
General Methods for Fine-Grained
Morphological and Syntactic

Disambiguation

Thomas Müller

München 2015

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Ludwig-Maximilians-Universität München Dissertationen

https://core.ac.uk/display/216087763?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

General Methods for Fine-Grained
Morphological and Syntactic

Disambiguation

Thomas Müller

Dissertation
an der Fakultät für Mathematik, Informatik und Statistik

der Ludwig–Maximilians–Universität
München

vorgelegt von
Thomas Müller

aus Erfurt

München, 11. März 2015

Erstgutachter: Prof. Hinrich Schütze
Zweitgutachter: Prof. Jan Hajič
Tag der mündlichen Prüfung: 4. Mai 2015

Formular 3.2

Name, Vorname

Eidesstattliche Versicherung
(Siehe Promotionsordnung vom 12.07.11, § 8, Abs. 2 Pkt. .5.)

Hiermit erkläre ich an Eidesstatt, dass die Dissertation von mir
selbstständig, ohne unerlaubte Beihilfe angefertigt ist.

Ort, Datum Unterschrift Doktorand/in

Müller, Thomas

München, 11. März 2015

Danksagung

An meine Frau Elena, die sich in den letzten zwei Jahren mehr für die Familie aufopfern musste,
als es im 21. Jahrhundert der Fall sein sollte und an meine Eltern Jutta und Alfred, die immer im
richtigen Maße nachsehend und fordernd waren.

8

Contents

Danksagung 7

Contents 11

List of Figures 14

List of Tables 18

List of Algorithms 19

Prepublications 21

Abstract 23

Zusammenfassung 27

1 Introduction 33
1.1 Motivation . 33
1.2 Main Contributions . 35
1.3 Outline . 36

2 Foundations 37
2.1 Morphology . 37

2.1.1 Terminology . 38
2.1.2 Part-Of-Speech . 40

2.2 Language Modeling . 42
2.3 Sequence Prediction . 49

2.3.1 Hidden Markov Models . 50
2.3.2 Hidden Markov Models with Latent Annotations 52
2.3.3 Conditional Random Fields . 55

2.4 Word Representations . 60
2.5 Conclusions . 64

10 CONTENTS

3 A Morphological Language Model 65
3.1 Introduction . 65
3.2 Related Work . 67
3.3 Modeling of Morphology and Shape . 68

3.3.1 Morphological Class-based Language Model 71
3.4 Experimental Setup . 72

3.4.1 Distributional Class-based Language Model 73
3.4.2 Data . 73

3.5 Results and Discussion . 75
3.5.1 Morphological Model . 75
3.5.2 Distributional Model . 76
3.5.3 Sensitivity Analysis of Parameters . 76
3.5.4 Example Clusters . 79
3.5.5 Impact of Shape . 80

3.6 Conclusion . 80

4 HMM-LAs for Dependency Parsing 83
4.1 Introduction . 83
4.2 Related Work . 84
4.3 Enhancements . 84
4.4 Experiments . 86

4.4.1 POS Tagging . 86
4.4.2 Properties of the Induced Tags . 90
4.4.3 Dependency Parsing . 93
4.4.4 Contribution Analysis . 95

4.5 Conclusion . 97

5 Morphological Tagging with Higher-Order CRFs 99
5.1 Introduction . 99
5.2 Related Work . 101
5.3 Methodology . 101

5.3.1 Standard CRF Training . 101
5.3.2 Pruned CRF Training . 102
5.3.3 Threshold Estimation . 104
5.3.4 Tag Decomposition . 105
5.3.5 Feature Set . 105

5.4 Experiments . 106
5.4.1 Resources . 107
5.4.2 Setup . 107
5.4.3 POS Experiments . 108
5.4.4 POS+MORPH Oracle Experiments . 109
5.4.5 POS+MORPH Higher-Order Experiments 109
5.4.6 Experiments with Morphological Analyzers 111

CONTENTS 11

5.4.7 Comparison with Baselines . 111
5.4.8 Weight Vector Size . 113
5.4.9 Word Shapes . 114

5.5 An Application to Constituency Parsing . 114
5.6 Conclusion . 116

6 Morphological Tagging with Word Representations 117
6.1 Introduction . 117
6.2 Related Work . 119
6.3 Representations . 119
6.4 Data Preparation . 120

6.4.1 Labeled Data . 120
6.4.2 Unlabeled Data . 123

6.5 Experiments . 125
6.5.1 Language Model-Based Clustering . 126
6.5.2 Neural Network Representations . 127
6.5.3 SVD and ATC Representations . 127

6.6 Analysis . 129
6.7 Conclusion . 131

7 Conclusion 133

A MarMoT Implementation and Usage 137
A.1 Feature Extraction . 137
A.2 Lattice Generation . 139
A.3 Java API . 142
A.4 Command Line Usage . 144

B MarLiN Implementation and Usage 149
B.1 Implementation . 149
B.2 Usage . 150

C MULTEXT-East-PDT Tagset Conversion 153

D Ancora-IULA Tagset Conversion 155

Curriculum Vitae 157

Glossary 161

12 CONTENTS

List of Figures

2.1 Examples of an analytic and a synthetic language. 37
2.2 (Partial) Paradigms of an agglutinative (Hungarian) and a fusional (German) lan-

guage . 38
2.3 Paradigm of the Danish noun dag ‘day’ . 38
2.4 An English (a) and a Catalan (b) word family 39
2.5 Examples of Arabic transfixation . 39
2.6 Cases of nauta ‘sailor’ . 40
2.7 Noun-Adjective gender and plural agreement in Spanish and German for ‘red’ . . 41
2.8 Paradigm of the Dutch verb jagen ‘hunt’. 41
2.9 Example of a problematic case when simply using lower-order n-gram counts

to estimate higher-order n-gram counts: The high frequency of in spite of will
make the incorrect second sentence more likely. ‘*’ denotes an ungrammatical
sentence. 47

2.10 Scheme of the noisy channel model . 49
2.11 Example of a phrase with ambiguous part-of-speech 49

3.1 System overview of the morphological language model 70
3.2 The 100 most frequent English suffixes in Europarl, ordered by frequency. 71

4.1 Training on English universal POS data (top) and Penn-Treebank POS data (bot-
tom) over several iterations. We compare HMM-LAs with split training (split),
split-merge training (merge), WB smoothing (merge + smoothing), EM sampling
(merge + sampling) and both (merge + sampling + smoothing). 87

4.2 Training on German universal POS data (top) and Tiger POS data (bottom) over
several iterations. We compare HMM-LAs with split training (split), split-merge
training (merge), WB smoothing (merge + smoothing), EM sampling (merge +
sampling) and both (merge + sampling + smoothing). 88

4.3 Scatter plots of LAS vs tagging accuracy for English (top left) and German with-
out (top right) and with (bottom) morphological features. English tagset sizes are
58 (squares), 73 (diamonds), 92 (triangles), 115 (triangles pointing downwards)
and 144 (circles). German tagset sizes are 85 (squares), 107 (diamonds) and 134
(triangles). The dashed lines indicate the baselines. 95

14 LIST OF FIGURES

5.1 Example training run of a pruned 1st-order model on German showing the frac-
tion of pruned gold sequences (= sentences) during training for training (train)
and development sets (dev). 105

A.1 Example of raw text input for the MarMoT command line utility. 144
A.2 Example output of the MarMoT Annotator. 145

List of Tables

1.1 Greenlandic as an example of a MRL. 33

3.1 Proportion of dominant POS for types with training set frequencies f ∈ {0, 1}
and for tokens for a Wikipedia Corpus. 68

3.2 Predicates of the capitalization and special character groups. ΣT is the vocabu-
lary of the training corpus T , w′ is obtained from w by changing all uppercase
letters to lowercase and L(expr) is the language generated by the regular expres-
sion expr. 69

3.3 Statistics for the 21 languages. S = Slavic, G = Germanic, E = Greek, R =
Romance, U = Uralic, B = Baltic. Type/token ratio (T/T) and # sentences for the
training set and OOV rate ε for the validation set. The two smallest and largest
values in each column are bold. 74

3.4 Perplexities on the test set for n = 4. S = Slavic, G = Germanic, E = Greek, R =
Romance, U = Uralic, B = Baltic. θ∗x, φ∗ and M∗ denote frequency threshold, suf-
fix count and segmentation method optimal on the validation set. The letters f, m
and r stand for the frequency-based method, MORFESSOR and REPORTS. PPKN,
PPC, PPM, PPWC, PPD are the perplexities of KN, morphological class model,
interpolated morphological class model, distributional class model and interpo-
lated distributional class model, respectively. ∆x denotes relative improvement:
(PPKN−PPx)/PPKN. Bold numbers denote maxima and minima in the respec-
tive column. 75

3.5 Sensitivity of perplexity values to the parameters (on the validation set). S =
Slavic, G = Germanic, E = Greek, R = Romance, U = Uralic, B = Baltic. ∆x+

and ∆x− denote the relative improvement of PM over the KN model when param-
eter x is set to the best (x+) and worst value (x−), respectively. The remaining
parameters are set to the optimal values of Table 3.4. Cells with differences of
relative improvements that are smaller than 0.01 are left empty. 77

3.6 Relative improvements of PM on the validation set compared to KN for histories
wi−1
i−N+1 grouped by the type of wi−1. The possible types are alphabetic word

(W), punctuation (P), number (N) and other (O). 78
3.7 English clusters with their interpolation weight λ, size and some examples at

θ = 1000, φ = 100,m = FREQUENCY. The average weight is 0.10. 79

16 LIST OF TABLES

3.8 German clusters with their interpolation weight λ, size and some examples at
θ = 1000, φ = 100,m = FREQUENCY. The average weight is 0.12. 79

3.9 Finnish clusters with their interpolation weight λ, size and some examples at
θ = 1000, φ = 100,m = FREQUENCY. The average weight is 0.08. 80

4.1 English and German universal POS tagging accuracies for HMMs based on tree-
bank tagsets (tree), split-merge training (m), split-merge training with smoothing
(wb) and split-merge training with sampling (sa) using 48 latent tags. The best
numbers are bold. Numbers significantly better then the baselines models (tree,
m) are marked (∗). 89

4.2 English and German universal POS tagging accuracies for HMMs based on tree-
bank tagsets (tree), split-merge training (m), split-merge training with smoothing
(wb) and split-merge training with sampling (sa) using 290 latent tags. The best
numbers are bold. Numbers significantly better then the baselines models (tree,
m) are marked (∗). 89

4.3 English and German treebank POS tagging accuracies for split-merge training
(m), split-merge training with smoothing (wb) and split-merge training with sam-
pling (sa) and optimal latent tagset sizes. The best numbers are bold. Numbers
significantly better then the baselines models (tree, m) are marked (∗). 90

4.4 Tagging accuracies for the best HMM-LA models and the Stanford Tagger on
different tagset. The best numbers are bold. Significant improvements are marked
(∗). 90

4.5 English induced subtags and their statistics. The three rows in each cell contain
word forms (row 1), treebank tags (row 2) and preceding universal tags (row 3).
Statistics pointing to linguistically interesting differences are highlighted in bold. 91

4.6 German induced subtags and their statistics. The three rows in each cell contain
word forms (row 1), treebank tags (row 2) and preceding universal tags (row 3).
Statistics pointing to linguistically interesting differences are highlighted in bold. 92

4.7 Labeled (LAS) and Unlabeled Attachment Score (UAS), mean, best value and
standard deviation for the development set for English and German dependency
parsing with (feat.) and without morphological features (no feat.). The best
numbers are bold. 93

4.8 LAS for the test set for English and German dependency parsing with (feat.) and
without morphological features (no feat.). The best numbers are bold. Significant
improvements are marked (∗). 94

4.9 Coocurrences of gold POS (columns) and predicted POS (NNS) and latent POS
(NNS1,NNS2,NNS3). 96

4.10 Coocurrences of correct dependency relations Name (Name), Noun Modifier
(NMOD), subject (SBJ) and predicted POS and latent POS (NNP1,NNP2,NNP3).

. 96
4.11 Coocurrences of correct case and predicted POS and latent POS (ARTi). 97

LIST OF TABLES 17

5.1 Type-token (T/T) ratio, average number of tags per word form (A) and the num-
ber of tags of the most ambiguous word form (Â) 106

5.2 Training set statistics. Out-Of-Vocabulary (OOV) rate is regarding the develop-
ment sets. 108

5.3 POS tagging experiments with pruned (MarMoT) and unpruned CRFs with dif-
ferent orders n. For every language the training time in minutes (TT) and the
POS accuracy (ACC) are given. * indicates models significantly better than CRF
(first line). 108

5.4 Decoding speed at order n for POS tagging. Speed is measured in sentences /
second. 109

5.5 Accuracies for 1st-order models with and without oracle pruning. * indicates
models significantly worse than the oracle model. 109

5.6 POS+MORPH accuracies for models of different order n. 110
5.7 POS+MORPH accuracy for models of different orders n and models with and

without morphological analyzers (MA). +/- indicate models significantly better/-
worse than MA 1. 111

5.8 Development results for POS tagging. Given are training times in minutes (TT)
and accuracies (ACC). Best baseline results are underlined and the overall best
results bold. * indicates a significant difference (positive or negative) between
the best baseline and a MarMoT model. 112

5.9 Test results for POS tagging. Best baseline results are underlined and the overall
best results bold. * indicates a significant difference between the best baseline
and a MarMoT model. 112

5.10 Development results for POS+MORPH tagging. Given are training times in min-
utes (TT) and accuracies (ACC). Best baseline results are underlined and the
overall best results bold. * indicates a significant difference between the best
baseline and a MarMoT model. 113

5.11 Test results for POS+MORPH tagging. Best baseline results are underlined and
the overall best results bold. * indicates a significant difference between the best
baseline and a MarMoT model. 113

5.12 POS+MORPH accuracies at different weight vector dimensions. 114
5.13 POS tagging accuracies for 1st-order models with (+) and without shape features

(–). 114
5.14 PARSEVAL scores on the SPMRL-2013 development set for the baseline model

(Berkeley) and a model that replaces rare word forms by morphological tags
(replaced). 115

5.15 Size of the initial vocabulary Vi and the vocabulary after replacement Vr and the
token replacement rate ρ. The maximum and minimum in each column are bold
and underlined respectively. 116

6.1 Rates of unknown words, tags and word-tag combinations in ID and OOD de-
velopment sets. 122

18 LIST OF TABLES

6.2 Labeled data set statistics. Number of part of speech tags (POS) and morpholog-
ical tags (MORPH); number of tokens in training set (train), ID development set
and OOD development set. 123

6.3 Tokenizers used for the different languages. For Latin we used the in-house
implementation discusses in the text. 123

6.4 Number of articles, tokens and types in the unlabeled data sets. 124
6.5 Morphological analyzers used for the different languages. 124
6.6 Percentage of tokens not covered by the representation vocabulary. 124
6.7 Baseline experiments comparing MarMoT models of different orders with Mor-

fette and SVMTool. Numbers denote average accuracies on ID and OOD devel-
opment sets on the full morphological tagging task. A result significantly better
than the other four ID (resp. OOD) results in its row is marked with ∗. 125

6.8 Tagging results for LM-based models. 126
6.9 Tagging results for the baseline, MarLiN and CW. 127
6.10 Tagging results for the baseline and four different representations. 128
6.11 Tagging results for the baseline, MarLiN and MA on the test set. 128
6.12 Improvement compared to the baseline for different frequency ranges of words

on OOD. 129
6.13 Features with highest absolute improvement in error rate: Gender (gen), Case

(case), POS (pos), Sub-POS (sub) and Number (num). 130
6.14 Comparison between a Jaccard-based and accuracy-based evaluation. 130

A.1 General MarMoT options . 146
A.2 Morphological MarMoT options . 147

List of Algorithms

2.1 The Bahl Algorithm for finding optimal interpolation parameters 44
2.2 Stochastic Gradient Descent . 58
5.1 Lattice generation during training . 104

20 LIST OF ALGORITHMS

Prepublications

Some of the chapters of this thesis contain material that has been published at international
conferences.

Chapters
• A Morphological Language Model

This chapter covers work already published at international peer-reviewed conferences.
The relevant publications are Müller and Schütze (2011) and Müller et al. (2012). The
research described in this chapter was carried out in its entirety by myself. The other
authors of the publications acted as advisors or were responsible for work that was reported
in the publication, but is not included in this chapter.

• HMM-LA Training for Dependency Parsing
This chapter covers work already published at an international peer-reviewed conference.
The relevant publication is Müller et al. (2014). The research described in this chapter was
carried out in its entirety by myself. The other authors of the publication acted as advisors
or were responsible for work that was reported in the publication, but is not included in
this chapter.

• Morphological Tagging with Higher-Order CRFs
This chapter covers work already published at international peer-reviewed conferences.
The most relevant publication is Müller et al. (2013). The chapter also covers a small
part of Björkelund et al. (2013). The research described in this chapter was carried out
in its entirety by myself. The other authors of the publications acted as advisors or were
responsible for work that was reported in the publication, but is not included in this chapter.

• Morphological Tagging with Word Representations
This chapter covers work already published at international peer-reviewed conferences.
The most relevant publication is Müller and Schütze (2015)1. The research described in
this chapter was carried out in its entirety by myself. The other authors of the publication
acted as advisors or were responsible for work that was reported in the publication, but is
not included in this chapter.

1This paper has been accepted at NAACL 2015 (http://naacl.org/naacl-hlt-2015/papers.
html) but has not been published at the time of the submission of this thesis

http://naacl.org/naacl-hlt-2015/papers.html
http://naacl.org/naacl-hlt-2015/papers.html

22 Prepublications

Publications
• Müller and Schütze (2015). Robust morphological tagging with word representations.

Thomas Müller and Hinrich Schütze. In Proceedings of NAACL 1

• Müller et al. (2014). Dependency Parsing with Latent Refinements of Part-of-Speech Tags.
Thomas Müller, Richard Farkas, Alex Judea, Helmut Schmied and Hinrich Schütze. In
Proceedings of EMNLP (short paper)

• Müller et al. (2013). Efficient Higher-Order CRFs for Morphological Tagging. Thomas
Müller, Helmut Schmied and Hinrich Schütze. In Proceedings of EMNLP

• Björkelund et al. (2013). (Re)ranking Meets Morphosyntax: State-of-the-art Results from
the SPMRL 2013 Shared Task. Anders Björkelund, Özlem Çetinoğlu, Richárd Farkas,
Thomas Müller and Wolfgang Seeker. SPMRL

• Müller et al. (2012). A Comparative Investigation of Morphological Language Modeling
for the Languages of the EU. Thomas Müller, Hinrich Schütze and Helmut Schmied. In
Proceedings of NAACL

• Müller and Schütze (2011). Improved Modeling of Out-Of-Vocabulary Words Using Mor-
phological Classes. Thomas Müller and Hinrich Schütze. In Proceedings of ACL (short
paper)

Abstract

We present methods for improved handling of morphologically rich languages (MRLs) where
we define MRLs as languages that are morphologically more complex than English. Standard
algorithms for language modeling, tagging and parsing have problems with the productive na-
ture of such languages. Consider for example the possible forms of a typical English verb like
work that generally has four four different forms: work, works, working and worked. Its Spanish
counterpart trabajar has 6 different forms in present tense: trabajo, trabajas, trabaja, traba-
jamos, trabajáis and trabajan and more than 50 different forms when including the different
tenses, moods (indicative, subjunctive and imperative) and participles. Such a high number of
forms leads to sparsity issues: In a recent Wikipedia dump of more than 400 million tokens we
find that 20 of these forms occur only twice or less and that 10 forms do not occur at all. This
means that even if we only need unlabeled data to estimate a model and even when looking at a
relatively common and frequent verb, we do not have enough data to make reasonable estimates
for some of its forms. However, if we decompose an unseen form such as trabajaréis ‘you will
work’, we find that it is trabajar in future tense and second person plural. This allows us to make
the predictions that are needed to decide on the grammaticality (language modeling) or syntax
(tagging and parsing) of a sentence.

In the first part of this thesis, we develop a morphological language model. A language
model estimates the grammaticality and coherence of a sentence. Most language models used
today are word-based n-gram models, which means that they estimate the transitional probability
of a word following a history, the sequence of the (n − 1) preceding words. The probabilities
are estimated from the frequencies of the history and the history followed by the target word in a
huge text corpus. If either of the sequences is unseen, the length of the history has to be reduced.
This leads to a less accurate estimate as less context is taken into account.

Our morphological language model estimates an additional probability from the morpho-
logical classes of the words. These classes are built automatically by extracting morphological
features from the word forms. To this end, we use unsupervised segmentation algorithms to find
the suffixes of word forms. Such an algorithm might for example segment trabajaréis into tra-
baja and réis and we can then estimate the properties of trabajaréis from other word forms with
the same or similar morphological properties. The data-driven nature of the segmentation algo-
rithms allows them to not only find inflectional suffixes (such as -réis), but also more derivational
phenomena such as the head nouns of compounds or even endings such as -tec, which identify
technology oriented companies such as Vortec, Memotec and Portec and would not be regarded
as a morphological suffix by traditional linguistics. Additionally, we extract shape features such

24 Abstract

as if a form contains digits or capital characters. This is important because many rare or unseen
forms are proper names or numbers and often do not have meaningful suffixes. Our class-based
morphological model is then interpolated with a word-based model to combine the generalization
capabilities of the first and the high accuracy in case of sufficient data of the second.

We evaluate our model across 21 European languages and find improvements between 3%
and 11% in perplexity, a standard language modeling evaluation measure. Improvements are
highest for languages with more productive and complex morphology such as Finnish and Es-
tonian, but also visible for languages with a relatively simple morphology such as English and
Dutch. We conclude that a morphological component yields consistent improvements for all the
tested languages and argue that it should be part of every language model.

Dependency trees represent the syntactic structure of a sentence by attaching each word to its
syntactic head, the word it is directly modifying. Dependency parsing is usually tackled using
heavily lexicalized (word-based) models and a thorough morphological preprocessing is impor-
tant for optimal performance, especially for MRLs. We investigate if the lack of morphological
features can be compensated by features induced using hidden Markov models with latent an-
notations (HMM-LAs) (Huang et al., 2009) and find this to be the case for German. HMM-LAs
were proposed as a method to increase part-of-speech tagging accuracy. The model splits the
observed part-of-speech tags (such as verb and noun) into subtags. An expectation maximization
algorithm is then used to fit the subtags to different roles. A verb tag for example might be split
into an auxiliary verb and a full verb subtag. Such a split is usually beneficial because these
two verb classes have different contexts. That is, a full verb might follow an auxiliary verb, but
usually not another full verb.

For German and English, we find that our model leads to consistent improvements over a
parser (Bohnet, 2010) not using subtag features. Looking at the labeled attachment score (LAS),
the number of words correctly attached to their head, we observe an improvement from 90.34
to 90.75 for English and from 87.92 to 88.24 for German. For German, we additionally find
that our model achieves almost the same performance (88.24) as a model using tags annotated
by a supervised morphological tagger (LAS of 88.35). We also find that the German latent tags
correlate with morphology. Articles for example are split by their grammatical case.

We also investigate the part-of-speech tagging accuracies of models using the traditional tree-
bank tagset and models using induced tagsets of the same size and find that the latter outperform
the former, but are in turn outperformed by a discriminative tagger.

Furthermore, we present a method for fast and accurate morphological tagging. While part-
of-speech tagging annotates tokens in context with their respective word categories, morpholog-
ical tagging produces a complete annotation containing all the relevant inflectional features such
as case, gender and tense. A complete reading is represented as a single tag. As a reading might
consist of several morphological features the resulting tagset usually contains hundreds or even
thousands of tags. This is an issue for many decoding algorithms such as Viterbi which have
runtimes depending quadratically on the number of tags. In the case of morphological tagging,
the problem can be avoided by using a morphological analyzer. A morphological analyzer is a
manually created finite-state transducer that produces the possible morphological readings of a
word form. This analyzer can be used to prune the tagging lattice and to allow for the appli-
cation of standard sequence labeling algorithms. The downside of this approach is that such an

Abstract 25

analyzer is not available for every language or might not have the coverage required for the task.
Additionally, the output tags of some analyzers are not compatible with the annotations of the
treebanks, which might require some manual mapping of the different annotations or even to
reduce the complexity of the annotation.

To avoid this problem we propose to use the posterior probabilities of a conditional random
field (CRF) (Lafferty et al., 2001) lattice to prune the space of possible taggings. At the zero-
order level the posterior probabilities of a token can be calculated independently from the other
tokens of a sentence. The necessary computations can thus be performed in linear time. The
features available to the model at this time are similar to the features used by a morphological
analyzer (essentially the word form and features based on it), but also include the immediate
lexical context. As the ambiguity of word types varies substantially, we just fix the average
number of readings after pruning by dynamically estimating a probability threshold. Once we
obtain the pruned lattice, we can add tag transitions and convert it into a first-order lattice. The
quadratic forward-backward computations are now executed on the remaining plausible readings
and thus efficient. We can now continue pruning and extending the lattice order at a relatively low
additional runtime cost (depending on the pruning thresholds). The training of the model can be
implemented efficiently by applying stochastic gradient descent (SGD). The CRF gradient can
be calculated from a lattice of any order as long as the correct reading is still in the lattice.
During training, we thus run the lattice pruning until we either reach the maximal order or until
the correct reading is pruned. If the reading is pruned we perform the gradient update with the
highest order lattice still containing the reading. This approach is similar to early updating in the
structured perceptron literature and forces the model to learn how to keep the correct readings in
the lower order lattices. In practice, we observe a high number of lower updates during the first
training epoch and almost exclusively higher order updates during later epochs.

We evaluate our CRF tagger on six languages with different morphological properties. We
find that for languages with a high word form ambiguity such as German, the pruning results in
a moderate drop in tagging accuracy while for languages with less ambiguity such as Spanish
and Hungarian the loss due to pruning is negligible. However, our pruning strategy allows us
to train higher order models (order > 1), which give substantial improvements for all languages
and also outperform unpruned first-order models. That is, the model might lose some of the
correct readings during pruning, but is also able to solve more of the harder cases that require
more context. We also find our model to substantially and significantly outperform a number of
frequently used taggers such as Morfette (Chrupala et al., 2008) and SVMTool (Giménez and
Màrquez, 2004).

Based on our morphological tagger we develop a simple method to increase the performance
of a state-of-the-art constituency parser (Petrov et al., 2006). A constituency tree describes the
syntactic properties of a sentence by assigning spans of text to a hierarchical bracket structure.
Petrov et al. (2006) developed a language-independent approach for the automatic annotation
of accurate and compact grammars. Their implementation – known as the Berkeley parser –
gives state-of-the-art results for many languages such as English and German. For some MRLs
such as Basque and Korean, however, the parser gives unsatisfactory results because of its simple
unknown word model. This model maps unknown words to a small number of signatures (similar
to our morphological classes). These signatures do not seem expressive enough for many of the

26 Abstract

subtle distinctions made during parsing. We propose to replace rare words by the morphological
reading generated by our tagger instead. The motivation is twofold. First, our tagger has access
to a number of lexical and sublexical features not available during parsing. Second, we expect the
morphological readings to contain most of the information required to make the correct parsing
decision even though we know that things such as the correct attachment of prepositional phrases
might require some notion of lexical semantics.

In experiments on the SPMRL 2013 (Seddah et al., 2013) dataset of nine MRLs we find our
method to give improvements for all languages except French for which we observe a minor drop
in the PARSEVAL score of 0.06. For Hebrew, Hungarian and Basque we find substantial absolute
improvements of 5.65, 11.87 and 15.16, respectively.

We also performed an extensive evaluation on the utility of word representations for morpho-
logical tagging. Our goal was to reduce the drop in performance that is caused when a model
trained on a specific domain is applied to some other domain. This problem is usually addressed
by domain adaption (DA). DA adapts a model towards a specific domain using a small amount of
labeled or a huge amount of unlabeled data from that domain. However, this procedure requires
us to train a model for every target domain. Instead we are trying to build a robust system that
is trained on domain-specific labeled and domain-independent or general unlabeled data. We
believe word representations to be key in the development of such models because they allow us
to leverage unlabeled data efficiently. We compare data-driven representations to manually cre-
ated morphological analyzers. We understand data-driven representations as models that cluster
word forms or map them to a vectorial representation. Examples heavily used in the literature
include Brown clusters (Brown et al., 1992a), Singular Value Decompositions of count vectors
(Schütze, 1995) and neural-network-based embeddings (Collobert et al., 2011). We create a
test suite of six languages consisting of in-domain and out-of-domain test sets. To this end we
converted annotations for Spanish and Czech and annotated the German part of the Smultron
(Volk et al., 2010) treebank with a morphological layer. In our experiments on these data sets we
find Brown clusters to outperform the other data-driven representations. Regarding the compari-
son with morphological analyzers, we find Brown clusters to give slightly better performance in
part-of-speech tagging, but to be substantially outperformed in morphological tagging.

Zusammenfassung

Wir stellen Methoden zur verbesserten Verarbeitung von morphologisch reichen Sprachen (MRL)
vor, wobei wir MRLs als Sprachen definieren, deren Morphologie komplexer als die Englis-
che Morphologie ist. Betrachten wir z.B. die typischen Formen eines Englischen Verbs so wie
work ‘arbeiten’, welches in vier verschiedenen Formen auftreten kann: work, works, working
und worked. Sein spanisches Gegenstück trabajar ‘arbeiten’ hat sechs verschiedene einfache
Präsensformen: trabajo, trabajas, trabaja, trabajamos, trabajáis und trabajan und mehr als 50
verschiedene Formen wenn wir auch die anderen Zeitformen, Modi (Indikativ, Subjunktiv und
Imperativ) und Partizipien berücksichtigen. Solch eine hohe Anzahl an Formen führt dazu, dass
viele Formen sehr selten sind. So kommen in einem aktuellen Wikipedia Auszug von über 400
Millionen Wörtern 20 Formen weniger als zweimal vor und 10 Formen überhaupt nicht. Das be-
deutet, dass selbst wenn wir nur unannotierte Daten benötigen um unser Modell zu schätzen und
selbst unter Betrachtung eines relativ gewöhnlichen und häufigen Verbs haben wir nicht genug
Daten um die Eigenschaften einiger Formen dieses Verbs zuverlässig zu schätzen. Würden wir
aber eine Form wie trabajaréis ‘ihr werdet arbeiten’ zerlegen dann würden wir sehen, dass es
sich um das Verb trabajar in der zweiten Person Plural Futur handelt. Diese Information würde
uns dann erlauben über die Grammatikalität (Sprachmodellierung) oder Syntax (Tagging und
Parsing) eines Satzes zu urteilen.

Im ersten Teil dieser Dissertation, entwickeln wir ein morphologisches Sprachmodell. Ein
Sprachmodell schätzt die Grammatikalität und Kohärenz eines Satzes. Die meisten heutzu-
tage verwendeten Sprachmodelle sind wortbasierte N-Gramm Modelle. Das bedeutet, dass sie
die Übergangswahrscheinlichkeit eines Wortes nach einer History ‘Verlauf’, d.h. den (n − 1)
vorhergehenden Wörtern beurteilen. Die Wahrscheinlichkeiten werden aus der Häufigkeit der
History und der Häufigkeit von History und Zielwort in einem riesigen Textkorpus ermittelt.
Sollte eine der beiden Wortfolgen nicht vorkommen, dann muss die Länge der History verkürzt
werden. Dies führt zu einer ungenaueren Schätzung, da weniger Kontext berücksichtigt wird.

Unser morphologisches Sprachmodell schätzt eine zusätzliche Wahrscheinlichkeit über die
morphologische Klasse der Wörter. Diese Klassen werden automatisch erzeugt in dem die mor-
phologischen Merkmale der Wortformen extrahiert werden. Dazu benutzen wir unüberwachte
Segmentierungsalgorithmen um die Suffixe der Formen zu ermitteln. Solch ein Algorithmus
könnte z.B. das Wort trabajaréis in trabaja und réis unterteilen und wir könnten die Eigen-
schaften von trabajaréis aus anderen Wörtern mit den gleichen morphologischen Eigenschaften
ableiten. Die datengetriebene Natur der Segmentierungsalgorithmen bringt sie dazu nicht nur
flektive Suffixe (so wie -réir) zu finden, sondern auch eher derivative Phänomene wie Hauptwörter

28 Zusammenfassung

von Komposita oder sogar Endungen wie -tec, welche technologieorientierte Firmen wie Vortec,
Memotec und Portec identifizieren aber nach traditionellen linguistischen Kriterien nicht als Suf-
fix zählen würden. Zusätzlich extrahieren wir Merkmale der Gestalt oder Schreibweise wie z.B.
ob eine Form eine Ziffer oder einen Großbuchstaben enthält. Diese Merkmale sind wichtig, da
viele seltene oder ungesehene Formen Eigennamen oder Zahlen sind die oftmals keine bedeu-
tungstragenden Suffixe haben. Unser klassenbasiertes morphologisches Modell wird dann mit
einem wortbasierten Modell interpoliert um die Verallgemeinerungsfähigkeiten des ersten mit
der hohen Genauigkeit für häufige Wortfolgen des zweiten kombinieren zu können.

Wir evaluieren unser Modell über 21 europäische Sprachen hinweg und zeigen Perplexitäts-
Verbesserungen zwischen 3% und 11%, wobei die Perplexität ein Standardevaluierungsmaß der
Sprachmodellierung ist. Die Verbesserungen sind am höchsten für Sprachen mit eher produk-
tiver und komplexer Morphologie wie z.B. Finnisch und Estländisch, können aber auch für
Sprachen mit relativ einfacher Morphologie so wie Englisch und Niederländisch beobachtet wer-
den. Zusammenfassend können wir sagen, dass eine morphologische Komponente konsistente
Verbesserungen für alle Sprachen bringt und wir folgern daraus, dass solch eine Komponente in
jedes Sprachmodell integriert werden sollte.

Dependenzbäume repräsentieren die syntaktische Struktur eines Satze indem jedes Wort an
seinen syntaktischen Kopf, d.h. das Wort das es direkt modifiziert, angehängt wird. Das Depen-
denzparsen (d.h. das automatische Erzeugen von Dependenzbäumen) wird üblicherweise mit
stark lexikalisierten (wortbasierten) Modellen in Angriff genommen. Eine gründliche morphol-
ogische Vorverarbeitung ist dabei wichtig um eine optimale Genauigkeit zu erreichen, insbeson-
dere im Fall von MRLs. Wir untersuchen ob das Fehlen von morphologischen Merkmalen durch
automatisch erzeugte Merkmale kompensiert werden kann. Dazu verwenden wir Hidden Markov
Modelle mit latenten Annotationen (HMM-LA), d.h. Hidden Markov Modelle, die die Anzahl
ihrer Zustände automatisch erweitern können. Diese Modelle wurden ursprünglich entwickelt
um die Genauigkeit von Part-of-Speech (POS) ‘Wortart’ Taggern zu erhöhen. Dabei werden die
annotierten POS-Tags (z.B. Verb oder Substantiv) in Unterkategorien unterteilt. Ein Expectation
Maximization (EM) Algorithmus wird dann benutzt um diese Unterkategorien automatisch an
unterschiedliche Rollen anzupassen. So könnte ein Verb in eine Hilfsverb- und Vollverbrolle un-
terteilt werden. Solch eine Unterteilung ist oft Vorteilhaft für das Modell, da beide Unterklassen
in sehr verschiedenen Kontexten auftauchen. So kommen Vollverben oft nach Hilfsverben nicht
aber nach anderen Vollverben vor.

Für Deutsch und Englisch zeigen unsere Experimente konsistente Verbesserung über einen
Parser (Bohnet, 2010), der keine Unterkategorien verwendet. Wenn wir den Labeled-Attachment-
Score (LAS), also die relative Anzahl der Wörter die an ihren richtigen Kopf angehängt werden,
betrachten, dann beobachten wir Verbesserungen von 90,34% zu 90,75% für Englisch und von
87,92% zu 88,24% für Deutsch. Für Deutsch zeigt sich des Weiteren, dass unser Modell fast die
gleiche Genauigkeit (88,24%) wie ein Modell dass manuell erstellte morphologische Merkmale
verwendet (88,35%) erreicht. Auch zeigt sich das die automatisch induzierten Unterkategorien
mit den morphologischen Merkmalen korrelieren. So werden z.B. Artikel nach ihrem Kasus
unterteilt.

Wir untersuchen auch die Part-of-Speech-Tagginggenauigkeit von HMMs die auf traditionelle
Baumbank Tagsets und Modellen die auf induzierten Tagsets der selben Größe beruhen. Dabei

Zusammenfassung 29

zeigen wir, dass letztere performanter als ersteren sind, also das automatisch erzeugte Tagsets
besser geeignet sind als die manuell erzeugten. Beide HMMs sind allerdings weniger genau als
diskriminative Tagger.

Des Weiteren, präsentieren wir eine Methode zum schnellen und genauen morphologis-
chem Tagging, während Part-of-Speech Tagging Wörter im Kontext mit ihrer Wortart annotiert,
produziert morphologisches Tagging eine vollständige Annotation aller relevanten flektionalen
Merkmale. Solche Merkmale sind z.B. Kasus, Genus und bei Verben die Zeitform. Beim mor-
phologischem Tagging wird dabei eine vollständige Lesart als ein einzelnes Tag repräsentiert.
Da diese Lesarten sehr viele Merkmale enthalten können führt das oft zu Tagsets von hunderten
oder sogar tausenden Tags. Das stellt ein Problem für viele Dekodierungsalgorithmen wie z.B.
Viterbi dar, da diese of Laufzeiten haben die quadratisch von der Größe des Tagsets abhängen.
Diese Problem kann mit Hilfe einer computationellen Morphologie behoben werden. Diese Mor-
phologien sind manuell erstellte Finte-State Transducer, die alle möglichen Lesarten einer Form
produzieren. Mit einer Morphologie können die Lesarten eines Wortes gefiltert werden, was
dann die Anwendung von Standardmethoden der sequentiellen Vorhersage erlaubt. Ein Nachteil
dieses Ansatzes ist jedoch, dass die Ausgabe der Morphologie kompatibel mit den Annotatio-
nen der Baumbank sein muss, was oft eine manuelle Konvertierung oder sogar das Entfernen
bestimmter Merkmale erfordert.

Um dieses Problem zu vermeiden schlagen wir vor die A-posteriori Wahrscheinlichkeiten
eines Conditional Random Fields (CRF) (Lafferty et al., 2001) zum filtern der Lesarten zu ver-
wenden. Bei einem Modell nullter Ordnung können diese Wahrscheinlichkeiten unabhängig
von den anderen Tags des Satzes berechnet werden. Daher können die nötigen Berechnungen
in linearer Zeit erfolgen. Die Merkmale, die das Modell zu diesem Zeitpunkt zur Verfügung
hat ähneln den Merkmalen, die eine Finite-State Morphologie benutzen würde, können aber
auch den unmittelbaren lexikalischen Kontext berücksichtigen. Da die Ambiguität der Wörter
stark variiert, setzen wir den Filterschwellwert, so, dass eine bestimmte durchschnittliche An-
zahl von Lesarten nach dem Filtern erreicht wird. Nach dem Filtern können wir die Tags mit
Übergangskanten verbinden und dadurch ein Modell erster Ordnung erzeugen. Die quadratis-
chen Forward-Backward-Berechnungen, welche nötig sind um die A-posteriori Wahrschein-
lichkeiten zu berechnen, sind nun wesentlich effizienter, da sie nur auf den noch verbleibenden
Tags ausgeführt werden. Das Filtern und Erhöhen der Modellordnung kann nun, in Abhängigkeit
der Filterschwellwerte, zu sehr geringen zusätzlichen Laufzeitkosten erfolgen. Das Modell
kann effizient mit einem stochastischen Gradientenabstieg (SGD) trainiert werden. Die CRF-
Gradienten können wie üblich von jedem Satz Kandidaten berechnet werden, so lange die kor-
rekten Lesarten noch enthalten sind. Daher filtern wir während des Training nur solange, wie
wir nicht die korrekten Lesarten verlieren und berechnen den Gradienten vom letzten noch
vollständigen Kandidatensatz. Dieser Ansatz ist vergleichbar mit Early Updating in der Perzep-
tronliteratur und zwingt das Modell dazu die richtigen Lesarten zu filtern. In der Praxis, sehen
wir Updates niedriger Ordnung fast nur im ersten Trainingsdurchlauf.

