25 research outputs found

    Development of a Random Time-Frequency Access Protocol for M2M Communication

    Get PDF
    This thesis focuses on the design and development of the random time-frequency access protocol in Machine-to-Machine (M2M) communication systems and covers different aspects of the data collision problem in these systems. The randomisation algorithm, used to access channels in the frequency domain, represents the key factor that affects data collisions. This thesis presents a new randomisation algorithm for the channel selection process for M2M technologies. The new algorithm is based on a uniform randomisation distribution and is called the Uniform Randomisation Channel Selection Technique (URCST). This new channel selection algorithm improves system performance and provides a low probability of collision with minimum complexity, power consumption, and hardware resources. Also, URCST is a general randomisation technique which can be utilised by different M2M technologies. The analysis presented in this research confirms that using URCST improves system performance for different M2M technologies, such as Weightless-N and Sigfox, with a massive number of devices. The thesis also provides a rigorous and flexible mathematical model for the random time-frequency access protocol which can precisely describe the performance of different M2M technologies. This model covers various scenarios with multiple groups of devices that employ different transmission characteristics like the number of connected devices, the number of message copies, the number of channels, the payload size, and transmission time. In addition, new and robust simulation testbeds have been built and developed in this research to evaluate the performance of different M2M technologies that utilise the random time-frequency access protocol. These testbeds cover the channel histogram, the probability of collisions, and the mathematical model. The testbeds were designed to support the multiple message copies approach with various groups of devices that are connected to the same base station and employ different transmission characteristics. Utilising the newly developed channel selection algorithm, mathematical model, and testbeds, the research offers a detailed and thorough analysis of the performance of Weightless-N and Sigfox in terms of the message lost ratio (MLR) and power consumption. The analysis shows some useful insights into the performance of M2M systems. For instance, while using multiple message copies improves the system performance, it might degrade the reliability of the system as the number of devices increases beyond a specific limit. Therefore, increasing the number of message copies can be disadvantageous to M2M communication performance

    Impacto das comunicações M2M em redes celulares de telecomunicações

    Get PDF
    Mestrado em Engenharia Electrónica e de TelecomunicaçõesAs comunicações Máquina-Máquina (M2M) apresentam um crescimento muito significativo e algumas projeções apontam para que esta tendência se acentue drasticamente ao longo dos próximos anos. O tráfego gerado por este tipo de comunicações tem caraterísticas muito diferentes do tráfego de dados, ou voz, que atualmente circula nas redes celulares de telecomunicações. Assim, é fundamental estudar as caraterísticas dos tipos de tráfego associados com comunicações M2M, por forma a compreender os efeitos que tais caraterísticas podem provocar nas redes celulares de telecomunicações. Esta dissertação procura identificar e estudar algumas das caraterísticas do tráfego M2M, com especial enfoque na sinalização gerada por serviços M2M. Como resultado principal deste trabalho surge o desenvolvimento de modelos que permitem a construção de uma ferramenta analítica de orquestração de serviços e análise de rede. Esta ferramenta permite orquestrar serviços e modelar padrões de tráfego numa rede UMTS, possibilitando uma análise simultânea aos efeitos produzidos no segmento core da mesma rede. Ao longo deste trabalho procura-se que a abordagem aos problemas apresentados permita que os resultados obtidos sejam válidos, ou adaptáveis, num âmbito mais abrangente do que apenas as comunicações M2M.Machine to Machine (M2M) communications present significant growth and some projections indicate that this trend is going to increase dramatically over the coming years. The traffic generated by this type of communication has very different characteristics when compared to data or voice traffic currently going through cellular telecommunications networks. Thus, it is essential to study the characteristics of traffic associated with M2M communications in order to understand the effects that its features can imply to cellular telecommunications networks. This dissertation tries to identify and study some of the characteristics of M2M traffic, with particular focus on signaling generated by M2M services. A number of models, that enable the development of an analytic tool for service orchestration and network analysis, are presented. This tool enables service orchestration and traffic modeling on a UMTS network, with simultaneous visualization of the impacts on the core of such network. The work presented in this document seeks to approach the problems at study in ways ensuring that its outcomes are valid for a wider scope than just M2M communications

    Handover management strategies in LTE-advanced heterogeneous networks.

