Cardiac myocytes are the fundamental cells composing the heart muscle. The
propagation of electric signals and chemical quantities through them is
responsible for their nonlinear contraction and dilatation. In this study, a
theoretical model and a finite element formulation are proposed for the
simulation of adhesive contact interactions between myocytes across the
so-called gap junctions. A multi-field interface constitutive law is proposed
for their description, integrating the adhesive and contact mechanical response
with their electrophysiological behavior. From the computational point of view,
the initial and boundary value problem is formulated as a structure-structure
interaction problem, which leads to a straightforward implementation amenable
for parallel computations. Numerical tests are conducted on different couples
of myocytes, characterized by different shapes related to their stages of
growth, capturing the experimental response. The proposed framework is expected
to have impact on the understanding how imperfect mechano-transduction could
lead to emergent pathological responses.Comment: 31 pages, 17 figure