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ABSTRACT 
 

TECHNIQUES FOR OPTIMUM DESIGN OF ACTIVELY CONTROLLED 
STRUCTURES INCLUDING TOPOLOGICAL CONSIDERATIONS 

 

 

by 

Arjumand Ali 

 

The University of Wisconsin-Milwaukee, 2013 
Under the Supervision of Professor Anoop Dhingra 

 

The design and performance of complex engineering systems often 

depends on several conflicting objectives which, in many cases, cannot be 

represented as a single measure of performance. This thesis presents a multi-

objective formulation for a comprehensive treatment of the structural and 

topological considerations in the design of actively controlled structures.   

The dissertation addresses three main problems. The first problem deals 

with optimum placement of actuators in actively controlled structures. The 

purpose of control is to reduce the vibrations when the structure is subjected to a 

disturbance. In order to mitigate the structural vibrations as quickly as possible, it 

is necessary to place the actuators at locations such that their ability to control 

the vibrations is maximized. Since the actuator locations are discrete (0-1) 

variables, a genetic algorithm based approach is used to solve the resulting 

optimization problem.  

ii 
    



 
 

The second problem this dissertation addresses is the multi-objective 

design of actively controlled structures. Structural weight, controller performance 

index and energy dissipated by the actuators are considered as the objective 

functions. It is assumed that a hierarchical structure exist between the actuator 

placement and structural-control design objective functions with the actuator 

placement problem considered being more important. The resulting multi-

objective optimization problem is solved using Stackelberg game and 

cooperative game theory approaches. The exchange of information between 

different levels of the multi-level problem is done by constructing the rational 

reaction set of follower solution using design of experiments and response 

surface methods.  

The third problem addressed in this dissertation is the optimization of 

structural topology in the context of structural/control system design. Despite the 

recognition that an optimization of topology can significantly improve structural 

performance, most of the work in design of actively controlled structures has 

been done with structures of a known topology.  The combined topology and 

sizing optimization of actively controlled structures is also considered in this 

thesis. The approach presented involves the determination of optimum topology 

followed by a sizing and control system optimization of the optimum topology. 

Using two numerical examples, it is shown that a simultaneous consideration of 

topological, control and structural aspects yields solutions that outperform 

designs when topological considerations are neglected.  
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Chapter 1 
 

Optimum Design of Actively Controlled Structures — 

Problem Overview  

 

This thesis deals with the design of actively controlled structures. The 

approach to structural design entails that the structural integrity is insured, i.e., 

the stresses due to imposed loads should remain below the specified limit.  

Further, when disturbance(s) occur, the controller should damp out the structural 

vibrations quickly to bring the structure back to its equilibrium position. The 

design of an active control system, the placement of actuators within the 

structure as well as a determination of optimum structural topology are major 

design challenges which are the subject of this thesis and are briefly described in 

this chapter. 

1.1 Active Structure and Control Design 

Conventional approaches to design of actively controlled structures treat 

the structural and control system design aspects of the problem separately. Each 

design is optimized based on its objective function but the overall design is not 

system optimal. It is therefore necessary to solve the problem in such a way that 

the final structural design meets the requirements of weight, control effort and 

performance. This can be done by simultaneous optimization of control system 

design and structural design. In this method, either the structure and control 

objective functions have been optimized by linking them through constraints 

related to control performance, structural performance, or sometimes by 
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combining the structure and control objective functions into a single objective 

function.  

While many approaches have been proposed for integrated/simultaneous 

design of structure and control systems, most of them deal with single or 

sometimes with multi-objective optimization problems with continuous design 

variables. Also, in most cases, the controller is designed using Linear Quadratic 

Regulator (LQR) theory with fixed state and control weighting matrices. In this 

work it is proposed that the optimum values of the state and control weighting 

matrices be determined as part of overall solution process to improve control 

system performance.  

1.2 Actuator Placement 

An important aspect of the active control design is the optimum placement 

of actuators. The number and locations of the actuators directly affect the 

dynamic response of the system. Further, the amount of energy consumption 

depends on the number of actuators used and their placement on the structure. 

The actuator placement problem is a discrete variable problem. The presence 

and absence of actuators at a location or in a member can be represented as 

discrete 1 and 0 variables. The studies on optimum placement of actuators have 

primarily been done in the context of control optimization only. This thesis 

proposes the optimum placement of actuators in the context of both structural 

and control optimization where the structural objective is minimization of the 

weight with cross-sectional areas of the members of the structure as continuous 

design variables and the control objective as the maximization of energy 
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dissipated by actuators with actuators locations as discrete design variables. To 

date, not much literature is available on solving multi-objective problems with 

mixed discrete continuous design variables. A brief overview of the available 

literature on this problem is discussed in Chapter 2. 

1.3 Multi-level and Multi-objective Optimization 

Most engineering systems are complex and the system performance 

depends on multiple and sometimes conflicting objectives. Multi-objective 

optimization, therefore, has become an important and essential aspect of design 

optimization. The approaches proposed for simultaneous structural and control 

optimization essentially solve a single objective optimization problem, and work 

well for simple structures. These methods are also applicable to large complex 

structures, but require more computational time and effort and the problem size 

may not always be manageable. In order to simplify the problem and to make the 

problem size manageable, the problem could be divided into multiple sub levels. 

The relationships between the sub levels could be either hierarchical or 

decentralized. In the case of a hierarchical relationship, the sub levels are 

integrated and coordinated at a higher level and this is a multi-level problem (Fig. 

1.1). In case of a decentralized relation, the problem is a multi-objective 

optimization (Fig. 1.2). Stackelberg game theory method is used for solving 

hierarchical whereas cooperative game theory is used for solving decentralized 

multi-objective optimization problems in this thesis. 
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1.4 Topology Optimization 

Another important aspect of structural/control system design is 

optimization of topology, and once again, not much literature is available on the 

determination of optimum topology in the context of active control of structures. 

The limited available literature indicates that the performance of a controlled 

structure could be significantly improved by optimization of the topology.  

The optimum topology depends on the criteria selected as the objective 

function. A minimization of structural compliance (or strain energy) is commonly 

used as an objective function. This criterion is also used in this thesis. Once the 

optimum topology is determined, then each optimum topology is further 

considered for sizing and shape optimization. Such a solution approach, 

however, may not always lead to a globally optimum solution. A better approach 

may involve sizing optimization of each candidate topology; however, since many 

candidate topologies are considered for a given problem domain, performing 

shape and sizing optimization for each candidate topology is computationally 

very expensive. Further, when solving the sizing and shape optimization 

problem, the design variables are continuous whereas in the case of topology 

optimization, the variables generally are discrete. Combining the variables from 

these two optimization problems results in a problem with mixed discrete 

continuous variables. Computationally efficient approaches for solving problems 

with mixed discrete-continuous variables do not exist. Therefore, the approach 

presented in this thesis involves determination of optimum topology which is 

followed by sizing and control system optimization of the optimum topology. For 
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simplicity, the topology optimization is performed using a single objective function 

but the sizing and control optimization problems are allowed to have multiple 

objective functions.  

1.5 Thesis Organization 

In this thesis, the techniques for optimum design of actively controlled 

structures are organized as follows: Chapter 2 presents an overview of the 

available literature in the context of the simultaneous structural and control 

optimization of actively controlled structures as well as topology optimization. 

Chapter 3 introduces the concept of simultaneous structure and control system 

design. The effect of changing the number and locations of the actuators on the 

performance of the control system is also discussed in this chapter. The problem 

of determination of optimum number as well as optimum locations of the 

actuators is formulated in chapter 4. This design problem has mixed discrete and 

continuous design variables. Since gradient based search procedure cannot 

solve problems with discrete variables, a genetic algorithm based approach is 

used in this thesis to solve this problem.  

