511,545 research outputs found

    Closed-form solutions for linear regulator design of mechanical systems including optimal weighting matrix selection

    Get PDF
    Vibration in modern structural and mechanical systems can be reduced in amplitude by increasing stiffness, redistributing stiffness and mass, and/or adding damping if design techniques are available to do so. Linear Quadratic Regulator (LQR) theory in modern multivariable control design, attacks the general dissipative elastic system design problem in a global formulation. The optimal design, however, allows electronic connections and phase relations which are not physically practical or possible in passive structural-mechanical devices. The restriction of LQR solutions (to the Algebraic Riccati Equation) to design spaces which can be implemented as passive structural members and/or dampers is addressed. A general closed-form solution to the optimal free-decay control problem is presented which is tailored for structural-mechanical system. The solution includes, as subsets, special cases such as the Rayleigh Dissipation Function and total energy. Weighting matrix selection is a constrained choice among several parameters to obtain desired physical relationships. The closed-form solution is also applicable to active control design for systems where perfect, collocated actuator-sensor pairs exist

    Multi - objective sliding mode control of active magnetic bearing system

    Get PDF
    Active Magnetic Bearing (AMB) system is known to inherit many nonlinearity effects due to its rotor dynamic motion and the electromagnetic actuators which make the system highly nonlinear, coupled and open-loop unstable. The major nonlinearities that are associated with AMB system are gyroscopic effect, rotor mass imbalance and nonlinear electromagnetics in which the gyroscopics and imbalance are dependent to the rotational speed of the rotor. In order to provide satisfactory system performance for a wide range of system condition, active control is thus essential. The main concern of the thesis is the modeling of the nonlinear AMB system and synthesizing a robust control method based on Sliding Mode Control (SMC) technique such that the system can achieve robust performance under various system nonlinearities. The model of the AMB system is developed based on the integration of the rotor and electromagnetic dynamics which forms nonlinear time varying state equations that represent a reasonably close description of the actual system. Based on the known bound of the system parameters and state variables, the model is restructured to become a class of uncertain system by using a deterministic approach. In formulating the control algorithm to control the system, SMC theory is adapted which involves the formulation of the sliding surface and the control law such that the state trajectories are driven to the stable sliding manifold. The surface design involves the transformation of the system into a special canonical representation such that the sliding motion can be characterized by a convex representation of the desired system performances. Optimal Linear Quadratic (LQ) characteristics and regional pole-clustering of the closed-loop poles are designed to be the objectives to be fulfilled in the surface design where the formulation is represented as a set of Linear Matrix Inequality optimization problem. For the control law design, a new continuous SMC controller is proposed in which asymptotic convergence of the system’s state trajectories in finite time is guaranteed. This is achieved by adapting the equivalent control approach with the exponential decaying boundary layer technique. The newly designed sliding surface and control law form the complete Multi-objective SMC (MO-SMC) and the proposed algorithm is applied into the nonlinear AMB in which the results show that robust system performance is achieved for various system conditions. The findings also demonstrate that the MO-SMC gives better system response than the reported ideal SMC (I-SMC) and continuous SMC (C-SMC)

    Practical optimal flight control system design for helicopter aircraft. Volume 2: Software user's guide

    Get PDF
    A method by which modern and classical control theory techniques may be integrated in a synergistic fashion and used in the design of practical flight control systems is presented. A general procedure is developed, and several illustrative examples are included. Emphasis is placed not only on the synthesis of the design, but on the assessment of the results as well. The first step is to establish the differences, distinguishing characteristics and connections between the modern and classical control theory approaches. Ultimately, this uncovers a relationship between bandwidth goals familiar in classical control and cost function weights in the equivalent optimal system. In order to obtain a practical optimal solution, it is also necessary to formulate the problem very carefully, and each choice of state, measurement and output variable must be judiciously considered. Once design goals are established and problem formulation completed, the control system is synthesized in a straightforward manner. Three steps are involved: filter-observer solution, regulator solution, and the combination of those two into the controller. Assessment of the controller permits and examination and expansion of the synthesis results

    Design of switching damping controllers for power systems based on a Markov jump parameter system approach

    Full text link
    The application of a new technique, based on the theory of Markov Jump Parameter Systems (MJPS), to the problem of designing controllers to damp power system oscillations is presented in this paper. This problem is very difficult to address, mainly because these controllers are required to have an output feedback decentralized structure. The technique relies on the statistical knowledge about the system operating conditions to provide less conservative controllers than other modern robust control approaches. The influence of the system interconnections over its modes of oscillation is reduced by means of a proper control design formulation involving Integral Quadratic Constraints. The discrete nature of some typical events in power systems (such as line tripping or load switching) is adequately modeled by the MJPS approach, therefore allowing the controller to withstand such abrupt changes in the operating conditions of the system, as shown in the results. © 2006 IEEE

    A Mathematical Formulation of the SCOLE Control Problem. Part 2: Optimal Compensator Design

