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Abstract     Integrated multi-sensor assessment is proposed as a novel approach to advance satellite 

precipitation validation in order to provide users and algorithm developers with an assessment 

adequately coping with the varying performances of merged satellite precipitation estimates. Gridded 

precipitation rates retrieved from space sensors with quasi-global coverage feed numerous 

applications ranging from water budget studies to forecasting natural hazards cuased by extreme 

events. Characterizing the error structure of satellite precipitation products is recognized as a major 

issue for the usefulness of these estimates. The Global Precipitation Measurement (GPM) mission 

aims at unifying precipitation measurements from a constellation of low-earth orbiting (LEO) sensors 

with various capabilities to detect, classify and quantify precipitation. They are used in combination 

with geostationary observations to provide gridded precipitation accumulations. The GPM Core 

Observatory satellite serves as a calibration reference for consistent precipitation retrieval algorithms 

across the constellation. The propagation of QPE uncertainty from LEO active/passive microwave 

(PMW) precipitation estimates to gridded QPE is addressed in this study, by focusing on the impact 

of precipitation typology on QPE from the Level-2 GPM Core Observatory Dual-frequency 

Precipitation Radar (DPR) to the Microwave Imager (GMI) to Level-3 IMERG precipitation over the 

Conterminous U.S. A high-resolution surface precipitation used as a consistent reference across 

scales is derived from the ground radar-based Multi-Radar/Multi-Sensor. While the error structure of 

the DPR, GMI and subsequent IMERG is complex because of the interaction of various error factors, 

systematic biases related to precipitation typology are consistently quantified across products. These 

biases display similar features across Level-2 and Level-3, highligthing the need to better resolve 

precipitation typology from space and the room for improvement in global-scale precipitation 

estimates. The integrated analysis and framework proposed herein applies more generally to 

precipitation estimates from sensors and error sources affecting low-earth orbiting satellites and 

derived gridded products.  
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1.1.1 Introduction 
 

Precipitation is key to the Earth hydrologic and energy fluxes through its occurrence, type, and 

quantity. A host of scientific questions impacting society are concerned with the distribution of 

precipitation characteristics, from extreme events such as droughts and hurricanes to how the 

availability of fresh water evolves under a non-stationary climate. Precipitation physical processes 

take place over a range of spatial and temporal scales and drive its highly variable intermittency, 

intensity, areal extent, and duration. This variability poses challenges for observations specifically 

from remote sensing for hydrologic, meteorological, and climatic applications. Their quasi-global 

coverage promotes the use of satellite-based quantitative precipitation estimates (QPE) for such 

purposes. However, converting satellite measurements into QPE poses challenges, as it depends on 

the spatial heterogeneity of the precipitation fields, the indirect nature of the measurement, the sensor 

resolution and sensitivity, and the retrieval algorithm. Hence satellite-based precipitation estimates 

suffer from poorly characterized and quantified sources of uncertainty, which currently limit their 

assimilation into hydrologic and atmospheric models (Bauer et al., 2011; Stephens and Kummerow 

2007; Weng et al., 2007). To improve the satellite estimates and maximize their usability, their 

uncertainty must be evaluated in terms of precipitation characteristics including intermittency, 

distribution of types (e.g. stratiform, convective, snow, hail) and rates, as highlighted by the 

International Precipitation Working Group (IPWG; see http://www.isac.cnr.it/~ipwg/) (Turk et al. 

2008; Yang et al. 2006; Zeweldi and Gebremichael 2009; Sapiano and Arkin 2009; Wolff and Fisher 

2009; Grimes and Diop 2003; Lebel et al. 2009). Comprehensive characterization of the satellite 

precipitation error structure relies on ground-validation research to ensure proper accuracy of 

spaceborne QPE missions (Petersen and Schwaller 2008) like the former Tropical Rainfall 

Measurement Mission (TRMM; http://trmm.gsfc.nasa.gov) and the current Global Precipitation 

Measurement Mission (GPM; http://gpm.gsfc.nasa.gov).  

 

 
 

Figure 1.1.1.  Research framework and overview flowchart to bridge from the Global Precipitation 

Measurement mission core satellite to the combined gridded IMERG product using ground radar-

http://www.isac.cnr.it/~ipwg/
http://gpm.gsfc.nasa.gov/
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based Multi-Radar/Multi-Sensor QPE. An example of Multi-Radar/Multi-Sensor instantaneous 

precipitation rates at 0725 UTC on 11 April 2011 is shown. 

 

Current high-resolution and gridded satellite-based QPE have been developed by combining active 

and passive microwave (PMW) and infrared (IR) sensors into multi-sensor precipitation retrievals. 

PMW-based estimates from Low Earth Orbiting (LEO) satellites provide higher accuracy but limited 

spatial and temporal resolution. They are used to calibrate IR-based estimates from geosynchronous 

Earth-orbiting (GEO) satellite platforms with comparatively higher spatio-temporal resolution and 

lower latency (Joyce et al., 2004; Huffman et al., 2007; Ushio et al. 2006, Ebert 2007). As of today, 

our understanding on how uncertainties originate from LEO platforms and propagate through such 

combined products is critically lacking, and there is a need for comparison across product levels (Fig. 

1.1.1). While single satellite precipitation products are typically evaluated independently in the 

literature, a consistent end-to-end error quantification tracking the uncertainty from Level-2 through 

Level-3 products is needed to fully understand the errors across scales and assess the room for 

improvement in global precipitation estimation.  

During the last couple of decades, individual satellite-based precipitation products have been 

evaluated over various regions (Carr et al., 2015; Derin et al., 2016; Derin & Yilmaz, 2014; Dinku et 

al., 2010; Golian et al., 2015; Grecu & Anagnostou, 2001), precipitation regimes (Kirstetter et al., 

2012; Kirstetter et al., 2013a,b, 2014, 2015; Smalley et al., 2017), seasons (Tang et al., 2014), scales 

(Tan et al., 2017), precipitation intensities (Kirstetter et al., 2012; Panegrossi, 2016; Wolff & Fisher, 

2009), and for applications in flood prediction (Hossain & Anagnostou, 2004; Vergara et al., 2014) 

because their effective use necessitates the characterization of their uncertainties at fine spatio-

temporal scales (e.g. Anagnostou, 2004; Huffman et al., 2007; Joyce et al., 2004; Munchak & 

Skofronick-Jackson, 2013; Tian et al., 2007; Sorooshian et al., 2011; Kirstetter et al. 2018). However, 

the extensive body of literature on satellite precipitation validation generally provides limited insight 

in their error characteristics for several reasons. Common assessment practices typically use a 

surface-based precipitation reference and bulk comparison metrics (e.g. correlation, bias) to assess 

performances over a given spatial and temporal domain. First, an objective assessment requires an 

independent precipitation reference often derived from ground-based sensors, usually gauges. 

