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Nomenclature
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A Bi
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]
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A B
C D
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state space matrices of time domain system J[

Ah Bh

Ch
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elements of the time domain R-ILC controller
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d scaling factor
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finit initial value for command signal f
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g learning gain
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G generalized plant[
Hij Fi

Gi Hy
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(i, j) ∈ [1, 2], state space matrices of R-ILC controller
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H∆ uncertain general system H
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j(t) impulse response of system J
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J∆ uncertain system J
J objective function
k trial index
` trial periodicity
L ILC control element
Lc ILC control element
Lim

c ILC control element Lc, including basis function matrix Tf
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p rank of system matrix J
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Chapter 1

Introduction

In this chapter, we define our research objectives. For that, the idea
behind Iterative Learning Control (ILC) is introduced and its relation
to other control techniques briefly discussed. Moreover, the use of time-
windows in ILC is highlighted, and the consequences of model uncertainty
on ILC control design addressed.

1.1 Background

In numerous applications, a system has to perform a repeated batch task, e.g., a
pick and place machine or batch chemical process which has to follow a given refer-
ence trajectory. Characteristic features of a batch task are that 1) each repetition
(trial) spans a finite time interval which is known on beforehand, and 2) each trial
starts from the same initial conditions due to resetting of the system before each
trial. Since the reference signal is, in general, the dominant disturbance in the
system, this batch repetitiveness yields a servo error that is (approximately) equal
for each trial. If this servo error does not meet the performance specifications,
Iterative Learning Control (ILC) can be introduced into the system to increase
performance.

ILC iteratively improves the performance of repeated batch processes, by updating
the feedforward signal (command signal) from one trial to the next using measured
data from previous trials, i.e., by learning from previous experience. The concept
behind ILC is illustrated in Figure 1.1 and Figure 1.2. In Figure 1.1, a reference
signal and measured output are shown. In this example, ILC significantly reduces
the error between the reference signal and measured output within three trials.
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Figure 1.1: Reference signal and measured output of the system for trials 1 to 3. Note
that in trial 3, the measured output and reference signal coincide.
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Figure 1.2: Command signal generated by ILC for trials 1 to 3.

This is accomplished by iteratively updating the command signal, until the desired
command signal is obtained, see Figure 1.2.

The idea of using an iterative strategy to deal with repetitive disturbances is first
described in a US patent from 1971, [53]. What seems to be the first academic
publication on ILC stems from 1978, [126]. But since it was in Japanese, the re-
sults did not become widely spread. In 1984, [10, 25, 31] independently published
results on iterative improvement of performance. The term “Iterative Learning
Control ” was introduced in Arimoto et al. in the same year, [11]. A first mono-
graph on ILC stems from Moore 1993, [87]. Since then, treatment of different
topics in ILC can be found in, e.g., [17, 22, 56]. Extensive surveys of different
(industrial) applications of ILC is presented in [2, 88].

When properly designed, the ILC controller iteratively finds that command signal
that results in high performance, despite possible model uncertainty and unknown
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trial invariant disturbances. With the update of the command signal based on
previously measured data, the trial-to-trial behavior of ILC can be considered a
feedback process. On the other hand, during the time interval of a trial, this
command signal is applied to the system as a fixed feedforward signal. Conse-
quently, it depends on the domain, trial domain or time domain, whether ILC
can be considered as feedback or feedforward control.

Based on the feedforward characteristics of ILC in time domain, its iterative
search for the optimal command signal in trial domain, and the fact that ILC is
designed to compensate for (trial) repetitive disturbances, we briefly discuss sim-
ilarities and differences between ILC for linear systems and ILC related control
strategies.

Model-based feedforward control
The basic idea of feedforward control is to find a feedforward signal f such that
the system’s output y follows the reference signal yref , i.e., y = Pf with f such
that yref − y = 0. Under the assumption that a model P of the system dynamics
is known and P−1 is stable, inverse model feedforward control can be applied to
obtain the optimal feedforward signal: f = P−1yref , see e.g., [18]. Note that
causality of the inverse is of no importance, since the input of the feedforward
controller (the reference signal) is assumed known for all time, both past and
future.

A benefit of model-based feedforward over ILC is that a feedforward signal can
be obtained for arbitrary reference signals without the need for iterative learning.
A drawback of these controllers is, however, that the amount of performance im-
provement strongly depends on the accuracy of the model, see e.g., [36].

Adaptive feedforward control
If the system structure is known but its parameters are uncertain, then the feed-
forward signal can be obtained using an adaptive feedforward controller, i.e., a
feedforward controller which recursively estimates system (related) parameters,
see e.g., [9, 74]. To obtain the optimal command signal such that yref − y = 0,
we require the inverse of the true system structure to be contained in the model
structure of the controller. However, even if the inverse system structure is not
contained in the controller, this approach will result in optimized performance in
the space in which parameter estimation can occur. Estimation of the parameters
can subsequently be performed on-line in time domain, leading to the condition of
persistency of excitation of the reference signal, or off-line in trial domain, between
two trials. In this thesis, we consider trial domain adaptive feedforward control
in a restricted input/output (i/o) space to be a specific case of ILC, see Chapter 4.
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Repetitive control
ILC is comparable to repetitive control, [35, 63, 118, 124], in the sense that they
both strive after performance improvement by reducing the effects of periodic
disturbances on the error. An essential difference between repetitive control and
ILC, however, is that an ILC controlled system is reset between two trials, while
a system controlled with a repetitive controller is not. A first consequence is, that
ILC can handle batch repetitive disturbances in time domain, e.g., a reference
disturbance which is equal from trial to trial, and repetitive control can handle
disturbances which are repetitive (periodic) in time domain, e.g., a continuously
rotating disc with a disturbance that occurs each revolution. A second conse-
quence is, that repetitive control can be considered a feedback control strategy in
time domain, instead of a feedforward control strategy in time domain.

1.2 Research objectives

In this section, we formulate the research objectives which form the basis for
this thesis. These objectives can be divided into two subjects: The first subject
addresses the use of time windows in ILC. The second subject raises the issue of
robustness of ILC against model uncertainty.

1.2.1 Motivation

Our interest for ILC for time-windowed systems is founded in industrial applica-
tions. One application in which time-windowed ILC is used (implicitly), is the
semiconductor industry. In [85], for example, the ILC control problem is modified
such that performance is only improved during the time intervals in a trial where
the repetitive disturbances dominate the non-repetitive disturbances. In [13], a
batch iterative approach is used to improve the performance during the scanning
time interval of a trial. Another application is given by the Ultra High Pressure
(UHP) lamp for projection systems, [122]. Due to computation and memory de-
mands, in [122] the lamp is actuated over a time interval which is shorter than
the time interval in which the lamp’s output is measured. Although the imple-
mentations have been shown to be successful, the implications of time-windowed
systems on ILC control design are not yet known.

In ILC literature, many successful implementations of ILC have been presented.
These results are, however, most often based on the implementation of ILC on a
single sample system (of a mass produced system). Furthermore, the experiments
are often conducted over a limited time span, e.g., days, weeks. What will happen,
if a designed ILC controller is applied to a different sample system, or to a system
whose dynamics have changed due to wear? To our opinion, ILC literature does
not provide fully satisfying answers to these for industry essential questions.
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1.2.2 ILC for time-windowed systems

Before any proper ILC design can take place, it has to be apparent which task
ILC is expected to carry out, i.e., the ILC problem formulation has to be clear.
As we discuss below, in many situations a correct formulation of the problem
requires the use of time windows. These windows can be used to select specific
time samples at the input and output of the system, as illustrated in Figure 1.3.

t i m e
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ou
tp
ut

ou
tp
ut

ou
tp
ut

t i m e

t i m e t i m e

Figure 1.3: Top: A time window is used to select a specific time interval of the time
signal. Bottom: Downsampling of the time signal.

One of the most well known problem formulations in ILC deals with the servo
task. In this task, ILC control has to iteratively generate a command signal
which actuates the system during the complete time span of a trial, such that the
observed output of the system follows a certain predefined reference trajectory
during the complete time span of a trial.

In another ILC task, one is only interested in the output of the system at the
end of the trial, see e.g., [29, 54, 137]. Actuation in this so-called terminal ILC
takes place during the complete time span of the trial, while observation of the
error occurs only at the final time sample of the trial. An example of terminal
ILC is rapid thermal processing, [137]. The goal is to control the chemical vapor
deposition thickness on a wafer at the end of the process by controlling the wafer
temperature. Any thickness errors during the process are of no interest.

A third ILC task is found in residual vibration suppression in point-to-point mo-
tion problems, see [40, 78, 79, 133]. This problem formulation covers the case in
which residual vibrations are to be suppressed, after the system has been moved
from an initial position to a desired position. This requires actuation of the sys-
tem during the motion from initial to final position, and observation of residual
vibrations after arrival at the desired point.
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The previous three ILC problem formulations resulted in the definition of specific
time intervals in which actuation and observation of the system is allowed. Other
uses for time windows are, however, also possible, e.g., to study the time domain
and trial domain behavior of the servo error signal. In [7, 66, 76], performance
and convergence properties of systems with nonzero relative degrees and delays
are studied. To properly analyze the convergence properties of the system under
study, [7, 66, 76] implicitly make use of time windows. Namely, the actuation
interval of the system is reduced by removal of the final samples of the trial inter-
val, and the observation time interval is reduced by removal of the first samples
of the trial interval. In [68, 142], the error convergence from trial to trial has to
satisfy specific monotonicity conditions. By downsampling of the original system,
these conditions are met. Downsampling for reduction of inter-sample behavior
in ILC is discussed in [77]. In [72], reduction of inter-sample behavior is achieved
by removing the first number of actuation samples in a trial. Finally, in [98, 99],
inter-sample behavior in ILC is studied using a multirate system representation
which is constructed with time windows.

From the previous discussion, we conclude that time windows in ILC are widely,
though often implicitly, used to properly formulate ILC problems. This observa-
tion leads to the first research objective:

Objective 1. Explore the design issues, i.e., problem formulation, con-
vergence analysis, and ILC control design, in ILC for time-windowed sys-
tems.

Time-windowed systems can be considered a specific subset of systems with i/o
basis functions. This observation leads to the second research objective:

Objective 2. Formulate a unifying ILC design framework which encom-
passes the different ILC problem formulations for linear systems with
basis functions, and determine the for ILC relevant properties of this
framework.

In Section 2.1, we elaborate on different ILC control suggestions and formulations
in ILC literature, and discuss which ones we will consider in this thesis. In
objective 2, we aim at formulating a unifying framework which is valid for these
considered systems and ILC control suggestions.
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1.2.3 ILC for uncertain systems

Although the command signal generated by the ILC control strategies is based
on measured data, most often the ILC controller is designed using a model of the
system. The majority of the ILC control strategies discussed in ILC literature
can be divided into three categories, [96].

Arimoto gains
Arimoto gains (or P/PD/PI-type), [26, 48, 76, 140], are ILC controllers in which
the command signal is updated with a scaled, positive time shifted error signal.
These controllers have as great benefit that they can iteratively find optimal com-
mand signal using very little information about the system. This, however, goes at
the expense of the ease with which specific convergence properties can be achieved.

Inverse model based ILC
In inverse model based ILC, [12, 83, 106, 119, 132, 139], the ILC controller is
based on the inverse of a model of the system. With an accurate model, conver-
gence of the ILC algorithm occurs in just a few iterations. On the other hand,
with a poor model, the ILC algorithm can result in unstable behavior.

Linear quadratic (LQ) norm optimal ILC
Finally, LQ norm optimal ILC, [7, 38, 58, 107], focusses on ILC control design
which results from a quadratic optimization problem. Depending on the formu-
lated objective, different parameters in the ILC controller can be used to influence
different properties of the ILC algorithm. In its most simple form, LQ norm op-
timal ILC equals inverse model based ILC. Although this control strategy does
require a model of the system, and tuning of the controller can be more exten-
sive than the other two control strategies, it can be designed to be less sensitive
against model uncertainty than inverse model based ILC.

Since no model can truly reflect the real system behavior, the controller is required
to have some robustness against model uncertainty. Depending on the amount
of uncertainty present and on the properties of the controller itself, the ILC con-
trolled system can become unstable in trial direction, rendering ILC useless.

Robustness analysis of ILC controllers
It is known that, to a certain extent, each ILC controller incorporates robustness
against model uncertainty. In [64], it is shown that there exists inverse model
based ILC controllers for which the ILC controlled system is robustly mono-
tonically convergent, provided that the multiplicative uncertainty description is
positive real. In [6, 52, 55, 56, 70], the robustness properties of LQ norm optimal
ILC controllers are discussed. Although in [6, 52], the finite time interval aspect



8 Chapter 1: Introduction

of ILC is explicitly included in the robust convergence analysis, the approach does
not leave room to include uncertainty models. As a result, the robustness proper-
ties of the solution can not be quantified. In contrast, in [55], uncertainty models
can be included in the analysis. With the analysis based on a frequency domain
representation of the ILC controller, however, the results are only approximate
when applied to a finite time interval. Namely, the Fourier transform on the infi-
nite time interval which is used in this approach, leads to a linear time invariant
(LTI) control law. The application of this LTI controller on a finite time interval
of a trial may result in errors in the initial part of the transient behavior. In [56],
the finite time interval presentation of the system and controllers is approximated
in a Fourier basis, leading to a not fully clear definition of the uncertainty model
and a number of approximate robustness results. Robustness of LQ norm optimal
ILC over a finite time interval for multiplicative model uncertainty represented
by a gain is studied in [70]. Finally, in [4], a robust convergence analysis approach
is presented which is applicable to any linear trial invariant ILC controller. How-
ever, the specific problem formulation used in [4] may restrict the utility of the
results.

Robustness by design of robust ILC controllers
Next to analysis of given ILC controllers with respect to robustness, robustness
can be enforced by design of robust ILC controllers. Robust ILC controllers in-
corporate an uncertainty model in the design of a controller, so as to improve
robustness and performance of the ILC controlled system. Most of these control
strategies pose the ILC control design problem as an H∞ optimization problem.
In [51, 114], the robust control problem is represented by a 2D system represen-
tation. Subsequently, a combined state feedback controller in time domain and
Arimoto gain ILC controller in trial domain is designed. Hence, full knowledge
of the time domain system states is required. In [8, 34, 41, 120, 135], the design
problem is posed in frequency domain, and therefore only approximates the true
finite time interval problem. Moreover, the resulting H∞ optimal controllers are
causal, i.e., the command signal in trial k + 1 at time index t∗ only depends on
information of trial k at time indices t ∈ [0, 1, . . . , t∗] (see Section 2.2 for a formal
introduction of the terms “causal” and “noncausal” in ILC). It is shown, see e.g.,
[97], that specific (often desirable) convergence properties of the ILC controlled
system can be achieved with noncausal ILC controllers only. In [89], the robust
ILC control problem is formulated as an H∞ problem in the trial domain, with
model uncertainty which is assumed to be trial varying, i.e., model uncertainty
which can change from one trial to the next.

To solve a constrained robust ILC control problem for systems under worst case
trial varying uncertainty, in [70], a min-max optimization problem is formulated.
Due to the problem formulation, no analytical solution for the ILC controller
can be given. Moreover, the solution is computationally demanding. Finally,
robust ILC control design for systems with interval uncertainty is studied in [1].
The uncertainty model used puts an individual error bound on each element of
the impulse response, which leads to a large computational load for a realistic
problem.
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Summarizing this discussion, the following aspects should ideally be covered in
ILC control design approaches for uncertain systems:

• the finite time interval aspect of a trial (for an accurate representation of
the ILC problem),

• the freedom to include uncertainty models in the design process (to improve
achievable performance, and to be able to quantify robustness properties),

• and the possibility to analyze the robustness properties of various ILC con-
trol strategies (generality of the analysis).

The current approaches in literature all neglect one or more of these aspects. This
observation leads to the following final two objectives:

Objective 3. Develop a robust convergence analysis approach which
covers the finite time interval aspect of ILC, is applicable to linear trial
invariant ILC strategies, and can incorporate uncertainty models in its
analysis.

Objective 4. Develop a robust ILC control strategy which exploits
knowledge about model uncertainty in its design, is not restricted to be
causal, and incorporates the finite time interval aspect of ILC.

1.3 Outline of the thesis

This thesis is organized as follows. In Chapter 2, we introduce the ILC repre-
sentation used throughout this thesis. Based on this representation, the system
notations and ILC control structure are introduced, together with preliminary
results on ILC control objectives such as convergence and performance.

Chapters 3 to 6 follow the order of the objectives as given in Section 1.2. As
a result, in Chapter 3, we focus on Objective 1. With ILC for residual vibra-
tion suppression in point-to-point motion systems largely unexplored, we use this
ILC task as an exemplary case to analyze ILC for time-windowed systems. This
analysis not only leads to a better understanding of ILC for point-to-point mo-
tion problems, it also reveals new design freedom in ILC. We illustrate this new
freedom by presenting experimental results on flexible systems.
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In Chapter 4, we formalize and extend the results of Chapter 3 to systems with
basis functions by formulating an ILC framework which encompasses the dis-
cussed time-windowed systems as a special case. An ILC analysis and design
theory for systems with basis functions reveals how multiple ILC control objec-
tives can be reached without the need to compromise between them, including
the compensation for the effects of trial varying disturbances on performance.

In Chapter 5, we derive a robust convergence analysis approach for ILC controlled
systems. The proposed approach is based on well developed µ analysis [103, 117,
143], in a form which respects the finite time interval aspect of ILC. Moreover, the
analysis can handle additive and multiplicative uncertainty models in its problem
formulation, and can be applied to MIMO linear time invariant systems controlled
with any possibly noncausal linear trial invariant ILC controller. To exemplify
the results, we analyze the robust convergence properties of LQ norm optimal
ILC.

In Chapter 6, we develop a robust ILC control strategy which incorporates an ad-
ditive uncertainty representation in its design. For the derivation of the controller,
we use an approach similar to H∞ optimization, however, formulated such that
the solution is not restricted to be causal and explicitly acts on a finite time inter-
val. By means of experiments, we show that the proposed R-ILC controller can
outperform LQ norm optimal ILC and robust ILC based on a frequency domain
µ procedure.

Finally, conclusions and recommendations are presented in Chapter 7.
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Chapter 2

Iterative Learning Control

In this chapter, we discuss different formulations in ILC and extract the
ILC representation which we will use throughout this thesis. Based on
this representation, the system notations and ILC control structure are
presented. Moreover, ILC control objectives are introduced and prelimi-
nary results with respect to these objectives are given.

Introduction

The general idea of ILC is illustrated in Figure 2.1, [87]. In Figure 2.1, J represents
the system under study, ILC is the ILC algorithm, and the subscript k denotes
the trial index with k = 0, 1, 2, . . .. The idea behind ILC is as follows. During trial
k, a command signal fk is applied to system J . This command signal is stored
in a memory, together with the error ek which equals the difference between the
reference signal yd and system output yk. After the trial has ended, the command
and error signal are fed to the ILC algorithm, resulting in a command signal for
trial k + 1, i.e., fk+1 = ILC(fk, ek). Ideally, the ILC controller will iteratively
generate a command signal, from trial to trial, such that the error ek converges
to zero.

Throughout this thesis, we assume the following to hold, [17, chap. 1].

1. Every trial has a fixed finite time span.

2. The system under study is reset to the same initial conditions at the be-
ginning of each trial, i.e., xk(0) = x0 for k = 0, 1, 2, . . .. Without loss of
generality, we can take x0 = 0.
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fk+1

ekfk

yd

yk

ILC
J

+
−

Figure 2.1: General ILC framework.

3. The system dynamics are trial invariant.

4. The output signal used for ILC is available from measurements.

2.1 A brief overview of ILC

From the ILC literature, multiple suggestions for the formulation of the ILC prob-
lem are available. In this section, we briefly discuss some of the more well known
suggestions and discuss which we will use in this thesis. For a more elaborate
overview of the different issues in ILC, see e.g., [2, 88].

2.1.1 Problem description

The ILC problem is a 2-dimensional (2D) control problem, i.e., information prop-
agation occurs in two independent directions, e.g., [87]. On the one hand, we have
the finite time domain behavior of the system during a trial. On the other hand,
we have the trial behavior from trial to trial. To capture the 2D system behavior,
different problem descriptions are possible.

It is possible to formulate the ILC problem as 2D control problem, e.g., using
a Roesser or Fornasini-Marchesini state-space model, [51, 73, 102, 114]. Within
this formulation, the finite time domain behavior and discrete trial domain behav-
ior are easily captured. Furthermore, control design can incorporate both time
and trial domain objectives. ILC analysis and control design is, however, more
involved.

To simplify ILC analysis and design, the ILC problem can be approximated by
considering the time domain to be infinite in length. As a result, the time domain
behavior of systems can be represented by transfer functions and analysis can be
done in frequency domain, e.g., [8, 23, 139]. The use of the frequency domain
representation over a finite time interval does, however, lead to approximation
errors (see Chapters 5 and 6).

Finally, the ILC problem can be described using a lifted notation, see e.g., [12,
60, 86, 100, 105, 119]. The idea behind the lifted notation is, that the finite time
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domain behavior of a system is enclosed in a 1D notation in trial domain. As
a result, ILC analysis can be executed using standard linear control theory, and
time domain behavior is defined in a finite time interval. In contrast to 2D ILC,
where stability can be considered in both time and trial domain, stability analysis
in lifted ILC is restricted to trial domain convergence. Furthermore, “lifting” of
the time domain behavior can result in large system representations, e.g., system
matrices J of dimensions of 1000×1000 (which in ILC literature is sometimes
abusively referred to as “curse-of-dimensionality”).

Due to the simplicity of the ILC problem description, available analysis theory
from linear control theory and linear algebra, the explicit inclusion of the finite
time aspect in its description, and the ease with which basis functions can be
included in this representation, in this thesis, we use the lifted ILC notation to
describe our ILC problems.

2.1.2 (Non)linear systems

In many applications, the system behaves nonlinearly. In general, ILC control
design for nonlinear systems is more complex than that for linear systems, see
e.g., [28, 136]. One approach to obtain a linear system behavior of a nonlinear
system, is to linearize the system using feedback linearization, e.g., [83]. This
results in a linear time invariant (LTI) system description. Another approach is
to apply time domain feedback control to the nonlinear system to get the system’s
output in the vicinity of desired trajectory. Subsequently, the feedback controlled
system can be linearized around the trajectory to give a linear time varying (LTV)
system representation, e.g., [107].

In this thesis, we limit ourselves to applications which can be described by, or
well enough approximated by, LTI or LTV models. These models can be properly
captured by the lifted system representation.

2.1.3 Continuous versus discrete time

In ILC, information propagation occurs in two independent directions: the time
and trial direction. While the behavior in trial domain is discrete, the behavior
of the physical time domain system is most often continuous. This can be taken
into account in ILC control design by describing the time domain behavior by a
continuous time model, see e.g., [10, 17, 104, 136]. Implementation of the ILC
controller, however, must be digital, due to storage of the command and error
signal in a digital memory. Using the reasoning: “With the implementation of
ILC control digital, the design of the controller might as well acknowledge this
from the start”, [17, chap. 7], in this thesis we represent the time domain system
behavior in discrete domain.
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2.1.4 First order, higher order, and current iteration tracking
error ILC

The basic idea behind ILC is to use the command signal f and error signal e from
trial k to determine the command signal for trial k + 1, i.e., fk+1 = ILC(fk, ek).
In case calculation of fk+1 is based on these signals only, the ILC controller is
referred to as first order ILC.

If signals from earlier trials are also included in the ILC algorithm, i.e., if fk+1 =
ILC(fk, fk−1, . . . , ek, ek−1, . . .), the algorithm is referred to as higher order (HO)
ILC, [5, 17]. Depending on the proposed ILC control strategy, performance of HO
ILC in presence of trial varying disturbances can be increased, [59], or not [91,
111]. Similarly, depending on the used ILC control strategy, robustness and/or
convergence properties can be improved, [66, 89], or not, [91].

Next to inclusion of multiple past trial signals, it is also possible to use current
iteration error signals in the ILC algorithm, i.e., fk+1 = ILC(fk, ek, ek+1). This
ILC controller is referred to as current iteration tracking error (CITE) ILC, [27,
30, 97]. A closer look at the structure of CITE ILC reveals that this ILC algorithm
combines first order ILC with time domain feedback control. As a result, CITE
ILC can improve performance of the ILC controlled system in presence of trial
varying disturbances and improve robustness, similar to time domain feedback
control.

In this thesis, the emphasis is on trial invariant phenomena. Furthermore, we
assume that the system under study is already stable, or stabilized by a time
domain feedback controller. Consequently, we consider first order ILC only.

2.1.5 Trial (in)variance

Up to now, the discussed ILC strategies have been trial invariant, i.e., the ILC
controllers do not vary from one trial to the next. In presence of trial varying
phenomena, the ILC control algorithms can be made trial varying, i.e., fk+1 =
ILCk(fk, ek), e.g., [49, 50, 65, 67, 84, 92]. Using the argument that the emphasis
in this thesis is on trial invariant phenomena, we restrict ourselves to trial invariant
ILC.

2.1.6 Model uncertainty

Since no model can fully capture the dynamic behavior of the real system, model
uncertainty will always be present. This uncertainty can be ignored in ILC control
design, i.e., ILC control design is based on the assumption that the model and
system behavior coincide. Conversely, model uncertainty can be explicitly taken
into account in ILC control design, see e.g., [1, 34, 56, 92, 121].



2.2: Notations 15

In this thesis, we dedicate a significant part to ILC for uncertain systems (see
Chapter 5 and Chapter 6).

2.1.7 Disturbance aspects

Finally, we address the issue of disturbances in ILC, [7]. Next to the trial in-
variant reference signal yd, external trial varying disturbances, e.g., originating
from measurement noise, neighboring systems, etc., can be present in the ILC
problem, see [30, 70, 94, 111, 112, 123]. Another source of disturbances originates
from errors in the resetting of the system at the beginning of a trial, denoted as
initial condition disturbances, [27, 46, 82, 101].

We briefly discuss performance in presence of trial varying disturbances (see Sec-
tion 4.5). In contrast, as discussed in the introduction of this chapter, we assume
that the initial conditions remain unchanged from one trial to the next. In other
words, we do not consider initial condition disturbances.

2.2 Notations

Based on the choices made in Section 2.1, in this section, we introduce the sys-
tem representation and a commonly used ILC control framework. The control
objectives related to this framework are defined in Section 2.3.

2.2.1 Lifted system representation

Consider the LTV system J as given in (2.1), with f(Tst) ∈ Rqi the command
signal, and y(Tst) ∈ Rqo the output signal.

J :
{

x(Ts(t + 1)) = A(Tst)x(Tst) + B(Tst)f(Tst)
y(Tst) = C(Tst)x(Tst) + D(Tst)f(Tst).

(2.1)

Time index t denotes the sample number, and Ts represents the sample time. Note
that in ILC, the time span of a trial is finite, and hence that Tst ∈ [0, Ts(N − 1)]
with N ∈ N the number of samples in a trial. The sample time Ts is omitted for
brevity.

In time domain, system J represents an open or closed loop system, see Figure 2.2
(possibly with C = 0). Input yref (t) ∈ Rqo in Figure 2.2 denotes the reference
signal, f(t) ∈ Rqi the command signal generated by the ILC algorithm, finit(t) a
user defined initial feedforward signal (possibly zero), and e(t) ∈ Rqo the measured
error signal.
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f(t) finit(t)

yref (t)

e(t)

C P

J

+++ ++

−

Figure 2.2: General time domain closed loop system.

The i/o mapping (yref (t), f(t), finit(t)) 7→ e(t) is given by

e(t) = (Iqo
+ PC)−1yref (t)− (Iqo

+ PC)−1P (f(t) + finit(t)).

To fit this mapping to the ILC framework of Figure 2.1, we define yd(t) ∈ Rqo

and J : f(t) 7→ −e(t) by

yd(t) := (Iqo + PC)−1(yref (t)− Pfinit(t))

J := (Iqo
+ PC)−1P,

resulting in

e(t) = yd(t)− Jf(t). (2.2)

An initial command signal finit(t) is hence enclosed in the definition of signal
yd(t). For finit(t) = 0 and C = 0, clearly yd(t) = yref (t). For finit(t) 6= 0
and/or C 6= 0, signal yd(t) represents the servo error signal in absence of ILC.
Nevertheless, independent of the specific choice for C, the goal of ILC is to find
a command signal f(t) such that e(t) = 0.

Using the definitions of yd and J , Figure 2.2 is equivalent to Figure 2.3. In the
remainder of this thesis, we refer to yd(t) as the reference signal and J as the
system (under study).

e(t)f(t)

yd(t)

y(t)
J

+
−

Figure 2.3: General time domain closed loop system with definitions yd and J .

For the time span of a trial t = 0, 1, . . . , N − 1, the i/o behavior of J can be
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represented in lifted notation given by y(0)
...

y(N − 1)


︸ ︷︷ ︸

y

= J

 f(0)
...

f(N − 1)


︸ ︷︷ ︸

f

(2.3)

with J =

 D(0) 0
...

. . .
C(N − 1)

∏N−2
t=1 A(N − 1− t)B(0) . . . D(N − 1)

 ,

and J ∈ RNqo×Nqi . As a result, the lifted notation of the mapping J : fk 7→ yk

for t ∈ [0, N − 1] during trial k equals yk = Jfk. Due to causality of J , system J
is a lower triangular block matrix.

It is straightforward to see that the lifted system representation for LTI systems
J equals y(0)

...
y(N − 1)

 =

 D 0
...

. . .
CAN−2B . . . D


 f(0)

...
f(N − 1)

 (2.4)

In this LTI case, system J has a lower triangular block Toeplitz matrix structure.

Note that matrices (D,BC, BAC, . . . , CAN−2B) in J correspond to the Markov
parameters j(t) (impulse response data) of system J . If this impulse response is
available from measurements, system matrix J can directly be constructed using
these measurements, without the need to first model the system dynamics (see
Section 3.5).

2.2.2 ILC control algorithm

A commonly used first order, trial invariant ILC algorithm is given by

fk+1 = ILC(fk, ek) → fk+1 = fk + Lek, (2.5)

with L ∈ RNqi×Nqo being the ILC controller. The structure of this ILC controller
is founded on the Internal Model Principle (IMP) (see Section 3.2 for a derivation
of this structure). Related to the structure of L, (2.6), we introduce the following
definitions.

L =

 `11 · · · `1N

...
. . .

...
`N1 · · · `NN

 , `i,j ∈ Rqo×qi . (2.6)
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Definition 2.1 (Causal ILC control). Given ILC controller L, (2.6). Then L is
called causal if `ij = 0 for j > i.

For L causal, the command signal fk+1(t∗) is a function of ek(t) with t ∈ [0, t∗],
i.e., the update of the command signal fk+1 − fk at time t∗ ∈ [0, N − 1] depends
only on error samples ek in the past (time interval 0 ≤ t ≤ t∗).

Definition 2.2 (Noncausal ILC control). Given ILC controller L, (2.6). Then L
is called noncausal if `ij 6= 0 for (some) j > i.

For L noncausal, the command signal fk+1(t∗) is a function of ek(t) with t ∈
[0, N −1], i.e., the update of the command signal fk+1−fk at time t∗ ∈ [0, N −1]
depends on error samples in the future (t∗ < t ≤ N − 1).

Definition 2.3 (Linear time invariant ILC control). Given ILC controller L,
(2.6). Then ILC controller L is called LTI if `i,j = `i,i−k for k ∈ [−N + 1, N − 1],
i.e, if L has a block Toeplitz structure.

Definition 2.4 (Linear time varying ILC control). Given ILC controller L, (2.6).
Then ILC controller L is called LTV if it is not LTI, i.e, if L does not have a block
Toeplitz structure.

2.2.3 ILC controlled system

By combining the lifted representation of (2.2) with (2.5), we find the ILC frame-
work presented in Figure 2.4, with w corresponding to the one trial shift operator:
fk+1 = wfk. We refer to the feedback system in Figure 2.4 as the ILC controlled
system. Throughout this thesis, the dimensions of the system blocks in the dia-
grams represent the dimensions of the corresponding system matrices.

fk+1 ekfk

yd

yk
w−1I J

L

+ +

+

−

Figure 2.4: First order, trial invariant ILC framework.

