313 research outputs found

    Systematical Evaluation of Solar Energy Supply Forecasts

    Get PDF
    The capacity of renewable energy sources constantly increases world-wide and challenges the maintenance of the electric balance between power demand and supply. To allow for a better integration of solar energy supply into the power grids, a lot of research was dedicated to the development of precise forecasting approaches. However, there is still no straightforward and easy-to-use recommendation for a standardized forecasting strategy. In this paper, a classification of solar forecasting solutions proposed in the literature is provided for both weather- and energy forecast models. Subsequently, we describe our idea of a standardized forecasting process and the typical parameters possibly influencing the selection of a specific model. We discuss model combination as an optimization option and evaluate this approach comparing different statistical algorithms against flexible hybrid models in a case study

    Systematical Evaluation of Solar Energy Supply Forecasts

    Get PDF
    Abstract. The capacity of renewable energy sources constantly increases world-wide and challenges the maintenance of the electric balance between power demand and supply. To allow for a better integration of solar energy supply into the power grids, a lot of research was dedicated to the development of precise forecasting approaches. However, there is still no straightforward and easy-to-use recommendation for a standardized forecasting strategy. In this paper, a classification of solar forecasting solutions proposed in the literature is provided for both weather-and energy forecast models. Subsequently, we describe our idea of a standardized forecasting process and the typical parameters possibly influencing the selection of a specific model. We discuss model combination as an optimization option and evaluate this approach comparing different statistical algorithms against flexible hybrid models in a case study

    Dealing with Uncertainty: An Empirical Study on the Relevance of Renewable Energy Forecasting Methods

    Get PDF
    The increasing share of fluctuating renewable energy sources on the world-wide energy production leads to a rising public interest in dedicated forecasting methods. As different scientific communities are dedicated to that topic, many solutions are proposed but not all are suited for users from utility companies. We describe an empirical approach to analyze the scientific relevance of renewable energy forecasting methods in literature. Then, we conduct a survey amongst forecasting software providers and users from the energy domain and compare the outcomes of both studies

    Analysis and validation of 24 hours ahead neural network forecasting of photovoltaic output power

    Get PDF
    In this paper an artificial neural network for photovoltaic plant energy forecasting is proposed and analyzed in terms of its sensitivity with respect to the input data sets. Furthermore, the accuracy of the method has been studied as a function of the training data sets and error definitions. The analysis is based on experimental activities carried out on a real photovoltaic power plant accompanied by clear sky model. In particular, this paper deals with the hourly energy prediction for all the daylight hours of the following day, based on 48 hours ahead weather forecast. This is very important due to the predictive features requested by smart grid application: renewable energy sources planning, in particular storage system sizing, and market of energy

    A global monitoring system for electricity consumption and production of household roof-top PV systems in Madeira

    Get PDF
    This paper describes recent work on the development of a wireless-based remote monitoring system for household energy consumption and generation in Madeira Island, Portugal. It contains three different main sections: (1) a monitoring system for consumed and produced energy of residencies equipped with photovoltaic (PV) systems, (2) developing a tool to predict the electricity production, (3) and proposing a solution to detect the PV system malfunctions. With the later tool, the user (owner) or the energy management system can monitor its own PV system and make an efficient schedule use of electricity at the consumption side. In addition, currently, the owners of PV systems are notified about a failure in the system only when they receive the bill, whereas using the proposed method conveniently would notify owners prior to bill issue. The artificial neural network was employed as a tool together with the hardware-based monitoring system which allows a daily analysis of the performance of the system. The comparison of the predicted value of the produced electricity with the actual production for each day shows the validity of the method.info:eu-repo/semantics/publishedVersio

    Neuro-fuzzy mid-term forecasting of electricity consumption using meteorological data

    Get PDF
    Abstract : Forecasting energy consumption is highly essential for strategic and operational planning. This study uses the Adaptive-Neuro-Fuzzy Inference System (ANFIS) for a mid-term forecast of electricity consumption. The model comprises of three meteorological variables as inputs and electricity consumption as output. Two ANFIS models with two clustering techniques (Fuzzy c-Means (FCM) and Grid Partitioning (GP) were developed (ANFIS-FCM and ANFIS- GP) to forecast monthly energy consumption based on meteorological variables. The performance of each model was determined using known statistical metrics. This compares the predicted electricity consumption with the observed and a statistical significance between the two reported. ANFIS-FCM model recorded a better mean absolute deviation (MAD), root mean square (RMSE), and mean absolute percentage error (MAPE) values of 0.396, 0.738, and 8.613 respectively compared to the ANFIS-GP model, which has MAD, RMSE, and MAPE values of 0.450, 0.762, and 9.430 values respectively. The study established that FCM is a good clustering technique in ANFIS compared to GP and recommended a comparison between the two techniques on hybrid ANFIS model

    Forecasting Energy Demand & Peak Load Days with the Inclusion of Solar Energy Production

    Get PDF
    The addition of solar panels to forecasting energy demand and peak energy demand presents an entirely new challenge to a facility. By having to account for the varying energy generation from the solar panels on any given day based on the weather it becomes increasingly difficult to accurately predict energy demand. With renewable energy sources becoming more prevalent, new methods to track peak energy demand are needed to account for the energy provided by renewable sources. We know from previous research that Artificial Neural Networks (ANN) and Auto Regressive Integrated Moving Average (ARIMA) models are both capable of accurately forecasting building demand and peak electric load days without the presence of solar panels. The goal of this research was to take three different approaches for both the ANN model and the ARIMA model to find the most accurate method for forecasting monthly energy demand and peak load days while considering the varying daily solar energy production. The first approach used was to forecast net demand outright based on relevant historical training data including weather information that would help the models learn how this information affected the overall net demand. The second approach was to forecast the building demand specifically based on the same relevant historical data and then use a random decision tree forest to predict the cluster of day that each day of the month would be in terms of solar production (high, medium with early peak, medium with late peak, low). After the type of day was predicted we would subtract the average solar energy production of the predicted cluster to receive our forecasted net demand for that day. The third approach was similar to the second, but instead of subtracting the average of the cluster we subtracted multiple randomly generated days from that cluster to provide multiple overlapping forecasts. This was specifically used to try and better predict peak load days by testing the hypothesis that if 80% or higher predicted a peak day it would in fact be a peak day. The ANN model outperformed the ARIMA for each approach. Forecasting multiple days was the best of the three approaches. The multiple day ANN forecast had the highest balanced accuracy and sensitivity, the net demand ANN approach was the 2nd most accurate approach and the average solar ANN forecast was the 3rd best approach in terms of balanced accuracy and sensitivity. Based on the outcomes of this study, consumers and institutions such as RIT will be better able to predict peak usage days and use preventative measures to save money by reducing their energy intake on those predicted days. Another benefit will be that energy distribution companies will be able to accurately predict the amount of energy customers with personal solar panels will need in addition to the solar energy they are using. This will allow a greater level of reliability from the providers. Being able to accurately forecast energy demand with the presence of solar energy is going to be critical with the ever-increasing usage of renewable energy
    • …
    corecore