Independence may not be verified when gauges already incorporated in the satellite product are re-

used to assess its accuracy. Second, metrics such as correlation, bias, contingency statistics are often 

applied without necessarily checking the relevance of such criteria. For example, the definition of 

bias may be ambiguous as it can be defined as an additive satellite QPE-to-reference difference or a 

multiplicative difference (ratio), sometimes based on conditional (positive) precipitation values. The 

linear correlation is generally insufficient to describe the non-linear and heteroscedastic dependence 

structure between the satellite QPE and the reference. Third, the satellite product is often assumed to 

be consistent and display homogeneous performances over the spatial and temporal domain of 

comparison. Bulk metrics (correlation, bias, contingency, etc.) are computed over samples actually 

gathering a variety of precipitation characteristics (intermittency, typology, rates) for which the 

satellite algorithm (or combination of algorithms for merged products) is likely to behave differently. 

More generally the comparison is always performed with precipitation estimates ambiguously 

derived from the satellite sensor observation through the retrieval algorithm and associated 

assumptions. Individual PMW/IR retrievals are underconstrained by nature and sensitive to 

unobserved atmospheric parameters (Stephens and Kummerow, 2007). The combined products 

inherit the varying PMW/IR performances and create additional uncertainties with temporal/spatial 

resampling. Hence bulk error metrics depict averaged space/time properties while the errors tend to 

be non-stationary and sensitive to parameters not accounted for in the assessment formulation. Fourth, 

the representativeness of any overall satellite QPE assessment or error model is confined to the time 

and space domain over which it is performed. It tends to be specific to the satellite instrument (e.g. 

resolution), the retrieval algorithm (and associated version), the space-time-scale and the accuracy of 
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the reference, with limited applicability for other precipitation regimes, regions, products, etc. As a 

result, the actual benefit of these analyses to satellite precipitation users and developers is limited. 

Integrated multi-sensor assessment is necessary to track the origin of uncertainties and their 

propagation throught various Level-2 active, passive then Level-3 merged satellite precipitation 

estimates. More informative assessment and information to algorithm improvement can be gained by 

stratifying (conditioning) the assessment according to relevant factors driving the state of the satellite 

estimation error. Hence targeting the most significant factors is essential to characterize uncertainties 

in satellite QPE and lead to a generalization of their assessment.  

Generic issues have been identified for both LEO active and passive and subsequent gridded satellite-

based precipitation retrieval algorithms and motivate ongoing and future research such as variability 

of the precipitation inside the resolution volumes (Non-Uniform Beam Filling effects - NUBF), 

precipitation typology and phase. In this chapter we focus on the impact of precipitation typology. 

While sensors measurements from ground-based radars, spaceborne radar and PWM and IR sensors 

differ in terms of frequency, polarization state, beam geometry, and incidence angle, they are 

physically consistent through the identification of hydrometeors and estimation of particle size 

distribution (PSD). The precipitation retrieval errors caused by the variability in the cloud vertical 

structure and the observed signal (e.g. reflectivity for radars, brightness temperatures for PMW and 

IR sensors)-to-precipitation relationship are related due to their dependence on the underlying 

precipitation microphysics. Precipitation type is a fundamental characteristic that drives the 

interpretation of the observed signal for precipitation estimation through the particle size distribution 

(PSD), hydrometeors properties and their evolution through precipitation microphysical processes. 

The satellite algorithms’ capabilities to classify precipitation systems (e.g. Grams et al., 2016) 

therefore present great potential for the generalization of the uncertainty characteristics, specifically 

at coarser scales. Within the Global Precipitation Measurement (GPM) mission 

(https://www.nasa.gov/mission_pages/GPM/main/; Hou et al., 2014; Skofronick-Jackson et al., 

2017), precipitation type is currently used only to constrain the space-borne radar precipitation 

retrievals. Since subsequent passive sensor retrievals and combined precipitation products do not 

include this fundamental characteristic, there is an interest in documenting how the absence of 

constraints on precipitation type impacts these precipitation products.   

Targeting significant uncertainty factors for a quantitative and detailed characterization necessitate 

working at the primary satellite QPE scale for LEO (Level 2) through gridded precipitation products 

(Level-3). This task is often impaired by the difficulty of obtaining a consistent reference precipitation 

commensurate with the various scales of such products. To the best of our knowledge, no satellite 

assessment has been designed at the fine space–time resolutions of these primary satellite QPE scales. 

We propose an original framework to tackle these challenges. The problem is addressed by comparing 

the satellite QPE overall accuracy with respect to an external, independent reference precipitation 

product adapted to each type of space-based sensors and product. In order to match the resolution of 

various precipitation estaimtes, the primary resolution of the reference needs to finer than any satellite 

footprint or resolution. The reference has also to perform better than the space sensors regarding 

precipitation detection to ensure proper evaluation, and a correct reference precipitation classification 

(type) is required to target the physical factors contributing to erroneous satellite precipitation 

retrievals. A high-resolution surface rainfall product is used as a consistent reference across scales 

for robust comparison and evaluation over the CONUS (Figure 1.1.1). It is derived from the ground 

radar-based Multi-Radar/Multi-Sensor designed at the NOAA National Severe Storms Laboratory 

and the University of Oklahoma. Joint precipitation observations with the NEXRAD ground-based 

radar network and from space sensors provide unique opportunities for comparison of QPE as 

estimated from various sensors. Measurements from NEXRAD and GPM are physically consistent 

through the identification of hydrometeors and estimation of particle size distribution. We build on 

previous research performed on the ground-based MRMS data at unprecedented high resolution and 

accuracy and the high-resolution spaceborne precipitation measuring techniques to analyze the 

impact and propagation of uncertainty related to precipitation typology from the GPM Dual-
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frequency Phased Array Radar (DPR) to passive sensors such as GPM Microwave Imager (GMI) to 

the gridded Integrated Multi-Satellite Retrievals for GPM (IMERG). 