Chapter 5 presents a multi-objective formulation for design of actively 

controlled structures with mixed discrete-continuous design variables. 

Stackelberg game theory and cooperative game theory are used to deal with 

multiple objectives in the formulation. The topological aspects of the design in the 

context of active control are presented in Chapter 6. The solution approach 

presented first determines the optimum topology followed by a simultaneous 

structural and control optimization of the optimum topology. The main findings of 
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this research as well as potential topics for future research are discussed in 

Chapter 7. 
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Figure 1.2 A Decentralized Multi-objective Problem 
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Chapter 2 

Literature Summary  

 

A simultaneous optimization of structure and control systems has attracted 

significant attention over the years. A number of approaches have been 

proposed for the simultaneous design of structure and control systems. A brief 

overview of the available literature on the design of actively controlled structures, 

multi-objective optimization, actuator placement problem as well as topology 

optimization is presented in this chapter. 

2.1 Active Control and Structural Optimization 

As mentioned in Sec. 1.1, traditionally, the structure and control systems 

have been designed separately with minimization of structural weight considered 

as an objective from a structural perspective and a minimization of the control 

energy as an objective function from a controls perspective. Both systems result 

in an optimum design, but the combined system might not be system-optimal. 

Therefore, in order to obtain the best overall performance with minimum cost, 

studies have been done on simultaneous optimum design of structure and 

control system. 

Fonseca and Bainum (1995) proposed two approaches, combined and 

sequential integrated, to solve the simultaneous structural/control optimization 

problem. The combined approach uses a cost function that includes both  control 

and structure design considerations whereas the sequential integrated approach 

uses two separate cost functions for control and structure, but they are matched 
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through constraints. Both these approaches yielded very similar transient 

performance in terms of response time and control efforts. Khot et al. (1986) use 

weight minimization of the structure as objective function with constraints on the 

distribution of the eigenvalues and/or damping ratio of the closed loop system. 

Onoda and Haftka (1987) formulated the combined structures/control 

optimization by minimizing the combined total cost of structure and control 

system with constraints on the magnitude of the response. The cost of the 

structure is taken to be proportional to its mass and the cost of control system is 

assumed to be a function of the magnitude of control force required for the 

actuators.  

Instead of combining the structure and control objectives as one cost 

function or relegating one of them to a constraint, the simultaneous 

control/structural design problem has also been treated as a multi-objective 

problem. Lee (1993) proposed a multi-objective formulation to the integrated 

structure/control problem using structural weight, control energy, energy 

dissipated by active controller and stability robustness index as the objective 

functions. This multi-objective problem is solved using a cooperative game 

theoretic approach. 

Usually the methods proposed for simultaneous structural and control 

optimization work well for simple structure with few design variables, which in 

most cases are continuous in nature. Further, in majority of these cases, the 

controller is designed using LQR theory with fixed Q and R matrices. For 

problems where the number of design variables and constraints is large, the 
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optimization process becomes costly. Therefore, this thesis proposes multi-level 

optimization techniques to solve the simultaneous structural and control design 

problem with discrete and continuous design variables. For simplicity, the LQR 

theory is used for control design, but the optimum values of Q and R matrices are 

determined as part of the solution process.  

2.2 Determination of Weighting Matrices 

Several methods have been developed for the simultaneous design of 

structure and control system as mentioned in Sec. 2.1. For control system 

design, the most commonly used method is the linear quadratic regulator (LQR) 

theory. Since the weighting matrices in LQR design directly affect the optimal 

control performance, some studies have been done for optimal selection of these 

matrices.  

Sunar and Rao (1993) proposed a methodology for selecting the state and 

input weighting matrices, Q and R, when using linear quadratic regulator in the 

integrated structure and control system design. The optimum values of Q and R 

result in minimizing the performance index and reduced control effort. According 

to the proposed scheme, the performance index is significantly affected by the 

changes in the diagonal entries of Q and R matrices, therefore, the diagonal 

entries of Q and R are chosen as design variable to minimize the quadratic 

performance index. The design was done using a substructure decomposition 

scheme (for large structures) in order to save the computational cost with little 

loss in accuracy.  
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Ohta et al (1991) have presented a method for selecting weighting 

matrices in linear quadratic regulator with some diagonal weights that achieve a 

specified pole location. The proposed method uses a polynomial as a desirable 

pole specification and the weighting matrices are derived in an analytical form. 

Ochi and Kanai (1993) proposed a new way of pole placement by finding a 

weighting matrix which gives desired locations of the closed loop poles. These 

poles can then be placed arbitrarily and exactly at the desired positions but the 

method does not guarantee the positive definiteness of the weighting matrix. The 

problem of eigen vector assignment is not considered in the paper and the 

proposed method is computationally expensive.  

Hiroe et al (1993) proposed a method called zero addition decoupling 

(ZED) for selecting weighting matrices of linear quadratic regulators which gives 

desired closed loop response. Choi and Seo (1999) presented an LQR design 

method which has the flexibility of exact eigen structure assignment with stability-

robustness properties. The proposed method guarantees that the desired eigen 

values are assigned exactly and the desired eigen vectors are assigned in the 

least-square sense. Ang et al (2002) presented a weighted energy method for 

selecting the weighting matrices for vibration control of smart composite plates. 

The quadratic function is selected as a relative measure of strain, kinetic and 

input energy and their significance is represented through their relative weight 

factors. The effect of the weight factors on the active modal damping is predicted 

by modal control method.  
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 Mansouri and Khaloozadeh (2002) proposed a genetic algorithm based 

approach for an optimal linear quadratic tracking problem. Proper choice of 

weighting matrices is necessary for satisfying the design specification and this 

difficulty is overcome by using genetic algorithm. Li et al (2008) presented a 

multi-objective evolution algorithm based approach for optimal design of 

weighting matrices in linear quadratic regulator. By establishing the multi-

objective optimization model of LQR, the weighting matrices, Q and R, are 

designed which makes control system meet multiple performance indices 

simultaneously. Ghoreishi et al (2011) carried out a comparative study of 

different optimization methods for an optimal design of LQR weighting matrices. 

Closed-loop pole locations, speed of response and maximum level of control 

effort are combined into an objective function and this multi-objective problem is 

solved by a weighted sum method and the results for different optimization 

algorithms are then compared. 

Almost all of the referred papers discussed above consider only the 

control optimization problem for the optimum selection of the weighting matrices. 

In this thesis, a combined approach to structural and control optimization is 

presented which not only considers structural design aspects, but also considers 

controller design, selection of suitable weighting matrices as well as proper 

actuator placement in an integrated manner. The proposed method results in an 

improved structural weight and control system performance of the overall 

structural-control system. 
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2.3 Actuator Placement 

 Different cost functions have been used by the researchers to find the 

optimum locations of actuators (sensors) to minimize the control energy required 

by maximizing a controllability criterion, maximizing the control forces transmitted 

by the actuators to the structure or optimizing a cost function based on linear 

quadratic regulator framework. Mirza and Van Niekerk (1999) proposed a 

method to determine the optimal location of actuators based on the disturbance 

sensitivity grammian matrix. Hakim and Fuchs (1996) compared the performance 

of different heuristic search techniques to determine their effectiveness in optimal 

actuator placement design for large truss structures. The techniques considered 

are simulated annealing, single-location iterative minimization and exhaustive 

single- point substitution.  