    Get PDF
    Doctoral Degree. University of KwaZulu-Natal, Durban.Meeting the increasing demand for data due to the proliferation of high-specification mobile devices in the cellular systems has led to the improvement of the Long Term Evolution (LTE) framework to the LTE-Advanced systems. Different aspects such as Massive Multiple-Input Multiple Output (MIMO), Orthogonal Frequency Division Multiple Access (OFDMA), heterogeneous networks and Carrier Aggregation have been considered in the LTE-Advanced to improve the performance of the system. The small cells like the femtocells and the relays play a significant role in increasing the coverage and the capacity of the mobile cellular networks in LTE-Advanced (LTE-A) heterogeneous network. However, the user equipment (UE) are faced with the frequent handover problems in the heterogeneous systems than the homogeneous systems due to the users‟ mobility and densely populated cells. The objective of this research work is to analyse the handover performance in the current LTE/LTE-A network and to propose various handover management strategies to handle the frequent handover problems in the LTE-Advance heterogeneous networks. To achieve this, an event driven simulator using C# was developed based on the 3GPP LTE/LTE-A standard to evaluate the proposed strategies. To start with, admission control which is a major requirement during the handover initiation stage is discussed and this research work has therefore proposed a channel borrowing admission control scheme for the LTE-A networks. With this scheme in place, resources are better utilized and more calls are accepted than in the conventional schemes where the channel borrowing is not applied. Also proposed is an enhanced strategy for the handover management in two-tier femtocell-macrocell networks. The proposed strategy takes into consideration the speed of user and other parameters in other to effectively reduce the frequent and unnecessary handovers, and as well as the ratio of target femtocells in the system. We also consider scenarios such as the one that dominate the future networks where femtocells will be densely populated to handle very heavy traffic. To achieve this, a Call Admission Control (CAC)-based handover management strategy is proposed to manage the handover in dense femtocell-macrocell integration in the LTE-A network. The handover probability, the handover call dropping probability and the call blocking probability are reduced considerably with the proposed strategy. Finally, the handover management for the mobile relays in a moving vehicle is considered (using train as a case study). We propose a group handover strategy where the Mobile Relay Node (MRN) is integrated with a special mobile device called “mdev” to prepare the group information prior to the handover time. This is done to prepare the UE‟s group information and services for timely handover due to the speed of the train. This strategy reduces the number of handovers and the call dropping probability in the moving vehicle.Publications and conferences listed on page iv-v

    Aeronautical Networks for In-Flight Connectivity : A Tutorial of the State-of-the-Art and Survey of Research Challenges

    Get PDF

    Energy E fficiency Oriented Full Duplex Wireless Communication Systems

    Get PDF
    Full-duplex (FD) transmission is a promising technique for fifth generation (5G) wireless communications, enabling significant spectral efficiency (SE) improvement over existing half-duplex (HD) systems. However, FD transmission consumes higher power than HD transmission, especially for millimetre wave band. Therefore, energy efficiency (EE) for FD systems is a critical yet inadequately addressed issue. This thesis addresses the critical EE challenges and demonstrates promising solutions for implementing FD systems, as detailed in the following contributions. In the first contribution, a comprehensive EE analysis of the FD and HD amplify-and-forward (AF) relay-assisted 60 GHz dual-hop indoor wireless systems is presented. An opportunistic relay mode selection scheme is developed, where FD relay with different self-interference (SIC) techniques or HD relay is opportunistically selected. Together with transmission power adaptation, EE is maximised with given channel gains. A counter-intuitive finding is shown that, with a relatively loose maximum transmission power constraint, FD relay with two-stage SIC is preferable to both FD relay with one-stage SIC and HD relay, resulting in a higher optimised EE. A full range of power consumption sources are considered to rationalise the analysis. The effects of imperfect SIC at relay, drain efficiency and static circuit power on EE are investigated. Simulation results verify the theoretical analysis. In the second contribution, EE oriented resource allocation for FD decode-of-forward (DF) relay-assisted 60 GHz multiuser systems is investigated. In contrast to the existing SE oriented designs, the proposed scheme maximises EE for FD relay systems under cross-layer constraints, addressing the typical problems at 60 GHz. A low-complexity EE-orientated resource allocation algorithm is proposed, by which the transmission power allocation, subcarrier allocation and throughput assignment are performed jointly across multiple users. Simulation results verify the analytical results and confirm that the FD relay systems with the proposed algorithm achieve a higher EE than the FD relay systems with SE oriented approaches, while offering a comparable SE. In addition, a much lower throughput outage probability is guaranteed by the proposed resource allocation algorithm, showing its robustness against channel estimation errors. In the third contribution, it is noticed that in wireless power transfer (WPT)-aided relay systems, the SE of the source-relay link plays a dominant role in the system SE due to limited transmission power at the WPT-aided relay. A novel asymmetric protocol for WPT-aided FD DF relay systems is proposed in multiuser scenario, where the time slot durations of the two hops are designed to be uneven, to enhance the degree of freedom and hence the system SE. A corresponding dynamic resource allocation algorithm is developed by jointly optimising the time slot durations, subcarriers and transmission power at the source and the relay. Simulation results con rm that, compared to the symmetric WPT-aided FD relay (Sym-WPT-FR) and the time-switching based WPT-aided FD relay (TS-WPT-FR) systems in the literature, the proposed asymmetric WPT-aided FD relay system achieves up to twice the SE and higher robustness against the relay's location and the number of users. In the final contribution, to strike the balance between high SE and low power consumption, a hybrid duplexing strategy is developed for distributed antennas (DAs) systems, where antennas are capable of working in hybrid FD, HD, and sleeping modes. To maximise the system EE with low complexity, activation/deactivation of transmit/receive chain is first performed, by a proposed channel-gain-based DA clustering algorithm, which highlights the characteristics of distributed deployment of antennas. Based on the DAs' con figuration, a novel distributed hybrid duplexing (D-HD)-based and EE oriented algorithm is proposed to further optimise the downlink beamformer and the uplink transmission power. To rationalise the system model, self-interference at DAs, co-channel interference from uplink users to downlink users, and multiuser interference in both uplink and downlink are taken into account. Simulation results confirm that the proposed system provides significant EE and SE enhancements over the colocated FD MIMO system, showing the advantages in alleviating high path loss as well as in cutting the carbon footprint. Compared to the sole-FD DA system, the proposed system shows much higher EE with marginal loss in SE. Also, the SIC operation in the proposed system is much more simplified compared to the two benchmarks