The aim of this study is to propose a novel approach for satellite QPE assessment by addressing the 

propagation of uncertainties related to precipitation type from LEO platforms through combined 

precipitation products. End-to-end integrated error quantification tracking the uncertainty from 

Level-2 through Level-3 precipitation products is particularly relevant for understanding the origin 

and impact of uncertainty. It addresses the critical problem that precipitation algorithm developers 

and users need more than just an overall assessment to adequately cope with the varying performances 

of precipitation products. To the best of our knowledge this approach offers, for the first time, 

uncertainty assessment across scales and products. It advances practices in the evaluation of remote 

sensing precipitation estimates by consistently analyzing precipitation estimation across levels. The 

focus on precipitation types is particularly relevant in the context of the current GPM mission and 

assesses the potential benefit of introducing precipitation type constrains to the PMW Level-2 QPE 

and subsequent Level-3 precipitation. Working at the primary satellite QPE scale benefits from the 

explicit integration of factors directly impacting the uncertainty. This framework is tested over the 

conterminous United States (CONUS) covered by Weather Surveillance Radar – 1988 Doppler 

(WSR-88D) radar data (Figure 1.1.1). This study uses a period of two years (from 2014 to 2016) of 

satellite and ground-based precipitation observations to obtain representative samples characterizing 

precipitation for various conditions of climatology, occurrence, type and rate. 

The DPR, GMI, IMERG data and steps required to refine the MRMS ground-based precipitation to 

arrive at a consistent reference precipitation across scales used for comparisons are presented in 

section 2. Section 3 assesses the impact of precipitation typology on DPR, GMI and IMERG 

precipitation retrievals. The chapter is closed with concluding remarks in section 4. 

 

1.1.2 Spaceborne and ground-based precipitation datasets 
 

Following the Tropical Rainfall Measuring Mission (TRMM), the Global Precipitation Measurement 

mission led by NASA and JAXA aims at providing a comprehensive description of precipitation at 

the global scale (Hou et al. 2014). It consists of a core satellite in non-sun-synchronous orbit to serve 

as a physics observatory to gain insights into precipitation systems and as a calibration reference to 

unify precipitation estimates from a constellation of research and operational satellites involving 

passive microwave (PMW) sensors. The core satellite carries the Ku/Ka-band Dual-Frequency 

Precipitation Radar (DPR) measuring reflectivity profiles and the GPM microwave radiometer (GMI) 

measuring brightness temperatures (𝑇𝑏). The overlapping Ku- and Ka-band measurements provide 

estimates of the shape and size of hydrometeors and higher sensitivity for detection of light rain and 

snow than the single frequency radar capabilities of the TRMM Precipitation Radar (PR; Ku-band). 

The GMI extends the range of frequencies on the TRMM Microwave Imager to provide brightness 

temperatures covering the range of frequencies on GPM constellation radiometers. Precipitation 

estimates from the constellation sensors enable the creation of a quasi-global-scale and gridded 

merged precipitation product named Integrated Multi-Satellite Retrievals for GPM (IMERG).  

For each precipitation product (DPR, GMI, or IMERG), the satellite rainfall estimate 𝑅(𝐴, 𝑇) is 

compared with a reference rainfall 𝑅𝑟𝑒𝑓(𝐴, 𝑇) over a spatial domain 𝐴 (satellite footprint or pixel for 

DPR and GMI or IMERG, respectively) over the time period 𝑇 (snapshot or 30-min timescale for 

DPR and GMI or IMERG, respectively). The reference rainfall 𝑅𝑟𝑒𝑓(𝐴, 𝑇) is a proxy of the true (and 

unknown) area-averaged rainfall rate over the same area  𝐴 and time period  𝑇. While we do not know 

the truth at ground we need to correctly assess the reference’s uncertainties for a reliable quantitative 

comparison of precipitation products. 

 

1.1.2.1 Dual-frequency Phased Array Radar 
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The DPR version 5 product used in this work is described in Iguchi et al. (2009, 2010). It provides 3-

D reflectivity and 2-D precipitation rate fields at ground. The product classifies snowfall and rain into 

stratiform and convective (Awaka et al., 2007). The DPR algorithm relies on a hybrid attenuation 

correction method that combines the surface reference technique and Hitschfeld-Bordan method 

(Iguchi et al. 2000; Meneghini et al. 2000, 2004; Takahashi et al. 2006). It uses models to describe 

the hydrometeor particle size distributions (PSD) depending on the precipitation type, which are 

adjusted to match the observed dual-frequency Path Integrated Attenuation. The DPR is a well-

calibrated and very stable radar. The scan geometry and sampling rate of the DPR lead to footprints 

spaced approximately 5 km cross- and along-track, over 245-km and 120-km wide swaths at Ku-band 

and Ka-band respectively, centered within the 885-km-wide GMI swath. DPR observations provide 

a more direct measurement of the precipitation rates than GMI. The minimum theoretical detectable 

precipitation rate by the DPR is fixed by its sensitivity and is better than 18 dBZ or 0.5 mm.h-1, at 

Ku-band and around 12 dBZ at Ka-band or about 0.2 mm.h-1. Through the combined DPR and GMI-

based retrievals, the DPR may be regarded as a “calibrator” of the PMW precipitation estimates, 

while the passive sensors, already a component of several polar-orbiting observatories (e.g., SSMI, 

SSMI-S, AMSR-2), provide more extensive sampling of precipitation events over the globe. 

Uncertainty sources affecting the DPR-based precipitation estimates propagate into PMW estimates. 

DPR observations provide a more direct measurement of the precipitation rates than PMW sensors. 

However similarly to the TRMM-PR primary errors in rainfall retrievals are mainly attributed to 

attenuation correction of the radar signal and conversion from reflectivity-to-precipitation intensity. 

Both involve incorrect physical assumptions related to snowfall and convective versus stratiform 

rainfall classification and assumed particle size distribution. Contamination by surface backscatter 

and Non-uniform beam filling (NUBF) are other challenges in correctly interpreting the radar signal 

into precipitation (Wolff and Fisher, 2008; Iguchi et al. 2009). Retrieval of precipitation rate requires 

knowledge of precipitation type, on which the PSD depends (Battan 1973; Awaka et al. 2007), and 

which has profound impacts on the accuracy of the quantitative retrievals. It drives the vertical model 

of microphysics used to correct for the attenuation of the DPR signal, to estimate the vertical profile 

of reflectivity, and the rainfall rate at ground (Iguchi et al. 2009). Satellite precipitation classification 

relies partly on subjective analysis based on interpretation of reflectivity spatial variability. While the 

DPR algorithm classifies rain into three categories: convective, stratiform and others, there is actually 

a mixture of processes and types within the footprint (Kirstetter et al. 2015). Classification capabilities 

and their impact have not been evaluated extensively. 

