500 research outputs found

    Shrunken Locally Linear Embedding for Passive Microwave Retrieval of Precipitation

    Full text link
    This paper introduces a new Bayesian approach to the inverse problem of passive microwave rainfall retrieval. The proposed methodology relies on a regularization technique and makes use of two joint dictionaries of coincidental rainfall profiles and their corresponding upwelling spectral radiative fluxes. A sequential detection-estimation strategy is adopted, which basically assumes that similar rainfall intensity values and their spectral radiances live close to some sufficiently smooth manifolds with analogous local geometry. The detection step employs a nearest neighborhood classification rule, while the estimation scheme is equipped with a constrained shrinkage estimator to ensure stability of retrieval and some physical consistency. The algorithm is examined using coincidental observations of the active precipitation radar (PR) and passive microwave imager (TMI) on board the Tropical Rainfall Measuring Mission (TRMM) satellite. We present promising results of instantaneous rainfall retrieval for some tropical storms and mesoscale convective systems over ocean, land, and coastal zones. We provide evidence that the algorithm is capable of properly capturing different storm morphologies including high intensity rain-cells and trailing light rainfall, especially over land and coastal areas. The algorithm is also validated at an annual scale for calendar year 2013 versus the standard (version 7) radar (2A25) and radiometer (2A12) rainfall products of the TRMM satellite

    Vertical Heating Structures Associated with the MJO as Characterized by TRMM Estimates, ECMWF Reanalyses, and Forecasts: A Case Study during 1998/99 Winter

    Get PDF
    The Maddenā€“Julian oscillation (MJO) is a fundamental mode of the tropical atmosphere variability that exerts significant influence on global climate and weather systems. Current global circulation models, unfortunately, are incapable of robustly representing this form of variability. Meanwhile, a well-accepted and comprehensive theory for the MJO is still elusive. To help address this challenge, recent emphasis has been placed on characterizing the vertical structures of the MJO. In this study, the authors analyze vertical heating structures by utilizing recently updated heating estimates based on the Tropical Rainfall Measuring Mission (TRMM) from two different latent heating estimates and one radiative heating estimate. Heating structures from two different versions of the European Centre for Medium-Range Weather Forecasts (ECMWF) reanalyses/forecasts are also examined. Because of the limited period of available datasets at the time of this study, the authors focus on the winter season from October 1998 to March 1999. The results suggest that diabatic heating associated with the MJO convection in the ECMWF outputs exhibits much stronger amplitude and deeper structures than that in the TRMM estimates over the equatorial eastern Indian Ocean and western Pacific. Further analysis illustrates that this difference might be due to stronger convective and weaker stratiform components in the ECMWF estimates relative to the TRMM estimates, with the latter suggesting a comparable contribution by the stratiform and convective counterparts in contributing to the total rain rate. Based on the TRMM estimates, it is also illustrated that the stratiform fraction of total rain rate varies with the evolution of the MJO. Stratiform rain ratio over the Indian Ocean is found to be 5% above (below) average for the disturbed (suppressed) phase of the MJO. The results are discussed with respect to whether these heating estimates provide enough convergent information to have implications on theories of the MJO and whether they can help validate global weather and climate models

    A Review of Global Precipitation Data Sets: Data Sources, Estimation, and Intercomparisons

    Get PDF
    In this paper, we present a comprehensive review of the data sources and estimation methods of 30 currently available global precipitation data sets, including gauge-based, satellite-related, and reanalysis data sets. We analyzed the discrepancies between the data sets from daily to annual timescales and found large differences in both the magnitude and the variability of precipitation estimates. The magnitude of annual precipitation estimates over global land deviated by as much as 300 mm/yr among the products. Reanalysis data sets had a larger degree of variability than the other types of data sets. The degree of variability in precipitation estimates also varied by region. Large differences in annual and seasonal estimates were found in tropical oceans, complex mountain areas, northern Africa, and some high-latitude regions. Overall, the variability associated with extreme precipitation estimates was slightly greater at lower latitudes than at higher latitudes. The reliability of precipitation data sets is mainly limited by the number and spatial coverage of surface stations, the satellite algorithms, and the data assimilation models. The inconsistencies described limit the capability of the products for climate monitoring, attribution, and model validation