With the ILC controlled system a feedback system in trial domain, we can express
its trial domain open loop dynamics by

fk+1 = fk + Lek, f0 = 0 (2.7)
yk = Jfk, ek = yd − yk,
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and trial domain closed loop dynamics by

fk+1 = (I − LJ)fk + Lyd, (2.8)

with f0 = 0. Recall that any nonzero initial command signal finit is enclosed
in the definition of yd, and hence that we can consider f0 = 0 without loss of
generality.

In Section 2.3, we use these dynamics to study properties of the ILC controlled
system.

2.3 ILC control objectives

The ILC control objectives that we discuss in this section are shown in Figure 2.5.
In the discussions, we make use of the following definitions: The 2-norm of a vector
p is given by ‖p‖2 =

√
pT p ≥ 0. The induced 2-norm of a finite dimensional

system matrix P is given by ‖P‖i2 = σ(P ), with σ(P ) the largest singular value
of P .

N o r m - o p t i m a l i t y

M o n o t o n i c  
c o n v e r g e n c e

C o n t r o l  o b j e c t i v e s
C o n v e r g e n c e

P e r f o r m a n c e

C o n v e r g e n c e  s p e e d

Figure 2.5: ILC control objectives.

2.3.1 Convergence

Convergence of the ILC controlled system in trial domain is essential, see e.g.,
[95, 109]. With (2.8) describing the evolution of the system in trial domain and
fk representing the state in trial domain, convergence of the ILC controlled system
can be defined as follows.

Definition 2.5 (Convergence). Given ILC controlled system (2.8) with yd = 0
and f0 ∈ RNqi . Then (2.8) is convergent iff f∞ = 0 ∀f0 ∈ RNqi , with f∞ =
limk→∞ fk.

Note that convergence can also be defined as function of the output yk or the
error ek. We, however, choose to focus on convergence of the command signal fk.



20 Chapter 2: Iterative Learning Control

A standard result in stability theory now states that convergence is achieved if
and only if the coefficient matrix of (2.8) has spectral radius smaller than one,
i.e. ρ(INqi

− LJ) < 1 with ρ(·) = maxi |λi(·)| and |λi| the absolute value of the
ith eigenvalue.

Convergence states that for any initial state f0, the command signal fk will be zero
after an infinite number of trials. It does, however, not provide any information
about transient behavior of fk between k = 0 and k →∞. In Definition 2.6, this
trial domain transient behavior of fk is taken into account.

Definition 2.6 (Monotonic Convergence (MC)). Given ILC controlled system
(2.8) with yd = 0 and f0 ∈ RNqi . Then (2.8) is monotonically convergent (MC)
in the variable fk if there exists 0 ≤ κ < 1 such that

‖fk+1‖2 ≤ κ‖fk‖2, ∀f0 ∈ RNqi , (2.9)

and ‖fk+1‖2 = ‖fk‖2 only for fk = fk+1 = 0.

Based on Definition 2.6, the following sufficient MC condition can be formulated.

Lemma 2.1. Given ILC controlled system (2.8). Then (2.8) is MC in fk if
‖INqi − LJ‖i2 < 1.

Proof. See Appendix A.2.1.

Lemma 2.1 states that a sufficient condition for monotonic convergence of (2.8)
in fk is given by ‖INqi

− LJ‖i2 < 1. Or, in other words, monotonic conver-
gence requires that the largest gain in INqi

− LJ is smaller than one, i.e., that
σ(INqi−LJ) < 1. Consequently, demands on monotonic convergence of (2.8) can
be represented by demands on the gain σ(INqi − LJ).

Remark 2.1. With ρ(·) ≤ ‖ · ‖i2, monotonic convergence of the ILC controlled
system in fk implies convergence of the ILC controlled system.

Remark 2.2. We derived the MC condition based on Definition 2.6. Alternatively,
the same MC condition can be found by considering yd 6= 0 and f0 = 0. The only
difference between the two approaches is found in the definition of MC. For yd 6= 0
and f0 = 0, monotonic convergence requires ‖fk+1 − f∞‖2 < κ‖fk − f∞‖2.

Remark 2.3. In general, monotonic convergence of the command signal fk does
not imply monotonic convergence of the output signal ek, [3, 22]. In certain
cases, however, monotonic convergence of the command signal with ILC con-
trollers based on the model inverse or LQ norm optimal objectives with diagonal
weightings can ensure monotonic convergence of the error, see e.g., [6].
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2.3.2 Convergence speed

Convergence speed deals with the speed with which ‖fk‖2 converges to zero for
given f0 6= 0, i.e., with the factor κ = ‖fk+1‖2

‖fk‖2 . From Lemma 2.1, we can conclude
that if ‖INqi

−LJ‖i2 = κ, then ‖fk+1‖2 ≤ κ‖fk‖2. As a result, the gain σ(INqi
−

LJ) does not only reveal monotonicity of convergence, it is also specifies the upper
bound on the convergence speed of (2.8).

For ‖INqi
−LJ‖i2 = 0, we obtain deadbeat control, i.e., the ILC controlled system

converges in one trial for all f0. For ‖INqi
−LJ‖i2 = 1− ε with 0 < ε � 1, there

exist f0 for which convergence of the ILC controlled system is arbitrarily slow.

2.3.3 Performance

Performance Pξ is used as a measure of how well a convergent ILC controlled
system is capable of reducing a performance variable ξk for k → ∞, i.e., of
reducing the asymptotic value ξ∞. Most often, ξk equals the error ek.

Definition 2.7 (Performance). Consider the ILC controlled system (2.8) with
performance variable ξk, and assume that (2.8) is convergent. Then performance
Pξ and optimal performance Pξ,opt are defined by (2.10) and (2.11), respectively.

Pξ(L) = lim
k→∞

‖ξk‖2 (2.10)

Pξ,opt(L) = min
L
Pξ(L). (2.11)

In Lemma 2.2, we show that for arbitrary reference signal yd, optimal performance
with ξ∞ = e∞ = 0 can only be achieved under stringent system conditions.

Lemma 2.2. Given a convergent system (2.8) with asymptotic error e∞. Then
e∞ = 0 for any yd iff qo = qi, i.e., iff the number of system outputs equals the
number of system inputs.

Proof. See Appendix A.2.2.

Lemma 2.2 extends the results of [7].
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Chapter 3

Time-windowed ILC

To exemplify ILC design issues for time-windowed systems, in this chap-
ter we present an approach for suppression of residual vibrations in point-
to-point motions, based on ILC. The approach is to add a signal to the
command input during the point-to-point motion in order to compensate
for residual vibrations after arrival at the desired position. A special form
of ILC with separate actuation and observation time windows, referred to
as Hankel ILC, is shown to converge to the required signal. Designed Han-
kel ILC control strategies are implemented on a SISO and MIMO flexible
system and shown to be successful in suppression of residual vibrations.

Introduction

In many applications, a flexible structure has to be repositioned to perform a
task. The corresponding point-to-point motion can, however, introduce vibrations
into the structure, thereby increasing settling time or degrading the reachable
performance of the operation, Figure 3.1.

In existing literature on input shaping, see [33, 115, 116] for overviews, the prob-
lem of suppressing residual vibrations is, in general, dealt with by convolving
a designed command signal with a pulse sequence. This approach requires an
accurate model of the system capturing all modes if all vibration modes are to
be suppressed. To somewhat relax this condition, adaptive techniques have been
proposed, [32, 108, 125].

We suggest an alternative approach for residual vibration suppression, based on
ILC. Instead of computing the command signal using a model (model-based feed-
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Figure 3.1: Residual vibrations after a point-to-point motion.

forward control), ILC converges to the sought command signal iteratively by exe-
cuting a number of experiments. Since the converged ILC command signal follows
from experiments, it will in general outperform command signals which are ex-
plicitly based on a model.

Preliminary results of ILC for residual vibration suppression in point-to-point
motion problems are presented in [37, 40, 133]. To properly formulate the ILC
control problem, [37, 40, 133] introduce time windows in the system description.
Subsequently, the obtained time-windowed system is plugged into an existing
LQ norm optimal control strategy, and shown to suppress residual vibrations on
experimental setup. What is lacking in [37, 40, 133], is any analysis of the ILC
controlled system with time windows.

In this chapter, we discuss the several steps taken from formulation of the residual
vibration suppression problem in Section 3.1, via system representation (Section
3.2) and ILC control design (Section 3.3), to implementation of this problem
on experimental setups in Section 3.4 and Section 3.5. This chapter ends with
concluding remarks in Section 3.6.

The contents of this chapter is published in [127–130].

3.1 Point-to-point motion problem

3.1.1 Point-to-point control problem

The problem of moving a flexible structure to a desired position and leaving it
without residual vibration can be handled by a properly designed command signal.
With the desire to be at rest after completion of the motion, i.e., a command signal
which is constant (usually zero) after arrival at the desired position, the command
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signal should accomplish suppression of this vibration during the point-to-point
motion.

Definition 3.1. Point-to-point control problem:
The design of a command signal actuating the system during the point-to-point
motion, resulting the system to be positioned at the desired position without
residual vibrations after completion of the motion.

A benefit of the point-to-point motion approach over the servo approach is that
the command signal can be guaranteed to be at rest after arrival at the desired
position. Moreover, as long as the system arrives at the desired position without
any residual vibrations, errors between a reference signal and the actual system’s
output during the motion are irrelevant in the point-to-point motion approach.

In Figure 3.2, the point-to-point control structure is illustrated: for t ∈ [m1,m2]
the system is subjected to a command signal so that for t ∈ [n1, n2] the system is
at rest. In this chapter, we assume that the actuation and observation intervals
are adjacent and non-overlapping, i.e., that n1 = m2 + 1, in correspondence with
input shaping techniques. Other choices for the time windows are left for Chapter
4.
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Figure 3.2: Reference signal with separate actuation and observation interval.
m1, m2, n1, and n2 are sample instants and n1 = m2 + 1.

Suppression of residual vibrations during the observation time interval can be seen
as the compensation of disturbed initial conditions x(n1) at the beginning of the
observation interval. To see this, realize that actuation and observation take place
in separate but adjacent time intervals. With actuation of the flexible structure
limited to the actuation interval, the system behaves autonomously during the
observation interval. Consequently, any nonzero response of this autonomous sys-
tem (the residual vibration) originates from the disturbed initial conditions x(n1)
at the initial time instant of the observation interval. Compensation for these
disturbed initial conditions results in compensation for the residual vibration.
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3.1.2 Point-to-point problem formulation

In this section, we formulate the problem of residual vibration suppression as
compensation of a disturbed initial condition.

Given the discrete-time LTI system J, t = 0, 1, 2, . . . of minimal order

J :
{

x(t + 1) = Ax(t) + Bf(t)
y(t) = Cx(t) + Df(t), (3.1)

with x ∈ Rp, f(t) ∈ Rqi the command signal, and y(t) ∈ Rqo the measured
position. Then the convolutive mapping from f(t) to y(t) for t ∈ [0, N − 1] is
given by

 y(0)
...

y(N − 1)

 =


D 0 . . . 0

CB D
. . .

...
...

. . . . . . 0
CAN−2B . . . CB D


︸ ︷︷ ︸

J

 f(0)
...

f(N − 1)

 . (2.4∗)

Next, with the actuation interval defined by t ∈ [m1,m2], observation interval by
t ∈ [n1, n2], and n1 = m2 + 1 (all in accordance with Figure 3.2), the convolutive
mapping from f(t) during the actuation interval to y(t) during the observation
interval equals

y(n1)
...

y(n2)

 =

 CAm−1B . . . CB
...

. . .
...

CAn+m−2B . . . CAn−1B


︸ ︷︷ ︸

JH

f(m1)
...

f(m2)

 , (3.2)

m = m2 −m1 + 1, n = n2 − n1 + 1, n1 = m2 + 1,

with JH ∈ Rnqo×mqi .

After reversing the command sequence in time, the system JH corresponds to
the Hankel operator which is known to have a rank equal to the order of the
observable and controllable part of the underlying system, e.g., [110]. With this
order equal to p, for min(mqi, nqo) > p, the matrix JH is rank deficient. In case
rank(JH) = p < min(mqi, nqo), we can represent JH as the product of two full
rank matrices using full rank decomposition,

JH = JoJc, with Jo ∈ Rnqo×p, Jc ∈ Rp×mqi , (3.3)
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representing the following two mappingsy(n1)
...

y(n2)

 = Jox(n1), x(n1) = Jc

f(m1)
...

f(m2)

 (3.4)

with, e.g., Jo =
[
CT (CA)T . . . (CAn−1)T

]T

and Jc =
[
Am−1B Am−2B . . . B

]
.

Rewriting (3.4) yields

y = Jox(n1) → x(n1) = J†oy = (JT
o Jo)−1JT

o y, (3.5)

with J†o the Moore-Penrose inverse of Jo. Taking, without loss of generality,
the desired position during the observation interval equal to yd = 0, the system
has zero residual vibrations if y(t) = yd for t ∈ [n1, n2]. With y = 0, we have
x(n1) = 0.

Previous reasoning shows that residual vibrations are the result of disturbed initial
condition x(n1). As we will discuss next, this result is essential for the formulation
of a convergent ILC control algorithm.

3.2 ILC for residual vibration suppression: Hankel
ILC

To comply with the ILC problem formulation of residual vibration suppression
in point-to-point motions, in this section, we modify the original system J using
time windows. After showing that the ILC controlled system of Figure 2.4 can
not be made convergent for this modified system, we derive a new ILC framework
and prove that this framework can be made convergent.

3.2.1 Hankel ILC

To make ILC capable of handling residual vibrations, system J is first transformed
to JH of (3.2). This is accomplished by defining Tf , Ty, and JH as

Tf =
[
0mqi×m1qi

Imqi
0mqi×(N−m2−1)qi

]T
, Tf ∈ RN×mqi

Ty =
[
0nqo×n1qo Inqo 0nqo×(N−n2−1)qo

]
, Ty ∈ Rnqo×N

JH = TyJTf . (3.6)

Due to the rank properties of system JH , we will denote ILC applied to point-to-
point motion problems as Hankel ILC.
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Consequences of time windows in ILC
To analyze the consequences of time windows in the ILC controlled system, recall
the framework of Figure 2.4 with trial domain dynamics

fk+1 = fk + Lek, f0 = 0 (2.7∗)
yk = Jfk.

By combining (3.6) and (2.7), we obtain the ILC control framework of Figure 3.3.
In Figure 3.3, vector uk is the trial state with u0 = 0, αk represents the system
output during the observation time interval, αd = Tyyd contains the residual
vibrations during the observation interval before ILC is applied, and εk = Ty(yd−
yk) = αd−αk is the residual vibration during the observation time interval in trial
k. From Figure 3.3, we find the trial domain dynamics for the time-windowed
system JH

uk+1 = uk + Lεk, fk = Tfuk, u0 = 0
uk+1 = (Imqi

− LJH)uk + Lαd, (3.7)

with uk ∈ Rmqi .

uk+1 uk ekfk εk

yd

yk
w−1Imqi

Tf

L

J Ty

+ +

+

−

Figure 3.3: ILC framework including actuation window matrix Tf and observation
window matrix Ty.

From Chapter 2, we know that (3.7) is convergent iff ρ(Imqi
−LJH) < 1. For the

(common) case p = rank(JH) < mqi, however, we find

ρ(Imqi
− LJH) = max

j
|λj(Imqi

− LJH)|

= max
j
|1− λj(LJH)|

≥ 1, (3.8)

where the last step in (3.8) follows from the fact that for singular JH , there exists
j ∈ [1,mqi] such that λj(LJH) = 0. As a result, it depends on the rank properties
of JH whether or not there exist an L for which the ILC framework of Figure 3.3
can be made convergent.
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A convergent ILC control framework
To find an ILC control framework for system JH with which convergence can be
achieved for all values rank(JH) = p ≤ mqi, we apply the internal model principle
(IMP), [47]. Based on the IMP, a disturbance can be asymptotically rejected
provided that 1) the dynamic disturbance model is added to a feedback controller,
2) this feedback controller stabilizes the feedback controlled system, and 3) the
correcting input signal is not canceled by transmission zeros in the system. For
ILC, the disturbance corresponds to the trial invariant reference signal αd ∈ Rnqo ,
whose trial domain dynamics are represented by nqo trial domain integrators. For
systems with rank(JH) = p < min(mqi, nqo), however, maximally p trial domain
integrators can be stabilized. Stabilization of the ILC controlled system with p
trial domain integrators can subsequently be accomplished by design of controllers
Lo ∈ Rp×nqo and Lc ∈ Rmqi×p.

Based on the IMP results, a convergent ILC framework is shown in Figure 3.4,
with corresponding ILC algorithm (3.9) and trial domain dynamics (3.10).

uk+1 = uk + Loεk, βk = Lcuk, u0 = 0 (3.9)
uk+1 = (Ip − LoJHLc)uk + Loαd, (3.10)

with uk ∈ Rp, and βk the command signal during the actuation time interval, i.e.,
βk = TT

f fk.

uk+1 uk εkβk

αd

αkw−1Ip Lc

Lo

JH

+ +

+

−

Figure 3.4: Hankel ILC framework in trial domain, with ILC controllers (Lo, Lc).

To prove that the ILC controlled system of Figure 3.4 can be made convergent,
we present Lemma 3.1.

Lemma 3.1. Given ILC controlled system (3.10), Figure 3.4, with p the state
dimension, i.e., uk ∈ Rp. Then there exist trial invariant Lo and Lc such that
(3.10) is convergent iff p ≤ rank(JH). In that case, rank(Lo) = rank(Lc) = p.

Proof. See Appendix A.3.1.

In the remainder of this chapter, we consider p = rank(JH).

Additional conditions for convergence with Lo and Lc are presented in Lemma
3.2.
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Lemma 3.2. Consider the ILC controlled system (3.10), with p = rank(JH).
Then given Lo, arbitrary pole placement in (3.10) by choice of Lc is possible, iff
rank(LoJo) = p. Conversely, given Lc, then arbitrary pole placement in (3.10) by
choice of Lo is possible, iff rank(JcLc) = p.

Proof. See Appendix A.3.2.

To illustrate the results of Lemma 3.2, say we want Ip − LoJHLc = I −K, with
Ip − K representing the desired pole locations. Then pole placement with Lc

gives Lc = J†c (LoJo)−1K, with J†c = JT
c (JcJ

T
c )−1 the Moore-Penrose inverse of

Jc. Similarly, pole placement with Lo gives Lo = K(JcLc)−1J†o .
Remark 3.1. The result of Lemma 3.1 is not restricted to JH . Rather, it is
applicable to any system TyJTf , regardless of size and rank.
Remark 3.2. The interpretation of Lemma 3.1 is to never place more trial domain
shift operators w−1 (or trial domain integrators) in the trial loop than can be
stabilized. With the inner loop of Figure 3.4 a unit feedback loop (the integrator),
stabilization must be accomplished by the outer loop by design of Lo and Lc.

3.2.2 Interpretation of reduced learning space

Intuitively, the equivalence and difference between the frameworks of Figure 3.3
and Figure 3.4 can be explained as follows. From Section 3.1, we know that
the two frameworks are equivalent in the sense that they both consider residual
vibration suppression. However, in (3.7), this goal is strived after by directly
finding a command signal during the actuation time interval, while in (3.9) this
goal is achieved by compensating for a disturbed time domain state x(n1).

A more formal explanation is found by realizing that frameworks Figure 3.3 and
Figure 3.4 are equivalent in the sense that the loop gains obtained by opening the
loop in between Jo and Jc inside JH = JoJc can be made identical. These loop
gains are

Jc(Imqi
− wImqi

)−1LJo = (1− w)−1JcLJo, and

JcLc(Ip − wIp)−1LoJo = (1− w)−1JcLcLoJo,

respectively, and are equal if

JcLJo = JcLcLoJo. (3.11)

Now, given L, the choice Lc = J†c and Lo = JcL verifies (3.11). Conversely,
given Lo and Lc, the choice L = LcLo verifies (3.11). The difference between the
frameworks lies in the presence (or absence) of uncontrollable/unobservable trial
domain states. As a result, convergence of the ILC controlled system of Figure 3.3
can not be achieved, while convergence of the ILC controlled system of Figure 3.4
can be achieved. For this reason, in the remainder of this chapter, we focus on
Hankel ILC control design with the ILC framework of Figure 3.4 .
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3.3 Hankel ILC control design

With the Hankel ILC control framework discussed, in this section we propose
multiple control strategies for (Lo, Lc).

Initially, we choose to design Lc such that JcLc = Ip. As a result, we leave pole
placement to Lo.

Proposition 3.1. Consider controller Lc with JcLc = Ip. Then the general
solution for Lc is given by

Lc = J†c + T †c Mc, (3.12)

with matrix T †c following from the full rank decomposition T †c Tc := Imqi
− J†c Jc,

J†c = JT
c (JcJ

T
c )−1 the Moore-Penrose inverse of Jc, and Mc ∈ R(mqi−p)×p arbi-

trary.

Proof. The general solution for JcLc = Ip is given by Lc = J
(1)
c + (Imqi −

J
(1)
c Jc)M∗

c , [16], with M∗
c ∈ Rmqi×p arbitrary, and J

(1)
c any {1}-inverse of Jc,

i.e., satisfying JcJ
(1)
c Jc = Jc. With J

(1)
c = J†c a valid {1}-inverse of Jc, and with

full rank decomposition T †c Tc := Imqi
− J†c Jc yielding Tc = R(mqi−p)×mqi , we find

Mc = TcM
∗
c .

The design freedom Mc in Hankel ILC corresponds to the freedom to alter the
command signal during the actuation time interval, βk, without influencing the
corresponding output signal during the observation time interval, αk. A possible
use of this design freedom is to minimize the command signal amplitude of βk to
avoid input saturation. Design of Mc will be discussed in Section 3.3.2. Examples
of the use of Mc are presented in Sections 3.4 and 3.5.

As a result of Proposition 3.1, Hankel ILC control design consists of specifying
Lo and Mc. In Lemma 3.3, we show that design of Lo and Mc can be done in two
separate steps.

Lemma 3.3. Consider the ILC algorithm (3.9), Hankel ILC controlled system
(3.10), εk = αd−JHβk, and ILC controller (Lo, Lc) with Lc from Proposition 3.1.
Then for arbitrary Mc ∈ R(mqi−p)×p, convergence and performance objectives of
(3.10) can be reached by design of Lo. Furthermore, every command signal βk

which results from (3.9) with arbitrarily designed Lo, can be reached by design of
Mc.

Proof. See Appendix A.3.3.

Based on Lemma 3.3, we first design Lo to cover the convergence and performance
aspects, and second, design Mc to minimize the amplitude of the command signal
βk.
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3.3.1 Step Lo: Convergence and performance

Convergence
For JcLc = Ip, convergence of the ILC controlled system requires ρ(Ip−LoJo) < 1.
Now, a straightforward solution for Lo can be given by inverse model based control

Ip − LoJo = (1− g)Ip → Lo = gJ†o , g ∈ (0, 2), (3.13)

resulting in λi(Ip − LoJo) = 1 − g. Note that for g = 1, the inverse model ILC
controller is deadbeat, i.e., that the Hankel ILC controlled system converges in
only one trial.

An alternative expression for Lo can be obtained by solving an LQ norm opti-
mization problem, see Proposition 3.2.

Proposition 3.2. Given system (3.3) with Lc from Proposition 3.1, the ILC
controlled system depicted in Figure 3.4, and the optimization problem defined by

min
uk+1

J , with

J = εT
k+1εk+1 + (βk+1 − βk)T R(βk+1 − βk),

with R = RT ≥ 0. Then solving this optimization problem yields the ILC algo-
rithm

uk+1 = uk + (JT
o Jo + LT

c RLc)−1JT
o︸ ︷︷ ︸

Lo

εk, (3.14)

with Lo referred to as the LQ norm optimal ILC controller.

Proof. See Appendix A.3.4.

By taking R := rLc(LT
c Lc)−2LT

c with r > 0 and adding a learning gain 0 < g < 2
to Lo, the LQ norm optimal Hankel ILC controller can be simplified to Lo =
g(JT

o Jo + rIp)−1JT
o . The consequence of this choice for R is, however, that we

penalize trial state uk instead of command signal βk.

As we will show in Chapter 4, parameters g and r can be used to adjust the
convergence speed of the ILC controlled system, and to reduce the influence of
trial varying disturbances on performance. Additionally, in Appendix B, we briefly
illustrate that g can also be used to achieve convergence in presence of model
uncertainty.

Performance
Performance of the ILC controlled system with Lo depends on ε∞ = (Inqo

−
Jo(LoJo)−1Lo)αd, (A.4). By substituting the inverse model based ILC controller
or LQ norm optimal ILC controller in ε∞, we find

‖ε∞‖2 = ‖(Inqo
− JoJ

†
o )αd‖2.
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Although in general we have ε∞ 6= 0, in Chapter 4 we will show that with this
ε∞ we achieved optimal performance Pε,opt, i.e. we achieved a minimized ‖ε∞‖2
over all possible (Lo, Lc).

3.3.2 Step Mc: Command signal manipulation

Our goal of command signal manipulation is to reduce the larger amplitudes in
the command signal. By reducing the amplitude, we reduce the possibility of
saturating the command signal.

We propose two approaches to reach this goal: The first one is based on minimiza-
tion of the maximum amplitude of the command signal, referred to as `∞ control,
[134]. The second approach is based on minimization of the weighted converged
command signal ‖β∞‖2Wβ

, denoted as `2 control.

`∞ control
With the initial command signal during the actuation interval given by βinit =
TT

f finit, the total command signal applied to the system during the actuation
interval equals

βk,tot = βk + βinit = J†c uk + T †c Mcuk + βinit, (3.15)

with elements βinit and J†c uk in (3.15) known, and T †c Mcuk yet undefined. Since
there are no restrictions imposed on Mc, we can alter T †c Mcuk to T †c θk with
θk ∈ Rmqi−p to make it independent of uk. The goal of minimizing the maximum
command amplitude can now be expressed as

min
θk

max |βk,tot| = min
θk

max |J†c uk + βinit + T †c θk|. (3.16)

This min-max optimization problem can subsequently be rewritten as the linear
programming (LP) problem

min
θk

βmax, subject to − 1βmax ≤ Fk + T †c θk ≤ 1βmax, (3.17)

with Fk := J†c uk + βinit, and 1 = [1 . . . 1]T ∈ Rmqi . Finally, a general notation
for (3.17) is given by

min cT ϕk, subject to Aϕk ≤ b (3.18)

with c =
[
0
1

]
, A =

[
T †c −1
−T †c −1

]
, b =

[
−Fk

Fk

]
, and ϕk =

[
θT

k βmax

]T
.

Note that inclusion of additional constraints in the optimization problem is straight-
forward, e.g., to limit the maximum rate change ∆f > 0 of the command signal
in time domain: −∆f < βk(t + 1)− βk(t) < ∆f .
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After the optimization problem is solved, command signal βk+1 is obtained by
applying the optimal θk+1,opt in βk+1 = J†c uk+1 + T †c θk+1,opt, with uk+1 from
(3.9).

`2 control
In `2 control, Lc is obtained by solving a quadratic optimization problem based
on the converged command signal β∞ = limk→∞ βk. With β∞ = Lcu∞ and u∞
given by u∞ = (LoJo)−1Loαd, (A.3), the converged command signal is given by

β∞ = Lc(LoJo)−1Loαd. (3.19)

The focus of the optimization problem is to minimize ‖β∞‖2Wβ
, with Wβ ∈

Rmqi×mqi a user defined positive definite weighting matrix. This Wβ can be
used to penalize those parts of β∞ where reduction of the command amplitude is
desired. Note that any amplitudes of an initial βinit have to be taken into account
in the design of Wβ .

Proposition 3.3. Given Lc from Proposition 3.1, the ILC controlled system
depicted in Figure 3.4, and the optimization problem

min
Mc

JM = min
Mc

βT
∞Wββ∞,

with β∞ from (3.19) and Wβ ∈ Rmqi×mqi a user defined positive definite weighting
matrix. Then the minimizing Mc yields

Lc = (Imqi
− TT

c (TcWβTT
c )−1TcWβ)J†c . (3.20)

Proof. See Appendix A.3.5.

We illustrate the use of the discussed Hankel ILC controllers by implementing
them on a SISO and MIMO flexible system in Sections 3.4 and 3.5, respectively.

3.4 Example: two-inertia setup

In this section, we apply the `2 and `∞ Hankel ILC control strategies of Section
3.3 to the SISO two-inertia setup discussed in Appendix C, see also Figure 3.5.
The impulse response of a model of the system is shown in Figure 3.6.

To be able to compare the `2 and `∞ Hankel ILC controllers with Mc 6= 0 with
the case Mc = 0, we additionally introduce an LQ norm optimal ILC controller
given by an `2 Hankel ILC controller with Wβ = Imqi

(giving Mc = 0).

The initial situation
The reference signal yref and initial command signal finit are presented in Fig-
ure 3.7. Since we are dealing with a closed loop system in time domain, the
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Figure 3.5: Two-inertia setup used for the experiments.
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Figure 3.6: Impulse response of system J(z).

reference signal yd equals the initial error signal (1 + PC)−1(yref − Pfinit). Fur-
thermore, from Figure 3.7, we can state that only 58 samples are used to ac-
tuate the system, while 443 samples are used for observation. Consequently,
we have JH ∈ R443×58. With the order of our model J equal to 7, we find
rank(JH) = p = 7, Jc ∈ R7×58, and Jo ∈ R443×7.

Hankel ILC control design
Controller Lc is based on Proposition 3.1, and Lo is designed according to LQ
norm optimal ILC, (3.14), with R = rLc(LT

c Lc)−2LT
c for simplicity (Note that

the inverse term in Lo corresponds to a 7×7 matrix). Subsequently, for `2 control,
the weighting matrix Wβ is chosen diagonal, with

diag(Wβ) = 500|β∞ + βinit|, (3.21)

and β∞ the converged command signal (3.19) for Mc = 0. By defining Wβ as in
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(3.21), the command signal is penalized most at those time instants where theo-
retically β∞ has the largest amplitude. Note that this is just one possible choice
for Wβ .

Experimental results
The experimental results for LQ norm optimal, `2, and `∞ control strategies are
shown in Figure 3.8 to Figure 3.11. The values r = 0.1 and g = 0.5 used for the
experiments are obtained experimentally.

The initial residual vibration αd during k = 0 is shown in Figure 3.8, and the error
norms ‖εk‖2 as function of trial number k are presented in Figure 3.9. Although
the Hankel ILC controllers are merely designed to be convergent, it can be seen
that the norms actually converge monotonically up to approximately -20dB. For
‖εk‖2 < −25dB, the signals are dominated by sensor noise (the finite resolution
of the encoder).

The error signals during the observation time interval are presented in Figure 3.10.
After convergence, the measured errors are in-between the optimal errors pre-
sented in the left three plots of Figure 3.10, and the “worst case” converged
errors in the right three plots. The oscillations in Figure 3.10 (right) are caused
by the finiteness of the encoder resolution, and the fact that the desired reference
angle of 80 rad is not an integer times the resolution. Note, however, that with
the resolution of the encoder equal to π · 10−3 rad, even the worst case errors are
within one encoder count.

Though the error signals for all three control strategies look similar, the command
signals clearly differ. In the top plot of Figure 3.11, the converged command sig-
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Figure 3.9: 2-norm of the error εk as function of trial k. Left: LQ norm optimal Hankel
ILC. Center: `2 Hankel ILC. Right: `∞ Hankel ILC.

nals for LQ norm optimal control and `2 control are shown. Due to the chosen
Wβ , the `2 command signal has a maximum amplitude which is 5 percent smaller
than the LQ norm optimal command signal. In the bottom plot, LQ norm opti-
mal control is compared to `∞ control. In this case, the reduction in maximum
amplitude is 18 percent.
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Figure 3.12: The flexible beam setup used for the experiments.
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Figure 3.13: Impulse response of the MIMO flexible beam.

3.5 Example: flexible beam setup

In this section, we apply standard ILC (ILC for servo tasks), `2, and `∞ Hankel
ILC to the MIMO flexible beam setup discussed in Appendix D, see also Figure
3.12. The measured impulse response of the time domain feedback controlled
system is presented in Figure 3.13.
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3.5.1 ILC for servo tasks

Initial situation
The reference signal used for the servo task is presented in Figure 3.14. The total
number of samples in a trial is given by N = 400, and the sample time equals
Ts = 1 · 10−3s.
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Figure 3.14: Reference signal for ILC for servo tasks.