Our dataset covers 30 months (June 2014 - October 2016) of satellite overpasses over the CONUS. 

The variable precipRateESurface (estimated surface rain) from the matched scan GPM-DPR/Ka-Ku 

(hereafter DPR) was extracted from the DPR files as the DPR surface QPE. The use of gridded 

MRMS data for reference provided a large sample size totaling 1,012,151 non-zero DPR-reference 

pairs including 798,155 pixels classified as stratiform by the DPR and 196,801 convective pixels. 

Along with the GPM-DPR/Ka-Ku, other products used in this study are the GPM-DPR/Ku and GPM-

DPR/Ka. A TRMM-PR dataset is also used for comparison, covering the period from March to 

October 2011 (Kirstetter et al. 2015).  

 

1.1.2.2 GPM Microwave Imager 

 

The GPM Microwave Imager (GMI) measures brightness temperatures 𝑇𝑏 at thirteen microwave 

frequencies ranging from 10 GHz to 183 GHz, which are used by the Goddard Profiling Algorithm 

(GPROF) to estimate surface rain rates and vertical hydrometeor profiles (Kummerow et al. 2017). 

The GPROF uses a Bayesian approach and an a priori database populated with combined DPR and 

GMI-based precipitation. Note the DPR precipitation types are inputs for the combined DPR and 

GMI-based precipitation retrievals hence impact the GPROF a priori database.  

Sources of systematic errors in GPROF are related to the a priori database and ancillary information 

used to subset the a priori database. Over land the hydrometeor information is entangled with highly 
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variable surface characteristics in 𝑇𝑏. The main information used for the retrieval comes from the 

scattering channels because of the radiometrically warm land surface and variable surface emissivity. 

As the 𝑇𝑏 at these frequencies are mostly sensitive to the scattering processes in the higher regions of 

the cloud (Wilheit et al. 2003), the available information for the retrieval is not directly related to 

surface precipitation (the correlation between ice aloft and surface rainfall is variable). Hence, there 

are particular needs for a detailed assessment of GPROF performances especially regarding the 

quantitative retrieval (Gopalan et al., 2010). Currently GPROF does not condition precipitation 

retrievals by precipitation types (convective/stratiform), although recent works indicate that 

atmospheric stability and precipitating system structure impact its performance (Petkovic et al. 2017, 

2018; Hendersen et al. 2017).  

The GPM constellation includes a number of satellites with GMI-like radiometers or microwave 

sounding instruments, including the DMSP F19 and F20 (U.S.; imager), GCOM-W1 (JAXA; 

imager), Megha–Tropiques (CNES/ ISRO; sounder), MetOp (EUMETSAT; sounder) and NOAA 19 

(NOAA; sounder) satellites. The GPM core satellite sensors provide self-consistent radiometric 

observations across the constellation. The DPR-calibrated GMI is, in turn, used as the calibrator for 

other passive microwave sensors as GPROF is consistently applied on the GPM constellation PMW 

sensors that collectively enable the creation of quasi-global-scale combined precipitation products. 

Thus, DPR and GMI have fundamental impacts on satellite-based precipitation estimates from other 

low Earth-orbiting passive microwave measurements and a number of satellite-based, high-resolution 

precipitation products.  

The GPROF-GMI version 5 product is used here. The datasets for GMI covers the same period as for 

DPR (from June 2014 to October 2016) with a sample size totaling 3,782,453 non-zero GPROF-

GMI-reference pairs. 

 

1.1.2.3 Integrated Multi-satellitE Retrievals for GPM 

 

The radiometer-based precipitation estimates impact the merged precipitation product IMERG by 

creating a uniformly gridded precipitation product at the global scale. IMERG blends complementary 

satellite-based precipitation estimates, i.e. from IR and PMW sensors (Huffman et al., 2014). IR data 

have a more indirect relation with surface precipitation occurrence and rates than PMW observations 

(Kirstetter et al. 2018). IMERG take advantage of the complementary more accurate GPROF 

retrievals from all constellation sensors and more frequent IR-based Precipitation Estimation from 

Remotely Sensed Information using Artificial Neural Networks-Cloud Classification System 

algorithm (PERSIANN-CCS; Hong et al., 2004) to produce near-real time estimates at high spatial 

and temporal resolution (0.1°; 0.5h) with quasi-global coverage. To increase their coverage PMW 

estimates are morphed with the Climate Prediction Center (CPC) Morphing-Kalman Filter using the 

motion of clouds from infrared imagery (Joyce et al., 2004) before being merged with PERSIANN-

CCS precipitation. IMERG has three separate products called Early with 4h latency used e.g. for 

flood and landslide monitoring, Late with 12h latency for drought monitoring and agricultural 

applications, and Final with 2 months latency for research applications. The IMERG Early and Late 

products are adjusted to climatological sets of coefficients and IMERG final product to gauge 

observations.  

Whereas IMERG provides an approach to high-resolution precipitation estimation, uncertainty 

increases with resolution due to the combined effect of higher variability of precipitation and more 

indirect information provided by higher-resolution IR relative to PMW remote sensing. While fine-

resolution quantitative precipitation estimates (QPEs) are needed for many applications, they come 

at the expense of degraded accuracy. Satellite estimates are currently limited in capturing extreme 

precipitation events often related to convective precipitation, which impedes short-term warning 

systems based on satellite precipitation.  

IMERG version V05 Late is employed in this study. The datasets for IMERG covers the same period 

(from June 2014 to October 2016) with a sample size totaling 11,796,935 non-zero IMERG-reference 
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pairs. The information about the data used in this study is archived in the following fields in the 

IMERG files: precipCal for the merged products, HQprecipitation for the MW component, and 

IRprecipitation for the IR component (Huffman et al., 2014). 

