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Chapter

Resting-State fMRI Advances for 
Functional Brain Dynamics
Denis Larrivee

Abstract

The development of functional magnetic resonance imaging (fMRI) in quiescent 
brain imaging has revealed that even at rest, brain activity is highly structured, 
with voxel-to-voxel comparisons consistently demonstrating a suite of resting-state 
networks (RSNs). Since its initial use, resting-state fMRI (RS-fMRI) has undergone 
a renaissance in methodological and interpretive advances that have expanded this 
functional connectivity understanding of brain RSNs. RS-fMRI has benefitted from 
the technical developments in MRI such as parallel imaging, high-strength magnetic 
fields, and big data handling capacity, which have enhanced data acquisition speed, 
spatial resolution, and whole-brain data retrieval, respectively. It has also benefitted 
from analytical approaches that have yielded insight into RSN causal connectivity and 
topological features, now being applied to normal and disease states. Increasingly, 
these new interpretive methods seek to advance understanding of dynamic network 
changes that give rise to whole brain states and behavior. This review explores the 
technical outgrowth of RS-fMRI from fMRI and the use of these technical advances to 
underwrite the current analytical evolution directed toward understanding the role of 
RSN dynamics in brain functioning.

Keywords: resting-state networks, resting-state fMRI, big data analysis, high strength 
magnetic imaging, effective connectivity, parallel imaging, independent components 
analysis

1. Introduction

Resting-state, functional, magnetic resonance imaging (RS-fMRI) focuses on 
spontaneous low-frequency fluctuations (< 0.1 Hz) in the BOLD signal that occur in 
the absence of task-related activities. The functional significance of these fluctuations 
was first recognized by Biswal et al. [1] in a study in which subjects were told not to 
perform any cognitive, language, or motor tasks. After determining the correlation 
between the BOLD time course of a seed region identified by bilateral finger tapping 
and that of all other areas in the brain, the authors found that fluctuations in the left 
somatosensory cortex were highly correlated with homologous areas in the contralat-
eral hemisphere. This observed correlation led to their conclusion that such “resting 
networks” manifested the functional connectivity of the brain.
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The observation of spontaneous, synchronous fluctuations occurring between 
brain regions has since stimulated studies that have identified as many as 7 to 17 
other stable networks [2–5], although seven are consistently agreed upon. The visual 
network, for example, is highly consistent across various studies and spans much 
of the occipital cortex. The importance of this network structure is reflected in the 
amount of bodily energy devoted toward brain and, presumably, network mainte-
nance. On a relative basis, the energy consumed by the brain is approximately 20% 
of the total bodily energy consumption, despite a relative mass of only 2%. Of the 
brain’s consumption, some 60 to 80% of the energy is used while “resting,” which is 
for internal communication and support alone. By contrast, elicited activity con-
sumes less than 1% of the brain’s energy resources. Resting networks thus appear to 
constitute a fundamental organizational architecture for the functional properties of 
the brain [5].

Because characterization of resting-state networks (RSNs) in the human brain 
relies on the analysis of temporal fluctuations in the blood oxygenation level-
dependent (BOLD) signal, the delineation of RSNs has been directly linked to the 
ability of fMRI to detect neural activity [6]. Using T2-weighted signal intensity and 
blood oxygenation as the contrast agent [7], fMRI imaging offers a relatively facile 
procedure for the acquisition of brain activity data [8, 9], one that has been exploited 
in numerous studies.

Early investigations [10] confirmed fMRI suitability for RSN determinations. The 
advantages of RS-fMRI in its own right have since become apparent [8], including 
ease of signal acquisition, minimal requisite effort from the patients, and proficiency 
for identifying functional areas in different patient populations. Recent studies have 
demonstrated that imaging of difficult-to-monitor patients, such as pediatric subjects 
and patients with disorders of consciousness, that is, coma, vegetative, and mini-
mally conscious states, are able to undergo RS-fMRI. The procedure also offers the 
capability for functional differentiation, when patients perform specific tasks that are 
designed to target a single network such as motor, language, memory, vision, atten-
tion, and sensory networks.

Despite limitations in use of the BOLD signal, especially the dichotomy between 
the temporal resolution and the temporal scale of the neural activity measured, 
RS-fMRI studies have continued to expand, propelled not only by technical improve-
ments at the level of signal acquisition—e.g., parallel MRI imaging, data acquisition 
[11], and computational advances for preprocessing and feature extraction [12]—but 
also by theoretical and mathematical tools that have amplified the functional inter-
pretations of quiescent and task-based brain activity [13, 14]. One outcome of these 
developments has been a more precise view of how RSNs are functionally organized 
and how this in turn modulates communication within the brain, that is, a more 
dynamic view of information exchange and regulation [15].

