end, it reflects the state of the world
at the time this example has been prepared. At the end of the exploration,
the formal context K′

countries looks like in Table 3.2. The concept lattice of
the completed context K′

countries is given in Figure 3.1. ¦
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Pi Question holds? Action

{} Pi → {UN}? no new obj:
State of Palestine

{UN} - - next Pi

{EU} Pi → {G8, UN} no new obj: Spain
{EU} Pi → {UN} yes accept implication

{EU,UN} - - next Pi

{G8} Pi → {UN} yes accept implication
{G8, UN} - - next Pi

{G8, EU,UN} - - next Pi

{SCt} Pi → {UN} yes accept implication
{SCt, UN} - - next Pi

{SCt,EU,UN} Pi → {G8} no new obj: Belgium
{SCt,G8, UN} Pi → {EU} yes accept implication

{SCt,G8, EU,UN} - - next Pi

{SCp} Pi → {nw,G8, UN} no new obj: China
{SCp} Pi → {nw,UN} yes accept implication
{nw} Pi → {SCp,UN} yes accept implication

{nw, SCp, UN} - - next Pi

{nw, SCp,EU,UN} Pi → {G8} yes accept implication
{nw, SCp,G8, UN} - - next Pi

{nw, SCp,G8, EU,UN} - - next Pi

{nw, SCp, SCt, UN} Pi → {G8, EU} yes accept implication
{nw, SCp, SCt,G8, EU,UN} - - -

Table 3.1: Execution steps of Algorithm 2 on Kcountries.

has nuclear UN Security Council G8 EU UN
K′

countries
weapons permanent temporary mem. mem. mem.

USA X X X X
Germany X X X
France X X X X X

UK X X X X X
Turkey X
Qatar X X
Italy X X X X

State of
Palestine
China X X X
Spain X X

Belgium X X X

Table 3.2: Formal context K′
countries.

3.4.1 Using background knowledge

When starting an exploration, all the attribute exploration algorithm knows
about the context is the incidence relation of the context. It acquires all the
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Figure 3.1: Concept lattice of K′
countries

necessary knowledge for completing the context from a domain expert. In
some applications, before starting the attribute exploration, some of the rela-
tions between the attributes is already known. If this background knowledge
is implicational, i.e., it it is expressible as Horn clauses, it can easily be in-
corporated into the attribute exploration algorithm. One can just initialize
the set of implications L0 in Algorithm 2, which is normally empty, with
the background implications and start attribute exploration. In this way
attribute exploration will work as usual, i.e., it will ask the minimum num-
ber of questions to the expert in order to determine the remaining part of
the implicational theory. However, in this case the whole set of implications
resulting from the exploration, i.e, background implications plus the implica-
tions added during the exploration cannot be guaranteed to be of minimum
size since the given set of background implications need not necessarily be
of minimum size.

In some applications, the restriction to implications can be too strict
and a relaxation to non-implicational background knowledge becomes in-
evitable. For instance, one might want to express that every object satisfies
either attribute mi or attribute mj . Such background knowledge cannot
be expressed by using implications, it requires general propositional for-
mulae. The presence of such background knowledge makes deducing new
consequences computationally costly. While reasoning with implications is
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polynomial, non-implicational background knowledge makes it np-complete.
In [Gan99, GK05] an extension of attribute exploration that can use non-
implicational background knowledge has been introduced. The approach is
based on a set of propositional formulae called cumulated clauses, which are
conjunctions of clauses that have the same negated part. Cumulated clauses
generalize the usual clauses of propositional logic. In [GK05] it is shown that
the suggested extension of the attribute exploration generates an irredun-
dant basis. However, unlike in the case of implications, the basis generated
by this algorithm is not necessarily of minimum cardinality. There it is also
shown that the complexity of implicational inference, modulo background
knowledge given in the form of cumulated clauses, depends linearly on the
implicational part.
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Chapter 4

Supporting Bottom-up

Construction

In the present chapter we describe how tools from Formal Concept Analysis
can be used to support the bottom-up construction of Description Logic knowl-
edge bases. We address the problem of supporting bottom-up construction in
a general setting where the user is allowed to re-use concepts from an existing
knowledge base that is written in an expressive Description Logic. In Section
4.1 we introduce this extended bottom-up approach. In Section 4.2 we intro-
duce a new non-standard inference, namely least common subsumer w.r.t. a
background terminology, which is required in the extended bottom-up approach.
In Section 4.3 we follow a more practical approach. We describe a method for
computing “good” common subsumers w.r.t. background TBoxes which may
not be the least common subsumers, but which are better than the common
subsumers computed by ignoring the TBox. As a tool, this method uses the
attribute exploration method of Formal Concept Analysis. In Section 4.4 we
describe the use of attribute exploration for this setting and report on the first
experimental results. In Sections 4.6 and 4.7 we recall two other uses of at-
tribute exploration in the literature for solving problems occurring in a similar
setting. We conclude with Section 4.8, where we show that, from a lattice-
theoretic point of view, the approaches in Sections 4.4, 4.6, and 4.7 are actually
instances of a more general approach.

4.1 The extended bottom-up approach

Traditionally, DL knowledge bases are built in a top-down manner, in the
sense that first the relevant notions of the domain are formalized by concept
descriptions, and then these concept descriptions are used to specify prop-
erties of the individuals occurring in the domain. However, this top-down
approach is not always adequate. On the one hand, it might not always be
intuitive which notions of the domain are the relevant ones for a particular
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application. On the other hand, even if this is intuitive, it might not always
be easy to come up with a clear formal description of these notions, espe-
cially for a domain expert who is not an expert in knowledge engineering.
In order to overcome this, in [BK98, BKM99] a “bottom-up approach” was
introduced for constructing DL knowledge bases. In this approach, instead
of directly defining a new concept, the domain expert introduces several
typical examples as objects, which are then automatically generalized into
a concept description by the system. This description is then offered to the
domain expert as a possible candidate for a definition of the concept. A
successful application of this method was presented in the field of chemi-
cal process engineering in [BT01]. The task of computing such a concept
description can be split into two subtasks:

• computing the most specific concepts of the given objects,

• and then computing the least common subsumer of these concepts.

The most specific concept (msc) of an object o is the most specific concept
description C expressible in the given DL language that has o as an instance.
The least common subsumer (lcs) of concept descriptions C1, . . . , Cn is the
most specific concept description C expressible in the given DL language
that subsumes C1, . . . , Cn. The problem of computing the lcs and (to a
more limited extent) the msc has already been investigated in the literature
[CH94, FP96, BK98, BKM99, KM01a, KM01b, KB01, Baa03a, Baa03b,
Baa03c, Bra06].

The methods for computing the least common subsumer are restricted to
rather inexpressive descriptions logics not allowing for disjunction (and thus
not allowing for full negation). In fact, for languages with disjunction, the
lcs of a collection of concepts is just their disjunction, and nothing new can
be learned from building it. In contrast, for languages without disjunction,
the lcs extracts the “commonalities” of the given collection of concepts.
Modern DL systems like FaCT [Hor98], Racer [HM01b] and Pellet [SP04]
are based on very expressive DLs, and there exist large knowledge bases that
use this expressive power and can be processed by these systems [RH97,
SH00, HM01a]. In order to allow the user to re-use concepts defined in such
existing knowledge bases and still support the user during the definition
of new concepts with the bottom-up approach sketched above, we propose
the following extended bottom-up approach: assume that there is a fixed
background terminology defined in an expressive DL; e.g., a large ontology
written by experts which the user has bought from some ontology provider.
The user then wants to extend this terminology in order to adapt it to the
needs of a particular application domain. However, since the user is not
a DL expert, he employs a less expressive DL and needs support through
the bottom-up approach when building this user-specific extension of the
background terminology. There are several reasons for the user to employ
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a restricted DL in this setting: first, such a restricted DL may be easier
to comprehend and use for a non-expert; second, it may allow for a more
intuitive graphical or frame-like user interface; third, to use the bottom-up
approach, the lcs must exist and make sense, and it must be possible to
compute it with reasonable effort.

To make this more precise, consider a background terminology (TBox)
T defined in an expressive DL L2. When defining new concepts, the user
employs only a sublanguage L1 of L2 for which computing the lcs makes
sense. However, in addition to primitive concepts and roles, the concept
descriptions written in the DL L1 may also contain names of concepts defined
in T . Let us call such concept descriptions L1(T )-concept descriptions.
Given L1(T )-concept descriptions C1, . . . , Cn, we want to compute their lcs
in L1(T ), i.e., the least L1(T )-concept description that subsumes C1, . . . , Cn

w.r.t. T . In Section 4.2 we consider the case where L1 is the DL ALE and L2

is the DL ALC and report the following two results from [BST04a, BST07]:

• If T is an acyclic ALC-TBox, then the lcs w.r.t. T of ALE(T )-concept
descriptions always exists.

• If T is a general ALC-TBox allowing for general concept inclusion
axioms (GCIs), then the lcs w.r.t. T of ALE(T )-concept descriptions
need not exist.

The first result on the existence and computability of the lcs w.r.t. an acyclic
background terminology is theoretical in the sense that it does not yield a
practical algorithm. Due to this, in Section 4.3 we develop a more practi-
cal approach. Assume that L1 is a DL for which least common subsumers
(without background TBox) always exist. Given L1(T )-concept descriptions
C1, . . . , Cn, one can compute a common subsumer w.r.t. T by just ignoring
T , i.e., by treating the defined names in C1, . . . , Cn as primitive and com-
puting the lcs of C1, . . . , Cn in L1. However, the common subsumer obtained
this way will usually be too general. We sketch a practical method for com-
puting “good” common subsumers w.r.t. background TBoxes, which may
not be the least common subsumers, but which are more specific than the
common subsumers computed by ignoring the TBox. As a tool, this method
uses attribute exploration [Gan84] (possibly with background knowledge
[Gan99, GK99, GK05]). The application of attribute exploration for this
purpose is described in Section 4.4.

4.2 Computing LCS w.r.t. background terminol-

ogy

In Section 2.4 we have introduced the non-standard inference problem of
computing the lcs. However, for the extended bottom-up approach described
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above, we need to compute the lcs of a set of concept descriptions with re-
spect to a background TBox. Let us now define this new non-standard
inference, which is called lcs w.r.t. a background terminology. It is a gen-
eralization of the usual lcs to (a)cyclic or general background TBoxes. In
the following let L1,L2 be DLs such that L1 is a sublanguage of L2, i.e., L1

allows for less constructors. For a given L2-TBox T , we call L1(T )-concept
descriptions those L1-concept descriptions that may contain, amongst oth-
ers, concepts defined in T .

Definition 4.2.1. Given an L2-TBox T and L1(T )-concept descriptions
C1, . . . , Cn, the least common subsumer (lcs) of C1, . . . , Cn in L1(T ) w.r.t.
T is the most specific L1(T )-concept description that subsumes C1, . . . , Cn

w.r.t. T , i.e., it is an L1(T )-concept description D such that

1. Ci vT D for i = 1, . . . , n (D is a common subsumer);

2. if E is an L1(T )-concept description satisfying Ci vT E
for i = 1, . . . , n, then D vT E (D is least).

¦

Depending on the DLs L1 and L2, least common subsumers of L1(T )-
concept descriptions w.r.t. an L2-TBox T may exist or not. Note that this
lcs may use only concept constructors from L1, but may also contain concept
names defined in the L2-TBox. This is the main distinguishing feature of this
new notion of a least common subsumer w.r.t. a background terminology.
Let us illustrate this by a trivial example.

Example 4.2.2. Assume that L1 is the DL ALE and L2 is ALC. Consider
the ALC-TBox T := {A ≡ P t Q}, and assume that we want to compute
the lcs of the ALE(T )-concept descriptions P and Q. Obviously, A is the
lcs of P and Q w.r.t. T . If we were not allowed to use the name A defined
in T , then the only common subsumer of P and Q in ALE would be the
top-concept >. ¦

At first sight, one might think that, in the case of an acyclic background
TBox, the problem of computing the lcs in ALE(T ) w.r.t. an ALC-TBox T
can be reduced to the problem of computing the lcs in ALE by expanding
the TBox and using results on the approximation of ALC by ALE [BKT02].
To make this more precise, we must introduce the non-standard inference
of approximating concept descriptions of one DL by descriptions of another
DL. Let L1,L2 be DLs such that L1 is a sublanguage of L2.

Definition 4.2.3. Given an L2-concept description C, the L1-concept de-
scription D approximates C from above iff D is the least L1-concept descrip-
tion satisfying C v D. ¦
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In [BKT02] it is shown that the approximation from above of an ALC-
concept description by an ALE-concept description always exists, and can
be computed in double-exponential time.

Thus, given an acyclic ALC-TBox T and a collection of ALE(T )-concept
descriptions C1, . . . , Cn, one can first expand C1, . . . , Cn into concept de-
scriptions C ′

1, . . . , C
′
n by iteratively replacing defined concepts by their def-

initions until they contain no defined concepts. These descriptions are
ALC-concept descriptions since they may contain constructors of ALC that
are not allowed in ALE . One can then build the ALC-concept description
C := C ′

1t. . .tC ′
n, and finally approximate C from above by an ALE-concept

description D. By construction, D is a common subsumer of C1, . . . , Cn.
However, D does not contain concept names defined in T , and thus it is

not necessarily the least ALE(T )-concept description subsuming C1, . . . , Cn

w.r.t. T . Indeed, this is the case in Example 4.2.2 above, where the ap-
proach based on approximation that we have just sketched yields > rather
than the lcs A. One might now think that this can be overcome by ap-
plying known results on rewriting concept descriptions w.r.t. a terminology
[BKM00]. However, in Example 4.2.2, the concept description > cannot be
rewritten using the TBox T := {A ≡ P tQ}.

How can we compute the lcs w.r.t. a background terminology? Does it
exist at all? The following result (Theorem 12 in [BST07]) shows that the
lcs of ALE(T )-concept descriptions exist, and can effectively be computed.
The proof of this result is beyond the scope of this work. For the proof see
[BST07] or the forthcoming Ph.D. thesis by Turhan [Tur07].

Theorem 4.2.4. Let T be an acyclic ALC-TBox. The lcs of ALE(T )-
concept descriptions w.r.t. T always exists and can effectively be computed.

The problem of computing the lcs w.r.t. a background terminology was
first considered in [BST04b], where L1 was chosen as the DL EL, and L2

was chosen to be ALC. There it was shown that:

• If T is an acyclic ALC-TBox, then the lcs w.r.t. T of EL(T )-concept
descriptions always exists.

• If T is a general ALC-TBox allowing for general concept inclusion
axioms (GCIs), then the lcs w.r.t. T of EL(T )-concept descriptions
need not exist.

4.3 Good common subsumers

Unfortunately, the proof of Theorem 4.2.4 above does not lead to an efficient
way of computing the lcs w.r.t. a background terminology. The brute-force
algorithm for computing the lcs in ALE(T ) w.r.t. an acyclic background
ALC-TBox described in [BST07] in the proof of this theorem is not useful



58 Supporting Bottom-up Construction

in practice since the number of concept descriptions that must be considered
is very large (super-exponential in the role depth). In addition, w.r.t. cyclic
or general TBoxes the lcs need not exist.

In the bottom-up construction of DL knowledge bases, it is not really
necessary to take the least common subsumer. Using the least one may
even result in over-fitting, which is an unwanted effect. Instead, a common
subsumer that is not too general can also be used. Now we introduce an
approach for computing such “good” common subsumers w.r.t. a background
TBox. In order to explain this approach, we must first recall how the lcs of
ALE-concept descriptions (without background TBox) can be computed.

4.3.1 The LCS of ALE-concept descriptions

Since the lcs of n concept descriptions can be obtained by iterating the
application of the binary lcs, we describe how to compute the least common
subsumer lcsALE(C,D) of two ALE-concept descriptions C,D (see [BKM99]
for more details and a proof of correctness).

First, the input descriptions C,D are normalized by applying the follow-
ing equivalence-preserving rules modulo associativity and commutativity of
conjunction:

∀r.E u ∀r.F −→ ∀r.(E u F ), ∀r.E u ∃r.F −→ ∀r.E u ∃r.(E u F ),
∀r.> −→ >, E u > −→ E,
∃r.⊥ −→ ⊥, E u ⊥ −→ ⊥,

A u ¬A −→ ⊥

where E and F are concept descriptions, and A is a concept name.

Note that, due to the second rule in the first line, this normalization may
lead to an exponential blow-up of the concept descriptions. In the following,
we assume that the input descriptions C,D are normalized.

In order to describe the lcs algorithm, we need to introduce some no-
tation. Let C be a normalized ALE-concept description. Then names(C)
(names(C)) denotes the set of (negated) concept names occurring in the top-
level conjunction of C, roles∃(C) (roles∀(C)) the set of role names occurring
in an existential (value) restriction on the top-level of C, and restrict∃r (C)
(restrict∀r (C)) denotes the set of all concept descriptions occurring in an ex-
istential (value) restriction on the role r in the top-level conjunction of C.

Now, let C,D be normalized ALE-concept descriptions. If C (D) is
equivalent to ⊥, then lcsALE(C,D) = D (lcsALE(C,D) = C). Otherwise, we
have

lcsALE(C,D) =
d

A∈names(C)∩names(D)A u d
¬B∈names(C)∩names(D) ¬B ud

r∈roles
∃(C)∩roles

∃(D)

d
E∈restrict

∃
r (C),F∈restrict

∃
r (D) ∃r.lcsALE(E,F ) ud

r∈roles
∀(C)∩roles

∀(D)

d
E∈restrict

∀
r (C),F∈restrict

∀
r (D) ∀r.lcsALE(E,F ) .
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Here, the empty conjunction stands for the top-concept >. The recursive
calls of lcsALE are well-founded since the role depth decreases with each call.

4.3.2 GCS in ALE w.r.t. a background terminology

Let T be a background TBox in some DL L2 extending ALE such that
subsumption in L2 w.r.t. this kind of TBoxes is decidable.1 Let C,D be
normalized ALE(T )-concept descriptions. If we ignore the TBox, then we
can simply apply the above algorithm for ALE-concept descriptions without
background terminology to compute a common subsumer. However, in this
context, taking

l

A∈names(C)∩names(D)

A u
l

¬B∈names(C)∩names(D)

¬B

is not the best we can do. In fact, some of these concept names may be
constrained by the TBox, and thus there may be relationships between them
that we ignore by simply using their conjunction. Instead, we propose to
take the smallest (w.r.t. subsumption w.r.t. T ) conjunction of concept names
and negated concept names that subsumes (w.r.t. T ) both

l

A∈names(C)

A u
l

¬B∈names(C)

¬B and
l

A′∈names(D)

A′ u
l

¬B′∈names(D)

¬B′.

We modify the above lcs algorithm in this way, not only on the top-level of
the input concepts, but also in the recursive steps. It is easy to show that
the ALE(T )-concept description computed by this modified algorithm still
is a common subsumer of A,B w.r.t. T .

Proposition 4.3.1. The ALE(T )-concept description E obtained by ap-
plying the modified lcs algorithm to ALE(T )-concept descriptions C,D is a
common subsumer of C and D w.r.t. T , i.e., C vT E and D vT E.

In general, this common subsumer will be more specific than the one
obtained by ignoring T , though it need not be the least common subsumer.
We call the common subsumer computed this way good common subsumer
(gcs) , and the algorithm that computes it the gcs algorithm.

Example 4.3.2. As a simple example, consider the ALC-TBox T :

NoSon ≡ ∀has-child.Female,
NoDaughter ≡ ∀has-child.¬Female,

SonRichDoctor ≡ ∀has-child.(Female t (Doctor u Rich)),
DaughterHappyDoctor ≡ ∀has-child.(¬Female t (Doctor u Happy)),

ChildrenDoctor ≡ ∀has-child.Doctor,

1Note that the TBox T used as background terminology may be a general TBox.
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and the ALE-concept descriptions

C := ∃has-child.(NoSon u DaughterHappyDoctor),
D := ∃has-child.(NoDaughter u SonRichDoctor).

By ignoring the TBox, we obtain the ALE(T )-concept description ∃has-child.>
as a common subsumer of C,D. However, if we take into account that
both NoSon u DaughterHappyDoctor and NoDaughter u SonRichDoctor are
subsumed by the concept ChildrenDoctor, then we obtain the more specific
common subsumer ∃has-child.ChildrenDoctor. The gcs of C,D is even more
specific. In fact, the least conjunction of (negated) concept names subsum-
ing both NoSon u DaughterHappyDoctor and NoDaughter u SonRichDoctor
is

ChildrenDoctor u DaughterHappyDoctor u SonRichDoctor,

and thus the gcs of C,D is

∃has-child.(ChildrenDoctor u DaughterHappyDoctor u SonRichDoctor).

The conjunct ChildrenDoctor is actually redundant since it is implied by the
remainder of the conjunction. ¦

In order to implement the gcs algorithm, we must be able to compute
the smallest conjunction of (negated) concept names that subsumes two
such conjunctions C1 and C2 w.r.t. T . In principle, one can compute this
smallest conjunction by testing, for every (negated) concept name whether
it subsumes both C1 and C2 w.r.t. T , and then take the conjunction of
those (negated) concept names for which the test was positive. However,
this results in a large number of (possibly expensive) calls to the subsump-
tion algorithm for L2 w.r.t. (general or (a)cyclic) TBoxes. Since, in our
application scenario (bottom-up construction of DL knowledge bases w.r.t.
a given background terminology), the TBox T is assumed to be fixed, it
makes sense to precompute this information.

In the next section we show how the attribute exploration method [Gan84]
of formal concept analysis [GW99] can be used for computing the above-
mentioned smallest conjunction, which is required for computing a gcs. Al-
ternative approaches for computing common subsumers, which include an
approximation-based method called acs, and a subsumption-closure-based
method called scs, will be discussed in the forthcoming Ph.D. thesis by
Turhan [Tur07].

4.4 Using FCA for computing GCSs

In order to obtain a practical gcs algorithm, we must be able to compute in
an efficient way the smallest conjunction of (negated) concept names that
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subsumes the two conjunctions (w.r.t. T ) described in Section 4.3.2 above.
As already mentioned above, since in our application scenario (bottom-up
construction of DL knowledge bases w.r.t. a given background terminology),
the TBox T is assumed to be fixed, it makes sense to precompute this infor-
mation. Obviously, a näıve approach that calls the subsumption algorithm
for each pair of conjunctions of (negated) concept names is too expensive for
TBoxes of realistic sizes. Instead, we propose to use attribute exploration
for this purpose.