 

1.1.2.4  Ground-based reference precipitation 

 

Over the U.S., Kirstetter et al. (2012, 2014) set up a framework to compare the GPM constellation 

sensors using the ground-based Multi-Radar/Multi-Sensor (MRMS) system (Zhang, 2016). It 

provides an independent reference for space-based precipitation products regarding resolution, 

accuracy and sample size, and a consistent database in time and space up to 55° in latitude including 

various geographical (plains, mountains) and meteorological (subtropical to midlatitudes) conditions 

for robust comparison (Fig. 1.1.1). To perform end-to-end uncertainty characterization the ground 

reference derived from MRMS is designed to bridge the scales of multiples precipitation 

measurements from local gauges to regional ground-based radar coverage to satellite DPR and GMI 

field of view (FOV) and swaths to the resolution of IMERG gridded products. It combines the fine 

spatial and temporal depiction of precipitation variability by ground-based radars with the 

quantitative accuracy of gauges and match this information at the scale of the satellite precipitation 

estimates.  

The NOAA/NSSL and University of Oklahoma (OU) MRMS system (https://mrms.nssl.noaa.gov/) 

incorporates data from all S-band polarimetric WSR-88D radars and automated rain gauge networks 

in the CONUS (Zhang et al. 2016). The WSR-88D radars’ sensitivity (about -5dBZ at a distance of 

50 km) allows provides high performance for rainfall detection at least at confined ranges from the 

radar (e.g. < 75 km) compared to satellite sensors. At S-band the radar signal is relatively 

unattenuated. Dual-polarization improves the radar data quality and enables targeting specific 

microphysical situations where the ground-radar estimates are the most reliable (Ryzhkov et al., 2005, 

2014; Chandrasekar et al., 2008). The MRMS system generates and high-resolution 3-D reflectivity 

mosaic grids and a suite of severe weather and QPE products at a 0.01° horizontal resolution and 2-

minute update cycle: rain types, precipitation phase, rain rate, freezing level height, etc. The 

geographical extension and time period covered by MRMS compiles a broad sample of precipitation 

situations (stratiform, convective, orographically enhanced precipitation, etc.) from a stable and 

uniform observation system (Kirstetter et al. 2012, 2014). At hourly time step, MRMS adjusts radar 

estimates with automated rain gauge networks using a spatially variable bias multiplicative factor. A 

radar quality index (RQI) is produced to represent the radar QPE uncertainty associated with 

reflectivity changes with height and near the melting layer (Zhang et al. 2011).  

One should note that it is not possible to “validate” satellite precipitation estimates in a strict sense 

because independent precipitation estimates with no uncertainty do not exist. Yet trustworthy values 

of the MRMS rainfall estimates within the satellite pixel are needed to evaluate the satellite estimates. 

A reference matched to satellite sampling properties is derived for Level-2 and Level-3 precipitation. 

Postprocessing complements procedures already in place within the MRMS system to further refines 

and standardize the reference dataset. Several quality control steps are applied in order to use ground 

radar data only where confidence in skill is very high and artifacts (beam blockage due to mountain, 

range effects, etc.) are essentially minimized and deemed negligible. Blending techniques build on 

the locally reliable rain gauge measurement and the space-time resolution of the radar (Kirstetter et 

al. 2012, 2013a). A conservative approach is followed by (i) filtering out instances when the radar 

and gauge have significant quantitative disagreement (i.e. radar- rain gauge ratios outside of the range 

[0.1-10]) and (ii) by retaining only the best measurement conditions (i.e., no beam blockage and radar 

beam below the melting layer) using the RQI product as described in Kirstetter et al. (2012, 2013a). 

These data quality controls standardize the reference product and filter out the less trustworthy 

MRMS estimates, e.g. radar measurements at far range and in the Intermountain West. These 

improvements may not screen out all possible errors in ground-based radar estimates. Kirstetter et al. 

(2012) showed the increased consistency between TRMM-PR and the MRMS-based reference 
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following sequential MRMS data quality control steps including bias correction using rain gauges 

and filtering using the RQI product. This finding highlights the importance of matching the scales 

and refining the accuracy of the reference dataset as much as possible before reaching meaningful 

conclusions about the satellite sensor’s accuracy. 

Because of the highly variable precipitation processes, the resolution of the ground reference should 

match the satellite products resolution to reduce noise when comparing satellite retrievals to 

𝑅𝑟𝑒𝑓(𝐴, 𝑇). The spatial resolution of MRMS is finer than any satellite sensor, allowing the resolution 

of the reference to be specifically adapted to each product using spatial and temporal sampling 

techniques (Kirstetter et al. 2012). To determine the reference rainfall 𝑅𝑟𝑒𝑓(𝐴, 𝑇) over the sensor 

pixel 𝐴 and time period 𝑇, a block-MRMS precipitation pixel matches each sensor/product pixel. For 

Level-2 products the MRMS products closest in time to the GPM core satellite local overpass 

schedule time are used. The time difference between the MRMS data and satellite data (max 1 min.) 

could add random noise (but not bias) in the comparison, although other factors like the difference in 

resolution may have more significant impacts. For Level-3 products the MRMS products are 

aggregated to match the grid spacing at 0.1° and the 30-min temporal accumulation. All of the MRMS 

pixels (rainy and non-rainy) found within a footprint sensor or pixels are located to compute 

unconditional mean rain rates for the MRMS at the sensor pixel scale. When more than 25% of 

MRMS pixels have missing values, the data pair is discarded from the comparison. Matched 

DPR/GMI/IMERG and 𝑅𝑟𝑒𝑓(𝐴, 𝑇) estimates only exist at locations where both the satellite and 

ground radars have taken actual observations. The satellite products remain untouched, hence 

preserving their characteristics: the total rainfall amount, the total rainy area, the 

convective/stratiform contribution and the PDF shapes, and may therefore be compared to the 

reference at once. An extended description of the reference precipitation regarding types of rainfall 

within the satellite sensor’s FOV or pixel grid is assessed through a Convective Percent Index 

quantifying the volume contribution of convective rainfall to 𝑅𝑟𝑒𝑓(𝐴, 𝑇). The CPI is expressed in 

percent between 0% (purely stratiform rainfall within the FOV or pixel) to 100% (purely convective 

rainfall). CPI values betweem 0% and 100% indicate mixed precipitation types. Given its spatial 

extension and native resolution, the MRMS products provide large samples of matched ground-

satellite comparison pairs (Kirstetter et al. 2012; 2013a,b; 2014; 2015a,b; 2018). This allows judicious 

selections of data pairs to monitor the comparison quality. All significant rain fields observed 

coincidentally by DPR and GMI overpasses and IMERG and the NEXRAD radar network from June 

2014 to October 2016 are collected.  