The need to address cognitive dysfunction in the light of these more precise and 
advanced models of brain operation has also benefitted from this work. The DMN has 
been an early and continuing focus of study for the exploration of alterations during 
Alzheimer’s and other degenerative diseases, which tend to adapt to the structural 
profile of the network [16]. There is also increasing interest in examining the neuro-
logical changes that occur as a result of traumatic, vascular, or oncological influences, 
which, because of their focal impact, can affect multiple network domains [17, 18]. 
Stroke, especially, is a leading cause of disability and dependency in adults—in 2010, 
there were about 11.6 million incident ischemic stroke events in the United States, and 
by 2030, an additional 3.4 million adults are predicted to have strokes.
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In light of RSN discoveries, the understanding of how these focal effects influence 
brain functioning has also evolved. Stroke lesions are therefore understood not only 
to result in focal, location-dependent neurological symptoms but can also induce 
widespread effects in remote regions in the affected and unaffected hemispheres. 
Consistent with this, while baseline measures of stroke severity represent the cur-
rent level of diagnostic and prognostic capability, patients’ neurological impairment 
sometimes exceeds what would be expected from stroke magnitude; that is, growing 
evidence emphasizes the role of distributed neural networks in the generation of 
brain states and the control of behavior that could account for stroke outcomes affect-
ing behavior [18, 19]. Such possibilities implicate a need for still more comprehensive 
RSN tools that can explore the relationship between whole-scale RSN dynamics and 
behavior in clinical settings.

This review discusses the evolution in the study of brain RSNs as an outgrowth of 
the methodological principles that have advanced fMRI imaging of neural brain activ-
ity. It covers the advances in technical approaches for data retrieval and processing 
that have provided the basis for improved network analysis and that build on concep-
tual insights into functional network associations based on connectivity associations. 
It also considers both the frequently used data-driven approaches and their contribu-
tion to larger-scale explorations of brain dynamics based on causal connectivities and 
topological variation, now being applied in more global models. Improvements in 
these latter are likely to offer the prospect of clinical insights that can relate network 
operation to disease states, such as stroke.

2. Modern resting state network methodology

2.1 Resting-state network detection as an outgrowth fMRI

RS-fMRI relies on spontaneous low-frequency fluctuations (< 0.1 Hz) in the 
BOLD signal, which measures the contrast between the diamagnetic effect of oxy-
hemoglobin and the paramagnetic effect of deoxy-hemoglobin [7]. The dependence 
on the BOLD signal means that RS-fMRI shares advantages that accrue to fMRI—the 
ability to monitor neural activity, albeit indirectly—but also disadvantages that 
characterize its use. Chief among these limitations is fMRI’s temporal resolution, 
which is dependent on the hemodynamic response time. Since the hemodynamic 
response is much slower than the underlying neural processes, temporal information 
of spiking events is heavily blurred and typically requires the use of mathematical 
processing, like that of the general linear model [9], or experimental block protocols, 
to infer event-related, signal activity. With processing, temporal resolution in the 
100 ms range can be achieved, which is roughly tenfold slower than the neural events 
being monitored. By contrast, the spatial resolution of fMRI is considerably better, 
as well as much superior to electrical and magnetic recording techniques, though 
slightly reduced from that of MRI. Due to the need for fast acquisition of time series 
information, the spatial resolution in the case of fMRI is limited somewhat by the 
signal-to-noise ratio (SNR). With single-shot imaging, for example, the acquisition 
time for fMRI is reduced and the pixel size must be increased to obtain a satisfactory 
SNR. With a suitable increase in magnetic strength [20], however, SNR is sufficiently 
enhanced to yield a pixel size slightly under 1 mm.

A key factor in the use of RS-fMRI is the measurement of neural activity fluctua-
tions rather than spiking events per se. Neural activity fluctuations (low-frequency 
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and indirectly measured using the BOLD signal) exhibit substantially different time 
courses from those of neural firing (high-frequency and direct). Accordingly, while 
the representation of individual, high-frequency spiking events is itself heavily 
blurred, the slow neural activity fluctuations detected by the BOLD signal display a 
well-resolved temporal pattern. Measurements of these fluctuations thus provide for 
accurate functional inferences obtained from voxel-to-voxel comparisons. Together 
with the high spatial resolution that is an inherent feature of fMRI, RS-fMRI currently 
constitutes the most powerful tool available for assessing the functional connectivity 
properties of brain networks.

2.2 Technical advances in RS-fMRI

2.2.1 General acquisition

The early detection of RSNs by Biswal et al. [10] used a standard 1.5 T clinical 
scanner equipped with a three-axis head gradient coil and a shielded birdcage radio 
frequency coil. A time course of 512 echo-planar images (EPI) from a 10 mm axial 
slice (flip angle 34O) was obtained every 250 ms and the respective data sets were 
band pass filtered at <0.08 Hz. Using these moderate parameters, the study demon-
strated a high degree of temporal correlation in the sensorimotor cortex and in several 
other regions associated with motor function. Departing from this early protocol, 
most RS-fMRI scanning now employs 3 Tesla (3 T) field strength to obtain clinically 
reliable data and gradient-echo echo-planar imaging (GE-EPI) sequences [21, 22]. 
Because RSN acquisition is T2* weighted, GE sequencing is typically used in prefer-
ence to T2 weighted spin echo sequences [23]. Whole-brain coverage is required, with 
high in-plane resolution (about 2 to 3 mm) and a repeat time (TR) of 2 to 3 s [24] to 
capture the distributed configuration of RSNs.