To apply standard ILC on the setup, we first construct the convolution matrix J
using the impulse response data of Figure 3.13. Although we could directly use
the measured impulse response to define the model J ∈ R1200×1200, due to uncer-
tainty in the response (non repetitive elements such as noise), we consider only
the first 300 singular values and directions of J for ILC control design (p = 300).
Using the SVD of J , see Appendix A.3.6, we find Jc = V T

1 ∈ R300×1200 and
Jo = U1Σ1 ∈ R1200×300.

ILC control design and experimental results
Controller Lc is based on Proposition 3.1 with Mc = 0, and Lo is designed ac-
cording to (3.14), with R = rLc(LT

c Lc)−2LT
c = rLcL

T
c since LT

c Lc = I300. The
values g = 0.5 and r = 0.01 are determined experimentally.

The error ek and command signal fk during trial k = 15 are presented in Fig-
ure 3.15. Although the error norm ||ek||2 decreases as function of k, the command
signal has an undesired signal form for Tst → 0.4s. Clearly, the ILC controller
has problems of generating a nonzero command signal near the end of the trial.
Increasing p and/or decreasing r does improve the effect near Tst = 0.4 s, but
results in less smoother command signals during the trial, or even in trial domain
instability. The fact that an increase in p reduces this effect, suggests that the sig-
nal forms in J which can generate the nonzero output for Tst → 0.4s are present
in the 900 singular directions which have been removed for ILC control design.

A (pragmatic) solution for this problem is found by adding time domain inte-
grators to the system, and subsequently designing a convergent trial domain ILC
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Figure 3.15: Standard ILC. Top: 2-norm of the error as function of trial number.
Center: Error signal during trial k = 15. Bottom: Command signal during trial k = 15.

controller for this modified time domain system. As a consequence, ILC control
design of Lo is now based on J → JTfint

, with

Tfint
=

Iqi 0
...

. . .
Iqi

· · · Iqi


the lifted domain representation of the time domain integrator βk(t+1) = βk(t)+
∆βk(t). Furthermore, controller Lc is now given by Lc = Tfint

J†c . In this modified
case, the trial state uk 6= βk. Rather, uk corresponds to the rate change of the
command signal βk, i.e., uk(t) = βk(t)− βk(t− 1).

In Figure 3.16, the error and command signal during trial 30 are shown. As can
be seen, with the time domain integrators included in the ILC controller, the
command signal now is capable of generating the nonzero output near Tst = 0.4s.

Note that, although the reference signal is constant for Tst ∈ [0.081, 0.4]s, the
command signal during that time interval is not constant. This can be the result
of trial varying disturbances for Tst > 0.081 s. However, due to its periodic
behavior, it is more likely that controller Lc is not capable of generating a constant
command signal, i.e., there does not exist a linear combination of the vectors in
Lc such that the output is constant. This phenomenon is explained by the fact
that we designed Lc using only the first 300 singular vectors of JTfint . A less



42 Chapter 3: Time-windowed ILC

oscillatory behavior of the command signals for Tst > 0.081 s is obtained by
increasing the number of singular vectors in Lc.
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Figure 3.16: Standard ILC with additional integrators. Top: Error signal ek during
trial k = 30. Center: Command signal fk during trial k = 30. Bottom: Command
signal fk during trial k = 30, zoomed in.

3.5.2 Hankel ILC design

Initial situation
For Hankel ILC, we use the reference signal shown in Figure 3.17, with actuation
time interval: m1 = 50 and m2 = 81, giving m = 32, and observation time
interval: n1 = 82 and n2 = 400, giving n = 319. Moreover, the residual vibrations
αd for trial k = 0 are presented in Figure 3.18. Although these vibrations are
dominated by a resonance of 5.5Hz (translation mode), errors e1 and e2 also show
higher frequency resonances.

The time-windowed system JH for Hankel ILC equals JH = TyJTf , with Ty given
in (3.6) and Tf defined by

Tf = Tfint

 0m1qi×mqi

Imqi

0(N−m2−1)qi×mqi

 . (3.22)

Since the model for J is based on measurement data, we can only estimate the
order of JH . Using the singular values of JH , see Figure 3.19, we choose p = 12.
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Figure 3.17: Reference signal with separated actuation and observation time interval.
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Hankel ILC control design
Based on JH and p = 12, we design three Hankel ILC controllers. The three con-
trollers have the same control element Lo, (3.14), with experimentally obtained
values g = 0.5 and R = rLc(LT

c Lc)−2LT
c with r = 1 (note that LT

c Lc ∈ R12×12).
Moreover, the structure of the three Lc is also chosen equal: Lc = Tfint

J†c +
Tfint

T †c Mc. The Hankel ILC controllers differ in the choice for Mc.

Experimental results
The first controller Lc equals (3.12) with Wβ = Imqi

. The resulting error signals
as function of trial and time are presented in Figure 3.20. In accordance with
Hankel ILC control design, the residual vibrations during the observation time
interval are suppressed, while the error outside the interval is not compensated
for.
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Figure 3.20: Hankel ILC with Wβ = Imqi . Top: 2-norm of error εk as function of the
trial. Center: Error signal ek during trial k = 30. Bottom: Error signal ek during trial
k = 30, zoomed in.

The second controller Lc is similar to the first controller, but with a Wβ given by

Wβ = diag(Iqi
, . . . , 1.5Iqi

). (3.23)

The diagonal matrix in (3.23) is used to penalize the command signal amplitudes,
with gain 1 for β∞(1) up to gain 1.5 for β∞(m).

The results obtained with this second controller are presented in Figure 3.21.
Although the error ε30 is slightly larger than ε30 of Figure 3.20, this Hankel ILC
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Figure 3.21: Hankel ILC with Wβ of (3.23). Top: 2-norm of error εk as function of the
trial. Center: Error signal ek during trial k = 30. Bottom: Error signal ek during trial
k = 30, zoomed in.

controlled system is still very capable of suppressing the residual vibrations.

Finally, the third controller is based on `∞ Hankel ILC with an additional con-
straint on the rate change of the command signal: ∆f = 1 volt. The error signals
obtained with this controller are given in Figure 3.22. The error is again slightly
larger than ε30 of Figure 3.20, but still most of the residual vibrations are removed.

The differences in the size of the error signals can be explained as follows. During
the design of the `2 and `∞ controllers, we assumed that JHTfint

T †c = 0. Hence,
we assumed that any signal JHTfint

T †c Mcuk would give an output equal to zero.
In this application, however, JHTfint

T †c > 0 resulted in nonzero outputs. Conse-
quently, for the cases Mc 6= 0, additional signal forms were present in the error
signals which could not be compensated for by the Hankel ILC controller.

Based on the error results, it looks like all three controllers behave approximately
equal. This is to be expected, since all three controllers have similar Lo and
Tfint

J†c . The difference between the controllers is found in Mc, and hence in the
command signal forms applied to the system to obtain the above error signals, see
Figure 3.23. Clearly, the signal forms of the different command signals differ dur-
ing the actuation time interval. After t = m2 though, all three command signals
are constant and approximately equal (in contrast to standard ILC, Figure 3.16).
Furthermore, when comparing the maximum amplitude of the command signals
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Figure 3.22: Hankel ILC with minimized maximum command signal amplitude. Top:
2-norm of error εk as function of the trial. Center: Error signal ek during trial k = 30.
Bottom: Error signal ek during trial k = 30, zoomed in.

from the first controller with the second controller, a reduction in maximum signal
amplitude of 25% is achieved. The maximum amplitude of the command signals
of the third controller is even 48% smaller than that of the first controller.

3.6 Concluding remarks

We have derived a special form of ILC, denoted by Hankel ILC, which is capable
of suppressing residual vibrations in flexible systems performing point-to-point
motions. This special form has been obtained by introducing an actuation and
observation time window in the ILC control framework. As a result, the time
interval during a trial in which the system is actuated is separated from the time
interval in which the measured output values used for ILC are collected.

Within a newly proposed ILC framework, we have shown that convergence of the
ILC controlled system can be achieved. Furthermore, we have proven that there is
the additional freedom in Hankel ILC control design to manipulate the amplitude
of the command signal, and illustrated this with experiments on flexible motion
systems.

From an input shaping point of view, Hankel ILC can be considered a new input
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Figure 3.23: Command signal f i, i = 1, 2, 3, for the three Hankel ILC controllers.

shaping technique capable of iteratively suppressing residual vibrations originat-
ing from multiple modes in presence of model uncertainty. From an ILC point-of-
view, Hankel ILC has resulted in a better understanding of ILC for point-to-point
motion problems. Moreover, it has revealed the different modeling and design
issues in ILC for time-windowed systems.
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Chapter 4

ILC for systems with basis
functions

In this chapter, we extend and formalize the results of ILC for time-
windowed systems from Chapter 3 to a larger class of systems consisting
of linear systems with input/output (i/o) basis functions. First, we show
that various different ILC formulations in the literature can be captured by
a common system representation involving i/o basis functions. Second,
analysis of this framework reveals how different ILC objectives (mono-
tonic convergence, performance, minimization of input amplitudes) can
be reached by design of separate parts of the ILC controller. The analysis
is subsequently expanded by studying the effects of trial varying distur-
bances on performance. This results in suggestions for compensation of
these effects. Finally, we use these results to systematically design ILC
controllers for the representation under study, and we show that the ob-
tained results are applicable to existing ILC problem formulations with
i/o basis functions, and problem formulations which can be interpreted
as such.

4.1 Basis functions in ILC

In this section, we show that time windows can be considered a specific class of
basis functions. Based on this observation, in this chapter, we will extend and
formalize the Hankel ILC results of Chapter 3 to the class of linear systems with
basis functions.
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Originally, in Chapter 2 we introduced an ILC framework which can be used to
servo problems, Figure 4.1 (top). Subsequently, in Chapter 3 we discussed ILC
for time-windowed systems using the example of Hankel ILC. For that purpose,
we included time windows (Tf , Ty) in the ILC framework, resulting in Figure 4.1
(bottom).

In Figure 4.1, Tf is the matrix with input basis functions which maps the co-
efficient vector βk to the command signal fk, yk equals the output signal, and
αk denotes the projected output onto a space spanned by the output basis func-
tions contained in matrix Ty. Furthermore, αd is the reference signal in the space
spanned by the basis functions in Ty.

Tf

ILC

ILC

J

J Ty

αkβk

αd

ekfk

fk εk

yd

yk

yk

+

+

−

−

Figure 4.1: Top: Original ILC framework for servo problems. Bottom: ILC framework
with additional input filter Tf and output filter Ty representing, e.g., time window filters.

As mentioned, in Hankel ILC the filters (Tf , Ty) correspond to time windows.
This is, however, only one possible choice for basis functions. To analyze the use
of basis functions in ILC (both implicitly and explicitly), and to give examples of
interpretations of βk, αk, and (Tf , Ty), we investigate the following systems and
applications.

Basis functions for restricted time windows
References [7, 66] and [76] study performance and convergence properties of sys-
tems with nonzero relative degrees and delays. With the original system not
suitable for analysis, the i/o mapping of the system is reduced by removal of the
final samples and first samples from i/o mapping, Figure 4.2, and by defining the
reference signal to comply with this projected output time interval.

Basis functions for restricted command-output space
The authors of [50, 61, 62, 69, 132] and [138] overcome the high-dimensional
problem of describing linear systems for ILC by capturing the i/o behavior of the
system in a restricted i/o space. This is accomplished by describing the command
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Figure 4.2: Top: The command signal (time signal) is constructed from a coefficient
vector of length m + 1 and m + 1 unit pulse basis functions (bf) which represent the
time window. The final N −m− 1 samples of the command signal equal zero. Bottom:
The output (time signal) is filtered by unit pulse basis functions to obtain a projected
output of length N −n. This projected output equals the output signal for time interval
t ∈ [n, N − 1].

as a linear combination of a relatively small set of basis functions (in comparison
with the number of samples N in a trial), and by mapping the output onto a
reduced output space, Figure 4.3. These basis functions are a function of the
original reference signal and system dynamics, or are user defined. Moreover, the
original reference signal is mapped onto the lower dimensional projected output
space.
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Figure 4.3: Top: The command signal (time signal) is the scaled sum of three basis
functions (bf), with the scaling factors captured in the coefficient vector. Bottom: The
output signal is projected onto an output space with three components.
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Basis functions for specialized tasks
References [29, 54, 137] demand the suppression of the terminal error sample at
the end of a trial by actuating the system with a single command signal (terminal
ILC). This solution can be seen as the result of applying a single basis function
to construct the command signal and a time window to the output of the system,
Figure 4.4. Note that in terminal ILC, the reference signal consists of only one
sample.
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Figure 4.4: Terminal ILC. Top: The command signal is the result of one scaled ba-
sis function, with the scaling factor captured in the coefficient vector. Bottom: The
projected output signal equals the final time sample the output signal.

The authors [68, 142] downsample the i/o signals of the system using time win-
dows to achieve specific convergence properties of the ILC controlled system, see
Figure 1.3 (bottom). In this case, the reference signal is defined using the lower
sample rate.

In Chapter 3, we used ILC for residual vibration suppression in point-to-point
motion problems. Since these problems require a system that is being actuated
during the point-to-point motion while the residual vibrations are being measured
after arrival at the desired position, we introduced time window based basis func-
tions corresponding to actuation and observation time windows in the control
problem, Figure 4.5. In this case, the reference signal corresponds to the desired
position during the observation time interval.

The discussed systems and applications all have in common that the i/o behav-
ior of the original system J is modified to comply with the desired ILC problem
statements. Moreover, the reference signals αd are problem dependent. Based
on these observations, in this chapter we formulate a system description which
encompasses the discussed systems and applications as special cases, and intro-
duce an ILC framework suitable for this system description. Moreover, we derive
an ILC analysis and design theory for systems with basis functions, based on the
proposed ILC framework.

Note that the ILC framework is similar to Figure 3.4. In contrast, the derivation
of the analysis and design theory is based on existing ILC control theory, however,
modified such that it is applicable to the proposed ILC framework. Consequently,
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Figure 4.5: Hankel ILC: Top: The command signal (time signal) is constructed from
a coefficient vector of length m = m2 −m1 + 1 and m unit pulse basis functions (bf)
which represent the time window. The first m1 and final N − m2 − 1 samples of the
command signal equal zero. Bottom: The output (time signal) is filtered by unit pulse
basis functions to obtain a projected output of length n = n2 − n1 + 1. This projected
output equals the output signal for time interval t ∈ [n1, n2].

the analysis and design theory is the extension of existing ILC control theory to
linear systems with basis functions.

In the discussion on the analysis and design theory for the proposed ILC frame-
work, we focus on the ILC control objectives presented in Figure 4.6. As a result,
in this chapter we do not focus on, e.g., robustness aspects of ILC in presence of
model uncertainty [43, 89], or initial condition disturbances due to errors in the
resetting of the system between two trials [71, 142].

The outline of this chapter is as follows. In Section 4.2, a system description

U n d e r  n o n r e p e t i t i v e  
d i s t u r b a n c e

N o r m - o p t i m a l i t y

M o n o t o n i c  
c o n v e r g e n c e

C o n t r o l  o b j e c t i v e s

A d d i t i o n a l  d e s i g n  
f r e e d o m

C o n v e r g e n c e

P e r f o r m a n c e

C o n v e r g e n c e  s p e e d

Figure 4.6: ILC control objectives.
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is presented which encompasses the discussed systems and applications as spe-
cial cases. Moreover, we introduce an ILC framework which is suitable for this
generalized system. ILC control objectives in this ILC framework are analyzed
from a system perspective in Section 4.3, yielding ILC controller conditions which
are required for convergence and optimal performance. In Section 4.4, the ILC
framework is analyzed from an ILC control design perspective. This reveals how
different ILC objectives can be reached by design of separate parts of the ILC con-
troller. Performance under trial varying disturbances is subsequently analyzed in
Section 4.5, resulting in guidelines on how to reduce the effects of the trial vary-
ing disturbances on performance. In Section 4.6, the obtained analysis results
are used in the design of ILC controllers for systems with basis functions. In
addition, practical suggestions and choices are given to facilitate straightforward
design. To briefly exemplify the generality of the obtained results, in Section 4.7
three examples from ILC literature are discussed. And finally, concluding remarks
are given in Section 4.8.

Part of the contents of this chapter is published in [128].

4.2 General ILC system description

In this section, we consider LTV systems J as given in (2.1), with f(t) ∈ Rqi the
command signal, and y(t) ∈ Rqo the output signal. For the time span of a trial
t ∈ [0, N − 1], the i/o behavior of J is represented by J of (2.3).

The discussed systems and applications in Section 4.1 all have in common that
they modify the original system to meet the ILC problem statements. Starting
with the original system y = Jf , the manipulation of the command signal f
corresponds to f becoming a function of a new command signal β, and a matrix
Tf containing basis functions, i.e., f = Tfβ. Similarly, the new manipulated
output α is the result of the mapping of the output y onto a limited output
space spanned by the basis functions contained in the matrix Ty, i.e., α = Tyy.
Depending on the problem formulation, the basis functions correspond to time
windows, or to reference signals and user defined signals.

Let φj ∈ RNqi , j = 1, 2, . . . ,m, be the basis functions used to build the command
signal, and θi ∈ RNqo , i = 1, 2, . . . , n, the basis functions used to define a lower
dimensional output space. These basis functions form the matrices Tf and Ty

defined by (4.1).

Tf =
[
φ1 φ2 . . . φm

]
, Tf ∈ RNqi×m,

Ty =
[
θ1 θ2 . . . θn

]T
, Ty ∈ Rn×Nqo . (4.1)

The result of modifying the i/o behavior of the original system J using the basis
functions is presented in Figure 4.7. The mapping H : βk 7→ αk is obtained by
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considering Tf and Ty as part of the new system H = TyJTf . Consequently, ILC
control design shifts from design for system J with time signals (fk, yk) to design
for system H with coefficient signals (βk, αk).

βk fk yk αk

αd

εk
J

H

Tf Ty

+
−

Figure 4.7: General system H ∈ Rn×m consisting of system J and matrices Tf and Ty,
with Tf and Ty containing the input and output basis functions, respectively.

The error signal εk ∈ Rn in Figure 4.7 corresponds to the difference between the
reference signal αd ∈ Rn and αk ∈ Rn. As illustrated in Section 4.1, this reference
signal is problem dependent, and defined in the space spanned by Ty.

As is already demonstrated in Chapter 3, the rank of H ∈ Rn×m can be smaller
than the smallest dimension of H, i.e., p = rank(H) < min(m,n). This can be
caused by the properties of J , e.g., time delays and non-minimum phase zeros,
[123], or by the number and the characteristics of basis functions present in the Tf

and Ty, e.g., time windows. To properly handle these situations, decomposition
of H using a full rank decomposition is essential, (4.2).

HoHc := H, αk = Hoxk, xk = Hcβk, (4.2)

with xk ∈ Rp, Ho ∈ Rn×p, Hc ∈ Rp×m, and rank(Ho) = rank(Hc) = rank(H) = p
by definition.

Following the IMP reasoning of Section 3.2, we use the ILC algorithm given by

uk+1 = uk + Loεk, βk = Lcuk, u0 = 0, (4.3)

with uk ∈ Rp the trial domain state. By combining (4.2) and (4.3), we find the
control framework presented in Figure 4.8. Although we focus on this system
representation for our ILC analysis and control design, for implementation of the
framework we use Figure 4.9. Note that choosing Lim

c = TfLc makes the structure
of Figure 4.9 equivalent to that of Figure 4.8.

Remark 4.1. As we have seen in Chapter 3, in the case that the basis functions
are defined by time windows, the coefficient signals βk and αk are time signals.

Remark 4.2. With H = TyJTf capturing the various ILC control problems dis-
cussed in Section 4.1, we refer to H as the general system description. The explicit
formulation of H as the product of two full rank matrices can be considered a
minimal representation of H.

Remark 4.3. The ILC control structure of (4.3) encompasses, among others, trial
invariant ILC controllers with Arimoto gains, inverse model based ILC, and LQ
norm optimal ILC.
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Figure 4.8: ILC framework in trial domain, with ILC controllers (Lo, Lc).
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Figure 4.9: Implementable form of the ILC framework of Figure 4.8.

4.3 ILC analysis for systems with basis functions, a
system perspective

Analysis of the ILC framework of Figure 4.8 consists of studying the different ILC
control objectives presented in Figure 4.6. In this section, the control objectives
are discussed from a system perspective. In Section 4.4, we discuss the objectives
from an ILC control design perspective. The discussion of performance under
trial varying disturbances is left for Section 4.5.

4.3.1 Convergence

Using (4.2) and (4.3), the trial domain dynamics are given by

uk+1 = (Ip − LoHLc)uk + Loαd, u0 = 0 (4.4a)

fk = Lim
c uk. (4.4b)

By combining the definition of monotonic convergence, Definition 2.6, and the
formulation of the trial domain dynamics, (4.4), we can formulate a sufficient
condition for monotonic convergence for the proposed ILC controlled system.
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Lemma 4.1. Consider the ILC controlled system (4.4). Then (4.4) is convergent
iff the spectral radius ρ(Ip − LoHLc) < 1, and monotonically convergent in fk if
‖T−1(Ip − LoHLc)T‖i2 < 1, with T satisfying TT LimT

c Lim
c T = Ip.

Proof. See Appendix A.4.1.

The matrix T can be obtained by factorizing LimT

c Lim
c using, e.g., a Cholesky

decomposition. Lemma 4.1 states that MC of the trial state zk = T−1uk implies
MC of the command signal fk. For Lim

c = Lc = INqi
and L = LoTy, the

monotonic convergence condition from Lemma 4.1 equals that of Lemma 2.1.

Finally, we refer to Section 2.3 for an interpretation of convergence speed of com-
mand signal fk. Note that, as a result of the introduction of framework of Fig-
ure 4.8, ‖INqi

− LJ‖i2 = κ in Section 2.3 should be replaced by ‖T−1(Ip −
LoHLc)T‖i2 = κ for a proper interpretation.

4.3.2 Performance

Definition 2.7 states that performance is a function of the performance variable
ξk for k → ∞. Furthermore, optimal performance corresponds to the minimized
ξ∞ over all stabilizing ILC controllers L, (2.11). Based on these definitions,
we propose the following measures for (optimal) performance based on the ILC
framework of Figure 4.8.

Proposition 4.1. Consider ILC controlled system (4.4a), and assume that (4.4a)
is convergent. Furthermore, consider performance variable ξk = εk. Then perfor-
mance Pε and optimal performance Pε,opt are given by (4.5) and (4.6), respec-
tively.

Pε(Lo, Lc) = lim
k→∞

‖εk‖2 (4.5)

Pε,opt(Lo, Lc) = min
Lo,Lc

Pε(Lo, Lc). (4.6)

Based on Proposition 4.1, we can state the following:

Lemma 4.2. Consider ILC controlled system (4.4a), and assume that (4.4a) is
convergent. Then there exist a lower bound for Pε,opt equal to ‖(In−HoH

†
o)αd‖2.

Proof. Given ε∞ = αd−Hox∞, with ε∞ = limk→∞ εk the asymptotic error. Then
optimal performance is achieved for x∗∞ = arg minx∞ ‖ε∞‖2 → x∗∞ = H†

oαd. As
a result, the lower bound for Pε,opt equals ‖ε∗∞‖2, with ε∗∞ = (In−HoH

†
o)αd.

From Lemma 4.2, we can conclude that optimal performance is reached if ε∞ ∈
im(H)⊥ ∀αd ∈ Rn. In Corollary 4.1, we study the set of ILC controllers for which
Popt is reached.
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Corollary 4.1. Consider ILC controlled system (4.4a), and assume that (4.4a) is
convergent. Then optimal performance Pε,opt is reached iff (Lo, Lc) ∈ {(Lo, Lc) :
HcLc(LoHLc)−1Lo = H†

o}.

Proof. Given u∞ = (LoHLc)−1Loαd and x∞ = HcLcu∞. Then the asymptotic
error equals ε∞ = αd −Hox∞, with x∞ = HcLc(LoHLc)−1Loαd. From Lemma
4.2, we know that Pε,opt requires x∗∞ = H†

oαd. Consequently, Pε,opt is reached iff
(Lo, Lc) ∈ {(Lo, Lc) ∈ (Rp×n, Rm×p) : HcLc(LoHLc)−1Lo = H†

o}.

Note that optimal performance is a function of im(H) = im(Ho). With Ho a
function of (Tf , Ty), the number of basis functions and their characteristics both
influence the reachable performance.

4.4 ILC analysis for systems with basis functions, a
design perspective

In this section, we show that the different control objectives discussed in Section
4.3 can be linked to different parts of the ILC controllers (Lo, Lc). To accomplish
this, Lo ∈ Rp×n and Lc ∈ Rm×p are parameterized by (4.7) and (4.8), respectively,
see Figure 4.10.

Lo = SoPo, with So ∈ Rp×p and Po ∈ Rp×n (4.7)

Lc = H†
cSc + T †c Mc, with Sc ∈ Rp×p, T †c = Rm×(m−p), (4.8)

and Mc ∈ R(m−p)×p arbitrary. Matrix T †c follows from the full rank decomposition
T †c Tc := Im −H†

cHc. Note that, due to the definition of T †c , matrices Sc and Mc

operate in two independent subspaces.

Intuitively, the parametrization can be explained as follows. By parameterizing
Lo as done in (4.7), we explicitly reveal the design choices in Lo. On the one hand,
we have a performance filter Po which can be chosen to pass through signals in
a specific subspace, e.g., the signal forms εk ∈ im(Ho), since these signal forms
are the only signals that can be compensated for by ILC anyway. On the other
hand, we obtain an additional gain matrix So which can be used for stabilization
of the ILC controlled system. The parametrization of Lc is based on the fact
that the coefficient vector βk = Lcuk is divided into a part T †c Mcuk operating in
the kernel space of Hc, and a part H†

cScuk operating in the space perpendicular
to ker(Hc). By design of Mc, the signal T †c Mcuk can be used to modify the
specific values in the vector βk without influencing the stability properties of the
ILC controlled system (since HcT

†
c Mc = 0). Conversely, the signal H†

cScuk does
influence stability, and hence Sc is to be designed such that the ILC controlled
system is convergent.
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Figure 4.10: ILC framework in trial domain, with parameterized ILC controllers (4.7)
and (4.8).

Lemma 4.3. Given ILC controller (Lo, Lc), then there exists parameters
(So, Sc, Po,Mc) such that (4.7) and (4.8) hold. Conversely, given the parameters
(So, Sc, Po,Mc), then there exists (Lo, Lc) such that (4.7) and (4.8) hold.

Lemma 4.3 shows that the parametrization of (4.7) and (4.8) does not restrict
design freedom in (Lo, Lc).

In the following sections, we discuss the relation between the parametrization of
Lo and Lc and the control objectives presented in Figure 4.6.

4.4.1 Convergence

The following Lemma refines the results of Lemma 3.1.

Lemma 4.4. Consider (4.7) and (4.8) which explain how (Lo, Lc) are formed by
the choice of (So, Sc, Po,Mc). Then 1) for any given Mc, any Sc with rank(Sc) =
p, and any Po with rank(PoHo) = p, there exist So such that (4.4) is monotonically
convergent in fk with any desired convergence speed, and 2) for any given Mc,
any So with rank(So) = p, any Po with rank(PoHo) = p, there exist Sc such that
(4.4) is monotonically convergent in fk with any desired convergence speed.

Proof. Follows from Lemma 3.1.

Note that the gains in Po do not restrict the gain σ(T−1(Ip−LoHLc)T ). On the
contrary, Lemma 4.4 states that after design of Po, So and Sc can be chosen such
that σ(T−1(Ip − LoHLc)T ) has any desired gain.

Note furthermore, that the rank condition rank(PoHo) = p in the monotonic con-
vergence condition imposes only a minor constraint on Po. The actual mechanism
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behind Po is that it maps the signal εk ∈ im(Ho) to a lower dimensional space. In
Section 4.4.2 and Section 4.5, choices for Po will be given based on performance
demands.

In Lemma 4.5, we focus on conditions for (So, Sc) which are required for assign-
ment of the gain σ(T−1(Ip − LoHLc)T ).

Lemma 4.5. Let K ∈ Rp×p be chosen such that Ip − K has the desired gains,
i.e., such that Ip −K is monotonically convergent with any desired convergence
speed. Furthermore, consider (4.7) and (4.8) which explain how (Lo, Lc) are
formed by the choice of (So, Sc, Po,Mc). Then for any given Mc and any Po

with rank(PoHo) = p, the set of (So, Sc) for which (4.4) has gains equal to those
of Ip −K is given by

{(So, Sc) ∈ (Rp×p, Rp×p) : SoPoHoSc = TKT−1,

TT (Sc + T †c Mc)T TT
f Tf (Sc + T †c Mc)T = Ip}. (4.9)

Proof. Follows from substitution of (4.7) and (4.8) in Lemma 4.1.

Note that in Lemma 4.5, matrix T is a function of (Sc,Mc). Substitution of T
in SoPoHoSc = TKT−1 subsequently reveals that for given (So, Po,Mc), finding
Sc such that (4.4) has the desired gains requires solving a nonlinear relation in
Sc. On the other hand, for given (Sc,Mc), matrix T follows directly. Subsequent
assignment of the desired gains by So requires solving SoPoHoSc = TKT−1,
which is linear in So. Hence, gain assignment by So is more transparant and more
straightforward then gain assignment by Sc.

Corollary 4.2. Let K ∈ Rp×p be chosen such that Ip −K is monotonically con-
vergent with any desired convergence speed. Furthermore, let (Sc, Po,Mc) be given
and let T follow from TT LT

c TT
f TfLcT = Ip. Then So = TKT−1S−1

c (PoHo)−1

results in (4.4) which is monotonically convergent in fk and has the desired con-
vergence speed.

An extreme case of convergence is deadbeat convergence, as defined in Section 4.3
by ‖T−1(Ip −LoHLc)T‖i2 = 0. This case is worked out in detail in the following
Corollary.

Corollary 4.3. Consider the set of (So, Sc) of Lemma 4.5. Then the subset of
(So, Sc) for which (4.4) is deadbeat, is given by

{(So, Sc) ∈ (Rp×p, Rp×p) : SoPoHoSc = Ip}.

Note that for deadbeat ILC control, the expression TKT−1 of Lemma 4.5 equals
Ip (since K = Ip). Since Ip is not a function of T , in Corollary 4.3 we do not need
to determine T .
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4.4.2 Performance

In Lemma 4.6, we reveal the relation between performance, as specified in Propo-
sition 4.1, and the parametrization presented in (4.7) and (4.8). Consequently,
Lemma 4.6 makes precise what we stated intuitively about Po in the beginning
of this section.

Lemma 4.6. Consider (4.7) and (4.8) which explain how (Lo, Lc) are formed by
the choice of (So, Sc, Po,Mc). Then for any (So, Sc) for which (4.4) is convergent,
and for any Mc, 1) performance is a function of Po only, i.e., does not depend on
the specific choice of (So, Sc,Mc), and 2) optimal performance is achieved with
Po = HT

o .

Proof. See Appendix A.4.2.

The choice Po = HT
o in Lemma 4.6 is not unique. Indeed, optimal performance

is achieved for any Po satisfying {Po : (PoHo)−1Po = H†
o}.

We have discussed monotonic convergence and performance as ILC control ob-
jectives. These objectives turn out to be separately attainable by the choice of
matrices (So, Sc) to obtain monotonic convergence, and Po to obtain performance.
As a result, there is considerable design freedom left, to be appointed to a yet
undefined control objective. As we will show next, for the parametrization (4.7)
and (4.8), this freedom is found in the choice for Mc.

4.4.3 Additional design freedom:
exploiting command non-uniqueness

Lemma 4.7. Consider (4.7) and (4.8) which explain how (Lo, Lc) are formed
by the choice of (So, Sc, Po,Mc). Then the choice for Mc ∈ R(m−p)×p neither
influences the monotonic convergence objective, nor the performance objective.

Proof. Follows from Lemma 4.4 and Lemma 4.6.

The additional design freedom in the ILC control framework in Figure 4.8 is due
to the fact that the map between βk and αk has a low rank. That Mc does not
influence αk is due to the fact that HT †c Mc = 0 for all Mc. An example of when
Mc 6= 0 is useful can be found in Section 3.3.