 

 
 

Figure 1.1.2. Comparison framework across Level-2 and Level-3 satellite QPE to bridge from the 

GPM core satellite to IMERG. 

 

Given the highly variable precipitation processes, a consistent reference derived from MRMS is 

instrumental to bridge in-depth characterization across Level 2 constellation sensors from the GPM 

core to the constellation to IMERG (Level 3), directly assessing the influence of precipitation types. 
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1.1.3 Impact of precipitation typology on satellite-based active, passive and 

merged precipitation estimation 
 

Precipitation error characterization is conditioned on precipitation types by taking full advantage of 

the MRMS insights into precipitation across scales (from sub-satellite Level-2 FOV to IMERG grid). 

The state dependency of the error is diagnosed by stratifying the error according to the CPI across 

sensors and products.  

 

1.1.3.1 DPR QPE and precipitation typology 

 

The DPR algorithm uses different reflectivity-to-precipitation rate relationships in the 

convective/stratiform profiling components. The CPI continuous classification provides a fine 

assessment of the DPR categorical classification and its impact on rate retrievals. Figure 1.1.3 shows 

the reference and DPR rainfall rate distributions as functions of the convective contribution CPI. All 

coincident and collocated DPR values are considered and sorted according to the reference sample. 

Figure 1.1.3 shows a shift toward higher rainfall rates as CPI increases, as we would expect. Despite 

these consistencies, we note rain rate distributions indicating higher rainfall rates for the reference 

compared to those of DPR (i.e. Figure 1.1.3(a) compared to 1.1.3(b)). The dynamic ranges of rain 

rate distribution are greater for the reference than for the DPR. Such differences, which will 

undoubtedly result in some bias, could be related to the DPR reflectivity-to-precipitation 

relationships. The difference is larger for convective contribution > 80%, e.g. for CPI = 90% the 

conditional reference median rate is 15 mm.h-1 while the DPR median rate is 7 mm.h-1. Apparently, 

the DPR profiling algorithm lacks sufficient dynamics to deal with extreme rainfall amounts. 

 
Figure 1.1.3. Reference (left) and DPR (right) rainfall rate distributions (mm.h−1) as functions of the 

CPI (%). The thick black line represents the median (50% quantile), the dark grey-shaded region 

represents the area between the 25 and 75% quantiles, the light grey-shaded region represents the 

area between the 10 and 90% quantiles.  

 

The precipitation type impacts the discrepancies of the DPR relative to the reference. In order to 

provide some insight into the influence of precipitation typing on the DPR error, the departures of 

DPR estimates from the reference values are analyzed as functions of the convective contribution on 

a point-to-point basis. The residuals are defined as the difference between the reference rainfall (𝑅𝑟𝑒𝑓) 

and the satellite estimates (𝑅): 𝜖 = (𝑅 − 𝑅𝑟𝑒𝑓). Only pairs for which 𝑅𝑟𝑒𝑓 and 𝑅 are both nonzero 

are considered in the calculations, so as to remove any discrepancies related to detectability. Figure 

1.1.4 shows the residuals as a function of the convective contribution CPI. All coincident and 

collocated PR values are considered and sorted according to the reference sample. 
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Figure 1.1.4. DPR residual distributions (mm.h−1) as functions of the CPI (%). The thick black line 

represents the median (50% quantile), the dark grey-shaded region represents the area between the 

25 and 75% quantiles, the light grey-shaded region represents the area between the 10 and 90% 

quantiles. 

 

The conditional PDFs of residuals 𝜖 present a high conditional shift from the 0 line and a large 

conditional spread. The spread increases with CPI, indicating larger uncertainties in quantifying the 

reference convective rainfall. The panel shows also a tendency to overestimate rain rates for low CPI 

values (CPI < 30%, the conditional median of residuals is positive), a shift toward lower rainfall rates 

as CPI increases, and rain rates underestimation for CPI values higher than 50% (negative median of 

residuals). As an example, the DPR model overestimates at CPI = 20% (mainly stratiform) rain rates 

with an occurrence of 55% and underestimates at CPI = 100% (convective) rain rates with an 

occurrence of 80%.  

 

 
 

Figure 1.1.5. Conditional bias of spaceborne radars relative to the reference as a function of the CPI 

(%) for the GPM-DPR/Ku (black), GPM-DPR/Ka (blue), GPM-DPR/Ka-Ku (red) and TRMM-PR 

(grey). 

 

Because of the asymmetric density of residuals and for a better representativity and intercomparison 

across products, we consider the conditional mean relative bias of the residuals (𝑀𝑅𝐸 = 100
𝑅𝑟𝑒𝑓̅̅ ̅̅ ̅̅ ̅−�̅�

𝑅𝑟𝑒𝑓̅̅ ̅̅ ̅̅ ̅

 in percent) to compare the systematic error components. Figure 1.1.5 shows the conditional biases as 

a function of the CPI for GPM-DPR/Ku, GPM-DPR/Ka, GPM-DPR/Ka-Ku and TRMM-PR. The 

conditional biases are distinct according to the satellite-based radar product but present also similar 

features. Except for GPM-DPR/Ka, all biases are slightly negative and within 10% for CPI=0% 
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(stratiform precipitation). These biases display an abrupt shift toward higher values (e.g. +50% for 

TRMM-PR, +23% for GPM-DPR/Ku and +11% for GPM-DPR/Ka-Ku) for CPI shifting from 0% to 

3%. This might be due to the satellite profiling algorithms interpreting this mixed microphysics within 

the FOV with the stratiform parameterization. For CPI < 20% the GPM-DPR/Ka-Ku bias covers a 

narrower range (from -10% to +11%) than TRMM-PR and GPM-DPR/Ku. It probably illustrates the 

benefits of using two frequencies to interpret the vertical structure of PSD and hydrometeor properties 

and estimate surface precipitation rates. All biases decrease with CPI and reach negative values for 

CPI>80%. Apparently, all profiling algorithms lack sufficient dynamics to deal with extreme rainfall 

rates. In addition to the reflectivity-to-precipitation rate relationships, the consistent underestimation 

at high rainfall rates associated with high CPI values could also be related to the attenuation correction 

algorithm, or even total loss of the radar signal, specifically for the GPM-DPR/Ka as the signal at this 

frequency is more attenuated than at Ku-band. The TRMM-PR bias presents a shift towards higher 

values compared to GPM-DPR and present relatively limited biases for high CPI values (biases within 

50% for CPI>70%), which is consistent with the design and application of the TRMM-PR profiling 

algorithm on intertropical precipitation. Note that the PR eatimates surface rain rates over the 

southern US up to a latitude of 37°N, which is dominated by deep convection during the warm season. 