While most RS-fMRI imaging studies rely on these or comparable protocols, current 
resting-state procedures also have available an arsenal of advances that can supplement 
the current standard conditions. Among other developments, these include procedures 
for increasing data acquisition speed [22], enhancing spatial resolution by improving 
SNR capabilities with high-strength magnetic fields [20], preprocessing corrections for 
motion artifacts [25], and big data acquisition capability [26].

2.2.2 Rapid data acquisition

The advent of parallel imaging has stimulated an increasing number of studies that 
have sought to harness the speed of data acquisition made possible by its development 
[11]. Fast RS-fMRI has been motivated by various objectives. Firstly, increasing data 
acquisition speed can assist multivariate approaches while also retaining a comparable 
level of sensitivity. For clinical groups for whom RS-fMRI is an increasingly used 
diagnostic approach, this affords greater interpretive power [27]. The use of rapid 
data approaches also enables better discretization of dynamical changes associated 
with connectivity changes, which are posited to reflect distinct brain states [28–30]. 
Additionally, rapid RS-fMRI data acquisition can help to identify artifactual contribu-
tions, such as cardiac and respiratory rhythms [31, 32]. With low sampling rates, these 
sources of physiological noise often alias to lower, functionally associated, frequency 
bands [33] making them difficult to resolve since task time series are unavailable in 
the resting state [34].
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Parallel MRI imaging employs multiple receiver coils for fast data acquisition. 
These capture spatially distinct data sets due to the differential spatial profiles of the 
receivers. The most widely used configurations are Multiband (MB) and 3D echo 
planar imaging (EPI) [35]. Multiband pulses excite a set number of slices simultane-
ously, ranging from MB2–4 up to MB8, which are then unfolded. Faster sampling rates 
can be achieved by reducing the overlap between slices with techniques like GRAPPA 
or CAIPIRINHA [36–39]. Both of these techniques operate in the frequency domain 
and are based on the principle that k space information within a given point is par-
tially retained in neighboring points of the k domain, which can be retrieved during 
scanning. The CAIPIRINHA technique is an evolution of the GRAPPA technique, in 
which there is an applied acceleration along the Ky and Kz directions and an additional 
phase offset (slice-shift) along the Kz direction. These modifications yield unique 
frequency patterns and therefore simpler aliasing to solve. In 3D EPI, the slice direc-
tion is embedded with a phase encoding gradient. Each repetition excites the whole 
imaging volume, requiring a smaller flip angle. The use of the encoding gradient also 
accelerates data acquisition, which when used in conjunction with the CAIPIRINHA 
approach, can still achieve faster retrieval [40].

Another approach used for rapid data retrieval is that of Magnetic Resonance 
Electroencephalography (MREG). This approach derives its speed from the ability to 
traverse the k-space with a stack of spiral trajectories [41], which significantly reduces 
sampling recovery, enabling whole data scans in less than 100 ms. A drawback is 
the relatively low spatial resolution of about 3 mm. However, the method offers the 
significant advantage of greatly facilitating dynamic functional connectivity analyses 
[42] that require large data sets.

2.2.3 High strength fields in RS-fMRI

Although most RS-fMRI studies are conducted at 3 T, higher field strengths offer 
advantages not provided by standard 3 T field strength. Higher field strengths yield 
correlation coefficients that are consistently higher for resting networks, due to the 
linear dependency of the SNR on the magnetic field [43, 44]. The higher correlation 
and enhanced signal combine to improve signal detection and lessen the amount of 
mathematical processing needed for signal resolution, which means that the spatial 
characteristics of resting networks can be measured with greater precision than at 
lower field strengths. The chief advantage of higher fields thus is an improved spatial 
resolution, which enables a better spatial delineation of network maps.

Additionally, due to the higher SNR, the temporal reliability of mapping is also 
improved, lending the technique a broader clinical range. For example, RS-fMRI at 
7 T has been shown to enhance the temporal reliability of sensorimotor and language 
network detection in preoperative planning [45] and for mapping habenula resting-
state networks involved in anxiety and addiction disorders [46].