Yan and Yam (2002) proposed a method for finding the optimal number 

and locations of actuators based on the eigenvalue distribution of energy 

correlative matrix of control input. Braunt and Proslier (2005) presented a 

modified approach for the usual approaches of minimizing control energy and 

maximizing control force to insure good controllability and observability of each 

mode of structure. The authors also considered the residual modes in the 

objective function to limit the spill over effects.  

Gawronski (1997) dealt with non collocated actuators and disturbance 

inputs as well as non collocated performance and sensor outputs. Maghami and 

Joshi (1993) proposed a scheme that approximates the discrete nature of sensor 

and actuator placement problem by spatially continuous functions and reduces 
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the problem to a nonlinear programming optimization. Some literature uses linear 

quadratic regulator (LQR) framework to find the optimal locations of 

actuators/sensors. Demetriou (2000) considered minimizing the optimum value of 

a performance index to find the optimum locations of actuators and sensors. 

Different options for placing the sensors were presented. Pan (1989) proposed 

sequential-best-adding method, penalty function method and genetic algorithm, 

for solving the actuator/sensor location selection problem for maximizing the 

dissipation energy of the controller.   

Liu et al. (2004) proposed a method for actuator placement on a reduced 

order model. The authors proposed a scheme based on H2 norm of the transfer 

function from disturbance to controlled output in order to find the optimum 

locations of sensors and actuators for vibration control. 

Khot et al. (1992) dealt with the effect of changing number and locations of 

actuators on optimum structure and control design. Lee (1993) proposed a 

similar approach but instead of using weight minimization as the objective 

function, the maximization of energy dissipated by the controller was used as the 

performance criteria. This mixed discrete continuous design variable problem 

was solved by using hybrid optimization method. Li et al. (2004) proposed a three 

level optimal design problem for finding the optimal number and locations of 

actuator in actively controlled structure using a two-level genetic algorithm. 

These studies on actuator placement deal with finding the optimum 

locations of actuators; the number of actuators is assumed to be fixed. The 

design variables are discrete, i.e, the locations of actuators, and the problem is 
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treated as a control optimization problem with minimization of the performance 

index or controllability as objective functions. The approach presented in this 

thesis treats the actuator placement problem as a mixed discrete and continuous 

variables problem wherein both the structural and control optimization aspects 

are addressed simultaneously. 

2.4 Stackelberg Game Theory  

Stackelberg game theory is a technique for solving bi-level optimization 

problems and is used in this work. Several approaches such as the rational 

reaction set (Lewis and Mistree 1998), monotonicity analysis (Rao et al. 1997), 

sensitivity analysis (Ghotbi and Dhingra 2012) have been proposed for the 

computation of Stackelberg solutions. Simaan and Cruz (1973) introduced the 

concept of a rational reaction set in the context of Stackelberg games. For some 

simple problems arising in mechanical design such as the pressure vessel 

problem considered in Rao et al. (1997), design of a nonprismatic bar considered 

by Badhrinath and Rao (1996), closed form expressions for Stackelberg solutions 

can be obtained using the principles of montonicity analysis (Papalambros and 

Wilde, 2000). However, in general, numerical techniques are needed to 

approximate the rational reaction set (RRS). A design of experiments based 

approach (Montgomery 2005) coupled with response surface methodology 

(Myers and Montgomery 2002) has been proposed by Lewis and Mistree (1998), 

Marston (2000), and Hernandez and Mistree (2000) to approximate RRS for the 

players. Lewis and Mistree (1998) showed application of the Stackelberg game in 

the context of aircraft design, while Hernandez (2000) showed the application in 
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design of absorption chillers. Lewis and Mistree (1998) compared the solution of 

Stackelberg game with cooperative game and Nash solution (non-cooperative 

game) in design of a pressure vessel and a passenger aircraft. Sobieski (1982) 

presented the sensitivity of optimal design variables with respect to parameters 

existing in the problem. Ghotbi and Dhingra (2012) have developed a sensitivity 

based approach to approximate RRS in the design of flywheel problem. The 

method has been shown to be more general than DOE-RSM or monotonicity 

analysis based approaches. 

2.5 Topology Optimization  

An optimization of topology is usually considered in the context of 

structural design. Topology optimization problems are more challenging than 

sizing optimization problems because members can be added to or removed 

from the initial structure; therefore, the finite element model of the structure, 

number of design variables and constraints change from one iteration to the next. 

A number of approaches such as the ground-structure method (Xu et. al, 2003), 

integer programming using 0-1 variables (Ohsaki and Katoh, 2005), genetic 

algorithms (Liu et. al, 1998), and simulated annealing (Dhingra and Bennage, 

1995) have been used for solving the topology optimization problem. All of these 

approaches are based on discretizing the problem domain at a finite number of 

nodal points; consequently, the resulting optimum topologies are dependent on 

the underlying distribution of nodes. 

Xu et. al (2003) proposed a method for determination of optimum 

structural topology by choosing member cross-sectional areas and some 

 
    



17 
 

geometry parameters as topology design variables. The topology was changed 

by deleting elements with very small cross-sectional areas from the ground 

structure and combining overlapping elements into a single element. Ohsaki and 

Katoh (2005) formulated the topology optimization problem as a mixed integer 

programming problem (with 0-1 variables indicating the existence of nodes and 

members) with the local constraints on nodal instability and intersection of 

members. Liu et al. (1998) proposed a genetic algorithm based method for 

integrated structural topology/control optimization which includes robustness and 

controllability considerations. With a given structural weight, the proposed 

method yielded considerable improvements in performance in terms of vibration 

level, robustness and controllability.  

Dhingra and Bennage (1995) proposed a method for topology optimization 

of trusses using simulated annealing in which the search for an optimum 

topology is simulated as a relaxation of stochastic structural system. The problem 

with this approach is that geometry of each candidate topology needs to be 

optimized, and thus the solution process involves significant computational effort. 

An integrated optimization of structural topology/actuator placement is carried out 

by Liu et al. (1997) using simulated annealing to deal with discrete design 

variables. The linear quadratic regulator cost index is considered as the objective 

function with constraints on weight and stability of the system. The method is 

computationally expensive and does not guarantee convergence to a global 

minima. 
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Some other recently developed alternatives (Huang and Xie 2007, Rong 

and Liang 2008, Bruggi and Verani 2011, Eom et al. 2011, Jia et al. 2011) which 

treat the problem domain as a continuum instead of a finite collection of nodal 

points include the homogenization method, SIMP, and evolutionary methods for 

topology optimization. The homogenization method (Bendsoe, 1989) is based on 

a discretization of the solution domain into micro structural centroids and 

redistributing the material using an optimality criteria approach. The SIMP 

method treats the density of each element as a variable and a heuristic 

relationship is defined between the Young’s modulus and the density. The 

evolutionary approaches use the sensitivity of structural compliance to member 

addition and deletion to guide the search and arrive at the optimum topology. 

Recently some works (Diaz and Mukherjee, 2006, Xu et al. 2007, Molter et 

al. 2010 and Silveira et al. 2010) have appeared which address topological and 

control considerations simultaneously. These include finding best locations of 

external forces to transfer energy from unmodeled modes to controlled modes 

and optimum actuator placement with constraints on controller performance. The 

solution approach involves first finding the optimum topology followed by 

optimum actuator placement according to optimum distribution of piezo electric 

material. It may be noted that while these works address control considerations, 

structural issues such as constraints on stresses, frequencies, etc. are not 

addressed. 

A review of the available literature indicates that topology optimization has 

primarily been considered in the context of structural design. The problem of 
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topology optimization in the context of structural control has received limited 

attention. In case of simultaneous structural and control system design, generally 

structures with known topology are considered. This thesis presents a 

comprehensive approach to an integrated treatment of topology, structural and 

control optimization aspects for the design of actively controlled structures.  