In Proposition 4.2, we extend the results of Proposition 3.3.
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Proposition 4.2. Given Lc from (4.8), the ILC controlled system (4.4), and
optimization problem minMc βT

∞Wββ∞, with β∞ = limk→∞ βk and Wβ ∈ Rm×m

a user defined positive definite weighting matrix. Then the minimizing value Mc

yields

Lc = (Im − TT
c (TcWβTT

c )−1TcWβ)H†
cSc.

4.4.4 ILC for systems with basis functions

The complete ILC control design procedure for systems with basis functions is
captured in Result 4.1.

Result 4.1. Design of an ILC controller for systems with basis functions is real-
ized by separate design of (So, Sc), Po, and Mc, in which the ILC control objectives
monotonic convergence, performance, and coefficient vector amplitude reduction
can be achieved, respectively. Design freedom in (So, Sc) is discussed in Lemma
4.5 and Corollary 4.2, freedom in Po in Lemma 4.6, and freedom in Mc in Propo-
sition 4.2.

Note that the original problem formulation in Figure 4.8, which deals with con-
vergence only, shows a symmetry in its structure in the sense that the dual system
resulting from H → HT , Lc → LT

o , and Lo → LT
c shows identical convergence

properties. This symmetry is actually lost in later steps by introducing additional
objectives like monotonic convergence, performance, and minimization of input
amplitudes. This motivates to use a non-symmetrical parametrization (4.7) and
(4.8).

4.5 Analysis of trial varying disturbances

To extend the previously obtained results, in this section we assume that trial
varying output disturbances dk are present in the ILC controlled system. The
source of the disturbance is assumed to be either stochastic, e.g., measurement
noise, or deterministic, e.g., vibrations from neighboring rotating systems.

Including trial varying output disturbance dk into the ILC control framework of
Figure 4.8 results in Figure 4.11. The trial dynamics of Figure 4.11 are subse-
quently given by

uk+1 = (Ip − LoHLc)uk + Lo(αd − dk), u0 = 0. (4.10)

Since dk is an external disturbance, it does not influence the convergence prop-
erties of the ILC controlled system. It does, however, influence performance. In
the following, we discuss the influence of both stochastic and deterministic dis-
turbances on performance.
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Figure 4.11: ILC framework in trial domain, including trial varying disturbances dk.

4.5.1 Stochastic disturbances dk

The stochastic disturbance that we consider is trial domain white noise d with
E{d} = 0 and covariance matrix E{ddT } = Rdd. Furthermore, we assume αd and
dk to be independent. The trial domain dynamics and error equal

uk+1 = (Ip − LoHLc)uk + Lo(αd − dk) (4.11a)
εk+1 = αd − dk+1 −HLcuk+1. (4.11b)

To study the influence of stochastic dk on the performance, we focus on the
asymptotic value for E{ε∞} and the covariance Rεε = limk→∞Rεε,k with Rεε,k =
E{(εk−E{εk})(εk−E{εk})T }. Consequently, we assume that (4.11) is convergent.

Due to linearity and E{d} = 0, E{ε∞} is not affected by dk. Moreover, the
covariance matrix Rεε is given by

Rεε = Rdd + HLcRuuLT
c HT (4.12)

0 = Ruu − (Ip − LoHLc)Ruu(Ip − LoHLc)T − LoRddL
T
o , (4.13)

where (4.13) is a discrete Lyapunov equation.

In Lemma 4.8, we study the influence of convergence speed on the value of Rεε.

Lemma 4.8. Given ILC controlled system (4.11), ILC controller (4.7) and (4.8)
which explain how (Lo, Lc) are formed by the choice of (So, Sc, Po,Mc), any Po

with rank(PoHo) = p, and any Mc. Furthermore, let (So, Sc) be given by So =
g(PoHo)−1 with g ∈ (0, 2) and Sc = Ip, i.e., let the singular values of the ILC
controlled system equal |1− g|Ip. Then for

g ↓ 0 : ‖Rεε‖i2 ↓ ‖Rdd‖i2

g = 1 : Rεε = Ho(HoPo)−1PoRddP
T
o (HoPo)−1T

HT
o + Rdd

g ↑ 2 : ‖Rεε‖i2 ↑ ∞.

Proof. See Appendix A.4.3.
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From Lemma 4.8, we can conclude that near zero convergence speed (g ↓ 0) results
in Rεε in which Rdd appears unfiltered. Furthermore, with deadbeat ILC (g = 1),
we find Rεε = 2Rdd for disturbances dk which lie in the space Ho(HoPo)−1Po.
Finally, for g ↑ 2, the effects of dk on Rεε are clearly disastrous. Note that these
results confirm the frequency domain performance results in [21], but contradict
the results given in [93].

Remark 4.4. Po can be chosen to deviate from the optimal solution Po = HT
o ,

Lemma 4.6, if the contribution of dk in a specific direction is larger than that
of αd. For example, consider the vector αd whose elements along the vector are
dominated by relatively low frequencies, and the vector dk whose elements along
the vector are dominated by relatively higher frequencies. Then we can choose
Po = HT

o Q, with Q a Toeplitz matrix in the coefficient space describing the be-
havior of a zero phase low pass filter, to filter out dk from the error signal εk.
Although optimal performance, as given in Lemma 4.6, is not achieved, perfor-
mance reduction in αd is compensated for by less performance loss due to dk.

4.5.2 Deterministic trial periodic disturbances dk

The considered deterministic trial periodic disturbances are defined by dk(`) ∈ Rn:

dk(`) : dk+` = dk, with ` ≥ 2,

with ` representing the trial periodicity of the disturbance. Using the trial shift
operator w, this equals dk+` = w`dk = dk. As an example of such a disturbance,
consider a sinusoidal disturbance signal with a period time of 0.2 seconds, and an
ILC controlled system with a trial length of 0.45 seconds (including the resetting
of the system between two trials). Then the ILC controlled system will encounter
the same sinusoidal disturbance every four trials (` = 4), see Figure 4.12.
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Figure 4.12: Sinusoidal disturbance with period time of 0.2s, and time interval of a
trial of 0.45s. During trial k = 4, the disturbance is equal to that during trial k = 0.
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Note that for dk with known period `, the internal model principle, [47], can be
used in the ILC controller design to asymptotically reject the periodic disturbance.
In this section, however, we assume ` to be unknown, and use the ILC controller
given in (4.3).

The trial domain behavior of the asymptotic error of an ILC controlled system
with deterministic disturbance dk(`) can be given by

εas
k = ε∞ − (I −HLc(wI − Ip + LoHLc)−1Lo)dk(`), (4.14)

with ε∞ = (I −HLc(LoHLc)−1Lo)αd, and w = ej2π/`. In (4.14), we substituted
w−1 = 1 for trial invariant αd (` = 1).

In Lemma 4.9, we study the effects of convergence speed and trial periodicity `
on εas

k .

Lemma 4.9. Given (4.14) with deterministic trial periodic disturbance dk(`) with
` ≥ 2, ILC controller (4.7) and (4.8) which explain how (Lo, Lc) are formed by
the choice of (So, Sc, Po,Mc), any Po with rank(PoHo) = p, and any Mc. Let
(So, Sc) be given by So = g(PoHo)−1 with g ∈ (0, 2) and Sc = Ip, i.e., let the
singular values of the ILC controlled system equal |1− g|Ip. Then for

g ↓ 0 : εas
k ≈ ε∞ − dk(` ≥ 2)

g = 1 : εas
k ≈ ε∞ − (Ip −Ho(HoPo)−1Po)dk(` →∞)

εas
k = ε∞ − (Ip + Ho(HoPo)−1Po)dk(2)

g ↑ 2 : εas
k ≈ ε∞ − (Ip −Ho(HoPo)−1Po)dk(` →∞)
‖εas

k ‖2 →∞ for dk(2).

Proof. See Appendix A.4.4.

From Lemma 4.9, we can conclude that, independent of the trial periodicity `
of dk(`), εas

k is approximately equal to ε∞ − dk for ILC controllers with near
zero convergence speed. On the other hand, with, e.g., deadbeat control, the
attenuation or amplification of the disturbance does depend on the value of `.

To illustrate these results, consider H = 1, Lc = 1, and Lo = g, with g ∈ (0, 1]
the tuning parameter used to influence convergence speed. For g ↓ 0, we have
arbitrarily slow convergence, for g = 1 we have deadbeat control. In Figure 4.13,
we show the amplitude |εas

k (`)| = |(1−(ej2π/`−1+g)−1g)| as function of ` (trial).
Clearly, independent of the value for g, trial invariant disturbances (` → ∞)
are fully rejected. On the other hand, it depends on the trial periodicity of the
disturbance (`), whether slow convergence or deadbeat control provides the best
disturbance rejection.
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Figure 4.13: Effect of tuning gain g on asymptotic amplitude rejection of trial periodic
disturbance.

4.6 ILC controller design for systems with basis func-
tions

In this section, we discuss the design of ILC controllers for systems with ba-
sis functions by choosing a specific full rank decomposition for H and defining
(So, Sc, Po,Mc). Thereto, we apply the results of the previous sections as sum-
marized in Figure 4.14. Note that the only (possibly) conflicting control ob-
jectives correspond to convergence speed and performance under trial varying
disturbances.

U n d e r  n o n r e p e t i t i v e  
d i s t u r b a n c e  ( S o , S c )

N o r m - o p t i m a l i t y ( P o )

M o n o t o n i c  
c o n v e r g e n c e  ( S o , S c )

C o n t r o l  o b j e c t i v e s

A d d i t i o n a l  d e s i g n  
f r e e d o m  ( M c )

C o n v e r g e n c e

P e r f o r m a n c e

C o n v e r g e n c e  
s p e e d ( S o , S c )

Figure 4.14: ILC control objectives as function of (So, Sc, Po, Mc).

Before an ILC controller can actually be designed, we first need a full rank decom-
position of H. Due to the properties of a SVD, see Appendix A.3.6, we suggest
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to use SVD of H to find Ho and Hc.

With Ho and Hc given, ILC control design of (Lo, Lc) can be accomplished by
design of (So, Sc, Po,Mc). Using Proposition 4.2, the general structure of the ILC
controller is given by

Lo = SoPo, Lc = (Im − TT
c (TcWβTT

c )−1TcWβ)H†
cSc.

As a result, the design freedom in Mc is represented by design freedom in Wβ .

Sc: As a result of Lemma 4.5, we leave the assignment of σ(T−1(Ip − LoHLc)T )
to So, and choose Sc = Ip.

Po: If trial varying disturbances are not taken into account in the ILC controller
design, or are fully unknown, Lemma 4.6 states to design Po = HT

o for optimal
performance. In case trial varying disturbances are considered, we can alter Po

to Po = HT
o Q, with Q a matrix which filters out the unwanted disturbances, e.g.,

a filter with low pass characteristics, see Section 4.5.

Wβ : Reduction of the amplitudes of the values in the coefficient vector β∞ cor-
responds to the design of Wβ , see Proposition 4.2. An initial estimate of the
amplitudes in β∞ can be obtained by using the analytical expression for β∞ with
Wβ = Im: β∞(Wβ = Im) = H†

c (PoHo)−1Poαd. Now, one possible suggestion
for Wβ is to choose Wβ = gβdiag(|β∞(Wβ = Im)|) with gβ ∈ R > 0 a tuning
gain. For this choice of Wβ , the larger amplitudes in β∞ are penalized more than
the smaller amplitudes. Note that in general, however, design and tuning of Wβ

remains an iterative process.

So: Finally, we design So. A first design choice for So is given by deadbeat ILC,
Corollary 4.3: So = (PoHo)−1. To be able to modify the convergence speed of
this inverse model ILC controller, we can additionally introduce a tuning gain
g ∈ (0, 2) in So, yielding So = g(PoHo)−1. The effects of g on convergence speed
and trial varying disturbances is discussed in Section 4.5.

In case the smaller singular values in Ho are uncertain, we can apply a Tikhonov
inverse of PoHoT , which for a different case was suggested by [12], with tuning
parameters g ∈ (0, 2) and r ≥ 0

So := gT (TT HT
o PT

o PoHoT + rI)−1TT HT
o PT

o →
I − T−1SoPoHoT = (1− g)I + rg(TT HT

o PT
o PoHoT + rI)−1.

With the singular values σi(rg(TT HT
o PT

o PoHoT +rI)−1) < g (since σi(PoHoT ) >
0 ∀i ∈ [1, p]), we find that monotonic convergence of (4.4) is guaranteed with
this So. While parameter g can be used to alter the overall convergence speed,
parameter r can be used to alter the convergence speed of the smaller gains
in the PoHoT . For σi(PoHoT ) � r we find rg(TT HT

o PT
o PoHoT + rI)−1 ↑ g.

This can subsequently result in arbitrarily slow convergence, see Section 4.3. For
σi(PoHoT ) � r, we find rg(TT HT

o PT
o PoHoT + rI)−1 ≈ 0 and a convergence

speed of |1− g|.
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4.7 Reconsideration of basis function based ILC ap-
proaches in ILC literature

To illustrate that the results of this chapter are directly applicable to various
ILC problems, we present three distinct ILC problem formulations with basis
functions. Thereby, we focus on reformulating the ILC control problems to comply
with the framework discussed in this chapter.

4.7.1 Arimoto gains for systems with nonzero relative degrees

In [86], Arimoto gains are applied to control an LTI system with a relative degree
equal to one. For that purpose, the original system is modified using time window
based basis functions, (4.15).

Tf =
[
IN−1

0

]
, Ty =

[
0 IN−1

]
→ H =

 CB 0
...

. . .
CAN−2B . . . CB

 , (4.15)

with HN−1×N−1. Since [86] assumes full rank of H, the minimal realization of H
can correspond to (Ho,Hc) = (H, IN−1). Furthermore, the input βk and output
αk of H correspond to βk(t) = fk(t) and αk(t) = yk(t + 1) with t ∈ [0, N − 2],
respectively.

The applied ILC control strategy corresponds to fk+1(t) = fk(t) + gek(t + 1) →
βk+1 = βk + gεk, with 0 < g ≤ 2(CB)−1 the Arimoto gain. Formulation of this
ILC control strategy in terms of (Lo, Lc) gives (gIN−1, IN−1). With Lo = SoPo,
we can find So = g(HT )−1 and Po = HT .

4.7.2 Inverse model based ILC for systems with a reduced input-
output space

In [132], ILC is used for a system with a reduced input space. Given an original
reference signal r ∈ RN , the matrix with input basis functions equals

Tf =
[
ṙ r̈ r(3) r(4)

]
, (4.16)

resulting in the modified system H = JTf ∈ RN×4 → (Ho,Hc) = (H, I4). While
αk = yk, the input is modified from fk to coefficient vector βk ∈ R4.

System H is controlled using an inverse model based ILC controller with (Lo, Lc) =
(g(HT H)−1HT , I4) and g ∈ (0, 2). Using (4.7), we obtain So = g(HT H)−1 and
Po = HT .
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4.7.3 ILC for residual vibration suppression

In Chapter 3, we applied ILC to suppress residual vibrations in systems per-
forming point-to-point motions. With the generalized system H = JH discussed
extensively in Chapter 3, here we focus on the properties of the ILC controller.

To control H, we designed an ILC controller Lo with

(Po, So) = (HT
o , g(HT

o Ho + rIp)−1), g ∈ (0, 2), r ≥ 0,

and an Lc with Sc = Ip. With ker(H) 6= ∅, we used the additional design freedom
Mc to reduce the amplitude of the command signal.

4.8 Concluding remarks

Basis functions appear in ILC in various ways. In this chapter, we brought
together these appearances in one system description and ILC framework. In
addition, we have presented a general system solution for this framework, and
provided results on monotonic convergence, performance, minimization of input
amplitudes, and disturbance rejection.

The derivation of the analysis and design theory for this ILC framework has
extended existing ILC control theory such that it is applicable to the proposed ILC
framework. From a system perspective, analysis of ILC control objectives in this
framework has yielded ILC controller properties which are required for monotonic
convergence and optimality of performance. Since these conditions have been
defined as function of the system properties, they apply to any ILC controller
fitting the proposed framework. From an ILC control design perspective, analysis
has revealed how the ILC objectives given by monotonic convergence, optimality
of performance, and minimization of input amplitudes, can be reached by design
of separate parts of the ILC controller. Analysis has furthermore shown that
convergence speed and performance under trial varying disturbances are the only
two possibly conflicting control objectives.

The obtained analysis results have been used in the design of ILC controllers
for systems with basis functions. In addition, practical suggestions and choices
have been given to facilitate straightforward ILC control design. Finally, we have
shown that the obtained results are applicable to ILC problems formulations with
basis functions, and problem formulations which can be interpreted as such.
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Chapter 5

ILC for uncertain systems:
Robust convergence analysis

In this chapter, we discuss a Robust Monotonic Convergence (RMC)
analysis approach for ILC for uncertain systems over a finite time in-
terval. For this purpose, a finite time interval representation of an un-
certain system description is introduced. This model is subsequently used
in an RMC analysis based on µ analysis. As a result, we are capable of
handling additive and multiplicative uncertainty models in the RMC prob-
lem formulation, analyze RMC of linear time invariant MIMO systems
controlled by any linear trial invariant ILC controller, and formulate ad-
ditional straightforward RMC conditions for ILC controlled systems. To
illustrate the derived results, we analyze the RMC properties of LQ norm
optimal ILC.

Introduction

The expression “uncertain system” can be interpreted in multiple ways. One
interpretation is to consider model uncertainty as the difference between a model
and a specific system, resulting in one specific, fixed, model error. If we assume
that measurement data of the impulse response of the system is available, then
this model uncertainty corresponds to the difference between the true impulse
response and that of the model. While ILC control design can be based on a
model of the system, convergence analysis can be based on the true system, i.e.,
on measurement data.
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In this chapter and in Chapter 6, however, we consider the uncertain system
to correspond to a nominal model together with an uncertainty set. The true
system is assumed to lie somewhere in this set. In contrast to the previous model
uncertainty interpretation, in this case no explicit system response is available. As
a result, we can not use it to analyze the ILC controlled system. What we can do
(and will do), is to analyze the convergence properties of the complete uncertain
model set. With the true system assumed to be captured in this set, convergence
of each system in the set results in convergence of the true ILC controlled system.

The outline of this chapter is as follows. We introduce the uncertain system
description over a finite time interval in Section 5.1. Subsequently, the robust
monotonic convergence objective is defined in Section 5.2, and tackled in Section
5.3. In Section 5.4, we work out the obtained robust monotonic convergence
conditions for three specific uncertainty models. We introduce basis functions
into the analysis in Section 5.5. To illustrate our findings, in Sections 5.6 and 5.7
we analyze the robustness properties of LQ norm optimal ILC. This chapter ends
with concluding remarks in Section 5.8.

Part of the contents of this chapter is published in [43].

Definition. The induced 2-norm of a discrete time transfer function P (z) is given
by ‖P (z)‖i2 = maxθ∈[−π,π] σ(P (ejθ)) with θ real valued.

5.1 Uncertain system description

The focus of this chapter is on analysis of the robust convergence properties of
ILC controlled systems over a finite time interval with systems that are uncertain.
The finite time interval system representations follow from infinite time system
descriptions. The infinite time systems under study are assumed to be defined by a
real rational discrete time transfer function P (z), which can be causal or noncausal
in the shift operator z. Given a time signal y(t), z is defined as y(t + 1) = zy(t).
Consequently, P (z) has discrete time domain inputs and outputs defined over the
time axis t ∈ (. . . ,−2,−1, 0, 1, 2, . . .).

Restriction of an infinite time mapping P (z) to a finite time interval t ∈ [0, N −1]
is achieved in two steps. First, observe that the mapping P (z) is equivalent to
the mapping given by the infinite dimensional convolution matrix P∞, with P∞ a
block Toeplitz matrix filled with the impulse response (Markov parameters) p(t)
of P (z). Second, truncate the infinite matrix P∞ such that it describes the i/o
mapping for time interval t ∈ [0, N − 1], see, e.g., [20].

The finite time interval model J∆ for our uncertain system is obtained by following
the uncertain system modeling steps as used in infinite time robust control theory,
e.g., Section 7.2 of [117], Section 9.1 of [143], see Figure 5.1. In Figure 5.1, the
infinite time uncertain system J∆(z) : f(z) ∈ Cqi 7→ y(z) ∈ Cqo consists of a
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nominal model J(z) which is assumed to be causal, and the filters (Wi(z),Wo(z))
which are user defined. (Wi(z),Wo(z)) describe the specific uncertainty of the
system under study, and are designed such that they are stable causal filters
whose inverses are again stable and causal. The ∆(z) (with ∆(ejθ) ∈ Cq×q) is a
causal system with known structure, see Sections 7.3 and 7.4 of [117]. Moreover,
∆(z) is assumed to satisfy ‖∆(z)‖i2 ≤ 1, i.e., ∆(z) is assumed to be normalized.
As a result, the set of uncertain systems Πz is given by

Πz ={J∆(z) : J∆(z) = J(z) + Wi(z)∆(z)Wo(z), ‖∆(z)‖i2 ≤ 1,

∆ structured}, (5.1)

Wo(z) Wi(z)∆(z)

f(z)

J(z)

∆J(z)

y(z)

Wo Wi∆

f
J

∆J

y++

++

Figure 5.1: Top: infinite time uncertain system J∆(z), consisting of a nominal model
J(z) and additive model uncertainty ∆J(z). Bottom: uncertain system J∆ over a finite
time interval.

For given infinite time system J∆(z), the finite interval mapping J∆ ∈ RNqo×Nqi

maps the input signal f ∈ RNqi to the output signal y ∈ RNqo . Furthermore, with
J(z) causal and LTI, the system matrix J ∈ RNqo×Nqi is a lower triangular block
Toeplitz matrix. Equally, the finite interval representations of (Wi(z),Wo(z))
are given by the lower triangular block Toeplitz matrices Wi ∈ RNqo×Nq and
Wo ∈ RNq×Nqi .

With ∆(z) causal and LTI, its i/o behavior for a finite time interval can be
expressed by a lower triangular block Toeplitz matrix ∆ ∈ RNq×Nq. Moreover, for
finite dimensional lower triangular (block) Toeplitz matrices we find that ‖∆‖i2 ≤
‖∆(z)‖i2, see Section 6.4 of [20], i.e., the induced 2-norm of a finite interval lower
triangular (block) Toeplitz matrix can never exceed the 2-norm of the underlying
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transfer function. Consequently, the set of uncertain systems over a finite time
interval, Π, can be given by

Π = {J∆ : J∆ = J + Wi∆Wo,∆ ∈ ∆}, (5.2)

where ∆ = {∆ ∈ RNq×Nq : ‖∆‖i2 ≤ 1,∆ structured}.

Remark 5.1. Although the set of uncertain systems Π is derived by assuming ∆
to be LTI, in Section 5.4 we show that for given LTI mappings (J,Wi,Wo), ∆
can also be chosen to be linear time varying (LTV). In that case, we do have
to assume that the LTV mapping Wi∆Wo properly captures the finite interval
model uncertainty of the system.

Remark 5.2. To fit multiplicative uncertainty models into the additive uncertainty
description of (5.2), define Wi = W o

i and Wo = W o
o J for output multiplicative

uncertainty (I+W o
i ∆W o

o )J , and Wi = JW i
i and Wo = W i

o for input multiplicative
uncertainty J(I + W i

i ∆W i
o). For singular J , the modification from multiplicative

uncertainty to additive uncertainty results in rank deficient Wi or Wo.

As we will show in Section 5.3, the norm-bounded uncertainty ∆ is the key element
in the uncertain system description, since it allows the use of well developed robust
control theory for the robust convergence analysis.

5.2 Robust Monotonic Convergence objective

In this section, the concept of robust monotonic convergence of ILC for uncertain
systems is introduced, based on the ILC control framework consisting of an un-
certain system J∆ and ILC controller (Q, Lo, Lc), as depicted in Figure 5.2. In
Figure 5.2, p = rank(J) and ek = yd − J∆fk. Introduction of basis functions in
the ILC framework is left for Section 5.5.

Note the additional ILC filter Q in Figure 5.2. This filter is referred to as robust-
ness filter, since it can be used to increase the robustness properties of the ILC
controlled system. In this chapter, we show that, depending on the amount of
model uncertainty, Q 6= Ip is indeed required to obtain robustness against model
uncertainty. In frequency domain ILC control strategies, Q is often defined as a
zero phase low pass filter. In Arimoto gain ILC, it is common to take Q = gIp

with g ≤ 1. Q design in LQ norm optimal ILC is discussed in 5.6.

As shown in Figure 5.2, we will consider the ILC control strategy (Q, Lo, Lc) given
by

uk+1 = Quk + Loek, fk = Lcuk, u0 = 0, (5.3)

with (Q, Lo, Lc) ∈ (Rp×p, Rp×Nqo , RNqi×p).
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Figure 5.2: ILC control framework in trial domain, with ILC controller (Q, Lo, Lc).

Substitution of ek = yd − J∆fk in (5.3) subsequently results in the trial domain
behavior

uk+1 = (Q− LoJ∆Lc)uk + Loyd (5.4)
fk = Lcuk,

with u0 = 0.

The ILC controlled system represented by (5.4) is called robustly convergent (RC)
in trial domain iff ρ(Q − LoJ∆Lc) < 1 ∀J∆ ∈ Π. Although this condition is
necessary and sufficient for convergence of (5.4), mere convergence of (5.4) can
lead to undesirable transient behavior of the input and error signal norms in trial
domain, [76], e.g., the 2-norm or the maximum amplitude of the time signals
during a trial can become unacceptably high (they can become harmful to the
system). To avoid this undesirable behavior, (5.4) is required to be monotonically
convergent.

We consider two definitions for monotonic convergence: Monotonic convergence
of (5.4) with J∆ replaced by J , i.e., ∆ = 0, as defined by Definition 2.6, and
robust monotonic convergence of (5.4) for J∆ ∈ Π.

Definition 5.1 (Robust Monotonic Convergence (RMC)). Given the ILC con-
trolled system (5.4) and ILC controller (5.3), with yd = 0 and u0 ∈ Rp. Then
(5.4) is robustly monotonically convergent (RMC) in fk if there exists 0 ≤ κ < 1
such that

‖fk+1‖2 < κ‖fk‖2, ∀u0 ∈ Rp and ∀J∆ ∈ Π,

and ‖fk+1‖2 = ‖fk‖2 only for fk = fk+1 = 0.

Remark 5.3. We derive the RMC condition based on Definition 5.1. Alternatively,
the same RMC condition can be found by considering yd 6= 0 and u0 = 0. The
only difference between the two approaches is found in the definition of RMC.
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For yd 6= 0 and u0 = 0, robust monotonic convergence requires ‖fk+1 − f∞‖2 <
‖fk − f∞‖2 ∀J∆ ∈ Π with f∞ = limk→∞ fk.

Finally, we extend the optimal performance result of Lemma 2.2 to the ILC frame-
work presented in Figure 5.2.

Lemma 5.1. Given a robustly convergent system (5.4) with asymptotic error e∞.
Then e∞ = 0 for any yd iff rank(J∆) = Nqo ∀J∆ ∈ Π and Q = Ip.

Proof. Follows the proof of Lemma 2.2, with e∞ = (INqo
− J∆Lc(Ip − Q +

LoJ∆Lc)−1Lo)yd.

5.3 Robust Monotonic Convergence conditions

Now that the RMC problem is defined, we tackle it for given uncertain systems
(J,Wi,Wo) and ILC controller (Q, Lo, Lc). For comparison with frequency domain
RMC results from ILC literature, we include an RMC condition based on transfer
function notations.

5.3.1 RMC condition

Using Definition 5.1 and Lemma 4.1 with H → J∆, we can formulate the following
sufficient RMC condition.

Corollary 5.1. Consider the ILC controlled system (5.4) with yd = 0. Fur-
thermore, let T satisfy TT LT

c LcT = Ip. Then (5.4) is RMC in fk if ‖T−1(Q −
LoJ∆Lc)T‖i2 < 1 ∀J∆ ∈ Π.

Proof. Follows the proof of Lemma 4.1.

At this point, it is useful to bring the one trial shift operator w−1Ip into a format
which is compatible with our uncertainty description. This is done in the following
Proposition.

Proposition 5.1. Let T = Ip and ∆P ∈ {∆P = δP Ip : δp ∈ C, |δP | < 1}.
Then RC of system (5.4) of Figure 5.2 is equivalent to RC of the system in
Figure 5.3. Furthermore, let T satisfy TT LT

c LcT = Ip and ∆P ∈ ∆P with
∆P = {∆P ∈ Cp×p, ‖∆P ‖i2 < 1}, i.e., ∆P normalized and unstructured. Then
RMC of system (5.4) of Figure 5.2 in fk is equivalent to RMC of the system in
Figure 5.3 in zk.

Proof. See Appendix A.5.1.
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Figure 5.3: M∆M structure.

Proposition 5.1 makes it possible to study the convergence properties of (5.4) by
analyzing the properties of M in Figure 5.3. System M is given by[

qk

zk+1

]
=

[
0 WoLcT

−T−1LoWi T−1(Q− LoJLc)T

]
︸ ︷︷ ︸

M

[
pk

zk

]
, (5.5)

and the corresponding norm bounded uncertainty set ∆M by

∆M = {∆M = diag(∆,∆P ) : ∆ ∈ ∆,∆P ∈ ∆P }. (5.6)

Based on the M∆M structure of Figure 5.3, a sufficient condition for monotonic
convergence of M∆M is given by ‖M∆M‖i2 < 1. While an unstructured ∆M

would result in the arbitrarily conservative RMC condition ‖M‖i2 < 1, exploita-
tion of the structure in ∆M using µ analysis can result in less conservative RMC
results. More specifically, based on the results of µ analysis in [103], it can be
stated that (5.5) is RMC if µ∆M

(M) < 1, with µ∆M
(M) defined by

µ∆M
(M) = min

∆M∈∆M

{σ̄(∆M ) : det(I −M∆M ) = 0}−1. (5.7)

If there exists no ∆M ∈ ∆M such that det(I −M∆M ) = 0, then µ∆M
(M) := 0.

Remark 5.4. Because the formulations in [103] are defined for matrices, i.e., are
not related to any application, the results are directly applicable to our system,
without any restrictions.

With µ∆M
(M) in general difficult to determine directly, we use an upper bound

for µ∆M
(M) to derive the RMC condition for M , Proposition 5.2.



78 Chapter 5: ILC for uncertain systems: Robust convergence analysis

Proposition 5.2. Given system M of (5.5) with M real valued. Then an upper
bound for µ∆M

(M) is given by

µ∆M
(M) ≤ inf

DM∈DM

‖D1/2
M MD

−1/2
M ‖i2, (5.8)

with DM = {DM = diag(D,DP ) : rank(DM ) = Nq + p, DM ∈ R(Nq+p)×(Nq+p),
D

1/2
M ∆M = ∆MD

1/2
M }.

Proof. The upper bound is suggested in Section 4 of [45]. The properties of DM

follow from Section 3 and Theorem 9.10 of [103].

From Proposition 5.2, it can be concluded that for a given uncertain system
(J,Wi,Wo) and ILC controller (Q, Lo, Lc), checking RMC is equivalent to first
calculating M and specifying the structure in ∆M , and subsequently checking
the existence of DM ∈ DM such that (5.8) is smaller than one.

Remark 5.5. Since no assumptions have been made about (Q, Lo, Lc) in M ,
Proposition 5.2 is applicable to any linear trial invariant ILC controller: causal
and noncausal in time domain, time invariant and time varying, square and non-
square.

Remark 5.6. To illustrate the difference in allowable ∆ between RC and RMC,
in Appendix B, we have worked out an example for an uncertain system with
(W i

i ,W
i
o) = (I, I), and (Q, Lo, Lc) = (I, gJ−1, I).

5.3.2 RMC condition in frequency domain

In ILC literature, the frequency domain is often used to analyze the convergence
properties of ILC controlled system, [8, 23, 139]. To compare our RMC results
with RMC results from frequency domain ILC, in this section we derive an RMC
condition using the transfer function notations from Section 5.1. This formulation
implies that trials have an infinite time interval. As a result, frequency domain
RMC can be interpreted as RMC over an infinite time interval. For simplicity of
the results, we consider the case Lc(z) = I, which is common in ILC literature.

The following Lemma reveals that frequency domain RMC implies RMC over a
finite timer interval, if Lo(z) is causal.

