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Abstract. The capacity of renewable energy sources constantly increases
world-wide and challenges the maintenance of the electric balance between
power demand and supply. To allow for a better integration of solar energy
supply into the power grids, a lot of research was dedicated to the develop-
ment of precise forecasting approaches. However, there is still no straight-
forward and easy-to-use recommendation for a standardized forecasting
strategy. In this paper, a classification of solar forecasting solutions pro-
posed in the literature is provided for both weather- and energy forecast
models. Subsequently, we describe our idea of a standardized forecast-
ing process and the typical parameters possibly influencing the selection
of a specific model. We discuss model combination as an optimization
option and evaluate this approach comparing different statistical algo-
rithms against flexible hybrid models in a case study.

Keywords: Solar energy · Energy forecast model · Classification ·
Ensemble

1 Introduction

The capacity of renewable energy sources (RES) constantly increases world-wide 
due to governmental funding policies and technological advancements. Unfor-
tunately, most of the grid-connected RES installations are characterized by a 
decentralized allocation and a fluctuating output owed to the changing nature 
of the underlying powers. Coincidentally, today’s available transformation and 
storage capabilities for electric energy are limited and cost-intensive, which is the 
primary reason for the increasing interference of renewable energy output with 
power network stability. Efficient and dedicated forecasting methods will help 
the grid operators to better manage the electric balance between power demand 
and supply in order to avoid unstable situations or even possible collapses in the 
near future. A lot of research has been conducted in the past years by different 
communities trying to cope with this challenge. Despite of the large amount of 
available related work and both scientific and practical optimization ideas, there 
is still no straightforward and easy-to-use recommendation for a standardized 
forecasting strategy. Comparing the results obtained while executing different
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experimental approaches is difficult, as most of the presented cases are bound to
a specific region including the corresponding real-world data-set. Further, there
is no constant form of result evaluation across all publications, as different error
metrics are applied to measure output quality.

In this paper, we address the problem of a systematical optimization for
solar energy forecasting strategies conducting an analysis of state-of-the-art
approaches. The paper is organized as follows: In Sect. 2 we review and clas-
sify models proposed in the literature to predict (1) weather influences and (2)
the output of solar energy production units. In Sect. 3, the energy forecasting
process is described and relevant parameter settings and exogenous influences
for the model selection decision are discussed before that background. In Sect. 4
we evaluate the performance of an exemplary ensemble model which combines
the forecast output of popular statistical prediction methods using a dynamic
weighting factor. Finally, we conclude and outline additional research directions
for our future work in Sect. 5.

2 Energy Supply Forecasting Approaches

The prediction of energy time series is a classical application of time series analy-
sis methods. Thus, there is a long research history related to electricity load
forecasting, where a range of sophisticated high-quality models has been devel-
oped and classified (i.e. compare the work of Alfares and Nazeeruddin [2]). In
contrast, the need for energy supply forecasting is a much more recent topic,
as the challenge of grid-connected RES penetrating the distribution systems has
emerged just a couple of years ago. Nevertheless, both energy demand and supply
forecasting approaches make use of similar techniques.

2.1 Weather Forecast Models

In order to make energy supply planning rational, forecasts of RES production
have to be made based on the consideration of weather conditions as the most
influencing factor for output determination for solar energy production is the
quality of the solar irradiation forecast. Consequently, the use of precise weather
forecast models is essential before reliable energy output models can be gener-
ated. Although this step is orthogonal to a grid operator’s core activities (weather
data usually is obtained from meteological services), a basic understanding of the
underlying principles is helpful when choosing a specific energy output model.