Wir evaluieren unseren CRF-Tagger auf sechs Sprachen mit verschiedenen morphologischen
Eigenschaften. Dabei sehen wir, dass das Filtern bei Sprachen mit hoher Wortformambiguität
so wie z.B. Deutsch zu einem leichten Rückgang der Tagginggenauigkeit führt, während bei
Sprachen mit weniger Ambiguität so wie z.B. Spanisch und Ungarisch der Genauigkeitsverlust

30 Zusammenfassung

vernachlässigbar ist. Unsere Filterstrategie erlaubt es uns aber Modelle höherer Ordnung zu
trainieren, welche bei allen Sprachen zu erheblichen Verbesserung führen auch über ungefilterte
Modelle erster Ordnung. Dies bedeutet, dass das Modell einige korrekte Lesarten durch das
Filtern verliert, aber dafür auch eine große Anzahl von schwierigen Fällen, die mehr Kontext
benötigen richtig lösen. Unser Modell erweist sich auch als akkurater, als die in der Literatur
häufig verwendeten Morfette (Chrupala et al., 2008) und SVMTool (Giménez and Màrquez,
2004).

Wir stellen auch eine einfache Methode vor mit der die Performanz eines State-of-the-Art
Konstituentenparsers (Petrov et al., 2006) wesentlich erhöht werden kann. Ein Konstituenten-
baum bildet die syntaktischen Eigenschaften eines Satzes ab indem er zusammenhängende Wort-
folgen auf eine hierarchische Klammerstruktur abbildet. Petrov et al. (2006) entwickelten dazu
eine sprachunabhängigen Ansatz der das manuelle Annotieren der Baumbankgrammatik durch
eine datengetriebene Annotation ersetzt. Ihre Implementierung, welche als Berkeley Parser
bekannt ist, produziert State-of-the-Art Parsingergebnisse für viele Sprachen so wie z.B. En-
glisch und Deutsch. Für einige MRLs so wie Baskisch und Koreanisch erzielt ihr Parser nur
mäßige Ergebnisse, da das Modell für die Behandlung von unbekannten Wörtern zu einfach ist.
Dieses Modell bildet unbekannte Wörter auf eine sehr einfache Signatur ab. Diese Signaturen
scheinen aber nicht in allen Fällen die Information zu enthalten die man für viele der oft subtilen
Parsingentscheidungen braucht. Wir schlagen daher vor, seltene Wörter durch ihre morpholo-
gische Lesart zu ersetzen. Diese Lesart kann durch unseren morphologischen Tagger schnell
und zuverlässig produziert werden. Unsere Motivation hierbei ist zum einen, dass unser Tagger
Zugriff auf eine Menge von lexikalischen und sublexikalischen Merkmalen hat die, der Berkeley
Parser nicht benutzt und zum anderen, dass wir vermuten, dass die morphologische Lesart oft
ausreicht um eine korrekte Parsingentscheidung zu treffen, auch wenn einige Dinge wie z.B. das
korrekte Anhängen von Präpositionalphrasen auch semantische Information benötigen.

In Experimenten auf den SPMRL 2013 (Seddah et al., 2013) Datensätzen von 9 MRLs, führt
unsere Methode zu Verbesserungen bei allen Sprachen außer bei Französisch, wo wir einen
geringen Rückgang im PARSEVAL-Score von 0.06 beobachten. Für Hebräisch, Ungarisch und
Baskisch zeigen sich aber Verbesserungen von 5,65, 11,87 und 15,16 F-Score-Punkten.

Wir präsentieren auch eine umfassende Evaluierung der Nützlichkeit von Wortrepräsentationen
für das morphologische Tagging. Unser Ziel dabei ist es den Genauigkeitsrückgang zu re-
duzieren, der verursacht wird wenn man ein Modell, das auf einer speziellen Domäne trainiert
wurde auf eine andere Domäne anwendet. Im Detail untersuchen wir dabei Brown-Cluster
(Brown et al., 1992a), Singulärwertzerlegungen von Häufigkeitsvektoren (Schütze, 1995) und
Einbettungen die auf neuronalen Netzwerken basieren (Collobert et al., 2011). Wir erstellen
eine Test-Suite aus sechs Sprachen die In-Domain und Out-Of-Domain Testdaten enthält. Dazu
konvertierten wir die Annotationen von spanischen und tschechischen Datensätzen und erweit-
erten den deutschen Teil des Smultron Korpus (Volk et al., 2010) um eine manuell annotierte
morphologische Schicht. In unseren Experimenten zeigt sich, dass Brown-Cluster die beste
datengetriebene Repräsentation sind. Im Vergleich mit Finite-State Morphologien sind Brown-
Cluster besser zum Part-of-Speech-Tagging geeignet, aber erheblich schlechter für das morphol-
ogische Tagging.

Zusammenfassend präsentieren wir ein neuartiges morphologisches Sprachmodell, für welches

Zusammenfassung 31

wir konsistente Verbesserungen über 21 europäische Sprachen zeigen können. Des Weiteren
zeigen wir, dass HMM-LAs interpretierbare Unterkategorien produzieren, welche benutzt wer-
den können um die Genauigkeit eines Dependenzparsers zu erhöhen. Wir stellen auch einen
schnellen und akkuraten Ansatz zum morphologischen Tagging vor und seine Anwendung im
Konstituenten-Parsing. Schlussendlich diskutieren wir eine Evaluierung von Wortrepräsentationen
in der wir zeigen, dass linguistisch motivierte Morphologien am besten für das morphologische
Tagging geeignet sind.

32 Zusammenfassung

Chapter 1

Introduction

1.1 Motivation
Morphologically rich languages (MRLs) can be loosely defined as languages with a morphology
more complex than English. MRLs make up a big part of the languages of the world, but are still
only inadequately handled by many natural language processing (NLP) models. In this thesis we
present several approaches to adapt standard NLP methods to better support MRLs.

Most modern statistical approaches to NLP tasks rely heavily on statistics based on word
forms. They require a word form to occur multiple times in a training corpus in order to make
reasonable predictions. MRLs present a challenge to such approaches as their productive mor-
phology generates a huge number of rare word forms and thus sparser datasets than languages
with simpler morphology. Consider for example a typical regular English verb such as ‘to work’,
which takes four different word forms: ‘work’, ‘works’, ’working’ and ‘worked’. Its Spanish
counter part ‘trabajar’ can take more than 50 different word forms, depending on person, num-
ber, tense and mood. A different form of complexity can be seen in the following example from
Greenlandic:

Greenlandic
Paasi-nngil-luinnar-para ilaa-juma-sutit
understand-not-completely-1SG.SBJ.3SG.OBJ.IND come-want-2SG.PTCP

‘I didn’t understand at all that you wanted to come along.’

Table 1.1: Greenlandic as an example of a MRL. (Source: Haspelmath and Sims (2013))

The example shows that a MRL might represent a relatively complex sentence such as ‘I
didn’t understand at all that you wanted to come along’ by just two word forms. The second
Greenlandic word form ilaajumasutit, translates to wanted to come. If we assume, that Green-
landic also represents similar phrases such as wants to dance or will want to leave as single word
forms then we are forced to conclude that the sheer number of possible word forms makes it
impossible to gather enough statistics for all of them. We thus have to apply some form of de-
composition to make use of the fact that the word ilaajumasutit is built out of ilaa, juma and sutit

34 1. Introduction

by the application of somewhat general rules. In this thesis we discuss methods that implicitly
or explicitly make use of the internal structure of such complex words and we show applications
to three standard NLP tasks that suffer from morphological complexity: language modeling,
morphological tagging and syntactic parsing:

• Language models assess whether a sequence of words is grammatical, fluent and seman-
tically coherent. They play an important role in standard approaches to machine transla-
tion, automatic speech recognition and natural language generation. The most widely used
models are n-gram models which model the probability of a word following a number of
context words. If the word has not been seen after a given context, the model has to back
off to a smaller and less informative context. As MRLs lead to especially sparse n-gram
statistics their modeling requires some sort of morphological analysis in order to compen-
sate for the missing lexical information. In this thesis we propose to group word forms of
similar morphology and spelling together and thus use a class-based language model. We
show that an interpolation of a word-based and morphological class-based model improves
the prediction after rare contexts as well as the overall prediction quality. The morpholog-
ical clusters are built by assigning every word form to a morphological signature. The
morphological signature consists of a number of spelling features such as if the word form
is in uppercase (a good indicator for proper nouns) or whether the word contains digits
and the inflectional suffix of the form. The suffix is extracted by applying an unsupervised
segmentation algorithm. To this end, we evaluate several segmentation algorithms and find
that most of the improvement can be obtained by a simple frequency-based heuristic.

• A morphological tagger produces the morphological features of a token in context. The
resulting morphological readings are useful features for syntactic parsing and machine
translation. During tagging the entire morphological reading of a word form is represented
as a single tag. As MRLs have many features per word form this leads to big tagsets and
high training and tagging times as most sequence prediction decoders depend quadratically
on the size of the tagset. We propose an approximate training and decoding algorithm that
prunes implausible readings from the tag lattice and yields substantial decoding speed ups.
This new algorithm also allows us to increase the order of the model, which is prohibitive
for standard models as it would mean an exponential increase in the runtime of the model.
We then show that pruned higher-order models give significant improvements over un-
pruned first-order models. We also created a test-suite for robust morphological tagging.
This test-suite was built by converting existing data sources of different annotations and
also by annotating new resources. We use this test-suite to perform a large evaluation of
the influence of word representations on morphological tagging.

• A syntactic parser produces the syntactic analysis of a sentence. The syntactic analysis
is typically in tree form and describes the syntactic dependencies between words or the
hierarchical phrasal structure of the constituents. The resulting syntactic trees are crucial
for many NLP problems related to natural language understanding such as coreference
resolution and information extraction, but are also frequently used in other tasks such as
machine translation and paraphrasing. A proper morphology analysis is important for

1.2 Main Contributions 35

parsing as many syntactic roles are tightly correlated with certain morphological features.
Dative case, for example usually indicates an indirect object. Our contribution here is
twofold: We first show that hidden Markov models with latent annotations (HMM-LA)
can be used to induce latent part-of-speech tags that for some languages (such as German)
act as a form of unsupervised morphological tags and significantly increase parsing accu-
racy. Furthermore, we show that morphological signatures obtained from our supervised
morphological tagger lead to substantial improvements, when incorporated into a state-of-
the art constituency parser.

1.2 Main Contributions
The issues with applying standard NLP approaches, mentioned in the last section, lead us to
the development of several supervised and unsupervised approaches to improve the handling of
MRLs.

• Morphological language model: Addressing the limitations of n-gram models, we present
a novel morphological language model. The model is a linear interpolation between a stan-
dard word-based model and a class-based morphological model. The class-based model is
built by grouping infrequent word forms of similar spelling and morphology. In an eval-
uation across 21 languages of varying morphological complexity the interpolated model
yields consistent improvements over a word-based model. The model gives high improve-
ments for MRLs (e.g., Finnish) and lower improvements for morphologically simpler lan-
guages (e.g., English).

• HMM-based feature induction: We discuss hidden Markov models with latent annota-
tions as a method to induce tagsets with interesting linguistic properties and some corre-
lation with morphological features. The induced tagset can be used to improve statistical
dependency parsing with significant improvements for English and German. For German,
the improvements obtained from the tagset and the improvements obtained when using a
supervised tagger are statistically indistinguishable. The approach can be interpreted as
a form of semi-supervised morphological tagging, as the German tags also show some
correlation with morphological features such as case.

• Fast morphological tagging: We present a novel approximating decoding algorithm for
Conditional Random Fields. The algorithm creates a sequence of pruned tag lattices of
increasing order and complexity and can be applied during training and decoding. It is
especially appropriate when used with high model orders and tagset sizes. For morpho-
logical tagging, the algorithm turns out to be several times faster than unpruned first-order
tagging and more accurate when used with higher orders. We also show how the outcome
of the resulting tagger can be used to improve the modeling of rare words in a state-of-the
art constituency parser.

• Robust morphological tagging: We present a dataset for the evaluation of multilingual
morphological tagging and a survey on the utility of word representations. We show that

36 1. Introduction

a simple clustering approach known as Brown clustering (Brown et al., 1992a) yields the
highest improvements in part-of-speech tagging. For full morphological tagging we find
that handcrafted computational morphologies outperform all the tested data-driven repre-
sentations by a great margin.

1.3 Outline
The remainder of this thesis is structured as follows: Chapter 2 begins by introducing the needed
linguistic and mathematical foundations. We discuss the necessary linguistic terminology and
the basics of statistical language modeling using n-grams as well as class-based language mod-
eling, the Kneser-Ney model and linear interpolation as a simple way of building integrated
language models. We look at structured prediction, hidden Markov models with and without la-
tent annotations and conditional random fields (CRFs). We also survey the most important word
representations. In Chapter 3 we discuss the morphological class-based language model and an
extensive evaluation across 21 languages. Chapter 4 introduces the application of HMMs with
latent annotations to induce a latent part-of-speech tagset useful for statistical dependency pars-
ing. We explain the utility of the tagset by pointing out its correlation with certain morphological
features and semantic classes. In Chapter 5 we present the approximated inference algorithm
for CRFs. Chapter 6 discusses robust morphological tagging. We investigate the out-of-domain
performance of our CRF tagger and survey the utility of different word representations.

Chapter 2

Foundations

2.1 Morphology
In this section we discuss the linguistic terminology used throughout this thesis. We begin with
the definition of morphology. Morphology is the study of the internal structure of words. More
precisely it studies how complex words are built using smaller segments, called morphemes
and how these morphemes determine the semantic properties of words. Consider for example
English regular plural building: cats is a complex word that is a concatenation of cat and s.
The morpheme s at the end of the word indicates that we are referring to more than one cat
and the process is systematic, as can be seen in many other examples such as dog - dog-s, cow
- cow-s and horse - horse-s. Throughout this section we denote morpheme boundaries by ‘-
’. The different languages of the world have a different degree of morphological and syntactic
complexity. Languages that tend to express semantic properties using syntax are called analytic
while languages that express these properties mostly using morphology are called synthetic.
Two examples from Vietnamese (analytic) and Greenlandic (synthetic) are shown in Figure 2.1.

Vietnamese
Hai dú.a bo nhau là tai gia-dinh thang chông.
two individual leave each.other be because.of family guy husband

‘They divorced because of his family.’

Greenlandic
Paasi-nngil-luinnar-para ilaa-juma-sutit
understand-not-completely-1SG.SBJ.3SG.OBJ.IND come-want-2SG.PTCP

‘I didn’t understand at all that you wanted to come along.’

Figure 2.1: Examples of an analytic and a synthetic language. (Source: Haspelmath and Sims
(2013))

Synthetic languages can be further subdivided into fusional and agglutinative languages. Ag-

38 2. Foundations

glutinative languages represent most morphological features by a specific morpheme. Consider
for example the Hungarian paradigm in Figure 2.2, where ‘ok’ marks plural and ‘al’ marks in-
strumental case. Fusional languages such as German (Figure 2.2) on the other side tend to merge
different features into one morpheme.

Singular Plural
Hungarian

Nominative nap nap-ok
Dative nap-ot nap-ok-at
Accusative nap-nak nap-ok-nak
Instrumental napp-al nap-okk-al

. . .

German
Nominative Tag Tag-e
Genitive Tag-es Tag-en
Dative Tag Tag-en
Accusative Tag Tag-e

Figure 2.2: (Partial) Paradigms of an agglutinative (Hungarian) and a fusional (German) lan-
guage

2.1.1 Terminology

We call an occurrence of a word in running text word form and the set of word forms that is
represented by the same entry in a lexicon paradigm or lexeme. The canonical form that is used
to represent the paradigm is called lemma. An example for the Danish word dag ‘day’ is shown
in Figure 2.3.

Singular Plural
Indefinite Definite Indefinite Definite

Nominative dag dagen dage dagene
Genitive dags dagens dages dagenes

Figure 2.3: Paradigm of the Danish noun dag ‘day’

The example shows that the word forms dag, dagen, dage, dagene, dags, dagens, dages and
dagenes make up a lexeme that can be summarized by the lemma dag, which corresponds to the
singular nominative indefinite form. A set of related lexemes is called a word family. Consider
for example the two families in Figure 2.4.

2.1 Morphology 39

a) build, build-ing, build-er, build-able, un-build-able, . . .
b) mort, mort-al, mort-al-itat, in-mort-al, in-mort-al-izar, in-mort-al-izasión, . . .

Figure 2.4: An English (a) and a Catalan (b) word family

The relationship between different word forms of a lexeme is called inflectional, while the
relationship between different lexemes of a word family is called derivational (Haspelmath and
Sims, 2013).

An important part of morphology is concatenative and can be subdivided into affixation and
compounding. Affixation is the attachment of morphemes with abstract meaning to morphemes
with concrete meaning. The morphemes with concrete meaning are called roots, while the ab-
stract morphemes are known as affixes. Affixes get further specified by how they are attached
to the root. Affixes preceeding the root are called prefixes, affixes succeeding the root suffixes,
affixes inserted into the root are called infixes and affixes surrounding the root circumfixes. In
the example above build and mort are roots, in and un are prefixes and er and al are suffixes.
In Seri the infix tóo is a plural marker: consider for example ic ‘plant’ versus i-tóo-c ‘plants’.
The German ge-t is a circumfix such as in ge-sag-t ‘said’. The – possibly complex – unit an
affix is attached to is known as base and also as stem in inflectional morphology. Morphemes
that can be found attached to word forms, but also as free words are called clitics. An exam-
ple are Spanish object pronouns such as lo. Consider for example, lo compré ‘I bought it’, but
compra-lo ‘buy it’. In compounding, words are built by concatenating existing lexemes. In many
languages – such as English – noun-noun compounds make up the majority of the compounded
words, examples include home-work and fire-fly, but also green tea and snow storm. In other
languages different types of compounds might be more frequent. In modern Spanish, for exam-
ple, verb-noun compounds are more frequent: lava-platos ‘dish washer’ (lit., washes plates) and
rompe-cabezas ‘riddle’ (lit., breaks heads).

Morphological changes that cannot be explained by compounding or affixation are called
nonconcatenative. An important class of these changes is stem alternation, where the stem is
changed during the creation of a word form. Stem alternation often effects vowels. Consider for
example the English goose – geese and sleep – slep-t, German buch ‘book’ – büch-er ‘books’ or
Spanish quier-o ‘I want’ – quer-emos ‘we want’. A class of nonconcatenative morphology that
is important for semitic languages such as Hebrew and Arabic is transfixation. In transfixation
the root can be seen as a consonant pattern where vowel features get inserted in order to form the
word. Consider the example in Figure 2.5.

Active Perfect Passive Perfect Root Pattern
kataba ‘wrote’ kutiba ‘was written’ k-t-b
halaqa ‘shaved’ huliqa ‘was shaved’ h-l-q
farada ‘decided’ furida ‘was decided’ f-r-d

Figure 2.5: Examples of Arabic transfixation (Source: Haspelmath and Sims (2013))

40 2. Foundations

The example demonstrates how for example the form kataba ‘wrote’ is created by mixing the
inflectional active perfect pattern a-a-a with the root pattern k-t-b. There are many other classes
of nonconcatenative morphology for which we refer the reader to Haspelmath and Sims (2013).

2.1.2 Part-Of-Speech
This thesis focuses in part on the accurate prediction of morphological features that often rep-
resent inflectional properties of the word forms. In the remainder of this section we give an
overview of the most common parts of speech and their typical inflectional properties. Nouns
and pronouns represent entities such as persons, animals and abstract concepts. English exam-
ples include dog, house and democracy. Pronouns such as it, her and him are substitutes for
nouns. The most important categories are personal pronouns such as he and him, possessive
pronouns such as his which denote possession of something, reflexive pronouns such herself
which usually refer to a previous mention of the subject of a sentence and demonstrative pro-
nouns such as this and that which are identified by some external reference (such as a gesture or
the distance to the speaker). The four typical morphological features are number, gender, case
and definiteness. We already discussed that number specifies the number of entities referred to.
The most common values are singular (sg) and plural (pl), but some languages also have a dual
form to refer to exactly two entities. It is often used to refer to things that naturally occur as a pair
such as arms and legs. Gender might denote the grammatical gender or natural gender of an en-
tity. Languages such as German and Spanish have grammatical gender, which is also assigned to
lifeless objects and is not necessarily consistent between different languages: compare German
masculine der Mond ‘moon’ (masculine) to Spanish la luna ‘moon’ (feminine). The typical gen-
der values are masculine (masc), feminine (fem) and neuter (neut). Although gender is usually
specified by the root, some languages also have certain derivational affixes that fix the gender
of a form. In Spanish -cion as in comunicación indicates feminine gender, while the German
diminutive suffix -chen such as in Mädchen ‘girl’ indicates neuter. Some languages such as for
example Basque only make a distinction into animate and inanimate, although this is sometimes
considered as a separate morphological feature. Case reflects the grammatical function of a word
form, while languages can have many different case values. In Figure 2.6, we give examples for
the classical Latin cases.

Case Function Latin English
Nominative subject nauta ibi stat ‘the sailor is standing there’
Genitive possessing object nomen nautae Claudius est ‘the sailor’s name is Claudius’
Dative indirect object nautae donum dedi ‘I gave a present to the sailor’
Accusative direct object nautam vidi ‘I saw the sailor’
Ablative various uses sum altior nauta ‘I am taller than the sailor’
Vocative addressing the object gratias tibi ago, nauta ‘I thank you, sailor’

Figure 2.6: Cases of nauta ‘sailor’ (Source: Wikipedia.org)

Definiteness marks whether (definite) or not (indefinite) a referred entity is identifiable in a

http://en.wikipedia.org/wiki/Grammatical_case

2.1 Morphology 41

given context.
Determiners (such as ‘a’ and ‘the’) and adjectives (such as ‘red’ and ‘tired’) accompany

nouns and agree in their morphological features. Adjectives can be used attributively (the red car)
or predicatively (the car is red) and their agreement behavior may vary in different uses: consider
German ein rotes Auto ‘A red car’, but ein Auto is rot (a car is red). Whether certain features are
marked might depend on special circumstances. Spanish and German adjectives for example
mark gender, but German only does so (unambiguously) in very special cases: If the adjective
gets used as an attribute, with indefinite determiner and only in nominative and accusative case.
Figure 2.7 illustrates this.

Spanish Sg Pl
Masc rojo rojos
Fem roja rojas

German Sg Pl
Masc roter rote
Fem rote rote
Neut rotes rote

Figure 2.7: Noun-Adjective gender and plural agreement in Spanish and German for ‘red’

Verbs represent the actions performed by entities. The common morphological features are
person, number, tense, voice and mood. Figure 2.8 shows the paradigm of the Dutch verb
jagen ‘hunt’.

Present Tense Past Tense
1st person singular jaag joeg
2nd person singular jaagt joeg
3rd person singular jaagt joeg
Plural jagen joegen
Subjunctive singular jage joege
Subjunctive plural jagen joegen
Imperative singular jaag
Imperative plural jaagt
Participles jagend gejaagd

Figure 2.8: Paradigm of the Dutch verb jagen ‘hunt’. (Source: en.wiktionary.org)

In many European languages person denotes whether some action is performed by the speaker,
someone directly addressed by the speaker or someone else. It might also include a formal and
informal way of addressing someone or other distinctions. Quechua, for example, has an inclu-
sive and exclusive we form. Tense marks when an action takes place and how it temporarily
relates to other actions. The classical Latin tenses are: present, imperfect, perfect, pluperfect

http://en.wiktionary.org/wiki/jagen

42 2. Foundations

(before some event in the past), future and future perfect (event happening before point of time
in the future: ‘will have seen’). Voice specifies whether the action is active or passive and mood
specifies the attitude of the speaker. Classical mood features are indicative (standard form),
subjunctive (hypothetical), conditional (dependent on some other statement) and imperative
(direct command).

The remaining most important parts of speech are adverbs, prepositions and conjunctions.
Adverbs such as often and hastily modify verbs just as adjectives modify nouns. Prepositions
such as on and in are small words that express spatial, temporal or abstract relationships with a
noun. Synthetic languages such as Hungarian might often use case marking in places where ana-
lytic languages use prepositions. Conjunctions such as and and that link sentences. Coordinate
conjunctions join phrase of the (usually) same category (Mary and John), while subordinate
conjunctions attach a primary sentence to a secondary sentence (Mary said that she likes John).

2.2 Language Modeling
Language models estimate the probability of a sentence and are important for NLP applications
such as machine translation and speech recognition, where they are needed to estimate the gram-
maticality, fluency and semantic coherence of a sentence or utterance. In practice we are given
a set of sentences D called the training set and are trying to estimate the probability distribution
PD that generated the data set. We assume that the words w generated by PD are members of a
finite vocabulary V . We define V to contain all the word forms occurring in D plus the unknown
word which represents all the word forms of a language not occurring in D. As the term word is
ambiguous we refer to the members of V by (word) type and and call occurrences of types in the
running text (word) tokens.

n-gram Models

We first use the chain rule to decompose the probability of a sequencewk1 = w1w2w3 . . . wk (with
wi ∈ V) into a product of conditional probabilities:

P (w1 . . . wk) =
∏
i≤k

P (wi|wi−1
1) (2.1)

The conditional probabilities are also called transitional probabilities and their right side
is known as the history of wi. Note that the last probability distribution P (wk|wk−1

1) would
need |V |k parameters if stored as a simple probability table. As it is infeasible to estimate such
probability tables for large sentences we make a Markov assumption and bound the number of
words in our history by n− 1, where n is called the order of the model.

P (wi|wi−1
1) ≈ P (wi|wi−1

i−n+1) = P (wi|hi) (2.2)

Such models are called n-gram models as the largest word sequences they rely on are of order
n. We assume that histories with indexes < 1 are padded with distinctive boundary symbols.

2.2 Language Modeling 43

Maximum Likelihood Estimate

The simplest way of estimating the probability distribution that generated D is to assume that
it is the empirical distribution maximizing the likelihood LL(D) of D, the probability that D is
generated by the distribution Pθ:

LL(D) = Pθ(D) =
N∏
i=1

Pθ(wi|hi) (2.3)

whereN is the number of tokens inD. If P is an n-gram model we can express the log-likelihood
ll = log LL in terms of the parameters λhw of the probability distribution Pθ(w|h):

ll(D, θ) =
∑

hw∈V n
c(hw) logPθ(w|h) =

∑
hw∈V n

c(hw) log λhw (2.4)

where θ is a tuple containing all the model parameters λ and c(hw) is the frequency of the n-
gram hw in D. In order to satisfy the axioms of probability theory, the parameters λ belonging
to the same history have to sum up to 1. We build this constraint into the objective function by
adding the Lagrange multiplier π. As the probabilities for different histories are independent of
each other we can optimize for one history at a time:

ll’(D, θ, h) =
∑

hw∈V n
c(hw) log λhw + π · (

∑
w∈V

λhw − 1) (2.5)

As ll′ is concave, we can derive optimal model parameters by finding the root of its gradient.
Differentiating for the model parameters λhw and π yields:

∂ ll’(D, θ, h)

∂λhw
=
c(hw)

λhw
+ π (2.6)

∂ ll’(D, θ, h)

∂π
=
∑
w∈V

λhw − 1 (2.7)

Setting the derivative to zero we arrive at:

λhw =
c(hw)∑

w′∈V c(hw
′)

(2.8)

We can conclude that setting the n-gram model parameters to their relative frequencies in the
data set D maximizes the likelihood of D. A model so defined is called the maximum likelihood
estimate and with c(h•) =

∑
w′∈V c(hw

′) for simplicity we set:

PML(w|h) =
c(hw)

c(h•)
(2.9)

While this model is the n-gram model closest to the empirical data distribution it is bad
in practice. The reason is that it assigns zeros to all n-grams not seen in D. In order to get

44 2. Foundations

some estimate for unseen n-grams we need to redistribute some of the probability mass of seen
events to unseen events. While doing that we are trying to change the seen counts as little as
possible. As we do not want to redistribute the probability mass uniformly we also need a way
of estimating the probability of a higher order n-gram by looking at lower order n-grams. In the
next subsection we discuss linear interpolation as a way of estimating higher order n-grams from
lower order n-grams and as a general way of combining language models. The redistributions
of probability mass to unseen events is known as discounting or smoothing and is discussed
afterwards.

Linear Interpolation

The basic form of linear interpolation (Jelinek, 1980; Brown et al., 1992b) between two models
can be given as:

Pinter(w|h) = γ(h) · P1(w|h) + (1− γ(h)) · P2(w|h), with 0 ≤ γ(h) ≤ 1 (2.10)

It is guaranteed that when the γ(h) are chosen in an optimal way wrt to the data set D the
log-likelihood of Pinter will not be smaller than the likelihood of both P1 and P2. Another nice
property of linear interpolation is that the new model can be encoded as a simple n-gram model.

As the likelihood of the interpolated model is concave the optimal interpolation parameters
can be found in a similar fashion as shown in the previous subsection. In this thesis we use the
algorithm by Bahl et al. (1991), which finds the optimal values using binary search in the interval
[0, 1] of the gradient (Algorithm 2.1).

Algorithm 2.1 The Bahl Algorithm for finding optimal in-
terpolation parameters

function BAHL-OPTIMIZE(llinter, D)
γl ← 0
γr ← 1
while true do

γm ← γl+γr
2

if ∂ llinter(D,γm)
∂γ

= 0 then
return γm

else if ∂ llinter(D,γm)
∂γ

> 0 then
γl ← γm

else
γr ← γm

end if
end while

end function

The algorithm uses the log-likelihood of an interpolated model:

2.2 Language Modeling 45

llinter(h,D, γ(h)) =
∑
hw∈D

c(hw) · log γ(h) · P1(w|h) + (1− γ(h)) · P2(w|h) (2.11)

∂ llinter(h,D, γ(h))

∂γ(h)
=
∑
hw∈D

c(hw)

γ(h) + P2(w|h)
P1(w|h)−P2(w|h)

(2.12)

Linear interpolation can also be generalized to an arbirary number of models:

Pgeneral-inter(w|h) =
∑
i

γi(h) · Pi(w|h), with
∑
i

γi(h) = 1 (2.13)

The parameters γi can then be estimated using a generalized version of Bahl et al. (1991) or
using the expectation-maximization algorithm (EM) (Dempster et al., 1977). The general idea
behind EM is discussed in Section 2.3.2 for the implementation in the case of linear interpolation
we refer to Clarkson and Rosenfeld (1997).

Relative Discounting

In order to avoid zeroes in the probability distributions we redistribute mass from seen to unseen
events. The easiest way to accomplish this is to add a small positive δ to every count. This results
in the following conditional probabilities:

PADD(w|h) =
c(hw) + δ

c(h•) + |V | · δ
(2.14)

This form of smoothing is known as additive smoothing and the special case of δ = 1 as
Laplace smoothing. We can also rewrite additive smoothing as a linear interpolation between a
ML model and a uniform distribution:

PADD(w|h) =
c(hw) + δ

c(h•) + |V | · δ

=
c(h•)

c(h•) + |V | · δ
· c(hw)

c(h•)
+

δ · |V |
c(h•) + |V | · δ

· 1

|V |

= γ(h) · PML(w|h) + (1− γ(h)) · 1

|V |

An important generalization of additive smoothing is known as relative discounting:

PREL(w|h) = γ(h) · PML(w|h) + (1− γ(h)) · PSMOOTH(w|h) (2.15)

where PSMOOTH(w|h) is an arbitrary smooth distribution. Gale and Church (1994) showed that
plain additive smoothing does not work well for language modeling, as even for small n the
number of seen events is much smaller than the number of unseen events and we thus remove
too much probability mass from frequent events.

46 2. Foundations

Witten-Bell Smoothing

Witten-Bell Smoothing (Witten and Bell, 1991) is a form of relative discounting. Similar to
additive smoothing it is motivated by the idea that for a frequent history we should make less
usage of the back-off distribution, but this should not be our only criterion to use: Compare for
example the two histories said Mr. and wish you a merry. The first history is much more likely
to be followed by a new word than the second, even though it should be more frequent in most
corpora. Witten-Bell Smoothing thus incorporates the number of words a history is followed by
into the interpolation parameters:

PWB(w|h) = (1− γWB(h)) · PML(w|h) + γWB(h) · PWB(w|h′) (2.16)

γWB(h) =
N1+(h•)

N1+(h•) + c(h•)
(2.17)

where h′ is a history derived from h by removing the left most word and where we define N1+

as the number of words following a certain history:

N1+(h•) = |{w : c(hw) > 0}| (2.18)

Absolute Discounting

Absolute Discounting (Ney and Essen, 1991; Ney et al., 1994) is based on the intuition of re-
moving relatively more mass from small counts than from higher counts by simply subtracting a
small positive constant D < 1:

PABS(w|h) =
max{c(hw)−D, 0}

c(h•)
+ γABS(h) · P ′SMOOTH(w|h′) (2.19)

Again, γABS(h) is set so that PABS is properly normalized. The method can be justified by
experiments made by Church and Gale (1991). Given n-grams with a specific count r in one
corpus they looked at the average of counts r′ these n-grams had in a second corpus. They found
that the difference between r and r′ was almost constant for r ≥ 3. With a derivation using
deleted interpolation on the training set Ney et al. (1994) set:

D =
N1

N1 + 2 ·N2

(2.20)

where N1 and N2 are the total numbers of n-grams with count 1 and 2, respectively. Based on
the observation made by Church and Gale (1991), Chen and Goodman (1999) later argued to use
three different Di for the n-grams with count 1, 2 and ≥ 3:

Di = i− (i+ 1) ·D · Ni+1

Ni

(2.21)

Note that D1 = D.

2.2 Language Modeling 47

Kneser-Ney Smoothing

Kneser-Ney smoothing (Kneser and Ney, 1995) is arguably the best performing n-gram smooth-
ing technique and a variant of Absolute Discounting. The back-off distribution P ′KN(w|h) is
defined as the ratio of n-grams of the highest order ending in hw and n-grams ending in the
history h and some other word:

PKN(w|h) =
max{c(hw)−D, 0}

c(h•)
+ γKN(h) · P ′KN(w|h′) (2.22)

P ′KN(w|h) =
max{N1+(•hw)−D, 0}

N1+(•h•)
+ γ′KN(h) · P ′KN(w|h′) (2.23)

where N1+ is defined as the number of n-grams of the highest order n that have been seen in D
and end in hw:

N1+(•hw) = |{xhw|c(xhw) > 0 ∧ |xhw| = n}| (2.24)

where x is an n-gram and |xhw| denotes the order of the n-gram xhw. Similarly N1+(•h•) is
defined as:

N1+(•h•) =
∑
w

N1+(•hw) (2.25)

The model thus only uses the discounted MLE counts for the highest order model, because
lower-order counts might lead to wrong predictions. For the sake of argument, assume that we
use a Witten-Bell model to decide which of the two phrases in Figure 2.9 is correct.

1. He was filled with spite for his ex-wife.

2. *He was filled with spite of his ex-wife.

Figure 2.9: Example of a problematic case when simply using lower-order n-gram counts to
estimate higher-order n-gram counts: The high frequency of in spite of will make the incorrect
second sentence more likely. ‘*’ denotes an ungrammatical sentence.

We assume that we have not seen any of the with spite for/of n-grams and thus have to
back-off to bigram probabilities to settle the matter. As spite will occur almost exclusively as
in spite of , we will decide on the incorrect of . A Kneser-Ney model would estimate how likely
the bigrams are to occur in a novel context by looking at the number of different n-grams they
occur in and might come up with a different prediction.

Class-based Language Models

Class-based language models (Brown et al., 1992a) define n-gram probabilities by mapping word
forms to word classes and by estimating probabilities over class n-grams:

48 2. Foundations

PCLASS(w|h = wk1) = P (g(w)|g(w1) . . . g(wk)) · P (w|g(w)) (2.26)

P (g(w)|g(wi) . . . g(wi+k)) is called transition probability and P (w|g(w)) emission probabil-
ity. The class assignment function g(w) maps word types to classes. Class-based LMs can be
seen as another smoothing method as – similar to back-off models – they group different word n-
grams in order to obtain more reliable statistics. Class-based models are usually combined with
word-based models in order to obtain optimal performance (Goodman and Gao, 2000; Uszkoreit
and Brants, 2008). Methods to estimate class assignment functions from data are discussed in
Section 2.4 and Chapter 3 .

Evaluation of statistical Language Modeling

Language models can be evaluated as part of machine translation or speech recognition systems,
but in this thesis we prefer the intrinsic evaluation using perplexity. We already discussed log-
likelihood as a way of evaluating the performance of a language model:

ll(D, θ) =
∑

hw∈V n
c(hw) logPθ(w|h) (2.4)

However, as ll declines with the number of tokens in the test corpus and because it is always
negative, the cross entropy between the empirical distribution of the test corpus and the model
has been proposed as an alternative evaluation measure, more suited to compare values from
different corpora:

H(D, θ) = − ll(D, θ)

N
= −

∑
hw∈V n

c(hw)

N
logPθ(w|h) (2.27)

From an information theoretic perspective the entropy is the “average number of bits per
word that would be necessary to encode the test data using an optimal coder” (Goodman, 2001).
However, entropy is not a very intuitive measure as the difference between two models is often
extremely small. We thus use perplexity, which is defined as the cross entropy raised to the power
of 2:

PP(D, θ) = 2H(D,θ) = 2−
∑
hw∈V n

c(hw)
N

logPθ(w|h) (2.28)

The nature of perplexity can be revealed if it is applied to a simple uniform model over the
vocabulary V :

PP(D, θ = (
1

|V |
)) = 2−

∑
hw∈V n

c(hw)
N

log 1
|V |

= |V |

The perplexity of a uniform distribution is thus just the number of possible outcomes. In-
tuitively, perplexity measures the average number of guesses the model has to make in order

2.3 Sequence Prediction 49

to generate the test data. Both cross entropy and perplexity are minimized by the MLE of the
empirical distribution of the test set. As already mentioned, perplexity is the preferred measure
in the literature, because it is more responsive to small changes in the model, e.g., reducing H by
1 bit is equivalent to reducing PP by 50%.

2.3 Sequence Prediction
In this section we discuss sequence prediction models which are the standard tools to address
many important NLP problems such as part-of-speech and morphological tagging, named-entity
recognition and information extraction. Sequence prediction – or more generally structured pre-
diction – can be seen as a form of classification. Classification is formally defined in the fol-
lowing way: Given a set of objects X and a discrete set of classes Y . A classifier is a function
f(x) = y. The estimation problem is to find a good classifier given some training examples
(xi,yi) ∈ X × Y . Throughout this section we only discuss probabilistic classifiers and thus
define good as maximizing the conditional likelihood of the training data.

