35 research outputs found

    Retrospective correction of involuntary microscopic head movement using highly accelerated fat image navigators (3D FatNavs) at 7T

    Get PDF
    Purpose: The goal of the present study was to use a three- dimensional (3D) gradient echo volume in combination with a fat-selective excitation as a 3D motion navigator (3D FatNav) for retrospective correction of microscopic head motion during high-resolution 3D structural scans of extended duration. The fat excitation leads to a 3D image that is itself sparse, allowing high parallel imaging acceleration factors – with the additional advantage of a minimal disturbance of the water signal used for the host sequence. Methods: A 3D FatNav was inserted into two structural proto- cols: an inversion-prepared gradient echo at 0.33 0.33 1.00 mm resolution and a turbo spin echo at 600 mm isotropic resolution. Results: Motion estimation was possible with high precision, allowing retrospective motion correction to yield clear improvements in image quality, especially in the conspicuity of very small blood vessels. Conclusion: The highly accelerated 3D FatNav allowed motion correction with noticeable improvements in image quality, even for head motion which was small compared with the voxel dimensions of the host sequence

    Bias field correction of MPRAGE by an external reference - The poor man's MP2RAGE

    Get PDF
    Purpose: To implement and evaluate a sequential approach to obtain semi-quantitative T1-weighted MPRAGE images, unbiased by B1 inhomogeneities at 7T.Methods: In the reference gradient echo used for normalization of the MPRAGE image, flipangle (αGE) and acquisition voxel size (Vref) was varied to optimize tissue contrast and acquisition time (Tacq). The finalized protocol was implemented at three different resolutions and the reproducibility was evaluated. Maps of T1 were derived based on the normalized MPRAGE through forward signal modelling.Results: A good compromise between tissue contrast and SNR was reached at αGE=3°. Areduction of the reference GE Tacq by a factor of 4, at the cost of negligible bias, was obtained by increasing Vref with a factor of 8 relative the MPRAGE resolution. The coefficient-ofvariation in segmented WM was 9±5% after normalization, compared to 24±12% before. The T1 maps showed no obvious bias and had reasonable values with regard to literature, especially after optional B1 correction through separate flip angle mapping.Conclusion: A non-interleaved acquisition for normalization of MPRAGE offers a simplealternative to MP2RAGE to obtain semi-quantitative purely T1-weighted images. Theseimages can be converted to T1 maps analogously to the established MP2RAGE approach. Scan time can be reduced by increasing Vref which has a miniscule effect on image quality

    Cortical depth dependent functional responses in humans at 7T: improved specificity with 3D GRASE

    Get PDF
    Ultra high fields (7T and above) allow functional imaging with high contrast-to-noise ratios and improved spatial resolution. This, along with improved hardware and imaging techniques, allow investigating columnar and laminar functional responses. Using gradient-echo (GE) (T2* weighted) based sequences, layer specific responses have been recorded from human (and animal) primary visual areas. However, their increased sensitivity to large surface veins potentially clouds detecting and interpreting layer specific responses. Conversely, spin-echo (SE) (T2 weighted) sequences are less sensitive to large veins and have been used to map cortical columns in humans. T2 weighted 3D GRASE with inner volume selection provides high isotropic resolution over extended volumes, overcoming some of the many technical limitations of conventional 2D SE-EPI, whereby making layer specific investigations feasible. Further, the demonstration of columnar level specificity with 3D GRASE, despite contributions from both stimulated echoes and conventional T2 contrast, has made it an attractive alternative over 2D SE-EPI. Here, we assess the spatial specificity of cortical depth dependent 3D GRASE functional responses in human V1 and hMT by comparing it to GE responses. In doing so we demonstrate that 3D GRASE is less sensitive to contributions from large veins in superficial layers, while showing increased specificity (functional tuning) throughout the cortex compared to GE

    Mapping the Organization of Axis of Motion Selective Features in Human Area MT Using High-Field fMRI