In order to apply attribute exploration to the task of computing the
subsumption hierarchy of conjunctions of (negated) concept names (some
of which may be defined concepts in an L2-TBox T ), we define a formal
context whose concept lattice is isomorphic to the subsumption hierarchy
we are interested in. In general, the subsumption relation induces a partial
order, and not a lattice structure on concepts. However, in the case of
conjunctions of (negated) concept names, all infima exist, and thus also all
suprema, i.e., this hierarchy is a complete lattice.

For the case of conjunctions of concept names (without negated names),
this problem was first addressed in [Baa95], where the objects of the context
were basically all possible counterexamples to subsumption relationships,
i.e., interpretations together with an element of the interpretation domain.
The resulting “semantic context” has the disadvantage that an “expert” for
this context must be able to deliver such counterexamples, i.e., it is not
sufficient to have a simple subsumption algorithm for the DL in question.
One needs one that, given a subsumption problem “C v D?”, is able to
compute a counterexample if the subsumption relationship does not hold,
i.e., an interpretation I and an element d of its domain such that d ∈
CI \DI . Since the usual tableau-based subsumption algorithms [BS01] in
principle try to generate finite countermodels to subsumption relationships,
they can usually be extended such that they yield such an object in case
the subsumption relationship does not hold. For instance, in [Baa95], this is
explicitly shown for the DL ALC. However, the highly optimized algorithms
in systems like FaCT and Racer do not produce such countermodels as
output. For this reason, we are interested in a context that has the same
attributes and the same concept lattice (up to isomorphism), but for which a
standard subsumption algorithm can function as an expert. Such a context
was first introduced in [BS04]:

Definition 4.4.1. Let T be an L2-TBox. The context KT = (G,M, I) is
defined as follows:

G := {C | C is an L2-concept description},
M := {A1, . . . , An} is the set of concept names occurring in T ,
I := {(C,A) | C vT A}.

¦
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Before we can prove that this context has the desired properties, we
need to prove the following lemma, which relates subsumption in T with
implications holding in KT . In the following, if B = {Ci1 , . . . , Cir} is a set
of attributes of KT (i.e., a set of concept names occurring in T ), then

d
B

denotes their conjunction, i.e., Ci1 u . . . uCir . For the empty set, we defined ∅ := >.

Lemma 4.4.2. Let B1, B2 be subsets of M . The implication B1 → B2 holds
in KT iff

d
B1 vT

d
B2.

Proof. First, we prove the only if direction. If the implication B1 → B2

holds in KT , then this means that the following holds for all objects C ∈ G:
if C vT m holds for all m ∈ B1, then C vT m also holds for all m ∈ B2.
Thus, if we take

d
B1 as object C, we obviously have

d
B1 vT m for all

m ∈ B1, and thus
d
B1 vT m for all m ∈ B2, which shows

d
B1 vT

d
B2.

Second, we prove the if direction. If
d
B1 vT

d
B2, then any object

C satisfying C vT

d
B1 also satisfies C vT

d
B2 by the transitivity of the

subsumption relation. Consequently, if C is subsumed by all concepts in
B1, then it is also subsumed by all concepts in B2, i.e., if C satisfies all
attributes in B1, it also satisfies all attributes in B2. This shows that the
implication B1 → B2 holds in KT .

Using this lemma, we can now prove that the formal context in Definition
4.4.1 above has the desired properties.

Theorem 4.4.3. The concept lattice of the context KT is isomorphic to the
subsumption hierarchy of all conjunctions of subsets of M w.r.t. T .

Proof. In order to obtain an appropriate isomorphism, we define a mapping
π from the formal concepts of the context KT to the set of all (equivalence
classes of) conjunctions of subsets of M as follows:

π(A,B) = [
l
B]≡.

For formal concepts (A1, B1), (A2, B2) of KT we have (A1, B1) ≤ (A2, B2)
iff B2 ⊆ B1. Since B1 is a concept intent, we have B1 = B′′

1 , and thus
B2 ⊆ B1 iff B2 ⊆ B′′

1 iff the implication B1 → B2 holds in KT iff
d
B1 vTd

B2. Overall, we have thus shown that π is an order embedding (and thus
injective): (A1, B1) ≤ (A2, B2) iff [

d
B1]≡ v≡

T [
d
B2]≡.

It remains to show that π is surjective as well. Let B be an arbitrary
subset of M . We must show that [

d
B]≡ can be obtained as an image under

the mapping π. We know that (B′, B′′) is a formal concept of KT , and thus it
is sufficient to show that π(B′, B′′) = [

d
B]≡, i.e.,

d
B′′ ≡T

d
B. Obviously,

B ⊆ B′′ implies
d
B′′ vT

d
B. Conversely, the implication B → B′′ holds

in KT , and thus Lemma 4.4.2 yields
d
B vT

d
B′′.
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Now we show that attribute exploration can be used to compute the
concept lattice of KT since any standard subsumption algorithm for the DL
L2 can function as an expert for the KT .

Proposition 4.4.4. Any decision procedure for subsumption w.r.t. TBoxes
in L2 functions as an expert for the context KT in Definition 4.4.1.

Proof. The attribute exploration algorithm asks questions of the form “B1 →
B2?” By Lemma 4.4.2, we can translate these questions into subsumption
questions of the form “

d
B1 vT

d
B2?” Obviously, any decision procedure

for subsumption can answer these questions correctly.
Now, assume that B1 → B2 does not hold in KT , i.e.,

d
B1 6vT

d
B2.

We claim that
d
B1 is a counterexample, i.e.,

d
B1 ∈ B′

1, but
d
B1 /∈ B′

2.
This is an immediate consequence of the facts that B ′

i = {C | C vT

d
Bi}

(i = 1, 2), and that
d
B1 vT

d
B1 and

d
B1 6vT

d
B2.

The expert must provide, for each counterexample, the information which
attributes it satisfies and which it does not. This can again be realized by the
subsumption algorithm:

d
B1 satisfies the attribute Ai iff

d
B1 vT Ai.

In order to compute the gcs, we consider not only conjunctions of con-
cept names, but rather conjunctions of concept names and negated concept
names. The above results can easily be adapted to this case. In fact, one can
simply extend the TBox T by a definition for each negated concept name,
and then apply the approach to this extended TBox. To be more precise, if
{A1, . . . , An} is the set of concept names occurring in T , then we introduce
new concept names A1, . . . , An, and extend T to a TBox T̂ by adding the
definitions A1 ≡ ¬A1, . . . , An ≡ ¬An. Here, for T̂ to be an L2-TBox, we
must of course assume that L2 allows for full negation.

Corollary 4.4.5. The concept lattice of the context K bT
is isomorphic to

the subsumption hierarchy of all conjunctions of concept names and negated
concept names occurring in T .

How can this result be used to support computing a gcs? The above
corollary together with Proposition 4.4.4 shows that attribute exploration
applied to KbT

can be used to compute the Duquenne-Guigues base of K bT
.

Given this base, we can compute the supremum in the concept lattice of K bT
,

and thus in the hierarchy of all conjunctions of concept names and negated
concept names occurring in T , as follows:

Lemma 4.4.6. Let J be the Duquenne-Guigues base of K bT
, and let B1, B2

be sets of attributes of K bT
. Then J (B1)∩J (B2) is the intent of the formal

concept that is the supremum of the formal concepts (B ′
1, B

′′
1 ) and (B′

2, B
′′
2 ).

Proof. We know that the intent of the supremum of the formal concepts
(B′

1, B
′′
1 ) and (B′

2, B
′′
2 ) is just the intersection B′′

1 ∩ B′′
2 of their intents. In

addition, since the closure operators (·)′′ and J (·) coincide for a formal
context, we know that B′′

i = J (Bi) for i = 1, 2.
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As an immediate consequence of this lemma together with Theorem 4.4.3,
the supremum in the hierarchy of all conjunctions of concept names and
negated concept names occurring in T can be computed as follows:

Proposition 4.4.7. Let J be the Duquenne-Guigues base of K bT
, and let

B1, B2 be sets of (negated) concept names occurring in T . Then

l

L∈J (B1)∩J (B2)

L

is the least conjunction of (negated) concept names occurring in T that lies
above both

d
L∈B1

L and
d

L∈B2
L.

As mentioned in Section 3.3, computing the implicational closure J (B)
for a set of attributes B can be done in linear time in the size of J and B.
This means that the supremum can efficiently be computed.

4.4.1 Using a priori knowledge

When starting the exploration process, all the basic attribute exploration
algorithm knows about the context is the set of its attributes. It acquires
all the necessary knowledge about the context by asking the expert, which
in our setting means: by calling the subsumption algorithm for L2. Since
L2 is usually an expressive DL, the complexity of the subsumption problem
is usually quite high, and thus asking the expert may be expensive. For this
reason it makes sense to employ approaches that can avoid some of these
expensive calls of the subsumption algorithm.

In our application, we already have some a priori knowledge about rela-
tionships between attributes. In fact, we know that the attributes Ai and
Ai stand for a concept and its negation. In addition, since the background
TBox T is assumed to be an existing terminology, we can usually assume
that the subsumption hierarchy between the concept names occurring in T
has already been computed. This provides us with the following a priori
knowledge about the relationships between attributes:

1. If Ai vT Aj holds, then we know on the FCA side that in the context
KbT

all objects satisfying the attribute Ai also satisfy the attribute Aj ,
i.e., the implication {Ai} → {Aj} holds in KbT

.

2. Since Ai vT Aj implies ¬Aj vT ¬Ai, we also know that all objects
satisfying the attribute Aj also satisfy the attribute Ai, i.e., the impli-
cation {Aj} → {Ai} holds in KbT

.

3. We know that no object can simultaneously satisfy both Ai and Ai,
and thus the implication {Ai, Ai} → ⊥K bT holds, where ⊥K bT stands
for the set of all attributes of K bT

.
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4. Every object satisfies either Ai or Ai. In contrast to the other forms of
a priori knowledge mentioned above, this knowledge cannot be encoded
in an implication.

The a priori knowledge mentioned in (4) differs from the one mentioned in
the other points in that it cannot be represented by Horn clauses. This is
the reason why it does not correspond to an implication of the context. In
addition, whereas reasoning with respect to Horn clauses (implications) is
polynomial, the presence of knowledge of the form mentioned in (4) means
that reasoning about the a priori knowledge becomes np-complete, since it
is general propositional reasoning.

Depending on the TBox, there may exist other relationships between
attributes that can be deduced, but it should be noted that deducing them
makes sense only if this can be done without too much effort: otherwise, the
advantage obtained by using the information might be outweighed by the
effort of obtaining the a priori knowledge.

An extension of the attribute exploration method called attribute explo-
ration with background knowledge, which can use additional information like
the one mentioned in (1)–(4) above, was described in [Stu96a, Gan99, GK99,
GK05]. This approach can be used to avoid some of the calls to the expert,
and thus to speed up the exploration process. In the following, we prefer
to use the name “a priori knowledge” instead of background knowledge in
order to avoid the confusion with our notion of a background TBox.

If the a priori knowledge is purely implicational (in our case, if we use
only the implications mentioned in (1)–(3)), then it is easy to modify the
attribute exploration algorithm such that it takes this knowledge into ac-
count. In fact, in the initialization phase we simply replace the assignment
J0 := ∅ with

J0 := {{Ai} → {Aj} | Ai vT Aj} ∪
{{Aj} → {Ai} | Ai vT Aj} ∪
{{Ai, Ai} → ⊥K bT | i = 1, . . . , n},

where ⊥K bT = {A1, . . . , An, A1, . . . , An}. The effect of this modification is
that, when computing the implicational closure Ji+1(·) during attribute ex-
ploration, these a priori known implications are also taken into account.
The other effect is, of course, that the overall set of implications obtained
by the exploration process need not be of minimum cardinality or even free
of redundancies.

In principle, non-implicational a priori knowledge (in our case, the one
mentioned in (4)) can be utilized in the same way. In this case, the im-
plication hull Ji+1(·) is replaced by the deductive closure, i.e., given a set
of computed implications Ji+1, the a priori knowledge Γ (which is a finite
set of propositional formulae), and a set of attributes B (which we view as
propositional variables), we ask which other propositional variables follow
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from Γ ∪ ΓJi+1
∪ {∧b∈B b}, where ΓJi+1

is the set of propositional formu-
lae obtained by translating the implications in Ji+1 to the corresponding
propositional formulae.

The problem with using the non-implicational knowledge in this way
is that computing the deductive closure of propositional formulae is an np-
complete problem, whereas computing the implication closure is polynomial.
During the attribute exploration process, it might make sense to use such a
more complex closure operator if this saves us calls to the (in general even
more complex) subsumption algorithm realizing the expert. However, we
also need to use this closure operation when computing the supremum of
two conjunctions of (negated) concept names during the gcs computation.
Computing the concept lattice is done only once for the given background
TBox, whereas the supremum operation is executed several times whenever
the user wants the system to compute a gcs. For this reason, the algorithm
for computing the supremum operation should be very efficient, and thus
we do not want to use full propositional reasoning when computing the
supremum.

This does not mean that the non-implicational a priori knowledge can-
not be used at all during attribute exploration. For example, one can use it
to “optimize the expert”. In fact, assume that we use only the implicational
knowledge when computing the closure during attribute exploration. If the
exploration process generates an implication question “Bi → B′′

i \Bi,” then
one can first check (by propositional reasoning) whether this implication
follows from the implications together with the non-implicational a priori
knowledge. If the answer is “yes,” then one knows that this is a valid im-
plication. Only if the answer is “no” does one need to call the expert.
These propositional pre-tests make sense if the expert is realized by an al-
gorithm that is more complex than the algorithm used for propositional
reasoning. Since this approach only optimizes the expert, the set of implica-
tions computed by it is identical to the one computed when using only the
implicational a priori knowledge. Thus, the supremum can be obtained by
computing only the implication closure.

4.4.2 Experimental results

In order to obtain a first impression of the applicability of the gcs algorithm
and to identify parts where further optimization is necessary, we have carried
out experiments using several small background TBoxes. The reason for
using small knowledge bases is that computing the subsumption hierarchy
of all conjunctions of (negated) concept names is rather time consuming.
In fact, if the TBox contains n concept names (this includes the primitive
ones), then the corresponding context has 2n attributes, and in the worst
case attribute exploration must run through 22n iterations. Since this is done
only once for a given background TBox, long run-times are not prohibitive as
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DICE1 DICE2 DICE3 PA-6 HC Family

DL ALC ALC ALC ALE Boolean ALC
nr. concept
names

10 12 13 12 14 9

Table 4.1: The background TBoxes used in the experiments

long as the computed implication base is rather small, and thus computing
the supremum in the gcs algorithm is fast. However, these long run-times
would have prevented us from experimenting with different kinds of TBoxes.

The experiments were performed on a computer with one Pentium 4
processor at 2.40 GHz and 2GB of memory, under the GNU/Linux oper-
ating system. The implementation was made in the LISP programming
language using the version 19a of the CMU Common Lisp interpreter. We
used the version 1.7.23 of the Description Logic System Racer [HM01b] as
the expert for attribute exploration. For implicational closure calculation,
we implemented the linear time implicational closure algorithm linclosure
presented in Section 4.6 of [Mai83].

The background TBoxes

In order to obtain experimental results that are relevant in practice, we
used TBoxes that closely resemble fragments of knowledge bases from ap-
plications.

Three such fragments, called DICE1, DICE2, and DICE3 in the follow-
ing, were obtained from the DICE knowledge base [CAH03], which comes
from a medical application and defines concepts from the intensive care
domain. The original DICE knowledge base contains more than 2000 con-
cept definitions, is acyclic, and is written in the DL ALCQ, which extends
ALC by so-called qualified number restrictions [HB91]. The TBoxes DICE1,
DICE2, and DICE3 were obtained from DICE by selecting a relatively small
number of concept definitions and modifying these definitions such that the
obtained fragment belongs to ALC and the number of concept names used
in the TBox is small. In addition, two of these TBoxes (DICE2 and DICE3)
were modified such that they contain cyclic concept definitions.

A fourth fragment, called PA-6 in the following, was obtained from a
process engineering application [SYvWM04]. The original knowledge base
describes reactor models and parts of reactors from a polyamid process,
consists of about 60 acyclic concept definitions, and is an ALE knowledge
base. Again, we selected a small number of concept definitions from this
knowledge base to construct the TBox used in our experiments.

The other two knowledge bases used in our experiments were hand-
crafted. One is the family TBox from Example 4.3.2, called Family in the
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a.k. number of calls cpu time (secs)
TBox type expert imp.

hull
pre
expert

expert imp.
hull

pre
expert

total

DICE1 0 1,309 4,537 - 2.13 1.22 - 23.81
10 1 1,290 3,905 - 2.18 0.72 - 23.78
names 2 1,288 3,905 1,290 1.83 0.70 1.15 21.33

DICE2 0 54,696 132,731 - 91.62 32.44 - 2072.21
12 1 54,678 132,589 - 93.55 22.01 - 2058.08
names 2 54,676 132,589 54,678 92.60 22.54 66.65 2123.30

DICE3 0 91,880 246,616 - 157.66 90.83 - 4862.17
13 1 91,860 246,437 - 154.33 57.78 - 4795.51
names 2 91,856 246,437 91,860 154.96 56.68 183.62 5021.54

PA-6 0 30,484 110,671 - 93.52 55.06 - 943.25
12 1 30,462 95,572 - 52.42 24.69 - 907.22
names 2 30,457 95,572 30,462 50.47 24.84 53.77 927.13

HC 0 4,794 17,816 - 8.19 33.86 - 131.34
14 1 4,776 17,629 - 7.89 19.18 - 112.99
names 2 4,755 17,629 4,776 7.79 19.21 77.35 129.81

Family 0 6,334 16,962 - 9.31 2.22 - 102.89
9 1 6,321 16,905 - 9.74 1.48 - 103.83
names 2 6,319 16,905 6,321 9.22 0.67 2.87 97.81

Table 4.2: Attribute exploration on background TBoxes

following, and the other is a small acyclic TBox, called HC in the follow-
ing, which uses only Boolean operations and was built such that there are
relationships between conjunctions of (negated) concept names that do not
follow from the subsumption relationships between the names.

Table 4.1 displays the number of concept names each background TBox
contains. Note that the formal context obtained from a background TBox
with n concept names has 2n attributes since it contains the negated concept
names as attributes as well.

Computing the subsumption lattice

We computed the subsumption hierarchy of all conjunctions of (negated)
concept names for the six TBoxes mentioned above, using three different
variants of Ganter’s attribute exploration algorithm:

Type 0: The usual attribute exploration algorithm that does not use any a
priori knowledge.

Type 1: The attribute exploration algorithm that uses the implicational a
priori knowledge (1)–(3) described in Section 4.4.1.
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Type 2: Like Type 1, but now the non-implicational a priori knowledge (4)
is used to optimize the expert, as sketched at the end of Section 4.4.1.
Propositional consequences are computed using an algorithm by Gan-
ter [GK99, GK05], which is linear in the size of the implicational part
of the a priori knowledge, but exponential in the size of the non-
implicational part.

Table 4.2 shows the number of calls to the expert, the number of compu-
tations of the implication hull during attribute exploration, and the number
of calls to the pre-expert realized using non-implicational a priori knowledge.
It also shows the time spent in the respective calls where, for the expert, we
have only measured the time spent in answering the implication question,
but not the time spent to produce the counterexample (since only this part
can be addressed by the pre-expert).

The numbers show that using implicational a priori knowledge leads
to an improvement of the attribute exploration algorithm since it reduces
the number of calls to the expert and the closure computation, and it also
reduces the overall run-time. However, these gains are rather moderate.
Using non-implicational a priori knowledge in the way we currently do is not
advisable: there is only a very moderate reduction of the number of calls to
the expert, and the additional calls to the pre-expert often take more time
than is gained this way. However, things may change if one uses a highly
optimized propositional reasoner to realize the pre-expert, and when calls
to the expert become more expensive for larger background TBoxes.

What Table 4.2 also shows is that most of the time spent in attribute
exploration is not spent answering implication questions or computing the
implication closure. The major culprit actually turns out to be the compu-
tation of the operation Bi 7→ B′′

i . The reason is that the number of objects
in the contexts computed during attribute exploration becomes very large.
For example, consider the DICE3 TBox. There, we have 91,880 calls to the
expert, but only 27 implications (see Table 4.3). This means that in all but
27 cases, the expert produces a counterexample. Thus, the final context
consists of 91,853 objects. In addition to the problem caused by the large
number of objects when computing the operation Bi 7→ B′′

i , the expert also
spends quite some time actually producing the counterexample, i.e., check-
ing by subsumption tests which attributes the counterexample satisfies and
which it does not. As mentioned above, this time was not measured in the
column for the run-time of the expert. Excessive number of calls to the ex-
pert and the long runtimes for the TBoxes DICE-2, DICE-3 and PA-6 can
be explained by the number of concept names they contain and by the fact
that they do not contain much relationships between these concept names.
At this point, one can argue that these values are much lower for the TBox
HC, although it contains more concept names. As mentioned before, HC is
built to contain the specific kind of relationships we want to have, so com-
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a.k. size of base
TBox type computed total

DICE1 0 24 24
10 names 1 3 25

DICE2 0 21 21
12 names 1 3 22

DICE3 0 27 27
13 names 1 6 28

a.k. size of base
TBox type computed total

PA-6 0 31 31
12 names 1 7 31

HC 0 56 56
14 names 1 32 62

Family 0 16 16
9 names 1 3 16

Table 4.3: Sizes of the implication bases

puting the required hierarchy for this TBox takes much less time compared
to the three TBoxes above.

Table 4.3 shows the sizes of the final set of implications computed by
the attribute exploration algorithm. Since the third variant of the attribute
exploration algorithm (type 2) only “optimizes” the expert, but does not
change the the attribute exploration process, the results for it coincide with
the second variant (type 1). Thus, it is not explicitly included in the table.
For type 1 we distinguish between the set of all implications and the ones
computed during the exploration process. For example, for PA-6 we had 24
implications as a priori knowledge and computed 7 additional implications.

The most interesting result that can be drawn from this table is that
the number of implications stays rather small (in particular compared to
the huge number of objects in the final context). Consequently, computing
implication closure for these sets of implications will be fast (see Section 4.4.2
below).