On the other hand, use of higher field strengths has several drawbacks, including 
longer sampling intervals, inhomogenous magnetic field properties, and the loga-
rithmic growth in specific absorption rate (SAR) with increasing field strength [22]. 
In particular, the higher spatial resolution requires long repetition times, due to the 
need to include data acquisition from the whole brain to accommodate the brain-wide 
distribution of major RSNs. Additionally, inhomogeneities in magnetic field affect 
receive and transmit RF coil sensitivity [47], which requires correction for accurate 
connective mapping, while SAR constraints on echo planar imaging affect multiband 
pulses [22].
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2.2.4 Big data

Current increases in study size are generating exceptional amounts of data 
in their attempts to explore ever-larger studies of RSNs in brain operation. The 
Human Connectome Project [48] and the 1000 Functional Connectomes Project 
[49] have released in excess of 1000 RS-fMRI data sets, for example. Traditional 
data-driven methods for handling RS-fMRI data, such as independent components 
analysis and graph theoretic approaches, become unwieldy and lose descriptive 
power at elevated data levels. The need for suitable techniques to address big data 
handling is thus currently stimulating the development of new preprocessing 
methods and analytical adaptions that can accurately reflect network structure and 
dynamics [50].

Large data sets are typically characterized in three ways, the amount of data, 
termed Big Volume, the diversity of information, termed Big Variety, and the reli-
ability of the data as a representation of brain functional architecture, termed Big 
Veracity. Big-volume RSN data sets are characterized by an informational mass 
exceeding that of a single very large computer processing capacity [50], though not 
so large as whole genome data sets. Big variety reflects the diversity of information 
within a single data set but can also extend to comparisons between two data sets, 
such as occurs with two or more imaging data sets or with other information modes 
like behavior, for example, the Open Access Series of Imaging Studies (OASIS) project 
with more than 500 subjects worth of data [51]. Big Veracity considers the various 
data sources that can lessen the ability to extract meaningful network data, including 
noise, resolution artifacts, data inconsistencies, and acquisition errors.

Initial steps involved in big data handling entail preprocessing to remove the 
effects of sources that diminish the ability to assess meaningful data. Several prepro-
cessing steps are becoming more accepted, but these can also greatly increase compu-
tational load. The most widely used is the minimal preprocessing pipeline [50]. Its goal 
is to provide RS-fMRI data for analysis with a minimum level of quality, which also 
minimizes the loss of meaningful data. This can be of substantial benefit to research-
ers lacking access to high-powered preprocessing of Big Volume data sets. Currently, 
preprocessing software tools tend to adopt a parallelization approach with functions 
running in parallel for tools such as statistical parametric mapping (SPM) [50].

Analytical procedures have tended to emphasize graph-theoretic tools that are 
amenable to statistical mechanical methods. One of the most used topological tools is 
Mapper, developed by Singh et al. [52], which adopts a persistent homology approach. 
Mapper lends itself to big data analysis because the global organizational structure 
is divided into a series of overlapping slices. These are reconstructed via the use of 
common points located in the overlapping zones, which serve as a vehicle to orient 
topology.

3. Assessing functional connectivity in RSN data

Several approaches have been developed to analyze imaging data after prepro-
cessing and band-pass filtering. These include approaches driven by research focus 
as well as those dictated by the data itself, the so-called data-driven and model-free 
approaches. Each can be used to delineate the distribution of functional connections 
that characterize major networks of the brain.
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3.1 Regions of interest seed-based analyses

Functional connectivity determinations extend fMRI measurements of brain 
activity by providing likelihood estimates of functional associations between neural 
activity zones [1]. In practice, seed-based analyses identify deviations from indepen-
dence between distributed and often distant sources of neural activity and a region of 
interest; that is, statistically significant deviations from independence reveal depen-
dent relationships that functionally connect activity zones. Extending these relation-
ships to multiple zones enables the construction of connectivity maps that become 
identified with unique networks. Exploiting a seed-based ROI strategy, for instance, 
one comprehensive study of resting-state fMRI sequences from 1000 healthy adults 
[53] revealed seven functionally connected networks at coarse resolution and 17 
at fine resolution. The simplicity and interpretability of the ROI technique make it 
procedurally facile and a frequently adopted approach. However, the method relies 
entirely on user-defined ROIs and so is limited for network discovery by its a priori, 
selected criteria.

3.2 Independent components analysis (ICA)

In light of this caveat, coupled with the evolution of mathematical models and 
improved computational capabilities, there has been a paradigm shift from that of 
imposing initial conditions, that is, seed-based ROIs, on the data to that of extracting 
patterns of brain activity directly from the raw time series. The main example of this 
approach is independent components analysis. In this approach, the time series signal 
is assumed to be due to multiple spatio-temporal processes that are statistically inde-
pendent of each other. By extracting the independent signals, various time courses 
of specific brain regions can be constructed and grouped into maps representative of 
their spatial distribution.

