5,495 research outputs found

    Carotid plaque imaging and the risk of atherosclerotic cardiovascular disease

    Get PDF
    Carotid artery plaque is a measure of atherosclerosis and is associated with future risk of atherosclerotic cardiovascular disease (ASCVD), which encompasses coronary, cerebrovascular, and peripheral arterial diseases. With advanced imaging techniques, computerized tomography (CT) and magnetic resonance imaging (MRI) have shown their potential superiority to routine ultrasound to detect features of carotid plaque vulnerability, such as intraplaque hemorrhage (IPH), lipid-rich necrotic core (LRNC), fibrous cap (FC), and calcification. The correlation between imaging features and histological changes of carotid plaques has been investigated. Imaging of carotid features has been used to predict the risk of cardiovascular events. Other techniques such as nuclear imaging and intra-vascular ultrasound (IVUS) have also been proposed to better understand the vulnerable carotid plaque features. In this article, we review the studies of imaging specific carotid plaque components and their correlation with risk scores

    Is carrot consumption associated with a decreased risk of lung cancer? A meta-analysis of observational studies

    Get PDF
    Findings of epidemiological studies regarding the association between carrot consumption and lung cancer risk remain inconsistent. The present study aimed to summarise the current epidemiological evidence concerning carrot intake and lung cancer risk with a meta-analysis. We conducted a meta-analysis of case–control and prospective cohort studies, and searched PubMed and Embase databases from their inception to April 2018 without restriction by language. We also reviewed reference lists from included articles. Prospective cohort or case–control studies reporting OR or relative risk with the corresponding 95 % CI of the risk lung cancer for the highest compared with the lowest category of carrot intake. A total of eighteen eligible studies (seventeen case–control studies and one prospective cohort study) were included, involving 202 969 individuals and 5517 patients with lung cancer. The pooled OR of eighteen studies for lung cancer was 0·58 (95%CI 0·45, 0·74) by comparing the highest category with the lowest category of carrot consumption. Based on subgroup analyses for the types of lung cancer, we pooled that squamous cell carcinoma (OR 0·52, 95 % CI 0·19, 1·45), small-cell carcinoma (OR 0·43, 95 % CI 0·12, 1·59), adenocarcinoma (OR 0·34, 95 % CI 0·15, 0·79), large-cell carcinoma (OR 0·40, 95 % CI 0·10, 1·57), squamous and small-cell carcinoma (OR 0·85, 95 % CI 0·45, 1·62), adenocarcinoma and large-cell carcinoma (OR 0·20, 95 % CI 0·02, 1·70) and mixed types (OR 0·61, 95 % CI 0·46, 0·81). Exclusion of any single study did not materially alter the pooled OR. Integrated epidemiological evidence from observational studies supported the hypothesis that carrot consumption may decrease the risk of lung cancer, especially for adenocarcinoma

    Applications of artificial intelligence-based models in vulnerable carotid plaque

    Get PDF
    Carotid atherosclerotic disease is a widely acknowledged risk factor for ischemic stroke, making it a major concern on a global scale. To alleviate the socio-economic impact of carotid atherosclerotic disease, crucial objectives include prioritizing prevention efforts and early detection. So far, the degree of carotid stenosis has been regarded as the primary parameter for risk assessment and determining appropriate therapeutic interventions. Histopathological and imaging-based studies demonstrated important differences in the risk of cardiovascular events given a similar degree of luminal stenosis, identifying plaque structure and composition as key determinants of either plaque vulnerability or stability. The application of Artificial Intelligence (AI)-based techniques to carotid imaging can offer several solutions for tissue characterization and classification. This review aims to present a comprehensive overview of the main concepts related to AI. Additionally, we review the existing literature on AI-based models in ultrasound (US), computed tomography (CT), and Magnetic Resonance Imaging (MRI) for vulnerable plaque detection, and we finally examine the advantages and limitations of these AI approaches

    Noninvasive diagnosis of vulnerable coronary plaque

    Get PDF
    Myocardial infarction and sudden cardiac death are frequently the first manifestation of coronary artery disease. For this reason, screening of asymptomatic coronary atherosclerosis has become an attractive field of research in cardiovascular medicine. Necropsy studies have described histopathological changes associated with the development of acute coronary events. In this regard, thin-cap fibroatheroma has been identified as the main vulnerable coronary plaque feature. Hence, many imaging techniques, such as coronary computed tomography, cardiac magnetic resonance or positron emission tomography, have tried to detect noninvasively these histomorphological characteristics with different approaches. In this article, we review the role of these diagnostic tools in the detection of vulnerable coronary plaque with particular interest in their advantages and limitations as well as the clinical implications of the derived findings.S

    Hybrid positron emission tomography–magnetic resonance of the heart:current state of the art and future applications

    Get PDF
    Hybrid Positron Emission Tomography-Magnetic Resonance (PET-MR) imaging is a novel imaging modality with emerging applications for cardiovascular disease. PET-MR aims to combine the high spatial resolution morphological and functional assessment afforded by MRI with the ability of PET for quantification of metabolism, perfusion and inflammation. The fusion of these two modalities into a single imaging platform not only represents an opportunity to acquire complementary information from a single scan, but also allows motion correction for PET with reduction in ionising radiation. This article presents a brief overview of PET-MR technology followed by a review of the published literature on the clinical cardio-vascular applications of PET and MRI performed separately and with hybrid PET-MR