Numerical Weather Prediction. Complex global numerical weather predic-
tion (NWP) models is a modern and common method to predict a number
of variables describing the physics and dynamic of the atmosphere, which is
then used to derive the relevant weather influences at a specific point of inter-
est. These are e.g. the European Center for Medium-Range Weather-Forecasts
Model1 (ECMWF), the Global Forecast System (GFS) from National Centers for
1 http://www.ecmwf.int
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Environmental Prediction2 or the North American Mesoscale Model3 (NAM).
As they have a coarse spatial and temporal resolution, several post-processing
and correction techniques are applied in order to obtain down-scaled models
of finer granularity (e.g. Model Output Statistics). A quality benchmark was
conducted by Lorenz et al. [15], where European ground measurement data is
used to compare the performance of each NWP including different scientific and
commercial post-processing approaches (Fig. 1).

Fig. 1. Classification of weather forecasting models

Cloud Imagery. The influence of local cloudiness is considered to be the most
critical factor for the estimation of solar irradiation, especially on days with
partial cloudiness where abrupt changes may occur. The use of satellite data
can provide high quality short-term forecasts, as geostationary satellites like
METEOSAT provide half-hourly spectrum images with a resolution from 1 to
3 square kilometers. Clouds are detected by processing these images into cloud-
index images. To predict the future position of a cloud over ground, two consec-
utive cloud-index images are interpolated using motion vectors [10]. A similar
method is the use of Total Sky Imagers, which enables real-time detection of
clouds in hemispherical sky images recorded by ground-based cameras using
sophisticated analytical algorithms [17].

Statistical Models. Furthermore, there are several studies treating the fore-
casting of solar radiation based on historical observation data using common
time series regression models like ARIMA, Artificial Neural Networks (ANN)
or Fuzzy-Logic models (FL). An analysis published by Reikard shows that after
comparing various regression models, ARIMA in logs with time-varying coef-
ficients performs best, due to its ability to capture the diurnal cycle more
effectively than other methods [22]. Ji and Chee [12] propose a combination
of ARMA and a Time Delay Neural Network (TDNN). Dorvlo et al. discuss
the usage of two ANN-models: Radial Basis Functions (RBF) and Multilayer

2 http://www.ncep.noaa.gov
3 http://www.ncdc.noaa.gov
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Perceptron (MLP) [6]. Martin et al. [16] compare the performance of auto-
regressive models (AR) against ANN and Adaptative-network-based fuzzy infer-
ence system (ANFIS). As such statistical models usually are considered being
domain-neutral, their characteristics are discussed more in detail in the subse-
quent section.

2.2 Energy Forecast Models

Any output from the weather models described above must then be converted
into electric energy output. According to the underlying methodology, the exist-
ing solutions can be classified into the categories of physical, statistical and hybrid
methods as presented in Fig. 2.

Fig. 2. Classification of energy forecasting models

Physical Models. All forecasting approaches mainly relying on a renewable
power plant’s technical description concerning its ability to convert the intro-
duced meteorological resources into electrical power are summarized by the
term physical model. Taking into account external influences derived from NWP,
atmospheric conditions and local topography, once they are fitted they are accu-
rate and do not require historical output curves. Especially the latter makes
them suitable for estimating the future output of planned or recently installed
RES units. Applications of physical models are more frequently found for wind
power prediction, but are also used for solar energy forecasts. For example, if we
consider the electrical energy PE extracted from the NWP for global radiation
Gnwp by a PV panel, the equation for a simplyfied model is as follows:

PE = αGnwpA (1)

where α is the conversion efficiency of the solar panel and A is its surface size.
Improvements of this method are demonstrated by Iga and Ishihara [11] includ-
ing the outside air temperature, or Alamsyah et al., using the panel temperature
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[1] as additional parameters. The major disadvantage of physical models is that
they are highly sensitive to the NWP prediction error. Furthermore, they have
to be designed specifically for a particular energy system and location. As a con-
sequence, the usage of such models requires detailed technical knowledge about
characteristics and parameters of all underlying components, thus making them
more relevant for energy plant owners or producers than for grid operators.