Computing the supremum

Table 4.4 shows the time spent in supremum calls that were generated dur-
ing the computation of gcs in our experiments (The experimental results
concerning the computation of gcs are beyond the scope of this work. They
are going to be part of the Ph.D. thesis by Turhan [Tur07]). We measured
the run-time for three different methods of computing the supremum:

Type 0: The supremum is computed by building the implication closure
w.r.t. the implication base computed without using a priori knowl-
edge during attribute exploration.

Type 1: The supremum is computed by building the implication closure
w.r.t. the implication base computed using implicational a priori knowl-
edge during attribute exploration.

Type 2: The supremum is computed näıvely using iterated calls of the sub-
sumption algorithm.
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exp. supremum cpu time (secs) base
TBox type calls average total size

DICE1 0 67 0.00015 0.01 24
10 1 67 0.00030 0.02 25
names 2 67 0.03045 2.04 –

DICE2 0 121 0.00016 0.02 21
12 1 121 0.00016 0.02 22
names 2 121 0.0433 5.24 –

DICE3 0 101 0.00039 0.04 27
13 1 101 0.00049 0.05 28
names 2 101 0.04030 4.07 –

PA-6 0 237 0.00046 0.11 31
12 1 237 0.00046 0.11 31
names 2 237 0.0481 11.4 –

HC 0 42 0.00166 0.07 56
14 1 42 0.00238 0.1 62
names 2 42 0.06 2.52 –

Family 0 98 0.0001 0.01 16
9 1 98 0.0002 0.02 16
names 2 98 0.03775 3.7 –

Table 4.4: Computing the supremum

Since the implication base computed with a priori knowledge is usually
larger than the one without, using the former base takes longer, but in both
cases the supremum computation is fast. In contrast, the näıve approach
is two orders of magnitude slower. Thus, it really pays off to compute the
implication base in advance.

4.5 Faster computation of the subsumption lattice

In Section 4.4.2 we have mentioned the long runtimes encountered in our
experiments, even for relatively small background TBoxes. While analyz-
ing Table 4.2, we have noticed that the long runtimes are mainly due to
computation of the (·)′′ operator. The reason for this is that the number of
counterexamples generated during attribute exploration becomes very large.
For instance, the DICE3 TBox that contains only 13 concept names leads
to a formal context with 91,853 objects, which makes the computation of
the (·)′′ operator quite time consuming. In this section we look for a way of
overcoming this problem by trying to keep the number of counterexamples
small.

For the experiments in Section 4.4.2, we have employed a very basic
idea for generating counterexamples: whenever an implication B1 → B2 is
rejected, start with the concept description

d
B1. It is definitely a coun-
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terexample. Then determine which attributes this counterexample has by
iterating over the set M \ B1, i.e., for each Ai ∈ M \ B1 if

d
B1 vbT

Ai,
then add Ai to the intent of

d
B1. However, in this way we do not take

into account that the attribute set M also contains the negation of each
concept name occurring in the TBox. It might be the case that, for some
1 ≤ i ≤ n, neither

d
B1 v Ai, nor

d
B1 v Ai follows from T̂ . As a re-

sult, we generate a counterexample that has neither the attribute Ai nor
Ai. A closer look reveals that such counterexamples are reducible, i.e., they
can be removed from the formal context without changing the structure of
the concept lattice. One idea could be to reduce the context from time
to time during attribute exploration. However, since context reduction is
a costly operation, this approach is not feasible. Instead, by employing a
more clever idea that takes into account that M also contains an attribute
for the negation of each concept name, it is possible to avoid generating
reducible counterexamples. The idea is that the counterexamples that have
either Ai or Ai for each concept name Ai are irreducible, and it is always
possible to generate such a counterexample when an implication is rejected.
The following theorem formalizes this argument.

Theorem 4.5.1. Assume that the implication B1 → B2 does not hold in
KbT

and
d
C is a counterexample to this implication such that

d
C 6vbT

Ai

and
d
C 6vbT

Ai for some 1 ≤ i ≤ n. Then one of
d
C u Ai or

d
C u Ai is

also a counterexample to this implication.

Proof. According to the argument,
d
C u Ai 6vbT

d
B2 or

d
C u ¬Ai 6vbTd

B2. Assume this were not true, i.e., neither
d
C uAi nor

d
C u ¬Ai is a

counterexample. Then, both
d
C u Ai vbT

d
B2 and

d
C u ¬Ai vbT

d
B2

would be true. Then the following would also hold: (
d
C u Ai) t (

d
C u

¬Ai) vbT

d
B2, which would mean

d
Cu (Ait¬Ai) vbT

d
B2. Equivalently,

this would mean
d
C vbT

d
B2, which is a contradiction since we assumed

that B1 → B2 does not hold in K bT
and that

d
C is a counterexample. Thus

either
d
C uAi, or

d
C u ¬Ai is a counterexample to B1 → B2.

By successive applications of the argument in the proof of Theorem 4.5.1,
we can generate irreducible counterexamples. Algorithm 3 describes this
idea formally.

Proposition 4.5.2. Given an implication B1 → B2 that is rejected by the
expert, Algorithm 3 terminates and, upon termination, it returns a coun-
terexample to this implication, which has either Ai or Ai for each i ∈
{1, . . . , n}.

Proof. The algorithm iterates over a finite set of indices {1, . . . , n}, so it
terminates. A valid counterexample to B1 → B2 should contain all the
attributes in B1, and should not contain at least one of the attributes in
B2. The object

d
B1 is a counterexample to this implication. It has all the
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Algorithm 3 Counterexample generation for K bT

1: Initialization {Assume the implication B1 → B2 does not hold in K bT
}

2: C := B1 {dB1 is a counterexample}
3: for all i ∈ {1, . . . , n} do
4: if Ai 6∈ C and Ai 6∈ C then
5: if

d
C uAi vbT

d
B2 then

6: C = C ∪ {Ai}
7: else
8: C = C ∪ {Ai}
9: end if

10: end if
11: end for
12: return

d
C

attributes inB1, and does not have all the attributes inB2. So, the algorithm
starts generating the counterexample with C := B1. In the iteration, for
some i ∈ {1, . . . , n} assume that

d
C u Ai vbT

d
B2 does not hold. Thend

C uAi is a counterexample. So, we add Ai to the intent of
d
C. If

d
C u

Ai vbT

d
B2 holds, then by Theorem 4.5.1,

d
C u Ai is a counterexample

and we add Ai to the intent of
d
C. Once we finish iterating over all i ∈

{1, . . . , n} in this way, the resultant C has either Ai or Ai for each i, andd
C is a counterexample to B1 → B2.

4.5.1 Experimental results

In order to see the performance gain obtained by using the new counterex-
ample generation method, we have run a new set of experiments on the
background TBoxes mentioned in Section 4.4.2. Table 4.5 below shows the
results of these new experiments with the improved counterexample gener-
ation method.

When we compare the results of the new experiments given in Table 4.5
to the results of the previous experiments given in Table 4.2, the first thing
we notice is the drastic amount of decrease in the number of calls to the
expert, thus the CPU time spent by the expert, and the total CPU time for
each experiment. For instance, take the results of the experiment on TBox
DICE1 with no a priori knowledge (a. k. type 0). The first row of Table
4.5 says that the number of calls to the expert is 96 whereas, according to
the first row of Table 4.2 it was 1,309 in the previous experiments. As a
result, the CPU time spent by the expert decreases from 2.13 seconds to 0.15
seconds, and the total CPU time spent for this experiment decreases from
23.81 seconds to 1.14 seconds. For this TBox, the improvement in runtime
is more than 90%. For the other TBoxes the performance gain obtained
is also around 90%. The reason for this drastic amount of improvement
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a. k. number of calls cpu time (secs)
TBox type expert imp.

hull
pre
expert

expert imp.
hull

pre
expert

total

DICE1 0 96 3,124 - 0.15 0.37 - 1.14
10 1 75 2,999 - 0.18 0.90 - 1.89
names 2 73 2999 75 0.05 0.93 0.15 2.14

DICE2 0 853 163,375 - 1.52 26.62 - 59.03
12 1 835 163,245 - 1.27 36.30 - 68.17
names 2 833 163,245 835 1.18 37.49 2.56 72.28

DICE3 0 1,115 327,526 - 1.78 81.61 - 147.86
13 1 1,094 327,363 - 1.73 108.40 - 172.77
names 2 1090 327,363 1,094 2.06 107.99 4.16 178.94

PA-6 0 559 77,767 - 0.97 16.04 - 31.87
12 1 535 77,580 - 0.73 26.88 - 41.91
names 2 530 77,580 535 0.75 26.88 1.68 44.28

HC 0 184 21,356 - 0.30 19.25 - 22.43
14 1 160 21,164 - 0.23 35.59 - 38.50
names 2 140 21,164 160 0.22 35.67 3.40 42.68

Family 0 240 16,925 - 0.30 1.49 - 4.84
9 1 227 16,868 - 0.29 1.62 - 4.80
names 2 225 16,868 227 0.40 1.54 0.26 5.28

Table 4.5: Experimental results using the improved counterexample gener-
ation method

in the performance becomes clear when we compare the sizes of the formal
contexts produced in our previous and new experiments. Table 4.6 gives
a comparison of the sizes of the formal contexts obtained in our new and
previous experiments. For instance, size of the formal context resulting
from the TBox DICE1 decreases from 1285 to 72 in the new experiments.
This means that 1213 of the counterexamples we have generated in our
previous experiment were reducible, i.e., 94% of the counterexamples we
have generated were actually redundant. Similarly, for the other TBoxes,
the formal context sizes decrease by around 90%. This is due to the following
fact: a counterexample we generate with the new method has either Ai, or
Ai for each 1 ≤ i ≤ n, where n is the size of the attribute set M . The upper
bound on the number of such counter examples is 2n. On the other hand,
in our previous method we did not require a counterexample to have either
Ai or Ai for each i. We only required that for any i, it does not contain Ai

and Ai together. The upper bound on the number of such counterexamples
is 22n−1. Thus, by exploiting a property specific to the formal context we
use in our application, namely the dichotomy of the attributes, we save
an exponential number of counterexamples. Moreover, generating this new
type of counterexamples does not cost more in the number of subsumption
tests, compared to the previous method. Assuming that the implication
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context DICE1 DICE2 DICE3 PA-6 HC Family
size 10 names 12 names 13 names 12 names 14 names 9 names

improved
version 72 832 1,088 528 128 224
naive

version 1,285 54,675 91,853 30,453 4,738 6,318

Table 4.6: Comparison of context sizes

B1 → B2 does not hold in K bT
, the size of B1 is k, and the size of M is

2n, we make exactly n−k subsumption tests to generate a counterexample,
which is the same number of subsumption tests we make in the previously
used counterexample generation algorithm.

4.6 The hierarchy of conjunctions of concepts

In the previous section, we have shown how attribute exploration can be used
to efficiently compute the subsumption hierarchy of conjunctions of a set of
concept names and the negations of these concept names. For the case of
conjunctions of concept names only (without negated names), this approach
was first used in [Baa95]. There the main motivation was to compute an
extended subsumption hierarchy in which the interaction between defined
concepts could easily be seen. This was explained by the following example:
Assume the defined concept NoDaughter stands for the people that have no
daughters, NoSon stands for the people that have no sons, and NoSmallChild
stands for the people that have no small children. Obviously, there is no
subsumption relationship between these three concepts. On the other hand,
the conjunction NoDaughteruNoSon is subsumed by NoSmallChild, i.e., if an
individual a belongs to NoSon and NoDaughter, it also belongs to NoSmall-
Child. However, this cannot be derived from the information that a belongs
to NoSon and NoDaughter by just looking at the subsumption hierarchy.
This example demonstrates that some runtime inferences concerning indi-
viduals could be sped up by precomputing the subsumption hierarchy not
only for defined concepts, but also for all conjunctions of defined concepts.

In [Baa95], the attributes of the formal context defined with the above
motivation were again concept names (this time without negated names),
but the objects were basically all possible counterexamples to subsumption
relationships, i.e., interpretations together with an element of the interpre-
tation domain. The disadvantage of this “semantic context” is that a usual
subsumption algorithm can not be used as expert for this context within
attribute exploration. For this context, one needs a subsumption algorithm
that, given a subsumption problem ”C v D?”, is able to compute an inter-
pretation I and an element d of its domain such that d ∈ CI \DI , whenever
the subsumption relationship does not hold. Since the tableau-based sub-
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sumption algorithms [BS01] in principle try to generate finite representations
of countermodels to subsumption relationships, they can usually be extended
such that they yield such a counterexample in case the subsumption rela-
tionship does not hold. For instance in [Baa95], this is explicitly shown
for the DL ALC. Below we first give the definition of this context called
semantic context, and state some results about this context first shown in
[Baa95]. Here we omit the proofs of these results. For the proofs see [Baa95]
or [BS04] where the approach was reconsidered and a more abstract point
of view was presented.

4.6.1 The semantic context

Definition 4.6.1. Given a finite set of concept descriptions C = {C1, . . . , Cn},
the corresponding context KT = (G,M, I) is defined as follows:

G := {(I, d) | I is a model of T and d ∈ ∆I},
M := C,
I := {((I, d), Ci) | d ∈ CI

i }.

¦

For a nonempty subset B = {Ci1 , . . . , Cir} of M , we denote the conjunc-
tion Ci1 u . . . u Cir by

d
B. For the empty set, we define

d ∅ := >.
The following lemma establishes a correspondence between the implica-

tions that hold in the semantic context KT and the subsumption relation-
ships that hold in T .

Lemma 4.6.2. Let B1, B2 be subsets of M . The implication B1 → B2 holds
in KT iff

d
B1 vT

d
B2.

Thus, the Duquenne-Guigues base L of KT also yields a representation of
all subsumption relationships of the form

d
B1 vT

d
B2 for subsets B1, B2

of M . As mentioned in Section 3.3, any question “
d
B1 vT

d
B2?” can

then be answered in time linear in the size of L ∪ {B1 → B2}.
Theorem 4.6.3 below shows that KT has the desired property.

Theorem 4.6.3. The concept lattice of the context KT is isomorphic to the
subsumption hierarchy of all conjunctions of subsets of M w.r.t. T .

If we want to use attribute exploration (Algorithm 2 in Section 3.4)
to compute the concept lattice and the Duquenne-Guigues base of KT , we
need an expert for the context KT . This expert must be able to answer
the questions asked by the attribute exploration algorithm, i.e., given an
implication B1 → B2, it must be able to decide whether this implication
holds in KT . If the implication does not hold, it must be able to compute a
counterexample, i.e., an object o ∈ B ′

1 \B′
2.
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By Lemma 4.6.2, B1 → B2 holds in KT iff
d
B1 vT

d
B2. Thus,

validity of implications in KT can be decided using a standard subsump-
tion algorithm. A counterexample to the implication B1 → B2 is a pair
(d, I) ∈ G such that d ∈ d

BI
1 \ d

BI
2 . As already mentioned, since the

usual tableau-based subsumption algorithms [BS01] in principle try to gen-
erate finite countermodels to subsumption relationships, they can usually
be extended such that they yield such an object in case the subsumption
relationship does not hold. In [Baa95], this was explicitly shown for the DL
ALC.

Proposition 4.6.4. The tableau-based subsumption algorithm for ALC Tboxes
T can be extended such that it functions as an expert for the context KT

without increasing its worst-case complexity of pspace.

However, the highly optimized algorithms in systems like FaCT, Racer

and Pellet do not produce such countermodels as output. For this reason, in
[BS04] we have introduced a formal context called “syntactic context” that
also has the desired property in Theorem 4.6.3, but for which a standard
subsumption algorithm can function as expert.

4.6.2 The syntactic context

Definition 4.6.5. Given a finite set of concept descriptions C = {C1, . . . , Cn},
the corresponding context KT = (G,M, I) is defined as follows:

G := {D | D is a concept description of the DL under consideration};
M := C,
I := {(D,Ci) | D vT Ci}.

¦
The context KT satisfies the analogs of Lemma 4.6.2 and Theorem 4.6.3.

Lemma 4.6.6. Let B1, B2 be subsets of M . The implication B1 → B2 holds
in KT iff

d
B1 vT

d
B2.

Proof. First, we prove the only if direction. If the implication B1 → B2

holds in KT , then this means that the following holds for all objects D ∈ G:
if D vT C holds for all C ∈ B1, then D vT C also holds for all C ∈ B2.
Thus, if we take

d
B1 as object D, we obviously have

d
B1 vT C for all

C ∈ B1, and thus
d
B1 vT C for all C ∈ B2, which shows that

d
B1 vTd

B2.
Second, we prove the if direction. If

d
B1 vT

d
B2, then any object D

satisfying D vT

d
B1 also satisfies D vT

d
B2 by the transitivity of the

subsumption relation. Consequently, if D is a subconcept of all concepts in
B1, then it is also a subconcept of all concepts in B2, i.e., if D satisfies all
attributes in B1, it also satisfies all attributes in B2. This shows that the
implication B1 → B2 holds in KT .
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Now we show that KT also has the property that its concept lattice is
isomorphic to the subsumption hierarchy of all conjunctions of subsets of
M .

Theorem 4.6.7. The concept lattice of the context KT is isomorphic to the
subsumption hierarchy of all conjunctions of subsets of M w.r.t. T .

Proof. We define a mapping π from the formal concepts of the context KT

to the set of all (equivalence classes of) conjunctions of subsets of M as
follows:

π(A,B) = [
l
B]≡.

For formal concepts (A1, B1), (A2, B2) of KT we have (A1, B1) ≤ (A2, B2)
iff B2 ⊆ B1. Since B1 is an intent, we have B1 = B′′

1 , and thus B2 ⊆ B1 iff
B2 ⊆ B′′

1 iff the implication B1 → B2 holds in KT iff
d
B1 vT

d
B2. Overall,

we have thus shown that π is an order embedding (and thus injective):
(A1, B1) ≤ (A2, B2) iff [

d
B1]≡ v≡ [

d
B2]≡.

It remains to be shown that π is surjective as well. Let B be an arbitrary
subset of M . We must show that [

d
B]≡ can be obtained as an image under

the mapping π. We know that (B′, B′′) is a formal concept of KT , and thus it
is sufficient to show that π(B′, B′′) = [

d
B]≡, i.e.,

d
B′′ ≡T

d
B. Obviously,

B ⊆ B′′ implies
d
B′′ vT

d
B. Conversely, the implication B → B′′ holds

in KT , and thus Lemma 4.6.6 yields
d
B vT

d
B′′.

Again, attribute exploration can be used to compute the concept lattice
since any standard subsumption algorithm for the DL under consideration
can be used as an expert for KT .

Proposition 4.6.8. Any decision procedure for subsumption functions as
an expert for the context KT .

Proof. The attribute exploration algorithm asks questions of the form “B1 →
B2?” By Lemma 4.6.6, we can translate these questions into subsumption
questions of the form “

d
B1 vT

d
B2?” Obviously, any decision procedure

for subsumption can answer these questions correctly.
Now, assume that B1 → B2 does not hold in KT , i.e.,

d
B1 6vT

d
B2.

We claim that
d
B1 is a counterexample, i.e.,

d
B1 ∈ B′

1, but
d
B1 /∈ B′

2.
This is an immediate consequence of the facts that B ′

i = {D | D vT

d
Bi}

(i = 1, 2) and that
d
B1 vT

d
B1 and

d
B1 6vT

d
B2.

4.7 The hierarchy of least common subsumers

In the previous sections, we have shown how attribute exploration can be
used to support bottom-up construction of knowledge bases by efficiently
computing the subsumption hierarchy of the conjunctions of a set of con-
cept names. Apart from this, another usage of attribute exploration was
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presented in [BM00] again to support bottom-up construction of knowledge
bases, but this time by computing the hierarchy of least common subsumers
of the subsets of a given set of concept descriptions. There, the problem at-
tacked was the choice of examples, which is a crucial problem for the quality
of the result obtained by bottom-up construction. In bottom-up construc-
tion, if the examples are too similar, the resulting concept might be too
specific. Conversely, if the examples are too different, the resulting concept
is likely to be too general. Thus, it would be good to have a tool that
supports the process of choosing an appropriate set of objects as examples.
Assume that C1, . . . , Cn are the most specific concepts of a given collection
of objects o1, . . . , on, and that we intend to use subsets of this collection for
constructing new concepts. In order to avoid obtaining concepts that are
too general or too specific, it would be good to know the position of the cor-
responding lcs in the subsumption hierarchy of all least common subsumers
of subsets of {C1, . . . , Cn}. Since there are exponentially many subsets to
be considered, and (depending on the DL language) both, computing the lcs
and testing for subsumption, can be expensive operations, we want to obtain
complete information on how this hierarchy looks like without computing
the least common subsumers of all subsets of {C1, . . . , Cn}, and without
explicitly making all the subsumption tests between these least common
subsumers. In order to solve this problem, in [BM00], a formal context was
defined whose concept lattice is isomorphic to the inverse subsumption hi-
erarchy of all least common subsumers of subsets of {C1, . . . , Cn}. It was
shown that attribute exploration can again be used to compute this lattice,
and the expert required by the algorithm can be realized by the subsump-
tion algorithm and the algorithm for computing the lcs. Below, we are first
going to give the definition of such a formal context, and state results from
[BM00] without giving their proofs. For the proofs, the reader is referred to
[BM00].

In the following we assume that, in the DL L under consideration, the
lcs always exists and can be effectively computed. Given a finite set C :=
{C1, . . . , Cn} of concept descriptions, we are interested in the subsumption
hierarchy between all least common subsumers of subsets of C. For sets
B ⊆ C of cardinality larger than two, we have already defined the notion
lcs(B). We extend this notion to the empty set and singletons in the obvious
way: lcs(∅) := ⊥ and lcs({Ci}) := Ci.

Our goal is to compute the subsumption hierarchy between all concept
descriptions lcs(B) for subsets B of C without explicitly computing all these
least common subsumers. This is again achieved by defining a formal con-
text (with attribute set C) such that the concept lattice of this context is
isomorphic to the subsumption hierarchy we are interested in. The following
context is similar to the syntactic context defined in the previous section.
The main difference is the definition of the incidence relation, where sub-
sumption is used in the opposite direction.
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Definition 4.7.1. Given a DL language L and a finite set C := {C1, . . . , Cn}
of L-concept descriptions, the corresponding formal context KL(C) = (G,M, I)
is defined as follows:

G := {D | D is an L-concept description},
M := C,
I := {(D,C) | C v D}.

¦

As an easy consequence of the definition of KL(C) and of the lcs, we
obtain that the extent of a set B ⊆ M is closely related to the lcs of this
set:

Lemma 4.7.2. Let B,B1, B2 be subsets of M .