Lemma 5.2. Consider Lc(z) = I, and (Q(z), Lo(z), J∆(z)) ∈ L∞(z) for z = ejθ,
θ ∈ [−π, π]. Moreover, let (Q, Lo, J∆) be the finite dimensional (block) Toeplitz
matrix structures of the corresponding infinite dimensional (block) Toeplitz ma-
trices representing (Q(z), Lo(z), J∆(z)). Then ‖Q(z)−Lo(z)J∆(z)‖i2 < 1 implies
‖Q − LoJ∆‖i2 < 1, if Lo(z) is causal.

Proof. See Appendix A.5.2.
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Note that, in contrast to Lo(z), Q(z) is not restricted to be causal. Furthermore,
note that if Lo(z) is noncausal, then the condition ‖Q(z) − Lo(z)J∆(z)‖i2 < 1
does not necessarily imply ‖Q − LoJ∆‖i2 < 1. As an example, consider J(z) =
z−1, Q(z) = 1, and Lo(z) = gz with g ∈ R. Furthermore, consider the finite
dimensional Toeplitz matrices (with N = 2)

J =
[
0 0
1 0

]
, Q =

[
1 0
0 1

]
, Lo =

[
0 1
0 0

]
.

Then ‖Q(z) − Lo(z)J(z)‖i2 = |1 − g|, which is smaller than 1 for g ∈ (0, 2). In
contrast, ‖Q − LoJ‖i2 = max(|1− g|, 1), which is equal to or larger than 1 ∀g.

For Lo(z) causal and Lc(z) = I, M(z) and ∆M (z) are given by

M(z) =
[

0 Wo(z)
−Lo(z)Wi(z) Q(z)− Lo(z)J(z)

]
∆M (z) = diag(∆(z),∆P (z)).

The uncertainty ∆M (z) for z = ejθ, with given θ ∈ [−π, π], has the structure of
a two-block diagonal matrix, with each block assumed to be unstructured. As a
result, µ∆M

(M(ejθ)) equals its upper bound (5.8), as shown in Lemma 2.1 of [113]
and Section 9 of [103]. Standard µ tools can be used to determine µ∆M

(M(ejθ)),
e.g., the function mussv from Matlabr.
Remark 5.7. Note that there is a basic difference between Lemma 5.2 and the
commonly used frequency domain convergence result ‖Q(z)‖i2‖I−L∗o(z)J(z)‖i2 <
1, with L∗o(z) = Q−1(z)Lo(z), e.g., [95]. In Lemma 5.2, the monotonic convergence
problem is explicitly formulated as a finite time interval problem, for which an
upper bound by an infinite time interval system representation exists under the
condition of causality of Lo(z). In contrast, this causality condition has not been
mentioned before in frequency domain convergence analysis, e.g., [95, 139].
Remark 5.8. Because exploitation of non-causality is an essential part of the
success of ILC, [97], we wil not use the frequency domain representation as a tool
to analyze the convergence properties of the ILC controlled system.

5.4 RMC conditions for structured ∆M

In this section, Proposition 5.2 is elaborated on for different ∆ in ∆M . Thereby,
the focus is on the tightness of the upper bound (5.8), the design freedom in DM ,
and formulation of easy-to-calculate RMC conditions. The uncertainty models ∆
discussed in this section are presented in Table 5.1.

In Proposition 5.2, it is stated that DM ∈ DM must commute with ∆M ∈ ∆M ,
i.e.,

D
1/2
M ∆M = ∆MD

1/2
M ⇔

(
D1/2∆ = ∆D1/2, D

1/2
P ∆P = ∆P D

1/2
P

)
.
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Table 5.1: Different uncertainty models ∆.

∆ ∈ RNq×Nq Linear Time Varying (LTV), [113]:

∆ =


∆0 0 0
... ∆N

...
...

. . .
∆N−1 ∆2N−2 · · · ∆N(N+1)/2

 , ∆t∈[0,N(N+1)/2] ∈ Rq×q

∆ ∈ RNq×Nq Linear Time Invariant (LTI):

∆ =


∆0 0 0
... ∆0

...
...

. . .
∆N−1 ∆N−2 · · · ∆0

 , ∆t∈[0,N−1] ∈ Rq×q

∆ ∈ RNq×Nq Interval uncertainty:

∆ =


∆0 0 0
... ∆0

...
...

. . .
∆N−1 ∆N−2 · · · ∆0

 , ∆t∈[0,N−1] = δtIq, δt ∈ [−1, 1]

With ∆P fully unstructured, see Proposition 5.1, DP which commutes with ∆P

is given by DP = dP I, dP ∈ R > 0. As a result, we find DM = diag(D, dP I).
Moreover, application of Section 3 of [103] to our situation reveals that one element
in DM can be set equal to 1. Hence, by defining dP = 1, in our case we find that
the condition D

1/2
M ∆M = ∆MD

1/2
M can be simplified to D1/2∆ = ∆D1/2.

5.4.1 Case 1: ∆ LTV

For LTV ∆, the RMC condition in Proposition 5.2 is only sufficient, see Table 1
of [103]. Furthermore, a matrix D commuting with LTV ∆ is given by D = d2I.
A sufficient condition for µ∆M

(M) < 1 with ∆ LTV can consequently obtained
by inserting (5.5) and DM = diag(d2I, I) in (5.8):

inf
d
‖

[
0 dWoLcT

−d−1T−1LoWi T−1(Q− LoJLc)T

]
‖i2 < 1. (5.9)

Remark 5.9. For M ∈ RNq+p×Nq+p with Nq+p relatively large, a line search can
be used to find an optimal value for d. For relatively small dimensional M , d can
be obtained using the linear matrix inequality (LMI), see Theorem 3.9 of [103],

MT DMM −DM ≺ 0, DM ∈ DM .
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It depends on the available computational power, what “relatively large Nq + p”
is. Our experience has revealed that with a Pentium 4 2.6 GHz with 1Gb RAM,
the computational load restricted the use of LMI’s to Nq + p < 100.

For ILC controllers (Q, Lo, Lc) withQ = LoJLc (deadbeat ILC control), condition
(5.9) can be simplified to a single RMC condition:

Corollary 5.2. Consider (5.5), ∆ LTV, and Q = LoJLc. Then a sufficient
condition for µ∆M

(M) < 1 is given by

‖T−1LoWi‖i2 · ‖WoLcT‖i2 < 1.

Proof. See Appendix A.5.3.

In Section 5.6, we will show that the results of Corollary 5.2 are equally applicable
to a class of LQ norm optimal ILC controllers for which Q 6= LoJLc.

5.4.2 Case 2: ∆ LTI

For LTI ∆, the RMC condition in Proposition 5.2 is only sufficient, see Table 1
of [103]. Furthermore, a matrix D commuting with LTI ∆ is given by

D1/2 =

 d0Iq 0
...

. . .
dN−1Iq . . . d0Iq

 , with dt∈[0,N−1] ∈ R, d0 6= 0. (5.10)

By inserting (5.5) and D from (5.10) in (5.8), a sufficient condition for µ∆M
(M) <

1 with ∆ LTI is given by

inf
D
‖

[
0 D1/2WoLcT

−T−1LoWiD
−1/2 T−1(Q− LoJLc)T

]
‖i2 < 1. (5.11)

In general, the RMC analysis for LTI ∆ requires solving a nonlinear optimization
problem with N variables. For specific Wo and (Q, Lo, Lc), however, the following
straightforward result can be obtained.

Corollary 5.3. Consider (5.5) with Wo given by

Wo =

 w0Iq 0
...

. . .
wN−1Iq . . . w0Iq

 , with wt∈[0,N−1] ∈ R, w0 6= 0. (5.12)

Furthermore, assume ∆ LTI, and Q = LoJLc. Then a sufficient condition for
µ∆M

(M) < 1 is given by

||T−1LoW ||i2 < 1,

with W := WiWo.
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Proof. See Appendix A.5.4.

Corollary 5.3 can be applied to all SISO LTI systems with LTI ∆, since Wo can
always be described by (5.12). Moreover, in Section 8.2 of [117] LTI uncertainty
descriptions for MIMO systems are presented which fit the structure of (5.12).
Consequently, the results of Corollary 5.3 can also be applied to uncertain MIMO
systems.

In Section 5.6, we will show that the results of Corollary 5.3 are also valid for a
class of LQ norm optimal ILC controllers for which Q 6= LoJLc.

5.4.3 Case 3: Interval uncertainty

For completeness of the RMC analysis, we study model uncertainty represented
by interval uncertainty in the impulse response of J∆. This problem formulation
is equal to that in [4]. Note that interval uncertainty puts a norm bound on each
individual Markov parameter, instead of on the Toeplitz matrix as a whole.

A sufficient RMC condition for ∆ corresponding to interval uncertainty is pre-
sented in the following Lemma.

Lemma 5.3. Consider (5.5), and interval uncertainty ∆ from Table 5.1. Let the
Toeplitz structure of ∆ define the interconnection matrices T1 and T2, such that
∆ = T1∆∗T2, with ∆∗ defined by

∆∗ = diag(∆0, . . . ,∆0︸ ︷︷ ︸
N

,∆1, . . . ,∆1︸ ︷︷ ︸
N−1

, . . . ,∆N−1). (5.13)

Furthermore, let M∗ be given by

M∗ =
[
T2 0
0 Ip

]
M

[
T1 0
0 Ip

]
. (5.14)

Then a sufficient condition for µ∆M
(M) < 1 is given by the LMI

M∗T

D∗
MM∗ −D∗

M ≺ 0, D∗
M ∈ D∗M , (5.15)

with D∗M = {D∗
M = diag(d0INq, d1Iq(N−1), . . . , dNIq, Ip) : dt > 0}.

Proof. See Appendix A.5.5.

The fact that the individual ∆t∈[0,N−1] in interval uncertainty ∆ from Table
5.1 are repeated N − t times, inherently leads to an LMI solution which is high
dimensional. Note furthermore, that the LMI solution of Lemma 5.3 is completely
different from the solution presented in [4].
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Remark 5.10. The structure of ∆∗
M = diag(∆∗,∆P ) for interval uncertainty is of

the form

∆∗
M = block diag(δr

0INq, . . . , δ
r
N−1Iq,∆P ),

with δr
i ∈ [−1, 1] real scalars, i.e., we are dealing with ∆∗

M which contains both
real and complex valued uncertainties. Furthermore, the structure of this ∆∗

M

coincides with the uncertainty structure used in mixed µ problems, see e.g., [141].
Consequently, it is possible to find an upper bound for µ∆M

(M) using a mixed µ
upper bound which can be less conservative than the complex µ upper bound of
Proposition 5.2.

5.5 RMC for the uncertain systems with basis func-
tions

To expand the RMC results to a larger class of systems, in this section, we discuss
the RMC conditions for systems with basis functions, as defined in Chapter 4.

The general system description with original uncertain system J∆ and matrices
with basis functions (Tf , Ty) is depicted in Figure 5.4. By considering Tf and Ty

part of the uncertain system, we obtain the uncertain general system description

H∆ =TyJ∆Tf → H∆ = H + Vi∆Vo, with Vi = TyWi, Vo = WoTf , (5.16)
Ψ ={H∆ : H∆ = H + Vi∆Vo,∆ ∈ ∆}.

βk
fk yk αk

J

WiWo

Tf Ty

∆

++

Figure 5.4: General system description with uncertainty Wi∆Wo.

As a consequence of the basis functions, the ILC control framework of Figure 5.2
changes to the framework presented in Figure 5.5, and the trial dynamics corre-
spond to

uk+1 = Quk + Loεk, βk = Lcuk, u0 = 0 (5.17)
uk+1 = (Q− LoH∆Lc)uk + Loαd, fk = TfLc︸ ︷︷ ︸

Lim
c

uk, u0 = 0. (5.18)

Using Lemma 4.1 and Corollary 5.1, we can find a sufficient RMC condition for
systems with basis functions.
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uk+1 uk βk
αk εk

αd

xk
w−1Ip Lc

Lo

Hc Ho

ViVo ∆

Q
H∆

+++ +

+

−

Figure 5.5: ILC framework in trial domain including model uncertainty Vi∆Vo.

Corollary 5.4. Consider the ILC controlled system (5.18), and let T satisfy
TT LimT

c Lim
c T = Ip. Then (5.18) is RMC in fk if ‖T−1(Q − LoH∆Lc)T‖i2 < 1

∀H∆ ∈ Ψ.

Additionally, using (4.7), (4.8), and Q, we can formulate convergence conditions
as function of (Q, So, Sc), similar to Lemma 4.4.

Lemma 5.4. Consider (4.7), (4.8), and the ILC controlled system (5.18) for
given (Vi, Vo). Then for any Mc and any Po with rank(PoHo) = p, there exists
(Q, So, Sc) such that (5.18) is robustly monotonically convergent in fk.

Proof. Given the robust monotonic convergence condition
‖T−1(Q − SoPoH∆(H†

cSc + T †c Mc))T‖i2 < 1 ∀∆ ∈ ∆. Then for any Mc and
any Po with rank(PoHo) = p, there exists Q with σ(Q) ≤ c and (So, Sc) with
σ(SoPoH∆(H†

cSc +T †c Mc)) ≤ r ∀H∆ ∈ Ψ, such that c+ r < 1. One such solution
is given by (Q, So) = (gIp, gIp) with g ↓ 0 and Sc = Ip.

Based on Lemma 5.4, we state that RMC can be obtained for any uncertain
system: Any trial domain shift operator w−1 that is not stabilized by LoH∆Lc

(the outer loop) can now be stabilized by proper design of Q (the inner loop).
Furthermore, we can see that RMC approaches MC if PoVi → 0, or if VoH

†
c → 0

with Mc = 0, i.e., if the output signal generated by Vi is canceled by Po, or if the
command signal resulting from Lc does not excite Vo, respectively.

To obtain easy-to-calculate RMC conditions for systems with basis functions, we
define a M∆M structure similar to that of Section 5.3. While ∆M for systems
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with basis function is equal to (5.6), matrix M is expressed by[
qk

zk+1

]
=

[
0 WoTfLcT

−T−1LoTyWi T−1(Q− LoHLc)T

]
︸ ︷︷ ︸

M

[
pk

zk

]
. (5.19)

With M and ∆M known, the results from Section 5.4 are directly applicable.

Corollary 5.5. Consider M from (5.19), ∆ LTV, and Q = LoHLc. Moreover,
let T satisfy TT LimT

c Lim
c T = Ip. Then a sufficient condition for µ∆M

(M) < 1 is
given by

‖T−1LoTyWi‖i2 · ‖WoTfLcT‖i2 < 1.

Corollary 5.6. Consider M from (5.19) with Wo given by (5.12). Furthermore,
assume ∆ LTI, Q = LoHLc, and let T satisfy TT LimT

c Lim
c T = Ip. Then a

sufficient condition for µ∆M
(M) < 1 is given by

||T−1LoTyW ||i2 < 1,

with W = WiWo.

5.6 Example: RMC of LQ norm optimal ILC control

In this section, we first introduce LQ norm optimal ILC control, and briefly
discuss its convergence and performance properties. Subsequently, we analyze the
RMC conditions of LQ norm optimal ILC. To simplify the analysis, we choose
Tf = Ty = I, i.e., we focus on LQ norm optimal ILC for servo tasks (Section 5.4).
Moreover, we consider Lc = I, and hence the situation fk = uk and TT LT

c LcT =
Ip → T = Ip.

5.6.1 LQ norm optimal ILC control design

The LQ norm optimal ILC control problem solves the optimization problem ([50,
56, 58]):

min
fk+1

J , with J = eT
k+1Qek+1 + fT

k+1Sfk+1 + (fk+1 − fk)T R(fk+1 − fk),

(5.20)

with (Q,R, S) symmetric, positive (semi-)definite matrices, often chosen to be
diagonal: (Q,R, S) = (qI, rI, sI). Since only the ratio between q, r, and s is of
importance in the optimization problem, r and s are usually defined relative to
q = 1. Note however, that for specific ILC problem formulations, a non-diagonal
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(Q,R, S) can be preferred, see e.g., the contour tracking problem in [14], and
Chapter 6.

With the derivation of the LQ norm optimal controller similar to that of Propo-
sition 3.2, we directly present the resulting controller

fk+1 = Qfk + Loek, f0 = 0 (5.21)

Q = (JT QJ + S + R)−1(JT QJ + R)

Lo = (JT QJ + S + R)−1JT Q

Note the difference between the weight Q and the ILC control element Q.

Monotonic convergence
For LQ norm optimal ILC controlled systems, monotonic convergence in fk re-
quires ‖T−1(Q−LoJLc)T‖i2 = ‖(JT QJ + S + R)−1R‖i2 < 1. From this, we can
conclude that for S > 0, MC for LQ norm optimal ILC is always achieved. On
the other hand, for S = 0 (Q = Ip), the LQ norm optimal controlled system is
MC, if and only if J has full column rank, see Lemma 3.1. If we want to consider
S = 0 a valid solution for our LQ norm optimal problem, we need to define the
LQ norm optimal ILC controller Lo using Jo instead of J , and introduce Lc = J†c
(as is done in Section 3.3).

In this example, however, we simply solve the convergence problem by explicitly
taking S > 0. With S > 0, the trial domain shift operators w−1 which are not
stabilized by LoJ (the outer loop), are stabilized by Q (the inner loop).

Convergence speed
The weighting R strongly influences the convergence speed: For R = 0, we find
‖(JT QJ +S +R)−1R‖i2 = 0. As a result, the ILC controlled system converges in
one trial, i.e., we have deadbeat ILC control. If R � JT QJ +S for some gains in
R, we find that ‖(JT QJ + S + R)−1R‖i2 = 1− ε with 0 < ε � 1. Consequently,
the convergence speed can be arbitrarily slow.

Performance
In ILC for servo tasks, the performance measure Pξ equals Pe, i.e., the perfor-
mance measure focusses on the asymptotic error e∞. With Pe = ‖e∞‖2 and e∞
given by

f∞ = (Q− LoJLc)f∞ + Loyd

= (INqi
−Q+ LoJLc)−1Loyd

e∞ = yd − Jf∞

= (INqo − J(INqi −Q+ LoJLc)−1Lo)yd

= (INqo
− J(JT QJ + S)−1JT Q)yd, (5.22)
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we can state that ‖e∞‖ = 0 for arbitrary yd iff rank(J) = Nqo (and hence qi ≥ qo)
and Q = Ip (S = 0), see Lemma 5.1. Furthermore, weighting R does not influence
the value for e∞ in (5.22).

Moreover, from Section 4.5, we can conclude that the effects of trial varying
disturbances on the error signal can be reduced by reducing the convergence
speed. With R the dominant factor in the convergence condition ‖(JT QJ + S +
R)−1R‖i2, R can be used to suppress the effects of trial varying disturbances on
the asymptotic error.

5.6.2 RMC for LQ norm optimal ILC

Based on the LQ norm optimal controller (5.21) and Corollary 5.1, RMC of the
ILC controlled system (5.4) requires

||T−1(Q− LoJ∆Lc)T ||i2 < 1, ∀∆ ∈ ∆ ⇒ (5.23)

||(JT QJ + S + R)−1(R− JT QWi∆Wo)||i2 < 1, ∀∆ ∈ ∆.

Formulation of the RMC problem in M∆M structure results in

M =
[

0 Wo

−(JT QJ + S + R)−1JT QWi (JT QJ + S + R)−1R

]
(5.24)

∆M = diag(∆,∆P ).

With these M and ∆M , the RMC properties of LQ norm optimal ILC are derived.
This is done for two cases: a) the case R = 0, and b) R = rI with r ≥ 0.

Case a: R = 0
From (5.24), it can be seen that R = 0 implies Q = LoJLc. As a result, the
RMC results from Section 5.4 can directly be applied to LQ norm optimal ILC
as a corollary to Corollary 5.2 and Corollary 5.3, respectively.

Corollary 5.7. Consider (5.24), R = 0, and ∆ LTV. Then a sufficient condition
for RMC of (5.24) in fk is given by

||(JT QJ + S)−1JT QWi||i2 · ||Wo||i2 < 1.

Corollary 5.8. Consider (5.24) with Wo given by (5.12), R = 0, and ∆ LTI.
Then a sufficient condition for RMC of (5.24) is given by

||(JT QJ + S)−1JT QW ||i2 < 1,

with W = WiWo.
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Remark 5.11. From Corollaries 5.7 and 5.8, it can be concluded that RMC of
(5.24) can be achieved by increasing S, independent of the structure of ∆M . On
the other hand, with σ(S) ↓ 0 leading to smaller ‖e∞‖2, tuning of S provides a
compromise between robust monotonic convergence and performance.

Based on Corollaries 5.7 and 5.8, in Corollary 5.9 we show that for specific model
uncertainty, RMC can be achieved with inverse model based ILC.

Corollary 5.9. Consider the ILC controlled system (5.24) with J of full rank and
qi ≤ qo, ∆ LTI, and Wo given by (5.12). Then a sufficient condition for RMC of
(5.24) in fk with inverse model based ILC controller Lo = J† and Lc = I is given
by ‖J†WiWo‖i2 < 1.

From Corollary 5.9, we can conclude that RMC is guaranteed with inverse model
based ILC, if the gains in W in the principal directions (singular vectors) of J
are smaller than the gains of J . In many applications, though, the condition of
Corollary 5.9 can not be satisfied. As a result, in practice we often need to include
the additional Q filter in the ILC controller.

Case b: R = rI
For R = 0, Corollaries 5.7 and 5.8 provide easy-to-calculate RMC conditions for
LQ norm optimal ILC. For R = rI > 0, however, these RMC conditions are also
directly applicable, see Lemma 5.5.

Lemma 5.5. Consider the ILC controlled system (5.24) with R = rI ≥ 0, and
∆ having any of the structures in Table 5.1. Furthermore, assume (5.24) to be
RMC in fk for the case R = 0. Then (5.24) is RMC in fk for any r ≥ 0.

Proof. See Appendix A.5.6.

From Lemma 5.5, it can be concluded that if (5.24) is RMC in fk for R = 0, then
R = rI ≥ 0 does not influence the RMC properties of LQ norm optimal ILC.
(this confirms results in [52, 55, 56]).

5.7 Example: RMC simulations for LQ norm optimal
ILC

We illustrate the RMC results of Section 5.6 by means of simulation examples.
After introducing the uncertain system, we compare the finite time and frequency
domain RMC results of Section 5.6. Subsequently, we show the influence of the
tuning parameters R and S on the ILC controlled system behavior.
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The uncertain system used in this section represents a mass produced mechanical
SISO system showing production tolerances. The frequency response measure-
ments of different sample systems J∆(z) of this system are presented in Figure 5.6.
Variations in experimental data are caused by the production tolerances.
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Figure 5.6: Top: Magnitude plot of the uncertain system J∆(z) and nominal model
J(z). Bottom: Additive uncertainty J∆(z)− J(z) and user defined upper bound for the
additive upper bound W (z).

Since in this example we are dealing with a SISO system, W (z) can be appointed
to either Wi(z) or Wo(z). We select Wi(z) = 1 and Wo(z) = W (z) to illustrate
the differences between the RMC conditions of Corollary 5.2 and Corollary 5.3.

With J(z), Wi(z), and Wo(z) known, the lifted domain system descriptions can
be calculated. Thereto, we consider N = 500 samples in one trial. The obtained
J ∈ R500×500 is square and rank deficient due to a nonzero relative degree (see
[123] for reasons of rank loss in J), and Wi and Wo are square and of full rank.
Furthermore, the LQ norm optimal controller used in the simulations is given by

Q = (JT J + (r + s)I)−1(JT J + rI)

Lo = (JT J + (r + s)I)−1JT , Lc = I,

with r ≥ 0, and s > 0 due to the rank deficiency of J .

In this example, we compare the finite time interval RMC results from Section
5.6 with the frequency domain condition µ∆M

(M(ejθ)) < 1. For this purpose, the
matrix M(ejθ) for r = 0 given by

M(ejθ) =
[

0 Wo(ejθ)
−(J(e−jθ)J(ejθ) + s)−1J(e−jθ) 0

]
.
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To determine µ∆M
(M(ejθ)), DM (ejθi) is defined as diag(d(ejθi), 1) for θi ∈ θ∗,

with θ∗ a frequency grid. Subsequently, for each θi ∈ θ∗ µ∆M
(M(ejθi)) is calcu-

lated using the function mussv from Matlabr. µ∆M
(M(ejθ)) then approximately

equals maxθi
µ∆M

(M(ejθi)). Note that this procedure closely resembles to that
of, e.g., [34, 42].

With the various systems defined, the finite time interval RMC conditions from
Section 5.6 are compared with µ∆M

(M(ejθ)) for the uncertainty models presented
in Table 5.2.

Table 5.2: Uncertainty models used in the simulations.

Case ∆ RMC condition

1 LTV ‖Wo‖i2 · ‖Lo‖i2

2 LTI ‖LoWo‖i2

To study conservatism of the RMC conditions of Table 5.2 and µ∆M
(M(ejθ)), the

minimal value for s for which RMC is achieved is plotted as function of the total
number of samples N in a trial, Figure 5.7. Recall that for arbitrary yd, a smaller
s leads to better performance. From Figure 5.7, it can be concluded that for this
example case 1 is more conservative than case 2 for all N , but less conservative
than µ∆M

(M(ejθ)) for N < 35. Moreover, it can be stated that case 2 is less
conservative than the frequency domain µ∆M

(M(ejθ)) for all N . For example, for
N = 50 the value for s in case 2 is 318% smaller than the value for µ∆M

(M(ejθ)),
and for N = 500, they differ 6%.
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Figure 5.7: Minimal value for s for cases 1 and 2 of Table 5.2 and µ∆M (M(ejθ)) for
which RMC is achieved.
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Next, the influence of s and r on the RMC properties and the asymptotic error
e∞ of the ILC controlled system are studied. With z0 = 0 and yd 6= 0 in this
example, RMC requires ‖zk+1 − z∞‖2 < ‖zk − z∞‖2, with z∞ the asymptotic
value of zk for k →∞. The shown results are based on J∆ = J + Wi∆Wo for 10
different samples ∆.

In Figure 5.8, convergence of the trial state ||zk−z∞||2 with zk ∈ R500 is presented
as function of different s, and r = 0. Thereby, it is verified that each sample
system J∆ is robustly convergent, and hence that for each J∆ the z∞ exists and
is bounded. Using µ∆M

(M) ≤ ||LoW ||i2, we find µ∆M
(M) ≤ 0.99 for s = 0.103,

µ∆M
(M) ≤ 1.34 for s = 0.075, and µ∆M

(M) ≤ 1.95 for s = 0.05. Conform the
results from Section 5.6, from Figure 5.8 it can be concluded that convergence is
not guaranteed to be monotonic for µ∆M

(M) > 1.
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Figure 5.8: Propagation of ‖zk − z∞‖2 for different values of s, and r = 0. Dashed-
dotted lines correspond to sample systems which are not RMC. The asymptotic value
for ‖zk − z∞‖2 of approximately -270 dB is due to numerical issues.

While ILC control design often focusses on monotonic convergence of the com-
mand signal, in numerous ILC publications nominal monotonic convergence of the
ILC controlled system is illustrated by showing ||ek||2. Although for LQ norm
optimal ILC with ∆ = 0, MC of the command signal can give MC of the er-
ror, RMC of the command signal does not directly imply RMC of the error, see
Figure 5.9. Note that this issue seems not to be given much attention in ILC
literature. Furthermore, since in this example the different J∆ are convergent,
the errors will eventually converge to their asymptotic value e∞. Consequently,
the behavior in the right plot of Figure 5.9 does not present unstable behavior,
but trial domain transient behavior as discussed in [76]. Finally, note that the
asymptotic error e∞ increases for increasing s, as expected from (5.22).

In Figure 5.10, we illustrate that r does not influence the RMC properties of
the ILC controlled system. Although a larger r does lead to slower convergence
and can provide RC, as illustrated in Appendix B, it does not alter the RMC
properties of the ILC controlled system (see Lemma 5.5).
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Figure 5.9: Propagation of ‖ek‖2 for different values of s, and r = 0. Dashed-dotted
lines correspond to sample systems for which the error does not convergence monotoni-
cally.
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Figure 5.10: Propagation of ‖zk− z∞‖2 for different values of r, and s = 0.05. Dashed-
dotted lines correspond to sample systems which are not RMC.

5.8 Concluding remarks

In this chapter, an RMC analysis approach for ILC for uncertain systems has been
presented. Initially, a model for uncertain systems has been derived by following
the uncertain system modeling steps in infinite time robust control theory, while
taking into account the finite time interval aspect of ILC. Subsequently, this model
has been used in an RMC analysis based on µ analysis. Within this RMC analysis
framework, it is possible to 1) include additive and multiplicative uncertainty
models in the RMC problem formulation, 2) analyse RMC of linear time invariant
MIMO systems controlled by any linear trial invariant ILC controller (causal and
noncausal in time domain, time invariant and time varying, square and non-
square), and 3) formulate additional straightforward RMC conditions for ILC
controlled systems.
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To illustrate the obtained results, the RMC properties of LQ norm optimal ILC
have been analyzed. In the presented examples, it is shown that the RMC analysis
approach proposed in this chapter can lead to less conservative RMC conditions
than provided by a frequency domain RMC analysis. Moreover, the presented
RMC results have resulted in straightforward tuning guidelines for LQ norm op-
timal ILC.

Conservatism
Until now, we have not focussed on possible conservatism in the finite time in-
terval representation of the uncertainty model J∆, with respect to the original
uncertainty model J∆(z). In other words, how large is the gap between ‖J∆(z)‖i2

(infinite time) and ‖J∆‖i2 for a given trial interval of N samples (finite time
interval)?

To illustrate possible conservatism in the uncertainty representation over a fi-
nite time interval, we consider an uncertain model represented by a low pass
filter J∆(z) (an 8th order Butterworth filter), with uncertain cut-off frequency ω,
‖J∆(z)‖i2 = 1, and sample time Ts = 1 · 10−3s. Moreover, given this J∆(z), we
construct lower triangular Toeplitz matrices J∆ ∈ RN×N for different values for
N .

The resulting ‖J∆‖i2 as function of N and ω are shown in Figure 5.11. Based on
his example, we state that for systems with relatively high frequent behavior, i.e.,
systems with time constants which are (roughly) more than 3 times smaller than
the time interval of a trial, conservatism in induced 2-norm ‖J∆‖i2 with respect
to ‖J∆(z)‖i2 = 1 is less than a few percent.

With a nominal model J(z) in ILC often dominated by low frequent dynamics,
e.g., due to the implementation of a time domain feedback controller, and with
model uncertainty ∆J(z) often dominant at higher frequencies, the discussed ex-
ample suggests that, in general, there can be little conservatism in the finite time
interval uncertainty model representation. Note, however, that more research has
to be conducted to formalize this statement.
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Figure 5.11: Top: Magnitude plot |J∆(z)|. Bottom: Induced 2-norm ‖J∆‖i2 as function
of the number of samples N in a trial, using sample time Ts = 1 · 10−3s. The arrows
point in the direction of increasing cut-off frequency ω.
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Chapter 6

Noncausal finite time interval
robust ILC control design

In this chapter, we present an ILC control strategy that is robust against
model uncertainty as given by an additive uncertainty model. The design
methodology hinges on H∞ optimization, however, modified such that the
obtained ILC controller is not restricted to be causal and inherently oper-
ates on a finite time interval. We subsequently analyze the convergence
and performance properties of the resulting ILC controlled system, and
provide guidelines to achieve optimized performance while remaining ro-
bustly monotonically convergent. Finally, in an example, we compare the
presented robust ILC control strategy with LQ norm optimal ILC and a
robust ILC approach based on a frequency domain µ procedure.

Introduction

The finite time interval robust ILC (R-ILC) controller that we derive in this chap-
ter is based on the uncertain system description and ILC framework of Chapter 5.
A practical reason for choosing additive uncertainty is that penalizing the input
and output of the additive uncertainty model directly results in penalizing the
(weighted) command signal and output of system J , similar to LQ norm optimal
ILC. As a result, we can interpret the obtained robust controller as if it were a
regular LQ norm optimal controller.

Under the assumption that Lc = INqi
, in Section 6.1 to Section 6.3 we derive,

analyze, and optimize the robust ILC controller in lifted domain, respectively.
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Subsequently, we present a finite time interval state space representation of this
controller in Section 6.4. And finally, we remove the assumption on Lc, resulting in
R-ILC control design for systems with basis functions in Section 6.5. In Section
6.6, we compare the robust controller with other ILC control strategies on an
experimental setup.

Part of the contents of this chapter is published in [44, 131].