2.6 Summary 

Though a lot of research has been done in developing methods dealing 

with active control of structures, there are some gaps that still need to be filled. 

As discussed in previous sections, most of the literature on simultaneous 

structural and control design deals with problems with continuous design 

variables, single objective function, and structures with known topologies. The 

actuator placement problem has been considered only in the context of control 

design. This thesis is an attempt to fill in these gaps by presenting a 

comprehensive treatment of structural, control and topological considerations in 

the context of actively controlled structures.  
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Chapter 3 

Simultaneous Structure and Control Design of Actively 
Controlled Structures 

 

This chapter presents basic concepts in simultaneous structure and 

control design of actively controlled structures. The approach to simultaneous 

structural and control design considered herein is that structure and control 

objective functions can be optimized by linking them through constraints related 

to structural and control performance. Linear quadratic control theory is used to 

design a controller for the structure under consideration. The effect of changing 

the state and control weighting matrices as well as the number and locations of 

the actuators on the performance of the control system is also discussed. An 

application of solution approaches presented in this chapter is illustrated through 

a 12 member 3-D space structure.  

3.1 Introduction 

Large size, light weight and ease of assembly are some of the desirable 

attributes in design of space structures.  The compromise between a large size 

and low weight results in a structure that is very flexible, but it makes the control 

of the structure and its components very difficult. Because these structures are 

large and flexible, they are very sensitive to environmental effects. Further, these 

structures posses inherently low damping. Therefore, active control schemes are 

needed to quickly bring the structure back to its equilibrium position when it is 

subjected to a disturbance. The purpose of control is to damp out structural 

 
    



21 
 

vibrations to initial excitations. Linear quadratic regulator (LQR) control method is 

used for control system design in this thesis. Though a majority of the work on 

integrated structure and control design uses a linear quadratic regulator (LQR) 

for controller design, the influence of state and control weighting matrices on 

controller performance is ignored. It is proposed herein that the performance of 

the control system can be improved by selecting optimum values of the cross 

sectional areas of the members as well as the entries of the state and control 

weighting matrices used in the LQR design 

Sensor and actuator placement is also an integral part of a control design. 

A number of studies have been done on vibration control of flexible structures. In 

these studies, the actuators are placed at some specific locations on the 

structure. Placing a sensor or an actuator at the correct location is important 

because it directly affects the observability and controllability of the structure. The 

location of actuators also influences the control of a vibration mode. For example, 

if an actuator is placed near a nodal point of a mode, then that mode cannot be 

controlled, or large forces are required to control that mode. The amount of 

energy consumption by the actuators also depends on the actuator placement 

and is a major concern in vibration control because actuator size depends on 

energy requirements. In order to improve the control system performance and 

minimize the energy consumption, the actuators should be placed at the optimum 

locations. The influence of actuator location on actuator efficacy is also studied in 

this chapter.   
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3.2 Dynamic Model 

Control system design requires a mathematical model of the system being 

controlled. State-space models are commonly used for control system design 

and are used herein. The starting point for state-space models are the differential 

equations governing the structural dynamics. These equations are converted into 

state space form for control system design.  

The finite element dynamical equations governing the motion of a 

controlled structural system are given as: 

[ ][ ] [ ][ ] [ ][ ] [ ][ ]D cM x C x K x D F+ + =         (3.1) 
 

where [ ]x  is a  vector of physical coordinates, [  is  control vector, 1n× ]cF 1m×

[ ]M , [ ]DC and  are  mass, damping and stiffness matrices respectively. 

The matrix [  is the  applied force distribution matrix which relates the 

input control force to the coordinate system. For actuator forces acting along the 

members of the structure, [  is defined using direction cosines of the 

constituent members. 

[ ]K n n×

]D n m×

]D

Using the coordinate transformation [ ] [ ][ ]x yφ= , Eq. (3.1) can be 

represented in state space form as: 

[ ] [ ][ ] [ ][ ]cu A u B F= +           (3.2) 
 

where  is the vector of modal coordinates, , is  state variable 

vector, 

[ ]y [[ ],[ ]]Tu y y= 2n×1

[ ]φ  is n  modal matrix, [n× ]A  is 2 2n n×  plant matrix, and [ ]B  is 2n m×  

input matrix. The plant matrix [  and input matrix []A ]B   in Eq. (3.2) are given as: 
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where iξ  and iω  denote the damping factor and natural frequency of the  

mode respectively.  

thi

A controller for the system governed by Eq. (3.2) is designed using linear 

quadratic regulator (LQR) theory. The optimum control force [  is selected to 

minimize the quadratic performance index, , which is a compromise between 

minimum control energy and minimum error requirements, and is defined as: 

]cF

PI

          (3.5) 
0

([ ] [ ][ ] [ ] [ ][ ])T T
c cPI u Q u F R F dt

∞

= +∫

where  is a positive semi definite state weighting matrix and Q⎡ ⎤⎣ ⎦ R⎡ ⎤⎣ ⎦  is a positive 

definite control weighting matrix. The optimum feedback control law is given as 

 where [  is the feedback gain matrix defined as  

and [  is the solution to matrix Riccati equation 

[ ] [ ][ ]cF κ= − u

T

]κ 1[ ] [ ] [ ] [ ]TR B Pκ −=

]P

        (3.6) 1[ ] [ ] [ ][ ] [ ] [ ][ ][ ] [ ] [ ] [0]TA P P A Q P B R B P−+ + − =

[ ]P  is a  positive definite matrix called the Riccati matrix .The minimum 

value of the quadratic performance index (Eq. 3.5) is given as: 

2 2n n×

            (3.7) * (0)[ ] (0)TPI u P u=

where is the initial state vector. The result in Eq. (3.7) depends on the initial 

state  which can vary or may not always be known. It has been found that 

(0)u

(0)u
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the expected value of over a set of possible initial states  is equivalent to 

trace of P. Therefore, it can be shown that the minimization of the quadratic 

control effort  is proportional to trace[ . 

*PI (0)u

*PI ]P

*( ) [ ]ev J trace P=           (3.8) 

A minimization of trace[  will be considered as one of the objective functions in 

this thesis. Substituting the value of [  in Eq. (3.2) yields: 

]P

]cF

  ([ ] [ ][ ]) [ ]clu A B u A uκ= − =          (3.9) 

The eigenvalues of the closed-loop matrix [  are a set of complex conjugate 

pairs given as:  

]

i

clA

  i i jλ α= ± β n  1......i =       (3.10) 

where 1j = − and 2
i i

2
iλ α β= + . The closed-loop damping ratios iξ  associated 

with iλ  is given as: 

  
2 2

i
i

i i

αξ
α β

= −
+

 1......i n=       (3.11) 

The solution to Eq. (3.9) for a given initial condition , is given as: (0)u

          (3.12) [ ]( ) (0)clA tu t e u=

This equation can be used to find the dynamic response of the structure when it 

is subjected to some initial disturbance . The MATLAB function ode45 can be 

used to solve the first order differential equation given in Eq. (3.9). 

(0)u
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3.3 Solution Procedure 

The first problem considered involves solving a simultaneous structural 

and control design problem for minimizing the weight of the structure by fixing the 

actuators at some specific locations and fixing the [  and []Q ]R matrices (see Eq. 

