59 research outputs found

    Universal Dependencies and Morphology for Hungarian - and on the Price of Universality

    Get PDF
    In this paper, we present how the principles of universal dependencies and morphology have been adapted to Hungarian. We report the most challenging grammatical phenomena and our solutions to those. On the basis of the adapted guidelines, we have converted and manually corrected 1,800 sentences from the Szeged Treebank to universal dependency format. We also introduce experiments on this manually annotated corpus for evaluating automatic conversion and the added value of language-specific, i.e. non-universal, annotations. Our results reveal that converting to universal dependencies is not necessarily trivial, moreover, using language-specific morphological features may have an impact on overall performance

    Syntaxe computationnelle du hongrois : de l'analyse en chunks à la sous-catégorisation verbale

    Get PDF
    We present the creation of two resources for Hungarian NLP applications: a rule-based shallow parser and a database of verbal subcategorization frames. Hungarian, as a non-configurational language with a rich morphology, presents specific challenges for NLP at the level of morphological and syntactic processing. While efficient and precise morphological analyzers are already available, Hungarian is under-resourced with respect to syntactic analysis. Our work aimed at overcoming this problem by providing resources for syntactic processing. Hungarian language is characterized by a rich morphology and a non-configurational encoding of grammatical functions. These features imply that the syntactic processing of Hungarian has to rely on morphological features rather than on constituent order. The broader interest of our undertaking is to propose representations and methods that are adapted to these specific characteristics, and at the same time are in line with state of the art research methodologies. More concretely, we attempt to adapt current results in argument realization and lexical semantics to the task of labeling sentence constituents according to their syntactic function and semantic role in Hungarian. Syntax and semantics are not completely independent modules in linguistic analysis and language processing: it has been known for decades that semantic properties of words affect their syntactic distribution. Within the syntax-semantics interface, the field of argument realization deals with the (partial or complete) prediction of verbal subcategorization from semantic properties. Research on verbal lexical semantics and semantically motivated mapping has been concentrating on predicting the syntactic realization of arguments, taking for granted (either explicitly or implicitly) that the distinction between arguments and adjuncts is known, and that adjuncts' syntactic realization is governed by productive syntactic rules, not lexical properties. However, besides the correlation between verbal aspect or actionsart and time adverbs (e.g. Vendler, 1967 or Kiefer, 1992 for Hungarian), the distribution of adjuncts among verbs or verb classes did not receive significant attention, especially within the lexical semantics framework. We claim that contrary to the widely shared presumption, adjuncts are often not fully productive. We therefore propose a gradual notion of productivity, defined in relation to Levin-type lexical semantic verb classes (Levin, 1993; Levin and Rappaport-Hovav, 2005). The definition we propose for the argument-adjunct dichotomy is based on evidence from Hungarian and exploits the idea that lexical semantics not only influences complement structure but is the key to the argument-adjunct distinction and the realization of adjunctsLa linguistique informatique est un domaine de recherche qui se concentre sur les méthodes et les perspectives de la modélisation formelle (statistique ou symbolique) de la langue naturelle. La linguistique informatique, tout comme la linguistique théorique, est une discipline fortement modulaire : les niveaux d'analyse linguistique comprennent la segmentation, l'analyse morphologique, la désambiguïsation, l'analyse syntaxique et sémantique. Tandis qu'un nombre d'outils existent déjà pour les traitements de bas niveau (analyse morphologique, étiquetage grammatical), le hongrois peut être considéré comme une langue peu doté pour l'analyse syntaxique et sémantique. Le travail décrit dans la présente thèse vise à combler ce manque en créant des ressources pour le traitement syntaxique du hongrois : notamment, un analyseur en chunks et une base de données lexicale de schémas de sous-catégorisation verbale. La première partie de la recherche présentée ici se concentre sur la création d'un analyseur syntaxique de surface (ou analyseur en chunks) pour le hongrois. La sortie de l'analyseur de surface est conçue pour servir d'entrée pour un traitement ultérieur visant à annoter les relations de dépendance entre le prédicat et ses compléments essentiels et circonstanciels. L'analyseur profond est mis en œuvre dans NooJ (Silberztein, 2004) en tant qu'une cascade de grammaires. Le deuxième objectif de recherche était de proposer une représentation lexicale pour la structure argumentale en hongrois. Cette représentation doit pouvoir gérer la vaste gamme de phénomènes qui échappent à la dichotomie traditionnelle entre un complément essentiel et un circonstanciel (p. ex. des structures partiellement productives, des écarts entre la prédictibilité syntaxique et sémantique). Nous avons eu recours à des résultats de la recherche récente sur la réalisation d'arguments et choisi un cadre qui répond à nos critères et qui est adaptable à une langue non-configurationnelle. Nous avons utilisé la classification sémantique de Levin (1993) comme modèle. Nous avons adapté les notions relatives à cette classification, à savoir celle de la composante sémantique et celle de l'alternance syntaxique, ainsi que la méthodologie d'explorer et de décrire le comportement des prédicats à l'aide de cette représentation, à la tâche de construire une représentation lexicale des verbes dans une langue non-configurationnelle. La première étape consistait à définir les règles de codage et de construire un vaste base de données lexicale pour les verbes et leurs compléments. Par la suite, nous avons entrepris deux expériences pour l'enrichissement de ce lexique avec des informations sémantiques lexicales afin de formaliser des généralisations syntaxiques et sémantiques pertinentes sur les classes de prédicats sous-jacentes. La première approche que nous avons testée consistait en une élaboration manuelle de classification de verbes en fonction de leur structure de compléments et de l'attribution de rôles sémantiques à ces compléments. Nous avons cherché la réponse aux questions suivantes: quelles sont les composants sémantiques pertinents pour définir une classification sémantique des prédicats hongrois? Quelles sont les implications syntaxiques spécifiques à ces classes? Et, plus généralement, quelle est la nature des alternances spécifiques aux classes verbales en hongrois ? Dans la phase finale de la recherche, nous avons étudié le potentiel de l'acquisition automatique pour extraire des classes de verbes à partir de corpus. Nous avons effectué une classification non supervisée, basée sur des données distributionnelles, pour obtenir une classification sémantique pertinente des verbes hongrois. Nous avons également testé la méthode de classification non supervisée sur des données françaises