1. B′ = {D ∈ G | lcs(B) v D}.

2. B′
1 ⊆ B′

2 iff lcs(B2) v lcs(B1).

Now, we can again show that implications correspond to subsumption
relationships between the corresponding least common subsumers.

Lemma 4.7.3. Let B1, B2 be subsets of M . The implication B1 → B2 holds
in KL(C) iff lcs(B2) v lcs(B1).

As an immediate consequence of this lemma, the Duquenne-Guigues
base J of KL(C) yields a representation of all subsumption relationships
of the form lcs(B1) v lcs(B2) for subsets B1, B2 of G. Given this base J ,
any question of the form “lcs(B1) v lcs(B2)?” can then be answered in time
linear in the size of J ∪{B1 → B2}. Another easy consequence of the lemma
is that the concept lattice of KL(C) coincides with the inverse subsumption
hierarchy of all least common subsumers of subsets of C. The proof of this
fact is very similar to the proof of Theorem 4.6.7.

Theorem 4.7.4. The concept lattice of KL(C) is isomorphic to the inverse
subsumption hierarchy of all least common subsumers of subsets of C.

If we want to use attribute exploration to compute the concept lattice
and the Duquenne-Guigues base, we need an expert for the context KL(C).
This expert must be able to answer the questions asked by the attribute
exploration algorithm, i.e., given an implication B1 → B2, it must be able
to decide whether this implication holds in KL(C). If the implication does
not hold, it must be able to compute a counterexample, i.e., an object
g ∈ B′

1 \B′
2.

If the language L is such that the lcs is computable and subsumption is
decidable (which is, e.g., the case for L = EL), then we can implement such
an expert.
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Proposition 4.7.5. Given a subsumption algorithm for L as well as an
algorithm for computing the lcs of a finite set of L-concept descriptions,
these algorithms can be used to obtain an expert for the context KL(C).

Using this expert, an application of the attribute exploration algorithm
yields

• all intents of formal concepts of KL(C), and thus the concept lattice
of KL(C), which coincides with the inverse subsumption hierarchy of
all least common subsumers of subsets of C (by Theorem 4.7.4);

• the Duquenne-Guigues base of KL(C), which yields a compact repre-
sentation of this hierarchy (by Lemma 4.7.3); and

• a finite subcontext of KL(C) that has the same concept intents as
KL(C) and the same (·)′′ operation on sets of attributes.

Using the output of attribute exploration, one can then employ the usual
tools for drawing concept lattices in order to present the subsumption hi-
erarchy of all least common subsumers of subsets of C to the knowledge
engineer.

4.8 The hierarchy of infima of a partially ordered

set

The results presented in Sections 4.6 and 4.7 are very similar, and the proofs
are based on rather generic arguments (i.e., they use almost no specific
properties of the lcs or the conjunctions of defined concepts). Thus, one may
ask whether the constructions and arguments used there can be generalized.

Consider a partially ordered set (P,¹) for which all finite infima exist,
i.e., if B is a finite subset of P , then there exists an element ∧B ∈ P that
is the greatest element of P smaller than all elements of B. From the algo-
rithmic point of view we assume that there are algorithms for deciding the
relation ¹ and for computing ∧B for all finite subsets B of P . In Section 4.6,
P is the set of all concept descriptions of the DL under consideration, ¹ is
subsumption w.r.t. the TBox (vT ), and the infimum of a finite set of such
descriptions is their conjunction. To be more precise, P is the set of all
equivalence classes [C]≡ of concept descriptions C, and the partial order is
the partial order v≡ induced by subsumption w.r.t. T on these equivalence
classes. In Section 4.7, P is again the set of all concept descriptions of the
DL under consideration, ¹ is inverse subsumption (w) and the infimum is
given by the lcs. Since we take inverse subsumption, the lcs, which is the
supremum w.r.t. subsumption, is indeed the infimum.
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Definition 4.8.1 (Infimum closure). Given a finite subset N of P , its
infimum closure is the set

−∧(N) := {∧B | B ⊆ N}.

¦
In Section 4.6, N is the set of all concept names defined in the TBox,

and
−∧(N) is the set of all conjunctions of such names. In Section 4.7, N is a

finite set C of concept descriptions, and
−∧(N) is the set of all least common

subsumers of subsets of C.

SinceN is finite, (
−∧(N),¹) is a complete semilattice, and thus a complete

lattice. We are interested in computing this lattice. In Section 4.6, (
−∧(N),¹

) is the hierarchy of all conjunctions of defined concepts, and in Section 4.7

(
−∧(N),¹) is the hierarchy of all least common subsumers of subsets of C. In

order to compute (
−∧(N),¹), we define a formal context with attribute set

N such that the concept lattice of this context is isomorphic to (
−∧(N),¹).

Definition 4.8.2. Let (P,¹) be a partially ordered set for which all finite
infima exist, and let N be a finite subset of P . The formal context K¹(N) =
(G,M, I) is defined as follows:

G := P,

M := N,

I := {(g,m) | g ¹ m for g ∈ G, m ∈M}.

¦
Valid implications in K¹(N) correspond to ¹-relationships between in-

fima of subsets of N . The proof of this result is an easy generalization of
the proof of Lemma 4.6.6.

Lemma 4.8.3. Let B1, B2 be subsets of M = N . The implication B1 → B2

holds in K¹(N) iff ∧B1 ¹ ∧B2.

Proof. First, we prove the only if direction. If the implication B1 → B2

holds in K¹(N), then this means that the following holds for all objects
g ∈ G: if g ¹ m holds for all m ∈ B1, then g ¹ m also holds for all m ∈ B2.
Thus, if we take ∧B1 as object g, we obviously have ∧B1 ¹ n for all n ∈ B1,
and thus ∧B1 ¹ n for all n ∈ B2, which shows that ∧B1 ¹ ∧B2.

Second, we prove the if direction. If ∧B1 ¹ ∧B2, then any object g
satisfying g ¹ ∧B1 also satisfies g ¹ ∧B2 by the transitivity of ¹. Conse-
quently, if g ¹ m for all m ∈ B1, then g ¹ ∧B1 ¹ ∧B2 ¹ m for all m ∈ B2,
i.e., if g satisfies all attributes in B1, it also satisfies all attributes in B2.
This shows that the implication B1 → B2 holds in K¹(N).
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The proof of the following theorem is an easy generalization of the proof
of Theorem 4.6.3 and Theorem 4.6.7.

Theorem 4.8.4. The concept lattice of the context K¹(N) is isomorphic to

the lattice (
−∧(N),¹).

Proof. We define a mapping π from the formal concepts of the context

K¹(N) to
−∧(N) as follows:

π(A,B) = ∧B.

Since B is a finite subset of M and M = N , the definition of
−∧(N) implies

that ∧B ∈ −∧(N).

For formal concepts (A1, B1), (A2, B2) of K¹(N) we have (A1, B1) ≤
(A2, B2) iff B2 ⊆ B1. Since B1 is an intent, we have B1 = B′′

1 , and thus
B2 ⊆ B1 iff B2 ⊆ B′′

1 iff the implication B1 → B2 holds in K¹(N) iff
∧B1 ¹ ∧B2. Overall, we have thus shown that π is an order embedding
(and thus injective): (A1, B1) ≤ (A2, B2) iff ∧B1 ¹ ∧B2.

It remains to be shown that π is surjective as well. Let B be an arbitrary
subset ofM = N . We must show that ∧B can be obtained as an image under
the mapping π. We know that (B′, B′′) is a formal concept of K¹(N), and
thus it is sufficient to show that π(B′, B′′) = ∧B, i.e., ∧B′′ = ∧B. Obviously,
B ⊆ B′′ implies ∧B′′ ¹ ∧B. Conversely, the implication B → B ′′ holds in
K¹(N), and thus Lemma 4.8.3 yields ∧B ¹ ∧B ′′. Since ¹ is antisymmetric,
this shows ∧B = ∧B′′.

If we want to use attribute exploration to compute the concept lattice
and the Duquenne-Guigues base of K¹(N), we need an expert for this con-
text. The proof of the next proposition is a generalization of the proofs of
Proposition 4.6.4 and of Proposition 4.6.8.

Proposition 4.8.5. Given a decision procedure for ¹ as well as an algo-
rithm for computing the infima of all finite subsets of M , these algorithms
can be used to obtain an expert for the context K¹(N).

Proof. First, we show how to decide whether a given implication B1 → B2

holds in K¹(N) or not. By Lemma 4.8.3, we know that B1 → B2 holds in
K¹(N) iff ∧B1 ¹ ∧B2. Obviously, ∧B1 ¹ ∧B2 iff ∧B1 ¹ m for all m ∈ B2.
Thus, to answer the question “B1 → B2?”, we first compute ∧B1 and then
use the decision procedure for ¹ to test whether ∧B1 ¹ m holds for all
m ∈ B2.

Second, assume that B1 → B2 does not hold in K¹(N), i.e., ∧B1 6¹ ∧B2.
We claim that ∧B1 is a counterexample, i.e., ∧B1 ∈ B′

1 and ∧B1 6∈ B′
2.

This is an immediate consequence of the facts that B ′
i = {g ∈ G | g ¹
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m for all m ∈ Bi} = {g ∈ G | g ¹ ∧Bi} (i = 1, 2) and that ∧B1 ¹ ∧B1 and
∧B1 6¹ ∧B2.

What the attribute exploration algorithm (Algorithm 2 in Section 3.4)
really needs is the row corresponding to this object in the matrix correspond-
ing to I. This row can easily be computed using the decision procedure for
¹: for each m ∈ M = N , we use this decision procedure to test whether
∧B1 ¹ m holds or not.

To sum up, we have shown that attribute exploration can be used to

compute (a representation of) the lattice (
−∧(N),¹) provided that ¹ is de-

cidable and all finite infima are computable. The results presented in Sec-
tion 4.6 and in Section 4.7 are instances of this general result. The fact
that the approach described in Section 4.7 (and first presented in [BM00])
can be generalized in this direction has already been mentioned in [GK01]
(Section 3), but not worked out in detail.



Chapter 5

Completing DL Knowledge

Bases

In the present chapter we present an approach for extending both the termi-
nological and the assertional part of a Description Logic knowledge base by
using information provided by the knowledge base and by a domain expert. Our
approach provides a basis for formally well-founded techniques and tools that
support the knowledge engineer in checking whether a knowledge base contains
all the relevant information about the application domain, and in extending the
knowledge base appropriately if this is not the case. The use of techniques from
Formal Concept Analysis ensures that, on the one hand, the interaction with
the expert is kept to a minimum, and, on the other hand, it enables us to show
that the extended knowledge base is complete in a certain, well-defined sense.
We start the chapter with Section 5.1, where we give an informal definition of
the notion of completeness of a knowledge base w.r.t. a fixed model. In Section
5.2 we introduce our variant of Formal Concept Analysis that can deal with
incomplete knowledge represented in the form of a so-called partial context,
and describe an extension of the attribute exploration method that works with
partial contexts. In Section 5.3 we show how a Description Logic knowledge
base gives rise to a partial context, formally define the notion of a completion of
a knowledge base w.r.t. a fixed model, and show that the attribute exploration
algorithm we have developed in the previous section can be used to complete a
knowledge base. We conclude the chapter with Section 5.4, where we describe
our implementation of the method.

5.1 Completeness of a DL knowledge base

Description Logics are employed in various application domains, such as
natural language processing, configuration, databases, and bio-medical on-
tologies, but their most notable success so far is due to the fact that DLs
provide the logical underpinning of OWL [HPSvH03], the standard ontology
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language for the semantic web [BLHL01]. As a consequence of this stan-
dardization, several ontology editors [KFNM04, OVSM04, KPS+06] support
OWL, and ontologies written in OWL are employed in more and more appli-
cations. As the size of these ontologies grows, tools that support improving
their quality become more important. The tools available until now use DL
reasoning to detect inconsistencies and to infer consequences, i.e., implicit
knowledge that can be deduced from the explicitly represented knowledge.
There are also promising approaches that allow to pinpoint the reasons for
inconsistencies and for certain consequences, and that help the ontology
engineer to resolve inconsistencies and to remove unwanted consequences
[SC03, KPSG06]. These approaches address the quality dimension of sound-
ness of an ontology, both within itself (consistency) and w.r.t. the intended
application domain (no unwanted consequences). In this chapter we are con-
cerned with a different quality dimension: completeness. We provide a basis
for formally well-founded techniques and tools that support the ontology en-
gineer in checking whether an ontology contains all the relevant information
about the application domain, and to extend the ontology appropriately if
this is not the case.

As already mentioned in Chapter 2, a DL knowledge base (nowadays
often called ontology) usually consists of two parts, the terminological part
(TBox), which defines concepts and also states additional constraints (so-
called general concept inclusions, or GCIs for short) on the interpretation of
these concepts, and the assertional part (ABox), which describes individuals
and their relationship to each other and to concepts. Given an application
domain and a DL knowledge base describing it, we can ask whether the
knowledge base contains all the relevant information1 about the domain:

• Are all the relevant constraints that hold between concepts in the
domain captured by the TBox?

• Are all the relevant individuals existing in the domain present in the
ABox?

As an example, consider the OWL ontology for human protein phos-
phatases that has been described and used in [WBH+05]. This ontology was
developed based on information from peer-reviewed publications. The hu-
man protein phosphatase family has been well characterised experimentally,
and detailed knowledge about different classes of such proteins is available.
This knowledge is represented in the terminological part of the ontology.
Moreover, a large set of human phosphatases has been identified and doc-
umented by expert biologists. These are described as individuals in the
assertional part of the ontology. One can now ask whether the informa-
tion about protein phosphatases contained in this ontology is complete: Are

1The notion of “relevant information” must, of course, be formalized appropriately for
this problem to be addressed algorithmically.
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all the relationships that hold among the introduced classes of phosphatases
captured by the constraints in the TBox, or are there relationships that hold
in the domain, but do not follow from the TBox? Are all possible kinds of
human protein phosphatases represented by individuals in the ABox, or are
there phosphatases that have not yet been included in the ontology or even
not yet been identified?

Such questions cannot be answered by an automated tool alone. Clearly,
to check whether a given relationship between concepts—which does not fol-
low from the TBox—holds in the domain, one needs to ask a domain expert,
and the same is true for questions regarding the existence of individuals not
described in the ABox. The rôle of the automated tool is to ensure that the
expert is asked as few questions as possible; in particular, she should not
be asked trivial questions, i.e., questions that could actually be answered
based on the represented knowledge. In the above example, answering a
non-trivial question regarding human protein phosphatases may require the
biologist to study the relevant literature, query existing protein databases,
or even to carry out new experiments. Thus, the expert may be prompted
to acquire new biological knowledge.

The attribute exploration method we have described in Section 3.4 has
proved to be a successful knowledge acquisition method in various applica-
tion domains. One of the earliest applications of this approach is described
in [Wil82], where the domain is lattice theory, and the goal of the explo-
ration process is to find, on the one hand, all valid relationships between
properties of lattices (like being distributive), and, on the other hand, to
find counterexamples to all the relationships that do not hold. To answer a
query whether a certain relationship holds, the lattice theory expert must
either confirm the relationship (by using results from the literature or car-
rying out a new proof for this fact), or give a counterexample (again, by
either finding one in the literature or constructing a new one).

Although this sounds very similar to what is needed in our case, we can-
not directly use this approach. The main reason is the open-world semantics
of description logic knowledge bases. Consider an individual i from an ABox
A and a concept C occurring in a TBox T . If we cannot deduce from T and
A that i is an instance of C, then we do not assume that i does not belong
to C. Instead, we only accept this as a consequence if T and A imply that i
is an instance of ¬C. Thus, our knowledge about the relationships between
individuals and concepts is incomplete: if T and A imply neither C(i) nor
¬C(i), then we do not know the relationship between i and C. In contrast,
classical FCA and attribute exploration assume that the knowledge about
objects is complete: a cross in row g and column m of a formal context says
that object g has attribute m, and the absence of a cross is interpreted as
saying that g does not have m.

There has been some work on how to extend FCA and attribute explo-
ration from complete knowledge to the case of partial knowledge [Gan99,
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BH00, Hol04a, Hol04b, BH05, Rud06], and how to evaluate formulas in for-
mal contexts that do not contain complete information [Obi02]. However,
this work is based on assumptions that are different from ours. In par-
ticular, they assume that the expert cannot answer all queries and, as a
consequence, the knowledge obtained after the exploration process may still
be incomplete and the relationships between concepts that are produced in
the end fall into two categories: relationships that are valid no matter how
the incomplete part of the knowledge is completed, and relationships that
are valid only in some completions of the incomplete part of the knowledge.
In contrast, our intention is to complete the knowledge base, i.e., in the end
we want to have complete knowledge about these relationships. What may
be incomplete is the description of individuals used during the exploration
process.

In the next section, we introduce our variant of FCA that can deal with
partial contexts, and describe an attribute exploration procedure that works
with partial contexts. In Section 5.3, we show how a DL knowledge base
gives rise to a partial context, define the notion of a completion of a knowl-
edge base w.r.t. a fixed model, and show that the attribute exploration algo-
rithm developed in the previous section can be used to complete a knowledge
base. The results presented in this chapter have been published in [BGSS06],
[BGSS07b], and [BGSS07a].

5.2 An extension of FCA for completing DL knowl-

edge bases

In this section, we extend the classical approach to FCA described in Chap-
ter 3 to the case of objects that have only a partial description in the sense
that, for some attributes, it is not known whether they are satisfied by the
object or not. We need this extension in order to deal with the open-world
semantics of the description logic knowledge bases, and explore them using
attribute exploration.

5.2.1 Partial contexts

In our extension, we represent partial knowledge in the form of partial object
descriptions and a partial context, which is a set of partial object descrip-
tions. We start with formal definitions of these notions.

Definition 5.2.1 (Partial object description). A partial object descrip-
tion (pod) is a tuple (A,S) where A,S ⊆ M are such that A ∩ S = ∅. We
call such a pod a full object description (fod) if A ∪ S = M . A set of pods
is called a partial context and a set of fods a full context . ¦

Note that the notion of a full context introduced in this definition co-
incides with the notion of a formal context: a set of fods K corresponds
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to the formal context KK := (K,M, I), where (A,S)Im iff m ∈ A for all
(A,S) ∈ K.

A partial context can be extended by either adding new pods or by
extending existing pods.

Definition 5.2.2 (Realizer). We say that the pod (A′, S′) extends the pod
(A,S), and write this as (A,S) ≤ (A′, S′), if A ⊆ A′ and S ⊆ S′. Similarly,
we say that the partial context K′ extends the partial context K, and write
this as K ≤ K′, if every pod in K is extended by some pod in K′. If K is a
full context and K ≤ K, then K is called a realizer of K. If (A,S) is a fod
and (A,S) ≤ (A,S), then we also say that (A,S) realizes (A,S). ¦

5.2.2 Implications in partial contexts

Next, we extend the definition of the implications of a formal context to the
case of partial contexts.

Definition 5.2.3 (Implication in partial contexts). Let L,R ⊆ M .
The implication L→ R is refuted by the pod (A,S) if L ⊆ A and R∩S 6= ∅.
It is refuted by the partial context K if it is refuted by at least one element
of K. The set of implications that are not refuted by a given partial context
K is denoted by Imp(K). The set of all fods that do not refute a given set
of implications L is denoted by Mod(L). ¦

If (A,S) is a fod and L→ R an implication, then (A,S) does not refute
L→ R iff L ⊆ A implies R∩S = ∅ iff L ⊆ A implies R ⊆M \S = A. Thus,
the implication L→ R is not refuted by the full context K iff it holds in the
corresponding formal context KK.

The following simple facts regarding the connection between Imp(·),
Mod(·), and the consequence operator for implications will be employed
later on without explicitly mentioning their application:

• If K is a full context and L a set of implications, then K ⊆ Mod(L) iff
L ⊆ Imp(K).

• If K is a partial context and L a set of implications, then L ⊆ Imp(K)
implies that every implication that follows from L belongs to Imp(K).

The following is a trivial fact regarding the connection between partial
contexts and the implications they do not refute.

Proposition 5.2.4. For a given set P ⊆M and a partial context K,

K(P ) := M \
⋃

{S | (A,S) ∈ K, P ⊆ A}

is the largest subset of M such that P → K(P ) is not refuted by K.

The following facts are immediate consequences of the definition of K(·):
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• If P ⊆ Q, then K(P ) ⊆ K(Q).

• If K ≤ K′, then K′(P ) ⊆ K(P ).

For a full context K, the operator K(·) coincides with the ·′′ operator of
the corresponding formal context KK. In fact, if L is a base for Imp(KK),
then we have m ∈ P ′′ iff m ∈ L(P ) iff P → {m} follows from L iff P → {m}
holds in KK iff P → {m} is not refuted by K iff m ∈ K(P ). Note that if
K is not a full context, then K(·) will not be a closure operator since it will
not be idempotent.

The following proposition shows the relation between refutation by a
partial context and refutation by the realizers of this partial context.

Proposition 5.2.5. Let K be a partial context. An implication is refuted
by K iff it is refuted by all realizers of K.

Proof. First, let L,R ⊆M be such that L→ R is refuted by K, and let K be
a realizer of K. Then, by the definition of refutation, there is an (A,S) ∈ K
such that L ⊆ A and R ∩ S 6= ∅, and by the definition of a realizer, there is
a fod (A,S) ∈ K such that A ⊆ A and S ⊆ S. Obviously, we have L ⊆ A
and R ∩ S 6= ∅. Thus, L→ R is refuted by K as well.

Second, assume the implication L→ R is not refuted by K, i.e., for every
pod (A,S) ∈ K we have that L ⊆ A implies R∩ S = ∅. We define a realizer
K of K as follows. Consider a pod (A,S) ∈ K. If L 6⊆ A, then we add
(A,M \ A) to K: obviously, (A,M \ A) realizes (A,S) and does not refute
L → R. If L ⊆ A, then we also have R ∩ S = ∅, and we add (M \ S, S) to
K: obviously, (M \ S, S) realizes (A,S) and does not refute L→ R.

Note that the if-direction of this proposition need not hold if we consider
a set of implications rather than a single implication. For example, consider
the implications {a, b} → {c}, {a} → {b}. The partial context that consists
of the single pod ({a}, {c}) does not refute any of these two implications,
but each realizer of this partial context refutes one of them.

In the proof of the only-if-direction, we did not make use of the fact that
K is a full context. Thus, this direction also holds for partial contexts.

Lemma 5.2.6. If K,K′ are partial contexts such that K ≤ K′, then every
implication refuted by K is also refuted by K′.