Independent components analysis (ICA) aims at overcoming the selective bias 
toward priors contained in seed-based approaches by relying on direct data-driven 
interrogation for assessment of functional connectivity [54]. To do so, ICA posits an 
inherent representation of independent factors in the captured time series data. Its 
goal is to decompose the vector representation of these factors, Z, as a product of a 
combinatorial matrix and the spatially independent components where:

 
=

= + = +∑ J

j 1
† ,j jZ NC E n c E

Here, N is a T × J combinatorial matrix with columns nj, and C is the J × Nv matrix 
of independent components with rows cj, where each cj corresponds to component 
j for a cumulative total of J independent components. These components represent 
the networks of various functions. The elements of the matrix E are independent, 
normally distributed noise contributions. It is presumed that the component maps, 
cj, j = 1,. .., J contain overlapping and statistically dependent signals, but that the 
individual component map distributions are independent. Each independent compo-
nent cj is a vector of size Nv and represents the relative amount of a given voxel that 
is modulated by the activation of that component. Due to the retrieval of large data 
during the acquisition stage, various algorithms have been developed to estimate the 
components, for example, the independent components analysis with a reconstruc-
tion cost (RICA) algorithm [55].
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3.3 Graph theory analysis

Another approach to the interpretation of RS-fMRI datasets employs graph theory, 
where activity sources comprise nodes and connectivity defines the edges that link 
these nodes [56]. Unlike ICA, which focuses chiefly on the strength of correlation 
between different domains, graph theory characterizes the features of network 
topology. The graph theory approach describes the interaction between nodes by 
means of such graph parameters as average path length, clustering coefficients, node 
degree, centrality measures, and level of modularity. Graph theory is thus a promis-
ing technique for exploring the integration and segregation of networks in the brain. 
Graph metrics like average path length, for example, reveal the extent of integration 
of brain networks. Centrality, on the other hand, examines whether a particular node 
has a central or leading role in information segregation via its propagation to other 
nodes in a network.

Increasingly, modularity assessments have been used to characterize functional 
adjustments occurring during behavior, network perturbations, or pathologies that 
affect network function and the observed values have been shown to undergo sig-
nificant alteration in such pathologies as stroke [57] and psychiatric disease [58–60]. 
Modularity assesses the presence of functionally independent units or modules that 
compose resting-state networks. These are defined as clusters of nodes displaying 
greater functional connectivity within the group than with the rest of the brain. 
During task-specific activity, such clusters are reallocated, implying that the networks 
themselves are reorganized topologically [61, 62]. Their flexibility suggests that they 
operate as independent functional entities inducing [63–65] specific behaviors via 
their reallocation [66, 67].

In practice, modularity analysis [63] describes the difference between the 
network configuration at rest and the network reconfiguration during behavior-
ally altered conditions by means of a quality function (Q ) [68] that maximizes the 
optimal modular decomposition. As expressed by Q , the modularity index pro-
vides a measure of the degree of modular segregation [69], where Q is close to one 
when there are few edges between modules and high density inside modules—that 
is, module segregation is present—and Q is close to zero when the number of con-
nections between modules is comparable to that of random—indicating an absence 
of segregation.

3.4 RSN functional connectivity maps

The first demonstration of correlated spontaneous fluctuations explored somato-
sensory areas. Since this initial demonstration, multiple other resting networks have 
been discovered. Functional connectivity determinations have shown that these 
networks can be reliably reproduced [53], although much variation in the identifica-
tion of networks is dependent on the degree of resolution achieved during scanning. 
Major resting networks, according to Yeo’s seven network parcellation atlas [4, 53], are 
listed in Table 1 and classed broadly as belonging to either sensorimotor or associa-
tion groups. While numerically greater numbers of networks can be detected at finer 
resolution, e.g., 17 network estimate of Yeo et al. [53], generally, the 17-network 
determination fractionates the lesser member set into smaller network components of 
the seven major networks.
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4. RSN dynamics and brain states

4.1 Assessing sources of connectivity modulation

While methodological advances in RS-fMRI have made significant strides in 
unveiling a macro-scale, network-based architecture for the brain, how brain func-
tions emerge from network connectivity remains uncertain. Brain states like those 
of sleep or altered states of consciousness undergo continually changing dynamics 
involving whole brain networks. These dynamics are regularly modulated by internal 
fluctuations in activity that can affect sensory efferent or motor afferent activity 
[70, 71] and alter spatiotemporal patterning [72]. The ubiquity of these influences 
reveals that brain dynamics involve causal influences affecting network connectivity, 
which can be detected with BOLD fMRI [73]. Accordingly, recent developments in 
RS-fMRI seek to build on functional connectivity determinations by relating causal 
sources of connectivity changes to brain states and behavior. Network descriptions of 
these have been termed effective connectivity.

