12,524 research outputs found

    A note on stress-driven anisotropic diffusion and its role in active deformable media

    Full text link
    We propose a new model to describe diffusion processes within active deformable media. Our general theoretical framework is based on physical and mathematical considerations, and it suggests to use diffusion tensors directly coupled to mechanical stress. A proof-of-concept experiment and the proposed generalised reaction-diffusion-mechanics model reveal that initially isotropic and homogeneous diffusion tensors turn into inhomogeneous and anisotropic quantities due to the intrinsic structure of the nonlinear coupling. We study the physical properties leading to these effects, and investigate mathematical conditions for its occurrence. Together, the experiment, the model, and the numerical results obtained using a mixed-primal finite element method, clearly support relevant consequences of stress-assisted diffusion into anisotropy patterns, drifting, and conduction velocity of the resulting excitation waves. Our findings also indicate the applicability of this novel approach in the description of mechano-electrical feedback in actively deforming bio-materials such as the heart

    Competing mechanisms of stress-assisted diffusivity and stretch-activated currents in cardiac electromechanics

    Full text link
    We numerically investigate the role of mechanical stress in modifying the conductivity properties of the cardiac tissue and its impact in computational models for cardiac electromechanics. We follow a theoretical framework recently proposed in [Cherubini, Filippi, Gizzi, Ruiz-Baier, JTB 2017], in the context of general reaction-diffusion-mechanics systems using multiphysics continuum mechanics and finite elasticity. In the present study, the adapted models are compared against preliminary experimental data of pig right ventricle fluorescence optical mapping. These data contribute to the characterization of the observed inhomogeneity and anisotropy properties that result from mechanical deformation. Our novel approach simultaneously incorporates two mechanisms for mechano-electric feedback (MEF): stretch-activated currents (SAC) and stress-assisted diffusion (SAD); and we also identify their influence into the nonlinear spatiotemporal dynamics. It is found that i) only specific combinations of the two MEF effects allow proper conduction velocity measurement; ii) expected heterogeneities and anisotropies are obtained via the novel stress-assisted diffusion mechanisms; iii) spiral wave meandering and drifting is highly mediated by the applied mechanical loading. We provide an analysis of the intrinsic structure of the nonlinear coupling using computational tests, conducted using a finite element method. In particular, we compare static and dynamic deformation regimes in the onset of cardiac arrhythmias and address other potential biomedical applications

    Nonlinear physics of electrical wave propagation in the heart: a review

    Get PDF
    The beating of the heart is a synchronized contraction of muscle cells (myocytes) that are triggered by a periodic sequence of electrical waves (action potentials) originating in the sino-atrial node and propagating over the atria and the ventricles. Cardiac arrhythmias like atrial and ventricular fibrillation (AF,VF) or ventricular tachycardia (VT) are caused by disruptions and instabilities of these electrical excitations, that lead to the emergence of rotating waves (VT) and turbulent wave patterns (AF,VF). Numerous simulation and experimental studies during the last 20 years have addressed these topics. In this review we focus on the nonlinear dynamics of wave propagation in the heart with an emphasis on the theory of pulses, spirals and scroll waves and their instabilities in excitable media and their application to cardiac modeling. After an introduction into electrophysiological models for action potential propagation, the modeling and analysis of spatiotemporal alternans, spiral and scroll meandering, spiral breakup and scroll wave instabilities like negative line tension and sproing are reviewed in depth and discussed with emphasis on their impact in cardiac arrhythmias.Peer ReviewedPreprin

    An HPC-Based Approach to Study Living System Computational Model Parameter Dependency

    Full text link
    High performance computing (HPC) allows one to run in parallel large amount of independent numerical experiments for computationally intensive simulations of a complex system. Results of such experiments can be used to derive dependencies between functional characteristics of simulated system and parameters of the computational model. In this paper, we implemented this HPC approach with using a computational model of the electrical activity in the left ventricle of human heart. To illustrate possibilities of the approach, we analyzed dependencies of electrophysiological characteristics of the left ventricle on the parameters of its geometry. Particularly, we identified a dependence of the dynamics of activated myocardium part during excitation on the model parameters of the myocardial fiber orientation in the ventricular wall

    A modeling framework for contact, adhesion and mechano-transduction between excitable deformable cells

    Full text link
    Cardiac myocytes are the fundamental cells composing the heart muscle. The propagation of electric signals and chemical quantities through them is responsible for their nonlinear contraction and dilatation. In this study, a theoretical model and a finite element formulation are proposed for the simulation of adhesive contact interactions between myocytes across the so-called gap junctions. A multi-field interface constitutive law is proposed for their description, integrating the adhesive and contact mechanical response with their electrophysiological behavior. From the computational point of view, the initial and boundary value problem is formulated as a structure-structure interaction problem, which leads to a straightforward implementation amenable for parallel computations. Numerical tests are conducted on different couples of myocytes, characterized by different shapes related to their stages of growth, capturing the experimental response. The proposed framework is expected to have impact on the understanding how imperfect mechano-transduction could lead to emergent pathological responses.Comment: 31 pages, 17 figure

    Directed networks as a novel way to describe and analyze cardiac excitation : directed graph mapping

    Get PDF
    Networks provide a powerful methodology with applications in a variety of biological, technological and social systems such as analysis of brain data, social networks, internet search engine algorithms, etc. To date, directed networks have not yet been applied to characterize the excitation of the human heart. In clinical practice, cardiac excitation is recorded by multiple discrete electrodes. During (normal) sinus rhythm or during cardiac arrhythmias, successive excitation connects neighboring electrodes, resulting in their own unique directed network. This in theory makes it a perfect fit for directed network analysis. In this study, we applied directed networks to the heart in order to describe and characterize cardiac arrhythmias. Proof-of-principle was established using in-silico and clinical data. We demonstrated that tools used in network theory analysis allow determination of the mechanism and location of certain cardiac arrhythmias. We show that the robustness of this approach can potentially exceed the existing state-of-the art methodology used in clinics. Furthermore, implementation of these techniques in daily practice can improve the accuracy and speed of cardiac arrhythmia analysis. It may also provide novel insights in arrhythmias that are still incompletely understood

    A multiscale model for collagen alignment in wound healing

    Get PDF
    It is thought that collagen alignment plays a significant part in scar tissue formation during dermal wound healing. We present a multiscale model for collagen deposition and alignment during this process. We consider fibroblasts as discrete units moving within an extracellular matrix of collagen and fibrin modelled as continua. Our model includes flux induced alignment of collagen by fibroblasts, and contact guidance of fibroblasts by collagen fibres. We can use the model to predict the effects of certain manipulations, such as varying fibroblast speed, or placing an aligned piece of tissue in the wound. We also simulate experiments which alter the TGF-β concentrations in a healing dermal wound and use the model to offer an explanation of the observed influence of this growth factor on scarring
    corecore