    Potential of high-resolution detection and retrieval of precipitation fields from X-band spaceborne synthetic aperture radar over land

    Get PDF
    Abstract. X-band Synthetic Aperture Radars (X-SARs), able to image the Earth's surface at metric resolution, may provide a unique opportunity to measure rainfall over land with spatial resolution of about few hundred meters, due to the atmospheric moving-target degradation effects. This capability has become very appealing due to the recent launch of several X-SAR satellites, even though several remote sensing issues are still open. This work is devoted to: (i) explore the potential of X-band high-resolution detection and retrieval of rainfall fields from space using X-SAR signal backscattering amplitude and interferometric phase; (ii) evaluate the effects of spatial resolution degradation by precipitation and inhomogeneous beam filling when comparing to other satellite-based sensors. Our X-SAR analysis of precipitation effects has been carried out using both a TerraSAR-X (TSX) case study of Hurricane "Gustav" in 2008 over Mississippi (USA) and a COSMO-SkyMed (CSK) X-SAR case study of orographic rainfall over Central Italy in 2009. For the TSX case study the near-surface rain rate has been retrieved from the normalized radar cross section by means of a modified regression empirical algorithm (MREA). A relatively simple method to account for the geometric effect of X-SAR observation on estimated rainfall rate and first-order volumetric effects has been developed and applied. The TSX-retrieved rain fields have been compared to those estimated from the Next Generation Weather Radar (NEXRAD) in Mobile (AL, USA). The rainfall detection capability of X-SAR has been tested on the CSK case study using the repeat-pass coherence response and qualitatively comparing its signature with ground-based Mt. Midia C-band radar in central Italy. A numerical simulator to represent the effect of the spatial resolution and the antenna pattern of TRMM satellite Precipitation Radar (PR) and Microwave Imager (TMI), using high-resolution TSX-retrieved rain images, has been also set up in order to evaluate the rainfall beam filling phenomenon. As expected, the spatial average can modify the statistics of the high-resolution precipitation fields, strongly reducing its dynamics in a way non-linearly dependent on the rain rate local average value

    Potential of High-resolution Detection and Retrieval of Precipitation Fields from X-band Spaceborne Synthetic Aperture Radar over land

    Get PDF
    X-band Synthetic Aperture Radars (X-SARs), able to image the Earthā€™s surface at metric resolution, may provide a unique opportunity to measure rainfall over land with spatial resolution of about few hundred meters, due to the atmospheric moving-target degradation effects. This capability has become very appealing due to the recent launch of several X-SAR satellites, even though several remote sensing issues are still open. This work is devoted to: (i) explore the potential of X-band high-resolution detection and retrieval of rainfall fields from space using X-SAR signal backscattering amplitude and interferometric phase; (ii) evaluate the effects of spatial resolution degradation by precipitation and inhomogeneous beam filling when comparing to other satellite-based sensors. Our X-SAR analysis of precipitation effects has been carried out using both a TerraSAR-X (TSX) case study of Hurricane ā€œGustavā€ in 2008 over Mississippi (USA) and a COSMO-SkyMed (CSK) X-SAR case study of orographic rainfall over Central Italy in 2009. For the TSX case study the near-surface rain rate has been retrieved from the normalized radar cross section by means of a modified regression empirical algorithm (MREA). A relatively simple method to account for the geometric effect of X-SAR observation on estimated rainfall rate and firstorder volumetric effects has been developed and applied. The TSX-retrieved rain fields have been compared to those estimated from the Next Generation Weather Radar (NEXRAD) in Mobile (AL, USA). The rainfall detection capability of X-SAR has been tested on the CSK case study using the Correspondence to: F. S. Marzano ([email protected]) repeat-pass coherence response and qualitatively comparing its signature with ground-based Mt. Midia C-band radar in central Italy. A numerical simulator to represent the effect of the spatial resolution and the antenna pattern of TRMMsatellite Precipitation Radar (PR) and Microwave Imager (TMI), using high-resolution TSX-retrieved rain images, has been also set up in order to evaluate the rainfall beam filling phenomenon. As expected, the spatial average can modify the statistics of the high-resolution precipitation fields, strongly reducing its dynamics in a way non-linearly dependent on the rain rate local average value