5.2.3 Undecided implications

In contrast to existing work on extending FCA to the case of partial knowl-
edge [BH00, Hol04a, Hol04b, BH05], we do not assume that the expert has
only partial knowledge and thus cannot answer all implication questions. In
principle, our expert is assumed to have access to a full context K and thus
can answer all implication questions w.r.t. K, though finding these answers
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may involve extensive literature study, or even proving new mathematical
theorems or carrying out new experiments, etc. What is partial is the sub-
context that the attribute exploration algorithm works with. The reason is
that the initial context may be partial, and the same is true for the coun-
terexamples that the experts provides for implications that do not hold in
K.

More formally, we consider the following setting. We are given an initial
(possibly empty) partial context K, an initially empty set of implications L,
and a full context K that is a realizer of K. The expert answers implication
questions “L→ R?” w.r.t. the full context K. More precisely, if the answer
is “yes,” then K does not refute L → R (and thus L → R holds in the
corresponding formal context KK). The implication L → R is then added
to L. Otherwise, the expert extends the current context K such that the
extended context refutes L→ R and still has K as a realizer. Consequently,
the following invariant will be satisfied by K,K,L:

K ≤ K ⊆ Mod(L).

Our aim is to enrich K and L such that

• eventually L is not only sound, but also complete for Imp(K),

• and K refutes all other implications (i.e., all the implications refuted
by K).

As in the classical case, we want to do this by asking as few questions as
possible to the expert.

Definition 5.2.7. Let L be a set of implications and K a partial context.
An implication is called undecided w.r.t. K and L if it neither follows from
L nor is refuted by K. It is decided w.r.t. K and L if it is not undecided
w.r.t. K and L. ¦

In principle, our attribute exploration algorithm tries to decide all un-
decided implications by either adding the implication to L or extending K
such that it refutes the implication. If all implications are decided, then our
goal is achieved.

Proposition 5.2.8. Assume that K ≤ K ⊆ Mod(L) and that all implica-
tions are decided w.r.t. K and L. Then L is complete for Imp(K) and K
refutes all implications not belonging to Imp(K).

Proof. First, assume that there is an implication L → R in Imp(K) that
does not follow from L. By our assumption, L→ R is decided w.r.t. K and
L, and thus it is refuted by K. However, according to Proposition 5.2.5, it is
then also refuted by the realizer K of K, which contradicts our assumption
that L→ R belongs to Imp(K).
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Second, assume that L→ R is an implication that is refuted by K, but is
not refuted by K. Since L → R is decided, this implies that L → R follows
from L. However, K ⊆ Mod(L) implies L ⊆ Imp(K), and thus L → R also
belongs to Imp(K). This contradicts our assumption that L→ R is refuted
by K.

How can we find the undecided implications? The following proposition
motivates why it is sufficient to consider implications whose left-hand sides
are L-closed. It is an immediate consequence of the fact that L(·) is a closure
operator, and thus idempotent.

Proposition 5.2.9. Let L be a set of implications and L → R an implica-
tion. Then, L→ R follows from L iff L(L) → R follows from L.

Given an L-closed set L as left-hand side, what kind of right-hand sides
should we consider? Obviously, we need not consider right-hand sides R
for which the implication L → R is refuted by K: such implications are
already decided. By Proposition 5.2.4, the largest right-hand side R such
that L → R is not refuted by K is R = K(L). It is actually enough to
consider just this right-hand side. In fact, once we have decided L→ K(L)
(by either extending K such that it refutes the implication or adding the
implication to L), all implications L→ R′ with R′ ⊆ K(L) are also decided.

In order to enumerate all left-hand sides, we again use the lectic order
(see Definition 3.2.6) and the procedure derived from Proposition 3.2.7 for
enumerating all L-closed sets w.r.t. this order.

5.2.4 Attribute exploration in partial contexts

Until now, we have talked as if there was a fixed set of implications L and
a fixed partial context K to work with. As it is also the case in the classical
attribute exploration algorithm, both L and K change during the run of our
procedure. We start with an empty set of implications and an initial partial
context, and the procedure can extend both. The following proposition
shows that the left-hand sides of the previously added implications are also
closed with respect to the extended set of implications. This is due to the
fact that the left-hand sides are enumerated in lectic order.

Proposition 5.2.10. Let L be a set of implications and P1 < . . . < Pn the
lectically first n L-closed sets. If L is extended with L→ R s.t. L is L-closed
and Pn < L, then P1, . . . , Pn are still the lectically first n closed sets with
respect to the extended set of implications.

Proof. If P1 < . . . < Pn and Pn < L, then Pi < L for i = 1, . . . , n by
transitivity of <. Since < is irreflexive and contains the strict subset order,
L 6⊆ Pi holds for i = 1, . . . , n. Consequently, the L-closed sets Pi are closed
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w.r.t. L → R, and thus also w.r.t. the extended set of implications L′ :=
L ∪ {L→ R}.

It remains to show that P1, . . . , Pn−1 are all the L′-closed sets smaller
than Pn. Thus, assume that P < Pn is an L′-closed set. Since L ⊆ L′,
we know that P is also L-closed, and thus it is actually one of the sets Pi,
1 ≤ i < n.

If an implication has been added because the expert has stated that
it holds in K, then we can extend the current context K by applying the
implications to the first component of every pod in K. To be more precise,
for a partial context K and a set of implications L we define

L(K) := {(L(A), S) | (A,S) ∈ K}.

The following is a simple consequence of this definition.

Proposition 5.2.11. Let K ≤ K be a partial and a full context, respectively,
and let L be a set of implications such that L ⊆ Imp(K). Then L(K) is a
partial context and K ≤ L(K) ≤ K.

Proof. Obviously, K ≤ L(K) follows from the fact that A ⊆ L(A). To show
L(K) ≤ K, we consider a pod (A,S) ∈ K. We must show that (L(A), S)
is realized by some fod in K. We know that (A,S) is realized by some fod
in K, i.e., there is a fod (A,S) ∈ K such that A ⊆ A and S ⊆ S. Since
L ⊆ Imp(K), we have L(A) = A, and thus L(A) ⊆ L(A) = A. This shows
that (A,S) also realizes (L(A), S).

The fact that L(K) is a partial context, i.e., that L(A)∩S = ∅ holds for
all (A,S) ∈ K, is an immediate consequence of L(K) ≤ K.

Going from K to L(K) is actually only one way to extend the current
context based on the already computed implications. For example, if we
have the pod ({`}, {n}) and the implication {`,m} → {n} is not refuted by
K, then we know that m must belong to the second component of every fod
realizing ({`}, {n}). Consequently, we can extend ({`}, {n}) to ({`}, {m,n}).
To allow also for this and possible other ways of extending the partial con-
text, the formulation of the algorithm just says that, in case an implication
is added, the partial context can also be extended.

Whenever an implication is not accepted by the expert, K will be ex-
tended to a context that refutes the implication and still has K as a realizer.
The following proposition shows that the right-hand sides of implications
accepted by the expert and computed with respect to the smaller partial
context are identical to the ones that would have been computed with re-
spect to the extended one.

Proposition 5.2.12. Let K ≤ K′ ≤ K, where K,K′ are partial contexts and
K is a full context. If L→ K(L) is an implication that is not refuted by K,
then L→ K(L) is not refuted by K′ and K(L) = K′(L).
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Algorithm 4 Attribute exploration for partial contexts

1: Initialization
2: K0 {initial partial context, realized by the underlying full context K}
3: L0 := ∅ {initial empty set of implications}
4: P0 := ∅ {lectically smallest L0-closed subset of M}
5: i := 0
6: while Pi 6= M do
7: Compute Ki(Pi)
8: if Pi 6= Ki(Pi) then {Pi → Ki(Pi) is undecided}
9: Ask the expert if the undecided implication Pi → Ki(Pi) is refuted

by K
10: if no then {Pi → Ki(Pi) not refuted}
11: Ki+1 := K′ where K′ is a partial context such that Ki ≤ K′ ≤ K
12: Li+1 := Li ∪ {Pi → Ki(Pi) \ Pi}
13: Pi+1 := Li+1((Pi ∩ {m1, . . . ,mj−1}) ∪ {mj}) for the max. j that

satisfies Pi <j Li+1((Pi ∩ {m1, . . . ,mj−1}) ∪ {mj})
14: else {Pi → Ki(Pi) refuted}
15: Get a partial context K′ from the expert such that Ki ≤ K′ ≤ K

and Pi → Ki(Pi) is refuted by K′

16: Ki+1 := K′

17: Pi+1 := Pi

18: Li+1 := Li

19: end if
20: else {trivial implication}
21: Ki+1 := Ki

22: Li+1 := Li

23: Pi+1 := Li+1((Pi ∩ {m1, . . . ,mj−1}) ∪ {mj}) for the max. j that
satisfies Pi <j Li+1((Pi ∩ {m1, . . . ,mj−1}) ∪ {mj})

24: end if
25: i := i+ 1
26: end while

Proof. We have K′ ≤ K, and thus Proposition 5.2.5 implies that L→ K(L)
is not refuted by K′. Since K ≤ K′, we have K′(L) ⊆ K(L). If this inclusion
were strict, then L → K(L) would be refuted by K′ by Proposition 5.2.4.
Thus, we have shown that K(L) = K′(L).

Based on these considerations, our attribute exploration algorithm for
partial contexts is described in Algorithm 4. Proposition 5.2.13 shows that
this algorithm always terminates, and that it is correct.

Proposition 5.2.13. Let M be a finite set of attributes, and K and K0

respectively a full and a partial context over the attributes in M such that
K0 ≤ K. Then Algorithm 4 terminates, and upon termination it outputs a
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partial context K and a set of implications L such that

• L is sound and complete for Imp(K), and

• K refutes every implication that is refuted by K.

Proof. First, we show termination. The algorithm starts with the lectically
smallest L0-closed set P0 = L0(∅). At each execution of the while loop, it
performs one of the following operations:

1. it extends the current set of implications Li, and continues with the
lectically next closed set Pi+1 computed by using the extended set of
implications Li+1 (lines 12,13 in Algorithm 4).

2. it extends the current context Ki to a context Ki+1 that does not
refute any of the implications in Li, and continues with Pi+1 := Pi

(lines 16,17).

3. it continues with the lectically next closed set Pi+1, computed by using
the current set of implications Li (line 23).

Steps of the form 1 or 3 can be executed only finitely often. In fact, in each
of these steps, a lectically larger set is generated. Since M is finite, there
are only finitely many subsets of M , and thus every strictly ascending chain
w.r.t. < is obviously finite. In steps of the form 2, the algorithm continues
with Pi+1 := Pi, but extends Ki to a partial context Ki+1 that refutes the
implication Pi → Ki(Pi). Consequently, Ki+1(Pi) ( Ki(Pi). This shows
that, for a fixed set Pi, steps of the form 2 can also be applied only finitely
often. Thus, we have shown that termination is guaranteed.

Second, to show soundness of the output set of implications L for Imp(K),
it is sufficient to note that the invariant Ki ≤ K ⊆ Mod(Li) is preserved
throughout the run of the algorithm. Consequently, we also have K ≤ K ⊆
Mod(L). But then K ⊆ Mod(L) implies L ⊆ Imp(K), and thus soundness
of L for Imp(K).

Third, since we have K ≤ K ⊆ Mod(L), Proposition 5.2.8 shows that
completeness of L for Imp(K) as well as the fact that K refutes every im-
plication that is refuted by K follow as soon as we have shown that ev-
ery implication is decided w.r.t. K and L. To see this, consider the sets
P0 = L0(∅), P1, . . . , Pn = M generated during the run of the algorithm. We
have P0 < P1 < . . . < Pn, and iterated applications of Proposition 5.2.10
show that P0, P1, . . . , Pn are all the L-closed subsets of M .

Now, assume that the implication L → R is undecided w.r.t. K and
L. Thus, L → R does not follow from L and is not refuted by K. By
Proposition 5.2.9, L(L) → R also does not follow from L. In addition, since
L ⊆ L(L), it is also not refuted by K. Since L(L) is L-closed, there is an
i such that L(L) = Pi. During iteration i of the algorithm, the implication
Pi → Ki(Pi) is considered.
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First, assume that this implication is not refuted by K. Then, Pi →
Ki(Pi) follows from Li+1, and thus also from its superset L. However, the
fact that Pi → R is not refuted by K implies that it is also not refuted by
Ki since Ki ≤ K (Lemma 5.2.6). Thus R ⊆ Ki(Pi) by Proposition 5.2.4, and
the fact that Pi → Ki(Pi) follows from L implies that Pi → R follows from
L, which yields a contradiction.

Second, assume that Pi → Ki(Pi) is refuted by K. Then, Ki is extended
to a partial context Ki+1 that refutes the implication Pi → Ki(Pi). If Ki+1

also refutes Pi → R, then we are done since Ki+1 ≤ K implies that also K
refutes Pi → R, and thus K refutes L→ R because L ⊆ Pi. Otherwise, note
that Pi+1 = Pi and Li+1 = Li, and thus, in the next iteration, the expert gets
the implication Pi → Ki+1(Pi). By our assumption, Pi → R is not refuted
by Ki+1, and thus R ⊆ Ki+1(Pi). In addition, we have Ki+1(Pi) ( Ki(Pi)
due to the fact that Ki+1 refutes Pi → Ki(Pi).

If Pi → Ki+1(Pi) is not refuted by K, then we can continue as in the
first case above, and derive that Pi → R follows from L. Otherwise, we can
continue as in the second case. However, because in this case the size of
the right-hand side of the implication given to the expert strictly decreases,
we cannot indefinitely get the second case. This shows that, eventually, the
implication L → R will become decided w.r.t. some Kj and Lj for some
j ≥ i+ 1, which contradicts our assumption that it is undecided w.r.t. their
extensions K and L.

We have shown that the implication set L produced by the algorithm
is sound and complete for Imp(K). Next, we show that this set is actually
the Duquenne-Guigues base of KK, the formal context corresponding to the
full context K. Since Imp(K) = Imp(KK), we call this also the Duquenne-
Guigues base of K. Recall that the left-hand sides of the implications in
this base are pseudo-intents of KK. Because the operator (·)′′ for KK and
the operator K(·) coincide, a subset P of M is a pseudo-intent of KK if
P 6= K(P ) and K(Q) ⊆ P holds for all pseudo-intents Q ( P . We call such
a set also a pseudo-intent of K.

Proposition 5.2.14. The set L computed by Algorithm 4 is the Duquenne-
Guigues base of K, and thus contains the minimum number of implications
among all sets of implications that are sound and complete for Imp(K).

Proof. We know that the Duquenne-Guigues base of a formal context, and
thus also of the corresponding full context K, contains the minimum number
of implications among all implication sets that are sound and complete for
Imp(K). In Proposition 5.2.13, we have already shown that the implication
set L produced by Algorithm 4 is sound and complete for Imp(K). Thus, it
is enough to show that (i) the left-hand sides L of the implications in L are
pseudo-intents of K, and (ii) the corresponding right-hand sides are of the
form K(L) \ L.
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To show (ii), consider an implication L→ R in L. By the construction of
L, there is an index i such that R = Ki(L) \L. We know that L→ R is not
refuted by K, and thus Ki(L) = Ki+1(L) = . . . = K(L) by Proposition 5.2.12.
Thus, it is enough to show that K(L) = K(L). The inclusion K(L) ⊆ K(L)
follows from the fact that K ≤ K, and the inclusion in the other direction
follows from the fact that L → Ki(L) \ L, and thus also L → K(L), is not
refuted by K (see Proposition 5.2.4).

To show (i), first note that the implication L→ Ki(L) \L is only added
by the algorithm to the implication set if L 6= Ki(L). Together with what
we have shown in the proof of (ii) above, this yields L 6= K(L). To show
that L is indeed a pseudo-intent of K, we assume that Q is a pseudo-intent
of K such that Q ( L. We must show that K(Q) ⊆ L. By Proposition 5.2.4,
Q→ K(Q) is not refuted by K. Since L is complete for Imp(K) by Proposi-
tion 5.2.13, the implication Q→ K(Q) follows from L, i.e., K(Q) ⊆ L(Q). In
addition, Q ⊆ L implies L(Q) ⊆ L(L), and we know from the proof of Propo-
sition 5.2.13 that L is L-closed. Thus, we have K(Q) ⊆ L(Q) ⊆ L(L) = L,
which completes the proof that L is a pseudo-intent of K.

5.3 DL knowledge bases and partial contexts

Given a consistent DL knowledge base (T ,A), any individual in A induces
a partial object description, where the set of attributes consists of concepts.
To be more precise, let M be a finite set of concept descriptions. Any
individual name a occurring in A gives rise to the partial object description

podT ,A(a,M) := (A,S) where A := {C ∈M | T ,A |= C(a)} and

S := {C ∈M | T ,A |= ¬C(a)},
and the whole ABox induces the partial context

KT ,A(M) := {podT ,A(a,M) | a is an individual name occurring in A}.

Note that podT ,A(a,M) is indeed a pod since (T ,A) was assumed to be
consistent, and thus we cannot simultaneously have T ,A |= C(a) and
T ,A |= ¬C(a).

Similarly, any element d ∈ ∆I of an interpretation I gives rise to the
full example

fodI(d,M) := (A,S) where A := {C ∈M | d ∈ CI} and

S := {C ∈M | d ∈ (¬C)I},
and the whole interpretation induces the full context

KI(M) := {fodI(d,M) | d ∈ ∆I}.

Note that fodI(d,M) is indeed a fod since every d ∈ ∆I satisfies either
d ∈ CI or d ∈ ∆I \ CI = (¬C)I .
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Proposition 5.3.1. Let (T ,A) be a consistent knowledge base, M a set of
concept descriptions, and I a model of (T ,A). Then KI(M) is a realizer of
KT ,A(M).

Proof. Consider a pod (A,S) ∈ KT ,A(M), i.e., (A,S) = podT ,A(a,M),
where a is an individual name occurring in A. We claim that (A,S) is
realized by (A,S) := fodI(aI ,M) ∈ KI(M).

Let C be an element of A, i.e., T ,A |= C(a). Since I is a model of
(T ,A), this implies aI ∈ CI , and thus C ∈ A. This shows A ⊆ A. The
inclusion S ⊆ S can be shown in the same way. Now let C be an element of
S, i.e., T ,A |= ¬C(a). Since I is a model of (T ,A), aI ∈ ¬C(a), and thus
C ∈ S. This shows that S ⊆ S. Thus we have proved that (A,S) is realized
by (A,S).

The notion of refutation of an implication is transferred from partial
(full) contexts to knowledge bases (interpretations) in the obvious way.

Definition 5.3.2. The implication L→ R over the attributes M is refuted
by the knowledge base (T ,A) if it is refuted by KT ,A(M), and it is refuted
by the interpretation I if it is refuted by KI(M). If an implication is not
refuted by I, then we say that it holds in I. The set of implications over
M that hold in I is denoted by ImpM (I). In addition, we say that L → R
follows from T if uL vT uR, where uL and uR respectively stand for the
conjunctions

d
C∈LC and

d
D∈RD. ¦

Obviously, L → R is refuted by (T ,A) iff there is an individual name
a occurring in A such that T ,A |= C(a) for all C ∈ L and T ,A |= ¬D(a)
for some D ∈ R. Similarly, L → R is refuted by I iff there is an element
d ∈ ∆I such that d ∈ CI for all C ∈ L and d 6∈ DI for some D ∈ R. In
addition, the implication L→ R holds in I iff (uL)I ⊆ (uR)I .

Proposition 5.3.3. Let T be a TBox and I be a model of T . If the impli-
cation L→ R follows from T , then it holds in I.

Proof. If L→ R follows from T , then by Definition 5.3.2, uL vT uR holds.
Since I is a model of T , (uL)I ⊆ (uR)I holds as well. This shows that
L→ R holds in I.

The operator KT ,A(M)(·) induced by the partial context KT ,A(M) is
defined as in Proposition 5.2.4. Since in the following the attribute set
M can be assumed to be fixed, we will write KT ,A rather than KT ,A(M).
Obviously, the result of applying this operator to a set P ⊆ M can be
described as follows:

KT ,A(P ) = M \
⋃

{D ∈M | ∃a. P ⊆ {C | T ,A |= C(a)} ∧ T ,A |= ¬D(a)}

By Proposition 5.2.4, KT ,A(P ) is the largest subset of M such that P →
KT ,A(P ) is not refuted by (T ,A).
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5.3.1 Completion of DL knowledge bases

We are now ready to define what we mean by a completion of a DL knowledge
base. Intuitively, the knowledge base is supposed to describe an intended
model. For a fixed set M of “interesting” concepts, the knowledge base is
complete if it contains all the relevant knowledge about implications between
these concepts. To be more precise, if an implication holds in the intended
interpretation, then it should follow from the TBox, and if it does not hold
in the intended interpretation, then the ABox should contain a counterex-
ample. Based on the notions introduced in the previous subsection, this can
formally be defined as follows.

Definition 5.3.4. Let (T ,A) be a DL knowledge base, M a finite set of
concept descriptions, and I a model of (T ,A). Then (T ,A) is M -complete
(or simply complete if M is clear from the context) w.r.t. I if the following
three statements are equivalent for all implications L→ R over M :

1. L→ R holds in I;

2. L→ R follows from T ;

3. L→ R is not refuted by (T ,A).

Let (T0,A0) be a DL knowledge base that also has I as a model. Then
(T ,A) is a completion of (T0,A0) if it is complete and extends (T0,A0), i.e.,
T0 ⊆ T and A0 ⊆ A. ¦

In order to rephrase the definition of completeness, let us say that the
element d ∈ ∆I of an interpretation I satisfies the subsumption statement
C v D if d 6∈ CI or d ∈ DI , and that I satisfies this statement if every
element of ∆I satisfies it. In addition, let us call the individual name a a
counterexample in (T ,A) to the subsumption statement C v D if T ,A |=
C(a) and T ,A |= ¬D(a).

Lemma 5.3.5. The knowledge base (T ,A) is complete w.r.t. its model I iff
the following statements are equivalent for all subsets L,R of M :

1. uL v uR is satisfied by I;

2. uL vT uR holds;

3. (T ,A) does not contain a counterexample to uL v uR.