Noisy Channel

Figure 2.10: Scheme of the noisy channel model (Source: Wikimedia.org)

The problem behind sequence prediction can be interpreted as a channel model. A channel model
describes the following general scenario: Someone sent us a transmission y through a noisy
channel which converted it to a new sequence x. The conversion process is nondeterministic and
can thus not be reverted in general. Consider for example the following famous example form
part-of-speech tagging where given the sequence of words both tag sequences can be considered
correct:

Time flies like an arrow
Noun Noun Verb Det Noun
Noun Verb Conj Det Noun

Figure 2.11: Example of a phrase with ambiguous part-of-speech

We thus have to approximate y by ŷ, the most probable explanation for x. We thus define the
sequence prediction problem as: Given a sequence of input symbols x = x1 . . . xT = xT1 with
xt ∈ X . Find the most probable output symbols y = yT1 with yt ∈ Y . We denote the values that
the yi can assume by y(j). By convention, we have y0 = start and yT+1 = stop.

http://commons.wikimedia.org/wiki/File:Comm_Channel.svg

50 2. Foundations

2.3.1 Hidden Markov Models
Hidden Markov models (HMMs) are still a heavily used solution to sequence prediction problems
even though they are usually outperformed by the more complex discriminative models discussed
later in this section. HMMs can be derived using classical probability theory. We are looking
for a model of the conditional probability distribution P (y|x). Using Bayes’ theorem we can
rewrite this probability as:

P (y|x) =
P (x|y)P (y)

P (x)

As the input symbols x are given in sequence prediction, there is no need to model them and
we can reduce the problem to:

P (y|x) ∝ P (x|y)P (y) = P (x,y)

P (y) is essentially a language model over output symbols and just like in language modeling
we model it by applying the chain rule followed by a Markov assumption:

P (y) =
T+1∏
t=1

P (yt|yt−1
0)

≈
T+1∏
t=1

P (yt|yt−1)

P (x|y) is the probability that the input sequence observed has been generated by the output
sequence. We model it using the chain rule and by making the independence assumption, that
every input symbol only depends on its direct output symbol:

P (x|y) =
T+1∏
t=1

P (xt|y, xt−1
0) (2.29)

≈
T+1∏
t=1

P (xt|yt) (2.30)

We thus arrive at the final model:

P (y|x) ∝ P (y,x) ≈
T+1∏
t=1

P (yt|yt−1)P (xt|yt) (2.31)

HMMs thus have the form of a class-based language model (Eq. 2.26) with the important
difference that the assignment of input symbol to output symbol is nondeterministic. The emis-
sion and transmission probabilities can be estimated with the smoothed probability distributions
known from language modeling (e.g., Witten-Bell smoothing). It is however important to model

2.3 Sequence Prediction 51

the emission probability so that it also makes reasonable predictions for unseen input symbols.
This can be done by modeling P (y|x) (after applying Bayes’ theorem):

P (y,x) ≈
T+1∏
t=1

P (yt|yt−1)
P (yt|xt)
P (yt)

In many NLP problems, the input sequence consists of word forms, these can be effectively
modeled using morphological and distributional features such as word representations.

Viterbi
Decoding in a HMM is done by enumerating all the possible state sequences and choosing the
sequence with the highest probability. The number of possible sequences is exponential in the
number of output symbols N (TN), but can be efficiently enumerated using dynamic program-
ming. We define v(t, y) as the probability of the most likely output sequence ending at position
t and with output symbol y. v(1, y) is initialized by multiplying the transition probability of y
following the start symbol times the emission probability of the first input symbol. Given all the
v(t, y) at a fixed t, we can calculate v(t, y) by looking for the most probable predecessor state y′:

v(t, y) = p(ŷt
0)

ŷt
0 = best path from 0 to t ending in state y

v(1, y) = p(y| start)p(x1|y)

v(t+ 1, y) = max
y′

[v(t, y′) · p(y|y′) · p(xt+1|y)]

The probability of the most probable path is then given as v(T + 1, stop). In order to find the
most probable output sequence we define a similar matrix holding the most probable predecessor
of each state:

bt(t, y) = ŷt
0

bt(0, y) = start

bt(t+ 1, y) = arg max
y′

[v(t, y′) · p(y|y′) · p(xt+1|y)]

The most probable state sequence can then be reconstructed using back-tracking starting at
the state bt(T +1, stop). The algorithm has a runtime ofO(N2T) as we have to test N2 possible
transitions at every position. The algorithm makes a first-order Markov assumption, but can be
easily extended to higher orders, as every Markov chain can be reduced to a first-order Markov
chain: We can implement a second-order HMM by using sequence bigrams as underlying states.
A second-order model created this way would have N4 transitions at any position of which
only N3 are consistent (overlapping). A general nth order HMM can thus be decoded at a time
complexity of O(Nn+1T).

52 2. Foundations

2.3.2 Hidden Markov Models with Latent Annotations
Hidden Markov models with latent annotations (HMM-LA) were introduced by Huang et al.
(2009). They are an adaptation of a similar algorithm developed for probabilistic context-free
grammars (Petrov et al., 2006). We already discussed that the Markov assumption made during
the training has an important effect on the runtime of the Viterbi algorithm. HMM-LAs soften
the Markov assumptions of traditional HMMs by increasing the number of states. The approach
is thus similar to increasing the order of the HMM, but differs in that the states are trained in a
way to maximize the likelihood of the training data. The procedure consists of two iteratively
executed steps. The first step is called “splitting” and splits every HMM state into two similar
substates. Then the expectation–maximization (EM) algorithm is applied to optimize the param-
eters of the new model. In the second step, called “merging” the improvement in likelihood that
every single split provides is estimated and a certain fraction of the splits with the lowest gains
are reversed. The two steps are then iterated until a certain number of states is reached. As an
example from part-of-speech tagging: It might be beneficial to split the PoS tag “Noun” into
common nouns and proper nouns in the first iteration and in the second iteration proper nouns
could be split into company names (often followed by corp. or inc.) and person names (often
proceeded by Mr). On the other hand it makes little sense to have a high number of determiner
tags so we would expect that the determiner splits get reversed in the merging step.

EM
The EM algorithm estimates models over unobserved latent variables (Dempster et al., 1977).
It was originally proposed as a method of handling incomplete data sets. The algorithm finds a
local optimum in the marginal likelihood:

LLθ(D) =
∑
x∈D

p(x|D) =
∑
x∈D

∑
z

p(x, z|θ) (2.32)

where D is a data set of observed items x, the z are the values of the unobserved latent variables
and θ is a model. EM iteratively improves θ: In the expectation step, it calculates estimated
counts using the model:

ĉD,θt(x, z) = cD(x) · p(z|x, θt) = cD(x) · p(x, z|θt)∑
z′ p(x, z

′|θt)
(2.33)

From which a new model can be learned in the maximization step:

θt+1 = arg max
θ

∑
x,z

ĉD,θt(x, z) · p(x, z|θ) (2.34)

It can be shown that this procedure produces models with monotonically increasing likeli-
hood (Dempster et al., 1977). As we already discussed, EM is used in the training of HMM-
LAs, where we observe input and output symbols and need to estimate the frequencies of the
unobserved substates. In this case p(z|x, θt) cannot be computer by summation over all possible

2.3 Sequence Prediction 53

sequences z as there are exponentially many. We thus use a more efficient dynamic program
similar to the Viterbi algorithm.

Forward-Backward

The forward-backward algorithm allows us to calculate the posterior probabilities needed for the
EM e-step. Given an input sequence, the forward-backward algorithm calculates the posterior
probability of a transition from z to z′ at position t. This posterior can be decomposed into a
product of three probabilities: The probability of all output sequences ending in z at position t,
the probability of a transition from z to z′ and the probability of all output sequences starting
with z′ at position t + 1. While the transition probability is a simple model parameter, the other
two probabilities have to be calculating using dynamic programs. We start with the probability
of all sequences ending in z at position t, the corresponding program is known as the forward
algorithm and is similar to the Viterbi v matrix except that the paths are combined by summation
instead of maximization:

α0,start = 1

αz,t =
∑
z′

αt−1,z′ · p(z|z′) · p(xt|z)

where for the sake of simplicity we ignore the dependencies on θ, x and z in the notation. The
probability of all sequences starting at position t in symbol z′ can be calculated similarly:

βT+1,stop = 1

βz,t =
∑
z′

βt+1,z′ · p(z′|z) · p(xt+1|z)

The probability of a transition at position t is then given by:

p(x, z, z′|t) = αt,z · p(z′|z) · βz′,t+1 (2.35)

Normalizing by the sum off all sequences, we obtain:

p(z, z′|x, t) =
αt,z · p(z′|z) · βz′,t+1

αT+1,stop

(2.36)

Just as for Viterbi the time complexity of the FB algorithm is dominated by the summation
over all possible transitions at a specific position and thus grows polynomially with the number
of states and exponentially with the model order. The posterior probability then allows us to
estimate the frequencies needed for HMM training: The frequency of a state, following another
state and of a state co-occurring with a specific input symbol:

54 2. Foundations

ĉD,θt(z, z
′) =

∑
x,t

cD(x) · p(z, z′|x, t)

ĉD,θt(z, x) =
∑
x,z′,t

cD(x) · p(z, z′|x, t)

Here we derived the forward-backward computation for an unrestricted HMM. In the case
of HMM-LA training we already know the correct output symbols and just need to calculate the
probabilities of the possible substates. We thus calculate probabilities of the following form:
p(zy, zy′|x, t, y, y′). This can be easily achieved by updating the forward and backward defini-
tions:

α′zy ,t =
∑

z′y∈Ω(y)

α′t−1,z′y
· p(zy|z′y) · p(xt|zy) (2.37)

where Ω(y) is the set of all substates of y. With EM as the method to adjust the latent substates
to the training set, we can continue with our description of split-merge training for HMMs. The
procedure starts by collecting frequency counts for a bigram HMM from an annotated corpus.
We denote the transition frequency of state y′ following y by cy,y′ and the emission frequency of
symbol x occurring with state y by cy,x. The training procedure consists of iteratively splitting
tag symbols into two latent subsymbols and adjusting the resulting latent model to the training
set using expectation–maximization (EM) training. It then approximates the gain in likelihood
(L) of every split and reverts splits that give little increase and needlessly increase the complexity
of the model.

Splitting
In the split phase we split every state y into two subtags y0 and y1. We set

cy0,x =
cy,x
2

+ r

cy1,x =
cy,x
2
− r

where r is a random number r ∈ [−ρcy,x, ρcy,x] and ρ ∈ [0, 1] controls how much the statistics
for y0 and y1 differ. The exact value of ρ is of secondary importance, if it is just big enough to
break the symmetry (the model could not learn anything if the parameters for y0 and y1 were
identical). Analogously to the emission frequencies we initialize the transition frequencies as
follows:

cy0,y′0 =
cy,y′

4
+ r cy0,y′1 =

cy,y′

4
− r

cy1,y′0 =
cy,y′

4
+ r′ cy1,y′1 =

cy,y′

4
− r′

We then run EM training to fit the new model to the training data.

2.3 Sequence Prediction 55

Merging
To prevent the model from wasting parameters for splits that only yield small increases in likeli-
hood we revert the splits with the lowest gains. The gain of a split can be calculated analogously
to Petrov et al. (2006). To this end we calculate for each split, what we would lose in terms of
likelihood if we were to reverse this split. The likelihood contribution at a certain position t with
state y can be recovered from the FB probabilities:

p(x,y|t) =
∑

zy∈Ω(y)

αt,zy · βt,zy
p(x|zy)

In order to calculate the likelihood of a model that does not split y into y0 and y1 we first have
to derive the parameters of the new model from the parameters of the old model:

p(x|y) =
∑
i∈{0,1}

pi · p(x|yi)

p(y′|y) =
∑
i∈{0,1}

pi · p(y′|yi)

p(y|y′) =
∑
i∈{0,1}

p(yi|y′)

where p0 and p1 are the relative frequency of y0 and y1 given their parent tag y. We can now
derive the approximated forward and backward probabilities by substituting the corresponding
parameters. Huang et al. (2009) do not provide the equations or derivation for merging in their
paper, but due to personal communication we think that their approximation has the same form:

α′t,y ≈ p(xt|y)
∑
i∈{0,1}

αt,yi/p(xt|yi)

β′t,y ≈
∑
i∈{0,1}

pi · βt,yi

where the α values can be added because they do not contain terms that directly depend on t,
while the other terms have to be interpolated. This calculation is approximate because it ignores
any influence that the merge might have at any other position in the sequence. The likelihood of
the new model can then by calculated from the new FB values and a fraction of the states with
the lowest likelihood improvements is reversed.

2.3.3 Conditional Random Fields
Conditional random fields are the state-of-the-art sequence models for many NLP processing
tasks such as part-of-speech tagging and named entity recognition. In this section we discuss the

56 2. Foundations

formal implementation. We start with a discussion of maximum entropy (ME) models of which
conditional random fields are a special case. The general idea behind ME models is to find a
principled way to model the distribution of a random variable X given a data set D. Unlike in
the derivations of n-gram models and HMMs we do not want to make explicit independence
assumptions. The only assumptions we make are introduced via feature functions φi(x) which
tell us which aspects of the problem are important. In the case of language modeling for example,
where X was the set of all sequences of words of a vocabulary V , we could decide that the φi
count how often certain n-grams occurs in the sentence x. We require that the expected values
of these φi in the density function f of our model equal the expected values of the empirical
distribution PD:

Ef (φi) = EPD(φi) , 1 ≤ i ≤ N (2.38)

This essentially guarantees that the model memorizes the important aspects of our data set.
We now want to set the parameters of our model without making any further assumptions by
maximizing the entropy of the model, where we define entropy as the expected Shannon infor-
mation I(x) of a discrete random variable X1:

H(X) = EX(I) =
∑
x∈X

P (x)I(x) = −
∑
x∈X

P (x) logP (x) (2.39)

A ME model without constraints corresponds to the uniform probability distribution. If we
add a constraint to the model, the model will change in order to satisfy the constraint, but still
stay as uniform as possible. Consider the following example: We are modeling a discrete random
variable with the three values A, B, and C. If we know nothing more then we should assume a
uniform distribution with P (A) = P (B) = P (C) = 1/3. If we now add the constraint that A
and B should make up 50% of our probability mass then the natural change would be to assume
P (A) = P (B) = 1/4, where we set the probabilities of A and B uniform because we do not
want to assume anything.

We now need to find the form of the density function f(x). We do so by solving an optimiza-
tion problem. We want to define f(x) in a way to maximize the ME and satisfying the features
constraints and the constraint that f(x) is properly normalized. Using Lagrange multipliers we
arrive at the following updated objective function:

H ′(f, λ) = H(f, λ) + λ0(
∑
x′∈X

f(x′)− 1) +
N∑
i=1

λi[Ef (φi)− EpD(φi)]

= −
∑
x′∈X

f(x′) log f(x′) + λ0(
∑
x′∈X

f(x′)− 1) +
N∑
i=1

λi[Ef (φi)− EpD(φi)]

1By convention we have limx→0 x log x = 0

2.3 Sequence Prediction 57

H ′ has the following derivatives:

∂H ′(f, λ)

∂f(x)
= − log f(x)− 1 + λ0 +

N∑
i=1

λiφi(x) (2.40)

∂H ′(f, λ)

∂λ0

=
∑
x′∈X

f(x′)− 1 (2.41)

∂H ′(f, λ)

∂λi
= Ef (φi)− EpD(φi) (2.42)

Setting Eq. 2.40 and Eq. 2.41 zero we obtain:

f(x, λ) =
exp

∑N
i=1 λiφi(x)

Z(λ)
(2.43)

Z(λ) =
∑
x∈X

exp
N∑
i=1

λiφi(x) (2.44)

Which is the general form of a ME model. The normalization constant Z is called the par-
tition function. The remaining constraints Eq. 2.42 are met during training and it can be shown
that this can also been done by maximizing the likelihood of D given the model (see Sudderth
(2006) for details and a proof).

The models we are interested in for classification have the following conditional form:

pME(y|x) =
1

ZME(~λ, x)
exp

∑
i

λiφi(x, y) (2.45)

ZME(~λ, x) =
∑
y

exp
∑
i

λiφi(x, y) (2.46)

As we already discussed in the last subsection, these models can be maximized by optimizing
the (conditional) likelihood of D:

ll[D](pME(~λ)) =
∑
x,y∈D

log pME(y|x,~λ)

=
∑
x,y∈D

∑
i

λi · φi(x, y)−
∑
x,y∈D

logZME(~λ, x) (2.47)

∂ ll[D](pME(~λ))

∂λi
=
∑
x,y∈D

φi(x, y)−
∑
x,y∈D

∑
y′

φi(x, y
′)pME(y′|x,~λ) (2.48)

58 2. Foundations

Given ll[D](~λ) and the gradient ∇ ll[D](~λ) we can use general numeric optimization to cal-
culate the optimal λ̂. Here we just give a simple stochastic gradient descent algorithm used by
Tsuruoka et al. (2009). The algorithm receives an initial step width η0 and a maximal number of
iterations N . It then iterates over the data in an online fashion and moves the model parameters
in the direction of the gradient. The step width η decays with the number of processed items in
order to achieve convergence:

Algorithm 2.2 Stochastic Gradient Descent
~λ← ~0
i← 0
for epoch = 1→ N do

shuffleD
for ~x, ~y ∈ D do

ηi ← η0
1+i/|D|

~λ← ~λ+ ηi · ∇~λ log p(~y|~x)
i← i+ 1

end for
end for

During training, a ME Classifier might tend to use rare features to explain classes that cannot
be explained otherwise. These rare features might then obtain a high weight λi even though we
cannot be sure they will behave in the same way on unseen data. We thus add a penalty term
to our likelihood objective which pushes the weight vector towards zero. Every increase in a
feature weight has now to be justified by an sufficient increase in training data likelihood. The
most common form of regularization is to impose constraints on the norm of the weight vector.
The so called l2-regularization has the following form:

ll′D(λ) = llD(λ)− µ
∑
i

|λi|2 (2.49)

∂ll′D(λ)

∂λi
= ∇llD(λ)− 2µλi (2.50)

where µ is the strength of the regularizes, a hyper parameter that needs to be optimized on held-
out data. Another common form is l1-regularization:

ll′′D(λ) = llD(λ)− µ
∑
i

|λi| (2.51)

∂ll′′D(λ)

∂λi
= ∇llD(λ)− µ sign(λi) (2.52)

2.3 Sequence Prediction 59

The difference between the two forms of regularization is that l2 generates small λ weights
while l1 will set the less important features to zero. l1-regularization is thus also useful as a fea-
ture selection method.

Conditional random fields are ME classifiers over sequences and can be defined in the fol-
lowing way:

pCRF(y|x) =
exp

∑
t

∑
i λi · φi(yt, yt−1,x, t)

ZCRF(~λ,x)
(2.53)

ZCRF(~λ,x) =
∑
y

exp
∑
t

∑
i

λi · φi(yt, yt−1,x, t) (2.54)

The only difference between MEs and CRFs is that we need to define some dynamic pro-
grams to make the calculations needed during parameter estimation efficient. We start with the
partition function ZCRF which involves a summation over all the possible sequences y. As ex-
plained in the definition of the Viterbi algorithm the numbers of sequences rises exponentially
with the number of output symbols. However, we have already discussed that the sum of all
the paths through a sequence lattice can be efficiently calculated using the forward or backward
algorithm:

logZCRF (~λ,x) = log
∑
y

exp
∑
t

∑
i

λi · φi(yt, yt−1,x, t)

= log
∑
y

exp
∑
t

ψ(yt, yt−1,x, t)

=
⊕∑
y

∑
t

ψ(yt, yt−1,x, t)

= α(T + 1, stop) = β(0, start)

where ⊕ denotes the addition of two numbers in log space: a ⊕ b = log(exp a + exp b),
ψ(yt, yt−1,x, t) =

∑
i λi · φi(yt, yt−1,x, t) is the score potential around position t and we de-

fine α and β – following our discussion of FB for HMM– as:

α(0, start) = 0

α(t, y) =
⊕∑
y′

α(t− 1, y′) + ψ(y′, y,x, t)

β(T + 1, stop) = 0

β(t, y) =
⊕∑
y′

β(t+ 1, y′) + ψ(y′, y,x, t)

60 2. Foundations

The difference to our definition HMM is that we now do not calculate probabilities, but
unnormalized log-probabilities. In order to estimate parameters we just have to derive llD(~λ)

and ∇ llD(~λ):

llD(~λ) =
∑

x,y∈D

log pCRF(y|x, ~λ)

=
∑

x,y∈D

∑
t

∑
i

λi · φi(yt, yt−1,x, t)−
∑

x,y∈D

logZCRF(~λ,x)

∂ llD(~λ)

∂λi
=
∑

x,y∈D

∑
t

φi(yt, yt−1,x, t)−
∑

x,y∈D

∑
t,y′

φi(y
′
t, y
′
t−1,x, t) · pCRF (y′|x, ~λ)

=
∑

x,y∈D

∑
t

φi(yt, yt−1,x, t)−
∑

x,y∈D

∑
t,y′,y′′

φi(y
′, y′′,x, t) · pCRF(y′, y′′|x, t, ~λ) (2.55)

where pCRF(y′, y′′|x, t, ~λ) denotes the posterior probability of a transition from y′ to y′′ at position
t. We already discussed the calculation of this probability for the HMM case and can derive a
similar formula using FB:

pCRF(y, y′|x, t, ~λ) =

∑
{ψ(y)|y : path with a y → y′ transition at t}∑

y ψ(y)

=
exp(α(t, y) + ψ(y′, y,x, t) + β(t+ 1, y′))

ZCRF (~λ,x)

The log-likelihood can then be optimized using the SGD algorithm we discussed for ME
classifiers. The runtime of the parameter estimation is dominated by the FB calculations above
and thus in O(NnT) where N denotes the number of output states, T the length of the sequence
and n the order of the CRF. CRF training is thus slow when high model orders (> 1) or big
tagsets are used (> 100). In Chapter 5 we discuss pruning strategies that yield substantial speed
ups in these particular cases.

2.4 Word Representations
Word Representations describe the morphologic, syntactic or semantic properties of word forms
by mapping them to a small number of nominal values (called clusters) or by embedding them
in a vector space. In this thesis we are going to discuss two different types of representations.
Morphological representations are based on the morphological properties of a word and might
also consider special properties of the spelling of a word, such as its capitalization or whether
it contains special symbols such as digits or hyphens. Morphological representations developed
for language modeling of morphologically complex languages are discussed in Chapter 3. In this
section we discuss distributional word representations which are extracted from unlabeled text.

2.4 Word Representations 61

Distributional word representations are motivated by the distributional hypothesis: ‘A word is
characterized by the company it keeps’ (Harris, 1954; Firth, 1957).

In particular, we discuss count vectors reduced by a singular value decomposition (SVD),
word clusters induced using the likelihood of a class-based language model, distributed embed-
dings trained using a neural network and accumulated tag counts, a task-specific representation
obtained from an automatically tagged corpus. All representations are trained from unlabeled
raw text, except accumulated tag counts which also need automatically assigned morphological
tags.

Singular Value Decomposition
The singular value decomposition (SVD) of word-feature cooccurrence matrices (Schütze, 1995)
has been found to be a fast and efficient way to obtain distributed embeddings. The approach
selects a subset of the vocabulary as so-called feature words, usually by including words up to a
certain frequency rank f . Every word form can then be represented by the accumulated counts
of feature words occurring to its left and right. In this work we mark whether a word occurred
on the left and right as we are more interested in syntactic than semantic properties. Every
word is thus represented by a count vector of dimensionality 2f . These count vectors could in
principle already be considered as embedding, but they have a number of properties that make
them inadequate for many NLP tasks. First of all they have a high dimensionality and are sparse
as most word forms only occur a couple of times. Secondly, their dimensions are correlated:
A word that occurs after a can also occurs after the, while we believe that the vectors contain
information that is useful for many tasks we do need a procedure to compress them and reduce
the correlation between the different dimensions. Singular value decomposition turns out to be a
natural choice for the problem. A SVD is a factorization of the form:

M = UΣV T (2.56)

where Σ is a diagonal matrix and its diagonal entries σi are called singular values. IfM ∈ Rn×m

we have U ∈ Rn×n, Σ ∈ Rn×m and V ∈ Rm×m. The SVD can be used to find the low-rank
approximation Mr to M minimizing the Frobenius norm of the difference Matrix M −Mr:

‖M‖F =

√√√√ m∑
i=1

n∑
j=1

|mij|2 (2.57)

In order to find the optimal low-rank approximation of rank r. We set the approximated
matrix Mr to:

Mr = UΣrV
T (2.58)

where Σr is derived from Σ by setting all, but the highest r singular values to zero. In our
applicationM is the matrix holding the coocurrence counts of word forms and their left and right
features and thus M ∈ R|V |×2·f where V denotes the vocabulary. We can derive dense vectors
of dimensionality r by using the SVD to reduce the rank of M to r. The resulting representation

62 2. Foundations

will still hold similar information as M as they are derived minimizing the distance in terms of
the Frobenius norm, but they will also be dense and less correlated. SVD-based representations
have been used in English POS induction (Lamar et al., 2010) as well as as features in English
POS tagging and syntactic chunking (Huang et al., 2009).

Language model-based

LM-based word clusters were introduced by Brown et al. (1992a) and later found to be helpful
in a range of NLP tasks. The basic idea is to find the optimal clustering with respect to the
likelihood of a class-based language model:

g = arg max
g

|D|∏
i=1

p(g(xi)|g(xi−1)) · p(xi|g(xi)) (2.59)

where g(x) is the cluster assignment function, that maps a word form x to a cluster and |D|
denotes the length of the training set. As finding the optimal clustering requires an exponential
algorithm the problem is approximated by greedy algorithms. Brown et al. (1992a) propose a
bottom-up algorithm that merges the pair of clusters that yields the smallest loss in likelihood.
Even after some optimization, the algorithm has a cubic runtime (O(|V |3)). They also proposed
a more efficient approximation of that algorithm that limits the number of clusters under consid-
eration and still works well in practice. This algorithm has a runtime of O(|V |C2), where C is
the number of cluster to be induced. This algorithm is used by most work in the literature (Liang,
2005; Turian et al., 2010; Koo et al., 2008).

Miller et al. (2004) use tags of different granularity induced from unlabeled text to improve
the performance of an averaged perceptron tagger Collins (2002) on an English NER task. The
Brown algorithm induces a tree where leaves represent a single word form and the root node the
entire vocabulary. Intermediate nodes represent clusters of different sizes and can be addressed
by a binary string specifying the path from the root node to the cluster. Efficient open-source
implementations of this algorithm have been released by Liang (2005) and Klusácek (2006).2,3

Miller et al. (2004) report an error reduction of 25% using path prefixes in combination
with active learning. Brown clusters are also used by Koo et al. (2008) to improve dependency
parsing for English and Czech. They created new templates by replacing word forms and POS
in the feature templates of the baseline parser and found that short paths (4 - 6 bits) were good
replacements for POS and longer paths (assigning the word form to one out of 1000 clusters)
were a good replacement for word forms. They report improvements in attachments score of
> 1.0. Chrupala (2011) compare Brown clusters to a Latent Dirichlet Allocation (LDA) model
on Spanish and French morphological tagging and find them to yield similar performance.

Martin et al. (1998) proposed a different induction algorithm similar to K-means clustering
in that it starts with an initial clustering and greedily improves the objective function by moving
single words to their optimal cluster. In contrast to K-means, it updates the objective function

2https://github.com/percyliang/brown-cluster/
3https://ufal.mff.cuni.cz/tools/mmic

https://github.com/percyliang/brown-cluster/
https://ufal.mff.cuni.cz/tools/mmic

2.4 Word Representations 63

immediately. The algorithm has a runtime of O(|V |NC), where N is the number of iterations
needed until convergence (N � C). This algorithm has also been shown to work well in un-
supervised POS induction (Blunsom and Cohn, 2011; Clark, 2003). Our implementation of this
algorithm is discussed in Appendix B.

Neural Networks

Neural networks have been used by Collobert et al. (2011) to train embeddings for POS tagging
as well as other NLP tasks. These embeddings – henceforth CW embeddings – are trained by
building a neural network that given the context of a word as input is trained to discriminate
between the correct center word and a random word.

In the architecture of the network, word forms x in a window around the target position are
first mapped to embedding vectors by means of a lookup table W . The embeddings are then
concatenated and transformed using a weight matrix M . In order to introduce non-linearity into
the model tanh is applied to the intermediate output. Finally, the resulting vector is multiplied
with a weight vector v to produce a score fθ(x) (with θ = (W,M, v)) which denotes how well
the target word fits the surrounding context. Using a text corpus D with a vocabulary V , the
model is trained by optimizing a ranking criterion of the following form:

θ̂ = arg min
θ

=
∑
x∈D

∑
w∈V

max {0, 1− fθ(x) + fθ(x
(w))} (2.60)

where x(w) is created from x by replacing the center word with w. The criterion effectively sets
the parameters θ in a way that the correct fθ(x) is at least 1 point higher than for any other x(w).
The sum over all w in the vocabulary V is expensive and usually approximated by sampling
random w from V . The proposed training algorithm is reported to need several days or even
weeks, but has been reimplemented by Al-Rfou et al. (2013), who induced embeddings for the
Wikipedias of more than 100 languages. In an NER task, Turian et al. (2010) find the perfor-
mance of Brown clusters to be competitive with the more training intensive CW embeddings.
Mnih and Hinton (2008) and Mikolov et al. (2013) are two additional important Neural Network
models that have been used in the literature, but are not discussed in this thesis, because of the
lack of pre-trained embeddings.

Accumulated Tag Counts

Accumulated tag counts (ATC) are a form of task-specific sparse representation that was suc-
cessfully applied in PCFG parsing. The unlabeled corpus is first annotated by an automatic
morphological tagger; for each occurring word form, the number of times a specific tag was
assigned can then be used as a representation. Goldberg and Elhadad (2013) and Szántó and
Farkas (2014) show that using such information in the word-preterminal emission probabilities
of PCFGs can improve parsing accuracy. In the context of morphological tagging, ATC rep-
resentations are interesting because they can be interpreted as an approximated morphological

64 2. Foundations

analyzer. A morphological analyzer (MA) is a manually-created finite-state transducer that pro-
duces for every word form the possible morphological readings. MAs feature a high precision,
because they rely on carefully checked morphological rules and stem dictionaries. ATCs on the
other hand, can produce readings for word forms, with new stems and also carry the notion of
how rare or frequent a specific reading is. Szántó and Farkas (2014) find that in Hungarian PCFG
parsing ACTs perform as well as morphological analyzers.

2.5 Conclusions
In this chapter we presented the foundations of the remaining chapters of this thesis. Section 2.1
introduced the linguistic terminology used throughout the entire thesis. Section 2.2 discussed the
basics of n-gram language modeling and thus prepared the reader for the next Chapter 3, where
we describe the design of a morphological language model. In Section 2.3, we reviewed hidden
Markov models with latent annotations (HMM-LA). In Chapter 4, HMM-LAs are evaluated as
a method to induce linguistically meaningful tagsets, which can be used to improve dependency
parser performance. Section 2.3 also introduced conditional random fields (CRF). In Chapter 5,
we present a pruned CRF for fast morphological tagging with higher model orders. Section 2.4
introduced several word representations. In Chapter 6 we evaluate their utility in morphological
tagging.

Chapter 3

A Morphological Language Model

Erklärung nach §8 Absatz 4 der Promotionsordnung: This chapter covers work
already published at international peer-reviewed conferences. The relevant publica-
tions are Müller and Schütze (2011) and Müller et al. (2012). The research described
in this chapter was carried out in its entirety by myself. The other author(s) of the
publication(s) acted as advisor(s) or were responsible for work that was reported in
the publication(s), but is not included in this chapter.

Morphologically rich languages (MRLs) pose a problem to traditional language modeling,
because their productive morphology introduces additional sparsity that makes n-gram estima-
tion challenging. In this chapter, we present a morphological language model that mitigates
these sparsity issues by coupling word forms of similar morphology. In particular, we propose a
class-based language model that clusters rare words of similar morphology together. The model
combines morphological and shape features with a Kneser-Ney model. We discuss a large cross-
lingual study of European languages, where even though the model is generic and the same
architecture and features are used for all languages, the model achieves reductions in perplex-
ity for all 21 languages represented in the Europarl corpus, ranging from 3% to 11%. We will
also find that almost all of this perplexity reduction can be achieved by identifying suffixes by
frequency.

3.1 Introduction
Language models are fundamental to many natural language processing applications. In the most
common approach, language models estimate the probability of the next word based on one or
more equivalence classes that the history of preceding words is a member of. The inherent
productivity of natural language poses a problem in this regard because the history may be rare
or unseen or have unusual properties that make assignment to a predictive equivalence class
difficult.

In many languages, morphology is a key source of productivity that gives rise to rare and
unseen histories. For example, even if a model can learn that words like “large”, “dangerous”
and “serious” are likely to occur after the relatively frequent history “potentially”, this knowledge

66 3. A Morphological Language Model

cannot be transferred to the rare history “hypothetically” without some generalization mechanism
like morphological analysis. A second challenge are words that appear in the recognition task
at hand, but not in the training set, so called out-of-vocabulary (OOV) words. Especially for
productive languages it is often necessary to at least reduce the number of OOVs. Both challenges
are even more severe for MRLs, where a single lexeme might occur as one of dozens or hundreds
of word forms.

Our primary goal is not to develop optimized language models for individual languages. In-
stead, we investigate whether a simple generic language model that uses shape and morphological
features can be made to work well across a large number of languages.

We also do not want to create a model with a runtime substantially worse than that of a
standard word-based n-gram model. Language models are estimated from raw text, which thanks
to the web and the digitization of books is available in huge quantities for most languages. This
leads to the point, where the amount of training data used is not limited by the text available, but
by the training algorithm and by computational resources.

In an extensive evaluation we find our model to achieve considerable perplexity reductions
for all 21 languages in the Europarl corpus. We see this as evidence that morphological language
modeling should be considered as a standard part of any language model, even for languages like
English that are often not viewed as a good application of morphological modeling due to their
morphological simplicity.

To understand which factors are important for good performance of the morphological com-
ponent of a language model, we perform an extensive cross-lingual analysis of our experimental
results. We look at three parameters of the morphological model we propose: the frequency
threshold θ that divides words subject to morphological clustering from those that are not; the
number of suffixes used φ; and three different morphological segmentation algorithms. We also
investigate the differential effect of morphological language modeling on different word shapes:
alphabetical words, punctuation, numbers and other shapes.

Some prior work has used morphological models that require careful linguistic analysis and
language-dependent adaptation. We show that simple frequency analysis performs only slightly
worse than more sophisticated morphological analysis. This potentially removes a hurdle to
using morphological models in cases where sufficient resources to do the extra work required for
sophisticated morphological analysis are not available.

The motivation for using morphology in language modeling is similar to distributional clus-
tering (Brown et al., 1992a). In both cases, we form equivalence classes of words with similar
distributional behavior. In a preliminary experiment, we find that morphological equivalence
classes reduce perplexity as much as traditional distributional classes – a surprising result (Ta-
ble 3.4).

The main contributions are as follows: We present a language model design and a set of
morphological and shape features that achieve reductions in perplexity for all 21 languages rep-
resented in the Europarl corpus, ranging from 3% to 11%, compared to a Kneser-Ney model. We
show that identifying suffixes by frequency is sufficient for getting almost all of this perplexity
reduction. More sophisticated morphological segmentation methods do not further increase per-
plexity or just slightly. Finally, we show that there is one parameter that must be tuned for good
performance for most languages: the frequency threshold θ above which a word is not subject

3.2 Related Work 67

to morphological generalization because it occurs frequently enough for standard word n-gram
language models to use it effectively for prediction.

The chapter is organized as follows. In Section 3.2 we discuss related work. In Section 3.3
we describe the morphological and shape features. Section 3.4 introduces language model and
experimental setup. Section 3.5 discusses our results. Section 3.6 summarizes the contributions
of this chapter.

3.2 Related Work

Whittaker and Woodland (2000) apply language modeling to morpheme sequences and inves-
tigate data-driven segmentation methods. Creutz et al. (2007) propose a similar method that
improves speech recognition for highly inflecting languages. They use Morfessor CAT-MAP
(Creutz and Lagus, 2005) to split words into morphemes. Both approaches are essentially a
simple form of a factored language model (FLM) (Bilmes and Kirchhoff, 2003). In a general
FLM a number of different back-off paths are combined by a back-off function to improve the
prediction after rare or unseen histories. Vergyri et al. (2004) apply FLMs and morphological
features to Arabic speech recognition. These papers and other prior work on using morphology
in language modeling have been language-specific and have paid less attention to the question as
to how morphology can be useful across languages and what generic methods are appropriate for
this goal. Previous work also has concentrated on traditional linguistic morphology whereas we
compare linguistically motivated morphological segmentation with frequency-based segmenta-
tion and include shape features in our study.

Our initial plan was to use complex language modeling frameworks that allow experimenters
to include arbitrary features (including morphological and shape features) in the model. In partic-
ular, we looked at publicly available implementations of maximum entropy models (Rosenfeld,
1996; Berger et al., 1996) and random forests (Xu and Jelinek, 2007). However, we found that
these methods do not currently scale to running a large set of experiments on a multi-gigabyte
parallel corpus of 21 languages. Similar considerations apply to other sophisticated language
modeling techniques like Pitman-Yor processes (Teh, 2006), recurrent neural networks (Mikolov
et al., 2010) and FLMs in their general, more powerful form.

We therefore decided to conduct our study in the framework of smoothed n-gram models,
which currently are an order of magnitude faster and more scalable. More specifically, we adopt
a class-based approach, where words are clustered based on morphological and shape features.
This approach has the nice property that the number of features used to estimate the classes does
not influence the time needed to train the class-based language model, once the classes have been
found. This is an important consideration in the context of the questions asked in this chapter as
it allows us to use large numbers of features in our experiments.

68 3. A Morphological Language Model

3.3 Modeling of Morphology and Shape

Our basic approach is to define a number of morphological and shape features and then assign all
words with identical feature values to one class. In earlier work on English (Müller and Schütze,
2011), we tried to reduce the number of vectors using clustering, but could not find substantial
improvements. An overview of our model is given in Figure 3.1: The model is trained from
raw text data. During training we first extract the vocabulary. The vocabulary is used to train
an unsupervised segmentation algorithm that provides us with the most frequent suffixes of the
language. We also you use the vocabulary to extract a number of shape-based features. The
concatenation of the shape features of a word and its suffix define its morphological class. The
morphological classes are used to train a class-based morphological language model, which is
then interpolated with a word-based language model.

We represent words by a feature vector consisting of three parts that represent information
about suffixes, capitalization and special characters. For the suffixes group, we define a binary
feature for each of the φ most frequent suffixes. Suffixes are learned in an unsupervised fashion
using one of the segmentation algorithms described below. One additional binary feature is used
for all other suffixes, including the empty suffix.

In addition to suffix features, we define features that capture shape properties: capitalization
and special characters. These groups are motivated by the analysis shown in Table 3.1: One
important goal of our model is to improve OOV modeling. The table shows that most OOV
words (f = 0) are names or nouns. This distribution is similar to hapax legomena (f = 1), but
different from the POS distribution of all tokens.

POS Types Tokens
f = 0 (OOV) f = 1

E
ng

lis
h Proper Noun 0.61 0.52 0.15

Noun 0.23 0.24 0.17
Adjective 0.08 0.10 0.06

Verb 0.03 0.08 0.11
Σ 0.95 0.94 0.49

H
un

ga
ri

an Noun 0.42 0.46 0.22
Proper Noun 0.34 0.24 0.10

Adjective 0.11 0.13 0.11
Verb 0.05 0.08 0.08

Σ 0.92 0.91 0.51

Sp
an

is
h Proper Noun 0.68 0.44 0.08

Noun 0.14 0.22 0.17
Verb 0.08 0.19 0.10

Adjective 0.06 0.11 0.05
Σ 0.98 0.97 0.43

Table 3.1: Proportion of dominant POS for types with training set frequencies f ∈ {0, 1} and for
tokens for a Wikipedia Corpus.