    XII. Magyar Számítógépes Nyelvészeti Konferencia

    Get PDF

    Magyar nyelvű webes szövegek morfológiai és szintaktikai annotációja

    Get PDF
    Cikkünkben bemutatjuk az első magyar, kézzel annotált, webes szövegeket tartalmazó korpuszt, melyet tesztadatbázisnak szánunk a webes szövegekre optimalizált nyelvi elemzőink fejlesztéséhez. A korpusz morfológiai és (összetevős és függőségi szemléletű) szintaktikai elemzést, valamint szemantikai és diskurzusbeli bizonytalan kifejezések annotációját tartalmazza. Beszámolunk a magyarlanc elemző webes szövegekre történő adaptálási kísérleteiről is

    Egyszer "van", hol nem "van" : a létige kezelése függőségi nyelvtanokban

    Get PDF
    Cikkünkben három függoségi nyelvtani elemzést hasonlítunk össze a ˝ van létige kezelésének szempontjából. Az elméletek elonyeinek és hátrányainak ˝ tárgyalása után bemutatjuk, milyen eredményeket ér el egy szintaktikai elemzo˝ az egyes elemzésekben. Az ULA és LAS eredmények mellett részletes kézi hibaelemzést is végeztünk az adott szerkezet hibatípusaira koncentrálva. A cikk célja megtalálni a magyar van létige különbözo típusainak számítógépes elemzé- ˝ sére leginkább alkalmas elméletet, valamint hangsúlyozni a feladatnak leginkább megfelelo elméleti keret megtalálásának és a kézi hibaelemzésnek a fontosságát