4.1.1 Effective connectivity

Effective connectivity presumes that efficient causes precede their effects and that 
these are revealed in the time domain. Because the functional coupling among neu-
ronal populations changes as a function of processing demands [74] it is inherently 
context-dependent and dynamic. Accordingly, effective connectivity has been used 

Network Type Description

Default Mode 
Network
a

Association Contains the dorsal prefrontal cortex, posterior cingulate cortex, 
precuneus, and angular gyrus

Dorsal Attention 
Network.
n
s

Association Includes gyri adjacent to the intraparietal sulcus, cortex near the 
MT + complex, and both the frontal and secondary eye-fields

Ventral Attention 
Network
r

Association Includes the temporo-parietal junction and ventral frontal cortex

Fronto-Parietal 
Network
p

Association Includes the dorsolateral prefrontal cortex, the inferior parietal lobule, 
and the middle temporal gyrus,

Limbic Network
m

Association Contains subcortical areas including amygdala, thalamus, basal 
ganglia, and cortical cingulate gyrus

Visual Network Sensory-
motor

Includes the striate and extrastriate cortical regions

Somato-Motor 
Network

Sensory-
motor

Contains the primary motor and somato-sensory cortex

Table 1. 
Major resting state networks of the human brain classified according to association or sensory-motor functions. 
Network identification follows that of Yeo et al., [53].
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to clarify sources of brain activity and the directionality of their influence. Inferences 
of causality are used to interpret the mechanisms that underlie neuronal dynamics 
and assist studies of how neuronal populations are functionally integrated [75]. In 
practice, models of effective connectivity seek to assess whether functional coupling 
is modulated under task-based manipulations and rely on fMRI data. The most com-
mon analytical methods include structural equation modeling (SEM), multivariate 
autoregressive models (MAR), GRANGER, and dynamic causal modeling (DCM).

DCM is perhaps the most widely employed approach for assessing effective con-
nectivity and is based on an input-output model for a system of n interacting brain 
regions [76]. In this method, the activity of a neuronal population from each region 
is represented by a single state variable, which is perturbed by controlled inputs. 
DCM models report the series activity changes vis a vis the system’s resting state 
represented by the system state vector (mathematical approximations of the system 
typically employ a Taylor series approximation that describes non-linear functions). 
Using these models it is possible to explore the dynamic character of brain activity 
under normal and pathological conditions. Unlike other approaches, DCM does not 
utilize time series data directly but combines a proposed model of the unknown 
neuronal dynamics with a forward model that translates neuronal states into output 
measurements. The description of the neuronal population activity employs a bilinear 
differential equation process, which is combined with the forward model.

Since the inception of the DCM, various methodological changes have extended the 
DCM approach [77, 78]. Recent, and more complex, models have included simulations 
from various prominent neuron classes, such as deep pyramidal cells, and spin stel-
late excitatory interneurons that contribute to the neuronal state [79]. Because of the 
complexity of these neuronal models, more general models have attempted to overcome 
their perceived difficulties in data fitting. One approach premises neural activity on 
generalized spiking described by Wilson Cowan spiking equations to satisfy a wider 
range of applications. In this adaptation, the Wilson Cowan equations are used to 
describe the evolution of excitatory and inhibitory activity in a population of neurons, 
instead of the bilinear equations used for both single and two- state DCM [80].

In a novel variant of DCM, effective connectivity analyses are conducted for large-
scale or even whole-brain networks [81, 82]. This approach modifies the original 
DCM procedure in several ways: (i) translation of equations of state from the time 
to frequency domain using Fourier transformation, (ii) application of a mean field 
approximation across regions, and (iii) specification of conjugate priors on neuronal 
input. Choosing appropriate priors yield a generative model that can be used for mak-
ing inferences about changes in directed connection strengths and inputs.

4.1.2 Granger causal analysis

Like DCM, Granger causal analysis provides a statistical tool for assessing directed 
functional connections from time series data, based on the concept that causes 
precede and induce their outcomes [13]. The method includes linear vector autore-
gressive models obtained from time series neural data, where a variable at a specific 
time point is modeled as a linearly weighted sum of its own past and that of a set of 
other variables, each represented by a vector. Minimizing estimation errors yields the 
set of optimal connection weights. Variable Y is said to be caused by variable X if the 
time series of X provides unique information not present in the prior Y series [83] that 
helps to predict the future Y series.
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4.2 Macroscale brain organization and RSN dynamics

In principle, inferences of causality from directional connectivity determina-
tions can be extended to brain-wide neuronal dynamics. Empirical studies from 
RS-fMRI, for example, show that RSNs are differentiated on the basis of their 
metastability and synchrony [84]. These and similar observations have stimulated 
models of brain function and behavior that predict that the human brain at rest 
operates at maximum metastability, that is, in a state of maximal network switch-
ing. Under such conditions, information flow can be said to be guided by temporally 
ordered sequences of metastable states [85, 86]. The existence of RSN properties 
like metastability thus implicates directed connectivity changes in the construction 
of brain states, which emerges from the dynamics of RSNs in whole brain, effective 
connectivity [87] in health, disease, or trauma. The methodological question that 
arises is that of generating a descriptive approach relating functional neuroimag-
ing data to whole brain dynamics. Recent attempts to address this question have 
adopted two approaches.