Statistical Models. Naive Prediction. The most straightforward approach to
determine a time series’ future value denoted as P ′

t+1 would be a naive guess,
assuming that next periods’ expected energy output will be equal to the obser-
vations of the current period Pt. This method is called naive or persistent pre-
diction. The distinctive cycle of solar energy is expressed by choosing a period
of 24 h for diurnal persistence, so forecasts are obtained by

P ′
t = Pt−k (2)

with k being the number of values per day, i.e. k = 96 having a time series
granularity of 15 min. Although very limited due to its inability to adopt to any
influences and therefore providing results of low preciseness, it is easy to imple-
ment and commonly used as a reference model to evaluate the performance of
concurrent, more sophisticated forecasting approaches. Using complex forecast-
ing tools is worthwhile only if they are able to clearly outperform such trivial
models.

Similar-Days Model. Based on the concept of diurnal persistence, improved fore-
casts can be computed by selecting similar historical days using suitable time
series similarity measures like e.g. Euclidean distance. These models are very
popular for load forecasts (e.g. compare [19]), where weather-awareness plays
a minor part compared to the influence of consumption-cycle patterns derived
from historical data. As for solar energy forecasts, such models are used when-
ever there is no NWP available at all or the prediction error included naturally
in the NWP is estimated as too high to provide reliable energy output forecasts.

Stochastic Time Series. Depending on the number of influencing parameters,
two groups of models can be distinguished: Uni- and Multivariate models. Uni-
variate models are calculated based on the time series’ history only. Well known
representatives of that group are Auto-Regressive (Integrated) Moving Average
models (ARMA/ARIMA), which can be described best as a stochastic process
combining an auto-regressive component (AR) with a moving average component
(MA). Dunea et al. [7] propose the consideration of Exponential Smoothing as
an effective alternative for one-period ahead forecasts. In contrast, multivariate
models allow for the integration of exogenous parameters. Multiple Regression
methods like ARIMAX (ARIMA with exogenous influences) are a popular choice
whenever there is a linear correlation structure expected in two time series [18].
In the case of solar energy prediction, this is given by the dominating depen-
dency of energy output on the global radiation values from the NWP. Historical

Final edited form was published in "Data Analytics for Renewable Energy Integration: Second ECML PKDD Workshop. 
Nancy 2014", S. 108–121, ISBN 978-3-319-13290-7 

http://dx.doi.org/10.1007/978-3-319-13290-7_9 

5 
 

Provided by Sächsische Landesbibliothek - Staats- und Universitätsbibliothek Dresden



observation data is used to derive the regression coefficients. Bacher et al. demon-
strate the performance of an ARIMA model using a clear-sky-normalization for
short-term forecasts [3]. As an extension to linear modeling Multivariate Adap-
tive Regression Splines (MARS), a methodology developed by Friedman [8], is
used in the energy domain to generate more flexible, nonlinear models.

Machine Learning. The use of machine learning methods is a common approach
to forecast a time series’ future values, as they are seen as alternative to con-
ventional linear forecasting methods. Reviewed literature shows that ANN have
been successfully applied for forecasts of fluctuating energy supply. ANN learn
to recognize patterns in data using training data sets. For example, the use of
neural networks is proposed by Yona et al. [26] due to their examination of the
Feed-Forward (FFNN), the Radial Basis Function (RBFNN) and the Recurrent
Neural Network (RNN) for solar power forecasting based on NWP input and his-
torical observation data. A similar approach is described by Chen et al. [5], where
a RBFNN is combined with a weather type classification model obtained by a Self
Organizing Map (SOM). Wolf et al. compare k-Nearest Neighbors (KNN) and
Support Vector Regression (SVR) finding that the latter outperforms KNN on
non-aggregated data [25]. In contrast, Tao et al. compute hourly energy forecasts
using an adaptive NARX network combined with a clear-sky radiation model,
which allows for forecasts without including NWP data and still outperforms
non-adapting regression-based methods [23].