In the following, we use an adaptation of the attribute exploration algo-
rithm for partial contexts presented in Section 5.2.4 in order to compute a
completion of a given knowledge base (T0,A0) w.r.t. a fixed model I of this
knowledge base. It is assumed that the expert has enough information about
this model to be able to answer questions of the form “Is L→ R refuted by
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I?”. If the answer is “no,” then L → R is added to the implication base
computed by the algorithm. In addition, the GCI uL v uR is added to
the TBox. Since L → R is not refuted by I, the interpretation I is still a
model of the new TBox obtained this way. If the answer is “yes,” then the
expert must extend the current ABox (by adding or refining assertions) such
that the extended ABox refutes L→ R and I is still a model of this ABox.
Because of Proposition 5.3.3, before actually asking the expert whether the
implication L → R is refuted by I, we can first check whether uL v uR
already follows from the current TBox. If this is the case, then we know
that L → R cannot be refuted by I. This completion algorithm for DL
knowledge bases is described in more detail in Algorithm 5.

Note that Algorithm 5 applied to T0,A0,M with the underlying model
I of (T0,A0) behaves identical to Algorithm 4 applied to the partial context
KT0,A0

(M) with the underlying full context KI(M) as realizer. This is an
immediate consequence of the following facts:

1. for all i ≥ 0, the underlying interpretation I is a model of (Ti,Ai);

2. if the test uPi vTi
uKTi,Ai

(Pi) is successful, then the implication Pi →
KTi,Ai

(Pi) holds in I, and thus the expert would have answered “no”
to this implication question;

3. if T ′ is a TBox such that Ti ⊆ T ′ and I is a model of T ′, then
KTi,Ai

(M) ≤ KT ′,Ai
(M) ≤ KI(M);

4. if A′ is an ABox such that Ai ⊆ A′, I is a model of A′, and Pi →
KTi,Ai

(Pi) is refuted by A′, then KTi,Ai
(M) ≤ KTi,A′(M) ≤ KI(M)

and Pi → KTi,Ai
(Pi) is refuted by KTi,A′(M).

Thus, Proposition 5.2.13 immediately implies the following proposition.

Proposition 5.3.6. Let (T0,A0) be a knowledge base, M a finite set of
concept descriptions, and I a model of (T0,A0). Then Algorithm 5 termi-
nates, and upon termination outputs a knowledge base (T ,A) and a set of
implications L such that

• L is sound and complete for ImpM (I), and

• (T ,A) refutes every implication that is refuted by I.

It remains to show that Algorithm 5 really computes a completion of the
input knowledge base.

Theorem 5.3.7. Let (T0,A0) be a knowledge base, M a finite set of concept
descriptions, and I a model of (T0,A0), and let (T ,A) be the knowledge base
computed by Algorithm 5. Then (T ,A) is a completion of (T0,A0).
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Algorithm 5 Completion of DL knowledge bases

1: Input: T0, A0, M {(T0,A0) has the underlying interpretation I as
model}

2: i := 0
3: L0 := ∅ {initial empty set of implications}
4: P0 := ∅ {lectically smallest L0-closed subset of M}
5: while Pi 6= M do
6: Compute KTi,Ai

(Pi)
7: if Pi 6= KTi,Ai

(Pi) then {check if the implication follows from Ti}
8: if uPi vTi

uKTi,Ai
(Pi) then

9: Ai+1 := Ai

10: Li+1 := Li ∪ {Pi → KTi,Ai
(Pi) \ Pi}

11: Pi+1 := Li+1((Pi ∩ {m1, . . . ,mj−1}) ∪ {mj}) for the max. j that
satisfies P <j Li+1((Pi ∩ {m1, . . . ,mj−1}) ∪ {mj})

12: else
13: Ask the expert if Pi → KTi,Ai

(Pi) is refuted by I.
14: if no then {uPi v uKTi,Ai

(Pi) is satisfied in I}
15: Ai+1 := Ai

16: Li+1 := Li ∪ {Pi → KTi,Ai
(Pi) \ Pi}

17: Pi+1 := Li+1((Pi∩{m1, . . . ,mj−1})∪{mj}) for the max. j that
satisfies P <j Li+1((Pi ∩ {m1, . . . ,mj−1}) ∪ {mj})

18: Ti+1 := Ti ∪ {uPi v u(KTi,Ai
(Pi) \ Pi)} {extend the TBox}

19: else
20: Get an ABox A′ from the expert such that Ai ⊆ A′, I is a

model of A′, and Pi → KTi,Ai
(Pi) is refuted by A′

21: Ai+1 := A′ {extend the ABox}
22: Ti+1 = Ti

23: Pi+1 := Pi

24: Li+1 := Li

25: end if
26: end if
27: else
28: Ai+1 := Ai

29: Ti+1 := Ti

30: Li+1 := Li

31: Pi+1 := Li+1((Pi ∩ {m1, . . . ,mj−1}) ∪ {mj}) for the max. j that
satisfies P <j Li+1((Pi ∩ {m1, . . . ,mj−1}) ∪ {mj})

32: end if
33: i := i+ 1
34: end while

Proof. Obviously, (T ,A) extends (T0,A0) and has I as a model. To prove
that (T ,A) is complete, we must show that the following three statements
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Figure 5.1: Flow of information in Algorithm 5

are equivalent for all implications L→ R over M :

1. L→ R holds in I;

2. L→ R follows from T ;

3. L→ R is not refuted by (T ,A).

“2 → 1” is an immediate consequence of the fact that I is a model of T ,
and “1 → 2” follows from the facts that L is complete for ImpM (I) and T
contains the GCIs uL′ v uR′ for all implications L′ → R′ in L.
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Acountries Asian EU European G8 Mediterranean

Syria + - - - +

Turkey + - + - +

France - + + + +

Germany - + + + -

Switzerland - - + - -

USA - - - + -

Table 5.1: The partial context before completion

“1 → 3” is an immediate consequence of the fact that I is a model of A,
and “3 → 1” of the fact that (T ,A) refutes every implication that is refuted
by I.

Example 5.3.8. Let us demonstrate the execution of Algorithm 5 on a
small knowledge base. Let our TBox Tcountries contain the following concept
definitions:

AsianCountry ≡ Country u ∃hasTerritoryIn.{Asia}
EUmember ≡ Country u ∃memberOf.{EU}

EuropeanCountry ≡ Country u ∃hasTerritoryIn.{Europe}
G8member ≡ Country u ∃memberOf.{G8}

IslandCountry ≡ Country u ¬∃hasTerritoryIn.Continent
MediterrenaenCountry ≡ Country u ∃hasBorderTo.{MediterrenaenSea}

Moreover, let our ABox Acountries contain the individuals Syria, Turkey,
France, Germany, Switzerland, USA and assume we are interested in the
subsumption relationships between the concept names AsianCountry, EU-
member, EuropeanCountry, G8member and MediterreneanCountry. Table 5.1
shows the partial context induced by Acountries, and Table 5.2 shows the
questions asked by the completion algorithm and the answers given to these
questions. In order to save space, the names of the concepts are shortened
in both tables. The questions with positive answers result in extension of
the TBox with the following GCIs:

G8member u MediterraneanCountry v EUmember u EuropeanCountry
EUmember u G8member v EuropeanCountry

AsianCountry u EUmember v MediterraneanCountry
AsianCountry u EUmember u

EuropeanCountry u MediterraneanCountry v G8member

Moreover, the questions with negative answers result in extension of the
ABox with the individuals Russia, Cyprus, Spain and Japan. The partial
context induced by the resulting ABox A′

countries is shown in Table 5.3.
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Question Answer Counterex.

{G8, Mediterranean} → {EU, European}? yes -

{European, G8} → {EU}? no Russia

{EU} → {European, G8}? no Cyprus

{EU, G8} → {European}? yes -

{EU, European} → {G8}? no Spain

{Asian, G8} → {European}? no Japan

{Asian, EU} → {Mediterranean}? yes -

{Asian, EU, European, Mediterranean} → {G8}? yes -

Table 5.2: Execution of Algorithm 5 on (Tcountries,Acountries)

The resulting knowledge base (T ′
countries,A′

countries) is complete w.r.t. the
initially selected concept names.

A′
countries Asian EU European G8 Mediterranean

Syria + - - - +

Turkey + - + - +

France - + + + +

Germany - + + + -

Switzerland - - + - -

USA - - - + -

Russia + - + + -

Cyprus + + - - +

Spain - + + - +

Japan + - - + -

Table 5.3: The partial context after completion

¦

5.4 Implementation

Based on the results presented in the previous two sections, we have im-
plemented a first experimental version of a DL knowledge base completion
tool called InstExp 2, which stands for Instance Explorer. It implements
Algorithm 5 given in the previous section. InstExp is written in the Java
programming language as an extension to version v2.3 beta 3 of the Swoop
ontology editor [KPS+06]. It communicates with the reasoner over the OWL
API [BVL03].

2available under http://lat.inf.tu-dresden.de/~sertkaya/InstExp/
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Figure 5.2: InstExp window during completion

Usage

A DL knowledge base completion process using InstExp can briefly be
sketched as follows: after loading a knowledge base into Swoop and classi-
fying it, the user can start InstExp from the Swoop menu. At this point
InstExp displays the concept hierarchy of the loaded knowledge base, and
asks the user to select the “interesting” concepts that should be involved
in the completion process. As soon as the user finishes selecting these con-
cepts, InstExp displays the partial context containing the individuals in
the ABox that are instances of some of these concepts, and the completion
process starts with the first question. Figure 5.2 shows a snapshot of the
InstExp window during the completion process. The user can confirm or
reject the questions by clicking the corresponding buttons. If she rejects
a question, InstExp displays a counterexample editor, which contains the
“potential counterexamples” to the current question, i.e., individuals in the
ABox that can be modified to act as a counterexample to this question.
The user can either modify one of these existing individuals and turn it into
a counterexample, or introduce a new individual into the ABox. During
counterexample preparation, InstExp tries to guide the user as follows: If
she makes the description of an individual inconsistent, InstExp gives a
warning and does not allows her to provide this as the description of a coun-
terexample. Once she has produced a description that is sufficient to act
as a counterexample, InstExp notifies the user about this, and allows this
description to be added to the ABox. Figure 5.3 shows a snapshot of the
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Figure 5.3: InstExp window during counterexample preparation

InstExp window during counterexample preparation.

Experiments

In order to evaluate the performance and usability of InstExp we have made
a series of experiments. We have observed that the performance of InstExp

heavily depends on the knowledge base to be completed and the efficiency
of the DL reasoner used. As already mentioned, whenever a question is
accepted, a new GCI is added to the TBox. This requires the knowledge base
to be reclassified. Depending on the size and complexity of the knowledge
base, and efficiency of the underlying DL reasoner, this can take a long
time for real life knowledge bases, which means that the user may have to
wait several minutes between two consecutive questions. To some extent
this problem can be overcome by using a DL reasoner that can perform
incremental reasoning, i.e., that can efficiently handle the added GCI and
reclassify the knowledge base without starting from scratch. Pellet can do
incremental reasoning to some extent.

Another point we have observed is that, during completion, unsurpris-
ingly the expert sometimes makes errors when answering questions. In the
simplest case, the error makes the knowledge base inconsistent, which can
easily be detected by DL reasoning and the expert can be notified about it.
However, in this case an explanation for the reason of inconsistency is often
needed to understand and fix the error. The situation gets more complicated
if the error does not immediately lead to an inconsistency, but the expert
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realizes only in a later step that she has done something wrong in one of the
previous steps. In this case, the tool should be able to help the expert to
detect which one of the previous answers leads to the error. Once the source
of the error is found, the next task is to correct it without producing extra
work for the expert. More precisely, the naive idea of going back to the step
where the error was made, and forgetting all answers given after this step
will result in asking some of the questions again. The tool should avoid this.
A more sophisticated approach to minimize the effort for fixing the error is
rather involved and it requires Algorithm 5 to be modified accordingly.

We have also observed that, in some cases the expert wants to skip a
question, and proceed with another one. On the FCA theory side, this is
not an easy task. It needs the particular lexical order used in the algorithm
to be modified. Doing it in a naive way might result in the loss of soundness
or completeness of the algorithm. This issue, together with other usability
issues mentioned above, are going to be considered in the future. At the
moment, unfortunately we do not yet have experimental results from real
world applications. We have just finished implementing the first prototype
of our tool, and made the above observations in our experiments with small
knowledge bases. After solving the usability issues mentioned above, we
are going to evaluate our tool on the OWL ontology for human protein
phosphatases.



108 Completing DL Knowledge Bases



Chapter 6

On the Generators of Closed

Sets

In the present chapter we investigate the problem of finding the generators
of a closed set. More precisely, we are interested in finding “small” sets that
generate a given closed set under a given closure operator. In particular we
consider the two closure operators introduced in Chapter 3 namely, the closure
operator induced by a set of implications (Section 3.3), and the closure operator
induced by a formal context (Section 3.2). By saying small sets, we mean
two notions of minimality: sets minimal w.r.t set inclusion, and sets minimal
w.r.t cardinality. Solving the first problem, which is finding the generators of
a set closed under a set of implications, can help the expert during attribute
exploration by making the implication questions contain less attributes. The
second problem, which is the problem of finding the generators of a concept
intent, has been considered in the literature due to its role in lattice construction
and merge algorithms. Here we analyze the computational complexity of some
decision and counting problems related to these two problems. We start with
Section 6.1, where we give an introduction to the complexity of counting. In
Section 6.2 we formally define the problems mentioned above. In Section 6.3
we focus on the generators of sets closed under implications, and show that
the problems of counting minimal and minimum cardinality generators are both
intractable. In Section 6.4 we focus on the generators of concept intents, and
show that the same results also apply in this setting.

6.1 Complexity of counting

Complexity theory typically deals with decision problems. These are prob-
lems that ask whether a solution exists. For instance, the decision problem
sat is the problem of deciding whether a Boolean expression given in con-
junctive normal form is satisfiable. In computational complexity theory
there is an extensive literature on the complexity of decision problems, two
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of which are the well known monographs [GJ90, Pap94].
Apart from decision problems, there is another important, natural, and

fundamentally different type of problems that ask “how many different so-
lutions exist” for a given problem instance. These are called counting prob-
lems. For instance, the counting version of sat called #sat is the following
problem: given a Boolean expression in conjunctive normal form, compute
the number of truth assignments that satisfy this expression. Obviously, a
counting problem is at least as hard as its underlying decision problem. For
instance, if we can solve #sat, then we can also solve sat. Because an
expression is satisfiable if and only if the number of truth assignments that
satisfy it is non-zero.

6.1.1 The counting complexity class #P

A counting problem is usually defined by a witness function that, for every
input, returns a set of witnesses. Formally, a witness function and a counting
problem are defined as follows:

Definition 6.1.1 (Counting problem). Let w : Σ∗ → P<ω(Γ∗), where
Σ and Γ are two alphabets, and P<ω(Γ∗) is the set of all finite subsets of
Γ∗. We call w a witness function. Every witness function gives rise to the
following counting problem: given a string x ∈ Σ∗, find the cardinality of
the witness set w(x), i.e., |w(x)|. ¦

The complexity of counting problems was first investigated by Valiant
[Val79a]. For systematically studying and classifying counting problems, he
introduced the counting complexity class #p, which is the class of functions
that count the number of accepting paths of nondeterministic polynomial-
time Turing machines. Typical members of this class are the problems of
counting the number of solutions of np-complete problems. Among them,
the prototypical problem in #p is #sat, which is the following problem:

Problem 6.1.2. (#sat)
INSTANCE: A Boolean formula ϕ in conjunctive normal form.
OUTPUT: The number of all distinct truth assignments that satisfy ϕ.

In [Val79a], Valiant showed that #sat is #p-complete. Moreover, in
[Val79b] he demonstrated that #p contains other natural complete prob-
lems, for which there was no previous indication of intractability. Among
these problems are #perfect matchings1, which is the problem of count-
ing the perfect matchings of a bipartite graph, #minimal vertex cover,
which is the problem of counting the minimal vertex covers of a graph, and
#monotone 2-sat, which is the problem of counting the binary vectors
that satisfy a monotone 2-CNF formula.

1This problem is also known as #permanent since it is equivalent to computing the
permanent of the adjacency matrix of a bipartite graph
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Valiant’s most surprising discovery, however, was that there can be a
dramatic gap in computational complexity between a counting problem and
its underlying decision problem. To be more precise, he showed that there
are #p-complete problems whose underlying decision problem can be solved
in polynomial time. The first problem that was shown to have this easy to
decide, but hard to count property was #perfect matchings. It is well
known that given a bipartite graph, whether it has a perfect matching can
be decided in polynomial time. However, as shown in [Val79b], counting the
perfect matchings of a given bipartite graph is #p-complete, i.e., intractable.

6.1.2 Beyond #P

In addition to introducing #p, in [Val79a] Valiant gave the following defini-
tion for counting complexity classes beyond #p.

Definition 6.1.3 (Classes beyond #p). For any complexity class C,
define #c = ∪A∈c(#p)A, where by (#p)A we mean the functions counting
the accepting paths of nondeterministic polynomial-time Turing machines
having A as their oracle. ¦

According to this definition, the first class that comes after #p is the class
#np, which is the class of functions that count the number of accepting paths
of npnp machines, i.e, nondeterministic polynomial-time Turing machines
with np oracles. Definition 6.1.3 has the following interesting property: since
it does not matter whether an oracle or its complement is called, according
to this definition #c = #coc holds for every complexity class c. More
precisely, #Σkp = #Πkp for every k ≥ 1, where Σkp is the kth level of the
polynomial hierarchy, and Πkp = coΣkp. In particular, for the first level of
the polynomial hierarchy (k = 1), #np = #conp.

In order to make a finer classification of counting problems, in [HV95]
Hemaspaandra and Vollmer have introduced a predicate-based approach for
defining higher complexity classes. In this approach, the counting com-
plexity classes are named as #·c in order to avoid confusion with Valiant’s
notation. Hemaspaandra and Vollmer define the higher counting complexity
classes as follows:

Definition 6.1.4. For any complexity class c, define #·c to be the class
of functions f such that, for some c-computable two-argument predicate R
and some polynomial p, for every string x it holds that:

f(x) = |{y | p(|x|) = |y| and R(x, y)}|
¦

Informally, #·c is the class of functions counting the number of appropriate-
length second arguments that cause some c predicate to be true for the given
first argument. It captures the class of counting problems whose witness
function w satisfies the following conditions:
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1. There is a polynomial p(n) such that for every x and every y ∈ w(x)
we have |y| ≤ p(|x|),

2. The decision problem “given x and y, is y ∈ w(x)?” is in c.

It is easy to verify that the counting complexity class #·p in this ap-
proach is equivalent to the counting complexity class #p in Valiant’s ap-
proach, i.e, #·p = #p. However, in general #c = # · c need not hold for
every complexity class c. The precise relationship between the complexity
classes of these two different approaches was shown to be as follows by Toda
in [Tod91]:

# · Σkp ⊆ #Σkp = # · pΣkp = # · Πkp

for every k ≥ 1. In particular, for the first level of the polynomial hierarchy
(k = 1), # · np ⊆ #np = # · pnp = # · conp. This result shows that
the predicate-based approach by Hemaspaandra and Vollmer makes a finer
classification of counting problems.

In general, what makes a complexity class interesting is whether there
exist natural, complete problems for this class. We have already mentioned
that, in this sense, #p is an interesting class since it contains several natural,
complete problems like #perfect matchings, #minimal vertex cover,
etc. For higher counting complexity classes, the prototypical problems are
counting the satisfying truth assignments of quantified Boolean formulae
with a bounded number of quantifier alterations. For a positive integer k,
the counting problem #Πksat is defined as follows:

Problem 6.1.5. (#Πksat)
INSTANCE: A formula

ϕ(y1, . . . , yn) = ∀x1∃x2 . . . Qkxkψ(x1, . . . , xk, y1, . . . , yn),

where ψ is a Boolean formula, each xi is a tuple of variables, and each yj is
a variable.

OUTPUT: The number of distinct truth assignments to the variables
y1, . . . , yn that satisfy ϕ.

The counting problem #Σksat is defined similarly using a formula of the
form ∃x1∀x2 . . . Qkxkψ(x1, . . . , xk, y1, . . . , yn), where ψ is a Boolean formula,
each xi is a tuple of variables, and each yj is a variable. It is known that the
problem #Πksat is #·Πkp-complete, and the problem #Σksat is #·Σkp-
complete [DHK05].

6.1.3 Subtractive reductions

Completeness of the problems in #p is usually proved by using parsimo-
nious reductions, which are polynomial-time reductions that preserve the
number of solutions by establishing a bijection between the solution sets of
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the problems. Parsimonious reductions have shortcomings when one wants
to use them for showing completeness of problems in counting complexity
classes higher than #p. In addition to preserving the number of solutions,
they also preserve the complexity of the underlying decision problem; thus
they cannot be used to discover the existence of problems that are complete
for higher counting complexity classes and have the “easy to decide, hard
to count” property mentioned above. Due to this fact, in [DHK05] Durand
et al. have introduced a new kind of reduction called subtractive reduction,
such that #p and higher counting complexity classes are closed under it,
and it does not establish a direct bijection between the solution sets of the
problems considered. Hence, they can be used to reduce counting problems
whose underlying decision problems are of different complexity.

A subtractive reduction from a counting problem to another counting
problem first overcounts the number of solutions, and then carefully sub-
tracts any surplus. It is formally defined as follows:

Definition 6.1.6 (Subtractive reduction). Let #a and #b be two
counting problems determined by the binary relations A and B between
strings from Σ and Γ. We say that #a reduces to #b via a strong sub-
tractive reduction if there exist two polynomial-time computable functions
f and g such that for every string x ∈ Σ∗ the following conditions hold:

• B(f(x)) ⊆ B(g(x))

• |A(x)| = |B(g(x))| − |B(f(x))|.
¦

Parsimonious reductions are a special case of subtractive reductions,
where B(f(x)) = ∅. In [DHK05] it was pointed out that subtractive reduc-
tions are perfect tools to study higher counting complexity classes #·conp

and above. There it was shown that these higher counting complexity
classes are closed under subtractive reductions, and that subtractive reduc-
tions can be used to discover natural problems that are complete for higher
counting complexity classes, and problems that have the “easy to decide,
hard to count” property. The first problem shown to have this property is
the problem called #circumscription, which is the problem of counting
the minimal models of a Boolean formula. In [DHK05] it was shown that
#circumscription is #·conp-complete via a subtractive reduction from
#Π1sat. In [HP07] a detailed analysis of counting problems of proposi-
tional abduction was made, and some of these problems were also shown to
be #·conp-complete.