6.1 Noncausal finite time interval robust ILC control
design

We derive our R-ILC controller using a theory similar to H∞ control theory for
discrete time systems, [15, 75], but formulated to result in a finite time interval
controller which is not restricted to be causal. Since the Hardy space refers to a
class of stable, causal transfer functions, the name H∞ is not appropriate for the
presented solution.

6.1.1 General robust control formulation

In robust control theory, it is common to formulate the problem using the gener-
alized plant paradigm, see Figure 6.1. In Figure 6.1, the signal wo(t) is referred to
as exogenous input, and can include reference signals, noise signals, disturbance
signals, etc. The signal zo(t) contains the performance variables, e.g., command
signals and error signals. The signal y(t) corresponds to the controller input, and
u(t) is the controller output. Finally, q(t) and p(t) are the input and output signal
of uncertainty block ∆G, respectively.

p(t) q(t)

u(t)

wo(t)

y(t)

zo(t)

∆G

G

K

M

Figure 6.1: Generalized plant formulation with generalized plant G, controller K, and
norm bounded uncertainty ∆G.

For a generalized plant G with

w(t) :=
[
pT (t) wT

o (t)
]T

, z(t) :=
[
qT (t) zT

o (t)
]T

,
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the finite time interval robust control problem consists of finding a robust con-
troller K which minimizes the induced 2-norm of the mapping M : w(t) 7→ z(t),
subject to a worst case disturbance w(t), [15, 75]:

γopt = min
u(t)

max
w(t)

‖M‖i2, t ∈ [0, N − 1]. (6.1)

Since the solution of (6.1) is in general difficult to obtain, see, e.g., [143], we focus
on finding a solution to a sub-optimal robust control problem for γ > γopt. For
that purpose, we require the following result.

Lemma 6.1. Given the optimization problem

max
x

1/2xT Qx + cT x, subject to Ax = b.

This optimization problem has a unique solution if A is of full rank and Q ≺ 0
on the subspace ker(A), i.e., on the subspace {x : Ax = 0}.

Proof. See Section 10.3 and Section 14.1 in [80].

Based on Lemma 6.1, we can pose the finite interval sub-optimal robust control
problem.

Proposition 6.1. Let (z, w, u, y) be the lifted representation of the finite time
interval signals (z(t), w(t), u(t), y(t)) for t = 0, . . . , N−1. Furthermore, consider
the generalized plant[

z
y

]
=

[
G11 G12

G21 0

] [
w
u

]
, (6.2)

and the finite interval sub-optimal robust control problem

min
u

max
w

J , with (6.3)

J =1/2(G11w + G12u)T (G11w + G12u)− 1/2γ2wT w

+ λT (y −G21w),

where λ is a Lagrange multiplier.

Given γ, then there exists a solution for (6.3), i.e., a saddle point, if G12 has
full column rank, G21 has full row rank, and GT

11G11 − γ2I ≺ 0 on the subspace
ker(G21), i.e., on the subspace {w : G21w = 0}.

Proof. See Appendix A.6.1 for a sketch of the proof.



98 Chapter 6: Noncausal finite time interval robust ILC control design

Note that existence of a unique solution for (6.3), i.e., the saddle point, does not
necessarily imply that ‖M‖i2 < γ. Optimization of γ such that ‖M‖i2 is smaller
than γ is left for Section 6.3.

Under the conditions of Proposition 6.1, the solution for (6.3) is obtained by
differentiating J with respect to u, w, and λ, and setting the expressions equal
to zero. The controller K then corresponds to the mapping K : y 7→ u.

Due to the definition of our robust control problem (6.1), the controller K clearly
operates on a finite time span t ∈ [0, N − 1]. That this K is not restricted to be
causal will become clear in the following section.

6.1.2 Noncausal finite time interval robust ILC control design

In the previous section, we have formulated the finite time interval robust control
problem for an arbitrary generalized plant G. Here, we formulate a specific gen-
eralized plant and solve (6.3) to find the finite time interval R-ILC controller.

To find the expression for the generalized plant, we define the variables (z, y, w, u)
based on the following considerations:

• The desired control structure is given by (5.3).

• The main objective of our R-ILC control problem is to minimize the error
at trial k + 1, i.e., ek+1. With ek given by ek = yd − Jfk −Wipk, the error
ek+1 can be given by

ek+1 = ek + J(fk − fk+1) + Wi(pk − pk+1). (6.4)

• ek+1 is a function of both pk and pk+1. As a result, in Figure 6.1 we consider
∆G = diag(∆,∆) with inputs qk and qk+1.

• We want to include an additional objective to penalize the change of the
command signal between two trials, i.e., f∆ = fk+1 − fk, using a weighting
R1/2 with R = (R1/2)T R1/2.

Based on these considerations, (z, y, w, u) can be given by (6.5), and the general-
ized plant G by (6.6). The resulting generalized plant formulation is presented in
Figure 6.2.

z =
[
qT
k qT

k+1 eT
k+1 fT

∆

]T (6.5a)

y =
[
eT
k fT

k

]T (6.5b)

w =
[
pT

k pT
k+1 eT

k fT
k

]T (6.5c)
u = fk+1. (6.5d)
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
qk

qk+1

ek+1

f∆

ek

fk

 =


0 0 0 Wo 0
0 0 0 0 Wo

Wi −Wi I J −J
0 0 0 −R1/2 R1/2

0 0 I 0 0
0 0 0 I 0


︸ ︷︷ ︸

G


pk

pk+1

ek

fk

fk+1

 . (6.6)

f∆

ek

ekfk

fk

qk+1pk+1

fk+1

pk qk

ek+1

G

Q, Lo

∆G

Figure 6.2: Generalized plant formulation for the R-ILC problem.

Using Lemma 6.1, in Corollary 6.1 we present existence conditions of a robust
controller for the generalized plant (6.6).

Corollary 6.1. Given the robust control problem (6.3) for generalized plant (6.6).
There exists a unique solution for (6.3), if R > 0 and γ >

√
2σ(Wi).

Proof. See Appendix A.6.2.

Given the generalized plant and existence conditions, we solve (6.3) to find the
finite time interval R-ILC controller, see Proposition 6.2.

Proposition 6.2. Given (6.6) with its inputs and outputs defined by (6.5), R > 0
and γ >

√
2σ(Wi). Then the controller that solves (6.3) is given by

Q = (JT QJ + S + R)−1(JT QJ + R) (6.7a)

Lo = (JT QJ + S + R)−1JT Q, (6.7b)

with

Q = (I − 2γ−2WiW
T
i )−1 and S = WT

o Wo. (6.8)

Proof. See Appendix A.6.3.
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Note that the existence condition γ >
√

2σ(Wi) is also visible in the condition
Q � 0.
Remark 6.1. Since Q and Lo both are a function of the upper triangular block
Toeplitz matrix JT , for this case the obtained ILC controller is noncausal.
Remark 6.2. In the derivation of the R-ILC controller, we find that the worst case
disturbance satisfies pk+1 = −pk. With the trial periodicity of this disturbance
equal to ` = 2, it corresponds to the worst case trial varying disturbance found
in Section 4.5.

6.2 R-ILC analysis

In this section, the convergence and performance properties of R-ILC controlled
system are studied. The obtained insight will subsequently be used in Section 6.3
to optimize the R-ILC controller parameters.

Since the R-ILC controller of Proposition 6.2 fits the LQ norm optimal ILC control
solution, the results from LQ norm optimal ILC (Section 5.6) are exploited in the
analysis. The difference between LQ norm optimal ILC and R-ILC lies in the fact
that in LQ norm optimal ILC the weightings Q and S are user defined, while in
R-ILC these weightings are the result of the specific robust problem formulation.

6.2.1 Convergence

As we already discussed in Section 5.6, monotonic convergence of R-ILC requires
JT QJ + S to be positive definite. With Wo a full rank matrix and Q > 0 for all
permissable γ, MC with R-ILC is always achieved.

Based on Corollaries 5.7 and 5.8, we know that RMC of the R-ILC controller
is achieved for sufficiently large S. We leave it for Section 6.3, to show how to
optimize the R-ILC controller such that RMC can be guaranteed for given model
uncertainty (Wi,Wo).

Finally, equal to LQ norm optimal ILC, the weighting R is the dominant factor
for convergence speed.

6.2.2 Performance

For performance, we focus on the asymptotic error e∞. With e∞ = yd − J∆f∞,
and asymptotic command signal f∞ given by

f∞ = (Q− LoJ∆)f∞ + Loyd

= (I −Q+ LoJ∆)−1Loyd,
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the asymptotic error equals

e∞ =
(
I − J∆ (I −Q+ LoJ∆)−1

Lo

)
yd. (6.9)

Substitution of (6.7) in (6.9) subsequently yields

e∞ = (I − J∆(JT QJ∆ + S)−1JT Q)yd. (6.10)

From (6.10), we can see that R (still) does not influence e∞ of (6.10). In contrast,
in Section 4.5, we showed that the influence of trial varying disturbances on
performance can be reduced by increasing R.

From Lemma 5.1, we know that the asymptotic error can be made smaller by
reducing the gains in S relative to Q, i.e., reducing the penalty on fk+1 relative
to ek+1. For Q and S defined by (6.8), e∞ = 0 can not be achieved for all yd. As
we will show in Section 6.3, though, freedom in the definition of (Wi,Wo) can be
used to reduce ‖e∞‖2.

6.3 R-ILC parameter optimization

6.3.1 Optimizing over γ

The R-ILC controller from Proposition 6.2 has only one parameter γ. Optimizing
this R-ILC controller consists of finding an approximate for γopt, denoted by γmin,
within a user defined bound ε > 0: γmin < γopt + ε, such that ‖M‖i2 < γmin.

To find γmin, we first need the expression for the mapping M : w 7→ z. This
mapping M is obtained by closing the loop between G and (Lo,Q), and equals

qk

qk+1

ek+1

f∆

 =


0 0 0 Wo

0 0 WoLo WoQ
Wi −Wi I − JLo J(I −Q)
0 0 R1/2Lo R1/2(Q− I)


︸ ︷︷ ︸

M


pk

pk+1

ek

fk

 . (6.11)

Using (6.11), γmin can be obtained using a bisection algorithm, see Algorithm
1, [117, Section 9.3] and [131]. Initiation of this bisection algorithm requires the
definition of an upper and lower bound on the possible values for γ (γ and γ,
respectively). The upper bound γ must be chosen sufficiently large to ensure
an initial solution to the algorithm, i.e., to ensure that initially ‖M‖i2 < γ. The
lower bound is defined by γ >

√
2σ(Wi). Furthermore, ε > 0 is used as a tolerance

for the distance between γ and γ.

Note that, similar to H∞ feedback control, the minimum value for γmin does
not have to result in robust monotonic convergence of the ILC controlled system.
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This issue of RMC of the R-ILC controlled system can, however, be resolved, as
we show now.

6.3.2 Optimizing over γ and d

In this section, we introduce a second parameter in the controller: d. Optimizing
the R-ILC controller now consists of finding desired values for both γ and d.

Gain d in R-ILC is based on the equivalence of uncertainty models Wi∆Wo and
(d−1Wi)∆(dWo), and originates from D-scaling, see Proposition 5.2. Conse-
quently, optimization of the R-ILC controller through γ and d is comparable
to the DK-iteration in µ-synthesis.

As a result of the introduction of d, the weighting matrices Q and S, (6.8), change
to

Q = (I − 2γ−2d−2WiW
T
i )−1, S = d2WT

o Wo.

This, in turn, can be rewritten to

Q = (d2I − 2γ−2WiW
T
i )−1, S = WT

o Wo, (6.12)

with γ >
√

2d−1σ(Wi).

Optimizing the R-ILC control parameters deals with optimizing performance, i.e.,
minimizing the asymptotic error e∞, while satisfying RMC conditions. While
from Lemma 5.1 and (6.10), it can be concluded that performance improvement
requires an increase of Q relative to S, from Corollary 5.7 and Corollary 5.8,
it can be concluded that RMC demands Q to be sufficiently small compared to

Algorithm 1 Bisection algorithm.
Initiation: γ := γ, Ω := 1.
while Ω = 1, do

Determine ‖M‖i2 for given γ, with M from (6.11).
if ‖M‖i2 < γ holds, then

γ ← γ
else

γ ← γ
end if
if γ − γ ≤ ε, then

γmin ← γ
Ω← 0

else
γ ← 0.5(γ + γ)

end if

end while
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S. The goal of optimizing the R-ILC controller hence consists of manipulating γ
and d such that Q is maximized relative to S, while RMC of the ILC controlled
system is guaranteed. This goal can be translated to: minimize d using, e.g.,
a line search, subject to the constraint that the ILC controlled system is RMC.
For each value of d, find γmin using Algorithm 1, with γ >

√
2d−1σ(Wi). The

resulting d and γmin for which the ILC controlled system is just RMC, i.e., for
which ‖D1/2

M MD
−1/2
M ‖i2 = 1−ε, with 0 < ε � 1, constitutes the optimized R-ILC

controller.

The idea behind this optimization approach is to minimize the difference between
d2 and 2γ−2σ(Wi)2 to increase Q relative to S, while remaining RMC. Thereby,
realize that the induced 2-norm of M is lower bounded by the induced 2-norm of
its elements, and hence that the difference between d2 and 2γ−2σ(Wi)2 is lower
bounded by the minimal value for γmin:

γmin > ‖M‖i2 ≥ max(
√

2d−1σ(Wi), dσ(Wo)).

While the suggested optimization approach can be applied to all (Wi,Wo), for the
special case (Wi,Wo) = (I,W ), optimization of γ and d can actually be simplified
considerably, see Proposition 6.3.

Proposition 6.3. Consider the optimal R-ILC controller of Proposition 6.2 given
by (6.7), uncertainty (Wi,Wo) = (I,W ), and resulting control weightings Q = I
and S = dγWT W with dγ = d2−2γ−2 > 0. Then optimizing the R-ILC controller
with respect to performance while remaining RMC is equivalent to minimizing dγ

while satisfying the RMC conditions.

The idea behind Proposition 6.3 is to minimize S relative to Q while remaining
RMC, i.e., to optimize for performance under the constraint of RMC.

Once dγ is minimized, using, e.g., a bisection algorithm, there always exists γmin

and d for which ‖M‖i2 < γmin and dγ = d2 − 2γ−2
min, namely

γmin = ‖M‖i2 + ε, d =
√

dγ + 2γ−2
min.

Note, however, that design of Lo and Q is a function of dγ only, and hence that
there is no need to determine d and γmin explicitly.

6.3.3 Achievable performance as function of Wi and Wo

In general, there is a difference in achievable performance between the cases
(Wi,Wo) = (W, I) and (Wi,Wo) = (I, W ). This can be explained by studying
the influence of Wi and Wo on Q and S, respectively.

The case (Wi,Wo) = (I,W ) gives Q = I and S = dγWT W . For larger values for
σ(W ) and dγ , we can find dγσ(W )2 > 1 (less error suppression in case of larger
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model uncertainty), and for smaller values for σ(W ), we have gains in S ↓ 0 (near
full error suppression in case of no model uncertainty).

The case (Wi,Wo) = (W, I) gives Q = (d2I − 2γ−2WWT )−1 and S = I. While
for larger values for σ(W ) and smaller values for d, we can find Q →∞ (near full
error suppression in the presence of large model uncertainty), for smaller values
for σ(W ), we approach the lower bound Q ≈ d−2I (less error suppression in case
of no model uncertainty). Based on this reasoning, we can conclude that this case
considers the situation where the main disturbance in the ILC controlled system
is generated by Wi, instead of by yd.

Since ILC focusses on suppression of yd instead of error suppression due to model
uncertainty, the best performance is obtained with (Wi,Wo) = (I, W ). In Section
6.6, this case will be discussed.

6.4 R-ILC design: State space solutions

The R-ILC solution of Proposition 6.2 can also be expressed in state space nota-
tion. A huge benefit of this state space solution over the matrix solution, is the
reduction in required buffer size to store the controller. Furthermore, the state
space solution does not have to be redesigned if the trial length changes, and this
formulation might simplify the inclusion of different uncertainty structures in the
R-ILC control problem. Note, however, that inclusion of basis functions in the
state space solution is, in general, not straightforward, and that determination of
γmin can be difficult.

To find the state space solution for the R-ILC controller, we use the generalized
plant presented in Figure 6.1. The underlying structure of the generalized plant
G is given by

G :


x(t + 1)

z(t)
y(t)

 =

 A B1 B2

C1 D11 D12

C2 D21 D22

x(t)
w(t)
u(t)

 . (6.13)

Without loss of generality, D22 can be set equal to zero, [81, 143]. Moreover,
to guarantee the existence of a converging ILC controller, the generalized plant
(6.13) is assumed to satisfy the following conditions, [117].

1. (C2, A) is detectable.

2. (A,B2) is stabilizable.

3. D12 has full column rank.

4. D21 has full row rank.
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5.
[
A− ejθ B1

]
has full row rank ∀θ ∈ [0, 2π].

6.
[
A− ejθ

C1

]
has full column rank ∀θ ∈ [0, 2π].

Note that conditions 5) and 6) are actually not required for finite time intervals.
Nonetheless, throughout this section, we assume that the conditions 1) to 6) are
satisfied, and that a solution for the robust control problem exists.

6.4.1 General finite time interval robust solution

Although the following results are known from literature, e.g., [15, 24], we present
a summary of the results in a way suitable for ILC.

Based on Proposition 6.1, the robust optimization problem with G of (6.13) can
be given by

max
w(t)

min
u(t)

N−1∑
t=0

[
1/2zT (t)z(t)− γ2

2
wT (t)w(t)

]
, (6.14)

subject to
{

x(t + 1) = Ax(t) + B1w(t) + B2u(t)
y(t) = C2x(t) + D21w(t).

By introducing the Lagrange multipliers λ(t) and λ2(t), the constraints in (6.14)
can be incorporated in the cost function. Consequently, the constrained optimiza-
tion problem (6.14) can be replaced by the unconstrained optimization problem

max
w(t)

min
u(t)

J , (6.15)

with J =
N−1∑
t=0

[
1/2zT (t)z(t)− γ2

2
wT (t)w(t)

+ λT (t + 1)(−x(t + 1) + Ax(t) + B1w(t) + B2u(t))

+ λT
2 (t + 1)(−y(t) + C2x(t) + D21w(t))

]
.

The solution for (6.15), i.e., the saddle point, is obtained by differentiating J with
respect to x(t), u(t), w(t), λ(t + 1), and λ2(t + 1), and setting the expressions
equal to zero. To simplify the result, we assume that C2 = 0. As we will show,
this assumption holds for the generalized plant used in the design of the state
space R-ILC controller.
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After some algebraic manipulations, see Appendix A.6.4, the solution is given by

[
x(t + 1)

λ(t)

]
=

[
H11 H12

H21 HT
11

] [
x(t)

λ(t + 1)

]
+

[
F1

F2

]
y(t)

u(t) =
[
G1 G2

] [
x(t)

λ(t + 1)

]
+ Hyy(t),[

x(0)
λ(N)

]
=

[
x0

0

]
, (6.16)

with the elements in (6.16) equal to

H11 = A + B1E2D
T
11C1

− (B1E2D
T
11D12 + B2)E−1

3 (DT
12C1 + DT

12D11E2D
T
11C1)

H12 = B1E2B
T
1 − (B1E2D

T
11D12 + B2)E−1

3 (DT
12D11E2B

T
1 + BT

2 )

H21 = CT
1 C1 + CT

1 D11E2D
T
11C1

− (CT
1 D12 + CT

1 D11E2D
T
11D12)E−1

3 (DT
12C1 + DT

12D11E2D
T
11C1)

F1 =
(
B1 − (B1E2D

T
11D12 + B2)E−1

3 DT
12D11

)
E−1

1 DT
21(D21E

−1
1 DT

21)
−1

F2 =
(
CT

1 D11 − (CT
1 D12 + CT

1 D11E2D
T
11D12)E−1

3 DT
12D11

)
E−1

1 DT
21(D21E

−1
1 DT

21)
−1

G1 = −E−1
3 (DT

12C1 + DT
12D11E2D

T
11C1)

G2 = −E−1
3 (DT

12D11E2B
T
1 + BT

2 )

Hy = −E−1
3 DT

12D11E
−1
1 DT

21(D21E
−1
1 DT

21)
−1, (6.17)

and matrices E1, E2, and E3 defined as

E1 := (γ2I −DT
11D11)−1

E2 := E−1
1 − E−1

1 DT
21(D21E

−1
1 DT

12)
−1D21E

−1
1

E3 := DT
12D12 −DT

12D11E2D
T
11D12.

6.4.2 Finite time interval robust ILC

With the desire to express the R-ILC controller in state space notation, we use
state space models J and Wo = dW to construct the ILC controller. To simplify
the solution, we consider filter Wi = d−1I, d > 0. The gain d is a tuning gain,
equal to the gain discussed in Section 6.3.
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J :
{

xj(t + 1) = Ajxj(t) + Bjf(t)
y(t) = Cjxj(t)

(6.18a)

Wo :


xw(t + 1) = Awxw(t) + Bwf(t)

q(t) = dC∗w︸︷︷︸
Cw

xw(t) + dD∗
w︸︷︷︸

Dw

f(t) (6.18b)

Wi : yw(t) = Wip(t). (6.18c)

Given (6.5), (6.13), and (6.18), we can formulate the generalized plant represent-
ing our robust control problem with state x(t) given by

x(t) =


xkj (t)

xk+1j
(t)

xkw
(t)

xk+1w
(t)

 .

A closer look at the generalized plant, however, reveals that we can reduce its
order. This follows from the fact that 1) the states xkj

(t) and xk+1j
(t) are inde-

pendently driven by command signals fk(t) and fk+1(t), respectively,[
xkj

(t + 1)
xk+1j

(t + 1)

]
=

[
Aj 0
0 Aj

] [
xkj

(t)
xk+1j

(t)

]
+

[
Bj 0
0 Bj

] [
fk(t)

fk+1(t)

]
,

and that 2) these states only appear in the performance output ek+1(t) as xk+1j
(t)−

xkj
(t)

ek+1(t) = ek(t)− Cj(xk+1j (t)− xkj (t))−Wi(pk+1(t)− pk(t)).

Hence, only the change of the states xj(t) from one trial to the next is of impor-
tance for ILC.

By defining x(t) using state x̃kj (t) = xk+1j (t) − xkj (t) instead of xkj (t) and
xk+1j

(t), we find the reduced order generalized plant with variables

x(t) =

 x̃kj
(t)

xkw
(t)

xk+1w
(t)

 , w(t) =


pk(t)

pk+1(t)
ek(t)
fk(t)

 , u(t) =
[
fk+1(t)

]

z(t) =


qk(t)

qk+1(t)
ek+1(t)

fk+1(t)− fk(t)

 , y(t) =
[
ek(t)
fk(t)

]
,

(6.19)
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with the different elements in the generalized plant of (6.16) given by

A =

Aj 0 0
0 Aw 0
0 0 Aw

 , B1 =

0 0 0 −Bj

0 0 0 Bw

0 0 0 0

 , B2 =

Bj

0
Bw



C1 =


0 Cw 0
0 0 Cw

−Cj 0 0
0 0 0

 , D11 =


0 0 0 Dw

0 0 0 0
Wi −Wi I 0
0 0 0 −R1/2



C2 = 0, D11 =
[
0 0 I 0
0 0 0 I

]
, D12 =


0

Dw

0
R1/2

 , D22 = 0. (6.20)

Substitution of (6.20) in (6.17), see Appendix A.6.5, yields the desired finite time
interval R-ILC controller (6.16), with elements[

H11 H12

H21 HT
11

]
=

[
Ah −BhR−1

h BT
h

CT
h QhCh AT

h

]
(6.21)

Bh =

Bj

0
Bw

 , Sh =
[
0 0 (DT

wDw + R)−1DT
w

]

Ch =

Cj 0 0
0 Cw 0
0 0 Cw

 , Ah =

Aj 0 0
0 Aw 0
0 0 Aw

−BhShCh

R−1
h = (DT

wDw + R)−1, Qh =

 γ2

γ2−2W 2
i
I 0 0

0 I 0
0 0 (I + DwR−1DT

w)−1

 ,

and

F1 = BhR−1
h

[
0 R

]
+

−I 0 0
0 0 I
0 0 0

Bh

[
0 I

]
, G1 = −ShCh

F2 = CT
h Qh

−I 0
0 Dw

0 DwR−1
h R

 , G2 = −R−1
h BT

h

Hy =
[
0 R−1

h R
]
.

(6.22)

Finally, note that determination of a value for γmin of noncausal state space mod-
els over a finite time interval is not always straightforward, due to the finiteness
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of the state space representation of M . For relatively short trial spans, e.g., in
our experience N < 500, we can find γmin by constructing M of (6.11), and using
the bisection algorithm presented in Algorithm 1. For larger trial spans, however,
the computational load of the lifted notation becomes too large. Although a fre-
quency domain expression of M makes it possible to handle longer trial spans,
expressing the controller in frequency domain and subsequently analyzing M(ejθ)
only results in approximate results, see Lemma 5.2. How to find a value for γmin

for larger trial spans remains unanswered in this thesis.

6.4.3 Implementation of the finite time interval robust con-
troller

Solution (6.16) is not implementable in its current form, since the causal and
anti-causal dynamics are not separated. This implementation issue can, however,
be resolved by performing a similarity transformation which separates the causal
part of the system from the anti-causal part, see [15, 90].

In this section, we discuss a time varying and time invariant similarity transforma-
tion. Both transformed R-ILC controllers show the time domain behavior which
is hidden in the lifted R-ILC controller (Q, Lo). The benefit of the time varying
transformation over the time invariant one is, that boundary conditions do not
play a role in the solution. A drawback is, that a larger buffer size is required to
store the time varying system matrices.

Conform the findings in Lemma 5.2, the time invariant transformation reveals that
an LTI representation of the finite time interval ILC controller includes nonzero
boundary conditions. Moreover, due to its LTI structure, the LTI solution can be
used for a frequency domain interpretation of the obtained R-ILC controller.

Time varying similarity transformation
Although different time varying similarity transformations are possible, we use
the time varying transformation discussed in [90]:[

g(t)
λ(t)

]
=

[
I Y (t)
0 I

] [
x(t)
λ(t)

]
. (6.23)

Substitution of (6.23) in (6.16), see Appendix A.6.6, subsequently results in[
g(t + 1)

λ(t)

]
=

[
AT1(t) 0
AT2(t) (AT1(t))T

] [
g(t)

λ(t + 1)

]
+

[
FT1(t)
FT2(t)

]
y(t),

u(t) =
[
G1 G2

] [
g(t)

λ(t + 1)

]
−G1Y (t)λ(t) + Hyy(t),[

g(0)
λ(N)

]
=

[
x0 + Y (0)λ(0)

0

]
=

[
x0

0

]
, (6.24)
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with the different matrices described by

AT1(t) = Ah(I + Y (t)CT
h QhCh)−1

AT2(t) = (I + CT
h QhChY (t))−1CT

h QhCh

FT1(t) = F1 −AhY (t)
(
I + CT

h QhChY (t)
)−1

F2

FT2(t) =
(
I + CT

h QhChY (t)
)−1

F2. (6.25)

The expression for Y (t) is obtained by setting the mapping λ(t + 1) 7→ g(t) equal
to zero. As a result of this, we find the time varying Riccati equation

Y (t + 1) = AhY (t)(I + CT
h QhChY (t))−1AT

h + BhR−1
h BT

h

= AhY (t)AT
h + BhR−1

h BT
h

−AhY (t)CT
h

(
Q−1

h + ChY (t)CT
h

)−1
ChY (t)AT

h , (6.26)

with Y (0) = 0.

For implementation of (6.24), first determine Y (t) for t = 0, 1, . . . , N − 1 and
use Y (t) to determine (6.25). Next, calculate g(t + 1), followed by λ(t). Finally,
determine u(t). Note that calculation of Y (t) and (6.25) has to be done only
once, before the first trial. The computational burden between trials is limited to
calculating g(t + 1), λ(t), and u(t).

Time invariant similarity transformation
The results presented here are based on the LQ norm optimal solutions presented
in [37, 39, 57]. An important difference between the results from [37, 39] and the
ones presented here, is that we obtain a (minimal order) state space solution for
the ILC controller as a whole, while in [37, 39] the state space solution consists
of the Hamiltonian system (6.16) together with an adjoint system.

The first step in finding an LTI implementable counterpart for (6.16) is similar
to (6.23), but then with constant matrix Y[

g(t)
λ(t)

]
=

[
I Y
0 I

] [
x(t)
λ(t)

]
. (6.27)

Unsurprisingly, this transformation results in time invariant (6.24) and (6.25) in
which Y (t) is replaced by Y . The expression for Y is obtained by solving the
discrete algebraic Riccati equation (DARE)

Y = AhY AT
h + BhR−1

h BT
h −AhY CT

h

(
Q−1

h + ChY CT
h

)−1
ChY AT

h , (6.28)

Note that solving this DARE requires Qh to be of full rank.

The second step is based on the similarity transformation[
g(t)
ζ(t)

]
=

[
I 0
X I

] [
g(t)
λ(t)

]
. (6.29)
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After algebraic computations, see Appendix A.6.7, we find the decoupled LTI
R-ILC controller[

g(t + 1)
ζ(t)

]
=

[
AT1 0
0 AT

T1

] [
g(t)

ζ(t + 1)

]
+

[
FT1

FT2 − (AT1)T XFT1

]
y(t)

u(t) =
[
G1(I + Y X) −G2X

] [
g(t)

g(t + 1)

]
+

[
−G1Y G2

] [
ζ(t)

ζ(t + 1)

]
+ Hyy(t), (6.30)

with X the solution to the Sylvester equation

A−T
T1 X −XAT1 = −A−T

T1 AT2.

Although these LTI dynamics of (6.30) capture the time domain behavior of the
R-ILC controller, we do not yet know the value of the boundary conditions for
g(0) and ζ(N). We do, however, know that

g(N) = AN
T1g(0) +

N−1∑
j=0

AN−1−j
T1 FT1y(j)︸ ︷︷ ︸

φg

ζ(0) = (AT
T1)

Nζ(N) +
N−1∑
j=0

(AT
T1)

N−1−j(FT2 −AT
T1XFT1)y(N − 1− j)︸ ︷︷ ︸

φζ

.

Together with the overall similarity transformation[
g(t)
ζ(t)

]
=

[
I Y
X I + XY

] [
x(t)
λ(t)

]
→

[
x(t)
λ(t)

]
=

[
I + Y X −Y
−X I

] [
g(t)
ζ(t)

]
, (6.31)

we can find the relation
x(0)
λ(N)
φg

φζ

 =


I + Y X −Y 0 0

0 0 −X I
−AN

T1 0 I 0
0 I 0 −(AT

T1)
N


︸ ︷︷ ︸

Tbound


g(0)
ζ(0)
g(N)
ζ(N)




g(0)
ζ(0)
g(N)
ζ(N)

 = T−1
bound


x(0)
λ(N)
φg

φζ

 . (6.32)

With the righthand side of (6.32) fully known, the boundary conditions g(0) and
ζ(N) can be calculated using (6.32).
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Before implementing the LTI R-ILC controller, determine matrices Y and X, and
the values of the elements in (6.30) and T−1

bound. Between each trial, calculate the
boundary values g(0) and ζ(N), see (6.32), and solve (6.30).

Remark 6.3. Instead of using a Riccati and Sylvester equation to decouple the
controller dynamics, we can also use[

x(t)
λ(t)

]
=

[
I −Y
X I

] [
g(t)
ζ(t)

]
[
g(t)
ζ(t)

]
=

[
(I + Y X)−1 (I + Y X)−1Y

−(I + XY )−1X (I + XY )−1

] [
x(t)
λ(t)

]
.

In this case, Y results from (6.28), and X from the DARE

X = AT
h XAh −AT

h XBh(Rh + BT
h XBh)−1BT

h XAh + CT
h QhCh.

Finally, to make a frequency domain representation of the LTI controller possible,
(6.30) is rewritten to[

g(t + 1)
ζ(t + 1)

]
=

[
AT1 0
0 (A−1

T1)T

] [
g(t)
ζ(t)

]
+

[
FT1

−(A−1
T1)T FT2 −XFT1

]
y(t)

u(t) =
[
G1(I + Y X)−G2XAT1 G2(A−1

T1)T −G1Y
] [

g(t)
ζ(t)

]
+

(
−G2(A−1

T1)T FT2 + Hy

)
y(t).