4.2.1 Recurrence structure analysis

The first employs a BOLD, data-driven, computational method that leverages 
the method of recurrence structure analysis (RSA), a mathematical procedure derived 
from Poincare’s recurrence theorem [15]. The Poincaré theorem states that trajectories 
of a complex dynamical system visit certain regions of their available state space 
more frequently over the course of time than other regions of the state space. This 
“recurrent” behavior can be described by a recurrence plot method (RP), which allows 
a matrix-based visualization of recurrent states. These latter are mapped into state 
space trajectories described by symbolic sequences [88]. Combining the structure-
function modules of a brain hierarchical atlas with the optimized recurrent structures 
yields resting-state networks presumed to reflect time-dependent, recurrent cognitive 
states.

4.2.2 Landscape of informational structures

The second approach posits the governance of RSN dynamics by a ground-state 
global attractor. This global ground state is mathematically described as a stable 
stationary solution representing a point of maximal stability in a landscape of sta-
tionary points (nodes) that information flows toward or away from [89]. Similar 
to whole-brain models, the description of this landscape consists of coupling local 
dynamics with anatomical brain connectivity. The stability and instability direc-
tions of each stationary point are characterized by non-stationary solutions entering 
or leaving these points, respectively. This provides a framework in which coupled 
systems of differential equations describe individual brain regions (nodes) in terms of 
other brain regions and with respect to the global ground state; hence, there exists a 
global structure linking all stationary points. Accordingly, such points can be ordered 
by their level of attraction or stability and characterized by various topological 
measures, for example, number of energy levels (NoEL) or sensitivity to perturba-
tions (criticality) [90], based on connectivity data. This theoretical framework has 
been shown to successfully account for the highly structured dynamics arising from 
spontaneous brain activity in RSNs [91].
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5. Resting state networks in disease

5.1 RS-fMRI studies in clinical diagnosis

Given the utility of RSNs for understanding the brain’s functional organization 
in healthy individuals, RS-fMRI has also been exploited for determining how the 
brain’s organization is modified as the result of trauma, degeneration, or disease 
[92]. A majority of RS-fMRI studies have consisted of comparisons of resting-state 
functional connectivity patterns between groups of normal subjects and those with 
neurological or psychiatric impairments [93], in part due to the relative ease with 
which these studies can be conducted. While changes in the correlation patterns 
of spontaneous activity have been reported in many cases, the consistency of the 
correlations has varied significantly with the disease type. Studies of the default 
mode network in AD, for example, generally yield consistent patterning whereas 
network patterns in other types of diseases, for example, schizophrenia, exhibit 
wide variation.

Underlying mechanisms and even diagnostic markers of these dysfunctions 
are in many cases unknown, moreover, a hindrance to assessing how functional 
network changes modify behavior. This obstacle could be partially surmounted 
by knowing how focal perturbations impact functional and task-based connectiv-
ity. Supporting this, neuroimaging studies show that localized changes in neural 
activity result in distinct activity and functional connectivity changes within and 
between networks [93, 94]. Mapping of whole-brain effects on RSNs due to local 
trauma may therefore reveal how RSNs are globally reorganized following these 
insults. For example, the characterization of large-scale deregulations in functional 
connectivity may emerge from studies of selective trauma in highly interconnected 
core regions [95].

5.2 RS-fMRI tools for stroke-induced changes in brain organization

With this as an objective, RS-fMRI technical and analytical procedures have 
been exploited to interrogate RSN-based changes that occur in stroke. By defini-
tion, stroke is a clinical syndrome characterized as an acute, focal neurological 
deficit that is the result of vascular injury (e.g., infarction, hemorrhage) within 
the central nervous system [96]. It is itself a major cause of death and disability 
across the globe. In adults worldwide, stroke is the chief cause of acquired physical 
disability, and the second leading cause of mortality in middle-to high-income 
countries. Because the disruption is usually sudden, stroke’s effects on neural 
networks can be directly attributed to the focal impairment, rather than to more 
widely extended and long-term processes, such as degeneration. Stroke frequently 
results from ischemia, for instance, which deprives the supply of blood to adjacent 
cerebral tissue [17].

Assessing the spatial locus of a stroke-based lesion requires knowledge of the 
brain vasculature, which assists in co-localizing fiber pathways and structural 
connectivity. Anterior circulation, for example, includes regions supplied by 
the anterior and middle cerebral arteries, which contain the ophthalmic artery. 
Strokes occurring within the opthalmic artery lead to monocular loss of vision. 
Proximal occlusion of the middle cerebral artery, on the other hand, can cause 
contralateral hemiparesis and hemi-sensory loss, visual field defect, and/or 
hemineglect [96].
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5.3 Connectivity determinations in stroke diagnosis

As mentioned, stroke outcomes involve not only focal disturbances at affected 
sites, that is, the set of regions directly damaged or indirectly affected by the stroke, 
but also those more distally located that are embedded within the larger functional 
network that is in dynamic balance with other networks of the brain. Hence, resting-
state measures of connectivity can be expected to reflect a more distributed network 
organization than the lesion site alone and to be correspondingly seen in spatially 
extended, connectivity changes.