Hybrid Models. Any combination of two or more of the above described meth-
ods is known as a hybrid model. The use of such hybrid approaches has become
more popular as it offers the possibility to take advantage of the strongest points
of different stand-alone forecasting techniques. The basic idea of combining mod-
els is to use each methods’ unique features to capture different patterns in the
data. Theoretical and empirical findings from other domains suggest that com-
bining linear and non-linear models can be an efficient way to improve the fore-
cast accuracy (e.g. [27]), so hybrid models seem to be a promising approach
that can potentially outperform non-hybrid models individually. A successful
application of this idea is provided e.g. by the work of Ogliari et al. [21].

3 Energy Forecasting Process

As shown in the previous section, there are plenty of possibilities to compute
forecasts for fluctuating energy production units. But choosing the optimal fore-
casting model for a given use case is an important decision to make and requires
expert knowledge. Figure 3 describes the forecasting process steps: First, the raw
data has to be preprocessed according to the specific requirements of the wanted
forecast. Second is the selection of a suitable algorithm to best describe the
observations. Next, the parameters for the chosen model have to be estimated
before the forecasting task is executed. After evaluating the obtained results, this
decision might be reconsidered in case of too high and therefore unsatisfying pre-
diction errors. From the description of the forecasting techniques mentioned in
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Fig. 3. Typical forecasting process steps

the introduction, we derive that the choice of the appropriate forecasting models
depends on the amount and quality of external information, the applied forecast
horizon, the data aggregation level and the availability of historical observation
data. Furthermore, we consider model combination as an optimization option, a
strategy also known as ensemble prediction. Ensembles can be created manually
based on user preferences and experiences or by using machine driven optimiza-
tion approaches. However, another fact to consider when choosing among fore-
casting models is their efficiency: There is an economic preference for inexpensive
and easy-to-use methods if they promise satisfying results.

Context Information. The availability of weather forecasts is an essential condi-
tion for both physical and multiple-regression forecasting models, most impor-
tantly the quality of solar irradiation values. Predicted outside air temperature
can be used to estimate a panel’s future surface temperature, as energy output is
reduced significantly on hot cells. In a similar manner, wind speed can indicate
cooling effects. Further, technical information like the panels inclination angle
and production year (due to the fact that their conversation efficiency decreases
over age) are interesting. As for environmental influences, cleaning cycles are
relevant because polluted panels will produce significantly less energy, which is
a considerable influence in dry and dusty areas. Also, in some regions, detected
snow coverage might prevent any energy output at all.

Forecast Horizon. Studies show that the forecast horizon for which a generated
model has to be applied is an important parameter while choosing an appropriate
prediction approach. In the energy domain, forecast horizons are determined
depending on the requirements of the underlying business process. Usually, we
can distinguish the following categories: now-casts (up to 4 h ahead), short-term
(up to 7 days ahead) and long-term forecasts (more than 7 days ahead). Focusing
on the grid operators activities related to renewable energy integration, we find
that intra-day and day-ahead horizons represent the most relevant time scales
for operations [22], while long-term predictions are of special interest for resource
and investment plannings.

Spatial and Temporal Aggregation. Forecast quality of statistical or physical mod-
els will vary strongly depending on the level of spatial aggregation of the under-
lying energy time series. Since it is well known that the overall impact of single
peak values decreases with increasing size of the chosen aggregates, forecasts
computed on single or disaggregated time series usually contain the risk of higher
average prediction errors. In contrast, following an agglomerative or bottom-up
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approach by creating different aggregation levels might lead to better results on
higher levels (e.g. average cloudiness in a region can be predicted more accu-
rately than cloudiness at a particular site [14]), but complicates the integration
of available context information, especially in the case of influences character-
ized by strong locality. The use of clustering techniques to create hierarchical
aggregations of RES time series is a matter of a separate study [24] in progress.
Temporal aggregation can be considered if the granularity of source time series
needs to be reduced in order to obtain forecasts of lower resolution.