3.5) as identity matrices. Next the effect of changing the [  and []Q ]R  matrices is 

studied by using a minimization of trace[  as the objective function. Two cases 

are considered: (i) the cross-sectional areas of members are fixed and [  and 

]P

]Q

[ ]R  matrices are varied; (ii) the member cross-sectional areas as well as entries 

of  and [[ ]Q ]R  matrices are varied. Lastly the influence of the number and 

locations of the actuators on overall structural-control design is studied by 

performing a parametric study in which the actuators are placed at all possible 

locations and the effect of removing one (least effective) actuator at a time is 

studied. A solution methodology to find the optimum number and locations of 

actuators is presented in Chapter 4. 

3.4 Influence of Weighting Matrices on Optimum Design 

The effect of changing the weighting matrices is presented in this section 

with actuators fixed at some specific locations. Two cases are considered. In the 

first case, the weighting matrices are assumed to be fixed and cross-sectional 

areas are varied to optimize the controller performance index. The second case 

involves varying both the cross-sectional areas and weighting matrices to 

optimize the controller performance index. 
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3.4.1 Baseline Design — Weighting Matrices fixed  

A design example is presented next for studying the effect of using 

optimum values for weighting matrices on the optimum design of structure. 

Towards this end, a baseline design is established first. In this design, only 

member cross-sectional areas are varied to optimize the controller performance 

index, the weighting matrices are assumed to be fixed. 

3.4.1.1 Design Example 

The 12-member ACOSS four structure is shown in Fig. 3.1 (Jin and 

Schmit 1993). This structure, designed by Draper Labs, is the simplest non-

planar geometry representing a large space structure. All physical and geometric 

properties of the structure are nondimensionalized. The edges of the truss 

consist of six elements (1 through 6) of length 10 units each and six bipod legs (7 

through 12) of 2 2 units each. The nodal coordinates of the system are given in 

Table 3.1. The structure has twelve degrees of freedom, three at each of the four 

free nodes. The Young’s modulus of the members is taken as 1.0 and the weight 

density of the material is assumed to be 0.001. The size of [  matrix is 2 2]Q n n×  

and [ ]R  matrix is and they are assumed to be identity matrices. The values 

of  and  here are 12 and 6 respectively. The cross-sectional areas of the 

members are treated as design variables. A total of six actuators are present in 

elements 7 through 12.  

m m×

n m

The dynamic response of the structure to an initial disturbance is also 

studied by measuring the displacement associated with the line of sight (LOS). 
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Node 1 represents the antenna feed, and its motion measures the deviation from 

the LOS. The square root of the sum of the squares of displacement at node 1 in 

x and y direction is defined as LOS error and it should be damped out in order to 

fall within a certain range in a specified time interval. The dynamic response of 

the optimum structure is initiated by a unit displacement at node 2 in the x-

direction at t=0. 

3.4.1.2 Optimization Problem Formulation 

A minimization of the controller performance index (trace[ ) is considered as 

the objective function with the cross-sectional areas of the elements of the 

structure as design variables. Mathematically, the optimization formulation is 

stated as: 

]P

Minimize trace[ ]  P

 by varying  iA

 subject to 

  10.16434 0ξ− ≤  

11.3374 0β− ≤         (3.13) 

21.5 0β− ≤  

10 2000iA≤ ≤         

The optimization problem is solved using the Method of Feasible Directions and 

the solution steps are outlined in Fig. 3.2. 
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3.4.1.3 Results 

The starting values of the cross-sectional areas, closed-loop damping 

ratios, closed-loop eigenvalues and square of the natural frequencies are given 

in Table 3.2. The value of the weight at this starting design is 43.69 and trace[ ]  

is 1763.2. The LOS error for the transient response is given in Fig. 3.3. The 

transient response is simulated by finding the solution to Eq. (3.12) for 60 

seconds at 0.05 seconds time intervals. The magnitude of LOS error is 

calculated at each interval.  

P

Using the nominal values of the areas as starting design for the 

optimization problem, the optimum values of the areas, closed-loop damping 

ratios and closed-loop eigenvalues are given in Table 3.3. The optimum trace 

 is 715 and the weight of the structure at this design is 22.9. A 60% reduction 

in trace [  and 48% reduction in weight is obtained at the optimum design. The 

LOS error at the optimum solution is 1.52 and is shown in Fig. 3.4. 

[ ]P

]P

When comparing the nominal and optimum designs, it is seen that in the 

case of nominal design, the frequencies associated with modes 3 and 4 and 

modes 7 and 8 are close to each other. However, in the case of optimum design, 

the frequencies are spread out and no two frequency values are as close as in 

the nominal design case. 

3.4.2 Effect of Changing the Weighting Matrices 

In order to see the effect of changing the weighting matrices on the 

controller performance, the same ACOSS four structure (Fig. 3.1) is considered 
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for the optimization problem. A minimization of trace[  is considered as the 

objective function with diagonal entries of the state and control weighting 

matrices,  and[

]P

[ ]Q ]R , treated as design variables. The design constraints 

imposed on the problem are given by Eq. (3.13) with one additional constraint 

that all the diagonal terms of [  and []Q ]R  matrices should be greater than or 

equal to 1. The controls toolbox in Matlab is used for solving Riccati equation and 

finding the control gains used in the LQR control method. 

3.4.2.1 Results 

Two scenarios are considered next for studying the effect of varying 

weighting matrices on the optimum controller performance with (i) member cross-

sectional areas at fixed values and (ii) optimum values determined for member 

cross-sectional areas. 

3.4.2.1.1 Areas fixed at nominal values

The only problem variables are entries of [ and ]Q [ ]R  matrices. Two 

different starting designs are considered. When starting value of [  and []Q ]R are 

taken as[ ]I , where [ ]I  is an identity matrix, the minimum trace [  is found to be 

1843.06. The optimum values of entries of [  matrix are: =13.5 and =7.05 

All others [  values are at the lower bound which is 1.0. All optimum [

]P

]Q 1Q 13Q

]Q ]R  values 

converge to the lower bound of 1.0. The second starting design used the value 

 =10[[ ]Q ]I  and [ ]R =[ ]I . In this case, the minimum value of trace[  is 1844.86 

and only =25.06 and rest of [  values are all at 1.0. Also all entries of [ ]

]P

1Q ]Q R  
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matrix are 1.0 at the optimum solution. Some other starting points are also 

considered and they are shown in Table 3.4 with the corresponding weights, 

trace [  and LOS error values. It can be seen from Table 3.4, different values 

for the starting design results in different values for the optimum design variables. 

This indicates there are several local optima and the results are not globally 

optimum. 

]P

3.4.2.1.2 Areas and Q and R Matrices as design variables 

In order to improve upon the results reported in the previous section, the 

optimization problem is solved by considering the member cross-sectional areas 

and the diagonal entries of [  and []Q ]R as design variables. The design variables 

in this case are 42 (12 cross sectional areas, 24 diagonal entries of [  and 6 

diagonal entries of [

]Q

]R ). At the starting design of [ ] [ ] [ ]Q R I= = , the optimum 

value of trace [ =553.46 with optimum =3.21 and  =3.54, all other Q’s 

and R’s converge to lower bound of 1.0. The optimum weight of the structure is 

15.2 and the LOS error for the optimum design is 1.88.  

]P 1Q 13Q

By changing the starting design as [ =10[]Q ]I  and [ ]R =[ ]I , optimum value 

of trace [ =550.06 with optimum =7.47 all other Q’s and R’s at 1. The 

optimum weight of the structure is 15.14 and the LOS error is 1.52 and is shown 

in Fig. 3.5. Some other starting points are also considered and they are shown in 

Table 3.5 with the corresponding weights, trace [  and LOS error values. The 

optimum values of the cross- sectional areas are given in Table 3.6. It can be 

seen from the results presented herein that a 34% reduction in weight and 23% 

]P 1Q

]P
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reduction in trace [  can be achieved by considering the member cross-

sectional areas and diagonal entries of [  and [

]P

]Q ]R  matrices as design variables. 