Consistent with this, global studies of focal infarcts affecting motor behaviors 
characteristically display a decrease in functional connectivity involving interhemi-
spheric homologous sensory and motor areas, which is correlated with the degree 
of behavioral impairment. Reduced functional connectivity between hemispheres 
is also seen in rodent models of stroke [97], corresponding with decreases in motor 
proficiency [98]. In the first few days after stroke, this involves the connectivity 
between the ipsilesional primary sensorimotor cortex and its contralateral homologs 
[99]. Similarly, RS-fMRI of the sensorimotor network in humans, including the 
M1, SMA, secondary somatosensory cortex, cerebellum, putamen, and thalamus 
regions, reveals a direct correlation between motor performance and the degree of 
M1 interhemispheric connectivity [100]. Structural observations are consistent with 
this and show that the integrity of corticospinal fibers correlates with the reduction 
in interhemispheric M1 resting-state connectivity [99, 101]; RSN studies of effective 
connectivity with DCM further show that post-stroke excitatory, ipsilesional influ-
ences from premotor areas to M1 are also reduced, decreasing M1 output for paretic 
hand movements [17]. Ipsilesional inhibitory influences from M1 to the contralesional 
M1 are also attenuated. Together, these results implicate a reduction in inhibitory 
interhemispheric control of M1 homologs in paretic motor movements and excitatory 
intrahemispheric effects from premotor areas to M1. Importantly, they also reveal 
the interpretive utility of combining RS-fMRI effective and functional connectivity 
determinations in network assessments.

5.4 Assessing topological changes in stroke

Functional determinations assist in the identification of resting networks based 
on characterization of connectivity number, direction, and weight. Changes in such 
parameters help to assess the degree to which the network has retained its functional 
association; that is, the degree to which it is intact. On the other hand, they do not 
assess connectivity topography, which reflects how the organization of the network 
influences information flow, which needs to be assessed with graph theoretical 
parameters like centrality or modularity. Recent evidence in animal models notably 
indicates that network topology is likely to change following stroke [98]. In a mice 
model, total functional connectivity increases in comparison with normal controls. 
Since interhemispheric connectivity is reduced in most stroke subtypes, this suggests 
that intrahemispheric functional connectivity is cumulatively increased, generating 
a new organizational network structure within the affected hemisphere; that is, a 
transference of interhemispheric callosal connections to intrahemispheric targets.

Diagnostic assessments of network reorganization in stroke patients, accordingly, 
have been required, typically employing graph theoretic modular analysis. Modular 
analysis of task-based studies in normal subjects, for example, shows a high level of 
reorganization of nodes in the frontal and temporal cortices from the resting state. 
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Moreover, as mentioned, complex dynamics occur between networks during task 
performance, which involves the reallocation of network modules. Graph theoretic 
analysis shows that this entails the switching of network topologies between the fron-
toparietal, ventral attention, and the dorsal attention areas [63–65]. In like manner, 
modularity determinations can be expected to show stroke-induced reorganization.

Existing studies reveal, in fact, a low-dimensional architecture following stroke 
[57]. The significance of this network reorganization is as yet undetermined. One 
possibility is that decreased modularity reflects a default strategy for efficient behav-
ioral responses in a complex environment, which is needed to reduce the degrees of 
freedom in movement [102]. In healthy individuals, a higher modularity provides 
for exploration of varied trajectories, that is, there is a maximizing of degrees of 
freedom, which needs to be reduced to provide stability for tasking. In stroke, this 
exploratory ability is lost, together with a corresponding loss in modularity. The 
reduction in modularity would thus imply a reduced ability to process information 
effectively [57].

Methodologically, assessing this possibility would require RS-fMRI procedures 
capable of whole-brain modeling to determine whether and which topographical 
adjustments occur on a global scale [90]. This is likely to require a synergy of ongoing 
developments that merge enhanced signal recognition and data acquisition, big data 
processing pipelines, and whole brain reconstruction [22, 50, 90], suggesting that 
advanced clinical analysis with RS-fMRI remains at an early, but promising stage.

6. Conclusion

Resting-state fMRI has enabled the identification of brain networks critical to 
affecting how humans interact, perceive, and process environmental and internal 
stimuli. Much of the success of this discovery can be attributed to the synergy 
between the technical capabilities of fMRI and the low-frequency activity character-
izing RSNs. RS-fMRI has benefitted from a spectrum of technical advances in fMRI 
that have occurred since the initial discovery of RSNs, including improved data-gath-
ering capacity, processing, and handling. The enhanced reliability of RSN detection 
made possible by these advances has underwritten increasingly powerful interpretive 
tools that are clarifying the role and structure of brain networks in organizing and 
executing global brain function. These insights into global brain events have in turn 
revealed areas where new technical advances, like big data processing and whole 
brain modeling, are needed, which can interrogate not only resting-state connectivity 
associations but also the dynamic variations in these associations that occur during 
brain behavior. While the use of these tools is currently limited to the research labora-
tory, their future potential for clinical use warrants the current expansion in technical 
development that will make possible the diagnosis of brain states.
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