3.3 Modeling of Morphology and Shape 69

As proper nouns often do not have meaningful suffixes we add additional features to handle
them. Capitalization and special character features are of obvious utility in identifying the POS
classes of proper nouns and cardinal numbers since names are usually capitalized and sometimes
contain special characters such as comma and period. To capture these “shape” properties of a
word, we define the features listed in Table 3.2.

is capital(w) first character of w is an uppercase letter
is all capital(w) ∀ c ∈ w : c is an uppercase letter
capital character(w) ∃ c ∈ w : c is an uppercase letter
appears in lowercase(w) ¬capital character(w) ∨ w′ ∈ ΣT

special character(w) ∃ c ∈ w : c is not a letter or digit
digit(w) ∃ c ∈ w : c is a digit
is number(w) w ∈ L([+− ε][0− 9] (([.,][0− 9])|[0− 9]) ∗)

Table 3.2: Predicates of the capitalization and special character groups. ΣT is the vocabulary of
the training corpus T , w′ is obtained from w by changing all uppercase letters to lowercase and
L(expr) is the language generated by the regular expression expr.

If a word in the test set has a combination of feature values that does not occur in the training
set, then it is assigned to the class whose features are most similar. To this end the three parts of
the vector (suffixes, capitalization, special characters) are weighted equally by normalizing the
subvector of each subgroup to unit length. The most similar class is then defined as the class
closest in the resulting vector space.

We investigate three different automatic suffix identification algorithms: REPORTS (Keshava
and Pitler, 2006), MORFESSOR (Creutz and Lagus, 2005) and our own baseline algorithm FRE-
QUENCY. The focus of our work is to evaluate the utility of these algorithms for language mod-
eling; we do not directly evaluate the quality of the suffixes. A word is segmented by identifying
the longest of the φ suffixes that it ends with. Thus, each word has one suffix feature if it ends
with one of the φ suffixes and none otherwise.

REPORTS

REPORTS (Keshava and Pitler, 2006) is a segmentation algorithm developed for languages simi-
lar to English. It identifies possible suffix boundaries by looking at the probability that a character
follows the preceding substring. Given a vocabulary V and a word w = αABβ, where α and β
a substrings and A and B are characters. Bβ is a suffix of w, if

1. αA ∈ V

2. Pf (B|αA) < 1.

3. Pf (A|α) ≈ 1.

70 3. A Morphological Language Model

Raw Text

Vocabulary

Suffixes Shape Features

Morphological Classes

Morphological LM Word LM

Interpolated LM

Figure 3.1: System overview of the morphological language model

where Pf (A|α) is the probability of a character A following the string α. Pf can be estimated
from V . The first condition requires that the stem αA is a valid word of the language. The second
condition states that αA can be followed by other suffixes than Bβ and the third condition assures
that ABβ is not a possible suffix. As an example, given a vocabulary consisting of work, works
and working and the target word working, ing is a valid suffix, because work is a valid word,
Pf (k|wor) equals one and Pf (i|work) is smaller than one. A major drawback of the algorithm is
that it cannot handle stem alternations. That is, given the German word bücher ‘books’ (singular
form: buch) it cannot find the correct suffix -er, as büch is not a valid German word.

MORFESSOR CAT-MAP
MORFESSOR CAT-MAP (Creutz and Lagus, 2005) is an extension of Morfessor Baseline (Creutz
and Lagus, 2002) and Morfessor CAT (Creutz and Lagus, 2004) and comprises ideas of previ-
ous work (de Marcken, 1995; Goldsmith, 2001). The Morfessor Baseline algorithm creates a
lexicon of morphemes that can then be used to produce any word in the corpus. The lexicon is
constructed in a way that frequently occurring morphemes can be reused to build rare words, it
is thus essentially trying to compress the corpus. A major disadvantage of the algorithm is that it
tends to oversplit rare word forms such as s-ed-it-ious and simply memorizes frequent words such
as having (Creutz and Lagus, 2005). Another issue it that its notion of morpheme is type-less
and morphemes might thus be used in the wrong places such as in ed-ward. Morfessor CAT tries
to resolve these issues by representing words using Hidden Markov Models (HMM). The states

3.3 Modeling of Morphology and Shape 71

of the HMM correspond to four morpheme types: prefix, stem and suffix. The transition proba-
bilities of the HMM are constrained so that prefixes and suffixes can only occur at the beginning
or at the end of a word and need to have at least one stem state in between. The algorithm also
involves a number of heuristics that deal with noisy segmentation such as the seditious example
above. Morfessor CAT-MAP changes the Maximum-Likelihood HMM objective of Morfessor
CAT into a maximum a posteriori (MAP) objective by adding a prior on the morpheme lexicon
that rewards the reusage of frequent morphemes.

FREQUENCY

FREQUENCY simply selects the most frequent word-final letter sequences as suffixes. The 100
most frequent suffixes found by Frequency for English are given in the following Figure 3.2. We
use the longest suffix if a word has multiple suffixes.

s, e, d, ed, n, g, ng, ing, y, t, es, r, a, l, on, er, ion, ted, ly, tion, rs, al, o, ts, ns, le, i, ation, an, ers,
m, nt, ting, h, c, te, sed, ated, en, ty, ic, k, ent, st, ss, ons, se, ity, ble, ne, ce, ess, ions, us, ry, re,
ies, ve, p, ate, in, tions, ia, red, able, is, ive, ness, lly, ring, ment, led, ned, tes, as, ls, ding, ling,
sing, ds, ded, ian, nce, ar, ating, sm, ally, nts, de, nd, ism, or, ge, ist, ses, ning, u, king, na, el

Figure 3.2: The 100 most frequent English suffixes in Europarl, ordered by frequency.

Reports as well as Morfessor generate complete segmentations of words, but in this study we
only use the algorithms to produce a list of the most frequent suffixes.

3.3.1 Morphological Class-based Language Model
Our model is a class-based language model that groups words into classes and replaces the word
transition probability by a class transition probability and a word emission probability:

PC(w|h = wk1) = P (g(w)|g(w1) . . . g(wk)) · P (w|g(w)) (Eq. 2.26 revisited)

where g(w) is the class of word w. Our approach specifically targets rare and unseen histories.
We therefore exclude all frequent words from clustering on the assumption that enough training
data is available for them. That means, that clustering of words is restricted to those below
a certain token frequency threshold θ. As described above, we simply group all words with
identical feature values into one class. Frequent words with a training set frequency above θ
are added as singletons. The class transition probability P (g(wi)|g(wi−1

i−N+1)) is estimated using
Witten-Bell smoothing. Witten-Bell smoothing outperformed modified Kneser-Ney (KN) and
Good-Turing (GT) in preliminary experiments. The word emission probability is defined as
follows:

P (w|k) =

1 , c(w) > θ

c(w)∑
w′∈k c(w

′)
− ε(k)
|k|−1

, θ≥c(w)>0

ε(k) , c(w) = 0

(3.1)

72 3. A Morphological Language Model

where k = g(w) is w’s class, c(w) is the frequency of w in the training set and |k| is the
number of members of c. That is, the emission probability is 1 for singletons, the class-dependent
out-of-vocabulary rate for unseen forms and otherwise a discounted relative frequency. The out-
of-vocabulary (OOV) rate ε(k) for each class k is estimated on held-out data. Our final model
PM interpolates PC with a modified KN model:

PM(wi|wi−N+1
i−1) = λ(g(wi−1)) · PC(wi|wi−N+1

i−1) + (1− λ(g(wi−1))) · PKN(wi|wi−N+1
i−1) (3.2)

This model can be viewed as a generalization of the simple interpolation αPC + (1− α)PW

used by Brown et al. (1992a) (where PW is a word n-gram model and PC a class n-gram model).
For the setting θ =∞ (clustering of all words), our model is essentially a simple interpolation of
a word n-gram and a class n-gram model except that the interpolation parameters are optimized
for each class instead of using the same interpolation parameter α for all classes. We have found
that θ = ∞ is never optimal; it is always beneficial to assign the most frequent words to their
own singleton classes.

3.4 Experimental Setup
Experiments are performed using SRILM (Stolcke, 2002), in particular the Kneser-Ney (KN)
and generic class model implementations. Estimation of optimal interpolation parameters is
based on Bahl et al. (1991). The baseline system is a word-based modified KN model (Chen and
Goodman, 1999).

Following Yuret and Biçici (2009), we evaluate models on the task of predicting the next
word from a vocabulary that consists of all words that occur more than once in the training set
and the unknown word UNK. Performing this evaluation for KN is straightforward: we map all
words with frequency one in the training set to UNK and then compute PKN(UNK |h) in testing.

In contrast, computing probability estimates for PC is more complicated. We define the
vocabulary of the morphological model as the set of all words found in the training set, including
frequency-1 words, and one unknown word for each class. We do this because – as we argued
above – morphological generalization is only expected to be useful for rare words, so we are
likely to get optimal performance for PC if we include all words in clustering and probability
estimation, including hapax legomena. Since our testing setup only evaluates on words that occur
more than once in the training set, we ideally would want to compute the following estimate when
predicting the unknown word:

PC(UNKKN |h) =
∑

{w:N(w)=1}

PC(w|h) +
∑
k

PC(UNKk |h) (3.3)

where we distinguish the unknown words of the morphological classes from the unknown word
used in evaluation and by the KN model by giving the latter the subscript KN.

However, Eq. 3.3 cannot be computed efficiently and we would not be able to compute it in
practical applications that require fast language models. For this reason, we use the modified

3.4 Experimental Setup 73

class model P ′C in Eq. 3.2 that is defined as follows:

P ′C(w|h) =

{
PC(w|h) , c(w) ≥ 1
PC(UNKg(w) |h), c(w) = 0

(3.4)

P ′C and – by extension – PM are deficient. This means that the evaluation of PM we present
below is pessimistic in the sense that the perplexity reductions would probably be higher if we
were willing to spend additional computational resources and compute Eq. 3.3 in its full form.

3.4.1 Distributional Class-based Language Model

The most frequently used type of class-based language model is the distributional model in-
troduced by Brown et al. (1992a). To understand the differences between distributional and
morphological class-based language models, we compare our morphological model PM with a
distributional model PD that has exactly the same form as PM; in particular, it is defined by
Equations (1) and (2). The only difference is that the classes are morphological for PM and
distributional for PD.

The algorithm that was used by Brown et al. (1992a) has long running times for large cor-
pora in standard implementations like SRILM. It is thus difficult to conduct the large number of
clusterings necessary for an extensive study like ours using standard implementations.

We therefore induce the distributional classes as clusters in a whole-context distributional
vector space model (Schütze and Walsh, 2011), a model similar to the ones described by Schütze
(1992) and Turney and Pantel (2010) except that dimension words are immediate left and right
neighbors (as opposed to neighbors within a window or specific types of governors or depen-
dents). Schütze and Walsh (2011) present experimental evidence that suggests that the resulting
classes are competitive with Brown classes.

3.4.2 Data

Our experiments are performed on the Europarl corpus Koehn (2005), a parallel corpus of pro-
ceedings of the European Parliament in 21 languages. The languages are members of the fol-
lowing families: Baltic languages (Latvian, Lithuanian), Germanic languages (Danish, Dutch,
English, German, Swedish), Romance languages (French, Italian, Portuguese, Romanian, Span-
ish), Slavic languages (Bulgarian, Czech, Polish, Slovak, Slovene), Uralic languages (Estonian,
Finnish, Hungarian) and Greek. In order to make the data sets more comparable, we only use
the part of the corpus that can be aligned to English sentences. All 21 corpora are divided into
training set (80%), validation set (10%) and test set (10%).

The training set is used for morphological and distributional clustering and estimation of
class and KN models. The validation set is used to estimate the OOV rates ε and the optimal
parameters λ, θ and φ.

Table 3.3 gives basic statistics about the corpus.

74 3. A Morphological Language Model

Language T/T ε #Sentences
S bg Bulgarian .0183 .0094 181,415
S cs Czech .0185 .0097 369,881
S pl Polish .0189 .0096 358,747
S sk Slovak .0187 .0088 368,624
S sl Slovene .0156 .0090 365,455
G da Danish .0086 .0077 1,428,620
G de German .0091 .0073 1,391,324
G en English .0028 .0023 1,460,062
G nl Dutch .0061 .0048 1,457,629
G sv Swedish .0090 .0095 1,342,667
E el Greek .0081 .0079 851,636
R es Spanish .0040 .0031 1,429,276
R fr French .0029 .0024 1,460,062
R it Italian .0040 .0030 1,389,665
R pt Portuguese .0042 .0032 1,426,750
R ro Romanian .0142 .0079 178,284
U et Estonian .0329 .0198 375,698
U fi Finnish .0231 .0183 1,394,043
U hu Hungarian .0312 .0163 364,216
B lt Lithuanian .0265 .0147 365,437
B lv Latvian .0182 .0086 363,104

Table 3.3: Statistics for the 21 languages. S = Slavic, G = Germanic, E = Greek, R = Romance,
U = Uralic, B = Baltic. Type/token ratio (T/T) and # sentences for the training set and OOV rate
ε for the validation set. The two smallest and largest values in each column are bold.

The sizes of the corpora of languages whose countries have joined the European community
more recently are smaller than for countries who have been members for several decades. We
see that English and French have the lowest type/token ratios and OOV rates; and the Uralic
languages (Estonian, Finnish, Hungarian) and Lithuanian the highest. The Slavic languages have
higher values than the Germanic languages, which in turn have higher values than the Romance
languages except for Romanian.

Type/token ratio and OOV rate are one indicator of how much improvement we would ex-
pect from a language model with a morphological component compared to a non-morphological
language model.

The relatively low OOV rates can be explained by the tokenization scheme: The tokenization
of the Europarl corpus has a preference for splitting tokens in unclear cases. OOV rates would
be higher for more conservative tokenization strategies.

3.5 Results and Discussion 75

PPKN θ∗M φ∗ M∗ PPC PPM ∆M θ∗D PPWC PPD ∆D

S bg 74 200 50 f 103 69 0.07 500 141 71 0.04
S cs 141 500 100 f 217 129 0.08 1000 298 134 0.04
S pl 148 500 100 m 241 134 0.09 1000 349 141 0.05
S sk 123 500 200 f 186 111 0.10 1000 261 116 0.06
S sl 118 500 100 m 177 107 0.09 1000 232 111 0.06
G da 69 1000 100 r 89 65 0.05 2000 103 65 0.05
G de 100 2000 50 m 146 94 0.06 2000 150 94 0.06
G en 55 2000 50 f 73 53 0.03 5000 87 53 0.04
G nl 70 2000 50 r 100 67 0.04 5000 114 67 0.05
G sv 98 1000 50 m 132 92 0.06 2000 154 92 0.06
E el 80 1000 100 f 108 73 0.08 2000 134 74 0.07
R es 57 2000 100 m 77 54 0.05 5000 93 54 0.05
R fr 45 1000 50 f 56 43 0.04 5000 71 42 0.05
R it 69 2000 100 m 101 66 0.04 2000 100 66 0.05
R pt 62 2000 50 m 88 59 0.05 2000 87 59 0.05
R ro 76 500 100 m 121 70 0.07 1000 147 71 0.07
U et 256 500 100 m 422 230 0.10 1000 668 248 0.03
U fi 271 1000 500 f 410 240 0.11 2000 706 261 0.04
U hu 151 200 200 m 222 136 0.09 1000 360 145 0.03
B lt 175 500 200 m 278 161 0.08 1000 426 169 0.03
B lv 154 500 200 f 237 142 0.08 1000 322 147 0.05

Table 3.4: Perplexities on the test set for n = 4. S = Slavic, G = Germanic, E = Greek, R =
Romance, U = Uralic, B = Baltic. θ∗x, φ∗ and M∗ denote frequency threshold, suffix count and
segmentation method optimal on the validation set. The letters f, m and r stand for the frequency-
based method, MORFESSOR and REPORTS. PPKN, PPC, PPM, PPWC, PPD are the perplexi-
ties of KN, morphological class model, interpolated morphological class model, distributional
class model and interpolated distributional class model, respectively. ∆x denotes relative im-
provement: (PPKN−PPx)/PPKN. Bold numbers denote maxima and minima in the respective
column.

3.5 Results and Discussion
We now discuss our major findings. We performed all our experiments with an n-gram order of
4; this was the order for which the KN model performs best for all languages on the validation
set.

3.5.1 Morphological Model

Using grid search, we first determined on the validation set the optimal combination of three
parameters: (i) θ ∈ {100, 200, 500, 1000, 2000, 5000}, (ii) φ ∈ {50, 100, 200, 500} and (iii)

76 3. A Morphological Language Model

segmentation method. Recall that we only cluster words whose frequency is below θ and only
consider the φ most frequent suffixes. An experiment with the optimal configuration was then
run on the test set. The results are shown in Table 3.4.

The KN perplexities vary between 45 for French and 271 for Finnish. The main result is that
the morphological model PM consistently achieves better performance than KN (columns PPM

and ∆M), in particular for Slavic, Uralic and Baltic languages and Greek. Improvements range
from 0.03 for English to 0.11 for Finnish.

Column θ∗M gives the threshold that is optimal for the validation set. Values range from 200
to 2000. Column φ∗ gives the optimal number of suffixes. It ranges from 50 to 500. The mor-
phologically complex language Finnish benefits more from more suffixes than morphologically
simple languages like Dutch, English and German, but there are a few languages that do not fit
this generalization, e.g., Estonian for which 100 suffixes are optimal.

The optimal morphological segmenter is given in column M∗: f = FREQUENCY, r = RE-
PORTS, m = MORFESSOR. The most sophisticated segmenter, MORFESSOR is optimal for about
half of the 21 languages, but FREQUENCY does surprisingly well. REPORTS is optimal for two
languages, Danish and Dutch. In general, MORFESSOR has an advantage for complex morpholo-
gies, but is beaten by FREQUENCY for Finnish and Latvian.

3.5.2 Distributional Model
Columns PPD and ∆D show the performance of the distributional class-based language model.
As one would perhaps expect, the morphological model is superior to the distributional model
for morphologically complex languages like Estonian, Finnish and Hungarian. These languages
have many suffixes that have high predictive power for the distributional contexts in which a
word can occur. A morphological model can exploit this information even if a word with an
informative suffix did not occur in one of the linguistically licensed contexts in the training set.
For a distributional model it is harder to learn this type of generalization.

What is surprising about the comparative performance of morphological and distributional
models is that there is no language for which the distributional model outperforms the morpho-
logical model by a wide margin. Perplexity reductions are lower than or the same as those of
the morphological model in most cases, with only four exceptions – English, French, Italian, and
Dutch – where the distributional model is better by one percentage point than the morphological
model (0.05 vs. 0.04 and 0.04 vs. 0.03).

Column θ∗D gives the frequency threshold for the distributional model. The optimal threshold
ranges from 500 to 5000. This means that the distributional model benefits from restricting
clustering to less frequent words – and behaves similarly to the morphological class model in that
respect. We know of no previous work that has conducted experiments on frequency thresholds
for distributional class models and shown that they increase perplexity reductions.

3.5.3 Sensitivity Analysis of Parameters
Table 3.4 shows results for parameters that were optimized on the validation set. We now want to
analyze how sensitive performance is to the three parameters θ, φ and segmentation method. To

3.5 Results and Discussion 77

this end, we present in Table 3.5 the best and worst values of each parameter and the difference
in perplexity improvement between the two.

∆θ+ −∆θ− θ+ θ− ∆φ+ −∆φ− φ+ φ− ∆M+ −∆M− M+ M−

S bg 0.03 200 5000 0.01 50 500 f m
S cs 0.03 500 5000 100 500 f r
S pl 0.03 500 5000 0.01 100 500 m r
S sk 0.02 500 5000 200 500 0.01 f r
S sl 0.03 500 5000 0.01 100 500 m r
G da 0.02 1000 100 100 50 r f
G de 0.02 2000 100 50 500 m f
G en 0.01 2000 100 50 500 f r
G nl 0.01 2000 100 50 500 r f
G sv 0.02 1000 100 50 500 m f
E el 0.02 1000 100 100 500 0.01 f r
R es 0.02 2000 100 100 500 m r
R fr 0.01 1000 100 50 500 f r
R it 0.01 2000 100 100 500 m r
R pt 0.02 2000 100 50 500 m r
R ro 0.03 500 5000 100 500 m r
U et 0.02 500 5000 0.01 100 50 0.01 m r
U fi 0.03 1000 100 0.03 500 50 0.02 f r
U hu 0.03 200 5000 0.01 200 50 m r
B lt 0.02 500 5000 200 50 m r
B lv 0.02 500 5000 200 500 f r

Table 3.5: Sensitivity of perplexity values to the parameters (on the validation set). S = Slavic, G
= Germanic, E = Greek, R = Romance, U = Uralic, B = Baltic. ∆x+ and ∆x− denote the relative
improvement of PM over the KN model when parameter x is set to the best (x+) and worst value
(x−), respectively. The remaining parameters are set to the optimal values of Table 3.4. Cells
with differences of relative improvements that are smaller than 0.01 are left empty.

Differences of perplexity improvement between best and worst values of θM range between
0.01 and 0.03. The four languages with the smallest difference 0.01 are morphologically simple
(Dutch, English, French, Italian). The languages with the largest difference (0.03) are morpho-
logically more complex languages. In summary, the frequency threshold θM has a comparatively
strong influence on perplexity reduction. The strength of the effect is correlated with the mor-
phological complexity of the language.

In contrast to θ, the number of suffixes φ and the segmentation method have negligible effect
on most languages. The perplexity reductions for different values of φ are 0.03 for Finnish,
0.01 for Bulgarian, Estonian, Hungarian, Polish and Slovene, and smaller than 0.01 for the other
languages. This means that, with the exception of Finnish, we can use a value of φ = 100 for
all languages and be close to the optimal perplexity reduction – either because 100 is optimal

78 3. A Morphological Language Model

or because perplexity reduction is not sensitive to choice of φ. Finnish is the only language that
clearly benefits from a large number of suffixes.

Surprisingly, the performance of the morphological segmentation methods is close for 17 of
the 21 languages. For three of the four where there is a difference in improvement of ≥ 0.01,
FREQUENCY (f) performs best. This means that FREQUENCY is a good segmentation method
for all languages, except perhaps for Estonian.

∆W ∆P ∆N ∆O

S bg 0.07 0.04 0.28 0.16
S cs 0.09 0.04 0.26 0.33
S pl 0.10 0.05 0.23 0.22
S sk 0.10 0.05 0.25 0.28
S sl 0.10 0.04 0.28 0.28
G da 0.05 0.05 0.31 0.18
G de 0.06 0.05 0.40 0.18
G en 0.03 0.04 0.33 0.14
G nl 0.04 0.05 0.31 0.26
G sv 0.06 0.05 0.31 0.35
E el 0.08 0.05 0.33 0.14
R es 0.05 0.04 0.26 0.14
R fr 0.04 0.04 0.29 0.01
R it 0.04 0.05 0.33 0.02
R pt 0.05 0.05 0.28 0.39
R ro 0.08 0.04 0.25 0.17
U et 0.11 0.05 0.26 0.26
U fi 0.12 0.06 0.38 0.36
U hu 0.10 0.04 0.32 0.23
B lt 0.08 0.06 0.27 0.05
B lv 0.08 0.05 0.26 0.19

Table 3.6: Relative improvements of PM on the validation set compared to KN for histories
wi−1
i−N+1 grouped by the type of wi−1. The possible types are alphabetic word (W), punctuation

(P), number (N) and other (O).

3.5 Results and Discussion 79

3.5.4 Example Clusters

The Tables 3.7, 3.8 and 3.9 show example clusters with their interpolation weight λ for English,
German and Finnish, respectively. λ can be interpreted as a quality measure of a cluster as it
shows the trade-off between the word-based KN model and the class-based model after a word
of the respective cluster. A weight > 0.5 means that the interpolated model puts more weight on
the class-based model than on the KN model. All three languages show a mixture of traditional
suffixes such as -based, -ungen (German, derivational noun suffix + inflectional plural marking)
and -lla (Finnish, adessive case marking) and special cases such as ranges of numbers, acronyms
and file references (such as B5-321)).

λ cluster size examples
0.85 1858 B5-321 B4-0470 A4-0216 H-0162 A4-0307 H-0563 A5-0103 O-0055
0.42 146 Somalia Gorizia Scania Bavaria Nadia Amazonia Oualidia
0.40 83 tree-growers road-users non-papers sub-suppliers ring-binders
0.36 260 18-25 1998-99 1992-2000 180-200 1994-1998 1993-94 17-18 2001-2006
0.30 170 liberalism conformism naturalism fantasticism egalitarianism
0.27 83 copper-based sex-based consensus-based health-based maize-based
0.24 79 democracy-related community-related age-related performance-related
0.22 61 Culturally Paradoxically Materially Institutionally Politically
0.22 77 MED-MEDA PHARE-CBC M. H. C. PLO- P. Z. EC- V. II-C

Table 3.7: English clusters with their interpolation weight λ, size and some examples at θ =
1000, φ = 100,m = FREQUENCY. The average weight is 0.10.

λ cluster size examples
0.82 1998 B4-0262 B1-4050 B4-1002 C4-0428 A4-0347 B4-0363 C5-0033
0.39 59 Air-Mitarbeiter EU-Finanzminister Ad-hoc-Charakter
0.37 62 portugiesisch-britische finnisch-schwedische französisch-spanische
0.33 62 UN-Generalversammlung Hardware-Entwicklung Software-Entwicklung
0.32 878 fakturiert mokiert demobilisiert signiert kassiert gemartert
0.25 251 salbadern nähern anzufordern altern trauern zuzusteuern modern
0.23 121 UCLAF-Untersuchungen EU-Entscheidungen Ad-hoc-Lösungen
0.22 1267 0014 0300 6119 3975 14000 0149 640 05 820 2299 275 136 652 0027 8014
0.22 190 EURES-Netzwerke UNO-Friedenstruppe Dehaene-Gruppe

Table 3.8: German clusters with their interpolation weight λ, size and some examples at θ =
1000, φ = 100,m = FREQUENCY. The average weight is 0.12.

80 3. A Morphological Language Model

λ cluster size examples
0.85 1881 C5-0250 BBC1- B4-0391 A5-0024 O-0045 C4-0171 C4-0559
0.55 77 Macartneylla Keskustelulla Korfulla Urheilulla Arviolla
0.49 55 vireillepano-oikeutta -periaatetta epätasa-arvoisuutta
0.47 59 Kongo-Brazzavillessä Eurochambre-yhdistyksessä Riski-iässä
0.42 60 esi-yhdentymisstrategia tasa-arvoneuvonantajia -ohjelmia
0.39 86 offshore-alaa sikarutto-ongelmaa johdanto-osaa läsnäolo-ongelmaa
0.39 307 Käytännöllisiä Estéveziä Schmidiä Flemmingiä Tämänhetkisiä
0.36 339 13.40 15,5 6.3 11.41 11.35 13.17 19,3 11,5 11.00 13.02 18,6 1,55
0.34 69 offshore-alaan suunnitelma-asiakirjaan -asiaan ennalta-arvaamattomaan

Table 3.9: Finnish clusters with their interpolation weight λ, size and some examples at θ =
1000, φ = 100,m = FREQUENCY. The average weight is 0.08.

3.5.5 Impact of Shape
The basic question we are asking is to what extent the sequence of characters a word is composed
of can be exploited for better prediction in language modeling. In the final analysis in Table 3.6
we look at four different types of character sequences and their contributions to perplexity re-
duction. The four groups are alphabetic character sequences (W), numbers (N), single special
characters (P = punctuation), and other (O). Examples for O would be “751st” and words con-
taining special characters like “O’Neill”. The parameters used are the optimal ones of Table 3.4.
Table 3.6 shows that the impact of special characters on perplexity is similar across languages:
0.04 ≤ ∆P ≤ 0.06. The same is true for numbers: 0.23 ≤ ∆N ≤ 0.33, with two outliers that
show a stronger effect of this class: Finnish ∆N = 0.38 and German ∆N = 0.40.

The fact that special characters and numbers behave similarly across languages is encourag-
ing as one would expect less cross-linguistic variation for these two classes of words.

In contrast, “true” words (those exclusively composed of alphabetic characters) show more
variation from language to language: 0.03 ≤ ∆W ≤ 0.12. The range of variation is not necessar-
ily larger than for numbers, but since most words are alphabetical words, class W is responsible
for most of the difference in perplexity reduction between different languages. As before we
observe a negative correlation between morphological complexity and perplexity reduction; e.g.,
Dutch and English have small ∆W and Estonian and Finnish large values.

We provide the values of ∆O for completeness. The composition of this catch-all group varies
considerably from language to language. For example, many words in this class are numbers with
alphabetic suffixes like “2012-ben” in Hungarian and words with apostrophes in French.

3.6 Conclusion
We have investigated an interpolation of a KN model with a class-based language model whose
classes are defined by morphology and shape features. We tested this model in a large cross-
lingual study of European languages.

3.6 Conclusion 81

Even though the model is generic and we use the same architecture and features for all lan-
guages, the model achieves reductions in perplexity for all 21 languages represented in the Eu-
roparl corpus, ranging from 3% to 11%, when compared to a KN model. We found perplexity
reductions across all 21 languages for histories ending with four different types of word shapes:
alphabetical words, special characters, and numbers.

We looked at the sensitivity of perplexity reductions to three parameters of the model: θ, a
threshold that determines for which frequencies words are given their own class; φ, the number
of suffixes used to determine class membership; and morphological segmentation. We found
that θ has a considerable influence on the performance of the model and that optimal values vary
from language to language. This parameter should be tuned when the model is used in practice.

In contrast, the number of suffixes and the morphological segmentation method only had
a small effect on perplexity reductions. This is a surprising result since it means that simple
identification of suffixes by frequency and choosing a fixed number of suffixes φ across languages
is sufficient for getting most of the perplexity reduction that is possible.

82 3. A Morphological Language Model

Chapter 4

HMM-LAs for Dependency Parsing

Erklärung nach §8 Absatz 4 der Promotionsordnung: This chapter covers work
already published at an international peer-reviewed conference. The relevant pub-
lication is Müller et al. (2014). The research described in this chapter was carried
out in its entirety by myself. The other author(s) of the publication(s) acted as advi-
sor(s) or were responsible for work that was reported in the publication(s), but is not
included in this chapter.

In this chapter we propose a method to increase dependency parser performance without
using additional labeled or unlabeled data by refining the layer of predicted part-of-speech (POS)
tags. This procedure is interesting in the context of transfer learning (Hwa et al., 2005), where
the morpho-syntactic annotation of one language is transferred to a second language by means of
a parallel corpus. This projection often involves a reduced universal part-of-speech (POS) tagset
(Petrov et al., 2012). These coarse POS can be more easily projected, but also lack many of the
often morphological distinctions that a language independent tagset would make and are thus
less informative features for syntactic parsers. The induction procedure in this chapter could be
used to extend the projected POS of an MRL and thus yield better results on a downstream task
such as syntactic parsing.

In particular, we show that induced tagsets can yield better performance than treebank tagsets
when evaluated on a universal POS (Petrov et al., 2012) tagging task, which proves that auto-
matically induced POS can be as informative as manually derived POS. In parsing experiments
on English and German, we show significant improvements for both languages. Our refinement
is based on hidden Markov models with latent annotations (HMM-LA) (Huang et al., 2009), for
which we propose a modified training procedure that significantly improves the tagging accuracy
of the resulting HMM taggers.

4.1 Introduction
Generative split-merge training for probabilistic context-free grammars (PCFGs) has been shown
(Petrov et al., 2006) to yield phrase structure parsers with state-of-the-art accuracy and linguis-
tically comprehensible latent annotations. While split-merge training can also be applied to

84 4. HMM-LAs for Dependency Parsing

hidden Markov models (Huang et al., 2009), the resulting taggers stay somewhat behind the per-
formance of state-of-the-art discriminative taggers (Eidelman et al., 2010). In this chapter we
address the question of whether the resulting latent POS tags are linguistically meaningful and
useful for upstream tasks such as syntactic parsing. We find that this is indeed the case, leading to
a procedure that significantly increases the performance of dependency parsers. The procedure
is attractive because the refinement of predicted part-of-speech sequences using a coarse-to-fine
strategy (Petrov and Klein, 2007) is fast and efficient. The contributions of this chapter are as
follows:

1. We propose several enhancements to split-merge training and show that they give better
results than the basic form of the method proposed by (Huang et al., 2009).

2. We explain the linguistic and practical properties of the induced POS tagsets.

3. We show that incorporating the induced POS into a state-of-the-art dependency parser
(Bohnet, 2010) gives substantial increases in accuracy (increasing LAS from 90.34 to
90.57 for English and from 87.92 to 88.24 when not using morphological features and
from 88.35 to 88.51 when using morphological features for German)

We first discuss prior work on latent sequence modeling in section 4.2. In section 4.3 we pro-
pose a number of enhancements which we show in section 4.4.1 to lead to significant improve-
ments in POS accuracy. In section 4.4.2 we give an overview of the properties of the induced
subtags and the linguistic phenomena that the subtags capture. In section 4.4.3, we discuss our
experiments on dependency parsing.

4.2 Related Work
Petrov et al. (2006) introduce generative split-merge training for PCFGs and provide a fully
automatic method for training state-of-the-art phrase structure parsers. They also argue that
the resulting latent annotations are linguistically meaningful. Sun et al. (2008) induce latent
substates into CRFs and show that noun phrase (NP) recognition can be improved, especially
if no part-of-speech features are available. Huang et al. (2009) apply split-merge training to
create HMMs with latent annotations (HMM-LA) for Chinese POS tagging. They report that
the method outperforms standard generative bigram and trigram tagging, but do not compare to
discriminative methods. Eidelman et al. (2010) show that a bidirectional variant of latent HMMs
with incorporation of prosodic information can yield state-of-the-art results in POS tagging of
conversational speech. Finkel et al. (2007) split POS using a generative model based on gold
dependency trees and also find improvements over a baseline parser.

4.3 Enhancements
We remind the reader that we introduced the basic functionality of HMM-LAs as proposed by
Huang et al. (2009) in Section 2.3.2. In this section, we propose a number of modifications which

4.3 Enhancements 85

result in more efficient training as well as more accurate models. Section 4.4.1 evaluates these
modifications experimentally.

Smoothing of estimated frequencies
To prevent the specialized tags from moving too far from their base tags and thus to increase
the robustness of the method, we smooth the estimated frequencies using recursive Witten-Bell
(WB) smoothing in the direction of their parents. We introduced Witten-Bell smoothing for n-
gram modeling in Chapter 2. We can easily get a version for a simple emission probability by
replacing the history with the tag:

PWB(x|t) = (1− γWB(t)) · PML(x|t) + γWB(t) · PBO(x|t) (4.1)

γWB(t) =
N1+(t•)

N1+(t•) + ct,•
(4.2)

where ct,• =
∑

x ct,x and N1+(t•) is the number of different word types tag t has been
observed with. In our model we want to smooth counts instead of probabilities, we can derive a
count version by multiplying with the tag frequency ct,•:

ct,• · PWB(x|t) = ct,• · [(1− γWB(t)) · PML(x|t) + γWB(t) · PBO(x|t)]
= (1− γWB(t)) · ct,x + ct,• · γWB(t) · PBO(x|t)

∝ ct,x +
ct,• · γWB(t)

1− γWB(t)
· PBO(x|t)

= ct,x +Nt+1(t•) · PBO(x|t) (4.3)

We can thus set:

cWB
t,x = ct,x +N1+(t•) · PBO(x|t) (4.4)

However, N1+(t•) was defined for hard integer counts, while during EM training we obtain
soft counts. We thus use a soft version of N1+(t•):

N ′1+(t•) =
∑
x

min(1, ct,x) (4.5)

As back-off distribution we use the distribution of the parent tag in the tag hierarchy:

PBO(x|t) =
cWB
π(t),x∑
x′ c

WB
π(t),x′

(4.6)

where π(t) denotes the parent of t in the induced tag hierarchy. The recursion stops at base tags
for which we set cWB

t,x = ct,x. Petrov et al. (2006) propose linear smoothing that backs off to the
base tag immediately.

86 4. HMM-LAs for Dependency Parsing

Smoothing of emission probabilities

We also smooth emission probabilities, primarily to be able to handle unknown words. We
model emission probabilities P (w|t) by applying Bayes theorem: P (w|t) ∝w=const

P (t|w)
P (t)

. Us-
ing Witten-Bell, the probabilities P (t|w) are smoothed between the actual frequencies and a
signature-based back-off model:

PWB(t|w) =
ct,w +Nt · P (t|g(w))

cw +Nt

(4.7)

As signature g(w) of a word w we use the signatures from Petrov et al. (2006).

Sampling

In our initial experiments, we observed that the model starts to overfit held-out data at huge tagset
sizes. In order to dampen this effect we run the E-step on uniform samples of the training set.
The sample strategy selects each sentence randomly with a probability equal to the sampling rate.
The intuition behind this is that every sample has general properties and specific properties. An
optimal learner fits the model according to the general properties and ignores the sample-specific
ones. By doing E-steps on different samples we expect the special properties to average out and
force the model to better generalize to new data. After the EM training we run one additional
EM-step on the complete training set to make use of all the training data. We call the percentage
of sentences that are sampled from the training set at each EM-iteration sampling rate and use a
sampling rate of 0.1 throughout the chapter.

4.4 Experiments

4.4.1 POS Tagging

In this section, we evaluate the basic training as well as the enhancements we just introduced
in section 4.3. All experiments are performed on the English and German parts of the CoNLL
2009 data (Hajič et al., 2009). We evaluate our taggers on the universal POS tagset (Petrov et al.,
2012) to make results comparable between languages, as well as on the treebank tagsets to show
the effects on more fine-grained tagsets. We compare our numbers to the latest version of the
Stanford tagger (Toutanova et al., 2003) (v3.1.4) using all the features except the distributional
similarity features which are based on additional unlabeled data. All experiments are performed
with 10 EM iterations after each split and merge phase and all tagging accuracies of latent models
are averages over 10 independent runs.

4.4 Experiments 87

 97.4

 97.5

 97.6

 97.7

 97.8

 97.9

 98

 50 100 150 200 250 300

A
cc

u
ra

cy

Number of Tags

split
merge

merge + smoothing
merge + sampling

merge + sampling + smoothing

 95.8

 96

 96.2

 96.4

 96.6

 96.8

 97

 97.2

 50 100 150 200 250 300

A
cc

u
ra

cy

Number of Tags

split
merge

merge + smoothing
merge + sampling

merge + sampling + smoothing

Figure 4.1: Training on English universal POS data (top) and Penn-Treebank POS data (bottom)
over several iterations. We compare HMM-LAs with split training (split), split-merge train-
ing (merge), WB smoothing (merge + smoothing), EM sampling (merge + sampling) and both
(merge + sampling + smoothing).

We first look at the development of the accuracy over an increasing number of latent tags, that
is as training progresses. Figure 4.1 shows the training for English universal and Penn-Treebank
POS tagging. We compare an HMM-LA that only splits (split) a standard HMM-LA (Huang
et al., 2009) (merge) and models that use WB smoothing (merge + smoothing), sampling (merge
+ sampling), or both (merge + sampling + smoothing). For the case of universal POS tagging,
we see that the baseline models split and merge are outperformed by our enhanced models.
Smoothing gives a lower improvement than sampling, but both can be combined to yield the
most accurate model. In the Penn-Treebank results we see a similar picture, but the improvement

88 4. HMM-LAs for Dependency Parsing

due to the enhancements is smaller and combining both techniques is slightly worse than the WB
smoothed model.