6.2 Small generators of closed sets

In this section, we investigate the problem of finding generators of a closed
set. More precisely, given a closure operator ϕ on a set G and a set A ⊆
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G such that ϕ(A) = A, we are interested in finding “small” sets B ⊆ A
such that ϕ(B) = A. In particular, we consider the following two closure
operators introduced in Chapter 3: 1) the closure operator L(·) induced by
a set of implications (from Section 3.3), and 2) the closure operator (·)′′
induced by a formal context (from Section 3.2). By saying small sets we
mean the following two notions of minimality: 1) sets minimal w.r.t. set
inclusion, 2) sets minimal w.r.t. cardinality. Based on these two notions of
minimality, we investigate the problem for the two closure operators above.

Solving the first problem, which is the problem of finding small genera-
tors of a set closed under implications, can help the expert during attribute
exploration by making the implication questions contain less attributes. In
Section 3.3, we have mentioned that the Duquenne-Guigues Base contains
the minimum number of implications, and thus the attribute exploration al-
gorithm asks the minimum number of questions to the expert. This implies
that none of the implications in the Duquenne-Guigues Base is redundant.
However, it is possible that an implication in the Duquenne-Guigues Base
can be shortened by removing redundant attributes in its premise and con-
clusion. A very similar problem has been considered in the field of relational
databases [Mai83] a long time ago. The problem considered there is known
as finding the keys of a relation. In [LO78] it has been shown that checking
whether a relation has a key of size less than a specified integer is np-
complete. Here we show the following results: given a set of implications L
on M , a set A ⊆M such that L(A) = A, and a positive integer m ≤ |M |

• the np-completeness result in [LO78] applies to the problem of deciding
whether A has a generator of size less than or equal to m (Proposition
6.3.5)

• the problem of counting minimal generators of A is #p-complete (The-
orem 6.3.8)

• the problem of counting minimum cardinality generators ofA is #·conp-
complete (Theorem 6.3.10)

The second problem, which is the problem of finding small generators
of a set closed under (·)′′, is known as finding the minimal generators of a
concept intent. Different aspects of it have been considered in the literature
[NVRG05, FVG05]. Minimal generators of a concept intent play an impor-
tant role in incremental lattice construction, and lattice merge algorithms.
In [NVRG05], the behaviour of minimal generators upon increases in the
underlying context’s attribute set has been investigated, and a method for
computing the family of minimal generators has been presented. Here, we
show the following results: Given a formal context K = (G,M, I), a set
A ⊆M such that A′′ = A, and a positive integer k ≤ |M |

• the problem of checking if A has a generator of size less than or equal
to k is np-complete (Theorem 6.4.2)
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• the problem of counting minimal generators of A is #p-complete (The-
orem 6.4.4)

6.3 Small generators of implication closed sets

Before we start, for the sake of clarity, let us recall two different notions
of minimality for sets. We say that a set S is minimal w.r.t. property P
if S satisfies P , and no S ′ ( S satisfies P . We say that S is of minimum
cardinality w.r.t property P if S satisfies P and no other set S ′ such that
|S′| < |S| satisfies P . From the definition, it is not difficult to see that being
of minimum cardinality implies being minimal, but the other direction of the
implication does not necessarily hold. Based on these notions of minimality,
in this section we are going to look for answers to the following two questions:
during attribute exploration whenever an implication question arises, is it
possible to shorten the implication such that the premise and conclusion of
the implication are

• minimal,

• of minimum cardinality?

Let us formalize the problem in a more general setting as follows:

Problem 6.3.1. Given a set of implications L on M , and an L-closed subset
P of M ,

• find a minimal subset Q of P such that Q generates P , i.e., L(Q) = P

• find a minimum cardinality subset Q of P such that Q generates P .

In the following, we will say that Q is a minimal generator of P under L
if it is an answer of the first question, and minimum cardinality generator
of P under L if it is an answer of the second question. The first question
does not seem to be difficult. In order to obtain a minimal generator of P ,
we can start with P , iterate over all elements of P , and remove an element
if the remaining set still generates P . Algorithm 6 states the idea formally.
It determines a minimal generator of a given P under a given L.

Algorithm 6 terminates since P is finite. Upon termination, Q is a min-
imal generator of P since it does not contain any redundant attribute. At
step 6, for checking whether Q \ {m} generates P , we can use the implica-
tional closure algorithm mentioned in Section 3.3. This algorithm runs in
O(|L||M |). Algorithm 6 makes at most |M | iterations, as a result, it runs
in O(|L||M |2).

The second question in Problem 6.3.1 seems to be more challenging.
Obviously, removing redundant attributes as above might not result in a
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Algorithm 6 Minimal generator

1: Initialization
2: L {Given set of implications on the attribute set M}
3: P {Given P ⊆M such that L(P ) = P}
4: Q := P
5: for all m ∈ P do
6: if L(Q \ {m}) = P then {if Q \ {m} generates P}
7: Q := Q \ {m}
8: end if
9: end for

10: return Q

minimum cardinality generator. There might be a generator Q′ incompa-
rable with the minimal generator Q we would obtain as above, and the
cardinality of Q′ might be less than the cardinality of Q. Algorithm 6 can
not find such generators. A very similar problem has been considered in the
field of relational databases a long time ago [LO78] under the name key

of cardinality m problem2. In the following, we are going to look at
this problem and try to find an answer to our second question based on it.
Before we start, let us first recall some basic notions of relational databases.

6.3.1 Relation to relational databases

In relational databases [Mai83], functional dependencies are a way of ex-
pressing constraints on data. Informally, a functional dependency occurs
when the values of a tuple on one set of attributes uniquely determine the
values on another set of attributes. Formally, given a relation r and a set of
attribute names R, a functional dependency (FD) is a pair of sets X,Y ⊆ R
written as X → Y . The relation r satisfies the FD X → Y if the tuples
with equal X-values also have equal Y-values. In this case, we say that the
set of attributes X functionally determine the set of attributes Y .

The number of FDs that a relation satisfies is finite, since there is only
a finite number of subsets of R. Thus it is always possible to find all FDs
that a relation satisfies, by trying all pairs of subsets of R. However, this
näıve approach is very inefficient. Instead, knowing a set of FDs satisfied by
a relation enables us to infer the other FDs satisfied by this relation. We say
that a set of FDs F implies X → Y , if every relation that satisfies all FDs
in F also satisfies X → Y , and we write this as F |= X → Y . This semantic
notion of implication has also its syntactic counterpart which is a sound and
complete set of inference axioms known as the Armstrong’s axioms [Arm74].
It is the following set of axioms:

2This problem is called minimum cardinality key problem in [GJ90]
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Definition 6.3.2 (Armstrong’s axioms). Let r be a relation on the at-
tribute set R, and X,Y, Z,W be subsets of R, and F be a set of FDs that
are satisfied by r. Then,

• Reflexivity: X → X ∈ F

• Augmentation: X → Y ∈ F implies X ∪ Z → Y ∈ F

• Pseudotransitivity: X → Y ∈ F and Y ∪ Z → W ∈ F imply
X ∪ Z →W ∈ F

¦

One other important concept in relational databases is the notion of a
key. A subset K of the attribute set R is called a key of the relation r if
K functionally determines R. It is called a minimal key, if no proper subset
of it is a key. Alternatively, given a set of functional dependencies F that
are satisfied by r, K is called a key of the relational system < R,F > if
K → R can be inferred from F by using Armstrong’s axioms. In practical
applications, it is important to find “small” keys of a given relation. In
[LO78] an algorithm that determines all minimal keys of a given relation
was given. There, it was also analyzed how difficult it is to check whether a
given relation has a key of cardinality less than or equal to a given integer.
This problem, as mentioned above, is known as the key of cardinality

m problem. Let us call it kcm for short. It is defined as follows:

Problem 6.3.3. (key of cardinality m)

INSTANCE: A set R of attribute names, a set F of FDs, and a positive
integer m ≤ |R|.

QUESTION: Is there a key of cardinality m or less for the relational
system < R,F >?

In [LO78], it was shown that kcm is np-complete. The problem of finding
a minimum cardinality generator of a closed set, mentioned as the second
question in Problem 6.3.1, seems to be very similar to kcm. In order to
exploit this similarity and analyze our problem, we formulate the decision
version of it as follows, and call it the generator of cardinality m

problem, or gcm for short.

Problem 6.3.4. (generator of cardinality m of an implication-closed
set)

INSTANCE: A set M of attribute names, a set L of implications on M ,
an L-closed subset P of M , and a positive integer m ≤ |M |.

QUESTION: Is there a subset Q of P of cardinality m or less that gen-
erates P under L, i.e., is there a Q ⊆ P such that L(Q) = P and |Q| ≤ m
?
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It is not difficult to see that kcm is a special case of gcm. Without
loss of generality, we can think of FDs as implications, and the notion of
computing closure under FDs as implicational closure. In gcm, we are
interested in finding a small generator of a given closed set. Similarly, in
kcm, one is interested in finding a small generator of the whole attribute set,
which is the largest closed set under the given set of functional dependencies.
Thus if we can solve gcm for any given closed set, we can also solve kcm

by choosing the whole attribute set as the closed set given as input. Thus,
gcm is np-hard. For the sake of clarity, let us write it down formally.

Proposition 6.3.5. generator of cardinality m is np-complete.

Proof. The problem is in np. A nondeterministic Turing machine can guess
a subset Q of P , and then in polynomial time verify that Q is a generator
of P with cardinality no more than m.

To show the hardness, we prove that the np-complete problem kcm is
polynomially reducible to gcm. Let F be a set of FDs on the set of attributes
R. To transform this into the corresponding gcm problem, define M to be
R, L to be F , and P to be R. Note that subset Q of P is a generator of P
under L iff it is a key for < R,F >. Because if L(Q) = P , then by definition
of P , L(Q) = R. Due to the correspondence between implicational closure
and closure under FDs, F |= Q → R, thus Q is a key for < R,F >. Now
assume that Q is a key for < R,F >. Then F |= Q→ R, which means that
L(Q) = R = P . Thus Q is a generator of P under L. Obviously, M , L and
P can be determined in time polynomial in |F | and |R|.

Our main motivation to analyze the gcm problem was to see if we can
assist the domain expert during attribute exploration by making the implica-
tion questions shorter. Above, we have seen that although finding a minimal
generating subset of the premise or the conclusion of an implication is can
be done in polynomial time, finding a minimum cardinality generator is in-
tractable. So if we ask for an algorithm for this problem, the current state
of the art has only worst case exponential answers to offer.

6.3.2 Finding all minimal generators

In some cases, it might not be enough to find only one minimal generator of
the premise or conclusion of an implication question. It might be useful to
show the expert different minimal generators for better understandability of
the implication question. The expert might want to browse among them to
find a shortened version of the question that is most comprehensible to him.
In the following, we are going to investigate the problem of determining all
minimal generators of a closed set.

Above we have mentioned that in [LO78], an algorithm that determines
all minimal keys of a given relation was given. Given a set of attributes
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R and a set of functional dependencies F , the algorithm returns the set of
all minimal keys for the relational system < R,F >. Below we are going
to give an adaptation of this algorithm to find all minimal generators of a
given closed set. The algorithm is based on the following property given in
[LO78]. Naturally enough, there the algorithm and the property below are
phrased using database terminology. Here we are going to rephrase them in
our language of implications and minimal generators of closed sets.

Lemma 6.3.6. Let L be a set of implications on M , and G be a nonempty
set of minimal generators for a given P ⊆ M under L. 2P \ G contains a
minimal generator iff G contains a minimal generator G and L contains an
implication L→ R such that L∪R∪G ⊆ P and L∪(G\R) does not include
any minimal generator in G.

Proof. Assume that the condition holds for some G in G and L → R ∈ L.
Since L∪G∪R includes G and L∪G∪R ⊆ P , L∪G∪R is also a generator.
Moreover, L(L ∪ (G \ R)) = L ∪ G ∪ R. Thus L ∪ (G \ R) is a generator;
therefore it includes a minimal generator, say G′. Since L ∪ (G \ R) does
not include any minimal generator in G, G′ cannot already be in G. That
is, the minimal generator G′ lies in 2P \ G.

Now assume that 2P \G contains a minimal generator G′. Define G′′ to be
a maximal subset of P that includes G′ but does not include any generator
in G. Since G is nonempty, G′′ should be a proper subset of P . Moreover,
since G′ is a generator, so is G′′. Since G′′ ( P , and G′′ is a generator, L
contains an L → R such that G′′ ∪ R is a generator and G′′ includes L but
does not include R, and L∪G′′∪R ⊆ P is satisfied. Since G′′ was chosen to
be a maximal subset of P that does not include any generator in G, G′′ ∪R
includes a minimal generator in G, say G. That is, G′′ includes both L and
G \R, therefore it includes L∪ (G \R) and L∪G∪R ⊆ P holds. Since G′′

does not include any minimal generator in G, neither does L ∪ (G \R).

The lemma assumes a nonempty set of minimal generators, thus the
algorithm following from the lemma first needs one minimal generator before
it can proceed to find all other minimal generators. We can use Algorithm
6 to obtain the first minimal generator. Based on these, the algorithm that
determines the set of all minimal generators of a given closed set is given in
Algorithm 7.

The algorithm terminates, since G and L are both finite. By Lemma
6.3.6, upon termination G contains all minimal generators of the given P
under L. The algorithm runs in O(|L||G|(|P |+ |G||P |))+O(|G|m), where m
is the complexity of Algorithm 6. That it is, Algorithm 7 has time complexity
O(|L||G||P |(|G| + |P |)). Note that the algorithm finds minimal generators
in incremental polynomial time, which is a notion introduced in [JPY88]
for analyzing the performance of algorithms that generate all solutions of a
problem. An algorithm is said to run in incremental polynomial time, if given
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Algorithm 7 All minimal generators

1: Initialization
2: L {Given set of implications on the attribute set M}
3: P {Given L-closed set P ⊆M}
4: G := {Minimalgenerator(P,L)} {Initial set of minimal generators}
5: for all G ∈ G do
6: for all L→ R ∈ L s.t. L ∪R ∪G ⊆ P do
7: S := L ∪ (K \R)
8: flag := true
9: for all H ∈ G do

10: if H ⊆ S then
11: flag := false
12: end if
13: end for
14: if flag then
15: G := G ∪ {Minimalgenerator(S,L)}
16: end if
17: end for
18: end for

an input and several solutions (say, a closed set and a collection of minimal
generators), finds another solution, or determines that none exists, in time
polynomial in the combined sizes of the input and the given solutions. For
finding a minimal generator, Algorithm 7 needs to do at most |G||L||P |(|G|+
|P |) operations, which is polynomial in the size of the input, i.e., in the size of
L and P , and polynomial in the size of the already found minimal generators
G.

Another notion introduced in [JPY88] for analyzing algorithms that enu-
merate solutions, is polynomial delay. An algorithm is said to run with poly-
nomial delay if the delay until the first solution is output, and thereafter the
delay between any two consecutive solutions is bounded by a polynomial in
the size of the input. Polynomial delay is a stronger notion than incremental
polynomial time, i.e., if an algorithm runs with polynomial delay it is also
runs in incremental polynomial time. To the best of our knowledge, there
is no polynomial delay algorithm that finds all minimal keys of a relation,
which is equivalent to finding all generators of an attribute set closed under
a set of implications.

6.3.3 Counting minimal generators is intractable

In [Osb77], it was shown that the number of minimal keys for a relational
system < R,F > can be exponential in |R|. This result applies to the
number of minimal generators, i.e, the number of minimal generators of a
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set closed under a set of implications can be exponential in the size of the
attribute set. Below, we show that apart from this exponential bound, it is
intractable to determine the number of minimal generators of a set closed
under implications. First we define the problem of counting the minimal
generators.

Problem 6.3.7. (#minimal generator of an implication-closed set)
INSTANCE: A set M of attribute names, a set L of implications on M ,

an L-closed subset P of M .
OUTPUT: The number of minimal generators of P under L.

Theorem 6.3.8. #minimal generator is #p-complete.

Proof. The problem is in #p. It can be in polynomial time verified that a
subset Q ⊆ P is a minimal generator of P under L.

In order to show hardness, we are going to give a parsimonious reduc-
tion from the problem of counting all minimal vertex covers of a graph
(#minimal vertex cover) to our problem. #minimal vertex cover

was shown to be #p-complete in [Val79b]. Recall that in a graphG = (V,E),
a set W ⊆ V is a vertex cover of G if for every edge (v, u) ∈ E, v ∈W holds,
or u ∈ W holds. W is called a minimal vertex cover if no proper subset of
it is a vertex cover. We are going to construct a set of implications and P
from an arbitrary graph G, and show that the minimal vertex covers of G
are in one-to-one correspondence with the minimal generators of P .

Consider an arbitrary graph G = (V,E). Define the set of attributes as
M = V , the closed subset of M as P = V , and the set of implications as
L = {Nv → {v} | v ∈ V,Nv is the set of vertices adjacent to v}. A subset
W ⊆ V is a minimal vertex cover of G iff W is a minimal generator of P
under L.

We start with the assertion “if W is a minimal vertex cover, then it is
a minimal generator of P under L”. If W = V , then the assertion holds
trivially. Assume W ( V is a vertex cover of G, and let v be some vertex
v ∈ V such that v 6∈ W . Then the set of vertices Nv that are adjacent to
v should be contained in W , i.e. Nv ⊆ W . Otherwise W would not be a
vertex cover. Then the closure of W under L contains v, since L contains
the implication Nv → {v}, and Nv ⊆ W . This means, any v ∈ V , such
that v 6∈ W is contained in L(W ). That is, L(W ) = V = P , i.e., W
is a generator of P under L. The minimality assertion also holds by the
following argument. Let W be a minimal vertex cover of G. Then for any
proper subset W ′ ( W , there is at least one edge (v, u) ∈ E, such that
v 6∈W ′ and u 6∈W ′. This means that Nv 6⊆W ′, and thus v 6∈ L(W ′). That
is, no proper subset of W generates P , i.e., W is a minimal generator of P .

Now we prove the assertion “if W is a minimal generator of P under L,
then it is a minimal vertex cover of G”. Again, if W = P , the assertion
holds trivially. Assume W ( P is a generator of P under L, and let p be
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some attribute p ∈ P such that p 6∈W . Since p ∈ L(W ), and p can only be
the consequence of some implication Np → {p} ∈ L, Np ⊆ W should hold.
Then for every p ∈ P , p ∈ W holds or the left-hand side of the implication
Np → {p} ∈ L is contained in W , i.e., Np ⊆W . This means, for every edge
(p, q) ∈ E, p ∈ W holds, or q ∈ W holds, i.e., W is a vertex cover of G.
The minimality assertion also holds by the following argument. Let W be
a minimal generator of P . Then for any proper subset W ′ ( W , there is at
least one p ∈ P such that p 6∈ L(W ′), which means that Np 6⊆ W ′. That
is there is at least one edge (p, q) ∈ E such that q ∈ Np and p 6∈ W ′ and
q 6∈W ′. This means that no proper subset of W is a vertex cover of G, i.e.,
W is a minimal vertex cover of G.

Obviously, the construction of P and L can be done in polynomial time,
and the reduction is parsimonious, i.e., it preserves the number of solutions.

6.3.4 Counting minimum cardinality generators is intractable

In this section we consider a modified version of the #minimal generator

problem defined in Problem 6.3.7. For this problem, we slightly change the
notion of “generates“ as follows: For a given set L of implications on an
attribute set M , and a set P ⊆ M closed under L, in this section we are
going to say that a Q ⊆ M is a minimum cardinality generator of P if
L(Q) \Q = P , and no subset of M with smaller cardinality satisfies this. In
other words we require that P should be the “new consequences” of closingQ
under L, and that no set with smaller cardinality can have this property. It
turns out that the problem of counting such sets is #·conp-complete, which
means that it is even harder than the #minimal generator problem.
First we define the problem formally.

Problem 6.3.9. (#minimum cardinality generator)

INSTANCE: A set M of attribute names, a set L of implications on M ,
an L-closed subset P of M .

OUTPUT: The number of all minimum cardinality generators of P un-
der L, i.e., the number of the sets Q ⊆ M such that L(Q) \Q = P and for
no other R ⊆M with |R| < |Q|, L(R) \R = P holds.

Theorem 6.3.10. #minimum cardinality generator is #·conp-complete.

Proof. The problem is in #·conp. This can be shown as follows: given
a set of attributes Q, we have to check (i) whether Q generates P , and
if so (ii) whether there is another generator R with |R| < |Q|. The first
check can be done in polynomial time by using the algorithm mentioned in
Section 3.3. The second check, which dominates the overall check, can be
done by a conp algorithm. Indeed, checking whether Q is not a minimum
cardinality generator can be done by the following np-algorithm: guess a
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set R ⊆M such that |R| < |Q| and check if R generates P . Again checking
if R generates P can be done in polynomial time, thus checking whether Q
is a minimum cardinality generator can be done in conp, and counting such
sets can be done in #·conp.

We show #·conp-hardness by a strong subtractive reduction from the
problem #Π1sat. As mentioned in Section 6.1.2, #Π1sat is #·conp-
complete. Consider an instance of the #Π1sat problem given by a formula
ϕ(X) = ∀Y ψ(X,Y ) where X = {x1, . . . , xk} and Y = {y1, . . . , yl}. W.l.o.g,
we can assume that ψ(X,Y ) is in 3DNF, i.e., it is of the form C1 ∨ . . .∨Cn

where each Ci is of the form Ci = li1∧ li2∧ li3, and the lij ’s are propositional
literals over X ∪ Y .

Let x′1, . . . , x
′
k, a1, . . . , ak, y

′
1, . . . , y

′
l, b1, . . . , bl, g1, . . . , gn, r denote fresh,

pairwise distinct variables and let us write them as X ′ = {x′1, . . . , x′k},
Y ′ = {y′1, . . . , y′l}, A = {a1, . . . , ak}, B = {b1, . . . , bl}, and G = {g1, . . . , gn}.
We define two instances of the minimum cardinality generator problem. The
first problem P1 is defined as follows:

M1 = X ∪X ′ ∪ Y ∪ Y ′ ∪A ∪B ∪G ∪ {r}
P1 = A ∪B ∪G
L1 = {{xi, x

′
i} →M, xi → ai, x

′
i → ai | 1 ≤ i ≤ k} ∪

{{yi, y
′
i} →M, yi → bi, y

′
i → bi | 1 ≤ i ≤ l} ∪

{zij → gi | 1 ≤ i ≤ n and 1 ≤ j ≤ 3}

where, for 1 ≤ s ≤ k and 1 ≤ t ≤ l, zij is in one of the forms xs, x
′
s, yt, or, y

′
t

depending on whether the literal lij in Ci is in one of the forms ¬xs, xs,¬yt, or, yt,
respectively. In other words, zij encodes the negation of lij . Now we define
the second problem P2:

M2 = M1

P2 = P1

L2 = L1 ∪ {{y1, . . . , yl} → gi | 1 ≤ i ≤ n}

Obviously, this construction can be done in polynomial time. Now let
A(ϕ) denote the set of all satisfying truth assignments of a #Π1sat-formula
ϕ, and let B(P) denote the set of all solutions of a minimum cardinality
problem P. We claim that the following holds:

B(P1) ⊆ B(P2), and |A(ϕ)| = |B(P2)| − |B(P1)|.