The GPM-DPR algorithms display relatively limited biases for light CPI values (biases within 25% 

for CPI<50%) consistent with their application to mid-latitude precipitation. GPM-DPR/Ka shows 

systematic underestimation (biases ranging from -77% to -35%) possibly related to the strong 

attenuation of the signal at Ka-band.  

To summary the categorical classification of precipitation types in the space-borne radar algorithms 

does not handle mixed types and microphysics within the FOV and appear to lack of sufficient 

dynamics to deal with extreme rainfall amounts. 

 

1.1.3.2 GMI QPE and precipitation typology 

 

Currently GPROF does not condition precipitation retrievals by precipitation types, although recent 

works indicate that atmospheric stability and precipitating system structure impact its performance 

(Petkovic et al. 2017, 2018; Hendersen et al. 2017). However GPROF-GMI quantifies the convective 

contribution in precipitation rate retrievals (CPIGPROF). CPI provides a reliable assessment of the 

output convective contribution CPIGPROF inside a passive sensor FOV. We focus here on cases when 

both GPROF-GMI and the reference precipitation are greater than zero over the CONUS dataset, so 

that precipitation detection is not a factor. 

Figure 1.1.6 shows the cumulative distributions of the reference and GPROF-GMI convective 

contributions. The reference stratiform precipitation (CPI=0%) dominates at 81% the reference 

precipitation typology in terms of the fraction of type occurrence, while the fraction of 

convective/stratiform mix (0% < CPI < 80%) is 15%, and the fraction of primarily convective 

precipitation (CPI > 80%) is only 4%. The GPROF-GMI cumulative distribution is significantly 

different as stratiform precipitation (CPI=0%) is not frequently retrieved (<1%), the fraction of 

convective/stratiform mix is significantly higher than the reference at 96%, and the fraction of 

primarily convective precipitation (CPI > 80%) is 4%. While the Bayesian methodology in the 

GPROF-GMI yields estimates that are well constrained as designed from the a-priori database, this 

approach apparently doesn’t accommodate precipitation types.  
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Figure 1.1.6. Reference and GPROF-GMI cumulative distribution of convective contribution. 

 

A conditional error analysis is applied to target biases over different precipitation type conditions. 

Figure 1.1.7 illustrates GPROF-GMI residuals as a function of the convective contribution CPI. All 

coincident and collocated GPROF-GMI values are considered and sorted according to the reference 

sample. 

 

 
 

Figure 1.1.7. GPROF-GMI residual distributions (mm.h−1) as functions of the CPI (%). The thick 

black line represents the median (50% quantile), the dark grey-shaded region represents the area 

between the 25 and 75% quantiles, the light grey-shaded region represents the area between the 10 

and 90% quantiles. 

 

The systematic error is extracted as the conditional median of residuals for a better representativity 

given the asymmetric density of residuals. The random error is assessed with the interquantile (90% 

- 10%) value. Both systematic and random errors are displayed in Figure 1.1.8. Similarly to the DPR 

(Fig. 1.1.4), the conditional PDFs of residuals 𝜖 present a high conditional shift from the 0 line and a 

large conditional spread. The spread increases with CPI, indicating larger uncertainties in quantifying 

the reference convective rainfall. It is confirmed with the random error increasing with CPI (Fig. 

1.1.8). As for DPR for stratiform situations (CPI = 0%), the systematic error is low, and the random 

error minimal. Systematic error displays an abrupt shift toward higher values for CPI from 0% to 3%. 

There is a systematic overestimation of rain rates for low CPI values (CPI < 25%, the conditional 

median of residuals is positive in Fig. 1.1.8), a shift toward lower rainfall rates as CPI increases, and 

rain rates underestimation for CPI values higher than 50% (negative median of residuals, see Fig. 

1.1.8). As an example at CPI = 20% (mainly stratiform) the GPROF-GMI retrieval overestimates rain 

rates with an occurrence of 55%, and at CPI = 100% (convective) it underestimates rain rates with an 

occurrence of 85%. The similarities between the GPROF-GMI and DPR residuals as functions of CPI 
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(Figures 1.1.4 and 1.1.7) may be caused by the propagation of precipitation type related errors from 

the DPR profiling algorithm to the GPROF-GMI retrieval database. In particular DPR interprets 

mixed microphysics within the FOV with a specific parameterization type (e.g. stratiform) and lacks 

sufficient dynamics to deal with extreme rainfall amounts.  

To investigate the potential improvement in QPE if GPROF-GMI correctly estimates the convective 

contribution, the CPI difference 𝜖𝐶𝑃𝐼 = 𝐶𝑃𝐼𝐺𝑃𝑅𝑂𝐹 − 𝐶𝑃𝐼 is computed. A positive (negative) 𝜖𝐶𝑃𝐼 

indicates that the GPROF-GMI retrieval is more convective (stratiform) than the reference. Figure 

1.7.8 shows the GPROF surface precipitation mean relative bias and correlation as functions of 𝜖𝐶𝑃𝐼. 

 

 
 

Figure 1.1.8. GPROF-GMI (left) systematic part –conditional median - and (right) random part –

interquantile 10%-90%- of error. 

 

The precipitation rate correlation between GPROF-GMI and the reference displays a strong 

dependence with 𝜖𝐶𝑃𝐼, taking on lower values when GPROF-GMI and the reference precipitation 

types are significantly different. The correlation is above 0.65 when 𝜖𝐶𝑃𝐼 ranges from -1% to +11% 

and maximizes at 0.71 when 𝜖𝐶𝑃𝐼 is +8%. The mean relative bias of GPROF-GMI increases with 𝜖𝐶𝑃𝐼 

and shows underestimation (overestimation) when GPROF is more stratiform (convective) than the 

reference, as one can expect.  

 

 
 

Figure 1.1.9. GPROF-GMI (left) correlation and (right) relative bias as a function of convective 

contribution difference between GPROF-GMI and the reference. 