 97.2

 97.4

 97.6

 97.8

 98

 98.2

 98.4

 50 100 150 200 250 300

A
cc

u
ra

cy

Number of Tags

split
merge

merge + smoothing
merge + sampling

merge + sampling + smoothing

 95.6

 95.7

 95.8

 95.9

 96

 96.1

 96.2

 96.3

 96.4

 50 100 150 200 250 300

A
cc

u
ra

cy

Number of Tags

split
merge

merge + smoothing
merge + sampling

merge + sampling + smoothing

Figure 4.2: Training on German universal POS data (top) and Tiger POS data (bottom) over sev-
eral iterations. We compare HMM-LAs with split training (split), split-merge training (merge),
WB smoothing (merge + smoothing), EM sampling (merge + sampling) and both (merge + sam-
pling + smoothing).

For German (Figure 4.2), we get a consistent improvement of the enhanced models over the
baseline models. However, combining the two enhancements is never substantially better than
the sampling model on its own.

Figure 4.1 and 4.2 show that – given a large enough tagset – the two innovations introduced
here (sampling and smoothing) improve tagging accuracy. Overall, WB smoothing has a smaller
impact than sampling.

4.4 Experiments 89

In a second experiment we want to demonstrate that a HMM-LA can find a tagset of similar
size as the treebank tagset, but with higher accuracy. HMM taggers rely heavily on preceding
and following POS tags as features for the prediction at the current position. As a result, a HMM
trained on the universal POS tagset (consisting of 12 tags) achieves a lower accuracy than a
HMM trained on a more fine-grained treebank tagset, which after decoding maps the predicted
tags to the coarse tagset. For English we get an accuracy of 96.21 against an accuracy of 97.20
for a tagger trained on the Penn Treebank tagset (48 tags) and for German an accuracy of 97.22
against 98.01 for the Tiger tagset (57). For English (en) and German (de) universal POS data
we compare the HMM models based on treebank tagsets (tree) with HMM-LAs with 48 latent
tags, trained using: split-merge (m), WB smoothing (wb), sampling (sa) and WB smoothing and
sampling (wb+sa):

tree m wb sa wb+sa
en 97.20 97.50 97.51 97.52 97.58∗
de 98.01 98.01 97.93 98.04 98.03

Table 4.1: English and German universal POS tagging accuracies for HMMs based on treebank
tagsets (tree), split-merge training (m), split-merge training with smoothing (wb) and split-merge
training with sampling (sa) using 48 latent tags. The best numbers are bold. Numbers signifi-
cantly better then the baselines models (tree, m) are marked (∗).

The highest values for both languages lie above the values we obtain for the treebank tagset.
However, the difference is only significant for English. Throughout the chapter we establish
significance by running approximate randomization tests (Yeh, 2000). We consider p-values
< 0.05 significant. Still we see that a HMM-LA can produce a tagset that at a similar size is as
accurate as the Penn Treebank tagset (48 tags) and the Tiger tagset (56 tags). To demonstrate
that our enhancements outperform the simple form of split-merge training we further increase
the tagset sizes to 290 tags:

tree m wb sa wb+sa
en 97.20 97.89 97.93 97.95 97.96
de 98.01 98.09 98.21 98.27∗ 98.28∗

Table 4.2: English and German universal POS tagging accuracies for HMMs based on treebank
tagsets (tree), split-merge training (m), split-merge training with smoothing (wb) and split-merge
training with sampling (sa) using 290 latent tags. The best numbers are bold. Numbers signifi-
cantly better then the baselines models (tree, m) are marked (∗).

As for the smaller tag sizes we see that sampling gives a small improvement for English; for
German, however, the difference is substantial (.18) and also significant. Note that for German
the accuracy of the simple training stagnates between approximately 50 and 170 tags (cf. Figure
4.2). When training and evaluating on the treebank tagsets we see a similar picture:

90 4. HMM-LAs for Dependency Parsing

m wb sa wb+sa
en 96.93 97.02 96.99 97.01
de 95.99 96.12 96.34∗ 96.32∗

Table 4.3: English and German treebank POS tagging accuracies for split-merge training (m),
split-merge training with smoothing (wb) and split-merge training with sampling (sa) and optimal
latent tagset sizes. The best numbers are bold. Numbers significantly better then the baselines
models (tree, m) are marked (∗).

Again the improvement for sampling is significant for German, but not for English. Another
observation is that there still remains a significant gap between generative and discriminative
POS tagging: for the four tasks the corresponding Stanford tagger accuracies are:

English German
UPOS Penn UPOS Tiger

HMM-LA 97.96 97.01 98.28 96.32
Stanford 98.19∗ 97.34∗ 98.55∗ 97.02∗

Table 4.4: Tagging accuracies for the best HMM-LA models and the Stanford Tagger on different
tagset. The best numbers are bold. Significant improvements are marked (∗).

We conclude that sampling gives consistent improvements for both languages, but significant
improvements only for German. WB smoothing also gives consistent improvements over simple
split-merge training, but never significant improvements. Combining smoothing and sampling
does not lead to additional improvements. One explanation why the results for sampling are not
significantly better for English might be that sampling especially helps unknown word tagging:
For the German Tiger experiments, for example, the unknown word accuracy improves from
76.78 (with 12 tags) to 78.39 using simple split-merge training and to 79.71 using split-merge
training with sampling – much larger improvements than for known words. This might explain
the impact of sampling, because the unknown word rate for German is approximately four times
higher than for English. Though the Stanford tagger significantly outperforms the HMM-LAs
on all four tasks, the magnitude of the differences is remarkably small taking the simplicity of
the features used by the HMM-LA into account. We have shown that split merge training yields
tagsets that are at least as informative for HMM POS tagging as sophisticated treebank tagsets.
We next investigate (i) to what extent the induced tags are linguistically interpretable and (ii) if
they are useful as features for a downstream task, namely dependency parsing.

4.4.2 Properties of the Induced Tags

In this section we analyze the split decisions of the first level made by one particular training run
on English and German universal POS data. We compare the split by their form distributions,

4.4 Experiments 91

the corresponding gold treebank tags and the distributions of preceding universal tags. Table 4.5
and Table 4.6 show the statistics used for this analysis.

English

Universal Tag Tag0 Tag1

Adjectives more (0.05) many (0.03) last (0.03) new (0.03) other (0.03) first (0.02)
(ADJ) JJ (0.85) JJR (0.11) JJS (0.04) JJ (0.95) JJR (0.03) JJS (0.03)

VERB (0.32) ADV (0.27) NOUN (0.14) DET (0.39) ADP (0.17) ADJ (0.10)

Particles ’s (0.93) ’ (0.07) to (0.89) up (0.04) out (0.02) off (0.01)
(PRT) POS (1.00) TO (0.89) RP (0.10)

NOUN (0.99) VERB (0.43) NOUN (0.34) ADJ (0.07)

Prepositions that (0.11) in (0.10) by (0.09) of (0.43) in (0.19) for (0.11)
(ADP) IN (1.0) IN (1.0)

VERB (0.46) NOUN (0.15) . (0.13) NOUN (0.84) NUM (0.06) ADJ (0.03)

Pronouns its (0.30) their (0.15) his (0.14) it (0.21) he (0.16) they (0.12)
(PRON) PRP$ (0.68) PRP (0.26) WP (0.05) PRP (0.87) WP (0.11) PRP$ (0.02)

VERB (0.46) ADP (0.38) PRT (0.05) . (0.37) ADP (0.17) VERB (0.16)

Verbs be (0.06) been (0.02) have (0.02) is (0.10) said (0.08) was (0.05)
(VERB) VB (0.42) VBN (0.29) VBG (0.20) VBD (0.37) VBZ (0.29) VBP (0.14) MD (0.13)

VERB (0.38) PRT (0.22) ADV (0.11) NOUN (0.52) PRON (0.20) . (0.12)

Table 4.5: English induced subtags and their statistics. The three rows in each cell contain word
forms (row 1), treebank tags (row 2) and preceding universal tags (row 3). Statistics pointing to
linguistically interesting differences are highlighted in bold.

Interesting observations are: The universal POS tagset puts the three Penn Treebank tags
RP (particle), POS (possessive marker) and TO into one particle tag (see “Particles (PRT)” in
Table 4.5). The split-merge training essentially reverses this by splitting particles first into pos-
sessive and non-possessive markers and in a subsequent split the non-possessives into TO and
particles.

For German we have a similar split into verb particles, negation particles such as nicht ‘not’
and the infinitive marker zu ‘to’ (“Particles (PRT)” in Table 4.6). English prepositions get split
by proximity to verbs or nouns (“Prepositions (ADP)”). Subordinate conjunctions such as that,
which in the Penn Treebank annotation are part of the preposition tag IN, get assigned to the
subclass next to verbs. For German we also see a separation of “Conjunctions (CONJ)” into
predominantly subordinate conjunctions (Tag 0) and predominantly coordinating conjunctions
(Tag 1).

92 4. HMM-LAs for Dependency Parsing

German

Universal Tag Tag0 Tag1

Conjunctions daß (0.26) wenn (0.08) um (0.06) und (0.76) oder (0.07) als (0.06)
(CONJ) KOUS (0.58) KON (0.30) KOUI (0.06) KON (0.88) KOKOM (0.10) APPR (0.02)

. (0.93) ADV (0.03) CONJ (0.03 NOUN (0.56) VERB (0.15) ADJ (0.09)

Particles an (0.13) aus (0.10) ab (0.09) nicht (0.49) zu (0.46) Nicht (0.01)
(PRT) PTKVZ (0.92) ADV (0.04) ADJD (0.01) PTKNEG (0.52) PTKZU (0.44) PTKA (0.02)

NOUN (0.65) PRON (0.08) VERB (0.07) NOUN (0.43) ADV (0.14) VERB (0.14)

Pronouns sich (0.13) die (0.08) es (0.07) ihre (0.06) seine (0.05) seiner (0.05)
(PRON) PPER (0.33) PRF (0.14) PRELS (0.14) PPOSAT (0.40) PIAT (0.34) PDAT (0.16)

VERB (0.32) . (0.28) CONJ (0.12) ADP (0.33) NOUN (0.18) VERB (0.11)

Verbs werden (0.04) worden (0.02) ist (0.02) ist (0.07) hat (0.04) sind (0.03)
(VERB) VVPP (0.31) VVINF (0.24) VVFIN (0.17) VVFIN (0.50) VAFIN (0.36) VMFIN (0.12)

NOUN (0.46) VERB (0.22) PRT (0.10) NOUN (0.49) . (0.19) PRON (0.16)

Table 4.6: German induced subtags and their statistics. The three rows in each cell contain word
forms (row 1), treebank tags (row 2) and preceding universal tags (row 3). Statistics pointing to
linguistically interesting differences are highlighted in bold.

For both languages adjectives get split by predicative and attributive use. For English the
predicative subclass also seems to hold rather atypical adjectives such as “such” and “last”. For
English, verbs (“Verbs (VERB)”) get split into a predominantly infinite tag (Tag 0) and a predom-
inantly finite tag (Tag 1) while for German we get a separation by verb position. In German we
get a separation of pronouns (“Pronouns (PRON)”) into possessive and non-possessive; in En-
glish, pronouns get split by predominant usage in subject position (Tag 0) and as possessives (Tag
1). We can conclude that split-merge training generates annotations that are to a considerable ex-
tent linguistically interpretable. In the next section we evaluate the utility of these annotations
for dependency parsing.

4.4 Experiments 93

4.4.3 Dependency Parsing

#Tags µLAS maxLAS σLAS µUAS maxUAS σUAS

English Baseline 88.43 91.46
58 88.52 88.59 0.06 91.52 91.61 0.08
73 88.55 88.61 0.05 91.54 91.59 0.04
92 88.60 88.71 0.08 91.60 91.72 0.08

115 88.62 88.73 0.07 91.58 91.71 0.08
144 88.60 88.70 0.07 91.60 91.71 0.07

German (no feat.) Baseline 87.06 89.54
85 87.09 87.18 0.06 89.61 89.67 0.04

107 87.23 87.36 0.09 89.74 89.83 0.08
134 87.22 87.31 0.09 89.75 89.86 0.09

German (feat.) Baseline 87.35 89.75
85 87.33 87.47 0.11 89.76 89.88 0.09

107 87.43 87.73 0.16 89.81 90.14 0.17
134 87.38 87.53 0.08 89.75 89.89 0.08

Table 4.7: Labeled (LAS) and Unlabeled Attachment Score (UAS), mean, best value and stan-
dard deviation for the development set for English and German dependency parsing with (feat.)
and without morphological features (no feat.). The best numbers are bold.

In this section we investigate the utility of induced POS as features for dependency parsing. We
run our experiments on the CoNLL-2009 data sets (Hajič et al., 2009) for English and German.
As a baseline system we use the latest version of the mate-tools parser1 (Bohnet, 2010). It was
the highest scoring syntactic parser for German and English in the CoNLL 2009 shared task
evaluation. The parser gets automatically annotated lemmas, POS and morphological features
as input which are part of the CoNLL-2009 data sets. The automatically annotated tagsets are
slightly smaller than the gold tagsets: For English 47 and for German 55.

In this experiment we want to examine the benefits of tag refinements isolated from the
improvements caused by using two taggers in parallel, thus we train the HMM-LA on the auto-
matically tagged POS sequences of the training set and use it to add an additional layer of refined
POS to the input data of the parser. We do this by calculating the forward-backward charts that
are also used in the E-steps during training – recall that in these charts base tags of the refined
tags are constrained to be identical to the automatically predicated tags.

We integrate the tags by adding one additional feature for every edge: the conjunction of
latent tags of the two words connected by the edge.

In preliminary experiments we found the latent models to produce better results when trained
with more EM iterations (we use 100) and without WB smoothing. We think that this is because
WB smoothing and few EM iterations generate less specific or more similar subtags. For the
HMM-LA tagger accuracy, less or more specific tags do not seem to make a big difference

1We use v3.3 of the graph-based parser.

94 4. HMM-LAs for Dependency Parsing

because the decoder sums over all possible subtags at a certain position. For the parser, however,
we just extract the most probable tag, thus small differences between the most probable and
second most probable tag lead to more noisy training data.

The results of our experiments are shown in Table 4.7. All numbers are averages of five
independent runs. For English the smaller models with 58 and 73 tags achieve improvements
of approximately 0.1. The improvements for the larger tagsets are approximately 0.2. The best
individual model improves LAS by 0.3. For the German experiments without morphological
features we get only marginal average improvements for the smallest tagset and improvements
of approx. 0.15 for the bigger tagsets. The average ULA scores for 107 and 134 tags are at
the same level as the ULA scores of the baseline with morphological features. The best model
improves LAS by 0.3. For German with morphological features the absolute differences are
smaller: The smallest tagset does not improve the parser on average. For the tagset of 107 tags
the average improvement is 0.08. The best model improves LAS by 0.38. In all experiments
we see the highest improvements for tagset sizes of roughly the same size (115 for English,
107 for German). While average improvements are low especially for the German models with
morphological features, the peak improvements are substantial.

Running the best English system on the test set gives an improvement in LAS from 90.34 to
90.57 (Table 4.8); this improvement is significant (p < .02). For German we get an improvement
from 87.92 to 88.24 without and from 88.35 to 88.51 with morphological features. The difference
between the values without morphological features is significant (p < .05), but the difference
between models with morphological features is not (p = .26). However, the difference between
the baseline system with morphological features and the best system without morphological
features is also not significant (p = .49).

Baseline HMM-LA
English 90.34 90.75∗
German (feat) 88.35 88.51
German (no feat) 87.92 88.24∗

Table 4.8: LAS for the test set for English and German dependency parsing with (feat.) and
without morphological features (no feat.). The best numbers are bold. Significant improvements
are marked (∗).

We can conclude that HMM-LA tags can significantly improve parsing results. For German
we see that HMM-LA tags can substitute morphological features up to an insignificant difference.
We also see that morphological features and HMM-LA seem to be correlated as combining the
two gives only insignificant improvements.

4.4 Experiments 95

● ● ● ●●

88.40 88.50 88.60 88.70

97
.5

97
.6

97
.7

97
.8

97
.9

98
.0

LAS

Ta
gg

in
g

A
cc

ur
ac

y

87.00 87.10 87.20 87.30
97

.1
0

97
.1

2
97

.1
4

97
.1

6
97

.1
8

97
.2

0
LAS

Ta
gg

in
g

A
cc

ur
ac

y

87.2 87.3 87.4 87.5 87.6 87.7

97
.1

0
97

.1
2

97
.1

4
97

.1
6

97
.1

8
97

.2
0

LAS

Ta
gg

in
g

A
cc

ur
ac

y

Figure 4.3: Scatter plots of LAS vs tagging accuracy for English (top left) and German without
(top right) and with (bottom) morphological features. English tagset sizes are 58 (squares),
73 (diamonds), 92 (triangles), 115 (triangles pointing downwards) and 144 (circles). German
tagset sizes are 85 (squares), 107 (diamonds) and 134 (triangles). The dashed lines indicate the
baselines.

4.4.4 Contribution Analysis

In this section we try to find statistical evidence for why a parser using a fine-grained tagset might
outperform a parser based on treebank tags only.

96 4. HMM-LAs for Dependency Parsing

The results indicate that an induced latent tagset as a whole increases parsing performance.
However, not every split made by the HMM-LA seems to be useful for the parser. The scatter
plots in Figure 4.3 show that there is no strict correlation between tagging accuracy of a model
and the resulting LAS. This is expected as split-merge training optimizes a tagging objective
function, which does not directly translate into better parsing performance. An example is lexi-
calization. Most latent models for English create a subtag for the preposition “of”. This is useful
for a HMM as “of” is frequent and has a very specific context. A lexicalized syntactic parser,
however, does not benefit from such a tag.

We base the remainder of our analysis on the results of the baseline parser on the English
development set and the results of the best performing latent model. The best performing model
has a LAS score of 88.73 vs 88.43 for the baseline, a difference of 0.3. If we just look at the
LAS of words with incorrectly predicted POS we see a difference of 1.49. A look at the data
shows that the latent model helps the parser to identify words that might have been annotated
incorrectly. As an example consider plural nouns (NNS) and two of their latent subtags NNS1

and NNS2 and how often they get classified correctly and misclassified as proper nouns (NNPS):

Gold NNS Gold NNPS
Predicted NNS 2019 104
Latent NNS1 90 72
Latent NNS2 1100 13
Latent NNS3

Table 4.9: Coocurrences of gold POS (columns) and predicted POS (NNS) and latent POS
(NNS1,NNS2,NNS3).

We see that NNS1 is roughly equally likely to be a NNPS or NNS while NNS2 gives much
more confidence of the actual POS being NNS. So one benefit of HMM-LA POS tagsets are tags
of different levels of confidence.

Another positive effect is that latent POS tags have a higher correlation with certain depen-
dency relations. Consider proper nouns (NNP):

Gold NAME Gold NMOD Gold SBJ
Predicted NNP 962 662 468
Latent NNP1 10 27 206
Latent NNP2 24 50 137
Latent NNP3

Table 4.10: Coocurrences of correct dependency relations Name (Name), Noun Modifier
(NMOD), subject (SBJ) and predicted POS and latent POS (NNP1,NNP2,NNP3).

We see that NNP1 and NNP2 are more likely to appear in subject relations. NNP1 contains
surnames; the most frequent word forms are Keating, Papandreou and Kaye. In contrast, NNP2

4.5 Conclusion 97

contains company names such as Sony, NBC and Keystone. This explains why the difference in
LAS is twice as high for NNPs as on average.

For German we see similar effects and the anticipated correlation with morphology. The 5
determiner subtags, for example, strongly correlate with grammatical case:

Nom. Gen. Dat. Acc.
ART 1185 636 756 961
ART1 367 7 38
ART2 11 28 682 21
ART3 6 602 7 3
ART4 39 43 429
ART5 762 6 17 470

Table 4.11: Coocurrences of correct case and predicted POS and latent POS (ARTi).

4.5 Conclusion
We have not only shown that split-merge training for HMMs is a method for increasing per-
formance of generative taggers, but also that the generated latent annotations are linguistically
interpretable and can be used to improve dependency parsing. Our best systems improve an En-
glish parser from a LAS of 90.34 to 90.57 and a German parser without morphological features
from 87.92 to 88.24 and with morphological features from 88.35 to 88.51. Our analysis of the
parsing results shows that the major reasons for the improvements are: the separation of POS
tags into more and less trustworthy subtags, the creation of POS subtags with higher correlation
to certain dependency labels and for German a correlation of tags and morphological features
such as case.

98 4. HMM-LAs for Dependency Parsing

Chapter 5

Morphological Tagging with Higher-Order
CRFs

Erklärung nach §8 Absatz 4 der Promotionsordnung: This chapter covers work
already published at international peer-reviewed conferences. The most relevant
publication is Müller et al. (2013). The chapter also covers a small part of Björkelund
et al. (2013). The research described in this chapter was carried out in its entirety
by myself. The other author(s) of the publication(s) acted as advisor(s) or were
responsible for work that was reported in the publication(s), but is not included in
this chapter.

In morphological tagging, complex morphological readings are represented as tags in or-
der to allow for the application of standard sequence prediction methods (Section 2.3). For
morphologically-rich languages this leads to tagsets of hundreds of tags, which makes the train-
ing of higher-order conditional random fields prohibitive. We present an approximated condi-
tional random field using coarse-to-fine decoding and early updating. We show that our im-
plementation MarMoT yields fast and accurate morphological taggers across six languages with
different morphological properties and that across languages higher-order models give significant
improvements over 1st-order models.

5.1 Introduction
Most natural language processing (NLP) tasks can be better solved if a preprocessor tags each
word in the natural language input with a label like “noun, singular” or “verb, past tense” that
gives some indication of the syntactic role that the word plays in its context. The most common
form of such preprocessing is part-of-speech (POS) tagging. However, for morphologically rich
languages, a large subset of the languages of the world, POS tagging in its original form – where
labels are syntactic categories with little or no morphological information – does not make much
sense. The reason is that POS and morphological properties are mutually dependent, so solving
only one task or solving the tasks sequentially is inadequate. The most important dependence

100 5. Morphological Tagging with Higher-Order CRFs

of this type is that POS can be read off morphology in many cases; e.g., the morphological
suffix “-iste” is a reliable indicator of the informal second person singular preterite indicative
form of a verb in Spanish. In what follows, we use the term “morphological tagging” to refer to
“morphological and POS tagging” since morphological tags generally include POS information.

Conditional Random Fields (CRFs) (Lafferty et al., 2001) are arguably one of the best per-
forming sequence prediction models for many Natural Language Processing (NLP) tasks. As we
already discussed in Section 2.3, during CRF training forward-backward computations – a form
of dynamic programming – dominate the asymptotic runtime. The training and also decoding
times thus depend polynomially on the size of the tagset and exponentially on the order of the
CRF. This probably explains why CRFs, despite their outstanding accuracy, normally only are
applied to tasks with small tagsets such as Named Entity Recognition and Chunking; if they are
applied to tasks with bigger tagsets – e.g., to part-of-speech (POS) tagging for English – then
they generally are used as 1st-order models.

In this chapter, we demonstrate that fast and accurate CRF training and tagging is possible
for large tagsets of even thousands of tags by approximating the CRF objective function using
coarse-to-fine decoding (Charniak and Johnson, 2005; Rush and Petrov, 2012). Our pruned CRF
model MarMoT has a much smaller runtime than higher-order CRF models and may thus lead
to an even broader application of CRFs across NLP tagging tasks.

We use POS tagging and combined POS and morphological (POS+MORPH) tagging to
demonstrate the properties and benefits of our approach. Morphological disambiguation is an
important preprocessing step for syntactic parsing. It is usually tackled by applying sequence
prediction. POS+MORPH tagging is also a good example of a task where CRFs are rarely ap-
plied as the tagsets are often so big that even 1st-order dynamic programming is too expensive. A
workaround is to restrict the possible tag candidates per position by using either morphological
analyzers (MAs), dictionaries or heuristics (Hajič, 2000). In this chapter, however we show that
when using pruning (i.e., MarMoT), CRFs can be trained in reasonable time, which makes hard
constraints unnecessary.

In this chapter, we run successful experiments on six languages with different morphological
properties; we interpret this as evidence that our approach is a general solution to the problem of
POS+MORPH tagging. The tagsets in our experiments range from small sizes of 12 to large sizes
of up to 1811. We will see that even for the smallest tagset, MarMoT models need only 40% of
the training time of standard CRFs. For the bigger tagset sizes we can reduce training times from
several days to several hours. We will also show that training higher-order MarMoT models takes
only several minutes longer than training 1st-order models and – depending on the language –
may lead to substantial accuracy improvements. For example in German POS+MORPH tagging,
a 1st-order model (trained in 32 minutes) achieves an accuracy of 88.96 while a 3rd-order model
(trained in 35 minutes) achieves an accuracy of 90.60.

The remainder of the chapter is structured as follows: Section 5.3 describes our CRF imple-
mentation and the feature set used. Section 5.2 summarizes related work on tagging with CRFs,
efficient CRF tagging and coarse-to-fine decoding. Section 5.4 describes experiments on POS
tagging and POS+MORPH tagging and Section 5.6 summarizes the main contributions of the
chapter.

5.2 Related Work 101

5.2 Related Work

Morphological tagging (Oflazer and Kuruöz, 1994; Hajič and Hladká, 1998) is the task of assign-
ing a morphological reading to a token in context. The morphological reading consists of features
such as case, gender, person and tense and is represented as a single tag. This allows for the ap-
plication of standard sequence labeling algorithms such as Conditional Random Fields (CRF)
(Lafferty et al., 2001), but also puts an upper bound on the accuracy as only readings occurring
in the training set can be produced. It is still the standard approach to morphological disambigua-
tion as the number of readings that cannot be produced is usually small. The related work can be
divided into branches. Some papers try to exploit certain properties of a language such as Habash
and Rambow (2005) and Roth et al. (2008) (Arabic), Yuret and Türe (2006) (Turkish) , Adler
and Elhadad (2006) (Hebrew) and Spoustová et al. (2009) and Straková et al. (2014) (Czech).
MorphoDiTa, the implementation of the last two papers has been released as open-source.1 Other
papers implement language-independent systems (Hajič, 2000; Smith et al., 2005; Schmid and
Laws, 2008; Müller et al., 2013), with our model, we follow a language-independent approach.

Despite their dominance in many NLP areas CRFs are usually not applied to morphological
tagging. Smith et al. (2005) use CRFs for morphological tagging, but use a morphological an-
alyzer for candidate selection. They report training times of several days and that they had to
use simplified models for Czech. Several methods have been proposed to reduce CRF training
times. Stochastic gradient descent can be applied to reduce the training time by a factor of 5
(Tsuruoka et al., 2009) and without drastic losses in accuracy. Lavergne et al. (2010) make use
of feature sparsity to significantly speed up training for moderate tagset sizes (< 100) and huge
feature spaces. It is unclear if their approach would also work for huge tagsets (> 1000).

Coarse-to-fine decoding has been successfully applied to CYK parsing where full dynamic
programming is often intractable when big grammars are used (Charniak and Johnson, 2005).
Weiss and Taskar (2010) develop cascades of models of increasing complexity in a framework
based on perceptron learning and an explicit trade-off between accuracy and efficiency.

Kaji et al. (2010) propose a modified Viterbi algorithm that is still optimal, but depending
on task and especially for big tagsets might be several orders of magnitude faster. While their
algorithm can be used to produce fast decoders, there is no such modification for the forward-
backward algorithm used during CRF training.

5.3 Methodology

5.3.1 Standard CRF Training

We already discussed standard CRF training in Chapter 2. We know that in a standard CRF,
we model our sentences using a globally normalized log-linear model. The probability of a tag
sequence ~y given a sentence ~x is then given as:

1http://ufal.mff.cuni.cz/morphodita

http://ufal.mff.cuni.cz/morphodita

102 5. Morphological Tagging with Higher-Order CRFs

p(~y|~x) =
exp

∑
t,i λi · φi(~y, ~x, t)
Z(~λ, ~x)

ZCRF(~λ, ~x) =
∑
~y

exp
∑
t,i

λi · φi(~y, ~x, t)

where t and i are token and feature indexes, φi is a feature function, λi is a feature weight and
Z is a normalization constant. During training the feature weights λ are set to maximize the
conditional log-likelihood of the training data D:

llD(~λ) =
∑

(~x,~y)∈D

log p(~y|~x,~λ)

In order to use numerical optimization we have to calculate the gradient of the log-likelihood,
which is a vector of partial derivatives ∂llD(~λ)/∂λi. For a training sentence ~x, ~y and a token index
t the derivative with respect to feature i is given by:

φi(~y, ~x, t)−
∑
~y′

φi(~y
′, ~x, t) p(~y′|~x,~λ)

This is the difference between the empirical feature count in the training data and the esti-
mated count in the current model ~λ. For a 1st-order model, we can replace the expensive sum
over all possible tag sequences ~y′ by a sum over all pairs of tags:

φi(yt, yt+1, ~x, t)−
∑
y,y′

φi(y, y
′, ~x, t) p(y, y′|~x,~λ)

The probability of a tag pair p(y, y′|~x,~λ) can then be calculated efficiently using the forward-
backward algorithm. If we further reduce the complexity of the model to a 0-order model, we
obtain simple maximum entropy model updates:

φi(yt, ~x, t)−
∑
y

φi(y, ~x, t) p(y|~x,~λ)

5.3.2 Pruned CRF Training
As we discussed in the introduction, we want to decode sentences by applying a variant of coarse-
to-fine tagging. Naively, to later tag with nth-order accuracy we would train a series of n CRFs
of increasing order. We would then use the CRF of order n − 1 to restrict the input of the
CRF of order n. In this chapter we approximate this approach, but do so while training only

5.3 Methodology 103

one integrated model. This way we can save both memory (by sharing feature weights between
different models) and training time (by saving lower-order updates).

The main idea of our approach is to create increasingly complex lattices and to filter can-
didate states at every step to prevent a polynomial increase in lattice size. The first step is to
create a 0-order lattice, which as discussed above, is identical to a series of independent local
maximum entropy models p(y|~x, t). The models base their prediction on the current word xt and
the immediate lexical context. We then calculate the posterior probabilities and remove states
y with p(y|~x, t) < τ0 from the lattice, where τ0 is a parameter. The resulting reduced lattice is
similar to what we would obtain using candidate selection based on an MA.

We can now create a 1st-order lattice by adding transitions to the pruned lattice and pruning
with threshold τ1. The only difference to 0-order pruning is that we now have to run forward-
backward to calculate the probabilities p(y|~x, t). Note that in theory we could also apply the
pruning to transition probabilities of the form p(y, y′|~x, t); however, this does not seem to yield
more accurate models and is less efficient than state pruning.

For higher-order lattices we merge pairs of states into new states, add transitions and prune
with threshold τi.

We train the model using l1-regularized Stochastic Gradient Descent (SGD) (Tsuruoka et al.,
2009). We would like to create a cascade of increasingly complex lattices and update the weight
vector with the gradient of the last lattice. The updates, however, are undefined if the gold
sequence is pruned from the lattice. A solution would be to simply reinsert the gold sequence,
but this yields poor results as the model never learns to keep the gold sequence in the lower-
order lattices. As an alternative we perform the gradient update with the highest lattice still
containing the gold sequence. This approach is similar to “early updating” (Collins and Roark,
2004) in perceptron learning, where during beam search an update with the highest scoring partial
hypothesis is performed whenever the gold candidate falls out of the beam. Intuitively, we are
trying to optimize an nth-order CRF objective function, but apply small lower-order corrections
to the weight vector when necessary to keep the gold candidate in the lattice. Algorithm 5.1
illustrates the lattice generation process. The lattice generation during decoding is identical,
except that we always return a lattice of the highest order n.

The savings in training time of this integrated approach are large; e.g., training a maximum
entropy model over a tagset of roughly 1800 tags and more than half a million instances is slow
as we have to apply 1800 weight vector updates for every token in the training set and every
SGD iteration. In the integrated model we only have to apply 1800 updates when we lose the
gold sequence during filtering. Thus, in our implementation training a 0-order model for Czech
takes roughly twice as long as training a 1st-order model.

104 5. Morphological Tagging with Higher-Order CRFs

Algorithm 5.1 Lattice generation during training
1: function GETSUMLATTICE(sentence, ~τ)
2: gold-tags← getTags(sentence)
3: candidates← getAllCandidates(sentence)
4: lattice← ZeroOrderLattice(candidates)
5: for i = 1→ n do
6: candidates← lattice. prune(τi−1)
7: if gold-tags 6∈ candidates then
8: return lattice
9: end if

10: if i > 1 then
11: candidates← mergeStates(candidates)
12: end if
13: candidates← addTransitions(candidates)
14: lattice← SequenceLattice(candidates, i)
15: end for
16: return lattice
17: end function

5.3.3 Threshold Estimation

Our approach would not work if we were to set the parameters τi to fixed predetermined values;
e.g., the τi depend on the size of the tagset and should be adapted during training as we start the
training with a uniform model that becomes more specific. We therefore set the τi by specifying
µi, the average number of tags per position that should remain in the lattice after pruning. This
also guarantees stable lattice sizes and thus stable training times. We achieve stable average
number of tags per position by setting the τi dynamically during training: we measure the real
average number of candidates per position µ̂i and apply corrections after processing a certain
fraction of the sentences of the training set. The updates are of the form:

τi =

{
(1.0 + ε) · τi if µ̂i < µi

(1.0− ε) · τi if µ̂i > µi

where we use ε = 0.1. Figure 5.1 shows an example training run for German with µ0 = 4. Here
the 0-order lattice reduces the number of tags per position from 681 to 4 losing roughly 15% of
the gold sequences of the development set, which means that for 85% of the sentences the correct
candidate is still in the lattice. This corresponds to more than 99% of the tokens. We can also
see that after two iterations only a very small number of 0-order updates have to be performed.

5.3 Methodology 105

 0

 0.05

 0.1

 0.15

 0.2

 0 1 2 3 4 5 6 7 8 9 10

U
n
re

a
ch

a
b
le

 g
o
ld

 c
a
n
d
id

a
te

s

Epochs

train
dev

Figure 5.1: Example training run of a pruned 1st-order model on German showing the fraction
of pruned gold sequences (= sentences) during training for training (train) and development sets
(dev).

5.3.4 Tag Decomposition

As we discussed before for the very large POS+MORPH tagsets, most of the decoding time is
spent on the 0-order level. To decrease the number of tag candidates in the 0-order model, we
decode in two steps by separating the fully specified tag into a coarse-grained part-of-speech
(POS) tag and a fine-grained MORPH tag containing the morphological features. We then first
build a lattice over POS candidates and apply our pruning strategy. In a second step we expand
the remaining POS tags into all the combinations with MORPH tags that were seen in the training
set. We thus build a sequence of lattices of both increasing order and increasing tag complexity.

5.3.5 Feature Set

We use the features of Ratnaparkhi (1996) and Manning (2011): the current, preceding and
succeeding words as unigrams and bigrams and for rare words prefixes and suffixes up to length
10, and the occurrence of capital characters, digits and special characters. We define a rare
word as a word with training set frequency ≤ 10. We concatenate every feature with the POS
and MORPH tag and every morphological feature. For example, for the word “der”, the POS
tag art (article) and the MORPH tag gen|sg|fem (genitive, singular, feminine) we get the
following features for the current word template: der+art, der+gen|sg|fem, der+gen,
der+sg and der+fem.

We also use an additional binary feature, which indicates whether the current word has been
seen with the current tag or – if the word is rare – whether the tag is in a set of open tag classes.
The open tag classes are estimated by 10-fold cross-validation on the training set: We first use
the folds to estimate how often a tag is seen with an unknown word. We then consider tags with a
relative frequency ≥ 10−4 as open tag classes. While this is a heuristic, it is safer to use a “soft”
heuristic as a feature in the lattice than a hard constraint.

For some experiments we also use the output of a morphological analyzer (MA). In that
case we simply use every analysis of the MA as a simple nominal feature. This approach is

106 5. Morphological Tagging with Higher-Order CRFs

attractive because it does not require the output of the MA and the annotation of the treebank to
be identical; in fact, it can even be used if treebank annotation and MA use completely different
features.

Manning (2011) reports shape features to be helpful for POS tagging. A limitation of their
shapes is that they make certain assumptions about typological properties; thus, the features are
not language independent. We propose to induce word shapes based on POS distributions. The
method is similar to Schmid (1994), but allows for arbitrary features instead of only suffixes. The
principal idea is to train a decision tree and to use the leaves as word shapes. For this purpose we
represent every word form as a binary feature vector. Our features include the length of the word,
whether the word contains a certain character or any digit, lowercase or uppercase letter, whether
the lowercased word form occurred in the training corpus and whether one of the 10 leading
or trailing characters is a particular character. During the decision tree training these features
are concatenated to form signatures. As an example: applied to the English Penn Treebank
the method generates a signature that groups words without uppercase characters and digits that
end in “ness” into one signature; examples include “creditworthiness”, “comprehensiveness”,
“fickleness”, “heavy-handedness” and “warmheartedness”. We apply the induction method to all
rare words in the training corpus and use information gain as the splitting criterion. We further
constrain the split nodes to contain at least 50 words and stop when the number of leaf nodes
reaches k, where we set k = 100. The learned signatures are used as a replacement for rare word
forms. The shape features are evaluated in the next section.

Because the weight vector dimensionality is high for large tagsets and productive languages,
we use a hash kernel (Shi et al., 2009) to keep the dimensionality constant. We investigate the
impact of the dimensionality in the next section. Details of our implementation are explained in
Appendix A.

5.4 Experiments
We run POS+MORPH tagging experiments on Arabic (ar), Czech (cs), Spanish (es), German
(de) and Hungarian (hu). Table 5.1 shows the type-token (T/T) ratio, the average number of tags
of every word form that occurs more than once in the training set (A) and the number of tags of
the most ambiguous word form (Â).

T/T A Â
Arabic 0.06 2.06 17
Czech 0.13 1.64 23

Spanish 0.09 1.14 9
German 0.11 2.15 44

Hungarian 0.11 1.11 10

Table 5.1: Type-token (T/T) ratio, average number of tags per word form (A) and the number
of tags of the most ambiguous word form (Â)

5.4 Experiments 107

Arabic is a Semitic language with nonconcatenative morphology. An additional difficulty is
that vowels are often not written in Arabic script. This introduces a high number of ambiguities;
on the other hand it reduces the type-token ratio, which generally makes learning easier. In this
chapter, we work with the transliteration of Arabic provided in the Penn Arabic Treebank. Czech
is a highly inflecting Slavic language with a large number of morphological features. Spanish
is a Romance language. Based on the statistics above we can see that it has few POS+MORPH
ambiguities. It is also the language with the smallest tagset and the only language in our setup
that – with a few exceptions – does not mark case. German is a Germanic language and – based
on the statistics above – the language with the most ambiguous morphology. The reason is that
it only has a small number of inflectional suffixes. The total number of nominal inflectional
suffixes for example is five. A good example for a highly ambiguous suffix is “en”, which is a
marker for infinitive verb forms, for the 1st and 3rd person plural and for the polite 2nd person
singular. Additionally, it marks plural nouns of all cases and singular nouns in genitive, dative
and accusative case.

Hungarian is a Finno-Ugric language with an agglutinative morphology; this results in a high
type-token ratio, but also the lowest level of word form ambiguity among the selected languages.

POS tagging experiments are run on all the languages above and also on English.