    Get PDF
    The study initiated in Part 1 of this report is concluded and optimal feedback control (compensator) design for stability augmentation is considered, following the mathematical formulation developed in Part 1. Co-located (rate) sensors and (force and moment) actuators are assumed, and allowing for both sensor and actuator noise, stabilization is formulated as a stochastic regulator problem. Specializing the general theory developed by the author, a complete, closed form solution (believed to be new with this report) is obtained, taking advantage of the fact that the inherent structural damping is light. In particular, it is possible to solve in closed form the associated infinite-dimensional steady-state Riccati equations. The SCOLE model involves associated partial differential equations in a single space variable, but the compensator design theory developed is far more general since it is given in the abstract wave equation formulation. The results thus hold for any multibody system so long as the basic model is linear

    Techniques for Optimum Design of Actively Controlled Structures Including Topological Considerations

    Get PDF
    The design and performance of complex engineering systems often depends on several conflicting objectives which, in many cases, cannot be represented as a single measure of performance. This thesis presents a multi-objective formulation for a comprehensive treatment of the structural and topological considerations in the design of actively controlled structures. The dissertation addresses three main problems. The first problem deals with optimum placement of actuators in actively controlled structures. The purpose of control is to reduce the vibrations when the structure is subjected to a disturbance. In order to mitigate the structural vibrations as quickly as possible, it is necessary to place the actuators at locations such that their ability to control the vibrations is maximized. Since the actuator locations are discrete (0-1) variables, a genetic algorithm based approach is used to solve the resulting optimization problem. The second problem this dissertation addresses is the multi-objective design of actively controlled structures. Structural weight, controller performance index and energy dissipated by the actuators are considered as the objective functions. It is assumed that a hierarchical structure exist between the actuator placement and structural-control design objective functions with the actuator placement problem considered being more important. The resulting multi-objective optimization problem is solved using Stackelberg game and cooperative game theory approaches. The exchange of information between different levels of the multi-level problem is done by constructing the rational reaction set of follower solution using design of experiments and response surface methods. The third problem addressed in this dissertation is the optimization of structural topology in the context of structural/control system design. Despite the recognition that an optimization of topology can significantly improve structural performance, most of the work in design of actively controlled structures has been done with structures of a known topology. The combined topology and sizing optimization of actively controlled structures is also considered in this thesis. The approach presented involves the determination of optimum topology followed by a sizing and control system optimization of the optimum topology. Using two numerical examples, it is shown that a simultaneous consideration of topological, control and structural aspects yields solutions that outperform designs when topological considerations are neglected

    Quantum inspired algorithms for learning and control of stochastic systems

    Get PDF
    Motivated by the limitations of the current reinforcement learning and optimal control techniques, this dissertation proposes quantum theory inspired algorithms for learning and control of both single-agent and multi-agent stochastic systems. A common problem encountered in traditional reinforcement learning techniques is the exploration-exploitation trade-off. To address the above issue an action selection procedure inspired by a quantum search algorithm called Grover\u27s iteration is developed. This procedure does not require an explicit design parameter to specify the relative frequency of explorative/exploitative actions. The second part of this dissertation extends the powerful adaptive critic design methodology to solve finite horizon stochastic optimal control problems. To numerically solve the stochastic Hamilton Jacobi Bellman equation, which characterizes the optimal expected cost function, large number of trajectory samples are required. The proposed methodology overcomes the above difficulty by using the path integral control formulation to adaptively sample trajectories of importance. The third part of this dissertation presents two quantum inspired coordination models to dynamically assign targets to agents operating in a stochastic environment. The first approach uses a quantum decision theory model that explains irrational action choices in human decision making. The second approach uses a quantum game theory model that exploits the quantum mechanical phenomena \u27entanglement\u27 to increase individual pay-off in multi-player games. The efficiency and scalability of the proposed coordination models are demonstrated through simulations of a large scale multi-agent system --Abstract, page iii