    X. Magyar Számítógépes Nyelvészeti Konferencia

    Get PDF

    General methods for fine-grained morphological and syntactic disambiguation

    Get PDF
    We present methods for improved handling of morphologically rich languages (MRLS) where we define MRLS as languages that are morphologically more complex than English. Standard algorithms for language modeling, tagging and parsing have problems with the productive nature of such languages. Consider for example the possible forms of a typical English verb like work that generally has four four different forms: work, works, working and worked. Its Spanish counterpart trabajar has 6 different forms in present tense: trabajo, trabajas, trabaja, trabajamos, trabajáis and trabajan and more than 50 different forms when including the different tenses, moods (indicative, subjunctive and imperative) and participles. Such a high number of forms leads to sparsity issues: In a recent Wikipedia dump of more than 400 million tokens we find that 20 of these forms occur only twice or less and that 10 forms do not occur at all. This means that even if we only need unlabeled data to estimate a model and even when looking at a relatively common and frequent verb, we do not have enough data to make reasonable estimates for some of its forms. However, if we decompose an unseen form such as trabajaréis `you will work', we find that it is trabajar in future tense and second person plural. This allows us to make the predictions that are needed to decide on the grammaticality (language modeling) or syntax (tagging and parsing) of a sentence. In the first part of this thesis, we develop a morphological language model. A language model estimates the grammaticality and coherence of a sentence. Most language models used today are word-based n-gram models, which means that they estimate the transitional probability of a word following a history, the sequence of the (n - 1) preceding words. The probabilities are estimated from the frequencies of the history and the history followed by the target word in a huge text corpus. If either of the sequences is unseen, the length of the history has to be reduced. This leads to a less accurate estimate as less context is taken into account. Our morphological language model estimates an additional probability from the morphological classes of the words. These classes are built automatically by extracting morphological features from the word forms. To this end, we use unsupervised segmentation algorithms to find the suffixes of word forms. Such an algorithm might for example segment trabajaréis into trabaja and réis and we can then estimate the properties of trabajaréis from other word forms with the same or similar morphological properties. The data-driven nature of the segmentation algorithms allows them to not only find inflectional suffixes (such as -réis), but also more derivational phenomena such as the head nouns of compounds or even endings such as -tec, which identify technology oriented companies such as Vortec, Memotec and Portec and would not be regarded as a morphological suffix by traditional linguistics. Additionally, we extract shape features such as if a form contains digits or capital characters. This is important because many rare or unseen forms are proper names or numbers and often do not have meaningful suffixes. Our class-based morphological model is then interpolated with a word-based model to combine the generalization capabilities of the first and the high accuracy in case of sufficient data of the second. We evaluate our model across 21 European languages and find improvements between 3% and 11% in perplexity, a standard language modeling evaluation measure. Improvements are highest for languages with more productive and complex morphology such as Finnish and Estonian, but also visible for languages with a relatively simple morphology such as English and Dutch. We conclude that a morphological component yields consistent improvements for all the tested languages and argue that it should be part of every language model. Dependency trees represent the syntactic structure of a sentence by attaching each word to its syntactic head, the word it is directly modifying. Dependency parsing is usually tackled using heavily lexicalized (word-based) models and a thorough morphological preprocessing is important for optimal performance, especially for MRLS. We investigate if the lack of morphological features can be compensated by features induced using hidden Markov models with latent annotations (HMM-LAs) and find this to be the case for German. HMM-LAs were proposed as a method to increase part-of-speech tagging accuracy. The model splits the observed part-of-speech tags (such as verb and noun) into subtags. An expectation maximization algorithm is then used to fit the subtags to different roles. A verb tag for example might be split into an auxiliary verb and a full verb subtag. Such a split is usually beneficial because these two verb classes have different contexts. That is, a full verb might follow an auxiliary verb, but usually not another full verb. For German and English, we find that our model leads to consistent improvements over a parser not using subtag features. Looking at the labeled attachment score (LAS), the number of words correctly attached to their head, we observe an improvement from 90.34 to 90.75 for English and from 87.92 to 88.24 for German. For German, we additionally find that our model achieves almost the same performance (88.24) as a model using tags annotated by a supervised morphological tagger (LAS of 88.35). We also find that the German latent tags correlate with morphology. Articles for example are split by their grammatical case. We also investigate the part-of-speech tagging accuracies of models using the traditional treebank tagset and models using induced tagsets of the same size and find that the latter outperform the former, but are in turn outperformed by a discriminative tagger. Furthermore, we present a method for fast and accurate morphological tagging. While part-of-speech tagging annotates tokens in context with their respective word categories, morphological tagging produces a complete annotation containing all the relevant inflectional features such as case, gender and tense. A complete reading is represented as a single tag. As a reading might consist of several morphological features the resulting tagset usually contains hundreds or even thousands of tags. This is an issue for many decoding algorithms such as Viterbi which have runtimes depending quadratically on the number of tags. In the case of morphological tagging, the problem can be avoided by