History Length. Stochastic approaches create a forecast model over the historical
supply curves. The size of available history influences the accuracy of the fore-
casting result, as a longer history length might be suitable for learning repeatable
patterns, while a shorter history length is more beneficial for strongly fluctuat-
ing time series. The latter requires a continuous adaption of the forecast models
and, possibly, also of the history length. However, determining the best model
parameters involves multiple iterations over the time series history which is an
expensive process especially on large data sets. Reducing the history length can
therefore speed up model creation significantly. Previous research in this area [9]
proposes an I/O-conscious skip list data structure for very large time series in
order to determine the best history length and number of data points for linear
regression models.

4 Model Selection - A Case Study

In this section we analyze the impact of the previously described energy model
selection parameters on the forecast output. After briefly introducing the fore-
casting methods to be assessed, we provide a description of our experimental
setting including the used data set, the applied methodologies and the output
evaluation criteria before we discuss the obtained results.

4.1 Predictor Description

Several forecasting algorithms have been chosen for our evaluation: (1) The
Similar-Days model using Euclidean distance and (2) the univariate Autoregres-
sive Fractionally Integrated Moving Average (ARFIMA) model that both are
weather-unaware. Regression-based models are represented by (3) Mirabel4, a
scientific model based on principal component analysis and multivariate regres-
sion and (4) Epredict5, a commercial library using the non-linear MARS algo-
rithm. Additionally, (5) a domain-neutral multiple linear regression model from
the OpenForecast6 library is included. Hence, all classes of statistical models are
covered except machine learning. The benchmark will be conducted against a
naive model using diurnal persistence.
4 http://www.mirabel-project.eu/
5 http://www.robotron.eu/
6 http://www.stevengould.org/software/openforecast/
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Table 1. Sample data properties

Time series Aggregation level (extension) Peak Pmax Installations (capacity)

DIA None 42.75 kW 1 (351.3 kW)

DSA Distribution system (23 km2) 257.45 kW 7 (3,440 kW)

TSA Transmission system (109,000 km2) 1,616.04MW 107,216 (7,008MW)

4.2 Methodology

The Data. To cope with the recently introduced model selection criteria of
spatial aggregation, we include three observed solar energy output curves into
our scenario: (1) A single, disaggregated PV-installation located in central Ger-
many denoted as DIA, (2) an aggregate built of all measured PV-installations
available in the same local distribution system denoted as DSA and (3) an aggre-
gate build of all PV-installations attached to the superior transmission system
denoted as TSA. DIA and DSA were provided by a cooperating distribution
system operator7, while TSA was obtained from a public website8. All time
series have a resolution of 15 min and cover all of the year 2012. Correspond-
ing weather data including measurements of solar irradiation, air temperature,
and wind speed with a resolution of 1 h is available from a weather station run
by a meteorological service9, located within the distribution networks’ range.
Using weather observations instead of weather forecasts eliminates the naturally
included NWP prediction error thus allowing for a unbiased evaluation of the
energy model performance itself (Table 1).

Operational Framework. We use the first 11 months of historical data from
our source time series for model training. Forecasts are computed for the remain-
ing month, thus providing a test data set of 2976 predicted values according to
our time series’ resolution. To cover both intra-day and day-ahead terms with
our scenario, we define varying forecast horizons of 2, 12 and 24 h ahead. After
computing a forecast the training period is adopted by adding the forecast hori-
zon length, thus extending the available history length accordingly with each
completed iteration. A suchlike moving origin approach simulates the integra-
tion of newly arriving observations in the forecasting process, which can then be
compared with the latest forecast output and used to adjust the forecast model.
Therefore, the number of forecasting models required to cover the whole month
is 372 for a horizon of 2 h, 62 (12 h) and 31 (24 h) respectively. Finally, the test
data is split into a calibration, and an evaluation period.