    Iterative Learning Control design for uncertain and time-windowed systems

    Get PDF
    Iterative Learning Control (ILC) is a control strategy capable of dramatically increasing the performance of systems that perform batch repetitive tasks. This performance improvement is achieved by iteratively updating the command signal, using measured error data from previous trials, i.e., by learning from past experience. This thesis deals with ILC for time-windowed and uncertain systems. With the term "time-windowed systems", we mean systems in which actuation and measurement time intervals differ. With "uncertain systems", we refer to systems whose behavior is represented by incomplete or inaccurate models. To study the ILC design issues for time-windowed systems, we consider the task of residual vibration suppression in point-to-point motion problems. In this application, time windows are used to modify the original system to comply with the task. With the properties of the time-windowed system resulting in nonconverging behavior of the original ILC controlled system, we introduce a novel ILC design framework in which convergence can be achieved. Additionally, this framework reveals new design freedom in ILC for point-to-point motion problems, which is unknown in "standard" ILC. Theoretical results concerning the problem formulation and control design for these systems are supported by experimental results on a SISO and MIMO flexible structure. The analysis and design results of ILC for time-windowed systems are subsequently extended to the whole class of linear systems whose input and output are filtered with basis functions (which include time windows). Analysis and design theory of ILC for this class of systems reveals how different ILC objectives can be reached by design of separate parts of the ILC controller. Our research on ILC for uncertain systems is divided into two parts. In the first part, we formulate an approach to analyze the robustness properties of existing ILC controllers, using well developed µ theory. To exemplify our findings, we analyze the robustness properties of linear quadratic (LQ) norm optimal ILC controllers. Moreover, we show that the approach is applicable to the class of linear trial invariant ILC controlled systems with basis functions. In the second part, we present a finite time interval robust ILC control strategy that is robust against model uncertainty as given by an additive uncertainty model. For that, we exploit H1 control theory, however, modified such that the controller is not restricted to be causal and operates on a finite time interval. Furthermore, we optimize the robust controller so as to optimize performance while remaining robustly monotonically convergent. By means of experiments on a SISO flexible system, we show that this control strategy can indeed outperform LQ norm optimal ILC and causal robust ILC control strategies

    Integrated Robust Optimal Design (IROD) via sensitivity minimization

    Get PDF
    A novel Integrated Robust Optimal Design (IROD) methodology is presented in this work which combines a traditional sensitivity theory with relatively new dvancements in Bilinear Matrix Inequality (BMI) constrained optimization problems. IROD provides the least conservative approach for robust control synthesis. The proposed methodology is demonstrated using numerical examples of integrated control-structure design problem for combine harvester header and excavator linkages. The IROD methodology is compared with the state of the art sequential design method using the two application examples, and the results show that the proposed methodology provides a viable alternative for robust controller synthesis and often times offers even a better performance than competing methods. Although this method requires linearization of nonlinear system at each system parameter optimization step, a technique to linearized Differential Algebraic Equations (DAE) is presented which allows use of symbolic approach for linearization. This technique avoids repetitive linearizations. For the nonlinear systems with parametric uncertainties which can not be linearized at operating points, a new methodology is proposed for robust feedback linearization using sensitivity dynamics-based formulation. The feedback linearization approach is used for systems with augmented sensitivity dynamics and used to refine control input to improve robustness. The method is demonstrated using an example of a position tracking control of a hydraulic actuator. The robustness of controller design is demonstrated by considering variations in fluid density parameter. The results show that the proposed methodology improves robustness of the feedback linearization to parametric variations

    Examination of optimizing information flow in networks

    Get PDF
    The central role of the Internet and the World-Wide-Web in global communications has refocused much attention on problems involving optimizing information flow through networks. The most basic formulation of the question is called the "max flow" optimization problem: given a set of channels with prescribed capacities that connect a set of nodes in a network, how should the materials or information be distributed among the various routes to maximize the total flow rate from the source to the destination. Theory in linear programming has been well developed to solve the classic max flow problem. Modern contexts have demanded the examination of more complicated variations of the max flow problem to take new factors or constraints into consideration; these changes lead to more difficult problems where linear programming is insufficient. In the workshop we examined models for information flow on networks that considered trade-offs between the overall network utility (or flow rate) and path diversity to ensure balanced usage of all parts of the network (and to ensure stability and robustness against local disruptions in parts of the network). While the linear programming solution of the basic max flow problem cannot handle the current problem, the approaches primal/dual formulation for describing the constrained optimization problem can be applied to the current generation of problems, called network utility maximization (NUM) problems. In particular, primal/dual formulations have been used extensively in studies of such networks. A key feature of the traffic-routing model we are considering is its formulation as an economic system, governed by principles of supply and demand. Considering channel capacities as a commodity of limited supply, we might suspect that a system that regulates traffic via a pricing scheme would assign prices to channels in a manner inversely proportional to their respective capacities. Once an appropriate network optimization problem has been formulated, it remains to solve the optimization problem; this will need to be done numerically, but the process can greatly benefit from simplifications and reductions that follow from analysis of the problem. Ideally the form of the numerical solution scheme can give insight on the design of a distributed algorithm for a Transmission Control Protocol (TCP) that can be directly implemented on the network. At the workshop we considered the optimization problems for two small prototype network topologies: the two-link network and the diamond network. These examples are small enough to be tractable during the workshop, but retain some of the key features relevant to larger networks (competing routes with different capacities from the source to the destination, and routes with overlapping channels, respectively). We have studied a gradient descent method for solving obtaining the optimal solution via the dual problem. The numerical method was implemented in MATLAB and further analysis of the dual problem and properties of the gradient method were carried out. Another thrust of the group's work was in direct simulations of information flow in these small networks via Monte Carlo simulations as a means of directly testing the efficiencies of various allocation strategies
    corecore