using a morphological analyzer. A morphological analyzer is a manually created finite-state transducer that produces the possible morphological readings of a word form. This analyzer can be used to prune the tagging lattice and to allow for the application of standard sequence labeling algorithms. The downside of this approach is that such an analyzer is not available for every language or might not have the coverage required for the task. Additionally, the output tags of some analyzers are not compatible with the annotations of the treebanks, which might require some manual mapping of the different annotations or even to reduce the complexity of the annotation. To avoid this problem we propose to use the posterior probabilities of a conditional random field (CRF) lattice to prune the space of possible taggings. At the zero-order level the posterior probabilities of a token can be calculated independently from the other tokens of a sentence. The necessary computations can thus be performed in linear time. The features available to the model at this time are similar to the features used by a morphological analyzer (essentially the word form and features based on it), but also include the immediate lexical context. As the ambiguity of word types varies substantially, we just fix the average number of readings after pruning by dynamically estimating a probability threshold. Once we obtain the pruned lattice, we can add tag transitions and convert it into a first-order lattice. The quadratic forward-backward computations are now executed on the remaining plausible readings and thus efficient. We can now continue pruning and extending the lattice order at a relatively low additional runtime cost (depending on the pruning thresholds). The training of the model can be implemented efficiently by applying stochastic gradient descent (SGD). The CRF gradient can be calculated from a lattice of any order as long as the correct reading is still in the lattice. During training, we thus run the lattice pruning until we either reach the maximal order or until the correct reading is pruned. If the reading is pruned we perform the gradient update with the highest order lattice still containing the reading. This approach is similar to early updating in the structured perceptron literature and forces the model to learn how to keep the correct readings in the lower order lattices. In practice, we observe a high number of lower updates during the first training epoch and almost exclusively higher order updates during later epochs. We evaluate our CRF tagger on six languages with different morphological properties. We find that for languages with a high word form ambiguity such as German, the pruning results in a moderate drop in tagging accuracy while for languages with less ambiguity such as Spanish and Hungarian the loss due to pruning is negligible. However, our pruning strategy allows us to train higher order models (order > 1), which give substantial improvements for all languages and also outperform unpruned first-order models. That is, the model might lose some of the correct readings during pruning, but is also able to solve more of the harder cases that require more context. We also find our model to substantially and significantly outperform a number of frequently used taggers such as Morfette and SVMTool. Based on our morphological tagger we develop a simple method to increase the performance of a state-of-the-art constituency parser. A constituency tree describes the syntactic properties of a sentence by assigning spans of text to a hierarchical bracket structure. developed a language-independent approach for the automatic annotation of accurate and compact grammars. Their implementation -- known as the Berkeley parser -- gives state-of-the-art results for many languages such as English and German. For some MRLS such as Basque and Korean, however, the parser gives unsatisfactory results because of its simple unknown word model. This model maps unknown words to a small number of signatures (similar to our morphological classes). These signatures do not seem expressive enough for many of the subtle distinctions made during parsing. We propose to replace rare words by the morphological reading generated by our tagger instead. The motivation is twofold. First, our tagger has access to a number of lexical and sublexical features not available during parsing. Second, we expect the morphological readings to contain most of the information required to make the correct parsing decision even though we know that things such as the correct attachment of prepositional phrases might require some notion of lexical semantics. In experiments on the SPMRL 2013 dataset of nine MRLS we find our method to give improvements for all languages except French for which we observe a minor drop in the Parseval score of 0.06. For Hebrew, Hungarian and Basque we find substantial absolute improvements of 5.65, 11.87 and 15.16, respectively. We also performed an extensive evaluation on the utility of word representations for morphological tagging. Our goal was to reduce the drop in performance that is caused when a model trained on a specific domain is applied to some other domain. This problem is usually addressed by domain adaption (DA). DA adapts a model towards a specific domain using a small amount of labeled or a huge amount of unlabeled data from that domain. However, this procedure requires us to train a model for every target domain. Instead we are trying to build a robust system that is trained on domain-specific labeled and domain-independent or general unlabeled data. We believe word representations to be key in the development of such models because they allow us to leverage unlabeled data efficiently. We compare data-driven representations to manually created morphological analyzers. We understand data-driven representations as models that cluster word forms or map them to a vectorial representation. Examples heavily used in the literature include Brown clusters, Singular Value Decompositions of count vectors and neural-network-based embeddings. We create a test suite of six languages consisting of in-domain and out-of-domain test sets. To this end we converted annotations for Spanish and Czech and annotated the German part of the Smultron treebank with a morphological layer. In our experiments on these data sets we find Brown clusters to outperform the other data-driven representations. Regarding the comparison with morphological analyzers, we find Brown clusters to give slightly better performance in part-of-speech tagging, but to be substantially outperformed in morphological tagging
    • …
    corecore