Although the boundary conditions are an essential part of the R-ILC controller,
in a frequency domain representation, they are not taken into account. Conse-
quently, the frequency domain R-ILC controller description can only be used for
a frequency interpretation of the controller, not for implementation.

6.5 R-ILC design for uncertain systems with basis
functions

Until now, we focussed on R-ILC for systems performing servo tasks. In this
section, we consider lifted R-ILC design for systems with basis functions. For this
purpose, we explicitly take into account the rank conditions of the system, result-
ing in Lc 6= Ip. Design of Lc is, however, not considered here. For suggestions for
Lc, see Section 3.3.

The R-ILC design problem in this section is based on the uncertain system given
by H∆ and ILC framework presented in Figure 5.5. Due to the introduction of
basis functions, the error objective in (6.5) changes from ek+1 to εk+1. Further-
more, the input of the R-ILC controller is chosen as uk and εk, and the output as
uk+1. Finally, the command signal fk+1 is given by fk+1 = Lim

c uk+1.
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The generalized plant G used to derive the R-ILC controller now equals
qk

qk+1

εk+1

fk+1 − fk

εk

uk

 =


0 0 0 VoLc 0
0 0 0 0 VoLc

Vi −Vi In HLc −HLc

0 0 0 −R1/2Lim
c R1/2Lim

c

0 0 In 0 0
0 0 0 Ip 0




pk

pk+1

εk

uk

uk+1

 . (6.33)

With the generalized plant defined, we use Proposition 6.2 to find the R-ILC
controller:

Q = (LT
c HT QHLc + S + LimT

c RLim
c )−1(LT

c HT QHLc + LimT

c RLim
c )

(6.34)

Lo = (LT
c HT QHLc + S + LimT

c RLim
c )−1LT

c HT Q, (6.35)

with

Q = (I − 2γ−2ViV
T
i )−1 and S = LT

c V T
o VoLc, (6.36)

and γ >
√

2σ(Vi).

From Q and S in (6.36), we can see that for R-ILC design for systems with basis
functions only model uncertainty Vi = TyWi and Vo = WoTf are relevant for
R-ILC control design.

6.6 Example

In this section, the designed R-ILC controller is compared to LQ norm optimal
ILC and robust ILC control based on a frequency domain µ procedure, [34]. First,
experimental result are presented. Second, the frequency domain interpretation
of the LTI R-ILC controller of Section 6.4 is compared to that of µ ILC.

6.6.1 System description

The uncertain system used in this section represents a mass produced mechanical
SISO system showing production tolerances, see Figure 6.3 and Appendix C.

The frequency response of the nominal model J(z), upper bound for the uncer-
tainty of this system W (z), and additive uncertainty data from measurements are
presented in Figure 6.4. Variations in experimental data are caused by the pro-
duction tolerances. Since even the inverse model based ILC is RMC for relatively
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Figure 6.3: Two-inertia setup used for the experiments.

small model uncertainty, see Corollary 5.9, no attempts have been made to accu-
rately upper bound the model uncertainty corresponding to low frequent dynam-
ics. Using the impulse responses of J(z) and W (z), N = 500 and Ts = 1 · 10−3s,
we find the finite time interval representation J ∈ R500×500 (square and rank
deficient due to a nonzero relative degree), and W ∈ R500×500 (square and of full
rank).
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Figure 6.4: Frequency domain representation of nominal system J(z), upper bound on
the uncertainty W (z), and additive uncertainty data from measurements.
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6.6.2 Experimental results

The reference signal yd ∈ R500 used for experimentation is presented in Figure 6.5.
With this reference signal, the actuator in the feedback controlled system (without
ILC) is pushed to its limits, i.e., approaches the saturation level of ±2.5 volts.
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Figure 6.5: Reference signal used for experimentation.

In the experiments, the R-ILC controller (QR, LR
o ) of (6.7) with weights (Q,S, R) =

(I, dγWT W, 0) is compared to an LQ norm optimal ILC controller (QLQ, LLQ
o )

with weights (Q,S, R) = (I, sI, 0), and a robust ILC controller (Qµ(z), Lµ
o (z)),

with Lµ
o (z) designed using infinite-interval µ design and Qµ(z) a zero phase low

pass filter, see [34]. Optimizing the R-ILC control parameters has resulted in
dγ = 525. For LQ norm optimal ILC, tuning has led to s = 0.85. In µ ILC, ro-
bustness is obtained by tuning the cut-off frequency of Qµ(z). The largest found
cut-off frequency for which the system is RMC is 25 Hz.

Experiments are conducted on five different setups of the two-inertia system. In
Figure 6.6, convergence of the different command signals is presented. Since in
this case u0 = 0 and yd 6= 0, monotonic convergence of the ILC controlled systems
equals ‖fk+1−f∞‖2 < ‖fk−f∞‖2. This is subsequently approximated by ‖fk+1−
f21‖2 < ‖fk−f21‖2, since f∞ is not available in practice. In Figure 6.6, we can see
that the finite time interval ILC controllers converge to (near) zero, while the µ
ILC controller remains to fluctuate. As we will show, this phenomenon is caused
by oscillatory boundary effects in the command signal, due to the implementation
of an infinite-interval solution over a finite interval.

The 2-norm of the initial errors and asymptotic errors are presented in Table 6.1.
These values are obtained by first determining the 2-norm of the errors for each of
the five setups, and subsequently averaging them. ‖e0‖2 is approximately equal
for R-ILC, LQ norm optimal ILC, and the µ ILC controller. Clearly, the 2-norm
of the asymptotic error corresponding to R-ILC is significantly smaller than that
of the other two control approaches.
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Figure 6.6: Convergence of the ILC controlled systems.

Table 6.1: 2-norms of the different asymptotic error signals.

2-norm ‖e0‖2 ‖eR
21‖2 ‖eLQ

21 ‖2 ‖eµ
21‖2

value 90.2 0.546 5.06 1.32

The time domain asymptotic command and error signals of the three ILC con-
trolled system are presented in Figure 6.7 and Figure 6.8, respectively. From
Figure 6.7, we can state that the command signals of the R-ILC and µ ILC con-
troller contain higher frequencies than that of LQ norm optimal ILC. As a result,
R-ILC and µ ILC can remove more high frequent error components which sub-
sequently leads to smaller errors, see Table 6.1 and Figure 6.8. An explanation
for this difference can be explained as follows. In LQ norm optimal ILC, the Q
filter has a low pass characteristic that cuts off all singular values smaller than a
certain threshold. Because the uncertainty of our example is associated with large
singular values, the cut off value of the Q filter is relatively high. The Q filter of
the R-ILC controller, however, cuts off singular values that are associated with
singular vectors that are uncertain, independent of the magnitude of the singular
value itself. As a result, R-ILC only gives robustness at the cost of performance
where it is required.

From Figure 6.7 we can furthermore see that the command signals in R-ILC and
µ ILC are comparable during Tst ∈ [0.05, 0.45]s. Large transients (the boundary
effects) in the command signals of µ ILC, however, result in errors which are
larger than those of R-ILC. With these variations in the command signal of µ
ILC per setup comparable to those between the different setups, the transients
are the cause of the oscillatory convergence behavior of µ ILC in Figure 6.6. An
explanation for this effect in µ ILC is found in the fact that the frequency domain
µ ILC control solution is based on a time invariant behavior of the system which
is valid for all time, i.e., a behavior in which transients do not play a role. Since
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transients are in general not negligible for a finite time interval, the frequency
domain µ ILC controller only generates a command signal (approximately) equal
to that of the R-ILC controller during that part of the trial where transients are
negligible. In this example, this time interval equals Tst ∈ [0.05, 0.45]s.
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Figure 6.7: Asymptotic command signals for R-ILC (top), LQ norm optimal ILC (cen-
ter), and µ ILC (bottom).

6.6.3 Frequency domain controller interpretation

In Section 6.4, we derived a causal state space representation of the R-ILC con-
troller. Here, we compare the frequency domain representation of this state space
model with the µ ILC controller to obtain insight in the frequency domain behav-
ior of R-ILC.

fk+1(z) = QR(z)fk(z) + LR(z)ek(z)
fk+1(z) = Qµ(z)fk(z) +Qµ(z)Lµ(z)ek(z),

The considered frequency domain convergence conditions are given by

|QR(ejθ)− LR(ejθ)J(ejθ)| < 1, |Qµ(ejθ)(1− Lµ(ejθ)J(ejθ))| < 1,

for θ ∈ [−π, π].

In Figure 6.9, the Bode plots of LR(z) and Qµ(z)Lµ(z) are shown, together with
the inverse of model J(z). When focussing on the magnitude plot, we can see
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Figure 6.8: Asymptotic error signals for R-ILC (top), LQ norm optimal ILC (center),
and µ ILC (bottom).

that the µ ILC controller approximates J−1(z) up to 23 Hz. Consequently, µ
ILC equals an inverse model based ILC controller up to 23 Hz. Moreover, the
significant high frequent roll-off of Qµ(z)Lµ(z) can be explained by the high order
of the user designedQµ(z) low-pass filter. Contrary toQµ(z)Lµ(z), LR(z) already
starts to deviate from J−1(z) above 13 Hz. This deviation, however, remains
relatively small up to 60 Hz.

When focussing on the phase plot, we see that the phase of LR(z) matches the
phase of J−1(z) exactly. With the µ ILC controller designed to match J−1(z) up
to a cut-off frequency of 25 Hz, the phase of Qµ(z)Lµ(z) only equals the phase
of J−1(z) up to 25 Hz. The high frequent phase lag is subsequently explained by
the fact that Lµ(z) is causal and Qµ(z) is designed to be zero phase.

Filters QR(z), Qµ(z), and W (z) are depicted in Figure 6.10. The Bode plot of
Qµ(z) can be fully explained by the fact that Qµ(z) is user designed zero phase
low-pass filter. The explanation of QR(z) is more involved. The zero phase
characteristic of QR(z) is most likely the result of the R-ILC objective regarding
the minimization of the error: With QR(z) = I for optimal performance, Lemma
5.1, minimizing ‖I−QR(z)‖i2 for each frequency results inQR(z) being zero phase.
Furthermore, we can see that QR(z) has a magnitude of approximately 1 for
frequencies smaller than 40 Hz and larger than 70 Hz. The low frequent gain can
be explained by the relatively small amount of model uncertainty in comparison
to J(z), see Corollary 5.9. The explanation for the high frequent properties of
QR(z) is found in the fact that the magnitude of the product LR(z)J∆(z) ≈ 0.
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Figure 6.9: Bode plots of LR(z), Qµ(z)Lµ(z), and J−1(z).

As a result, QR(z) = 1 − ε with 0 < ε � 1 is sufficient to obtain convergence.
The only frequencies with |QR(z)| < 1 lie in the frequency band where both the
control gain LR(z) and the uncertainty W (z) is relatively large. Note that these
results of QR(z) give a new perspective on the design considerations of the Q(z)
filter.
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Figure 6.10: Bode plots of QR(z), Qµ(z), and W (z).

The convergence conditions are presented in Figure 6.11. The nonzero magnitudes
up to approximately 15 Hz can be explained by the small mismatches between the
gains in (LR(z), Lµ(z)) and J−1(z). Moreover, the high frequent roll-off of the
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µ condition can be explained by the characteristics of Qµ(z). The high frequent
magnitude 1 − ε for R-ILC can be explained by the fact that for these frequen-
cies LR(z)J∆(z) is approximately zero, and hence that the convergence condition
equals QR(z). Finally, the R-ILC convergence condition shows a dip between
40 Hz and 70 Hz to compensate for the relatively large uncertainty bound on
LR(z)J∆(z).
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Figure 6.11: Convergence condition for R-ILC and µ ILC.

We conclude the comparison between R-ILC and µ ILC with a discussion on
achievable performance with both controllers. For that, we study the mapping
from reference signal yd to asymptotic error e∞, see (6.9) and Figure 6.12. From
Figure 6.12, we can state that µ ILC can achieve a higher suppression of low
frequent reference signals than R-ILC. On the other hand, above the cut-off fre-
quency of 25 Hz, µ ILC does not improve performance at all (the gain equals
1). In contrast, the R-ILC controller can improve performance up to roughly 200
Hz, due to the specific characteristics of the QR(z) filter. Only in the frequency
band of 40-70 Hz performance improvement by R-ILC is very limited, due to the
relatively large uncertainty bound.

6.7 Concluding remarks

In this chapter, we have presented a robust ILC control strategy that is robust
against model uncertainty as given by an additive uncertainty model. The design
methodology has been based on H∞ optimization, however, modified such that
the obtained ILC controller is not restricted to be causal and inherently operates
on a finite time interval. We have analyzed the convergence and performance
properties of resulting ILC controlled system, and provided guidelines to achieve
optimized performance while remaining robustly monotonically convergent. To
circumvent the use of large dimensional system matrices in R-ILC, a state space
representation for the R-ILC controller has been derived and implementation
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Figure 6.12: Amplitude mapping from reference signal yd to asymptotic error e∞ for
R-ILC and µ ILC.

issues discussed. Finally, the R-ILC controller has been modified such that it
is capable of handling systems with basis functions.

In an example, we have shown that the presented robust ILC control strategy has
been able to outperform LQ norm optimal ILC control and robust ILC control
based on a frequency domain µ procedure. Moreover, in a comparison between
µ ILC and a frequency domain interpretation of the R-ILC controller, we have
shown that the R-ILC clearly differs from µ ILC in phase characteristics of ILC
control element L(z), and magnitude characteristics in robustness filter Q(z).
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Chapter 7

Conclusions and
Recommendations

In this final chapter, the main results are recapitulated, and recommen-
dations for further research presented.

7.1 Conclusions

We discuss the results of each research objective separately.

Objective 1
The first research objective dealt with exploration of the design issues in ILC for
time-windowed systems (Chapter 3). With ILC for residual vibration suppres-
sion in point-to-point motion problems largely unexplored, we have used this ILC
task as an exemplary case to analyze ILC for time-windowed systems. We have
discussed the several steps taken from formulation of the residual vibration sup-
pression problem, via system representation with time windows, and ILC control
design, to implementation of this problem on a SISO and MIMO flexible motion
system. Thereby, we have introduced a novel ILC control framework suitable for
ILC for residual vibration suppression, and proven that there is the additional
freedom in ILC control design for point-to-point motion problems related to ma-
nipulation of the amplitude of the command signal.

Objective 2
The second research objective focussed on the formulation of a unifying ILC frame-
work, in which time-windowed systems and other ILC problem formulations are
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enclosed (Chapter 4). Furthermore, the properties of this unified framework were
to be studied. To meet the objective, first we have illustrated that various dif-
ferent ILC formulations in the literature can be captured by a common system
representation involving i/o basis functions. Analysis of ILC for this system rep-
resentation has revealed how different ILC objectives can be reached by design of
separate parts of the ILC controller. Moreover, we have used these results to sys-
tematically design ILC controllers for the representation under study, and showed
that the obtained results are applicable to existing ILC problem formulations with
i/o basis functions, and problem formulations which can be interpreted as such.

Objective 3
The third objective was to develop an approach with which the robust conver-
gence properties of existing finite time interval ILC controlled systems with model
uncertainty can be analyzed (Chapter 5). For that purpose, a novel (MIMO) un-
certain model representation over a finite time interval has been derived. This
uncertainty representation, together with results from well developed µ analy-
sis, has lead to the desired approach. Since the approach does not require the
ILC controller to obey specific properties, it is applicable to any trial invariant
LTI/LTV, (non)causal, non(square) ILC control strategy. As an example, the
obtained result has been applied to LQ norm optimal ILC, yielding new insight
in the tuning guidelines for LQ norm optimal ILC.

Objective 4
The fourth, and final, objective focussed on the design of a robust ILC control
strategy which exploits knowledge about model uncertainty in its design, is not
restricted to behave causal, and incorporates the finite time interval aspect of ILC
(Chapter 6). The robust ILC design methodology which we have derived to meet
this objective hinges on H∞ optimization, but modified such that the obtained
ILC controller is not restricted to be causal and explicitly operates on a finite time
interval. Analysis of the ILC controlled system with robust ILC controller has
revealed how to optimize the controller parameters so as to optimize performance
while remaining robustly monotonically convergent. In experiments, we have
illustrated that the designed robust ILC controller can outperform existing LQ
norm optimal ILC controllers and causal µ based ILC controllers. Moreover, a
comparison between the frequency domain interpretation of µ ILC (causal) and
our proposed robust ILC (noncausal) has revealed differences in filter properties
which, until now, have been unknown in ILC literature.

This thesis has extended existing ILC results on the following issues:

• Illustration of the use of time windows in ILC by analyzing ILC for residual
vibration suppression in point-to-point motion problems (Chapter 3)

• ILC control design for time-windowed systems (Chapter 3, Section 3.3)

• Proof and demonstration of new design freedom in ILC concerning manip-
ulation of the command signal form (Chapter 3 Section 3.3, and Chapter 4
Section 4.4)
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• Introduction of a unifying ILC framework for linear systems with basis func-
tions (Chapter 4, Section 4.2)

• Analysis and ILC control design for systems with basis functions in a uni-
fying ILC framework (Chapter 4, Sections 4.3 to 4.5)

• Introduction of a novel uncertainty model representation over a finite time
interval (Chapter 5, Section 5.1)

• Development of a robust monotonic convergence analysis approach for ex-
isting finite time interval ILC controllers (Chapter 5, Sections 5.3 and 5.4)

• Proof that a frequency domain monotonic convergence analysis provides a
sufficient condition for finite time interval if the ILC controllers is causal.
Illustration that for noncausal ILC controllers this does not necessarily hold
(Chapter 5, Section 5.3)

• Analysis of the robustness properties of LQ norm optimal ILC controllers
(Chapter 5, Section 5.5)

• Design and optimization of a noncausal finite time interval robust ILC con-
troller (Chapter 6, Sections 6.1 to 6.5)

• The proof that finite time interval linear time invariant ILC control solutions
require nonzero initial conditions (Chapter 6, Section 6.4)

7.2 Recommendations

The results of this thesis have given rise to suggestions for further research.

System identification for ILC
We showed that, even without additional robustness filters, ILC controllers are
robustly monotonically convergent for relatively small amounts of model uncer-
tainty. Consequently, we can achieve optimal performance in case of little uncer-
tainty. Based on our findings, we expect that optimal performance can be reached
if the true system can be captured by a nominal model with an uncertainty set
with bounds which are smaller than 100% of the nominal model. The remaining
questions are:

• Should system identification for ILC focus on reduction of the uncertainty
set to maximally 100% of the nominal model?

• Do other issues play a role in system identification for ILC (or in system
identification for feedforward control in general)?
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Trial varying uncertainty
For a system that is subject to wear, the dynamics can change during its lifespan.
As a result, an ILC controlled system which is convergent in the first part of
operation, might become unstable later on. In our discussion on robust conver-
gence conditions and robust ILC control design, we have not taken this issue into
account. Inclusion of this type of model uncertainty in ILC analysis and design
gives rise to the following questions:

• How do we capture trial varying model uncertainty, while respecting the
finite time aspect of a trial?

• Can we modify the existing robust monotonic convergence conditions (Chap-
ter 5) to accommodate for trial varying model uncertainty? A positive
answer to this question might be found by first writing the trial varying
uncertainty model as a trial domain state space model, and second, using
the M∆M structure of Chapter 5 to find the robust convergence conditions.
In this case, we expect ∆M to be equal to ∆M = diag(∆,∆P , δI).

• Given a model of the trial varying disturbance, can we use the design ap-
proach of Chapter 6 to find the robustly monotonically converging ILC
controller with optimized performance? Or can we combine the design ap-
proach of Chapter 6 with robust ILC control design of [89], to find the
desired controller?

Robust monotonic convergence conditions
The robust monotonic convergence (RMC) conditions for LTI and LTV uncer-
tainty models derived in this thesis (Chapter 5) are sufficient. Further research
can focus deriving less conservative RMC results.

Optimization of state space robust ILC for relatively long trial spans
To avoid large dimensional system matrix representations and to be more flexi-
ble to changes in trial length, we introduced a state space representation of the
robust controller (Chapter 6). Although we solved the design and implementa-
tion issues, it remains an open question how to properly optimize the controller
parameters such that performance is optimized in presence of robust convergence.

Experimental validation
The main purpose of the experimental results in this thesis is to demonstrate
feasibility of the proposed concepts. A next step is to implement Hankel ILC and
robust ILC on industrial applications.
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Appendix A

Proofs and Derivations

A.2 Chapter 2

A.2.1 Proof Lemma 2.1

With fk+1 = (INqi
− LJ)fk, MC requires

‖fk+1‖2 < ‖fk‖2
‖(INqi

− LJ)fk‖2 < ‖fk‖2
fT

k (INqi − LJ)T (INqi − LJ)fk < fT
k fk.

For this inequality to hold for all f0, MC requires

λi((INqi
− LJ)T (INqi

− LJ)− INqi
) < 0 ∀i ∈ [1, Nqi]

⇔ ‖INqi
− LJ‖i2 < 1.

A.2.2 Proof Lemma 2.2

Given J ∈ RNqo×Nqi , (2.8), and rank(LJ) = Nqi due to convergence. Then
for k → ∞, the state fk = fk+1 = f∞ equals f∞ = (LJ)−1Lyd. As a result,
e∞ = yd − Jf∞ is given by

e∞ =
(
INqo

− J(LJ)−1L
)
yd.
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e∞ = 0 ∀yd implies INqo − J(LJ)−1L = 0. Using

rank

([
A11 0
0 A22 −A21A

−1
11 A12

])
= rank

([
A11 A12

A21 A22

])
,

e∞ = 0 ∀yd iff

rank
([

LJ L
J INqo

])
= Nqi ⇔ rank

([
0 0
J INqo

])
= Nqi.

which holds iff qo = qi.

A.3 Chapter 3

A.3.1 Proof Lemma 3.1

Consider Lo ∈ Rp×nqo , Lc ∈ Rmqi×p, and LoJHLc ∈ Rp×p. Then convergence
requires ρ(Ip − LoJHLc) = maxj |1− λj(LoJHLc)| < 1 with j ∈ [1, p].

Only if: Consider the case p > rank(JH). Then rank(LoJHLc) < p indepen-
dent of the choice for (Lo, Lc). Consequently, there exists j ∈ [1, p] for which
λj(LoJHLc) = 0 ⇒ ρ(Ip − LoJHLc) ≥ 1.

If: Consider p ≤ rank(JH). Then there exists (Lo, Lc) for which ρ(Ip−LoJHLc) <
1. For example, Lo = gJ†o with g ∈ (0, 2) and Lc = J†c = JT

c (JcJ
T
c )−1 yields

ρ(Ip − gIp) = |1− g| < 1.

With ρ(Ip−LoJHLc) < 1 implying rank(LoJHLc) = p, and with rank(LoJHLc) ≤
min(rank(Lo), rank(JH), rank(Lc)), convergence requires rank(Lo) = rank(Lc) =
p.

A.3.2 Proof Lemma 3.2

Given Lo, then pole placement in system (3.10) is possible by Lc, iff (Ip, LoJH)
is controllable. (Ip, LoJH) controllable ⇔ rank(LoJH) = p. Using rank(LoJH) =
rank(LoJoJc) ≤ min(rank(LoJo), rank(Jc)) = min(rank(LoJo), p), then
rank(LoJH) = p implies rank(LoJo) = p. Conversely, if LoJo ∈ Rp×p is nonsingu-
lar, i.e., rank(LoJo) = p, then rank(LoJo) = p and rank(Jc) = p together imply
rank(LoJH) = p.

Similarly, given Lc, then pole placement in system (3.10) is possible by Lo,
iff (JHLc, Ip) is observable. (JHLc, Ip) observable ⇔ rank(JHLc) = p ⇔
rank(JcLc) = p.
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A.3.3 Proof Lemma 3.3

With (3.12) from Proposition 3.1, the trial domain dynamics are given by

uk+1 = (Ip − LoJo)uk + Loαd (A.1)

βk = J†c uk + T †c Mcuk, (A.2)

Furthermore, the asymptotic error ε∞ follows from

u∞ = (Ip − LoJHLc)u∞ + Loαd

= (LoJo)−1Loαd. (A.3)
ε∞ = αd − JHLcu∞

= (Inqo
− Jo(LoJo)−1Lo)αd, (A.4)

since JcT
†
c = 0. Then for arbitrary Mc ∈ R(mqi−p)×p, convergence of Hankel

ILC is defined by ρ(Ip − LoJo) < 1, (A.1), and performance by ‖ε∞‖2, with ε∞
from (A.4). Additionally, every command signal βk which can be obtained from
(A.1)-(A.4) by arbitrary Lo, can be reached by design of Mc.

A.3.4 Proof Proposition 3.2

Controller Lo : (εk, uk) 7→ uk+1 is obtained by minimizing

min
uk+1

J , with

J = εT
k+1εk+1 + (βk+1 − βk)T R(βk+1 − βk).

Using αd = εk + JHLcuk = εk + Jouk, we find εk+1 = εk − Jo(uk+1 − uk).
Additionally, with βk = Lcuk, the optimization problem can be reformulated as

min
uk+1

J , with

J = (εk − Jo(uk+1 − uk))T (εk − Jo(uk+1 − uk))

+ (uk+1 − uk)T LT
c RLc(uk+1 − uk).

Solving this problem gives
∂J

∂uk+1
= 0 → uk+1 = uk + (JT

o Jo + LT
c RLc)−1JT

o︸ ︷︷ ︸
Lo

εk. (3.14∗)

A.3.5 Proof Proposition 3.3

Using (3.19), the optimization problem is given by

min
Mc

J = min
Mc

βT
∞Wββ∞

=
(
(LoJo)−1Loαd

)T
LT

c WβLc

(
(LoJo)−1Loαd

)
.
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Given Lc from (3.12) and γm := (LoJo)−1Loαd, J can be rewritten to

J = γT
m(J†c + T †c Mc)T Wβ(J†c + T †c Mc)γm. (A.5)

The minimum of J is obtained by differentiating J with respect to Mc and
requiring it to be zero ∀γm. This results in T †

T

c WβT †c Mc = −T †
T

c WβJ†c . With
T †c = TT

c (TcT
T
c )−1, Mc equals Mc = −TcT

T
c (TcWβTT

c )−1TcWβJ†c , which yields
Lc = (Imqi

− TT
c (TcWβTT

c )−1TcWβ)J†c .

A.3.6 Singular value decomposition of JH

JH = UΣV T =
[
U1 U2

] [
Σ1 0
0 0

] [
V T

1

V T
2

]
= U1Σ1V

T
1 , (A.6)

with JH ∈ Rnqo×mqi , U1 ∈ Rnqo×p, Σ1 ∈ Rp×p, V1 ∈ Rmqi×p,
and Jo := U1Σ1, Jc := V T

1 , T †c = V2.

A.4 Chapter 4

A.4.1 Proof Lemma 4.1

Convergence: Follows from standard linear control theory.
MC: Consider transformation zk = T−1uk with T such that TT LimT

c Lim
c T = Ip.

Then with zk+1 = T−1(Ip − LoHLc)Tzk and fk = Lim
c Tzk, ‖fk+1‖2 < ‖fk‖2

equals

‖Lim
c (Ip − LoHLc)Tzk‖2 < ‖Lim

c Tzk‖2 ⇔

zT
k TT (Ip − LoHLc)T LimT

c Lim
c (Ip − LoHLc)Tzk < zT

k TT LimT

c Lim
c Tzk.

For this inequality to hold for all z0 ∈ Rp, MC requires

λi(TT (Ip − LoHLc)T LimT

c Lim
c (Ip − LoHLc)T − TT LimT

c Lim
c T ) < 0, (A.7)

∀i ∈ [1, p]. With TT LimT

c Lim
c T = Ip, this equals

λi

(
TT (Ip − LoHLc)T (T−1)T T−1(Ip − LoHLc)T − I

)
<0

⇔ ‖T−1(Ip − LoHLc)T‖i2 <1.
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A.4.2 Proof Lemma 4.6

1) Using (4.7), (4.8), u∞ = (LoHLc)−1Loαd, ε∞ = αd − HLcu∞, and the rank
condition from Lemma 3.2, we find

ε∞ = (Ip −HLc(LoHLc)−1Lo)αd

= (Ip −HSc(SoPoHSc)−1SoPo)αd

= (Ip −Ho(PoHo)−1Po)αd.

2) From Corollary 4.1, we know that optimal performance is achieved for {(Lo, Lc) :
HcLc(LoHLc)−1Lo = H†

o} ⇒ {Po : (PoHo)−1Po = H†
o}. One possible solution

for Po is given by Po = HT
o .

A.4.3 Proof Lemma 4.8

Given covariances (4.12) and (4.13), (4.7) with So = g(PoHo)−1 and g ∈ (0, 2),
and (4.8) with Sc = Ip. Then Ruu equals

Ruu = (1− g)2Ruu + g2(PoHo)−1PoRddP
T
o (PoHo)−1T

=
g

2− g
(PoHo)−1PoRddP

T
o (PoHo)−1T

,

and Rεε is given by Rεε = Rdd + g
2−g Ho(PoHo)−1PoRddP

T
o (PoHo)−1T

HT
o . The

results for g = {0+, 1, 2−} follow directly from Rεε.

A.4.4 Proof Lemma 4.9

Given Given (4.7) with So = g(PoHo)−1 and g ∈ (0, 2), and (4.8) with Sc = Ip.
Then (4.14) equals

εas
k = ε∞ − (In −

g

w − 1 + g
Ho(PoHo)−1Po)dk(`).

The results for g = {0+, 1, 2−} are obtained by analyzing εas
k for trial periodic

disturbance dk(` →∞) (w = ej2π/` → 1), i.e., almost trial invariant dk, and dk(2)
(w = ej2π/` = −1), i.e., for disturbances dk+1 = −dk.
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A.5 Chapter 5

A.5.1 Proof Proposition 5.1

Given the system in Figure 5.3. Then the mapping of the trial state zk 7→ zk+1

is given by

zk+1 = T−1(Q− Lo(J + Wi∆Wo)Lc)Tzk

= T−1(Q− LoJ∆Lc)Tzk,

and zk = ∆P zk+1. RC of the system in Figure 5.3 requires ρ(T−1(Q−LoJ∆Lc)T )
< 1 ∀J∆ ∈ Π, which is equivalent to RC of (5.4) for the choice T = Ip. The
replacement w−1Ip in Figure 5.2 by ∆P ∈ {∆P = δP Ip : δp ∈ C, |δP | < 1} in
Figure 5.3 is suggested and proven in Section 4.2 in [103].

RMC of the system in Figure 5.3 in zk requires ‖T−1(Q−LoJ∆Lc)T‖i2 < 1 ∀J∆ ∈
Π. This RMC condition is equivalent to that of (5.4) for T satisfying TT LT

c LcT =
Ip. Furthermore, with the RMC condition in Lemma 5.1 equivalent to a robust
performance condition in robust feedback control, as discussed in, e.g., Section
8.4 in [117], ∆P in Figure 5.3 is defined as ∆P ∈ {∆P ∈ Cp×p, ‖∆P ‖i2 < 1}.

A.5.2 Proof Lemma 5.2

Consider J∆ and (Q, Lo) the finite dimensional (block) Toeplitz matrices repre-
senting J∆(z) and (possibly noncausal) (Q(z), Lo(z)) over a finite time interval
of length N . Furthermore, consider (LJ)N the finite time interval representation
of the product (Lo(z)J∆(z)).

From Proposition 2.3 in [19], we find that

LoJ∆ = (LJ)N − C,

with C containing truncation and Hankel operators. C = 0 iff both Lo and J∆ are
lower triangular (block) Toeplitz matrices. Moreover, for A(z) with corresponding
finite dimensional (block) Toeplitz matrix AN , limN→∞ ‖AN‖i2 = ‖A(ejθ)‖i2, and
‖AN‖i2 ≤ ‖A(ejθ)‖i2, see e.g., Section 1.3 and Section 6.4 of [20].