    Get PDF
    Functional magnetic resonance imaging (fMRI) at high magnetic fields has made it possible to investigate the columnar organization of the human brain in vivo with high degrees of accuracy and sensitivity. Until now, these results have been limited to the organization principles of early visual cortex (V1). While the middle temporal area (MT) has been the first identified extra-striate visual area shown to exhibit a columnar organization in monkeys, evidence of MT's columnar response properties and topographic layout in humans has remained elusive. Research using various approaches suggests similar response properties as in monkeys but failed to provide direct evidence for direction or axis of motion selectivity in human area MT. By combining state of the art pulse sequence design, high spatial resolution in all three dimensions (0.8 mm isotropic), optimized coil design, ultrahigh field magnets (7 Tesla) and novel high resolution cortical grid sampling analysis tools, we provide the first direct evidence for large-scale axis of motion selective feature organization in human area MT closely matching predictions from topographic columnar-level simulations

    Layer-Specific fMRI Reflects Different Neuronal Computations at Different Depths in Human V1

    Get PDF
    Recent work has established that cerebral blood flow is regulated at a spatial scale that can be resolved by high field fMRI to show cortical columns in humans. While cortical columns represent a cluster of neurons with similar response properties (spanning from the pial surface to the white matter), important information regarding neuronal interactions and computational processes is also contained within a single column, distributed across the six cortical lamina. A basic understanding of underlying neuronal circuitry or computations may be revealed through investigations of the distribution of neural responses at different cortical depths. In this study, we used T2-weighted imaging with 0.7 mm (isotropic) resolution to measure fMRI responses at different depths in the gray matter while human subjects observed images with either recognizable or scrambled (physically impossible) objects. Intact and scrambled images were partially occluded, resulting in clusters of activity distributed across primary visual cortex. A subset of the identified clusters of voxels showed a preference for scrambled objects over intact; in these clusters, the fMRI response in middle layers was stronger during the presentation of scrambled objects than during the presentation of intact objects. A second experiment, using stimuli targeted at either the magnocellular or the parvocellular visual pathway, shows that laminar profiles in response to parvocellular-targeted stimuli peak in more superficial layers. These findings provide new evidence for the differential sensitivity of high-field fMRI to modulations of the neural responses at different cortical depths

    Effects of MP2RAGE B\u3csub\u3e1\u3c/sub\u3e\u3csup\u3e+\u3c/sup\u3e sensitivity on inter-site T\u3csub\u3e1\u3c/sub\u3e reproducibility and hippocampal morphometry at 7T

    Get PDF
    Most neuroanatomical studies are based on T -weighted MR images, whose intensity profiles are not solely determined by the tissue\u27s longitudinal relaxation times (T ), but also affected by varying non-T contributions, hampering data reproducibility. In contrast, quantitative imaging using the MP2RAGE sequence, for example, allows direct characterization of the brain based on the tissue property of interest. Combined with 7 Tesla (7T) MRI, this offers unique opportunities to obtain robust high-resolution brain data characterized by a high reproducibility, sensitivity and specificity. However, specific MP2RAGE parameter choices – e.g., to emphasize intracortical myelin-dependent contrast variations – can substantially impact image quality and cortical analyses through remnants of B -related intensity variations, as illustrated in our previous work. To follow up on this: we (1) validate this protocol effect using a dataset acquired with a particularly B insensitive set of MP2RAGE parameters combined with parallel transmission excitation; and (2) extend our analyses to evaluate the effects on hippocampal morphometry. The latter remained unexplored initially, but can provide important insights related to generalizability and reproducibility of neurodegenerative research using 7T MRI. We confirm that B inhomogeneities have a considerably variable effect on cortical T estimates, as well as on hippocampal morphometry depending on the MP2RAGE setup. While T differed substantially across datasets initially, we show the inter-site T comparability improves after correcting for the spatially varying B field using a separately acquired Sa2RAGE B map. Finally, removal of B residuals affects hippocampal volumetry and boundary definitions, particularly near structures characterized by strong intensity changes (e.g. cerebral spinal fluid). Taken together, we show that the choice of MP2RAGE parameters can impact T comparability across sites and present evidence that hippocampal segmentation results are modulated by B inhomogeneities. This calls for careful (1) consideration of sequence parameters when setting acquisition protocols, as well as (2) acquisition of a B map to correct MP2RAGE data for potential B variations to allow comparison across datasets. 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 + + + + + + + +