5.4.1 Resources
For Arabic we use the Penn Arabic Treebank (Maamouri et al., 2004), parts 1–3 in their latest ver-
sions (LDC2010T08, LDC2010T13, LDC2011T09). As training set we use parts 1 and 2 and part
3 up to section ANN20020815.0083. All consecutive sections up to ANN20021015.0096
are used as development set and the remainder as test set. We use the unvocalized and pretok-
enized transliterations as input. For Czech and Spanish, we use the CoNLL 2009 data sets (Hajič
et al., 2009); for German, the TIGER treebank (Brants et al., 2002) with the split from Fraser
et al. (2013); for Hungarian, the Szeged treebank (Csendes et al., 2005) with the split from Farkas
et al. (2012). For English we use the Penn Treebank (Marcus et al., 1993) with the split from
Toutanova et al. (2003).

We also compute the possible POS+MORPH tags for every word using MAs. For Arabic
we use the AraMorph reimplementation of Buckwalter (2002), for Czech the “free” morphology
(Hajič, 2001), for Spanish Freeling (Padró and Stanilovsky, 2012), for German DMOR (Schiller
(1995)) and for Hungarian Magyarlanc 2.0 (Zsibrita et al., 2013).

5.4.2 Setup
To compare the training and decoding times we run all experiments on the same test machine,
which features two Hexa-Core Intel Xeon X5680 CPUs with 3,33 GHz and 6 cores each and 144
GB of memory. The baseline tagger and our MarMoT implementation are run single threaded.
Note that our tagger might actually use more than one core because the Java garbage collection
is run in parallel. The taggers are implemented in different programming languages and with
different degrees of optimization; still, the run times are indicative of comparative performance
to be expected in practice.

108 5. Morphological Tagging with Higher-Order CRFs

Our Java implementation is always run with 10 SGD iterations and a regularization parameter
of 0.1, which for German was the optimal value out of {0, 0.01, 0.1, 1.0}. We follow Tsuruoka
et al. (2009) in our implementation of SGD and shuffle the training set between epochs. All
numbers shown are averages over 5 independent runs, where not noted otherwise, we use µ0 = 4,
µ1 = 2 and µ2 = 1.5. We found that higher values do not consistently increase performance on
the development set, but result in much higher training times.

Language Sentences Tokens POS MORPH POS+MORPH OOV
Tags Tags Tags Rate

ar (Arabic) 15,760 614,050 38 516 516 4.58%
cs (Czech) 38,727 652,544 12 1,811 1,811 8.58%
en (English) 38,219 912,344 45 45 3.34%
es (Spanish) 14,329 427,442 12 264 303 6.47%
de (German) 40,472 719,530 54 255 681 7.64%
hu (Hungarian) 61,034 1,116,722 57 1,028 1,071 10.71%

Table 5.2: Training set statistics. Out-Of-Vocabulary (OOV) rate is regarding the development
sets.

5.4.3 POS Experiments

In a first experiment we evaluate the speed and accuracy of CRFs and MarMoT models on the
POS tagsets. As shown in Table 5.2 the tagset sizes range from 12 for Czech and Spanish
to 54 and 57 for German and Hungarian, with Arabic (38) and English (45) in between. The
results of our experiments are given in Table 5.3. For the 1st-order models, we observe speed-
ups in training time from 2.3 to 31 at no loss in accuracy. For all languages, training pruned
higher-order models is faster than training unpruned 1st-order models and yields more accurate
models. Accuracy improvements range from 0.08 for Hungarian to 0.25 for German. We can
conclude that for small and medium tagset sizes MarMoT gives substantial improvements in both
training and decoding speed (cf. Table 5.4) and thus allows for higher-order tagging, which for
all languages leads to significant accuracy improvements. Throughout the chapter we establish
significance by running approximate randomization tests on sentences (Yeh, 2000).

ar cs es de hu en
n TT ACC TT ACC TT ACC TT ACC TT ACC TT ACC

CRF 1 106 96.21 10 98.95 7 98.51 234 97.69 374 97.63 154 97.05
MarMoT 1 5 96.21 4 98.96 3 98.52 7 97.70 12 97.64 5 97.07
MarMoT 2 6 96.43* 5 99.01* 3 98.65* 9 97.91* 13 97.71* 6 97.21*
MarMoT 3 6 96.43* 6 99.03* 4 98.66* 9 97.94* 14 97.69 6 97.19*

Table 5.3: POS tagging experiments with pruned (MarMoT) and unpruned CRFs with different
orders n. For every language the training time in minutes (TT) and the POS accuracy (ACC) are
given. * indicates models significantly better than CRF (first line).

5.4 Experiments 109

n ar cs es de hu en
CRF 1 101 2041 1095 119 96 219
MarMoT 1 1150 2746 1377 1851 1593 2647
MarMoT 2 762 1720 1175 1552 1207 1715
MarMoT 3 604 1617 861 1375 1042 1419

Table 5.4: Decoding speed at order n for POS tagging. Speed is measured in sentences / second.

5.4.4 POS+MORPH Oracle Experiments

ar cs es de hu
1 Oracle µ0 = 4 90.97 92.59 97.91 89.33 96.48
2 Model µ0 = 4 90.90 92.45* 97.95 88.96* 96.47
3 Model µ0 = 8 90.89 92.48* 97.94 88.94* 96.47

Table 5.5: Accuracies for 1st-order models with and without oracle pruning. * indicates models
significantly worse than the oracle model.

Ideally, for the full POS+MORPH tagset we would also compare our results to an unpruned CRF,
but our implementation turned out to be too slow to do the required number of experiments. For
German, the model processed ≈ 0.1 sentences per second during training; so running 10 SGD
iterations on the 40,472 sentences would take more than a month. We therefore compare our
model against models that perform oracle pruning, which means we perform standard pruning,
but always keep the gold candidate in the lattice. The oracle pruning is applied during training
and testing on the development set. The oracle model performance is thus an upper bound for
the performance of an unpruned CRF.

The most interesting pruning step happens at the 0-order level when we reduce from hundreds
of candidates to just a couple. Table 5.5 shows the results for 1st-order CRFs.

We can roughly group the five languages into three groups: for Spanish and Hungarian the
damage is negligible, for Arabic we see a small decrease of 0.07 and only for Czech and German
we observe considerable differences of 0.14 and 0.37. Surprisingly, doubling the number of
candidates per position does not lead to significant improvements.

We can conclude that except for Czech and German losses due to pruning are insignificant.

5.4.5 POS+MORPH Higher-Order Experiments

One argument for MarMoT is that while it might be less accurate than standard CRFs it allows
to train higher-order models, which in turn are more accurate than their standard lower-order
counterparts. In this section, we investigate how big the improvements of higher-order models
are. The results are given in Table 5.6:

110 5. Morphological Tagging with Higher-Order CRFs

n ar cs es de hu
1 90.90 92.45 97.95 88.96 96.47
2 91.86* 93.06* 98.01 90.27* 96.57*
3 91.88* 92.97* 97.87 90.60* 96.50

Table 5.6: POS+MORPH accuracies for models of different order n.

We see that 2nd-order models give improvements for all languages. For Spanish and Hungar-
ian we see minor improvements ≤ 0.1.

For Czech we see a moderate improvement of 0.61 and for Arabic and German we observe
substantial improvements of 0.96 and 1.31. An analysis on the development set revealed that
for all three languages, case is the morphological feature that benefits most from higher-order
models. A possible explanation is that case has a high correlation with syntactic relations and is
thus affected by long-distance dependencies.

German is the only language where fourgram models give an additional improvement over
trigram models. The reason seem to be sentences with long-range dependencies, e.g., “Die
Rebellen haben kein Lösegeld verlangt” (The rebels have not demanded any ransom); “verlangt”
(demanded) is a past participle that is separated from the auxiliary verb “haben” (have). The
2nd-order model does not consider enough context and misclassifies “verlangt” as a finite verb
form, while the 3rd-order model tags it correctly.

We can also conclude that the improvements for higher-order models are always higher than
the loss we estimated in the oracle experiments. More precisely we see that if a language has a
low number of word form ambiguities (e.g., Hungarian) we observe a small loss during 0-order
pruning, but we also have to expect less of an improvement when increasing the order of the
model. For languages with a high number of word form ambiguities (e.g., German) we must
anticipate some loss during 0-order pruning, but we also see substantial benefits for higher-order
models.

Surprisingly, we found that higher-order MarMoT models can also avoid the pruning errors
of lower-order models. Here is an example from the German data. The word “Januar” (January)
is ambiguous: in the training set, it occurs 108 times as dative, 9 times as accusative and only 5
times as nominative. The development set contains 48 nominative instances of “Januar” in date-
lines at the end of news articles, e.g., “TEL AVIV, 3. Januar”. For these 48 occurrences, (i) the
oracle model in Table 5.5 selects the correct case nominative, (ii) the 1st-order MarMoT model
selects the incorrect case accusative, and (iii) the 2nd- and 3rd-order models select – unlike the
1st-order model – the correct case nominative. Our interpretation is that the correct nominative
reading is pruned from the 0-order lattice. However, the higher-order models can put less weight
on 0-order features as they have access to more context to disambiguate the sequence. The lower
weights of order-0 result in a more uniform posterior distribution and the nominative reading is
not pruned from the lattice.

5.4 Experiments 111

5.4.6 Experiments with Morphological Analyzers

In this section we compare the improvements of higher-order models when used with MAs. The
results are given in Table 5.7:

n ar cs es de hu
1 90.90− 92.45− 97.95− 88.96− 96.47−

2 91.86+ 93.06 98.01− 90.27+ 96.57−

3 91.88+ 92.97− 97.87− 90.60+ 96.50−

MA 1 91.22 93.21 98.27 89.82 97.28
MA 2 92.16+ 93.87+ 98.37+ 91.31+ 97.51+

MA 3 92.14+ 93.88+ 98.28 91.65+ 97.48+

Table 5.7: POS+MORPH accuracy for models of different orders n and models with and without
morphological analyzers (MA). +/- indicate models significantly better/worse than MA 1.

Plus and minus indicate models that are significantly better or worse than MA 1. We can
see that the improvements due to higher-order models are orthogonal to the improvements due
to MAs for all languages. This was to be expected as MAs provide additional lexical knowledge
while higher-order models provide additional information about the context. For Arabic and
German the improvements of higher-order models are bigger than the improvements due to MAs.

5.4.7 Comparison with Baselines

We use the following baselines: SVMTool (Giménez and Màrquez, 2004), an SVM-based dis-
criminative tagger; RFTagger (Schmid and Laws, 2008), an n-gram Hidden Markov Model
(HMM) tagger developed for POS+MORPH tagging; Morfette (Chrupala et al., 2008), an av-
eraged perceptron with beam search decoder; CRFSuite (Okazaki, 2007), a fast CRF imple-
mentation; and the Stanford Tagger (Toutanova et al., 2003), a bidirectional Maximum Entropy
Markov Model. For POS+MORPH tagging, all baselines are trained on the concatenation of POS
tag and MORPH tag. We run SVMTool with the standard feature set and the optimal c-values
∈ {0.1, 1, 10}. Morfette is run with the default options. For CRFSuite we use l2-regularized
SGD training. We use the optimal regularization parameter ∈ {0.01, 0.1, 1.0} and stop after 30
iterations where we reach a relative improvement in regularized likelihood of at most 0.01 for
all languages. The feature set is identical to our model except for some restrictions: we only
use concatenations with the full tag and we do not use the binary feature that indicates whether
a word-tag combination has been observed. We also had to restrict the combinations of tag and
features to those observed in the training set.2 Otherwise the memory requirements would ex-
ceed the memory of our test machine (144 GB) for Czech and Hungarian. The Stanford Tagger is
used as a bidirectional 2nd-order model and trained using OWL-BFGS (Andrew and Gao, 2007),
a modified version of BFGS for l1-regularized objective functions. For Arabic, German and En-

2We set the CRFSuite option possible states = 0

112 5. Morphological Tagging with Higher-Order CRFs

glish we use the language specific feature sets and for the other languages the English feature
set.

Development set results for POS tagging are shown in Table 5.8.

ar cs es de hu en
TT ACC TT ACC TT ACC TT ACC TT ACC TT ACC

SVMTool 178 96.39 935 98.94 64 98.42 899 97.29 2653 97.42 253 97.09
Morfette 9 95.91 6 99.00 3 98.43 16 97.28 30 97.53 17 96.85
CRFSuite 4 96.20 2 99.02 2 98.40 8 97.57 15 97.48 8 96.80
Stanford 29 95.98 8 99.08 7 98.53 51 97.70 40 97.53 65 97.24
MarMoT 1 5 96.21* 4 98.96* 3 98.52 7 97.70 12 97.64* 5 97.07*
MarMoT 2 6 96.43 5 99.01* 3 98.65* 9 97.91* 13 97.71* 6 97.21
MarMoT 3 6 96.43 6 99.03 4 98.66* 9 97.94* 14 97.69* 6 97.19

Table 5.8: Development results for POS tagging. Given are training times in minutes (TT)
and accuracies (ACC). Best baseline results are underlined and the overall best results bold. *
indicates a significant difference (positive or negative) between the best baseline and a MarMoT
model.

We can observe that Morfette, CRFSuite and the MarMoT models for different orders have
training times in the same order of magnitude. For Arabic, Czech and English, the MarMoT ac-
curacy is comparable to the best baseline models. For the other languages we see improvements
of 0.13 for Spanish, 0.18 for Hungarian and 0.24 for German. Evaluation on the test set con-
firms these results, see Table 5.9.3 We can conclude that the training times of pruned high-order
models are on a par with the fastest discriminative baseline taggers. Furthermore, we see com-
parable accuracies for Arabic and Czech and significant improvements for Spanish, Hungarian
and German.

ar cs es de hu en
SVMTool 96.19 98.82 98.44 96.44 97.32 97.12
Morfette 95.55 98.91 98.41 96.68 97.28 96.89
CRFSuite 95.97 98.91 98.40 96.82 97.32 96.94
Stanford 95.75 98.99 98.50 97.09 97.32 97.28
MarMoT 1 96.03* 98.83* 98.46 97.11 97.44* 97.09*
MarMoT 2 96.11 98.88* 98.66* 97.36* 97.50* 97.23
MarMoT 3 96.14 98.87* 98.66* 97.44* 97.49* 97.19*
Manning (2011) 97.29
Shen et al. (2007) 97.33

Table 5.9: Test results for POS tagging. Best baseline results are underlined and the overall best
results bold. * indicates a significant difference between the best baseline and a MarMoT model.

3Giménez and Màrquez (2004) report an accuracy of 97.16 instead of 97.12 for SVMTool for English and
Manning (2011) an accuracy of 97.29 instead of 97.28 for the Stanford tagger.

5.4 Experiments 113

The POS+MORPH tagging development set results are presented in Table 5.10.

ar cs es de hu
TT ACC TT ACC TT ACC TT ACC TT ACC

SVMTool 454 89.91 2454 89.91 64 97.63 1649 85.98 3697 95.61
RFTagger 4 89.09 3 90.38 1 97.44 5 87.10 10 95.06
Morfette 132 89.97 539 90.37 63 97.71 286 85.90 540 95.99
CRFSuite 309 89.33 9274 91.10 69 97.53 1295 87.78 5467 95.95
MarMoT 1 22 90.90* 301 92.45* 25 97.95* 32 88.96* 230 96.47*
MarMoT 2 26 91.86* 318 93.06* 32 98.01* 37 90.27* 242 96.57*
MarMoT 3 26 91.88* 318 92.97* 35 97.87* 37 90.60* 241 96.50*

Table 5.10: Development results for POS+MORPH tagging. Given are training times in minutes
(TT) and accuracies (ACC). Best baseline results are underlined and the overall best results bold.
* indicates a significant difference between the best baseline and a MarMoT model.

Morfette is the fastest discriminative baseline tagger. In comparison with Morfette the speed
up for 3rd-order models lies between 1.7 for Czech and 5 for Arabic. Morfette gives the best
baseline results for Arabic, Spanish and Hungarian and CRFSuite for Czech and German. The
accuracy improvements of the best MarMoT models over the best baseline models range from
0.27 for Spanish over 0.58 for Hungarian, 1.91 for Arabic, 1.96 for Czech to 2.82 for German.
The test set experiments in Table 5.11 confirm these results.

ar cs es de hu
SVMTool 89.58 89.62 97.56 83.42 95.57
RFTagger 88.76 90.43 97.35 84.28 94.99
Morfette 89.62 90.01 97.58 83.48 95.79
CRFSuite 89.05 90.97 97.60 85.68 95.82
MarMoT 1 90.32* 92.31* 97.82* 86.92* 96.22*
MarMoT 2 91.29* 92.94* 97.93* 88.48* 96.34*
MarMoT 3 91.22* 92.99* 97.82* 88.58* 96.29*

Table 5.11: Test results for POS+MORPH tagging. Best baseline results are underlined and the
overall best results bold. * indicates a significant difference between the best baseline and a
MarMoT model.

5.4.8 Weight Vector Size
In this section we investigate the impact of weight vector dimensionality on model performance.
The reason for this is that the large tagsets can give rise to huge feature vectors as we have a
weight for every possible combination of feature and tag. In the worst case setup for Czech we
observe ≈ 106 feature values and 1800 POS+MORPH tags. Thus, we need a weight vector of
length 1.8 · 109. For the other languages we also obtain theoretical vector lengths in the range of
108 to 109. Assuming 8 byte floating point precision and that for implementing the l1-regularized

114 5. Morphological Tagging with Higher-Order CRFs

SGD we need a second copy of the weight vector, we need at least 26 GB to store the weight
vectors. As described in Section 5.3, we therefore use a hash kernel to decrease the length of
the weight vector. In our experiments we use a vector length of 107. Thus for Czech we have to
expect more than 180 collisions per position. In the following experiment (Table 5.12) we show
how this effects model performance.

|w| ar cs es de hu
105 89.07 88.03 97.59 85.22 94.34
107 90.90* 92.45* 97.95* 88.96* 96.47*
109 90.95* 92.54* 97.93* 88.98* 96.49*

Table 5.12: POS+MORPH accuracies at different weight vector dimensions.

The results show that we can reduce the size of the vector by a factor of 100 and lose at most
0.09 in accuracy. All 107 and 109 models significantly outperform the 105 models, but no 109 is
significantly better than a 107 model.

5.4.9 Word Shapes
We evaluate our shape features described in Section 5.3 on a POS tagging task. The Table 5.13
shows results for models with and without shape features.

ar cs es de hu en
– 96.11 98.92 98.45 97.65 97.60 97.05
+ 96.21* 98.96 98.52* 97.70* 97.64* 97.07

Table 5.13: POS tagging accuracies for 1st-order models with (+) and without shape features (–).

The shape features give small, but consistent improvements across all languages. For Arabic,
Spanish, German and Hungarian we observe significant (“*”) improvements.

5.5 An Application to Constituency Parsing
In this section we use our CRF model to improve the unknown word handling of a state-of-the-
art phrase structure parser (Petrov et al., 2006). The experiments presented in this section were
part of a contribution (Björkelund et al., 2013) to the Shared Task (ST) for (Statistical) Parsing
of Morphologically Rich Languages (SPMRL) 2013 (Seddah et al., 2013) and lead to the best
performing constituency parsing system in the ST.

Probabilistic Context-Free Grammars with Latent Annotations (PCFG-LAs) (Petrov et al.,
2006) are arguably the state of the art in multi-lingual constituency parsing. PCFG-LA avoid the
need of manually annotating a grammar. During training an annotated grammar is automatically

5.5 An Application to Constituency Parsing 115

built by splitting nonterminals, refining parameters using EM-training and reversing splits that
only cause small increases in likelihood.

In this study we use the Berkeley Parser (Petrov et al., 2006), the reference implementation of
PCFG-LAs. The Berkeley Parser has state-of-the art results for many languages (such as English
and German), but uses a simple signature-based unknown word handling that is not sufficient for
many MRLs.

We improve the parser by replacing rare words (frequency < 20) with the morphological
reading assigned by our CRF tagger. The intuition is that our discriminative tagger has a more
sophisticated unknown word treatment than the Berkeley parser, taking for example prefixes,
suffixes and the immediate lexical context into account. Furthermore, the morphological tag
contains most of the necessary syntactic information. An exception, for instance, might be the
semantic information needed to disambiguate prepositional attachment. We think that replacing
rare words by tags has an advantage over the common practice of constraining the pre-terminal
layer of the parser, because the parser can still decide to assign a different tag, for example in
cases were the tagger produces errors due to long-distance dependencies.

We ran experiments on the nine shared task languages: Arabic, Basque (eu), French (fr),
German, Hebrew (he), Hungarian, Korean (ko), Polish (pl) and Swedish (sv). We preprocessed
the ST treebank trees by removing the morphological annotation of the POS tags and the function
labels of all nonterminals. We also reduced the 177 compositional Korean POS tags to their first
atomic tag, which results in a POS tagset of 9 tags.

The data sets result in the PARSEVAL scores given in Table 5.14 (Berkeley). As we already
discussed, the Berkeley parser only implements a simple signature-based unknown word model
that seems to be ineffective for some of the languages, especially Basque and Korean.

The replacement method (replaced) yields improvements for all languages except for French
where we observe a drop of 0.06. The improvements range from 0.46 for Arabic to 1.02 for
Swedish, 3.1 for Polish and more than 10 for Basque and Korean.

ar eu fr de he hu ko pl sv
Berkeley 78.24 69.17 79.74 81.74 87.83 83.90 70.97 84.11 74.50
Replaced 78.70 84.33 79.68 82.74 89.55 89.08 82.84 87.12 75.52
∆ 0.46 15.16 - 0.06 1.00 1.72 5.65 11.87 3.01 1.02

Table 5.14: PARSEVAL scores on the SPMRL-2013 development set for the baseline model
(Berkeley) and a model that replaces rare word forms by morphological tags (replaced).

The used frequency threshold of 20 results in relatively high token replacement rates of 18%
(French) to 55% (Polish) (cf. Table 5.15). This corresponds to huge reductions of the initial
vocabulary. For example for Korean the vocabulary is reduced from more than 85 thousand to
1462. Surprisingly, a lower replacement threshold (10) did not yield consistent improvements.
The resulting parser is thus almost delexicalized.

116 5. Morphological Tagging with Higher-Order CRFs

|Vi| |Vr| ρ
Arabic 36,906 3,506 18.99
Basque 25,136 418 50.48
French 27,470 2,096 17.80
German 77,220 3,683 24.59
Hebrew 15,975 653 32.51
Hungarian 40,782 707 45.71
Korean 85,671 1,462 53.65
Polish 21,793 219 55.10
Swedish 14,097 381 39.59

Table 5.15: Size of the initial vocabulary Vi and the vocabulary after replacement Vr and the
token replacement rate ρ. The maximum and minimum in each column are bold and underlined
respectively.

5.6 Conclusion
We presented a pruned CRF model for very large tagsets. The model is based on coarse-to-
fine decoding and stochastic gradient descent training with early updating. We showed that for
moderate tagset sizes of ≈ 50, our implementation MarMoT gives significant speed-ups over
a standard CRF with negligible losses in accuracy. Furthermore, we showed that training and
tagging for approximated trigram and fourgram models is still faster than standard 1st-order
tagging, but yields significant improvements in accuracy.

In oracle experiments with POS+MORPH tagsets we demonstrated that the losses due to our
approximation depend on the word level ambiguity of the respective language and are moderate
(≤ 0.14) except for German where we observed a loss of 0.37. We also showed that higher order
tagging – which is prohibitive for standard CRF implementations – yields significant improve-
ments over unpruned 1st-order models. Analogous to the oracle experiments we observed big
improvements for languages with a high level of POS+MORPH ambiguity such as German and
smaller improvements for languages with less ambiguity such as Hungarian and Spanish.

In experiments on the SPMRL-ST 2013 data sets we showed that the model can be used to
improve the results of a state-of-the art parser (Petrov et al., 2006) on eight languages, where we
see absolute improvements of more than 10 point in F-score for Basque and Korean.

Chapter 6

Morphological Tagging with Word
Representations

Erklärung nach §8 Absatz 4 der Promotionsordnung: This chapter covers work
already published at international peer-reviewed conferences. The most relevant
publication is Müller and Schütze (2015)1. The research described in this chapter
was carried out in its entirety by myself. The other author(s) of the publication(s)
acted as advisor(s) or were responsible for work that was reported in the publica-
tion(s), but is not included in this chapter.

In this chapter, we present a comparative investigation of word representations for part-of-
speech and morphological tagging (POS+MORPH tagging), focusing on scenarios with consid-
erable differences between training and test data where a robust approach is necessary. Instead
of adapting the model towards a specific domain we aim to build a robust model across domains.
To this end, we developed a test suite for robust tagging consisting of six morphologically rich
languages and different domains. In extensive experiments, we find that representations similar
to Brown clusters perform best for part-of-speech tagging and that word representations based
on linguistic morphological analyzers perform best for morphological tagging.

6.1 Introduction
The importance of morphological tagging as part of the computational linguistics processing
pipeline motivated us to conduct the research reported in this chapter. The specific setting that
we address is increasingly recognized as the setting in which most practical NLP takes place:
we look at scenarios with considerable differences between the training data and the application
data, i.e., between the data that the tagger is trained on and the data that it is applied to. This
type of scenario is frequent because of the great diversity and variability of natural language and
because of the high cost of annotation – which makes it impossible to create large training sets
for each new domain. For this reason, we address morphological tagging in a setting in which
training and application data differ.

118 6. Morphological Tagging with Word Representations

The most common approach to this setting is domain adaptation. Domain adaptation has been
demonstrated to have good performance in scenarios with differently distributed training/test
data. However, it has two disadvantages. First, it requires the availability of data from the target
domain. Second, we need to do some extra work in domain adaptation – consisting of taking
target domain data and using it to adapt our NLP system to the target domain – and we end up
with a number of different versions of our NLP system, each an adaptation for a different domain.
The extra work required and the proliferation of different versions increase the possibility of error
and generally increase the complexity of deploying NLP technology.

Similar to other recent work (Zhang and Wang, 2009), we therefore take an approach that is
different from domain adaptation. We build a system that is robust across domains without any
modification. As a result, no extra work is required when the system is applied to a new domain:
there is only one system and we can use it for all domains.

The key to making NLP components robust across domains is the use of powerful domain-
independent representations for words. One of the main contributions of this chapter is that we
compare the performance of the most important representations that can be used for this purpose.
We find that two of these are best suited for robust tagging. MarLiN (Martin et al., 1998) clusters
– a derivative of Brown clusters – perform best for POS tagging. MarLiN clusters are also an
order of magnitude more efficient to induce than the original Brown clusters. We provide an
open source implementation of MarLiN clustering as part of this the research conducted for this
dissertation. Our implementation is discussed in Appendix B.

Linguistic Morphological Analyzers (MAs) produce the best results in our experiments on
morphological tagging. Our initial expectation was that differences between domains and lack
of coverage would put resources manually compiled by linguists at a disadvantage in robust
tagging when compared to learning algorithms that are run on very large text corpora. However,
our results clearly show that representations produced by MAs are the best representations to use
for robust morphological tagging.

The motivation for our work is that both morphological tagging and the “robust” applica-
tion setting are important areas of research in NLP. To support this research, we created an
extensive evaluation set for six languages. This involved identifying morphologically rich lan-
guages in which usable data sets with different distributional properties were available, designing
mappings between different tagsets, organizing a manual annotation effort for one of the six lan-
guages and preparing large “general” (not domain-specific) data sets for unsupervised learning
of word representations. The preparation and publication of this test suite is in itself a significant
contribution.

The remainder of this chapter is structured as follows. Section 6.2 discusses related work.
Section 6.3 presents the representations we tested. Section 6.4 describes data sets and the an-
notation and conversion efforts required to create the in-domain (ID) and out-of-domain (OOD)
data sets. In Section 6.5, we describe the experiments and discuss our findings. In Section 6.6,
we provide an analysis of our results. Section 6.7 summarizes our findings and contributions.

6.2 Related Work 119

6.2 Related Work

Semi-supervised learning

Semi-supervised learning attempts to increase the accuracy of a machine learning system by
using additional unlabeled data. Word representations, especially Brown clusters, have been ex-
tensively used for named entity recognition (NER) (Miller et al., 2004; Ratinov and Roth, 2009;
Turian et al., 2010), parsing (Koo et al., 2008; Suzuki et al., 2009) and POS tagging (Collobert
and Weston, 2008; Huang et al., 2009, 2014; Manning, 2011; Täckström et al., 2012; Owoputi
et al., 2013; Schnabel and Schütze, 2014). In these papers, word representations were shown
to yield consistent improvements and to often outperform traditional semi-supervised methods
such as self-training. Semi-supervised learning by means of word representations has also been
applied to French and Spanish morphological tagging (Chrupala, 2011).

Our work is similar to standard semi-supervised learning in training, but it also evaluates the
methods on data sets that are from domains different from the domains of labeled and unlabeled
training data. In contrast to earlier work on morphological tagging, we study a number of mor-
phologically more complex and diverse languages. We also compare learned representations to
representations obtained from MAs.

Domain Adaptation

Domain adaptation (DA) attempts to adapt a model trained on a source domain to a target do-
main. DA can be broadly divided into supervised and unsupervised approaches depending on
whether labeled target domain data is available or not. Among unsupervised approaches to DA,
representation learning (Ando and Zhang, 2005; Blitzer et al., 2006) uses the unlabeled target
domain data to induce a structure that is suitable for transferring information from the labeled
source domain to the target domain. Similar to representation learning for DA, we attempt to in-
clude word representations into the model that move feature weights from more domain specific
features (word forms) to more general features (shared by multiple word forms) and evaluate the
models by looking at their OOD performance. However, we induce the representation from a
general domain in an attempt to obtain a model that has robust high accuracy across domains,
including the source domain and target domains for which neither labeled nor unlabeled training
data are available.

6.3 Representations

We investigate the distributional representations discussed in Chapter 2 with respect to their
utility for POS tagging and MORPH tagging. (i) count vectors reduced by a Singular Value
Decomposition (SVD), (ii) word clusters induced using the likelihood of a class-based language
model, (iii) distributed embeddings trained using a neural network and (iv) accumulated tag
counts, a task-specific representation obtained from an automatically tagged corpus.

120 6. Morphological Tagging with Word Representations

6.4 Data Preparation

Our test suite consists of data sets for six different languages: Czech (cs), English (en), German
(de), Hungarian (hu), Spanish (es) and Latin (la). Czech, German, Hungarian and Latin are mor-
phologically rich. We chose these languages because they represent different families: Germanic
(English, German), Romance (Latin, Spanish), Slavic (Czech) and Finno-Ugric (Hungarian) and
different degrees of morphological complexity and syncretism. For example, English and Span-
ish rarely mark case while the other languages do; and as an agglutinative language, Hungarian
features a low amount of possible readings for a word form while languages like German can
have more than 40 different readings for a word form.

An additional criterion was to have a sufficient amount of labeled OOD data. The data sets
also feature an interesting selection of domain differences. For example, for Latin we have texts
from different epochs while the English data consist of canonical and non-canonical text.

6.4.1 Labeled Data

This section describes the annotation and conversion we performed to create consistent ID and
OOD data sets. We first discuss Hungarian, English and Latin where no conversion was required
as the data was already annotated in a consistent way.

Hungarian

For Hungarian we use the Szeged Dependency Treebank (Vincze et al., 2010), which consists of
a number of different domains. We use the part that was used in the SPMRL 2013 shared task
(Seddah et al., 2013) for training and as ID data (news-wire) and an excerpt from the novel 1984
and a Windows 2000 manual as OOD data.

Latin

For Latin we use the PROIEL treebank (Haug and Jøhndal, 2008). It consists of data from the
Vulgate (bible text from≈ 380 AD), Commentarii de Bello Gallico (Caesar’s notes on the Gallic
War from ≈ 50 BC), Letters from Cicero to his friend Atticus (≈ 50 BC) and an account of the
Pilgrimage of Aetheria (≈ 380 AD). We use the biggest text source (Vulgate) as ID data and the
remainder as OOD data.

English

For English we use the SANCL shared task data (Petrov and McDonald, 2012), which consists
of OntoNotes 4.0 as ID data and five OOD domains from the Google Web treebank: Yahoo!
Answers, weblogs, news groups, business reviews and emails.

6.4 Data Preparation 121

Czech

For Czech we use the part of the Prague Dependency Treebank (PDT) (Böhmová et al., 2003)
that was used in the CoNLL 2009 shared tasks (Hajič et al., 2009) for training and as ID data.
We use the Czech part of the Multext East (MTE) corpus (Erjavec, 2010) as OOD data. MTE
consists of translations of the novel 1984 that have been annotated morphologically. PDT and
MTE have been annotated using two different guidelines that without further annotation effort
could only be merged by reducing them to a common subset. Specifically we removed features
such as sub POS tags as well as markers for (in)animacy. The PDT features a number of tags
that are ambiguous and could not always be resolved. The gender feature Q for example can
mean feminine or neuter. If we could not disambiguate such a tag, we removed it; this results
in morphological tags that are not present in the MTE corpus and a relatively high number of
unseen tags. We give a more detailed discription of the conversion procedure in Appendix C.
Our conversion code has been made available.1

Spanish

For Spanish we use the part of the AnCora corpus (Taulé et al., 2008) of CoNLL 2009 and
the IULA treebank (Marimon et al., 2012), which consists of five domains: law, economics,
medicine, computer science and environment. We use the AnCora corpus as ID data set and
IULA as OOD data set. The two treebanks have been annotated using the same annotation
scheme, but slightly different guidelines. Similar to Czech we merged the data sets by deleting
features that could not be merged or were not present in one of the treebanks. In the AnCora
corpus for example proper nouns are explicitly annotated with common gender and invariable
number, while in IULA proper nouns do not have morphological features. As for Czech, we give
a more detailed description of the conversion procedure in Appendix D. Our conversion code has
been made available.1

German

For German we use the Tiger treebank (Brants et al., 2002) in the same split as Müller et al.
(2013) as ID data and the Smultron corpus (Volk et al., 2010) as OOD data. Smultron con-
sists of four parts: a description of Alpine hiking routes, a DVD manual, an excerpt of Sophie’s
World and economics texts. It has been annotated with POS and syntax, but not with morpho-
logical features. We annotated Smultron following the Tiger guidelines. The annotation process
was similar to Marimon et al. (2012) in that the data sets where automatically tagged with the
MORPH tagger MarMoT (Müller et al., 2013) and then manually corrected by two annotators.
The baseline tagger was relatively strong as we could include features based on gold lemma,
part-of-speech and syntax and the morphological analyzer SMOR (Schmid et al., 2004). The
syntactic features were similar to Seeker and Kuhn (2013). The annotators were trained on the
task for several weeks by annotating parts of the Tiger corpus and evaluating and discussing their
annotations. The agreement of the annotators was 96.28%. For calculating the κ agreement, we

1http://cistern.cis.lmu.de/marmot/naacl2015/

http://cistern.cis.lmu.de/marmot/naacl2015/

122 6. Morphological Tagging with Word Representations

assume that random agreement occurs when both annotators agree with the reading proposed
by the tagger. We can now estimate the probability of random agreement by multiplying the
individual estimated probabilities of changing the proposed tagging. This yields a random agree-
ment probability of 89.65% and a κ of 0.64. As most of the differences between the annotators
were cases where only one of the annotators had corrected an obvious error that the other had
overlooked, the differences were resolved by the annotators themselves. The annotated data set
haven been released to the public.1

Statistics

We used the provided segmentation if available and otherwise split ID data 8/1/1 into training,
development and test sets and OOD data 1/1 into development and test sets if not mentioned
otherwise. We thus have a classical setup of in-domain news paper text versus prose, medical,
law, economic or technical texts for Czech, German, Spanish and Hungarian. For English we
have canonical versus non-canonical data and for Latin data of different epochs (ca. 400 AD vs
50 BC). Additionally, for German one of the test domains is written in Swiss German. Table 6.2
summarizes basic statistics of the labeled data sets. Table 6.1 shows the fraction of out-of-
vocabulary (OOV) tokens (word), unknown tags (tag) and of known tokens that occur with a tag
they have not been seen with in the training set (word-tag).

word tag word-tag
ID OOD ID OOD ID OOD

m
or

ph

Czech 8.58 13.02 0.01 5.19 2.79 16.18
English 2.72 9.50 0.00 0.40 0.61 2.47
German 7.64 13.45 0.01 0.04 3.84 5.89
Hungarian 19.94 26.98 0.09 0.29 0.42 2.40
Latin 17.59 36.59 0.28 0.88 2.45 4.33
Spanish 6.47 13.44 0.01 0.58 0.37 1.91

Table 6.1: Rates of unknown words, tags and word-tag combinations in ID and OOD develop-
ment sets.

We see that Hungarian and Latin are the languages with the highest OOV rates. Hungarian
has a productive agglutinative morphology while the high number of Latin OOVs can be ex-
plained by the small size of the training data. Czech features the highest unknown tag rate as
well as the highest unseen word-tag rate. This can be explained by the limits of the conversion
procedure we discussed above, e.g., ambiguous features such as Q.

6.4 Data Preparation 123

POS MORPH train ID OOD
Czech 12 450 652,544 87,988 27,350
English 48 48 731,678 32,092 53,156
German 54 681 719,530 76,704 24,622
Hungarian 22 673 170,141 29,989 83,087
Latin 23 749 59,992 9,475 41,432
Spanish 12 288 427,442 50,368 56,638

Table 6.2: Labeled data set statistics. Number of part of speech tags (POS) and morphological
tags (MORPH); number of tokens in training set (train), ID development set and OOD develop-
ment set.

6.4.2 Unlabeled Data

As unlabeled data we use Wikipedia dumps from 2014 for all languages except for Latin for
which we use the Patrologia Latina, a collection of clerical texts from ca. 100 AD to 1200 AD
from Corpus Corporum (Roelli, 2014). We do not use the Latin version of Wikipedia because
it is written by enthusiasts, not by native speakers, and contains many errors. We preprocessed
the Wikipedia dumps with Wikipedia Extractor (Attardi and Fuschetto, 2013) and performed
sentence boundary detection using the NLTK (Bird et al., 2009) implementation of Punkt (Kiss
and Strunk, 2006).

Tool Citation
Czech CZECHTOK Kveton (2013)
English STANFORD TOKENIZER Manning et al. (2014)
German Schmid (2000)
Hungarian MAGYARLANC Zsibrita et al. (2013)
Spanish FREELING Padró and Stanilovsky (2012)

Table 6.3: Tokenizers used for the different languages. For Latin we used the in-house imple-
mentation discusses in the text.

Tokenization was performed using the tools discussed in Table 6.3 For Latin, we removed
punctuation because the PROIEL treebank does not contain punctuation. We also split off the
clitics “ne”, “que” and “ve” if the resulting token was accepted by LATMOR (Springmann et al.,
2014). Following common practice, we normalized the text by replacing digits with 0s.

124 6. Morphological Tagging with Word Representations

articles tokens types
Czech 270,625 93,515,197 1,607,183

German 1,568,644 682,311,227 7,838,705
English 4,335,341 1,957,524,862 7,174,661
Spanish 1,004,776 432,596,475 6,033,105

Hungarian 245,558 95,305,736 2,776,681
Latin 5,316 88,636,268 713,162

Table 6.4: Number of articles, tokens and types in the unlabeled data sets.

Table 6.4 gives statistics for the unlabeled data sets.2 Every language has at least 80 million
tokens. The Latin vocabulary size is small because clerical texts cover fewer topics than an
encyclopedia like Wikipedia.

Tool Citation
Czech FREE morphology Hajič (2001)
English FREELING Padró and Stanilovsky (2012)
German SMOR Schmid et al. (2004)
Hungarian MAGYARLANC Zsibrita et al. (2013)
Latin LATMOR Springmann et al. (2014)
Spanish FREELING Padró and Stanilovsky (2012)

Table 6.5: Morphological analyzers used for the different languages.