Combination Approach. Various forms of combining forecasts have been
developed like subjective human judgment or objective approaches, the latter
7 http://www.en-apolda.de
8 http://www.50hertz.com
9 http://wetterstationen.meteomedia.de
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Fig. 4. Operational benchmark framework using moving origin

extending from the simple arithmetic mean to more sophisticated methods such
as neural networks. A classification and identification of the most common meth-
ods can be found in [4]. In our study, we apply an objective method to combine
the forecasts through a linear combination of n non-biased individual forecasts
using an unrestricted weight factor λn for each forecast. The final energy forecast
P ′
t is then computed by

P ′
t =

∑n

1
λnP ′

nt (3)

where P ′
nt is the forecasted value from model n for a timestamp t. In order to

derive the optimal weight factors we use Nelder-Mead function minimization [20],
which aims at reducing the error in the forecast output during the calibration
period. After experimenting with different sets of input parameters, best results
were obtained using the RMSE as target function and a calibration period of
700 values (approx. 1 week) as depicted in Fig. 4. Finally, several ensembles were
computed using the n-best models in terms of RMSE denoted as Ensble-nB or
all available individual models denoted as Ensble-All.

Output Evaluation. To evaluate the quality of the predicted values, different
statistical accuracy metrics can be used for illustrating either the systematic or
random errors included in the results. The root mean square error (RMSE) is
the recommended measure and main evaluation criterion for intra-day forecasts,
as is addresses the likelihood of extreme values better [13]. As the RMSE returns
absolute values, normalization is applied in order to allow for model performance
comparison on time series having different aggregation scales. The normalized
root mean square error (nRMSE) is achieved by

nRMSE =
100

Pmax
∗

√∑n
t=1(Pt − P ′

t )2

n
(4)

with Pmax being the maximum observed power output in the validation data
set. Beside the nRMSE, the systematic error can be expressed by computing the
average error over the whole evaluation period. The normalized mean bias error
(nMBE) is found by

nMBE =
100

Pmax
∗

∑n
t=1(Pt − P ′

t )
n

(5)
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Table 2. Quality of forecast results using nRMSE evaluation metric

Predictor DIA2 DIA12 DIA24 DSA2 DSA12 DSA24 TSA2 TSA12 TSA24

Naive 30.39 30.39 30.39 29.59 29.59 29.59 11.04 11.04 11.04

SimDays 21.28 21.59 26.77 19.77 20.32 24.23 6.08 7.17 8.54

ARFIMA 18.26 24.47 23.00 19.44 28.09 26.01 3.51 16.40 17.37

OpenFC 16.19 16.19 16.19 14.14 14.14 14.14 6.67 6.67 6.67

MARS 13.99 14.78 16.10 12.81 13.33 14.24 4.94 5.96 6.96

Mirabel 15.96 15.96 15.96 14.58 15.57 17.85 3.73 6.55 7.86

Ensble-2B 14.33 14.61 15.71 15.23 16.68 18.22 2.49 5.56 7.57

Ensble-3B 14.14 15.47 15.80 14.82 16.75 18.61 2.54 5.50 7.27

Ensble-4B 14.29 15.66 18.86 14.45 16.73 20.25 2.61 5.15 7.13

Ensble-All 14.25 16.18 18.12 14.56 17.03 18.12 2.62 5.12 7.05

and can be used to detect a systematic bias in the forecast, as according to Eq. 5
negative values represent over-estimations and vice versa. Note that non-daylight
hours (values with timestamps before 8 am and after 4 pm) and all resting zero
observation values are excluded from error calculation. The latter also implies
that the effects of snow coverage or measurement failures are removed completely
from the results.