    Resting-State fMRI Advances for Functional Brain Dynamics

    Get PDF
    The development of functional magnetic resonance imaging (fMRI) in quiescent brain imaging has revealed that even at rest, brain activity is highly structured, with voxel-to-voxel comparisons consistently demonstrating a suite of resting-state networks (RSNs). Since its initial use, resting-state fMRI (RS-fMRI) has undergone a renaissance in methodological and interpretive advances that have expanded this functional connectivity understanding of brain RSNs. RS-fMRI has benefitted from the technical developments in MRI such as parallel imaging, high-strength magnetic fields, and big data handling capacity, which have enhanced data acquisition speed, spatial resolution, and whole-brain data retrieval, respectively. It has also benefitted from analytical approaches that have yielded insight into RSN causal connectivity and topological features, now being applied to normal and disease states. Increasingly, these new interpretive methods seek to advance understanding of dynamic network changes that give rise to whole brain states and behavior. This review explores the technical outgrowth of RS-fMRI from fMRI and the use of these technical advances to underwrite the current analytical evolution directed toward understanding the role of RSN dynamics in brain functioning

    Neural correlates of egocentric and allocentric frames of reference combined with metric and non-metric spatial relations

    Get PDF
    Spatial relations (SRs: coordinate/metric vs categorical/non metric) and frames of reference (FoRs: egocentric/body vs allocentric/external element) represent the building blocks underlying any spatial representation. In the present 7-T fMRI study we have identified for the first time the neural correlates of the spatial representations emerging from the combination of the two dimensions. The direct comparison between the different spatial representations revealed a bilateral fronto-parietal network, mainly right sided, that was more involved in the egocentric categorical representations. A right fronto-parietal circuitry was specialized for egocentric coordinate representations. A bilateral occipital network was more involved in the allocentric categorical representations. Finally, a smaller part of this bilateral network (i.e. Calcarine Sulcus and Lingual Gyrus), along with the right Supramarginal and Inferior Frontal gyri, supported the allocentric coordinate representations. The fact that some areas were more involved in a spatial representation than in others reveals how our brain builds adaptive spatial representations in order to effectively react to specific environmental needs and task demands

    A probabilistic atlas of finger dominance in the primary somatosensory cortex

    Get PDF
    With the advent of ultra-high field (7T), high spatial resolution functional MRI (fMRI) has allowed the differentiation of the cortical representations of each of the digits at an individual-subject level in human primary somatosensory cortex (S1). Here we generate a probabilistic atlas of the contralateral SI representations of the digits of both the left and right hand in a group of 22 right-handed individuals. The atlas is generated in both volume and surface standardised spaces from somatotopic maps obtained by delivering vibrotactile stimulation to each distal phalangeal digit using a travelling wave paradigm. Metrics quantify the likelihood of a given position being assigned to a digit (full probability map) and the most probable digit for a given spatial location (maximum probability map). The atlas is validated using a leave-one-out cross validation procedure. Anatomical variance across the somatotopic map is also assessed to investigate whether the functional variability across subjects is coupled to structural differences. This probabilistic atlas quantifies the variability in digit representations in healthy subjects, finding some quantifiable separability between digits 2, 3 and 4, a complex overlapping relationship between digits 1 and 2, and little agreement of digit 5 across subjects. The atlas and constituent subject maps are available online for use as a reference in future neuroimaging studies
    corecore