We also extract the morphological dictionaries using the morphological analyzers discussed
in Table 6.5. We extract one feature for each cluster id or MA reading of the current word
form. We also experimented with cluster indexes of neighboring uni/bigrams, but obtained no
consistent improvement. For the dense embeddings we analogously extract the vector of the
current word form.

ID OOD
ALL OOV ALL OOV

Czech 4.7 42.8 6.5 45.6
English 0.9 23.8 2.1 22.7
German 7.7 55.0 8.4 50.6
Hungarian 9.9 37.6 11.3 38.0
Latin 2.0 8.0 6.8 17.6
Spanish 5.5 37.5 5.4 29.5

Table 6.6: Percentage of tokens not covered by the representation vocabulary.

In our experiments, we extract representations for the 250,000 most frequent word types.
This vocabulary size is comparable to other work; e.g., Turian et al. (2010) use 269,000 word

2For Latin 105,997,019 tokens with punctuation included

6.5 Experiments 125

types. Table 6.6 shows that these vocabularies of 250,000 have a low fraction of uncovered
tokens for English and Latin. For the other languages, this fraction rises to > 4%. The OOV
numbers are most important as they tell us for how many of the probably hard-to-tag OOVs we
will not be able to rely on the induced word representations.

MarMoT (1) MarMoT (2) MarMoT (3) Morfette SVMTool
ID OOD ID OOD ID OOD ID OOD ID OOD

m
or

ph

cs 93.27 77.83 93.89 78.52 93.86 78.55 91.48 76.56 91.06 75.41
de 88.90 82.74 90.26 84.19 90.54∗ 84.30 85.89 80.28 85.98 78.08
es 98.21 93.24 98.22 93.62 98.16 93.42 97.95 93.97∗ 97.96 91.36
hu 96.11 89.78 96.07 89.83 95.92 89.70 95.47 89.18 94.72 88.44
la 86.09 67.90∗ 86.44 67.47 86.47 67.40 83.68 65.06 84.09 65.65

Table 6.7: Baseline experiments comparing MarMoT models of different orders with Morfette
and SVMTool. Numbers denote average accuracies on ID and OOD development sets on the
full morphological tagging task. A result significantly better than the other four ID (resp. OOD)
results in its row is marked with ∗.

6.5 Experiments

For all our experiments we use MarMoT, the CRF-based tagger introduced in the last chap-
ter. We already showed MarMoT to be a competitive POS and morphological tagger across
six languages. In order to make sure that it is also robust in an OOD setup we compare it to
the two popular taggers SVMTool (Giménez and Màrquez, 2004) and Morfette (Chrupala et al.,
2008). As MarMoT uses stochastic gradient descent and thus produces different results for dif-
ferent training runs we always report the average of 5 independent runs. The OOD numbers are
macro-averages over the OOD data sets of a language. The results are summarized in Table 6.7.
Throughout this chapter we use the approximate randomization test (Yeh, 2000) to establish sig-
nificance. To this end we compare the output of the medians of the five independent models. We
regard p-values < 0.05 as significant. The tables in this chapter are based on the development
sets; the only exception to this is Table 6.11, which is based on the test set. MarMoT outper-
forms SVMTool and Morfette on every language and setup (ID/ OOD) except for the Spanish
OOD data set. For Czech, German and Latin the improvements over the best baseline are > 1.
Different orders of MarMoT behave as expected: higher-order models (order > 1) outperform
first-order models. The only exception to this is Latin. This suggests a drastic difference of the
tag transition probabilities between the Latin ID and OOD data sets.

Given the results in Table 6.7 and for the sake of simplicity we use a 2nd order MarMoT
model in all subsequent experiments.

126 6. Morphological Tagging with Word Representations

Brown flat Brown path MarLiN mkcls
ID OOD ID OOD ID OOD ID OOD

po
s

cs 99.19 97.25 99.18 97.21 99.19 97.26 99.21 97.26
de 98.08 93.42 98.07 93.47 98.10 93.44 98.11 93.64∗
en 96.99 91.67 97.02 91.71 97.01 91.71 97.03 91.86∗
es 98.84 97.91 98.84 97.97 98.87 97.97 98.84 97.90
hu 97.95 93.40 97.89 93.39 97.98 93.36 97.99 93.42
la 96.78 86.49 96.62 86.60 96.91 87.24 96.95 87.19

m
or

ph

cs 94.20 78.95 94.23 79.01 94.35 79.14 94.32 79.11
de 90.71 85.39 90.75 85.44 90.78 85.58 90.68 85.47
es 98.47 95.08 98.47 95.12 98.48 95.15 98.48 95.13
hu 96.60 90.57 96.52 90.54 96.60 90.64 96.61 90.66
la 87.53 71.69 87.44 71.60 87.87 72.08 87.67 71.88

Table 6.8: Tagging results for LM-based models.

6.5.1 Language Model-Based Clustering

We first compare different implementations of LM-based clustering. The implementation of
Brown clustering by Liang (2005) is most commonly used in the literature. Its hierarchical
binary structure can be used to extract clusterings of varying granularity by selecting different
prefixes of the path from the root to a specific word form. Following other work (Ratinov and
Roth, 2009; Turian et al., 2010), we induce 1000 clusters and select path lengths 4, 6, 10 and 20.
We call this representation Brown path.

We compare these Brown clusterings to mkcls (Och, 1999) and MarLiN. We also tested the
implementation of Clark (2003), but it only supports ASCII and is considerably slower than
the other implementations. mkcls implements a similar training algorithm as MarLiN, but uses
simulated annealing instead of greedy maximization of the objective.

These implementations just induce flat clusterings of a certain size; we thus run them for
cluster sizes 100, 200, 500 and 1000 to also obtain cluster ids of different sizes. The cluster sizes
are chosen to roughly resemble the granularity obtained in Brown path. We use these cluster
sizes for all flat clusterings and call the corresponding models Brown flat, mkcls and MarLiN.

The runtime of the Brown algorithm depends quadratically on the number of clusters while
mkcls and MarLiN have linear complexity. This is reflected in the training times where for
German the Brown algorithm takes ≈ 5000 min, mkcls ≈ 2000 min and MarLiN ≈ 500 min.

For these experiments as well as for other nominal features we just extract features from the
current word form. We also experimented with the cluster indexes of neighboring words and
bigrams, but could not obtain consistent improvements.

Table 6.8 shows that the absolute differences between systems are small, but overall Mar-
LiN and mkcls are better (Brown path reaches the same performance as MarLiN in one case:
pos/es/OOD). We conclude that systems based on the algorithm of Martin et al. (1998) are
slightly more accurate for tagging and are several times faster than the more frequently used

6.5 Experiments 127

version of Brown et al. (1992a). We thus use MarLiN for the remainder of this chapter.

6.5.2 Neural Network Representations

We compare MarLiN with the implementation of CW by Al-Rfou et al. (2013). They extracted
64-dimensional representations for only the most frequent 100,000 word forms. To make the
comparison fair, we use the intersection of our and their representation vocabularies. We also
extract the representations for Latin from Wikipedia, not from Corpus Corporum as in the rest of
the chapter.

We thus compare representations for≈ 90,000 word forms all obtained from similar, but still
slightly different Wikipedia dumps.

Baseline MarLiN CW
ID OOD ID OOD ID OOD

po
s

cs 99.00 96.80 99.16∗ 97.06 99.12 97.00
de 97.87 92.21 98.03 93.35∗ 98.03 93.02
en 96.92 91.12 97.05 91.72 97.00 91.86∗
es 98.62 96.70 98.79 97.82∗ 98.80 97.31
hu 97.49 92.79 97.94 93.30 97.88 93.40
la 95.80 81.92 96.35∗ 85.52∗ 95.88 84.50

m
or

ph

cs 93.89 78.52 94.23∗ 78.91 94.10 78.80
de 90.26 84.19 90.54 85.08 90.59 85.21
es 98.22 93.62 98.44 94.97∗ 98.44 94.32
hu 96.07 89.83 96.47 90.60 96.48 90.95∗
la 86.44 67.47 86.95 70.30∗ 86.76 69.32

Table 6.9: Tagging results for the baseline, MarLiN and CW.

The results in Table 6.9 show that the MarLiN result is best in 15 out of 22 cases and signifi-
cantly better in ten cases. CW is best in nine out of 22 cases and significantly better in four cases.
We conclude that LM-based representations are more suited for tagging as they can be induced
faster, are smaller and give better results.

6.5.3 SVD and ATC Representations

For the SVD-based representation we use feature ranks out of {500, 1000} and dimensions out
of {50, 100, 200, 500}. We found that l1-normalizing the vectors before and after the SVD
improved results slightly. The dense vectors are used directly as real valued features. For the
accumulated tag counts (ATC) we annotate the data with our baseline model and extract word-
tag probabilities. The probabilities are then used as sparse real-valued features.

128 6. Morphological Tagging with Word Representations

Baseline ATC MarLiN MA SVD
ID OOD ID OOD ID OOD ID OOD ID OOD

po
s

cs 99.00 96.80 99.11 97.03 99.19 97.26 99.18 97.25 99.11 97.09
de 97.87 92.21 98.00 92.92 98.10 93.44∗ 98.00 92.87 98.09 92.88
en 96.92 91.12 96.97 91.47 97.01 91.71 96.99 91.57 97.00 91.75
es 98.62 96.70 98.79 97.09 98.87 97.97 98.87 97.89 98.80 97.16
hu 97.49 92.79 97.84 93.15 97.98 93.36 98.12∗ 93.77∗ 97.86 93.30
la 95.80 81.92 96.17 83.40 96.91 87.24∗ 96.81 86.31 96.36 85.01

m
or

ph

cs 93.89 78.52 94.16 78.75 94.35 79.14 94.48∗ 79.41∗ 94.14 78.94
de 90.26 84.19 90.56 84.78 90.78 85.58 90.75 85.75 90.69 85.15
es 98.22 93.62 98.38 93.92 98.48 95.15 98.56∗ 95.43∗ 98.40 94.18
hu 96.07 89.83 96.25 90.07 96.60 90.64 96.83∗ 91.14∗ 96.46 90.50
la 86.44 67.47 86.96 68.61 87.87 72.08 88.40∗ 73.23∗ 87.45 70.81

Table 6.10: Tagging results for the baseline and four different representations.

Table 6.10 shows that all representations outperform the baseline. Improvements are biggest
for Latin. Overall SVD outperforms ATC and is outperformed by MarLiN and MA. MarLiN
gives the best representations for POS tagging while MA outperforms MarLiN in MORPH tag-
ging. Table 6.11 shows that the findings for the baseline, MarLiN and MA also hold for the test
set.

Baseline MarLiN MA
ID OOD ID OOD ID OOD

po
s

cs 98.88 96.43 99.11∗ 96.94 99.06 96.95
de 97.32 91.10 97.73∗ 92.00∗ 97.60 91.49
en 97.36 89.81 97.58∗ 90.65∗ 97.47 90.51
es 98.66 97.94 98.94∗ 98.33 98.87 98.38
hu 96.84 92.11 97.08 92.95 97.46∗ 93.25∗
la 93.02 81.35 95.20 87.58∗ 95.11 86.45

m
or

ph

cs 93.93 77.50 94.33 78.12 94.50∗ 78.37∗
de 88.41 82.78 89.18 83.91 89.32∗ 84.09
es 98.30 95.65 98.53 95.92 98.54 96.33∗
hu 94.82 88.82 95.46 89.98 95.85∗ 90.46∗
la 82.09 65.59 84.67 71.25 85.91∗ 72.42∗

Table 6.11: Tagging results for the baseline, MarLiN and MA on the test set.

6.6 Analysis 129

6.6 Analysis

We now analyze why MarLiN and MA have better performance than the baseline. First we
compare the improvements in absolute error rate over the baseline by grouping word forms by
their training set frequency f . Table 6.12 shows that most of the improvement comes from OOV
words.

f = 0 0 < f < 10 f >= 10

m
or

ph

cs MarLiN 0.29 0.22 0.11
MA 0.37 0.35 0.16

de MarLiN 1.02 0.17 0.19
MA 0.85 0.29 0.42

es MarLiN 1.36 0.15 0.02
MA 1.50 0.27 0.04

hu MarLiN 0.62 0.18 0.00
MA 1.07 0.20 0.03

la MarLiN 3.76 0.80 0.06
MA 4.98 0.69 0.09

Table 6.12: Improvement compared to the baseline for different frequency ranges of words on
OOD.

Rare words show a smaller, but still important contribution while the contribution of frequent
words can be almost neglected for four languages. An interesting exception is German where
frequent words contribute more to the error reduction than rare words. This could be caused by
syncretisms such as in plural noun phrases where the gender is not marked in determiner and ad-
jective and can only be derived from the head noun; e.g., the adjectives in “schwere Schulfächer”
‘difficult school subjects’ and “verdächtige Personen” ‘suspect persons’ are unmarked for gender
and the correct genders (neuter vs. feminine) cannot be inferred from distributional information
or suffixes for the nouns (although gender is easy to infer distributionally for the singular forms
of the nouns).

In Table 6.13, we list the morphological features with the highest improvements in absolute
error rate.

130 6. Morphological Tagging with Word Representations

m
or

ph

cs MarLiN gen0.70 cas 0.41 pos 0.35
MA gen0.85 cas 0.51 pos 0.31

de MarLiN gen1.23 pos 1.14 num0.62
MA gen1.37 pos 0.63 num0.59

es MarLiN sub 1.49 gen1.21 pos 1.07
MA sub 1.34 gen1.24 pos 1.10

hu MarLiN cas 0.71 sub 0.66 pos 0.52
MA cas 0.88 sub 0.84 pos 0.76

la MarLiN pos 5.19 cas 3.46 gen 3.25
MA pos 4.68 gen3.85 cas 3.01

Table 6.13: Features with highest absolute improvement in error rate: Gender (gen), Case (case),
POS (pos), Sub-POS (sub) and Number (num).

The most important features are pos (POS), sub (a finer division of POS, e.g., nouns are
split into proper nouns and common nouns), gen (gender), cas (case) and num (number). For all
languages pos and – if part of the annotation – sub are among the three features with the highest
improvements. Gender is also always among the three features with the highest improvements
for the four languages that have gender (es, de, la, cs). We just discussed an example for German
where gender could not be derived from context or inflectional suffixes. Other languages also
have word forms that do not mark gender, e.g., in Spanish masculine “ave” ‘bird’ versus feminine
“llave” ‘key’ and in Latin masculine “mons” ‘mountain’ versus feminine “pars” ‘part.’ The
gender can, however, easily be derived if the word representation encodes whether a word form
has been seen with a specific determiner or adjective on its right or left.

Lastly, we use Jaccard similarity to compare the sets of gold and predicted morphological
features.

Jaccard(U, V) = |U ∩ V |/|U ∪ V | (6.1)

Jaccard can be interpreted as a soft variant of accuracy: If the two tags are identical it yields
1 and otherwise it corresponds to the number of correctly predicted features divided by the size
of the union of gold and predicted features.

m
or

ph cs de es hu la
accuracy 79.41 85.72 95.43 91.14 73.23
Jaccard 89.89 90.71 96.77 93.52 83.68

Table 6.14: Comparison between a Jaccard-based and accuracy-based evaluation.

Table Table 6.14 demonstrates that the evaluation measure we have used throughout this
chapter – a tag counts as completely wrong if a single feature was misidentified even though
all others are correct – is conservative. On a feature-by-feature basis accuracy would be much
higher. The difference is largest for Czech and Latin.

6.7 Conclusion 131

6.7 Conclusion
We have presented a test suite for morphological tagging consisting of in-domain (ID) and out-
of-domain (OOD) data sets for six languages: Czech, English, German, Hungarian, Latin and
Spanish. We converted some of the data sets to obtain a reasonably consistent annotation and
manually annotated the German part of the Smultron treebank.

We surveyed four different word representations: SVD-reduced count vectors, language
model-based clusters, accumulated tag counts and distributed word embeddings based on Col-
lobert and Weston (2008). We found that the LM-based clusters outperformed the other repre-
sentations across POS and MORPH tagging, ID and OOD data sets and all languages. We also
showed that our implementation MarLiN of Martin et al. (1998) is an order-of-magnitude more
efficient and performs slightly better than the implementation by Liang (2005).

We also compared the learned representations to manually created Morphological Analyzers
(MAs). We found that MarLiN outperforms MAs in POS tagging, but that it is substantially
worse in morphological tagging. In our analysis of the results, we showed that both MarLiN and
MAs decrease the error most for out-of-vocabulary words and for the features POS and gender.

132 6. Morphological Tagging with Word Representations

Chapter 7

Conclusion

In this thesis we have presented a number of approaches to improve the handling of morpholog-
ically rich languages (MRLs).

In Chapter 3 we have investigated a novel morphological language model, an interpolation
of a Kneser-Ney (KN) model with a class-based language model whose classes are defined by
morphology and shape features. The model achieves consistent reductions in perplexity for all
languages represented in the Europarl corpus, ranging from 3% to 11%, when compared to a KN
model. We found perplexity reductions across all 21 languages for histories ending with four dif-
ferent types of word shapes: alphabetical words, special characters, and numbers. The model’ ’s
hyperparamemters are θ, a threshold that determines for which frequencies words are given their
own class and φ, the number of suffixes used to determine class membership; and morphological
segmentation. Looking at their sensitivity we found that θ has a considerable influence on the
performance of the model and that optimal values vary from language to language. This param-
eter should be tuned when the model is used in practice. In contrast, the number of suffixes and
the morphological segmentation method only had a small effect on perplexity reductions. This
is a surprising result since it means that simple identification of suffixes by frequency and choos-
ing a fixed number of suffixes φ across languages is sufficient for getting most of the perplexity
reduction that is possible.

We think that the best way to further improve the accuracy of our model would be to replace
the simple linear interpolation by a more sophisticated approach. One possibility would be to
interpolate the morphological model with the lower-order KN models. This would allow the
model to put more emphasis on the KN model for frequent n-grams and more emphasis on the
morphological model for rare or unseen n-grams.

In Chapter 4 we investigate the utility of Hidden Markov models with latent annotations
(HMM-LAs) for dependency parsing. We have shown that HMM-LAs are not only a method to
increase the performance of generative taggers, but also that the generated latent annotations are
linguistically interpretable and can be used to improve dependency parsing. Our best systems
improve an English parser from a LAS of 90.34 to 90.57 and a German parser without morpho-
logical features from 87.92 to 88.24 and with morphological features from 88.35 to 88.51. Our
analysis of the parsing results shows that the major reasons for the improvements are: the separa-
tion of POS tags into more and less trustworthy subtags, the creation of POS subtags with higher

134 7. Conclusion

correlation to certain dependency labels and for German a correlation of tags and morphological
features such as case.

While the procedure works in general, there are a couple of things that could be improved.
One problem is that not every split made by the HMM-LA is actually useful for the parser. We
pointed out lexicalization as a type of split that increases HMM accuracy, but does not help an
already lexicalized parser. The question is whether one can identify such useless splits automat-
ically and thereby create higher-quality POS tagsets. One way might be to use dependency tree
information in the merge phase. It would also be interesting to use the hierarchy induced by
the split-merge training to provide tags of different granularity. In a preliminary experiment we
found that this turns out to be difficult as the hierarchy does not stay consistent over training.
There is no guarantee that a tag NN00 is more similar to NN01 (both subtags of NN0) than to, for
example, NN10. We think that smoothing that couples parents and children in the tag hierarchy
(like the WB smoothing we proposed) might be one way to force the training into a consistent
hierarchy. The challenge is to find a way to keep the hierarchy consistent without making the
tags less specific or at least to find the right balance.

In Chapter 5 we presented a fast and accurate approach to morphological tagging. Our
pruned CRF model is based on coarse-to-fine decoding and stochastic gradient descent training
with early updating. We have shown that for moderate tagset sizes of ≈ 50, our implementation
MarMoT gives significant speed-ups over a standard CRF with negligible losses in accuracy.
Furthermore, we have shown that training and tagging for approximated trigram and fourgram
models is still faster than standard 1st-order tagging, but yields significant improvements in ac-
curacy. In oracle experiments with morphological tagsets we demonstrated that the losses due to
our approximation depend on the word level ambiguity of the respective language and are mod-
erate (≤ 0.14) except for German where we observed a loss of 0.37. We also showed that higher
order tagging – which is prohibitive for standard CRF implementations – yields significant im-
provements over unpruned 1st-order models. Analogous to the oracle experiments we observed
big improvements for languages with a high level of POS+MORPH ambiguity such as German
and smaller improvements for languages with less ambiguity such as Hungarian and Spanish.

In parsing experiments on the SPMRL-ST 2013 data sets we showed that the model can be
used to improve the results of a state-of-the art parser for all languages except French.

Possible future work would include to extend the model to even larger tagsets, for example
by adding syntactic chunks as a third tagging level. Joint syntactic chunking and morphological
tagging could lead to improved accuracy. However, in preliminary experiments we found our
current training strategy with early updating to be insufficient for training models based on these
complex lattices. Another line of research could try to improve the tagging accuracy by integrat-
ing the selectional preferences of certain verbs. Sentences such as die Maus jagt die Katze ‘the
cat chases the mouse’ are ambiguous in German as the nominative and accusative case cannot be
read off the form or the feminine article die. In many cases this could be resolved by knowing
that cats are much more typical subjects of chase than mice.

In Chapter 6 we have presented a test suite for robust morphological tagging consisting
of in-domain (ID) and out-of-domain (OOD) data sets for six languages: Czech, English, Ger-
man, Hungarian, Latin and Spanish. We converted some of the data sets to obtain a reasonably
consistent annotation and manually annotated the German part of the Smultron treebank.

135

We surveyed four different word representations: SVD-reduced count vectors, language
model-based clusters, accumulated tag counts and distributed word embeddings based on Col-
lobert and Weston (2008). We found that the LM-based clusters outperformed the other repre-
sentations across POS and MORPH tagging, ID and OOD data sets and all languages. We also
showed that our implementation MarLiN of Martin et al. (1998) is an order-of-magnitude more
efficient and performs slightly better than the implementation by Liang (2005).

We also compared the learned representations to manually created Morphological Analyzers
(MAs). We found that MarLiN outperforms MAs in POS tagging, but that it is substantially
worse in morphological tagging. In our analysis of the results, we showed that both MarLiN and
MAs decrease the error most for out-of-vocabulary words and for the features POS and gender.

In future work, one should try to combine the morphological resources and unlabeled data
sets to obtain better word representations. This could for example be done by weighting the
output of the finite-state morphologies. This could be helpful as many word forms have readings
that are technically correct but very unlikely.

136 7. Conclusion

Appendix A

MarMoT Implementation and Usage

In this appendix we explain the important implementation details of our CRF tagger MarMoT. All
the shown listings are simplified versions of the MarMoT source code. The latest version of the
MarMoT and its documentation can be found at http://cistern.cis.lmu.de/marmot.

A.1 Feature Extraction
Many papers on structure prediction discuss how decoding can be improved, because it usually
has a super-linear time complexity. However, in practice feature extraction seems to be the most
time consuming part of decoding. In MarMoT we use an implementation of feature extraction
that is similar to the implementation in the mate-tools parser by Bohnet (2010).1 The imple-
mentation aims to reduce the cost of creating concatenated features by first mapping all atomic
features to indexes, this is done by a simple hash-based symbol table. To illustrate the imple-
mentation we focus on the extraction of word form and suffix features. In MarMoT, words are
represented by a class Word, that stores the string of the word form and the corresponding form
and character indexes:

1 public class Word implements Token {
2 private String word_form_;
3 private int word_index_;
4 private short[] char_indexes_;
5
6 public String getWordForm();
7 public void setWordIndex(int word_index);
8 public int getWordFormIndex();
9 public void setCharIndexes(short[] char_indexes);

10 public short[] getCharIndexes();
11 }

1https://code.google.com/p/mate-tools/

http://cistern.cis.lmu.de/marmot
https://code.google.com/p/mate-tools/

138 A. MarMoT Implementation and Usage

The field word_form is set during the construction of a new Word object, while the index
fields get set during the first step of the feature extraction. This first step is handled by the method
addIndexes which uses two symbol tables to store the string and character values. We do not
give a listing for the SymbolTable as it only has one important method toIndex that maps a
symbol to it corresponding index. If the symbol is not present in the table it is either added to the
table (if the parameter insert is true) or a default index (usually -1) is returned. The parameter
insert is true during training and false during testing and tagging.

1 private SymbolTable<String> word_table_;
2
3 public void addIndexes(Word word, boolean insert) {
4 String word_form = word.getWordForm();
5 int word_index = word_table_.toIndex(word_form, -1, insert);
6 word.setWordIndex(word_index);
7 addCharIndexes(word, word_form, insert);
8 }

We see that addIndexes simply sets the index of the word form and calls a method that
similarly creates an array with the index of every character. During the second part of the feature
extraction the actual features are encoded into variable integer arrays of optimal size. In order
to uniquely encode a features we need to encode the unique identifier of the feature template
(e.g., 0 for the word form feature template), the order of the feature (state features such as the
word form receive 0, first-order transition features 1 and so on) and the value of the feature. We
assume that all these values are numbers from 0 to a known maximum and can thus calculate the
number of bits needed to encode them. The method append of the Encoder class then shifts
the necessary number of bits into the integer array. The integer array is then used to efficiently
calculate a unique index for the feature value (method getFeatureIndex).

1 public FeatureVector extractStateFeatures(Sequence sequence,
2 int token_index) {
3 Word word = (Word) sequence.get(token_index);
4 int form_index = token.getWordFormIndex();
5 MorphFeatureVector features = new MorphFeatureVector();
6 int fc = 0;
7 encoder_.append(0, order_bits_);
8 encoder_.append(fc, state_feature_bits_);
9 encoder_.append(form_index, word_bits_);

10 Feature feature = encoder_.getFeature()

A.2 Lattice Generation 139

11 features.add(getFeatureIndex(feature));
12 encoder_.reset();

The advantage of the extraction method becomes clear during the extraction of suffix (or
prefix) features where we otherwise would need to hash dozens of substrings. Note, that in the
following listing we do not call reset() after each index calculation and thus simply keep
adding feature values to the variable integer array:

1 encoder_.append(0, order_bits_);
2 encoder_.append(fc, state_feature_bits_);
3 for (int pos = 0; pos < chars.length; pos++) {
4 short c = chars[chars.length - pos - 1];
5 encoder_.append(c, char_bits_);
6 Feature feature = encoder_.getFeature()
7 features.add(getFeatureIndex());
8 }
9 encoder_.reset();

During decoding we need to concatenate feature and tag indexes in order to calculate the
positions in the 1-dimensional weight vector. This is done by first mapping the two indexes to a
unique 1-dimensional index and then hashing it in order to fit the capacity of the weights array:

1 double[] weights_;
2 int total_num_tags;
3
4 private int getIndex(int feature, int tag_index) {
5 int index = feature * total_num_tags_ + tag_index;
6 int capacity = weights_.length;
7 int h = hash(index, capacity);
8 return h;
9 }

A.2 Lattice Generation
In this section we describe the implementation of our pruned lattice generation algorithm. The
core of the algorithm is a method called getSumLattice. A sum lattice is a data structure
that allows for efficient calculation of marginal sums by using a form of the Forward-Backward

140 A. MarMoT Implementation and Usage

algorithm or in the case of a zero-order lattice by simply summing over the possible tag sums
at every position. In our implementation we increase the order and the level of the lattice. The
level is the complexity of the processed tags: In the morphological tagging case we just have
two levels, the part-of-speech and the morphological level. We now give a simplified version of
getSumLattice:

1 public SumLattice getSumLattice(Sequence sequence,
2 int max_order,
3 int max_level,
4 double threshold) {
5 List<List<State>> candidates = getStates(sequence);
6 SumLattice lattice = null;
7
8 for (int l = 0; l < max_level; l++) {
9 if (l > 0) {

10 candidates = lattice.getZeroOrderCandidates();
11 candidates = extendStates(candidates, sequence);
12 }
13 lattice = new ZeroOrderSumLattice(candidates, threshold);
14 for (int o = 0; o < order; o++) {
15 candidates = lattice.prune();
16 if (o > 0) {
17 candidates = increaseOrder(candidates, l);
18 }
19 addTransitions(candidates, l, o);
20 lattice = new SequenceSumLattice(candidates,
21 threshold,
22 o);
23 }
24 }
25 return lattice;
26 }

where we first use getStates to generate a complete set of tag candidates for every word in
the sentence. If one would like to use morphological analyzers as a hard constraint to filter the
readings of a token, this could be done by overloading this method. Then we iterate over the
different levels. At every level but the first level we call extendStates, which increases the
level of the candidates by adding all the possible combinations of the next level. In the case
of MarMoT, if the candidates for a certain word are verb and noun then extendStates will
create a list of all the possible morphological verb and noun readings. Then we create a simple
zero-order lattice and iterate over the model order. At each order we prune the candidate space.
For order > 1 we call increaseOrder, which merges the neighboring states in a lattice in

A.2 Lattice Generation 141

order to create a higher order lattice, this is not necessary when going from a zero-order to a
first-order lattice, as both lattices work on simple tag states. After that we add the transitions
between the new states in the lattice. This is done by a call to addTransitions, which adds
all the possible transitions between neighboring states. For higher order models, it only creates
transitions between consistently overlapping states. Lastly, we create a new sequence sum lattice.
A crucial part of the implementation is the modeling of the lattice states: A first-order state is
represented in the following way:

1 public class State {
2 private int index_;
3 private State sub_level_state_;
4 private FeatureVector vector_;
5 private double score_;
6 protected double estimated_count_;
7 private Transition[] transitions_;

where index_ represents the tag index of the state (e.g. 0 for noun and 1 for verb). If we are
dealing with a higher level state then sub_level_state_ points to the representation of the
next lower level state. Just as we discussed in Section A.1, FeatureVector stores the feature
indexes of the state. This vector is shared between all the states representing the same word.
Score denotes the potential of the state that is the dot product between the feature vector and the
weight vector and estimated_count_ stores the marginal sum calculated by the sum lattice.
transitions_ stores the possible transitions to the next state.

Transition and higher order states are both represented by the Transition class. This has
the advantage that the transition can just be reused when increasing the lattice order.

1 public class Transition extends State {
2 private State previous_state_;
3 private State state_;

transitions have the same properties as states, but also point to the previous and next state.
Tag n-gram feature indexes are stored in the vector_ field while score_ stores the sum of
the sub states and the dot product of transition features and weight vector. This representation
makes the calculation of the state scores rather complex:

1 public double dotProduct(State state, FeatureVector vector) {
2 State zero_order_state = state.getZeroOrderState();

142 A. MarMoT Implementation and Usage

3 int tag_index = getUniversalIndex(zero_order_state);
4 double score = 0.0;
5 for (int feature_index : vector) {
6 score += getWeight(getIndex(feature_index, tag_index));
7 }
8 return score;
9 }

In the dot product computation, we first need to calculate a universal index. This index is
a 1-dimensional representation of the tag indexes at the different levels. If the state is a first
level state this universal index corresponds to the tag index of the state. In case of a complex
state we calculate the index from the state the transition is pointing to. For example, a state
(noun, verb) corresponds to a transition from a noun to a verb state. As the tag indexes of
the noun state are already represented in the feature vector, we need to calculate the combined
index of feature and tags from the verb node. getZeroOrderState() thus returns the target
of a complex transition state and the state itself for a simple state.

A.3 Java API
Loading a pretrained tagger and tagging a list of word forms using the MarMoT API looks like
this:

1 List<List<String>> tag(List<String> forms,
2 String taggerfile) {
3 Tagger tagger = FileUtils.loadFromFile(taggerfile);
4 List<Word> words = new LinkedList<Word>();
5 for (String form : forms) {
6 words.add(new Word(form));
7 }
8 Sentence sentence = new Sentence(words);
9 return tagger.tag(sentence);

10 }

Here the tagger is loaded using the utility function loadFromFile, but it could also be
loaded using the standard Java serialization mechanism. This will give you an instance of the
Tagger interface:

1 public interface Tagger extends Serializable {
2 List<List<String>> tag(Sequence sentence);

A.3 Java API 143

3 Model getModel();
4 }

This interface has two important methods. tag will tag a Sequence and return the tags as a list
of lists. Each list corresponds to a token in the sequence and will contain one string per model
level. That is, in the case of the morphological tagger it well contain the POS and MORPH tag
for every token. The other method getModel will give you the underlying Model object. The
model can be used to access the options and for example change the verbosity of the tagger:

1 Options options = tagger.getModel().getOptions();
2 options.setProperty(Options.VERBOSE, "true");

Sequence is also an interface, and as you can see we obtain one by creating a Sentence
object:

1 public class Sentence extends AbstractList<Token>
2 implements Sequence {
3
4 public Sentence(List<Word> tokens);

Sentence objects are created from lists of words which are the concrete implementation of
Token interface above. We already discussed the Word class in Section A.1.

The MarMoT API can also be used to train a new model. If our training data is in a format
where every token is a list containing form, POS and MORPH tag and every sentence is a list of
such tokens then a complete example could look like this:

1 public void train(List<List<List<String>>> data,
2 String tagger_file) {
3 // Create the training data.
4 List<Sequence> train_sequences = new LinkedList<>();
5 for (List<List<String>> sentence_data : data) {
6 List<Word> words = new LinkedList<Word>();
7 for (List<String> token_data : sentence_data) {
8 String form = token_data.get(0);
9 String pos = token_data.get(1);

10 String morph = token_data.get(2);
11 words.add(new Word(form, pos, morph));

144 A. MarMoT Implementation and Usage

Murmeltiere
sind
im
Hochgebirge
zu
Hause
.

Im
Hochgebirge
sind
Murmeltiere
zu
Hause
.

Figure A.1: Example of raw text input for the MarMoT command line utility.

12 }
13 train_sequences.add(new Sentence(words));
14 }
15
16 // Train the model.
17 MorphOptions options = new MorphOptions();
18 Tagger tagger = MorphModel.train(options, train_sequences);
19 FileUtils.saveToFile(tagger, tagger_file);
20 }

A.4 Command Line Usage
MarMoT can also be used from the command line. The input to MarMoT is a file in a one-token-
per-line format. Sentence boundaries should be marked by a new line. A valid example can be
found in Figure A.1

If the sentences in Figure A.1 were stored in a file called text.txt a pretrained MarMoT
could be run by executing:

java -cp marmot.jar marmot.morph.cmd.Annotator\
--model-file de.marmot\
--test-file form-index=0,text.txt\
--pred-file text.out.txt

where form-index=0 specifies that the word form can be found in the first column. The
MarMoT Annotator produces output in a truncated CoNLL 2009 format (the first 8 columns).
The output for the first sentence is shown in the following Figure A.2.
A new model can be trained from this output file by running:

A.4 Command Line Usage 145

0 Murmeltiere _ _ _ \NN _ case=nom|number=pl|gender=masc
1 sind _ _ _ VAFIN _ number=pl|person=3|tense=pres|mood=ind
2 im _ _ _ APPRART _ case=dat|number=sg|gender=neut
3 Hochgebirge _ _ _ \NN _ case=dat|number=sg|gender=neut
4 zu _ _ _ APPR _ _
5 Hause _ _ _ \NN _ case=dat|number=sg|gender=neut
6 . _ _ _ $. _ _

Figure A.2: Example output of the MarMoT Annotator.

java -Xmx5G -cp marmot.jar marmot.morph.cmd.Trainer\
-train-file form-index=1,tag-index=5,morph-index=7,text.out.txt\
-tag-morph true\
-model-file en.marmot

where tag-index=5 specifies that the POS can be found in the sixth column and morph-index=7
that the morphological features can be found in the eighth column. An important training pa-
rameter is the model order. The default is a second order model, but for some languages such
as German a higher order might give better results. For completeness we give a list of all the
available training options:

146 A. MarMoT Implementation and Usage

Parameter Description Default Value
prune Whether to use pruning. true

effective-order
Maximal order to reach before increasing the
level. 1

seed
Random seed to use for shuffling. 0 for
nondeterministic seed 42

prob-threshold
Initial pruning threshold. Changing this value
should have almost no effect. 0.01

very-verbose Whether to print a lot of status messages. false

oracle
Whether to do oracle pruning. Probably not
relevant. false

trainer Which trainer to use. marmot.core.CrfTrainer
num-iterations Number of training iterations. 10

candidates-per-state
Average number of states to obtain after
pruning at each order. These are the µ values. [4, 2, 1.5]

max-transition-feature-level Something for testing the code. -1
beam-size Specify the beam size of the n-best decoder. 1
order Set the model order. 2
initial-vector-size Size of the weight vector. 10000000
averaging Whether to use averaging. Perceptron only! true
shuffle Whether to shuffle between training iterations. true
verbose Whether to print status messages. false
quadratic-penalty L2 penalty parameter. 0.0
penalty L1 penalty parameter. 0.0

Table A.1: General MarMoT options

A.4 Command Line Usage 147

Parameter Description Default Value
observed-feature Whether to use the observed feature. true

split-pos
Whether to split POS tags. See
subtag-separator false

form-normalization
Whether to normalize word forms before
tagging none

shape Whether to use shape features false

special-signature
Whether to mark if a word contains a special
character in the word signature. false

num-chunks Number of chunks. CrossAnnotator only. 5

restrict-transitions
Whether to only allow POS→MORPH
transitions that have been seen during training. true

type-dict Word type dictionary file (optional)

split-morphs
Whether to split MORPH tags. See
subtag-separator. true

rare-word-max-freq Maximal frequency of a rare word. 10
type-embeddings Word type embeddings file (optional).

tag-morph
Whether to train a morphological tagger or a
POS tagger. true

subtag-separator
Regular expression to use for splitting tags.
(Has to work with Java’s String.split) \\|

internal-analyzer
Use an internal morphological analyzer.
Currently supported: ’ar’ for AraMorph
(Arabic)

none

model-file Model file path. none
train-file Input training file none
test-file Input test file. (optional for training) none

pred-file
Output prediction file in CoNLL09. (optional
for training) none

shape-trie-file
Path to the shape trie. Will be created if
non-existent. none

Table A.2: Morphological MarMoT options

148 A. MarMoT Implementation and Usage

Appendix B

MarLiN Implementation and Usage

In this appendix we explain the important implementation details of MarLiN (Martin et al., 1998).
The latest version of the MarLiN source code and its documentation can be found at http:
//cistern.cis.lmu.de/marlin/.

B.1 Implementation
Our implementation follows the ideas explained in Martin et al. (1998). The most important part
is the assignment of a word form to a specific class. This can be implemented efficiently, if we
keep track of the left and right contexts of each word. The following C++ code shows how this
is implemented in MarLiN:

1 void incrementBigrams(int word, int klass, int factor) {
2 forvec (_, Entry, entry, left_context_[word]) {
3 int cword = entry.item;
4 if (cword != word) {
5 int cclass = word_assignment_[cword];
6 addTagTagCount(cclass, klass, factor * entry.count);
7 } else {
8 addTagTagCount(klass, klass, factor * entry.count);
9 }

10 }
11 forvec (_, Entry, entry, right_context_[word]) {
12 int cword = entry.item;
13 if (cword != word) {
14 int cclass = word_assignment_[cword];
15 addTagTagCount(klass, cclass, factor * entry.count);
16 }
17 }
18 }

http://cistern.cis.lmu.de/marlin/
http://cistern.cis.lmu.de/marlin/

150 B. MarLiN Implementation and Usage

left_context and right_contextmap each form to the list of its left and right neigh-
bors, respectively. addTagTagCount increments the transition count of class klass preceed-
ing class cclass.