Now, Corollary 5.1 states that the ILC controlled system is RMC if ‖Q−LoJ∆‖i2 <
1. Take Lo(z) causal, then Lo is an lower triangular (block) Toeplitz matrix,
LoJ∆ = (LJ)N , Q− LoJ∆ is Toeplitz, and
‖Q − LoJ∆‖i2 ≤ ‖Q(ejθ)− Lo(ejθ)J∆(ejθ)‖i2.
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A.5.3 Proof Corollary 5.2

Given (5.9) withQ = LoJLc, and µ∆M
(M) ≤ ‖D1/2

M MD
−1/2
M ‖i2. Then µ∆M

(M) <
1 if

µ∆M
(M) ≤ inf

d
‖

[
0 dWoLcT

−d−1T−1LoWi 0

]
‖i2 < 1

⇒ min
d

max(d‖WoLcT‖i2, d
−1‖T−1LoWi‖i2) < 1.

Solving this for d gives

d = ‖T−1LoWi‖1/2
i2 · ‖WoLcT‖−1/2

i2

µ∆M
(M) ≤ ‖T−1LoWi‖1/2

i2 · ‖WoLcT‖1/2
i2 .

As a result, ‖T−1LoWi‖i2 · ‖WoLcT‖i2 < 1 ⇒ µ∆M
(M) < 1.

A.5.4 Proof Corollary 5.3

Consider (5.10), Q = LoJLc, and the fact that the inequality in (5.8) holds for
LTI ∆. Furthermore, let Wo be given by (5.12). Then
µ∆M

(M) ≤ infD1/2 max(‖D1/2WoLcT‖i2, ‖T−1LoWiD
−1/2‖i2), with D1/2 having

a structure equal to (5.10).

For D1/2 := dW−1
o we find µ∆M

(M) ≤ mind max(d‖LcT‖i2, d
−1‖T−1LoW‖i2),

with W := WiWo. Solving this for d gives µ∆M
(M) ≤ ‖LcT‖1/2

i2 · ‖T−1LoW‖1/2
i2 .

Since ‖LcT‖i2 = 1 by design of T , ‖T−1LoW‖i2 < 1 ⇒ µ∆M
(M) < 1.

A.5.5 Proof Lemma 5.3

Given interval uncertainty as defined in Table 5.1 with ‖∆t‖i2 ≤ 1∀t ∈ [0, N − 1].
Then following Section 7 in [45], the interconnection matrices T1 ∈ RNq×qN(N+1)/2

and T2 ∈ RqN(N+1)/2×Nq such that ∆ = T1∆∗T2 are given by

T1 =
[
INq

0q×q(N−1) · · · 0q(N−1)×q

Iq(N−1) · · · Iq

]
, (A.8)

T2 =
[
INq

Iq(N−1) · · · Iq

0q×q(N−1) · · · 0q(N−1)×q

]T

. (A.9)

Moreover, the block diagonal ∆∗ is norm bounded by 1, i.e., ‖∆∗‖i2 ≤ 1. Knowing
that det(I −M∆) = det(I −MT1∆∗T2) = det(I −T2MT1∆∗) = det(I −M∗∆∗),
we find µ∆M

(M) with ∆M equal to µ∆M
(M∗) with ∆∗

M . Consequently, we have
µ∆M

(M) ≤ ‖D∗1/2

M M∗D∗−1/2

M ‖i2, with

D∗M = {diag(d0INq, d1Iq(N−1), . . . , dNIq, Ip) : dt > 0}
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commuting with ∆∗
M = {diag(∆∗,∆P )}, see Section 7 of [45]. Finally, the upper

bound can be formulated as the LMI of (5.15), see Theorem 3.9 of [103]. This
condition is sufficient, since inequality in (5.8) holds for ∆ LTI, see Table 1 in
[103].

A.5.6 Proof Lemma 5.5

Assume (5.24) RMC for r = 0. Then Corollary 5.1 states that there exists α such
that

‖(JT QJ + S)−1JT QWi∆Wo‖i2 ≤ α < 1 ∀∆ ∈ ∆.

Due to the properties of (Q,S), JT QJ + S is symmetric positive definite. Con-
sequently, its singular value decomposition equals JT QJ + S = UΣUT , with U a
unitary matrix and Σ = diag(σi), i = 1, . . . , Nqi, of full rank.

RMC for R = rI > 0 subsequently requires

max
∆∈∆

‖(JT QJ + S + rI)−1(rI − JT QWi∆Wo)‖i2

= max
∆∈∆

‖(JT QJ + S + rI)−1(rI + JT QWi∆Wo)‖i2

= max
∆∈∆

‖(JT QJ + S + rI)−1·

(rI + (JT QJ + S)(JT QJ + S)−1JT QWi∆Wo)‖i2

≤ ‖(JT QJ + S + rI)−1(rI + (JT QJ + S)α)‖i2

= ‖(UΣUT + rI)−1(rI + αUΣUT )‖i2

= ‖U(Σ + rI)−1(rI + αΣ)UT ‖i2

= ‖(Σ + rI)−1(rI + αΣ)‖i2

= max
i

(
ασi + r

σi + r

)
< 1 ∀r ≥ 0.

A.6 Chapter 6

A.6.1 Sketch of Proof Proposition 6.1

For given γ > γopt and t = 0, . . . , N − 1, the sub-optimal finite interval robust
control objective ‖M‖i2 < γ can be reformulated as



Appendix A: Proofs and Derivations 135

‖M‖i2 = sup
w,‖w‖>0

‖z(t)‖2
‖w(t)‖2

< γ →

J c = 1/2‖z(t)‖22 − 1/2γ2‖w(t)‖22 < 0, t ∈ [0, N − 1].

The objective Jc can be used as an objective function for the robust control
synthesis problem: Find a controller K : y 7→ u such that

min
u(t)

max
w(t)

J c = min
u(t)

max
w(t)

1/2
N−1∑
t=0

zT (t)z(t)− γ2wT (t)w(t),

is achieved, subject to the generalized plant relations.

Let (z, w, u, y) be the lifted representation of the finite time interval signals
(z(t), w(t), u(t), y(t)) for t = 0, . . . , N − 1. Then the sub-optimal robust control
problem is given by: Find a controller K : y 7→ u such that

min
u

max
w
J c, subject to

[
z
y

]
=

[
G11 G12

G21 0

] [
w
u

]
, (A.10)

is achieved. An unconstrained robust control problem (6.3) follows by substituting
z = G11w + G12u in J c, and adding the constraint y −G21w = 0 to J c using a
Lagrange multiplier λ.

The conditions that G21 has full row rank, and that GT
11G11 − γ2I ≺ 0 on the

subspace ker(G21), follow from Lemma 6.1. The condition for G12 follows directly
from the second-order condition GT

12G12 � 0 which is required for the existence
of a minimum of an unconstrained optimization problem, see Chapter 6 in [80].

A.6.2 Proof Corollary 6.1

Consider (6.6) with G11, G21, and G12 given by

G11 =


0 0 0 Wo

0 0 0 0
Wi −Wi I J
0 0 0 −R1/2

 , G21

[
0 0 I 0
0 0 0 I

]
,

G12 =
[
0 WT

o −JT R1/2T
]T

.

The robust control problem of (6.3) has a unique solution if 1) G12 has full column
rank, 2) G21 has full row rank, and 3) GT

11G11−γ2I ≺ 0 on ker(G21). A sufficient
condition for condition 1) is given by R > 0. Condition 2) holds for given G.
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The kernel space of G21 is spanned by


I
0
0
0

 ,


0
I
0
0


 .

Now, GT
11G11 − γ2I ≺ 0 on ker(G21) is equivalent to[
WT

i Wi − γ2I −WT
i Wi

−WT
i Wi WT

i Wi − γ2I

]
≺ 0 ⇔[

WT
i Wi − γ2I 0

0 WT
i Wi − γ2I −WT

i Wi(WT
i Wi − γ2I)−1WT

i Wi

]
≺ 0.

With WT
i Wi symmetric positive definite, there exists a unitary transformation

diag(V, V ), with V T WT
i WiV = Σ2 and Σ containing the singular values of Wi,

such that the matrix inequality can be formulated as[
Σ2 − γ2I 0

0 Σ2 − γ2I − Σ2(Σ2 − γ2I)−1Σ2

]
≺ 0.

This inequality is negative definite iff both σ2
i −γ2 < 0 ∀i ∈ [1, Nq] → γ > σ, and

σ2
i − γ2 − σ4

i

σ2
i − γ2

< 0 ∀i ∈ [1, Nq] ⇔ (σ2
i − γ2)2 − σ4

i

σ2
i − γ2

< 0 ∀i ∈ [1, Nq].

Since γ > σ, we have σ2
i − γ2 < 0 ∀i ∈ [1, Nq]. Consequently

(σ2
i − γ2)2 − σ4

i > 0 ∀i ∈ [1, Nq] ⇔ γ >
√

2σi ∀i ∈ [1, Nq] ⇔ γ >
√

2σ(Wi).

A.6.3 Proof Proposition 6.2

Given (6.3) with G of (6.6) and inputs and outputs (6.5), R > 0, and γ >√
2σ(Wi). Then, with ek and fk elements of both w and y, “substitution” of ek

and fk from y in ek and fk of w takes care of the constraint y − G21w in (6.3).
As a result, the unconstrained cost function can be given by

J =1/2pT
k WT

o Wopk + 1/2pT
k+1W

T
o Wopk+1

+ 1/2(fk+1 − fk)T R(fk+1 − fk)

+ 1/2 (ek + J(fk − fk+1) + Wi(pk − pk+1))
T

(ek + J(fk − fk+1) + Wi(pk − pk+1))

− 1/2γ2(pT
k pk + pT

k+1pk+1 + eT
k ek + fT

k fk),
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The saddle point minu maxw J is found where the partial derivatives of J with
respect to pk, pk+1, and fk+1 equal zero:

∂J
∂pk

= (WT
i Wi − γ2I)pk −WT

i Wipk+1

+ WT
i ek + WT

i Jfk −WT
i Jfk+1 = 0 (A.11a)

∂J
∂pk+1

= (WT
i Wi − γ2I)pk+1 −WT

i Wipk

−WT
i ek −WT

i Jfk + WT
i Jfk+1 = 0 (A.11b)

∂J
∂fk+1

= −JT Wipk + JT Wipk+1 − (JT J + R)fk

− JT ek + (JT J + R + WT
o Wo)fk+1 = 0. (A.11c)

Adding (A.11a) to (A.11b) yields pk+1 = −pk. Substitution of this into (A.11a)
gives

pk = (γ2I − 2WT
i Wi)−1(WT

i ek + WT
i Jfk −WT

i Jfk+1). (A.12)

Finally, substitution of pk+1 = −pk and (A.12) in (A.11c) yields

(JT (I − 2γ−2WiW
T
i )−1J + WT

o Wo + R)fk+1 =

JT (I − 2γ−2WiW
T
i )−1(ek + Jfk) + Rfk,

from which (6.7) and (6.8) are obtained.

A.6.4 Derivation of (6.16)

Given the unconstrained objective function (6.15) with C2 = 0

J =
N−1∑
t=0

[
1/2zT (t)z(t)− γ2

2
wT (t)w(t)

+λT (t + 1)(−x(t + 1) + Ax(t) + B1w(t) + B2u(t))

+λT
2 (t + 1)(−y(t) + D21w(t))

]
. (A.13)

Then the partial derivatives of J are

∂J
∂x(t)

= CT
1 C1x(t) + CT

1 D11w(t) + CT
1 D12u(t)

− λ(t) + AT λ(t + 1) = 0 (A.14)
∂J

∂w(t)
= DT

11C1x(t) + (DT
11D11 − γ2I)w(t) + DT

11D12u(t)

+ BT
1 λ(t + 1) + DT

21λ2(t + 1) = 0 (A.15)
∂J

∂u(t)
= DT

12C1x(t) + DT
12D11w(t) + DT

12D12u(t) + BT
2 λ(t + 1) = 0 (A.16)
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∂J
∂λ(t + 1)

= −x(t + 1) + Ax(t) + B1w(t) + B2u(t) (A.17)

∂J
∂λ2(t + 1)

= −y(t) + D21w(t) = 0. (A.18)

From (A.15), we find

w(t) = E−1
1

(
DT

11C1x(t) + DT
11D12u(t) + BT

1 λ(t + 1) + DT
21λ2(t + 1)

)
,
(A.19)

with E1 := γ2I −DT
11D11. Substitution of (A.19) in (A.18) yields

y(t) = D21E
−1
1

(
DT

11C1x(t) + DT
11D12u(t) + BT

1 λ(t + 1) + DT
21λ2(t + 1)

)
.

(A.20)

Reorganizing (A.20) gives

λ2(t + 1) = (D21E
−1
1 DT

21)
−1y(t)− (D21E

−1
1 DT

21)
−1

D21E
−1
1

(
DT

11C1x(t) + DT
11D12u(t) + BT

1 λ(t + 1)
)
. (A.21)

Substitution of (A.21) of (A.19) results in an expression for w(t) as function of
states x(t) and λ(t + 1) and measured signal y(t):

w(t) = E2

(
DT

11C1x(t) + DT
11D12u(t) + BT

1 λ(t + 1)
)

+ E−1
1 DT

21(D21E
−1
1 DT

21)
−1y(t), (A.22)

with E2 := E−1
1 − E−1

1 DT
21(D21E

−1
1 DT

12)
−1D21E

−1
1 .

By combining (A.16) and (A.22), we find the expression for u(t) as function of
x(t), λ(t + 1), and y(t)

u(t) = −E−1
3 (DT

12C1 + DT
12D11E2D

T
11C1)x(t)

− E−1
3 (DT

12D11E2B
T
1 + BT

2 )λ(t + 1)

− E−1
3 DT

12D11E
−1
1 DT

21(D21E
−1
1 DT

21)
−1y(t), (A.23)

with E3 = DT
12D12 + DT

12D11E2D
T
11D12.

To find x(t + 1), we first substitute (A.22) in (A.17):

x(t + 1) = (A + B1E2D
T
11C1)x(t) + (B1E2D

T
11D12 + B2)u(t)

+ B1E2B
T
1 λ(t + 1) + B1E

−1
1 DT

21(D21E
−1
1 DT

21)
−1y(t). (A.24)

Substitution of (A.23) in (A.24) yields the expression for x(t) as given in (6.16).

To find λ(t), we combine (A.14) and (A.22):

λ(t) = (CT
1 C1 + CT

1 D11E2D
T
11C1)x(t) + (CT

1 D12 + CT
1 D11E2D

T
11D12)u(t)

+ (AT + CT
1 D11E2B

T
1 )λ(t + 1) + CT

1 D11E
−1
1 DT

21(D21E
−1
1 DT

21)
−1y(t).
(A.25)

Finally, substitution of (A.23) in (A.25) gives λ(t) of (6.16).
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A.6.5 Derivation of (6.21) and (6.22)

The matrices in (6.21) and (6.22) are obtained using the matrices

E1 =


γ2I −W 2

i W 2
i −Wi 0

W 2
i γ2I −W 2

i Wi 0
−Wi Wi γ2 − I 0

0 0 0 γ2I −R−DT
wDw



E−1
1 DT

21(D21E
−1
1 DT

21)
−1 =


Wi

γ2−2W 2
i
I 0

−Wi

γ2−2W 2
i
I 0

I 0
0 I



E2 =


γ2−W 2

i

γ2(γ2−2W 2
i )

I
−W 2

i

γ2(γ2−2W 2
i )

I 0 0
−W 2

i

γ2(γ2−2W 2
i )

I
γ2−W 2

i

γ2(γ2−2W 2
i )

I 0 0
0 0 0 0
0 0 0 0


DT

12D11E2 =
[
0 0 0 0

]
E3 = DT

wDw + R

and

DT
12D11E

−1
1 DT

21(D21E
−1
1 DT

21)
−1 =

[
0 −R

]
.

A.6.6 Derivation of (6.24)

Given the general solution for the R-ILC controller[
x(t + 1)

λ(t)

]
=

[
Ah −BhR−1

h BT
h

CT
h QhCh AT

h

] [
x(t)

λ(t + 1)

]
+

[
F1

F2

]
y(t)

u(t) =
[
G1 G2

] [
x(t)

λ(t + 1)

]
+ Hyy(t),[

x(0)
λ(N)

]
=

[
x0

0

]
,

and the similarity transformation x(t) = g(t) − Y (t)λ(t). Then substitution of
x(t) in the expression for λ(t) yields

λ(t) =
(
I + CT

h QhChY (t)
)1 (

CT
h QhChg(t) + AT

h λ(t + 1) + F2y(t)
)
.
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Subsequent substitution x(t + 1) = g(t + 1) − Y (t + 1)λ(t + 1) and λ(t) in the
expression for x(t + 1) gives

g(t + 1) =
(
Ah −AhY (t)(I + CT

h QhChY (t))−1CT
h QhCh

)
g(t)

+
(
F1 −AhY (t)(I + CT

h QhChY (t))−1F2

)
y(t)

+
[
Y (t + 1)−AhY (t)(I + CT

h QhChY (t))−1AT
h

− BhR−1
h BT

h

]
λ(t + 1).

Removal of the influence of λ(t + 1) on g(t + 1) requires

0 = Y (t + 1)−AhY (t)(I + CT
h QhChY (t))−1AT

h −BhR−1
h BT

h

Y (t + 1) = AhY (t)(I + CT
h QhChY (t))−1AT

h + BhR−1
h BT

h .

It can be shown, e.g., see Appendix C of [37], that this expression equals a time
varying Riccati equation.

A.6.7 Derivation of (6.30)

Given the time invariant version of (6.24)[
g(t + 1)

λ(t)

]
=

[
AT1 0
AT2 AT

T1

] [
g(t)

λ(t + 1)

]
+

[
FT1

FT2

]
y(t),

u(t) =
[
G1 G2

] [
g(t)

λ(t + 1)

]
−G1Y λ(t) + Hyy(t),[

g(0)
λ(N)

]
=

[
x0

0

]
,

and the similarity transformation λ(t) = ζ(t)−Xg(t). Then substitution of λ(t)
by ζ(t) yields

ζ(t) = (X + AT2 −AT
T1XAT1)g(t) + AT

T1ζ(t + 1) + (FT2 −AT
T1XFT1)y(t).

Removal of the influence of g(t) on ζ(t) requires

0 = X + AT2 −AT
T1XAT1.

Under the assumption that AT1 is of full rank, this equation can be written as
the Sylvester equation

(AT
T1)

−1X −XAT1 = −(AT
T1)

−1AT2.
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Example: Allowable
uncertainty for RC and RMC

To illustrate the difference in allowable ∆ for RC and RMC, consider the following
simple example: Given an uncertain system with input multiplicative uncertainty
J(I + ∆), and ILC controller (Q, Lo, Lc) = (I, gJ−1, I) with g > 0. Then for
RMC, we need ‖(1− g)I − g∆‖i2 < 1, resulting in ‖∆‖i2 < 1.

On the other hand, for RC, we require

|λi(I − g(I + ∆))| < 1 ⇔ |1− g − gλi(∆)| < 1.

With λi(∆) =: λre + iλim, RC requires λre > −1, independent of the value for g.
Furthermore, if λre > −1, we find that RC can be achieved for

g <
2 + 2λre

1 + 2λre + λ2
re + λ2

im

.

Hence, for λre > −1, there always exists a learning gain g > 0 such that the ILC
controlled system is RC. In contrast, RMC does not depend on the value for g.

The difference in allowable uncertainty for RC and RMC for scalar ∆ is depicted
in Figure B.1. As can be seen, the demand of monotonic convergence can restrict
the allowable uncertainty set considerably.
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Figure B.1: Graphical representation of the uncertainty region for scalar ∆ for which
the ILC controlled system is RC (left) and RMC (right).
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Appendix C

Flexible two-inertia setup

In this Appendix, we discuss modeling and time domain feedback control design
of the flexible two-inertia system presented in Figure C.1. This system is a mass
produced mechanical SISO system showing production tolerances. The system is
driven by a DC motor which is connected to the first mass m1. The input of the
amplifier connected to the motor is limited to [-2.5,2.5] volt. The second mass
m2 is connected to the first with a poorly damped shaft. Although the angular
position of both m1 and m2 can be measured by encoders with a resolution of
π · 10−3 radians, we only consider the output of m2.

���� ����������	 
���	

Figure C.1: Two-inertia setup used for the experiments.

A model of the two-inertia system, see Figure C.2, includes the inertia of the
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masses and the flexibility and damping of the shaft, but leaves out cogging effects
of the motor and the small amount of friction in the bearings.

d

k

u

y

m1m2

Figure C.2: Model P of the two-inertia setup.

The corresponding continuous time model is given by

P (s) =
ds + k

m1m2s4 + (m1 + m2)ds3 + (m1 + m2)ks2
.

The system parameters are determined experimentally, and are given by

m1 = 2 · 10−4, m2 = 1.6 · 10−4, d = 5.66 · 10−4, k = 9.8.

A discrete time equivalent of this model is obtained by using a “zero-order-hold”
approximation with a sampling frequency of 1 kHz, see Figure C.3.
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Figure C.3: Bode plot of continuous time system P (s) and discrete time system P (z).

Since without feedback controller the system is marginally stable, we choose to
stabilize the system using time domain feedback controller C(s). This controller
consists of a notch filter at 52 Hz, a lead filter and additional gain. Subsequently,
this continuous time controller is implemented in discrete time using a Tustin
approximation with a prewarp frequency of 52 Hz.

C(s) = 0.2
1

2π3s + 1
1

2π20s + 1

1
(2π52)2 s2 + 0.02

2π52s + 1
1

(2π52)2 s2 + 2
2π52s + 1

.



Appendix C: Flexible two-inertia setup 145

10
0

10
1

10
2

−40

−20

0

M
ag

ni
tu

de
 [d

B
]

 

 

10
0

10
1

10
2

−2

0

2

Frequency [Hz]

P
ha

se
 [r

ad
]

C(s)
C(z)

Figure C.4: Bode plot of continuous time controller C(s) and discrete time controller
C(z).

The system J(z) used for ILC control is given by J(z) = (1 + P (z)C(z))−1P (z),
see Figure C.5 for the Bode plot and Figure C.6 for the impulse response.
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Figure C.5: Bode plot of continuous time system J(s) and discrete time system J(z).
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Figure C.6: Impulse response of J(z).
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Appendix D

Flexible beam setup

In this Appendix, we discuss the modeling and control of the flexible beam setup
presented in Figure D.1. The steel beam (500mm × 20mm × 2mm) is fixed to the
environment by five leaf springs, which remove four degrees of freedom (DOF).
The two remaining DOFs consist of a translation in x direction and rotation
around ϕ.

Figure D.1: The flexible beam setup used for the experiments.

The system is actuated by three current driven Lorentz’ voice coil actuators.
Two actuators are required to control the two DOFs, while the third actuator
can be used to suppress flexible modes in the beam. The input of an actuator
is provided by an amplifier (voltage-to-current converter) with an input voltage
approximately proportional to the output current. The input of the amplifier is
limited to [-2.5, 2.5] volt.
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The position of the beam is measured with fiberoptic sensors. These sensors per-
form non-contact measurements of the displacement of the beam by transmitting
light and measuring the intensity of the reflected light. In our range of operation,
the displacement-to-intensity ratio is approximately constant. The experimen-
tally determined noise level, i.e., standard deviation of the measured output, is
0.35 µm.

For control implementation on the flexible beam, we use a rapid prototyping en-
vironment. It consists of real-time hardware which is connected to the amplifiers
and sensors, in combination with Matlab Simulink. All experiments are performed
with a sample time Ts of 1 ms.

For ILC to be implementable on the experimental setup, the ILC control problem
and setup should satisfy the following conditions [17].

• A trial has a fixed and finite time span.

• Repetition of initial time domain state for each trial, i.e., xk(0) = x0.

• Invariance of the system dynamics is ensured throughout all trials.

With the reference signal known, we satisfy the first condition. To meet the second
condition, we have developed a homing procedure which brings the system within
0.4 µm of the desired initial position.

The third condition provides more difficulties. When repeatedly applying a pulse
with an amplitude of 1 volt to the three actuators (20 trials with a trial length of
1 second), the three measured outputs vary much more than 0.4 µm, Table D.1
second column. Without knowing the exact source for the non-repetitiveness of
the outputs, spectral analysis of the outputs reveals that the non-repetitiveness
is dominated by the low frequent rigid body frequencies.

Table D.1: Repetitiveness of the systems dynamics, (standard deviation in [µm]).

noise open loop closed loop closed loop with integrator

0.35 3.53 0.95 0.85

To improve the repetitiveness of our system, we introduce feedback control into
the time domain loop. With the variances in the outputs dominated by the two
rigid body frequencies, we use time domain feedback control to control these two
rigid body modes. The outputs y1 and y3 are first transformed to the rigid body
coordinates y1,rb (translations) and y2,rb (rotation), using matrix Dy. Matrix Dy
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is determined based on the geometry of the system, resulting in (D.1).

Dy =

[
1√
2

1√
2

1√
2

− 1√
2

]
. (D.1)

In this coordinate system, a diagonal controller is designed consisting of a lead
filter with a zero at 10 Hz, a pole at 90 Hz, and a gain of 0.15, in series with
a low pass filter with a cut-off frequency of 400 Hz. Subsequently, the feedback
controller outputs u1,rb and u3,rb are transformed back to u1 and u3, using matrix
Df . With the positions of the actuators and sensors approximately equal, we
choose Df = D−1

y = Dy.

The time domain closed loop system is shown in Figure D.2. Note that, since
the second actuator and output are not used in the feedback loop, the system in
Figure D.2 is partly open loop, partly closed loop. If we again apply the pulse
of 1 volt to the three actuators, the repetitiveness of the output after 20 trials is
significantly improved, Table D.1 third column.
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+

+ ++

−

−

Figure D.2: Partial feedback controlled system in time domain.

In an attempt to further improve the invariance of the dynamics, we introduce
an integrator in each of the two diagonal entries with a gain of 0.5. The result in
repetitiveness is indeed improved, Table D.1 fourth column. A closer look at the
error signals of the closed loop system with and without the integrator reveals,
however, that for the integrator case the non-repetitiveness during the transient
time interval is larger, but that the steady state offset is smaller.

Looking at the results of Table D.1, the closed loop system including the integrator
outperforms the closed loop system without the integrator. Based on this, and
the fact that the applied reference signal contains relatively long constant outputs
which require small steady state errors, we decide to perform ILC and Hankel ILC
to the closed loop system with feedback control including the integrator action.

To apply ILC to the flexible beam, we require the impulse response of the system.
This impulse response of the system is obtained by separately applying a pulse
with an amplitude of 2 volt to each of the actuators and measure the response
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of all three outputs. These experiments are repeated 20 times for each actuator.
Afterwards, the measurements are averaged and divided by 2, to correct for the
pulse amplitude. The resulting impulse response of the time domain system is
presented in Figure D.3.
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[20] A. Böttcher and B. Silbermann. Introduction to large truncated Toeplitz
matrices. Springer-Verlag, 1999. ISBN: 0-387-98570-0.

[21] D.A. Bristow. Frequency domain analysis and design of Iterative Learning
Control for systems with stochastic disturbances. In Proc. of the American
Control Conference, pages 3901–3907, Seattle, WA USA, June 11-13 2008.

[22] D.A. Bristow, M. Tharayil, and A.G. Alleyne. A survey of Iterative Learning
Control – a learning–based method for high–performance tracking control.
Control Systems Magazine, 26(3):96–114, June 2006.
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Summary

Iterative Learning Control design for uncertain and time-windowed
systems

Iterative Learning Control (ILC) is a control strategy capable of dramatically in-
creasing the performance of systems that perform batch repetitive tasks. This
performance improvement is achieved by iteratively updating the command sig-
nal, using measured error data from previous trials, i.e., by learning from past
experience.

This thesis deals with ILC for time-windowed and uncertain systems. With the
term “time-windowed systems”, we mean systems in which actuation and mea-
surement time intervals differ. With “uncertain systems”, we refer to systems
whose behavior is represented by incomplete or inaccurate models.

To study the ILC design issues for time-windowed systems, we consider the task
of residual vibration suppression in point-to-point motion problems. In this ap-
plication, time windows are used to modify the original system to comply with
the task. With the properties of the time-windowed system resulting in non-
converging behavior of the original ILC controlled system, we introduce a novel
ILC design framework in which convergence can be achieved. Additionally, this
framework reveals new design freedom in ILC for point-to-point motion problems,
which is unknown in “standard” ILC. Theoretical results concerning the problem
formulation and control design for these systems are supported by experimental
results on a SISO and MIMO flexible structure.

The analysis and design results of ILC for time-windowed systems are subse-
quently extended to the whole class of linear systems whose input and output are
filtered with basis functions (which include time windows). Analysis and design
theory of ILC for this class of systems reveals how different ILC objectives can be
reached by design of separate parts of the ILC controller.

Our research on ILC for uncertain systems is divided into two parts. In the first
part, we formulate an approach to analyze the robustness properties of existing
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ILC controllers, using well developed µ theory. To exemplify our findings, we
analyze the robustness properties of linear quadratic (LQ) norm optimal ILC
controllers. Moreover, we show that the approach is applicable to the class of
linear trial invariant ILC controlled systems with basis functions.

In the second part, we present a finite time interval robust ILC control strategy
that is robust against model uncertainty as given by an additive uncertainty
model. For that, we exploit H∞ control theory, however, modified such that
the controller is not restricted to be causal and operates on a finite time interval.
Furthermore, we optimize the robust controller so as to optimize performance
while remaining robustly monotonically convergent. By means of experiments on
a SISO flexible system, we show that this control strategy can indeed outperform
LQ norm optimal ILC and causal robust ILC control strategies.
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Samenvatting

Iteratief Lerend Regelen (ILC) is een regel strategie die de prestaties van een batch
repeterend systeem dramatisch kan verbeteren. Deze verbetering in prestatie
wordt bereikt door bij het bepalen van een nieuw stuur signaal gebruik te maken
van kennis (meetdata) van eerdere experimenten, oftewel, door te leren van eerdere
ervaringen.

Dit proefschrift richt zich op ILC voor onzekere en tijd gewogen systemen. Met
de term “tijd gewogen systeem” wordt een systeem bedoeld waarbij het aansturen
en meten van het systeem op verschillende tijdsintervallen plaatsvindt. Met een
“onzeker systeem” wordt een systeem bedoeld wiens gedrag door een onvolledig
of onnauwkeurig model wordt beschreven.

Het voorbeeld van onderdrukking van rest trillingen in point-to-point bewegin-
gen is gebruikt om de ontwerpaspecten van ILC voor tijd gewogen systemen te
onderzoeken. De verschillende stappen in ILC voor point-to-point bewegingen
zijn besproken: het formuleren van de vraagstelling, het afleiden van een tijd
gewogen systeem beschrijving, het ontwerp van ILC regelaars, de analyse van het
ILC geregelde systeem, en de implementatie van ILC voor point-to-point bewegin-
gen op een SISO en MIMO systeem. Daarbij hebben we een nieuw ILC raamwerk
gëıntroduceerd, en bewezen dat er ontwerp vrijheid in ILC voor point-to-point be-
wegingen aanwezig is waarmee de amplitude van het stuursignaal geminimaliseerd
kan worden.

De analyse en ontwerp resultaten van tijd gewogen ILC zijn vervolgens uitgebreid
naar de klasse van lineaire systemen met in- en uitgangen die bewerkt kunnen zijn
met basis functies. Een analyse en ontwerp theorie van ILC voor deze klasse van
systemen heeft uitgewezen dat verschillende ILC doelstellingen kunnen worden
bereikt door ontwerp van afzonderlijke delen van de ILC regelaar.

Het onderzoek naar ILC voor onzekere systemen bestaat uit twee delen. In het
eerste deel zijn resultaten uit µ theorie gebruikt om robuuste monotone conver-
gentie condities af te leiden voor lineaire, batch invariante ILC regelaars. Deze
vindingen zijn toegelicht door de robuustheid eigenschappen van lineair kwadratis-
che (LQ) norm optimale ILC regelaars te analyseren. Daarnaast is aangetoond
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dat de behaalde resultaten ook toepasbaar zijn op de klasse van lineaire batch
invariante ILC geregelde systemen met basis functies.

In het tweede deel is een robuuste regelstrategie ontworpen, die gebaseerd is op
H∞ theorie. Het robuuste synthese probleem is zo gedefinieerd, dat de gevonden
regelaar niet causaal hoeft te zijn en opereert in het eindige tijdsinterval van een
experiment. De ontworpen regelaar is vervolgens geoptimaliseerd om de prestaties
te verbeteren terwijl robuuste monotone convergentie gegarandeerd blijft. Exper-
imenten tonen aan dat de regelaar betere prestaties kan leveren dan LQ norm
optimale ILC regelaars en causale robuuste regelaars.
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