Therefore in order to improve the overall performance of structure, member 

cross-sectional areas along with entries of [  and []Q ]R  matrices should be 

considered as design variables. 

3.5 Effect of Changing the Number and Locations of Actuators 

In the previous section, the effect of state and control weighting matrices on 

the optimum design of the structure is presented. However, it should be noted 

that in this study, the number and locations of the actuators are assumed to be 

fixed. Since the placement of actuators is a very important design aspect in the 

context of actively controlled structures and it directly affects the control 

performance, it is therefore necessary to examine the effect of changing the 

number and locations of the actuators on the optimum design, which is 

considered in this section. A parametric study is first performed to see the effect 

of the number and locations of the actuators on the optimum design of the 

structure. 

3.5.1 Parametric Study 

A parametric study dealing with the effect of number and locations of the 

actuators on the minimum weight structural design is performed. The structure 

chosen for the parametric study is again the ACOSS four structure shown in Fig. 

3.1. The problem is solved by initially placing the actuators in all twelve 

members, i.e., at all available locations and solving the optimization problem for 
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weight minimization by varying the cross-sectional areas of the members. The 

constraints imposed on the problem are the same as given in Eq. (3.13). Next, 

the least effective actuator is removed from consideration and the problem is 

solved again. The least effective actuator is defined as the one doing least 

amount of work. The work done by an actuator is calculated as  where  

is the force exerted by actuator  over time interval t  and 

0

t

i iF x dt∫ iF

i x  denotes the nodal 

velocities. 

The cross-sectional areas of the members for designs with varying 

number of actuators are given in Table 3.7. The first row in Table 3.7 indicates 

the number of actuators present in the structure. The performance index, 

actuator work and structural weight values for these cases are given in Table 3.8. 

The first row corresponds to the non-optimum nominal design with twelve 

actuators. For the 12 actuator design, actuator seven does the maximum work 

and actuator six does the least work as shown in Table 3.9. Therefore, actuator 

six is removed and the structure is re-optimized with eleven actuators. The 

process is continued as long as a feasible design satisfying all the constraints is 

obtained. From Table 3.8, it can be seen that the structural weight is minimum for 

the six actuator design. It can also be noted that as number of actuators 

decreases, the total work done by all actuators also decreases until the number 

of actuators fall below 7, then the actuator work starts to increase. The LOS error 

for the cases with 12, 10, 8 and 6 actuators are shown in Figs. 3.6-3.9 

respectively.  
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The results in Table 3.8 indicate that placing the actuators in all 12 

elements results in a decrease in the weight of the overall structure from 20.5 

(when actuators were present in elements 7-12) to 13.4. Also, by looking at the 

weight values in Table 3.8, it can be seen that 6-actuator case gives the least 

weight but the control energy increases in this case. Comparing the dynamic 

response, the 12-actuator case (Fig.3.6) damped out the induced disturbance 

faster than the other designs (see Fig. 3.7-3.9). Therefore depending on the 

objective function chosen, the optimum designs could be different. If weight 

minimization is considered more important than control energy minimization then 

6-actuator design is better. On the other hand if minimization of control energy is 

important, then the 12-actuator design is a better design. 

3.6 Conclusions 

The approach to simultaneous structural and control design is presented 

in this chapter. From the design example presented,  it is shown that great 

savings in the control energy as well as structural weight is possible by using 

both the cross-sectional areas and entries of weighting matrices as design 

variables. It has also been shown that changing the number and locations of 

actuators has a significant effect on the design of an actively controlled structure. 

The results in Table 3.8 do not show any fixed pattern in control energy and 

weight values as the number of actuators goes down. The best design for a 

structural engineer is a minimum weight design that is with 6 actuators. On the 

other hand, a control engineer prefers a 12 actuator design for minimum control 

energy. Since both the performance measures (weight and control energy) 
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constitute important aspects of design of actively controlled structures, there is a 

need to formulate the problem as a multi-objective function problem to 

simultaneously incorporate different objective functions in the optimization 

procedure. This multi-objective formulation is presented in Chapters 4 and 5. 
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Table 3.1 Nodal Coordinates of ACOSS Four 
 

Node X Y Z 
1 0 0 10.165 
2 -5 -2.887 2 

3 5 -2.887 2 
4 0 5.7735 2 
5 -6 -1.1547 0 
6 -4 -4.6188 0 
7 4 -4.6188 0 
8 6 -1.1547 0 
9 -2 5.7735 0 

10 2 5.7735 0 
 
 
 
 
 
Table 3.2 Nominal Areas, closed loop damping ratio, closed loop eigenvalues and 
squares of natural frequencies  
 

Areas Damping Real Part Imag. Part Sq. of natural 
  Ratio    Frequencies 

1000 0.0548 -0.0734 1.3375 1.79 
1000 0.0655 -0.1088 1.6573 2.75 
100 0.0738 -0.2121 2.8674 8.26 
100 0.0802 -0.2357 2.9302 8.63 

1000 0.084 -0.2837 3.3664 11.4 
1000 0.0864 -0.362 4.1732 17.53 
100 0.0761 -0.3536 4.6332 21.58 
100 0.0723 -0.3421 4.72 22.39 
100 0.0341 -0.2901 8.4986 72.31 
100 0.0298 -0.2742 9.2062 84.83 
100 0.0207 -0.2126 10.2456 105.02 
100 0.0064 -0.0823 12.8504 165.14 
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Table 3.3 Optimum Areas, closed loop damping ratio, closed loop eigenvalues and 
squares of natural frequencies  
 

Areas Damping Real Part Imag. Part Sq. of natural
  Ratio     Frequencies 

430.09 0.1635 -0.2218 1.336 1.79 
424.82 0.0921 -0.0769 1.4926 2.25 
306.03 0.0963 -0.2073 2.5533 6.57 
397.06 0.0878 -0.197 2.8917 8.41 
293.22 0.0655 -0.207 3.7632 14.21 
222.21 0.0662 -0.2852 4.3519 19.02 
122.85 0.0519 -0.2472 5.2807 27.94 
304.48 0.0514 -0.3113 5.6312 31.79 
27.89 0.0451 -0.3465 6.1208 37.56 
50.53 0.0398 -0.2702 7.0125 49.25 

142.49 0.0347 -0.315 8.008 64.17 
120.54 0.0272 -0.2583 8.8766 78.81 

 
 

 

 

Table 3.4 Areas fixed at nominal values 

  Starting point 

  Q=R=I Q=R=10I Q=10I, R=I Q* Q*

       R1-3=10,R4-6=1 R1-3=1,R4-6=10 
Weight 43.70 43.70 43.70 43.70 43.70 
trace [ ]  P 1843.06 1843.60 1844.86 1853.82 1843.97 
LOS 1.055 1.055 1.055 1.052 1.055 

Q1=13.5 Q1=24.39 Q1=25.06 Q1=30.05 Q1=21.98 
Optimum Q Q13=7.05       Q13=2.47 
Q* = Q1-8=1, Q9-16 =10 and Q17-24 =5 
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Table 3.5 Areas and diagonal Q and R as design variables 

Starting point Q=R=I Q=R=10I Q=10I, R=I Q*

        R1-3=1,R4-6=10 
Weight 15.23 15.13 15.14 15.29 

trace [ ]  P 553.46 550.24 550.06 554.92 
LOS 1.88 1.89 1.52 1.87 

Q1=3.21 Q1=7.83 Q1=7.47 Q1=1.47 
Optimum Q Q13=3.54     Q13=4.46 

Q* = Q1-8=1, Q9-16 =10 and Q17-24 =5 

 