    Reconfigurable Leaky Wave Antenna based on Metamaterial Substrate Integrated Waveguide for 5G oriented beamsteering application

    Get PDF
    This work presents the study and the development of a Leaky Wave Antenna, based on a Composite Right-Left Handed transmission line and a Substrate Integrated Waveguide. The antenna system is designed to work in the frequency band of 26 GHz - 30 GHz, demonstrates beamsteering functionalities and a high gain. The conducted study is envisioned in the background of the fifth generation mobile networks (5G), in order to fulfil the requirements for the realization of a small cell antenna

    Internet of Things From Hype to Reality

    Get PDF
    The Internet of Things (IoT) has gained significant mindshare, let alone attention, in academia and the industry especially over the past few years. The reasons behind this interest are the potential capabilities that IoT promises to offer. On the personal level, it paints a picture of a future world where all the things in our ambient environment are connected to the Internet and seamlessly communicate with each other to operate intelligently. The ultimate goal is to enable objects around us to efficiently sense our surroundings, inexpensively communicate, and ultimately create a better environment for us: one where everyday objects act based on what we need and like without explicit instructions

    Spectrum Sharing, Latency, and Security in 5G Networks with Application to IoT and Smart Grid

    Get PDF
    The surge of mobile devices, such as smartphones, and tables, demands additional capacity. On the other hand, Internet-of-Things (IoT) and smart grid, which connects numerous sensors, devices, and machines require ubiquitous connectivity and data security. Additionally, some use cases, such as automated manufacturing process, automated transportation, and smart grid, require latency as low as 1 ms, and reliability as high as 99.99\%. To enhance throughput and support massive connectivity, sharing of the unlicensed spectrum (3.5 GHz, 5GHz, and mmWave) is a potential solution. On the other hand, to address the latency, drastic changes in the network architecture is required. The fifth generation (5G) cellular networks will embrace the spectrum sharing and network architecture modifications to address the throughput enhancement, massive connectivity, and low latency. To utilize the unlicensed spectrum, we propose a fixed duty cycle based coexistence of LTE and WiFi, in which the duty cycle of LTE transmission can be adjusted based on the amount of data. In the second approach, a multi-arm bandit learning based coexistence of LTE and WiFi has been developed. The duty cycle of transmission and downlink power are adapted through the exploration and exploitation. This approach improves the aggregated capacity by 33\%, along with cell edge and energy efficiency enhancement. We also investigate the performance of LTE and ZigBee coexistence using smart grid as a scenario. In case of low latency, we summarize the existing works into three domains in the context of 5G networks: core, radio and caching networks. Along with this, fundamental constraints for achieving low latency are identified followed by a general overview of exemplary 5G networks. Besides that, a loop-free, low latency and local-decision based routing protocol is derived in the context of smart grid. This approach ensures low latency and reliable data communication for stationary devices. To address data security in wireless communication, we introduce a geo-location based data encryption, along with node authentication by k-nearest neighbor algorithm. In the second approach, node authentication by the support vector machine, along with public-private key management, is proposed. Both approaches ensure data security without increasing the packet overhead compared to the existing approaches
    corecore