    Ultrasonography of vulnerable atherosclerotic plaque in the carotid arteries : b-mode imaging

    Get PDF

    Vessel wall MR imaging for the detection of intracranial inflammatory vasculopathies

    Get PDF
    Intracranial vasculopathies are routinely investigated by lumen-based modalities such as magnetic resonance angiography (MRA), computed tomography angiography (CTA), and digital subtraction angiography (DSA). These techniques are useful to analyze the vessel lumen, allowing to detect vessel stenosis or occlusion. However, the primum movins of the disease, i.e., an abnormal thickening of the vessel wall, remains within the arterial wall. The vasculopathy can moreover be present without always narrowing the lumen or modifying its regularity. Hence, there is a need to detect directly and analyze vessel wall abnormalities. Development of 3D high-resolution black blood sequences for intracranial vessel wall MR imaging (VW-MRI) enabled routine clinical applications not only vasculitis, but also of intracranial atherosclerotic disease (ICAD), intracranial dissections, reversible intracranial dissections, reversible cerebral vasoconstriction syndrome (RCVS), Moyamoya disease, and intracranial aneurysms. This high-resolution intracranial VW- MRI approach is increasingly used on a clinical basis at many centers to solve diagnostic problems, especially in patients with ischemic stroke or intracranial hemorrhage. An expert consensus Guideline from the American Society of Neuroradiology provides recommendations for clinical implementation of intracranial vessel wall MRI. There are several technical aspects needed to be considered when implementing VW-MRI in intracranial vessels, including flow suppression, both in blood and cerebrospinal fluid (CSF), spatial resolution and signal-to-noise ratio (SNR). In this article, we review the technical aspects of VW-MRI, and recommend applications for vascular diseases including non-occlusive intracranial vasculopathies, Moyamoya disease, and identifying culprit plaques. We also give a focus on the utility of VW-MRI for determining stroke etiology in adults and in children and young adults

    Magnetic resonance imaging for diagnostic workup of Embolic Stroke of Undetermined Source: a systematic review

    Get PDF
    Background: Embolic stroke of undetermined source (ESUS) refers to ischemic stroke where the underlying cause of thromboembolism cannot be found despite the recommended diagnostic workup. Unidentified source of emboli hinders clinical decision-making and patient management with detrimental consequences on long-term prognosis. The rapid development and versatility of magnetic resonance imaging (MRI) make it an appealing addition to the diagnostic routine of patients with ESUS for the assessment of potential vascular and cardiac embolic sources. Aims: To review the use of MRI in the identification of cardiac and vascular embolic sources in ESUS and to assess the reclassification value of MRI examinations added to the conventional workup of ESUS. Summary of review: We reviewed the use of cardiac and vascular MRI for the identification of a variety of embolic sources associated with ESUS, including atrial cardiomyopathy, left ventricular pathologies, and supracervical atherosclerosis in carotid and intracranial arteries and in distal thoracic aorta. The additional reclassification after MRI examinations added to the workup of patients with ESUS ranged from 6.1% to 82.3% and varied depending on the combination of imaging modalities. Conclusion: MRI techniques allow us to identify additional cardiac and vascular embolic sources and may further decrease the prevalence of patients with the diagnosis of ESUS

    Application of postmortem imaging modalities in cases of sudden death due to cardiovascular diseases-current achievements and limitations from a pathology perspective : Endorsed by the Association for European Cardiovascular Pathology and by the International Society of Forensic Radiology and Imaging.

    Get PDF
    Postmortem imaging (PMI) is increasingly used in postmortem practice and is considered a potential alternative to a conventional autopsy, particularly in case of sudden cardiac deaths (SCD). In 2017, the Association for European Cardiovascular Pathology (AECVP) published guidelines on how to perform an autopsy in such cases, which is still considered the gold standard, but the diagnostic value of PMI herein was not analyzed in detail. At present, significant progress has been made in the PMI diagnosis of acute ischemic heart disease, the most important cause of SCD, while the introduction of postmortem CT angiography (PMCTA) has improved the visualization of several parameters of coronary artery pathology that can support a diagnosis of SCD. Postmortem magnetic resonance (PMMR) allows the detection of acute myocardial injury-related edema. However, PMI has limitations when compared to clinical imaging, which severely impacts the postmortem diagnosis of myocardial injuries (ischemic versus non-ischemic), the age-dating of coronary occlusion (acute versus old), other potentially SCD-related cardiac lesions (e.g., the distinctive morphologies of cardiomyopathies), aortic diseases underlying dissection or rupture, or pulmonary embolism. In these instances, PMI cannot replace a histopathological examination for a final diagnosis. Emerging minimally invasive techniques at PMI such as image-guided biopsies of the myocardium or the aorta, provide promising results that warrant further investigations. The rapid developments in the field of postmortem imaging imply that the diagnosis of sudden death due to cardiovascular diseases will soon require detailed knowledge of both postmortem radiology and of pathology
    corecore