 

 

 

 

 

 

Table 3.6 Optimum cross-sectional areas 

Q=R=I Q=R=10I Q=10I, R=I Q*

Element       R1-3=1,R4-6=10 
1 271.58 310.42 235.8 277.45 
2 209.78 192.14 247.74 211.33 
3 205 208.39 240.68 205.6 
4 217.4 201.48 216.41 216.07 
5 220.88 202.78 217.91 219.72 
6 228.03 232.24 182.6 228.89 
7 66.16 160.95 195.33 67.28 
8 187.68 76.75 84.15 185.8 
9 107.37 50.51 91.89 105.79 

10 96.99 99.4 70.11 96.22 
11 53.09 107.61 122.31 55.04 
12 93.64 90.56 50.17 93.09 

Q* = Q1-8=1, Q9-16 =10 and Q17-24 =5 
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Table 3.7 Cross-sectional Areas of Members with Varying Actuators 
 

12 12 11 10 9 8 7 6 5 4 3 2 
Element 

Nominal                      
1 1000 195.9 204.1 189.2 193.7 167.7 166.6 135.7 151.3 265 262.71261.48
2 1000 144.5 146.6 144.4 137.2 135.4 141.4 199.9 241.1 238.8 182.34443.37
3 100 183.5 178.4 186.8 176.9 213.9 223.5 183 147.7 300.6 247.32 164.5
4 100 134.8 132.6 133.2 148.6 142.4 134.5 185.1 218.9 160.6 189.21350.34
5 1000 196.1 198 202 196.3 236.8 250.7 198.1 155.9 302.4 183.85185.48
6 1000 205.3 199.5 207.1 209.9 181.9 177.6 144.9 158.3 197.9 240.61246.67
7 100 179.4 189.5 184.9 176.5 203.2 195.4 162.8 92.97 31.73 170.33 95.14
8 100 135.1 128.5 131 132.4 99.01 83.14 169.3 207.8 120.4 199.3 28.37
9 100 127.4 133.3 131.3 110.7 133.3 138.9 185.1 209 194.1 151.02313.52

10 100 193.5 188.9 188.6 202.4 179.7 173.2 129.6 123.3 148.6 34.78 199.56
11 100 158.8 171.1 166.8 158.8 198.2 212.2 180.3 152.9 205.9 162.12 197.1
12 100 180.4 171 174.6 189 141.2 132.5 131.1 171.5 121.1 203.9 231.07

 
 
 
 
Table 3.8 Performance index, total work and weight  
 

Number of 
Tu Qu  T

cF RFc Actuator Weight 
Actuators     Work   
12 nom 115.64 113.23 79.08 43.7 

12 26.7 27.51 19.04 13.36 
11 27.52 27.93 19.35 13.37 
10 27.98 28 19.06 13.39 
9 27.87 27.81 18.53 13.37 
8 28.85 30 18.47 13.48 
7 30.01 30.8 18.41 13.59 
6 37.51 37.04 21.45 13.18 
5 48.66 46.69 22.47 13.44 
4 58.6 61.07 22.29 16.98 
3 65.3 59.25 22.76 15.67 
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Table 3.9 Work done by each actuator 
 
Act # 1 2 3 4 5 6 7 8 9 10 11 12 
12 nom 4.39 5.27 2.8 2.98 1.13 1.02 22.83 10.08 19.33 5.63 1.83 1.72 
12 opt 3.76 2.93 1.26 0.72 0.58 0.08 5.88 1.01 1.16 0.72 0.5 0.39 
11 opt 4.11 3.07 1.15 0.67 0.43   5.84 1.09 1.14 0.82 0.55 0.434
10 opt 3.81 3.12 1.25 0.67     6.05 1.2 1.19 0.77 0.53 0.43 
9 opt 3.61 3.064 1.472 0.643     5.985 1.04 1.29 0.781 0.633   
8 opt 4.07 2.88 1.32 1.14     5.46 0.7 1.69 1.17     
7 opt 3.938 2.629 1.362 1.557     5.542   1.868 1.509     
6 opt 3.928 1.994   4.022     8.552   1.417 1.53     
5 opt 2.741 3.293   4.154     10.71     1.565     
4 opt 2.045 4.656   3.729     11.86           
3 opt   5.552   1.229     15.97           
2 opt   4.296         25.74           
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Figure 3.1 ACOSS-FOUR Structure 

The numbers in boxes represent nodes while the others represent 
elements/members. Nodes 5 through 10 are fixed. 
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Figure 3.2 Steps in the optimization process 
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Figure 3.3 Transient response of structure at nominal design (LOS 1.3) 
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 Figure 3.4 Transient response of structure at optimum design (LOS 1.52) 
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Figure 3.5  LOS error when areas and Q and R are varied (1.52) 
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Figure 3.6 Transient response of structure with 12 actuators (LOS 0.77) 
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Figure 3.7Transient response of structure with 10 actuators (LOS 0.77) 
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Figure 3.8 Transient response of structure with 8 actuators (LOS 1.01) 
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Figure 3.9 Transient response of structure with 6 actuators (LOS 1.31) 
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Chapter 4 

Optimum Placement of Actuators in Actively Controlled 
Structures 

The parametric study presented in Chapter 3 was performed to see the 

effect of changing the number and locations of actuators. This involved placing 

the actuators at certain adhoc locations and optimizing the controller and the 

structure. In order to efficiently reduce the vibrations of a structure, it is 

necessary to place the actuators at positions such that their ability to control the 

vibrations is maximized. Therefore, to get the optimum control performance with 

minimum control cost, the actuator locations should be optimized. An approach 

for determining the optimum placement of actuators is presented in this chapter. 

A genetic algorithm based approach is used to solve the optimization problem 

since the actuator locations are discrete (0-1) in nature. 

4.1 Introduction 

The placement of actuators is one of the important aspects of structural 

control design. The determination of the number and location of actuators and 

sensors in active vibration control of flexible structures is an important issue. 

Actuator placement has a significant effect on the dynamic response of the 

structure. Misplaced actuators and sensors lead to the problem of controllability 

and observability, and the desired system performance may not be achieved with 

any choice of control law.  

Many of the studies on actuator placement deal only with the 

determination of optimum locations of actuators, and the number of actuators is 
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assumed to be fixed. Also in these studies, the design variables which are the 

positions of actuators are discrete (0-1), and the problem is treated only as a 

control optimization problem with minimization of performance index or 

controllability as objectives. In other words, structural design considerations are 

largely ignored. The approach presented in this thesis treats the actuator 

placement problem as a mixed discrete and continuous variable problem wherein 

both structural and control optimization aspects are addressed simultaneously. A 

determination of the optimum number as well as optimum positions of actuators 

along with optimum member cross-sectional areas helps to simultaneously 

optimize both structure and control aspects of structure design. The absence or 

presence of an actuator is defined using 0 and 1 discrete variables. The gradient-

based optimizer which was used to solve the structural-control problem in 

chapter 3 can handle only continuous variables. For the mixed discrete and 

continuous variable problem presented in this chapter, genetic algorithm is used 

as an optimizer. The design variables are the cross-sectional areas of the 

elements as well as the number and locations of the actuators. The actuator 

placement problem is considered in the context of both single objective and 

multi-objective optimization. For the single objective optimization formulation, the 

objective function considered is the maximization of the vibrational energy 

dissipated by the actuators (trace[ ). In case of multi-objective formulation, 

cooperative game theory method is used to maximize the bargaining function 

between maximizing trace[  and minimizing weight of the structure.  