4.3 Experimental Results

Our results listed in Table 2 show that in terms of RMSE, almost all forecast-
ing models clearly outperform the naive benchmark with two exceptions being
ARFIMA on TSA12 and TSA24. It is also visible that the uni-variate stochas-
tic models SimDays and ARFIMA perform rarely better than those able to
integrate external influences, especially on time series with lower aggregation
levels. Regarding the impact of the chosen forecast horizon, we observe that the
fitness of most of the models is decreasing with longer horizons (compare Fig. 5).
In contrast, OpenFC seems to be completely unaffected by that parameter and
provides constant values, thus leading to good results for day-ahead forecasts.
We suspect that OpenFC can even outperform the sophisticated energy predic-
tors MARS and Mirabel on short- and mid-term forecasts, which have not been
covered by the presented scenario.

An analysis of the combined models shows that both improvements and
degradations of individual results were obtained. The best results were provided
using the 2 best models denoted as Ensble-2B: The RMSE of the best individual
model could be reduced by 28.95 % for the TSA2 forecast (compare Fig. 6) and
slight improvements were obtained on DIA12 and DIA24 with 1.11 % and 1.60 %
respectively. Ensble-3B and Ensble-4B only outperformed the individual models
once with the TSA12 forecast. According to expectations all evaluated models
show the lowest preciseness on the individual PV-installation denoted as DIA,
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Table 3. Quality of forecast results using nMBE evaluation metric

Predictor DIA2 DIA12 DIA24 DSA2 DSA12 DSA24 TSA2 TSA12 TSA24

Naive 4.45 4.45 4.45 4.33 4.33 4.33 0.69 0.69 0.69

SimDays 0.21 −2.55 −9.02 −0.37 −2.03 −6.01 0.07 −0.11 −0.91

ARFIMA 1.24 −0.97 7.93 0.03 −1.96 12.24 −0.85 −11.59 −11.44

OpenFC 4.02 4.02 4.02 0.30 0.30 0.30 −2.57 −2.57 −2.57

MARS 1.87 2.34 3.97 −0.36 −0.98 −0.47 −1.18 −2.32 −2.74

Mirabel 3.80 3.80 3.80 −3.48 −3.79 −4.17 −0.06 −0.60 −0.35

Ensble-2B −0.06 2.39 3.51 1.08 1.72 2.02 −0.27 −1.39 −1.98

Ensble-3B 0.07 2.72 3.69 0.24 1.68 2.41 −0.27 −0.93 −1.52

Ensble-4B 0.20 2.23 4.27 0.24 1.61 5.37 −0.36 −0.45 −1.10

Ensble-All −1.09 0.49 3.69 0.33 1.00 5.09 −0.38 −0.05 −0.65
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Fig. 6. Performance of Ensemble-2B
and the underlying individual fore-
casts on TSA time series and 2h-ahead
horizon

since single outliers can hardly be compensated as in the case of aggregated
data like DSA or TSA. It is also noted that all models perform best on the
transmission system level TSA. Although the correlation of weather information
observed at only one specific location is not considered being a representative
influence on that supra-regional level, the effect of weather-awareness seems to be
completely neutralized by the impact of high aggregation. However, these results
are not reflected using the nMBE evaluation criteria listed in Table 3, where in
all cases except DIA24 at least one model could provide nearly unbiased forecasts
having a nMBE value close to zero.

5 Conclusions

In this work we have shown that the forecasting of solar energy output is a
two-step approach, typically requiring a weather- and an energy-forecast model.
As for the energy-forecast, possible choices can be selected amongst physical,
statistical, and hybrid models. The selection of an appropriate model depends
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on the characteristics of the underlying data and the relevant evaluation cri-
teria. Combining models offers additional optimization options whenever there
is no model to be found that individually outperforms in all given situations,
as demonstrated against the parameters of forecast horizon and spatial aggre-
gation. However, deriving generalizable recommendations regarding the selec-
tion of appropriate models or model combinations based only on the evaluated
use case remains challenging. For our future work, we think that conducting a
more complex and global benchmark covering more state-of-the-art forecasting
approaches and additional scenarios will provide useful information on how to
systematically select an optimal energy model and might unlock the potential
towards establishing industry standards regarding the application of forecasting
strategies and output evaluation criteria.
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