 

Considering that GPROF-GMI retrieves much less stratiform precipitation than the reference (Fig. 

1.1.6), it can partly explain the positive precipitation rate bias for reference CPI < 30% (Fig. 1.1.8). 
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The bias is 0 for the 𝜖𝐶𝑃𝐼 = +8%, which is also where the correlation maximizes. Improving both the 

bias and correlation is noteworthy. Ciach et al. (2000) show that postprocessing optimization of a 

precipitation product relative to a reference can be done by improving the bias (systematic error) or 

the mean square error (random error), but not both. Matching the precipitation types output from 

GPROF-GMI shows improvements in both bias and correlation, which demonstrate the potential 

benefit in conditioning precipitation rate retrievals by precipitation types in the algorithm. 

 

1.1.3.3 IMERG and precipitation typology 

 

To investigate the impact of precipitation types on IMERG, Figure 1.1.10 displays the residuals of 

IMERG estimates relative to the reference as functions of the convective contribution on a pixel-to-

pixel basis. The residuals are consistently defined as the difference between the IMERG estimates 

(𝑅) the reference rainfall (𝑅𝑟𝑒𝑓): 𝜖 = (𝑅 − 𝑅𝑟𝑒𝑓) at the resolution [0.1°; 30-min]. Only pairs for 

which 𝑅𝑟𝑒𝑓 and 𝑅 are both nonzero are considered in the calculations, so as to remove any 

discrepancies related to detectability. All coincident and collocated IMERG values are considered 

and sorted according to the reference sample. 

 

 
 

Figure 1.1.10. IMERG residual distributions (mm.h−1) as functions of the CPI (%). The thick black 

line represents the median (50% quantile), the dark grey-shaded region represents the area between 

the 25 and 75% quantiles, the light grey-shaded region represents the area between the 10 and 90% 

quantiles. 

 

Consistent with DPR and GPROF-GMI, IMERG conditional PDFs of residuals 𝜖 present a high 

conditional shift from the 0 line and a large conditional spread. The spread increases with CPI, 

indicating larger uncertainties in quantifying the reference convective rainfall at the IMERG scale. 

The panel shows a shift toward lower rainfall rates as CPI increases, and rain rates underestimation 

for CPI > 50% (negative median of residuals). It illustrates the propagation of the GPROF biases with 

respect to precipitation types into IMERG. 

Further insight is provided in Figure 1.1.11 showing the systematic error (median of residuals) and 

random error (interquantile 90%-10%) of the PMW and IR components of IMERG. The conditional 

biases are distinct according to the IMERG components. Both PMW and IR systematic and random 

errors are minimized for stratiform situations (CPI = 0%). Over the range of CPI values, systematic 

and random PMW errors show similar behavior to GROF-GMI (Fig. 1.1.8), especially for CPI values 

from 0% to a few percent. Over the same CPI range, while PMW systematic errors display a positive 

shift the IR systematic errors display the opposite behavior. The PMW systematic biases present a 

shift towards higher values (+1.5 mm.h-1) compared to IR biases for CPI < 50%. They are both 

decreasing functions of the convective contribution CPI, with the PMW component overestimating 
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at CPI < 45% while the IR component underestimates over the whole CPI range. Both components 

lack sufficient dynamics to deal with extreme rainfall amounts. The random discrepancies increase 

consistently with CPI for both components, and it is worth noting that the PMW random error is 

greater (~ +5 mm.h-1) than the IR component.   

 

 
 

Figure 1.1.11. IMERG (left) systematic part –conditional median - and (right) random part –

interquantile 10% - 90% - of error for the PMW component (red) and IR component (blue). 

 

This analysis confirms that satellite estimates are currently limited in capturing extreme precipitation 

events often related to convective precipitation.  

 

1.1.4 Conclusion 
 

Integrated multi-sensor assessment is proposed as a novel approach to advance satellite QPE 

validation, in order to provide precipitation algorithm developers and users with more than just an 

overall assessment and adequately cope with the varying performances of satellite precipitation 

estimates. End-to-end integrated error quantification tracking the origin and propagation of 

uncertainty from Level-2 active, passive then through Level-3 precipitation products is particularly 

relevant for understanding the origin and impact of uncertainty. Precipitation typology is addressed 

in this context as a relevant factor driving the state of the GPM satellite estimation error and leading 

to a generalization of the assessment. 

Such assessment is performed at the primary satellite QPE scale across products for a quantitative 

and detailed characterization. It is tested over a multi-year and multi-scale data sample of TRMM-

PR, DPR, GMI and IMERG satellite precipitation products and a high-quality precipitation reference 

derived from MRMS. The MRMS-based convective contribution was adapted at multiple resolutions 

to perform precipitation error characterization conditioned on precipitation types, by taking full 

advantage of the MRMS insights into precipitation across scales (from sub-satellite Level-2 FOV to 

IMERG grid). The state depency of the error is diagnosed by stratifying the error according to the 

CPI across sensors and products. 

For DPR (and TRMM-PR), incorrect physical assumptions related to convective versus stratiform 

rainfall classification are confirmed to be a primary error impacting the conversion from reflectivity-

to-rainfall intensity. The non-uniformity of precipitation types within the FOV is a driving error 

contributor. Both DPR stratiform and convective profiling algorithms seem to lack sufficient 

dynamics to deal with extreme rainfall amounts. For stratiform FOV-filling conditions DPR 

algorithms understimate precipitation rates relative to the reference, overestimates mixed stratiform 

dominated conditions and underestimates for convective situations. Uncertainty in estimating 
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precipitation rates increases in case of convective precipitation. Results from the error analysis 

presented herein provide insights into significant characteristics of DPR rainfall retrieval errors that 

need to be considered to improve the retrieval and when such data are used in applications. 

Based on passive sensors observations and conditioned on DPR outputs, GPROF-GMI retrievals 

display similar error features as DPR with respect to precipitation types. It probably inherits the lack 

of sufficient dynamics to deal with extreme rainfall amounts observed with the active profiling 

algorithm. This may be amplified by the GPROF Bayesian approach used to retrieve precipitation in 

GPROF-GMI. Room for improvement is shown to reside in conditioning the GPROF retrievals by 

precipitation types, and this can be considered for future versions of the algorithm. GPROF retrievals 

systematic and random errors with respect to precipitation types propagate into the IMERG PMW 

component.   
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