Consider the problem P1. Solutions of P1, i.e., minimum cardinality gen-
erators of P1 satisfy the following 3 conditions: 1) An attribute ai can be
generated only in two ways, by the implication xi → ai, or by the implica-
tion x′i → ai. So a solution of P1 contains one of xi and x′i. Moreover, it
can not contain both of them due to the implication {xi, x

′
i} → M , since

this implication would also generate r, and r is not contained in P1. This
means, for each 1 ≤ i ≤ k a solution of P1 contains either xi or x′i in order
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to be able to generate the ai’s. 2) Similarly, it also contains either yi or y′i
for each 1 ≤ i ≤ l in order to be able to generate the bi’s. 3) In addition
to these, in order to be able to generate an attribute gi, a solution contains
at least one attribute that encodes the negation of a literal occurring in the
implicant Ci. For instance, if Ci = li1 ∧ li2 ∧ li3 and li1 = xs, li2 = y′t, and
li3 = x′u where 1 ≤ s, u ≤ k and 1 ≤ t ≤ l, then a solution contains at least
one of x′s, yt, or xu. In order be able to generate all gi’s, a solution contains
at least one such attribute for each implicant Ci. Subsets of M that satisfy
these 3 conditions are solutions of P1. Each such subset has exactly the size
|X| + |Y | = k + l. Moreover, they are the only solutions of P1, since any
subset of M that has cardinality less than k + l fails to generate at least
one attribute in P1. Conditions 1) and 2) enforce that a solution is a truth
assignment over X ∪ Y . Condition 3) enforces that this truth assignment
contains the negation of at least one literal in every implicant, i.e., it enforces
that this truth assignment makes the formula ψ(X,Y ) false.

Now consider the problem P2. Each solution of P1 is also a solution of
P2 since P2 = P1 and L2 contains all of the implications that L1 contains.
In addition to the implications in L1, L2 also contains implications of the
form {y1, . . . , yl} → gi for 1 ≤ i ≤ n. These new implications give rise to
the following new solutions: Like the solutions of P1, in order to be able to
generate the ai’s and bi’s, they satisfy the conditions 1) and 2) given above.
In order to be able to the generate gi’s, they contain every yi for 1 ≤ i ≤ l.
In other words, these new solutions are truth assignments over X ∪ Y that
set every y1, . . . , yl to true.

Based on the above descriptions, B(P1) is the set of truth assignments
that make ψ(X,Y ) false, and B(P2) is the set of truth assignments that make
ψ(X,Y ) false, plus the set of truth assignments that set every y1, . . . , yl to
true. Obviously, the claim B(P1) ⊆ B(P2) is satisfied. Moreover, the differ-
ence B(P1) \ B(P2) is the set of truth assignments that set every y1, . . . , yl

to true, and at the same time make ψ(X,Y ) true (since by taking the set
difference from B(P1) we remove the truth assignments that make ψ(X,Y )
false). In other words, this set contains the models of ψ(X,Y ) such that all
Y values are fixed by setting them to true. This set has exactly the same
cardinality as the set of models of ϕ(X) = ∀Y ψ(X,Y ), thus the other claim
|A(ϕ)| = |B(P2)| − |B(P1)| is also satisfied.

6.4 Small generators of concept intents

In this section we consider two problems about generators of concept intents.
They are analogs of the problems on generators of implication closed sets,
which were worked out in the previous section. As mentioned earlier, by
a generator of the intent of a formal concept (A,B) of a formal context
K = (G,M, I), we mean a Q ⊆ B such that Q′′ = B.
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6.4.1 GCM of an intent is intractable

Let us start with the problem of checking whether a concept intent has a
generator of cardinality less than a specified size. We call it the generator

of cardinality m of an intent, or gcm of an intent for short. It is formally
defined as follows:

Problem 6.4.1. (generator of cardinality m of an intent)
INSTANCE: A formal context K = (G,M, I), the intent B of a formal

concept (A,B) of K, and a positive integer m.
QUESTION: Is there a subset Q of B of cardinality less than or equal to

m that generates B, i.e., is there a Q ⊆ B such that Q′′ = B and |Q| ≤ m?

As in the case of generator of cardinality m (or gcm) of a set
closed under implications (Problem 6.3.4), this problem is also intractable.

Theorem 6.4.2. generator of cardinality m of an intent is np-
complete.

Proof. Clearly, the problem is in np. A nondeterministic Turing machine
can guess a subset Q of B, and then in polynomial time verify that Q
generates B, and has cardinality not more than m.

To show the hardness, we reduce the vertex cover problem to our
problem. Recall that in a graph G = (V,E), a set W ⊆ V is a vertex cover
of G if for every edge (u, v) ∈ E, u ∈ W holds, or v ∈ W holds. vertex

cover was one of Karp’s 21 np-complete problems in [Kar72].
Consider an arbitrary graph G = (V,E). We construct a formal context

K = (G,M, I), and a concept intent B from G as follows: Define M = V ,
G = E and B = M , which is the largest concept intent. Define I in the
following way: an object (u, v) ∈ G has an attribute y iff the vertex y is not
incident to the edge (u, v) in the graph G. More precisely, (u, v)Iy iff y is
not incident to (u, v). We claim that a set W ⊆ V is a vertex cover of G if
and only if it generates B under (·)′′, i.e., W ′′ = B.

We start with the if direction of the claim. Assume W is a vertex
cover of G. By definitions of the (·)′ operator and the incidence relation I,
W ′ = {(u, v) ∈ G | ∀w ∈ W.(u, v)Iw}, which is the following set of edges
of G: W = {(u, v) ∈ E | ¬∃w ∈ W.w is incident to (u, v)}, i.e., the set of
edges that are not incident to any vertex in W . Since we have assumed that
W is a vertex cover, there can not be any vertices satisfying the condition
in the definition of W ′. Thus W ′ is empty, and W ′′ is equal to M , i.e., W
is a generator of B.

Now we show the only if direction of the claim. Assume W is a generator
of B, i.e., W ′′ = B = M . Then W ′ = {(u, v) ∈ G | ∀m ∈ M.(u, v)Im},
i.e., set of objects that have all the attributes in M . By the definition of
I, this means W ′ = {(u, v) ∈ E | ¬∃y ∈ V.y is incident to (u, v)}, which is
the set of edges that are not incident to any vertex in V . There can not
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be any such edges, i.e., W ′ should be empty, since by definition an edge is
incident to exactly two vertices. Then W should be a vertex cover. Because,
by definition W ′ is the set of edges that are not incident to any vertices in
W , and it can be empty only if W is a vertex cover.

6.4.2 Counting minimal generators is intractable

We continue with the problem #minimal generator of a concept intent,
which is the problem of counting minimal generators of a concept intent.
We say that a set Q ⊆ M is a minimal generator of the intent of a formal
concept (A,B) of a formal context K = (G,M, I), if Q is a generator, i.e.,
Q′′ = B, and Q is minimal, i.e., no proper subset of Q has this property.
The problem #minimal generator of a concept intent is formally defined
as follows:

Problem 6.4.3. (#minimal generator of an intent)

INSTANCE: A formal context K = (G,M, I) and the intent B of a
formal concept (A,B) of K.

OUTPUT: The number of all distinct minimal generators of B under
(·)′′, i.e., |{Q ⊆M | Q′′ = B and ∀P ( Q.P ′′ 6= B}|.

As in the case of counting minimal generators of a set closed under
implications (Problem 6.3.7), this problem is also intractable.

Theorem 6.4.4. #minimal generator of an intent is #p-complete.

Proof. The problem is in #p. It can be in polynomial time verified that a
given Q ⊆M is a minimal generator of B under (·)′′.

In order to show the hardness, we are going to give a parsimonious re-
duction from the #minimal vertex cover problem, which was mentioned
in the proof Theorem 6.3.8. In our reduction, we are going to use the same
construction used in the proof of Theorem 6.4.2. What we additionally have
to show here is that, in this construction minimal vertex covers and minimal
generators are in one-to-one correspondence.

Let G = (V,E) be an arbitrary graph. We construct a formal context
K = (G,M, I) and a concept intent B ⊆M just like in the proof of Theorem
6.4.2. We define M = V , G = E, B = M and I as follows: an object
(u, v) ∈ G is in I relation with an attribute y if and only if the vertex y is
not incident to (u, v), i.e., (u, v)Iy iff y is not incident to (u, v).

AssumeW ⊆ V is a vertex cover of G. Then by the same argument in the
proof of Theorem 6.4.2, it is a generator of B. Now assume W is minimal.
In other words if we remove a vertex from W and call the resulting set X,
X will not be a vertex cover, i.e., there will be an edge (u, v) ∈ E such
that u 6∈ X and v 6∈ X. At the same time, this means that X will not be
a generator of B. Because then X ′ will be {(u, v)}, and X ′′ will be {u, v}.



6.4 Small generators of concept intents 127

Thus, if W is a minimal vertex cover, then it is also a minimal generator of
B.

In order to prove the only if direction of the argument, assume W ⊆M
is a generator of B. Then by the same argument in the proof of Theorem
6.4.2, it is a vertex cover of G. Now assume W is minimal. In other words,
if we remove an attribute from W and call the resulting set X, then X will
not be a generator of B, i.e, there will be an attribute say m ∈ B, such that
m 6∈ X ′′. This means that X ′ will contain an object say (u, v) that does not
have the attribute m. It also means that X will not be a vertex cover of G.
Because X ′ is the set of edges that are not incident to any of the vertices in
X, and this set contains (u, v), i.e., it is not empty. Thus, if W is a minimal
generator of B, it is also a minimal vertex cover of G.

Obviously, the construction of G,M, I and B can be done in polyno-
mial time, and the reduction preserves the number of solutions, i.e., it is
parsimonious.
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Chapter 7

Conclusion

In the present work, we have presented our contributions to DL research by
means of FCA methods, and to the FCA theory itself. Our contributions
can be collected under three items.

Supporting bottom-up construction

As a result of extensive use of ontologies in various application domains,
there exist now large knowledge bases written in expressive DLs, and modern
DL systems that can process them. In order to allow the user to re-use
concepts defined in such existing knowledge bases, and still support the
bottom-up approach, in [BST04a] an extended bottom-up approach was
proposed. In this approach, during the definition of a new concept, the
user can use concept names from an existing background knowledge base
that is written in an expressive DL L, but can employ a sublanguage of L
for defining concepts. This approach requires to compute the least common
subsumer of a set of concept descriptions w.r.t. the background terminology.
In the present work, we have presented a practical approximative method
based on FCA for computing such common subsumers.

Completing DL knowledge bases

The DL-based ontology language OWL has been recommended by the W3C
as the standard ontology language for the semantic web. As a consequence
of this standardization, several ontology editors now support OWL, and on-
tologies written in OWL are employed in more and more applications. As
the size of these ontologies grows, tools that support improving their quality
becomes an important issue. The tools available until now use DL reasoning
to detect inconsistencies and to infer consequences. These approaches ad-
dress the quality dimension of soundness of an ontology. In the present work,
we have worked on a different quality dimension, namely completeness of an
ontology. We have provided a basis for formally well-founded techniques and



130 Conclusion

tools based on FCA that support the ontology engineer in checking whether
an ontology contains all the relevant information about some aspects of the
application domain, and in extending the ontology appropriately if this is
not the case.

On the generators of closed sets

In FCA, so-called closed sets play an important rôle. Concept intents of a
formal context are sets closed under the closure operator induced by this
formal context. In addition, the sets closed under a set of implications are
fundamental to the attribute exploration algorithm. In the present work,
we have investigated some decision and counting problems related to the
generators of closed sets. We have proven that for both of the above closure
operators, checking whether a closed set has a generator of cardinality less
than a specified size is intractable, and counting minimal generators is also
intractable. In addition, we have shown that counting the minimum cardi-
nality generators of sets closed under the second closure operator mentioned
above is also intractable.

7.1 Supporting bottom-up construction

DL-based ontologies are being used in more and more applications in various
domains. As a result of this extensive use of ontologies, there exist now
large knowledge bases written in expressive DLs, and modern DL reasoners
like FaCT [Hor98], Racer [HM01b] and Pellet [SP04] that can reason over
these knowledge bases. In order to allow the user to use concepts defined in
such existing knowledge bases and still support defining new concepts with
the bottom-up approach [BK98, BKM99], in [BST04a] we have proposed
an extended bottom-up approach for the following scenario: assume that
there is a fixed background terminology defined in an expressive DL, and
the user then wants to extend this terminology in order to adapt it to the
needs of a particular application domain. However, since the user is not
a DL expert, he employs a less expressive DL and needs support through
the bottom-up approach when building this user-specific extension of the
background terminology. To make this more precise, consider a background
terminology (TBox) T defined in an expressive DL L2. When defining new
concepts, the user employs only a sublanguage L1 of L2, for which computing
the lcs makes sense. However, in addition to primitive concepts and roles,
the concept descriptions written in the DL L1 may also contain names of
concepts defined in T .

Supporting the bottom-up approach in this scenario requires the com-
putation of the lcs of L1 concept descriptions containing names from T . In
[BST04b] the case where L1 is EL and L2 is ALE has been considered and it
has been shown that the lcs of such concept descriptions exists. In [BST04a]
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this result has been extended to the case where L1 is ALE and L2 is ALC.
Unfortunately, due to high complexity of the algorithm devised from them,
these results can not be used in practice. In order to overcome this problem,
we have developed a practical approximative approach based on FCA.

In this approach, we use the attribute exploration method of FCA in or-
der to compute the subsumption hierarchy of conjunctions of concept names
(and their negations) defined in the background terminology T . This hier-
archy can then be used in the computation of a so-called good common
subsumer (gcs), which is not the least common subsumer of the input con-
cepts, but which is more specific than the common subsumers computed by
ignoring the terminology T . To this purpose, we have defined a formal con-
text, and shown that the concept lattice of this context is isomorphic to the
abovementioned hierarchy. We have also shown that a usual subsumption
algorithm for L2 in the above scenario can act as expert in the attribute ex-
ploration during the computation of this hierarchy. We have implemented
a first experimental version of the method and run experiments on different
knowledge bases. Our experiments showed that the FCA-based method for
computing gcs is indeed a successful approach. What we have also noticed
in our experiments is that during attribute exploration, the number of coun-
terexamples, thus the size of the formal context gets too big, even for small
input terminologies. Later, a more detailed look revealed that due to a spe-
cific property of this formal context, namely dichotomy of the attributes,
most of these objects are in fact reducible, i.e., they can be removed from
the formal context without changing the hierarchy. Based on this, we have
developed a new counterexample generation algorithm that only generates
irreducible objects so that at the end of attribute exploration, the formal
context contains the minimum possible number of objects. We have also
implemented this improved algorithm. Our experiments with the new al-
gorithm on the same knowledge bases as above showed that the improved
algorithm enables drastic amounts of improvement in the runtime.

We have also shown that from a lattice theoretic point of view, the
approaches in [Baa95], [BM00] and our approach are instances of a more
general approach, which is computing the lattice of infima of a partially
ordered set. We have given a description of this more general approach, and
shown that attribute exploration can be used to compute the lattice of the
infima of subsets of a partially ordered set as long as the partial order is
decidable, and all finite infima are computable.

7.2 Completing DL knowledge bases

The DL-based ontology language OWL has been recommended by W3C as
the standard ontology language for the semantic web. As a consequence of
this standardization, several ontology editors like Protégé [KFNM04] and
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Swoop [KPS+06] now support OWL, and ontologies written in OWL are
employed in more and more applications. As the size of these ontologies
grows, tools that support improving their quality becomes an important is-
sue. The tools available until now use DL reasoning to detect inconsistencies
and to infer consequences. There exist also first approaches that allow to
pinpoint the reasons for inconsistencies and for certain consequences. These
approaches address the quality dimension of soundness of an ontology. In
the present work, we have worked on a different quality dimension, namely
completeness of an ontology.

We have described a knowledge acquisition method that allows to extend
a DL knowledge base (T0,A0) by additional information on the relationships
that hold in a specific interpretation I between concepts in a set of concept
descriptions M deemed to be interesting. The method extends the TBox of
the knowledge base by additional GCIs for relationships that hold in I, but
do not follow from the TBox; and it extends the ABox by counterexamples
to relationships that do not hold in I, and are not yet refuted by the existing
individuals in the ABox. To obtain the necessary information on whether
a relationship holds or not, the existing TBox and ABox are checked first.
Only if they cannot be used to decide this question, an expert that “knows”
I is asked. The method is based on the well-known attribute exploration
approach from FCA. However, this approach had to be extended in order
to be able to handle partial contexts, to correctly represent the open-world
semantics of DL knowledge bases. There has been some previous work on
extending FCA and attribute exploration from complete knowledge to par-
tial knowledge [BH00, BH05]. However, this work is based on assumptions
that are different from ours. In order to use attribute exploration method
for our setting, we have developed our own extension of FCA and the at-
tribute exploration algorithm. We have shown that the extended algorithm
terminates, and it is correct, i.e., the output of the algorithm is a completion
of the input knowledge base. This algorithm inherits its complexity from
the usual attribute exploration algorithm: in the worst case, which occurs
if there are few or many relationships between attributes, it is exponential
in the number of attributes. Regarding the number of questions, it asks
the expert the minimum number of questions with positive answers. For
the questions with negative answers, the behaviour depends on the answers
given by the expert: FCA-theory implies that there always exist counterex-
amples that, if taken in each step, ensure a minimal number of questions
with negative answers. In general, however, one cannot assume that the
expert provides these “best” counterexamples.

As a formalization of what “relationships between the concepts in M”
really means, we have used subsumption relationships between arbitrary con-
junctions of elements of M . The reason was, on the one hand, that these re-
lationships should be fairly easy to decide by a domain expert. On the other
hand, the close connection between such relationships and implications, as
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considered in FCA, facilitated the adaptation of attribute exploration for
our purposes. One could also be interested in more complex relationships,
however. For example, one could fix a specific description language L (e.g.,
comprising some subset of the constructors of ALC), then take as attributes
L-concept descriptions over the concept “names” from M , and ask for all
subsumption relationships between the conjunctions of the concept descrip-
tions obtained this way. The immediate disadvantage of this extension is
that in general the set of attributes is no longer finite, and thus termination
of the exploration process is no longer guaranteed. An extension of classical
attribute exploration (i.e., for full contexts) in this direction is described in
[Rud06]. The main idea to deal with the problem of an infinite attribute set
used there is to restrict the attention to concept descriptions with a bounded
role depth. But even though this makes the attribute set finite, its size is
usually too large for practical purposes. Thus, an adaptation of the method
described in [Rud06] to our purposes not only requires an extension of this
method to partial contexts, but also some new ideas of how to deal with the
practicality issue.

Based on our results, we have implemented a first experimental version
of a tool for completing DL knowledge bases as an extension of the ontol-
ogy editor Swoop [KPS+06], which uses Pellet [SP04] as the underlying DL
reasoner. We have just started to evaluate our tool on the OWL ontology
for human protein phosphatases mentioned in the introduction, with biol-
ogists as experts, and hope to get first significant results on its usefulness
and performance in the near future. Unsurprisingly, we have observed that
the experts sometimes make errors when answering implication questions.
Hence we will extend the completion tool such that it supports detecting
such errors and also allows to correct errors without having to restart the
exploration from scratch.

7.3 On the generators of closed sets

In FCA, so-called closed sets play an important rôle. For example, the
concept intents of a formal context are the sets closed under the closure
operator induced by this formal context. In addition, the sets closed under
a set of implications are fundamental to the attribute exploration algorithm.
In the present work we have investigated a natural problem on closed sets,
namely the problem of finding the generators. More precisely, given a closure
operator ϕ on a set G and a set A ⊆ G such that ϕ(A) = A, we are interested
in finding “small” sets B ⊆ A such that ϕ(B) = A. In particular, we have
considered the following two closure operators: 1) the closure operator L(·)
induced by a set of implications, and 2) the closure operator (·)′′ induced by
a formal context. By saying small sets we mean the following two notions
of minimality: 1) sets minimal w.r.t. set inclusion, 2) sets minimal w.r.t.



134 Conclusion

cardinality. Based on these two notions of minimality, we have investigated
the problem for the two closure operators above.

Solving the first problem, which is the problem of finding small genera-
tors of a set closed under implications, can help the expert during attribute
exploration by making the implication questions “simpler”. The attribute
exploration algorithm asks the minimum number of questions to the expert,
i.e, none of the questions is redundant. However, it is possible that an im-
plication question can be shortened by removing redundant attributes in its
premise and conclusion. We have shown the following results: Given a set
of implications L on M , a set A ⊆ M such that L(A) = A, and a positive
integer m ≤ |M |

• the problem of checking whether A has a generator of cardinality less
than or equal to m is np-complete

• the problem of counting minimal generators of A is #p-complete

• the problem of counting minimum cardinality generators ofA is #·conp-
complete

The second problem, which is the problem of finding small generators
of a set closed under (·)′′, is known as finding the minimal generators of a
concept intent. Different aspects of it has been considered in the literature
[NVRG05, FVG05]. Minimal generators of a concept intent play an impor-
tant rôle in incremental lattice construction, and lattice merge algorithms.
In [NVRG05], the behaviour of minimal generators upon increases in the
underlying context’s attribute set has been investigated, and a method for
computing the family of minimal generators has been presented. Here, we
have shown the following results: Given a formal context K = (G,M, I), a
set A ⊆M such that A′′ = A, and a positive integer k ≤ |M |

• the problem of checking if A has a generator of cardinality less than
or equal to k is np-complete

• the problem of counting minimal generators of A is #p-complete

In fact, it is not surprising that the mentioned problems about generators
of concept intents and generators of an implication closed set are of the same
complexity. Because it is well known that the closure operator induced by a
formal context, and the closure operator induced by the set of implications
that are valid in this formal context coincide.
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