We also found that a huge speed up could be obtained if n · log n was precomputed for all
n < 10.000 and cached in an array:

1 size_t cache_size_ = 10000;
2 vector<double> nlogn_cache_;
3
4 void init_cache() {
5 nlogn_cache_.resize(cache_size_);
6 for (int i=0; i<cache_size_; i++) {
7 nlogn_cache_[i] = (i + 1) * log(i + 1);
8 }
9 }

10
11 double nlogn(int n) {
12 assert (n >= 0);
13 if (n == 0) {
14 return 0;
15 }
16 if (n - 1 < cache_size_) {
17 return nlogn_cache_[n - 1];
18 }
19 return n * log(n);
20 }

B.2 Usage
Our implementation consists of two programs: a PYTHON program called marlin_count and
a C++ program called marlin_cluster.

marlin_count counts the unigrams and bigrams in a tokenized text corpus in a one sen-
tence per line format and transforms these counts into an efficient index representation. The
following command reads the tokenized text in example.txt and stores the extracted uni-
gram and bigram statistics in the respective files.

marlin_count --text example.txt\
--bigrams bigrams\
--words unigrams

marlin_cluster then reads this representation and executes the actual cluster algorithm.
The following command reads the unigram and bigram statistics in unigrams and bigrams

B.2 Usage 151

and clusters the respective word types into 10 clusters. The resulting clustering is then written to
the file clusters.

marlin_cluster --words unigrams\
--bigrams bigrams\
--c 10\
--output clusters

152 B. MarLiN Implementation and Usage

Appendix C

MULTEXT-East-PDT Tagset Conversion

For the Czech data sets we mapped the Prague Dependency Treebank (PDT) (Böhmová et al.,
2003) annotation to the much older MULTEXT-East (MTE) (Erjavec, 2010) annotation. For
PDT we use the data that was part of the CoNLL 2009 shared task data sets (Hajič et al., 2009).
Our conversion is based on the documentation of the PDT and MTE tagset.1,2 The first issue are
SubPos both PDT and MTE have a SubPOS structure, but they are not compatible. While PDT
for example differentiates verbs by tense and mood, MTE has categories such as full, auxiliary
and model. Therefore we remove both SubPOS annotations. The three features that cannot be
easily mapped are animacy, number and gender. The reason is that PDT merges the three features
into a single tag. This gives rise to a couple of ambiguous cases. We therefore decided to remove
the animacy annotation and wrote some code to disambiguate the number and gender annotation.
The problematic PDT tags are q, t, z and h. q can denote feminine or neuter, but feminine only
with singular and neuter only with plural. t, similarly can denote masculine or feminine, but
feminine only with plural. We thus try to set the number feature first and set the gender feature
accordingly. Many tokens however only specify number through the same tags which means that
both are ambiguous. z and h cannot be disambiguated. h can be feminine or neuter (without any
restrictions on number), and z can be masculine or neuter. We thus just ignore the two features.
For number there is only one problematic tag w, which can denote singular (feminine only) or
plural (neuter only). This forces us to run our code for gender and number specification in a loop.
Our conversion code is available online.3

1https://ufal.mff.cuni.cz/pdt/Morphology_and_Tagging/Doc/hmptagqr.html
2http://nl.ijs.si/ME/V4/msd/html/msd-cs.html
3http://cistern.cis.lmu.de/marmot/naacl2015/

https://ufal.mff.cuni.cz/pdt/Morphology_and_Tagging/Doc/hmptagqr.html
http://nl.ijs.si/ME/V4/msd/html/msd-cs.html
http://cistern.cis.lmu.de/marmot/naacl2015/

154 C. MULTEXT-East-PDT Tagset Conversion

Appendix D

Ancora-IULA Tagset Conversion

In the section we explain our conversion of the AnCora (Taulé et al., 2008) and IULA (Marimon
et al., 2012) treebanks. Both annotations are based on the EAGLE Tags.1 For AnCora we use the
data that was part of the CoNLL 2009 shared task data sets (Hajič et al., 2009). Adjective degree
is not annotated in the AnCora data so we remove these features from the IULA data as well.
Numerals such as dos ‘two’ and tres ‘three’ are marked as z (numeral) in IULA and p (pronoun)
or d (determiner) in AnCora. We fix this by marking numerals consistently as z. IULA marks
particles with a specific function argument, while AnCora uses a mood attribute. As the EAGLE
specification only specifies the mood variant, we normalize the annotations by converting IULA.
IULA annotates all prepositions as SPS00 (simple, no gender, no number). We normalize by
mapping all prepositions in AnCora to the same tag. In some cases, such as for proper nouns and
verbs, AnCora uses a gender value common and a number value invariable, while IULA leaves
the corresponding features unspecified. We normalize by removing the two features from the
AnCora annotation. Our conversion code is available online.3

1http://nlp.lsi.upc.edu/freeling/doc/tagsets/tagset-es.html (Spanish)

http://nlp.lsi.upc.edu/freeling/doc/tagsets/tagset-es.html

156 D. Ancora-IULA Tagset Conversion

Curriculum Vitae
Education
Since April 2013 Ph.D. Student, CIS, University of Munich, Germany

Research on Discriminative Tagging and Word Representations

April 2011 - Sept 2013 Ph.D. Student, Institute for NLP, University of Stuttgart, Germany
Research on Language Modeling, Discriminative Tagging, and Parsing

Oct 2005 - March 2011 University of Stuttgart, Germany
Diploma in Computer Science, Grade: 1.3 (very good)
Specializations: Computer Vision, Intelligent Systems
Minor: Physics

June 2004 Königin-Luise-Gymnasium, Erfurt, Germany
General qualification for university entrance, Grade: 1.7 (good)
Majors: Mathematics, Physics

Awards and Honors
July 2013 Best System in the Shared Task on Parsing Morphologically Rich Languages

With Anders Björkelund, Özlem Çetinoğlu, Richárd Farkas and Wolfgang Seeker

May 2012 Google European Doctorial Fellowship for Natural Language Processing

Practical Experience
July 2012 - October 2012 Research Intern (Google GmbH, Zurich, Switzerland)

Text summarization and headline generation.
Development in C++ and MapReduce

Oct 2009 - March 2010 ERASMUS Student, Universitat Politècnica de València, Spain
Research on offline Handwritten Text Recognition

Oct 2008 - Sept 2009 Student Trainee (Robert Bosch GmbH, Stuttgart)
GUI development with C++, QT

June 2008 - Sept 2009 Research Assistant (Visualisation Institute, University of Stuttgart)
GPU-based Visualisation, development C++, QT, OpenGL

April 2007 - Aug 2007 Teaching Assistant (Institute of Computer Architecture, University of Stuttgart)
Education hardware laboratory (VHDL, CPU design)

158 Glossary

Glossary

ABS absolute (discounting). 46

ACC accuracy. 17, 108, 112, 113

ADD additive smoothing. 45

ADJ adjective. 91, 92

ADV adverb. 91, 92

ART article. 97

ATC accumulated tag counts. 11, 63, 64, 127, 128

BFGS Broyden-Fletcher-Goldfarb-Shanno algorithm. 111

BO back-off. 85

CONJ conjunction. 91, 92

CPU central processing unit. 107, 157

CRF conditional random field. 10, 17, 22, 25, 29, 36, 59, 60, 64, 84, 100–103, 108, 109, 111,
114–116, 125, 134, 137

CW Collobert-Weston. 18, 63, 127

CYK Cocke-Younger-Kasami algorithm. 101

DA domain adaptation. 26, 119

DET determiner. 91

EM expectation maximization. 13, 28, 45, 52–54, 85–88, 93, 115

FB forward-backward algorithm. 53, 55, 59, 60

FLM factorized language model. 67

160 Glossary

GT Good-Turing. 71

HMM hidden Markov model. 13, 16, 24, 28, 29, 31, 35, 36, 50–54, 56, 59, 60, 64, 70, 71, 83,
84, 87–90, 93, 94, 96, 97, 111, 133, 134

ID in-domain. 17, 18, 118, 120–128, 131, 134, 135

IND indicative. 33, 37

KN Kneser-Ney. 15, 47, 71–73, 75–78, 80, 81, 133

LAS labeled attachment score. 13, 16, 24, 28, 84, 93–97, 133

LDA latent Dirichlet allocation. 62

LL likelihood. 43, 52

LM language model. 18, 48, 62, 126, 127, 131, 135

MA morphological analyzer. 17, 18, 64, 100, 103, 105–107, 111, 118, 119, 124, 128–131, 135

MAP maximum aposteriori. 67, 70, 71

ME maximum entropy. 56–60

ML maximum likelihood. 43, 45, 46, 85

MORPH morphological tag. 18, 105, 108, 111, 119, 121, 123, 128, 131, 135, 143, 147

MRL morphologically rich language. 15, 23–28, 30, 33–35, 65, 66, 83, 115, 133

MTE Multext East. 121, 153

NER named entity recognition. 62, 63, 119

NLP natural language processing. 33–35, 42, 49, 51, 55, 61–63, 99–101, 117, 118, 157

NMOD noun modifier. 16, 96

NN noun. 134

NNP proper noun. 16, 96, 97

NOUN noun. 91, 92

NP proper noun. 84

NUM number. 91

Glossary 161

OOD out-of-domain. 17, 18, 118–129, 131, 134, 135

OOV out-of-vocabulary. 15, 17, 66, 68, 72–74, 108, 122, 124, 125, 129

OWL orthant-wise limited-memory. 111

PCFG probabilistic context-free grammar. 63, 64, 83, 84, 114, 115

PDT Prague dependency treebank. 121, 153

POS part-of-speech. 10, 13, 15–18, 28, 62, 63, 68, 69, 83, 84, 86–91, 93, 96, 97, 99, 100,
105–109, 111, 112, 114, 115, 118, 119, 121, 123, 125, 128, 130, 131, 133–135, 143, 145,
147

SGD stochastic gradient descent. 25, 29, 60, 103, 108, 109, 111, 114

SPMRL statistical parsing of morphologically rich languages. 17, 22, 26, 30, 114–116, 120,
134

ST shared task. 114–116, 134

SVD singular value decomposition. 11, 61, 62, 119, 127, 128, 131, 135

TT training time. 17, 108, 112, 113

UAS unlabeled attachment score. 16, 93

UNK unknown. 72, 73

UPOS universal part-of-speech. 90

VERB verb. 91, 92

WB Witten-Bell. 13, 46, 85–90, 93, 134

162 Glossary

Bibliography

Meni Adler and Michael Elhadad. An unsupervised morpheme-based HMM for Hebrew mor-
phological disambiguation. In Proceedings of ACL, pages 665–672, 2006.

Rami Al-Rfou, Bryan Perozzi, and Steven Skiena. Polyglot: Distributed word representations
for multilingual NLP. In Proceedings of CoNLL, pages 183–192, 2013.

Rie Kubota Ando and Tong Zhang. A high-performance semi-supervised learning method for
text chunking. In Proceedings of ACL, pages 1–9, 2005.

Galen Andrew and Jianfeng Gao. Scalable training of l1-regularized log-linear models. In
Proceedings of ICML, pages 33–40, 2007.

Giuseppe Attardi and Antonia Fuschetto. Wikipedia Extractor, 2013. http://medialab.
di.unipi.it/wiki/Wikipedia_Extractor.

Lalit R. Bahl, Peter F. Brown, Peter V. de Souza, Robert L. Mercer, and David Nahamoo. A fast
algorithm for deleted interpolation. In Proceedings of Eurospeech, pages 1209–1212, 1991.

Adam L. Berger, Stephen Della Pietra, and Vincent J. Della Pietra. A maximum entropy approach
to natural language processing. Computational Linguistics, 22(1):39–71, 1996.

Jeff A. Bilmes and Katrin Kirchhoff. Factored language models and generalized parallel backoff.
In Proceedings of NAACL, pages 4–6, 2003.

Steven Bird, Ewan Klein, and Edward Loper. Natural language processing with Python. O’Reilly
Media, Inc., 2009.

Anders Björkelund, Özlem Çetinoğlu, Richárd Farkas, Thomas Müller, and Wolfgang Seeker.
(re)ranking meets morphosyntax: State-of-the-art results from the SPMRL 2013 shared task.
In Proceedings of SPMRL, pages 135–145, 2013.

John Blitzer, Ryan T. McDonald, and Fernando Pereira. Domain adaptation with structural
correspondence learning. In Proceedings of EMNLP, pages 120–128, 2006.

Phil Blunsom and Trevor Cohn. A hierarchical Pitman-Yor process HMM for unsupervised part
of speech induction. In Proceedings of ACL, pages 865–874, 2011.

http://medialab.di.unipi.it/wiki/Wikipedia_Extractor
http://medialab.di.unipi.it/wiki/Wikipedia_Extractor

164 BIBLIOGRAPHY

Alena Böhmová, Jan Hajič, Eva Hajičová, and Barbora Hladká. The Prague dependency tree-
bank. In Proceedings of Treebanks. Springer, 2003.

Bernd Bohnet. Very high accuracy and fast dependency parsing is not a contradiction. In Pro-
ceedings of Coling, pages 89–97, 2010.

Sabine Brants, Stefanie Dipper, Silvia Hansen, Wolfgang Lezius, and George Smith. The TIGER
treebank. In Proceedings of TLT, 2002.

Peter F. Brown, Vincent J. Della Pietra, Peter V. de Souza, Jennifer C. Lai, and Robert L. Mercer.
Class-based n-gram models of natural language. Computational Linguistics, 18(4):467–479,
1992a.

Peter F. Brown, Vincent J. Della Pietra, Robert L. Mercer, Stephen A. Della Pietra, and Jen-
nifer C. Lai. An estimate of an upper bound for the entropy of English. Computational
Linguistics, 18(1):31–40, 1992b.

Tim Buckwalter. Buckwalter Arabic Morphological Analyzer Version 1.0. Linguistic Data
Consortium, 2002.

Eugene Charniak and Mark Johnson. Coarse-to-fine n-best parsing and MaxEnt discriminative
reranking. In Proceedings of ACL, pages 173–180, 2005.

Stanley F. Chen and Joshua Goodman. An empirical study of smoothing techniques for language
modeling. Computer Speech & Language, 13(4):359–393, 1999.

Grzegorz Chrupala. Efficient induction of probabilistic word classes with LDA. In Proceedings
of IJCNLP, pages 363–372, 2011.

Grzegorz Chrupala, Georgiana Dinu, and Josef van Genabith. Learning morphology with mor-
fette. In Proceedings of LREC, 2008.

Kenneth W Church and William A Gale. A comparison of the enhanced Good-Turing and deleted
estimation methods for estimating probabilities of English bigrams. Computer Speech & Lan-
guage, 5(1):19–54, 1991.

Alexander Clark. Combining distributional and morphological information for part of speech
induction. In Proceedings of EACL, pages 59–66, 2003.

Philip Clarkson and Ronald Rosenfeld. Statistical language modeling using the CMU-Cambridge
toolkit. In Proceedings of Eurospeech, 1997.

Michael Collins. Discriminative training methods for hidden Markov models: Theory and ex-
periments with perceptron algorithms. In Proceedings of EMNLP, pages 1–8, 2002.

Michael Collins and Brian Roark. Incremental parsing with the perceptron algorithm. In Pro-
ceedings of ACL, pages 111–118, 2004.

BIBLIOGRAPHY 165

Ronan Collobert and Jason Weston. A unified architecture for natural language processing: deep
neural networks with multitask learning. In Proceedings of ICML, pages 160–167, 2008.

Ronan Collobert, Jason Weston, Léon Bottou, Michael Karlen, Koray Kavukcuoglu, and Pavel P.
Kuksa. Natural language processing (almost) from scratch. JMLR, 12:2493–2537, 2011.

Mathias Creutz and Krista Lagus. Unsupervised discovery of morphemes. In Proceedings of
SIGMORPHON, pages 21–30, 2002.

Mathias Creutz and Krista Lagus. Induction of a simple morphology for highly-inflecting lan-
guages. In Proceedings of SIGMORPHON, pages 43–51, 2004.

Mathias Creutz and Krista Lagus. Inducing the morphological lexicon of a natural langauge from
unannotated text. In Proceedings of AKRR, 2005.

Mathias Creutz, Teemu Hirsimäki, Mikko Kurimo, Antti Puurula, Janne Pylkkönen, Vesa Si-
ivola, Matti Varjokallio, Ebru Arisoy, Murat Saraçlar, and Andreas Stolcke. Morph-based
speech recognition and modeling of out-of-vocabulary words across languages. ACM TSLP, 5
(1):3, 2007.

Dóra Csendes, János Csirik, Tibor Gyimóthy, and András Kocsor. The Szeged treebank. In
Proceedings TSD, pages 123–131, 2005.

Carl de Marcken. Unsupervised Language Acquisition. PhD thesis, MIT, Cambridge, MA, 1995.

Arthur P. Dempster, Nan M. Laird, and Donald B. Rubin. Maximum likelihood from incomplete
data via the EM algorithm. JRSS, 39:1–38, 1977.

Vladimir Eidelman, Zhongqiang Huang, and Mary P. Harper. Lessons learned in part-of-speech
tagging of conversational speech. In Proceedings of EMNLP, pages 821–831, 2010.

Tomaz Erjavec. Multext-east version 4: Multilingual morphosyntactic specifications, lexicons
and corpora. In Proceedings of LREC, 2010.

Richárd Farkas, Veronika Vincze, and Helmut Schmid. Dependency parsing of Hungarian: Base-
line results and challenges. In Proceedings of EACL, pages 55–65, 2012.

Jenny Rose Finkel, Trond Grenager, and Christopher D. Manning. The infinite tree. In Proceed-
ings of ACL, pages 272–279, 2007.

John R. Firth. A synopsis of linguistic theory, studies in linguistic analysis. Studies in Linguistic
Analysis, pages 1–31, 1957.

Alexander M. Fraser, Helmut Schmid, Richárd Farkas, Renjing Wang, and Hinrich Schütze.
Knowledge sources for constituent parsing of German, a morphologically rich and less-
configurational language. Computational Linguistics, 39(1):57–85, 2013.

166 BIBLIOGRAPHY

William Gale and Kenneth Church. What is wrong with adding one. Corpus-based research into
language, 1:189–198, 1994.

Jesús Giménez and Lluı́s Màrquez. SVMTool: A general POS tagger generator based on support
vector machines. In Proceedings of LREC, 2004.

Yoav Goldberg and Michael Elhadad. Word segmentation, unknown-word resolution, and mor-
phological agreement in a Hebrew parsing system. Computational Linguistics, 39(1):121–160,
2013.

John Goldsmith. Unsupervised learning of the morphology of a natural language. Computational
Linguistics, 27(2):153–198, 2001.

Joshua Goodman and Jianfeng Gao. Language model size reduction by pruning and clustering.
In Proceedings of Interspeech, pages 110–113. ISCA, 2000.

Joshua T. Goodman. A bit of progress in language modeling. Computer Speech & Language, 15
(4):403–434, 2001.

Nizar Habash and Owen Rambow. Arabic tokenization, part-of-speech tagging and morpholog-
ical disambiguation in one fell swoop. In Proceedings of ACL, pages 573–580, 2005.

Jan Hajič. Morphological tagging: Data vs. dictionaries. In Proceedings of NAACL, pages 94–
101, 2000.

Jan Hajič. Czech Free Morphology, 2001. URL http://ufal.mff.cuni.cz/pdt/
Morphology_and_Tagging.

Jan Hajič and Barbora Hladká. Tagging inflective languages: Prediction of morphological cate-
gories for a rich, structured tagset. In Proceedings of Coling, pages 483–490, 1998.

Jan Hajič, Massimiliano Ciaramita, Richard Johansson, Daisuke Kawahara, Maria Antònia
Martı́, Lluı́s Màrquez, Adam Meyers, Joakim Nivre, Sebastian Padó, Jan Stepánek, Pavel
Stranák, Mihai Surdeanu, Nianwen Xue, and Yi Zhang. The conll-2009 shared task: Syntac-
tic and semantic dependencies in multiple languages. In Proceedings of CoNLL, pages 1–18,
2009.

Zellig S. Harris. Distributional structure. Word, 10:146–162, 1954.

Martin Haspelmath and Andrea Sims. Understanding morphology. Routledge, 2013.

Dag TT Haug and Marius Jøhndal. Creating a parallel treebank of the old indo-european bible
translations. In Proceedings of LaTeCH, pages 27–34, 2008.

Fei Huang, Arun Ahuja, Doug Downey, Yi Yang, Yuhong Guo, and Alexander Yates. Learn-
ing representations for weakly supervised natural language processing tasks. Computational
Linguistics, 40(1):85–120, 2014.

http://ufal.mff.cuni.cz/pdt/Morphology_and_Tagging
http://ufal.mff.cuni.cz/pdt/Morphology_and_Tagging

BIBLIOGRAPHY 167

Zhongqiang Huang, Vladimir Eidelman, and Mary P. Harper. Improving A simple bigram HMM
part-of-speech tagger by latent annotation and self-training. In Proceedings of NAACL, pages
213–216, 2009.

Rebecca Hwa, Philip Resnik, Amy Weinberg, Clara I. Cabezas, and Okan Kolak. Bootstrapping
parsers via syntactic projection across parallel texts. Natural Language Engineering, 11(3):
311–325, 2005.

Frederick Jelinek. Interpolated estimation of markov source parameters from sparse data. Pattern
recognition in practice, 1980.

Nobuhiro Kaji, Yasuhiro Fujiwara, Naoki Yoshinaga, and Masaru Kitsuregawa. Efficient stag-
gered decoding for sequence labeling. In Proceedings of ACL, pages 485–494, 2010.

Samarth Keshava and Emily Pitler. A simpler, intuitive approach to morpheme induction. In
Proceedings of MorphoChallenge, pages 31–35, 2006.

Tibor Kiss and Jan Strunk. Unsupervised multilingual sentence boundary detection. Computa-
tional Linguistics, 32(4):485–525, 2006.

David Klusácek. Maximum mutual information and word classes. In Proceedings of WDS, pages
185–190, 2006.

Reinhard Kneser and Hermann Ney. Improved backing-off for m-gram language modeling. In
Proceedings of ICASSP, pages 181–184, 1995.

Philipp Koehn. Europarl: A parallel corpus for statistical machine translation. In Proceedings
MT summit, volume 5, pages 79–86, 2005.

Terry Koo, Xavier Carreras, and Michael Collins. Simple semi-supervised dependency parsing.
In Proceedings of ACL, pages 595–603, 2008.

Pavel Kveton. Czech language tokenizer and segmenter, 2013. http://sourceforge.
net/projects/czechtok/.

John D. Lafferty, Andrew McCallum, and Fernando C. N. Pereira. Conditional random fields:
Probabilistic models for segmenting and labeling sequence data. In Proceedings of ICML,
pages 282–289, 2001.

Michael Lamar, Yariv Maron, Mark Johnson, and Elie Bienenstock. SVD and clustering for
unsupervised POS tagging. In Proceedings of ACL, pages 215–219. ACL, 2010.

Thomas Lavergne, Olivier Cappé, and François Yvon. Practical very large scale CRFs. In
Proceedings of ACL, pages 504–513, 2010.

Percy Liang. Semi-supervised learning for natural language. Master’s thesis, Massachusetts
Institute of Technology, 2005.

http://sourceforge.net/projects/czechtok/
http://sourceforge.net/projects/czechtok/

168 BIBLIOGRAPHY

Mohamed Maamouri, Ann Bies, Tim Buckwalter, and Wigdan Mekki. The Penn Arabic tree-
bank: Building a large-scale annotated Arabic corpus. In Proceedings of NEMLAR, pages
102–109, 2004.

Christopher D. Manning. Part-of-speech tagging from 97% to 100%: Is it time for some linguis-
tics? In Proceedings of CICLing, pages 171–189, 2011.

Christopher D. Manning, Mihai Surdeanu, John Bauer, Jenny Rose Finkel, Steven Bethard, and
David McClosky. The stanford corenlp natural language processing toolkit. In Proceedings of
ACL: System Demonstrations, pages 55–60, 2014.

Mitchell P. Marcus, Beatrice Santorini, and Mary Ann Marcinkiewicz. Building a large annotated
corpus of English: The penn treebank. Computational Linguistics, 19(2):313–330, 1993.

Montserrat Marimon, Beatriz Fisas, Núria Bel, Marta Villegas, Jorge Vivaldi, Sergi Torner,
Mercè Lorente, Silvia Vázquez, and Marta Villegas. The IULA treebank. In Proceedings
of LREC. ELRA, 2012.

Sven C. Martin, Jörg Liermann, and Hermann Ney. Algorithms for bigram and trigram word
clustering. Speech Communication, 24(1):19–37, 1998.

Tomas Mikolov, Martin Karafiát, Lukás Burget, Jan Cernocký, and Sanjeev Khudanpur. Recur-
rent neural network based language model. In Proceedings of Interspeech, pages 1045–1048,
2010.

Tomas Mikolov, Kai Chen, Greg Corrado, and Jeffrey Dean. Efficient estimation of word repre-
sentations in vector space. In Proceedings of ICLR, 2013.

Scott Miller, Jethran Guinness, and Alex Zamanian. Name tagging with word clusters and dis-
criminative training. In Proceedings of NAACL, pages 337–342, 2004.

Andriy Mnih and Geoffrey E. Hinton. A scalable hierarchical distributed language model. In
Proceedings of NIPS, pages 1081–1088, 2008.

Thomas Müller and Hinrich Schütze. Improved modeling of out-of-vocabulary words using
morphological classes. In Proceedings of ACL, pages 524–528, 2011.

Thomas Müller and Hinrich Schütze. Robust morphological tagging with word embeddings. In
Proceedings of NAACL, 2015.

Thomas Müller, Hinrich Schütze, and Helmut Schmid. A comparative investigation of morpho-
logical language modeling for the languages of the european union. In Proceedings of NAACL,
pages 386–395, 2012.

Thomas Müller, Helmut Schmid, and Hinrich Schütze. Efficient higher-order CRFs for morpho-
logical tagging. In Proceedings of EMNLP, pages 322–332, 2013.

BIBLIOGRAPHY 169

Thomas Müller, Richárd Farkas, Alex Judea, Helmut Schmid, and Hinrich Schütze. Dependency
parsing with latent refinements of part-of-speech tags. In Proceedings of EMNLP, pages 963–
967, 2014.

Hermann Ney and Ute Essen. On smoothing techniques for bigram-based natural language
modelling. In Proceedings of ICASSP, pages 825–828, 1991.

Hermann Ney, Ute Essen, and Reinhard Kneser. On structuring probabilistic dependences in
stochastic language modelling. Computer Speech & Language, 8(1):1–38, 1994.

Franz J. Och. Maximum-likelihood-Schätzung von Wortkategorien mit Verfahren der kombina-
torischen Optimierung. Studienarbeit, Friedrich-Alexander-Universität.

Franz J. Och. An efficient method for determining bilingual word classes. In Proceedings of
EACL, pages 71–76, 1999.

Kemal Oflazer and Ilker Kuruöz. Tagging and morphological disambiguation of Turkish text. In
Proceedings of ANLP, pages 144–149, 1994.

Naoaki Okazaki. CRFsuite: A fast implementation of conditional random fields (CRFs), 2007.
URL http://www.chokkan.org/software/crfsuite.

Olutobi Owoputi, Brendan O’Connor, Chris Dyer, Kevin Gimpel, Nathan Schneider, and
Noah A. Smith. Improved part-of-speech tagging for online conversational text with word
clusters. In Proceedings of NAACL, pages 380–390, 2013.

Lluı́s Padró and Evgeny Stanilovsky. Freeling 3.0: Towards wider multilinguality. In Proceed-
ings of LREC, pages 2473–2479, 2012.

Slav Petrov and Dan Klein. Improved inference for unlexicalized parsing. In Proceedings of
NAACL, pages 404–411, 2007.

Slav Petrov and Ryan McDonald. Overview of the 2012 shared task on parsing the web. In
Proceedings of SANCL, 2012.

Slav Petrov, Leon Barrett, Romain Thibaux, and Dan Klein. Learning accurate, compact, and
interpretable tree annotation. In Proceedings of ACL, pages 433–440, 2006.

Slav Petrov, Dipanjan Das, and Ryan T. McDonald. A universal part-of-speech tagset. In Pro-
ceedings of LREC, pages 2089–2096, 2012.

Lev-Arie Ratinov and Dan Roth. Design challenges and misconceptions in named entity recog-
nition. In Proceedings of CoNLL, pages 147–155, 2009.

Adwait Ratnaparkhi. A maximum entropy model for part-of-speech tagging. In Proceedings of
EMNLP, volume 1, pages 133–142, 1996.

Phillip Roelli. Corpus Corporum, 2014. http://www.mlat.uzh.ch/MLS/.

http://www.chokkan.org/software/crfsuite
http://www.mlat.uzh.ch/MLS/

170 BIBLIOGRAPHY

Ronald Rosenfeld. A maximum entropy approach to adaptive statistical language modelling.
Computer Speech & Language, 10(3):187–228, 1996.

Ryan Roth, Owen Rambow, Nizar Habash, Mona T. Diab, and Cynthia Rudin. Arabic morpho-
logical tagging, diacritization, and lemmatization using lexeme models and feature ranking.
In Proceedings of ACL, pages 117–120, 2008.

Alexander M. Rush and Slav Petrov. Vine pruning for efficient multi-pass dependency parsing.
In Proceedings of NAACL, pages 498–507, 2012.

Anne Schiller. DMOR Benutzerhandbuch. Technical report, IMS, University of Stuttgart, 1995.

Helmut Schmid. Probabilistic part-of-speech tagging using decision trees. In Proceedings of
NEMLP, volume 12, pages 44–49, 1994.

Helmut Schmid. Unsupervised learning of period disambiguation for tokenisation. Technical
report, IMS, University of Stuttgart, 2000.

Helmut Schmid and Florian Laws. Estimation of conditional probabilities with decision trees and
an application to fine-grained pos tagging. In Proceedings of Coling, pages 777–784, 2008.

Helmut Schmid, Arne Fitschen, and Ulrich Heid. SMOR: A German computational morphology
covering derivation, composition and inflection. In Proceedings of LREC, 2004.

Tobias Schnabel and Hinrich Schütze. FLORS: fast and simple domain adaptation for part-of-
speech tagging. TACL, 2:15–26, 2014.

Hinrich Schütze. Dimensions of meaning. In Proceedings of Supercomputing, pages 787–796,
1992.

Hinrich Schütze. Distributional part-of-speech tagging. In Proceedings of EACL, pages 141–148,
1995.

Hinrich Schütze and Michael Walsh. Half-context language models. Computational Linguistics,
37(4):843–865, 2011.

Djamé Seddah, Reut Tsarfaty, Sandra Kübler, Marie Candito, Jinho D. Choi, Richárd Farkas,
Jennifer Foster, Iakes Goenaga, Koldo Gojenola Galletebeitia, Yoav Goldberg, Spence Green,
Nizar Habash, Marco Kuhlmann, Wolfgang Maier, Joakim Nivre, Adam Przepiórkowski,
Ryan Roth, Wolfgang Seeker, Yannick Versley, Veronika Vincze, Marcin Woliński, Alina
Wróblewska, and Eric Villemonte de la Clergerie. Overview of the SPMRL 2013 shared task:
A cross-framework evaluation of parsing morphologically rich languages. In Proceedings of
SPMRL, pages 146–182, 2013.

Wolfgang Seeker and Jonas Kuhn. The effects of syntactic features in automatic prediction of
morphology. In Proceedings of EMNLP, pages 333–344, 2013.

BIBLIOGRAPHY 171

Libin Shen, Giorgio Satta, and Aravind K. Joshi. Guided learning for bidirectional sequence
classification. In Proceedings of ACL, pages 760–767, 2007.

Qinfeng Shi, James Petterson, Gideon Dror, John Langford, Alexander J. Smola, and S. V. N.
Vishwanathan. Hash kernels for structured data. JMLR, 10:2615–2637, 2009.

Noah A. Smith, David A. Smith, and Roy W. Tromble. Context-based morphological disam-
biguation with random fields. In Proceedings of EMNLP, pages 475–482, 2005.

Drahomı́ra Spoustová, Jan Hajič, Jan Raab, and Miroslav Spousta. Semi-supervised training for
the averaged perceptron POS tagger. In Proceedings of EACL, pages 763–771, 2009.

Uwe Springmann, Dietmar Najock, Hermann Morgenroth, Helmut Schmid, Annette Gotscharek,
and Florian Fink. OCR of historical printings of latin texts: problems, prospects, progress. In
Proceedings of DATeCH, pages 71–75, 2014.

Andreas Stolcke. SRILM – An extensible language modeling toolkit. In Proceedings of Inter-
speech, 2002.

Jana Straková, Milan Straka, and Jan Hajič. Open-source tools for morphology, lemmatization,
POS tagging and named entity recognition. In Proceedings of ACL: System Demonstrations,
pages 13–18, 2014.

Erik B. Sudderth. Graphical models for visual object recognition and tracking. PhD thesis,
Massachusetts Institute of Technology, 2006.

Xu Sun, Louis-Philippe Morency, Daisuke Okanohara, and Jun’ichi Tsujii. Modeling latent-
dynamic in shallow parsing: A latent conditional model with improved inference. In Proceed-
ings of Coling, pages 841–848, 2008.

Jun Suzuki, Hideki Isozaki, Xavier Carreras, and Michael Collins. An empirical study of semi-
supervised structured conditional models for dependency parsing. In Proceedings of EMNLP,
pages 551–560, 2009.

Zsolt Szántó and Richárd Farkas. Special techniques for constituent parsing of morphologically
rich languages. In Proceedings of EACL, pages 135–144, 2014.

Oscar Täckström, Ryan T. McDonald, and Jakob Uszkoreit. Cross-lingual word clusters for
direct transfer of linguistic structure. In Proceedings of NAACL, pages 477–487, 2012.

Mariona Taulé, Maria Antònia Martı́, and Marta Recasens. Ancora: Multilevel annotated corpora
for Catalan and Spanish. In Proceedings of LREC, 2008.

Yee Whye Teh. A hierarchical bayesian language model based on Pitman-Yor processes. In
Proceedings of ACL, pages 985–992, 2006.

172 BIBLIOGRAPHY

Kristina Toutanova, Dan Klein, Christopher D. Manning, and Yoram Singer. Feature-rich part-of-
speech tagging with a cyclic dependency network. In Proceedings of NAACL, pages 173–180.
ACL, 2003.

Yoshimasa Tsuruoka, Jun’ichi Tsujii, and Sophia Ananiadou. Stochastic gradient descent train-
ing for l1-regularized log-linear models with cumulative penalty. In Proceedings of ACL, pages
477–485, 2009.

Joseph P. Turian, Lev-Arie Ratinov, and Yoshua Bengio. Word representations: A simple and
general method for semi-supervised learning. In Proceedings of ACL, pages 384–394, 2010.

Peter D Turney and Patrick Pantel. From frequency to meaning: Vector space models of seman-
tics. JAIR, 37(1):141–188, 2010.

Jakob Uszkoreit and Thorsten Brants. Distributed word clustering for large scale class-based
language modeling in machine translation. In Proceedings of ACL, pages 755–762, 2008.

Dimitra Vergyri, Katrin Kirchhoff, Kevin Duh, and Andreas Stolcke. Morphology-based lan-
guage modeling for Arabic speech recognition. In Proceedings of ICSLP, volume 4, pages
2245–2248, 2004.

Veronika Vincze, Dóra Szauter, Attila Almási, György Móra, Zoltán Alexin, and János Csirik.
Hungarian dependency treebank. In Proceedings of LREC, 2010.

Martin Volk, Anne Göhring, Torsten Marek, and Yvonne Samuelsson. SMULTRON (ver-
sion 3.0) — The Stockholm MULtilingual parallel TReebank, 2010. URL http:
//www.cl.uzh.ch/research/parallelcorpora/paralleltreebanks/
smultron_en.html. An English-French-German-Spanish-Swedish parallel treebank
with sub-sentential alignments.

David J. Weiss and Benjamin Taskar. Structured prediction cascades. In Proceedings of AISTATS,
pages 916–923, 2010.

Edward WD Whittaker and Philip C Woodland. Particle-based language modelling. In Proceed-
ings of ICSLP, pages 170–173, 2000.

Ian H. Witten and Tim C. Bell. The zero-frequency problem: Estimating the probabilities of
novel events in adaptive text compression. IEEE Transactions on Information Theory, 37(4):
1085–1094, 1991.

Peng Xu and Frederick Jelinek. Random forests and the data sparseness problem in language
modeling. Computer Speech & Language, 21(1):105–152, 2007.

Alexander Yeh. More accurate tests for the statistical significance of result differences. In
Proceedings of Coling, pages 947–953, 2000.

http://www.cl.uzh.ch/research/parallelcorpora/paralleltreebanks/smultron_en.html
http://www.cl.uzh.ch/research/parallelcorpora/paralleltreebanks/smultron_en.html
http://www.cl.uzh.ch/research/parallelcorpora/paralleltreebanks/smultron_en.html

BIBLIOGRAPHY 173

Deniz Yuret and Ergun Biçici. Modeling morphologically rich languages using split words and
unstructured dependencies. In Proceedings of ACL, pages 345–348, 2009.

Deniz Yuret and Ferhan Türe. Learning morphological disambiguation rules for Turkish. In
Proceedings of NAACL, pages 328–334, 2006.

Yi Zhang and Rui Wang. Cross-domain dependency parsing using a deep linguistic grammar. In
Proceedings of ACL, pages 378–386, 2009.

János Zsibrita, Veronika Vincze, and Richárd Farkas. magyarlanc: A toolkit for morphological
and dependency parsing of Hungarian. In Proceedings of RANLP, pages 763–771, 2013.

	Danksagung
	Contents
	List of Figures
	List of Tables
	List of Algorithms
	Prepublications
	Abstract
	Zusammenfassung
	Introduction
	Motivation
	Main Contributions
	Outline

	Foundations
	Morphology
	Terminology
	Part-Of-Speech

	Language Modeling
	Sequence Prediction
	Hidden Markov Models
	Hidden Markov Models with Latent Annotations
	Conditional Random Fields

	Word Representations
	Conclusions

	A Morphological Language Model
	Introduction
	Related Work
	Modeling of Morphology and Shape
	Morphological Class-based Language Model

	Experimental Setup
	Distributional Class-based Language Model
	Data

	Results and Discussion
	Morphological Model
	Distributional Model
	Sensitivity Analysis of Parameters
	Example Clusters
	Impact of Shape

	Conclusion

	HMM-LAs for Dependency Parsing
	Introduction
	Related Work
	Enhancements
	Experiments
	POS Tagging
	Properties of the Induced Tags
	Dependency Parsing
	Contribution Analysis

	Conclusion

	Morphological Tagging with Higher-Order CRFs
	Introduction
	Related Work
	Methodology
	Standard CRF Training
	Pruned CRF Training
	Threshold Estimation
	Tag Decomposition
	Feature Set

	Experiments
	Resources
	Setup
	POS Experiments
	POS+MORPH Oracle Experiments
	POS+MORPH Higher-Order Experiments
	Experiments with Morphological Analyzers
	Comparison with Baselines
	Weight Vector Size
	Word Shapes

	An Application to Constituency Parsing
	Conclusion

	Morphological Tagging with Word Representations
	Introduction
	Related Work
	Representations
	Data Preparation
	Labeled Data
	Unlabeled Data

	Experiments
	Language Model-Based Clustering
	Neural Network Representations
	SVD and ATC Representations

	Analysis
	Conclusion

	Conclusion
	MarMoT Implementation and Usage
	Feature Extraction
	Lattice Generation
	Java API
	Command Line Usage

	MarLiN Implementation and Usage
	Implementation
	Usage

	MULTEXT-East-PDT Tagset Conversion
	Ancora-IULA Tagset Conversion
	Curriculum Vitae
	Glossary