    Integrated Multi-Satellite Evaluation for the Global Precipitation Measurement: Impact of Precipitation Types on Spaceborne Precipitation Estimation

    Get PDF
    Integrated multi-sensor assessment is proposed as a novel approach to advance satellite precipitation validation in order to provide users and algorithm developers with an assessment adequately coping with the varying performances of merged satellite precipitation estimates. Gridded precipitation rates retrieved from space sensors with quasi-global coverage feed numerous applications ranging from water budget studies to forecasting natural hazards caused by extreme events. Characterizing the error structure of satellite precipitation products is recognized as a major issue for the usefulness of these estimates. The Global Precipitation Measurement (GPM) mission aims at unifying precipitation measurements from a constellation of low-earth orbiting (LEO) sensors with various capabilities to detect, classify and quantify precipitation. They are used in combination with geostationary observations to provide gridded precipitation accumulations. The GPM Core Observatory satellite serves as a calibration reference for consistent precipitation retrieval algorithms across the constellation. The propagation of QPE uncertainty from LEO active/passive microwave (PMW) precipitation estimates to gridded QPE is addressed in this study, by focusing on the impact of precipitation typology on QPE from the Level-2 GPM Core Observatory Dual-frequency Precipitation Radar (DPR) to the Microwave Imager (GMI) to Level-3 IMERG precipitation over the Conterminous U.S. A high-resolution surface precipitation used as a consistent reference across scales is derived from the ground radar-based Multi-Radar/Multi-Sensor. While the error structure of the DPR, GMI and subsequent IMERG is complex because of the interaction of various error factors, systematic biases related to precipitation typology are consistently quantified across products. These biases display similar features across Level-2 and Level-3, highlighting the need to better resolve precipitation typology from space and the room for improvement in global-scale precipitation estimates. The integrated analysis and framework proposed herein applies more generally to precipitation estimates from sensors and error sources affecting low-earth orbiting satellites and derived gridded products

    Method to combine spaceborne radar and radiometric observations of precipitation, A

    Get PDF
    2010 Fall.Includes bibliographical references.This dissertation describes the development and application of a combined radar-radiometer rainfall retrieval algorithm for the Tropical Rainfall Measuring Mission (TRMM) satellite. A retrieval framework based upon optimal estimation theory is proposed wherein three parameters describing the raindrop size distribution (DSD), ice particle size distribution (PSD), and cloud water path (cLWP) are retrieved for each radar profile. The retrieved rainfall rate is found to be strongly sensitive to the a priori constraints in DSD and cLWP; thus, these parameters are tuned to match polarimetric radar estimates of rainfall near Kwajalein, Republic of Marshall Islands. An independent validation against gauge-tuned radar rainfall estimates at Melbourne, FL shows agreement within 2% which exceeds previous algorithms' ability to match rainfall at these two sites. The algorithm is then applied to two years of TRMM data over oceans to determine the sources of DSD variability. Three correlated sets of variables representing storm dynamics, background environment, and cloud microphysics are found to account for approximately 50% of the variability in the absolute and reflectivity-normalized median drop size. Structures of radar reflectivity are also identified and related to drop size, with these relationships being confirmed by ground-based polarimetric radar data from the North American Monsoon Experiment (NAME). Regional patterns of DSD and the sources of variability identified herein are also shown to be consistent with previous work documenting regional DSD properties. In particular, mid-latitude regions and tropical regions near land tend to have larger drops for a given reflectivity, whereas the smallest drops are found in the eastern Pacific Intertropical Convergence Zone. Due to properties of the DSD and rain water/cloud water partitioning that change with column water vapor, it is shown that increases in water vapor in a global warming scenario could lead to slight (1%) underestimates of a rainfall trends by radar but larger overestimates (5%) by radiometer algorithms. Further analyses are performed to compare tropical oceanic mean rainfall rates between the combined algorithm and other sources. The combined algorithm is 15% higher than the version 6 of the 2A25 radar-only algorithm and 6.6% higher than the Global Precipitation Climatology Project (GPCP) estimate for the same time-space domain. Despite being higher than these two sources, the combined total is not inconsistent with estimates of the other components of the energy budget given their uncertainties
    • ā€¦
    corecore