]H

]H
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4.2 Actuator Placement 

The total energy stored in the system defined by Eq. (3.1) is the sum of 

kinetic and potential energies and can be written as: 

 
. .E K E P E= +            

 1 1
2 2

T Tx Mx x Kx= +           (4.1) 

1 1
2 2

T T T Ty M y y K yφ φ φ= + φ           

1 1[ ] [ ]
2 2

T Ty I y y y= + ∆          (4.2) 

where [ ] [ ][ ]x yφ= , T M Iφ φ = , [ ]T Kφ φ = ∆  and 2[ ] ( )idiag ω∆ =  
 
Differentiating Eq. (4.2) with respect to time gives the energy dissipation rate as: 

[ ] [ ]T TdE y I y y y
dt

= + ∆          (4.3) 

 
Integrating Eq. (4.3) from 0t =  to t = ∞  gives the total energy dissipated in the 

system due to internal damping as well as the damping induced by the control 

system. 

 

0 0

( [ ] [ ] )T TdEdt y I y y y dt
dt

∞ ∞

= + ∆∫ ∫         (4.4) 

0

( [ ] [ ] )T T T TE y M y y K yφ φ φ φ
∞

= +∫ dt

) t

)

          

0

( T T T Ty M y y K y dφ φ φ φ
∞

= +∫          

0

( T Tx Mx x Kx dt
∞

= +∫          (4.5) 
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0

(T )x Mx Kx dt
∞

= +∫          

0

(T
c D )x DF C x dt

∞

= −∫          

0 0

T T
c Dx DF dt x C xdt

∞ ∞

= −∫ ∫

c t

u

        

 
Considering the total energy dissipated in the system due to the damping 

induced by the control system which is: 

0

T
cE x DF d

∞

= ∫         (4.6) 

 
Substituting the optimal feedback control law cF κ= −  and the feedback gain 

1[ ][ ][T ]R B Pκ −=  in above equation yields: 

0

( )T
cE x D u dκ

∞

= −∫ t           

1

0

( )T Tx D R B P udt
∞

−= −∫        (4.7) 

From Eq. (3.4),  and also , therefore: 
0

[ ] TB
Dφ

⎡
= ⎢
⎣ ⎦

⎤
⎥

t

[[ ],[ ]]Tu y y=

1
1

1
0

( )T T
c

x
E x D R B P d

x
φ
φ

∞ −
−

−

⎡ ⎤
= − ⎢ ⎥

⎣ ⎦
∫       (4.8) 

1
1

1
0

0
(

T
I IIT

c T
III IV

P P x
E x DR

P PD x
φ

φ φ

∞ −
−

−
)dt

⎡ ⎤⎡ ⎤⎡ ⎤
= − ⎢ ⎥⎢ ⎥⎢ ⎥

⎣ ⎦ ⎣ ⎦ ⎣ ⎦
∫     (4.9) 

In Eq. (4.9), the 2  Riccati matrix [  is written in terms of four n  block 

partitioned matrices  

2n n× ]P n×

I IP P− V
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1
1

1
0

( 0 I IIT T
c

III IV

P P x
E x DR D

P P x
φ

φ
φ

∞ −
−

−
)dt

⎡ ⎤⎡ ⎤
⎡ ⎤= − ⎢ ⎥⎢ ⎥⎣ ⎦

⎣ ⎦ ⎣ ⎦
∫     (4.10) 

1
1

1
0

( T T T
c III IV

x
E x DR D P D P dt

x
φ

φ φ
φ

∞ −
−

−
)

⎡ ⎤
⎡ ⎤= − ⎢ ⎥⎣ ⎦

⎣ ⎦
∫     (4.11) 

Since [ ] [ ][ ]x yφ= , Eq. (4.11) can be rewritten as: 

1
1

1
0

( )T T T T
c III IV

y
E y DR D P D P dt

y
φ φ

φ φ φ
φ φ

∞ −
−

−

⎡ ⎤
⎡ ⎤= − ⎢ ⎥⎣ ⎦

⎣ ⎦
∫     (4.12) 

Ignoring the minus sign since we are interested only in magnitude of energy 

dissipation, Eq. (4.12) can be written as: 

1 1

0

)T T T T T
c III IV

y
E y DR D P DR D P

y
φ φ φ φ

∞
− − dt⎡ ⎤⎡= ⎤ ⎢ ⎥⎣ ⎦ ⎣ ⎦

∫     (4.13) 

[ ] 1 1

0

0T T T T T
c III IV

y
E y y DR D P DR D P dt

I y
φ φ φ φ

∞
− −⎡ ⎤ ⎡

⎡ ⎤=
⎤

⎢ ⎥ ⎢⎣ ⎦ ⎥
⎣ ⎦ ⎣

∫
⎦

dt

  (4.14) 

[ ] 1 1
0

0 0T
c T T T T

III IV

y
E y y

DR D P DR D P yφ φ φ φ

∞

− −

⎡ ⎤ ⎡ ⎤
= ⎢ ⎥ ⎢ ⎥

⎣ ⎦⎣ ⎦
∫    (4.15) 

[ ]
0

T
c c

y
E y y D

y

∞

dt
⎡ ⎤

= ⎢ ⎥
⎣ ⎦

∫        (4.16) 

where  is the energy dissipated by controller,  is the state vector, is 

the damping matrix induced by the active controller and is defined as: 

cE [ , ]y y cD

  (4.17) 1 1

0 0
c T T T T

III IV

D
DR D P DR D Pφ φ φ φ− −

⎡ ⎤
= ⎢
⎣ ⎦

⎥

Using Eq. (3.12), Eq. (4.16) can be written as: 

 [ ] [ ]

0

(0)
[ (0) (0)]

(0)
T

cl clA t A tT
c c

y
E y y e D e dt

y

∞ ⎡ ⎤
= ⎢ ⎥

⎣ ⎦
∫  (4.18) 
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 where [  is the stability matrix  (Eq. 3.9). Using [  a unique solution [  to 

the Lyapunov equation is given as: 

] ,

H

clA ]clA ]H

 [ ] [ ]

0

T
cl clA A

ce D e dτ τ τ
∞

=∫   (4.19) 

 [ ] [ ]T
cl cl cA H H A D+ = −   (4.20) 

Now Eq. (4.18) becomes: 

 
(0)

[ (0) (0)]
(0)

T
c

y
E y y H

y
⎡ ⎤

= ⎢ ⎥
⎣ ⎦

  (4.21) 

Since the energy dissipated by the controller depends on the initial state which is 

not always known, Eq. (4.21) is not very useful. However, if the initial state is 

assumed to be a random variable distributed uniformly over the surface of a  

dimensional unit sphere, maximization of expected value of  over the set of 

possible initial states is the same as maximizing trace

2n

cE

[ ]H .  Therefore, 

 [ ] [ ]cev E trace H=    (4.22) 

For an efficient controller, trace [ ]H  can be maximized by treating the actuator 

locations as design variables. In addition, constraints can also be placed on 

closed-loop eigenvalues and damping ratios to specify natural frequencies of the 

controlled system as well as time required to damp out the vibrations. From a 

structural viewpoint, the designer may also want to minimize the weight of the 

structure by treating cross-sectional areas of the members as design variables. 

 Two variations of the structural-control optimization problem are considered 

next. The first approach involves maximization of trace [ ]H  with actuator locations 

and member cross-sectional areas as design variables. The second approach 
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considers a multi-objective problem where both control and structural objectives 

are considered simultaneously using a game theoretic approach and is 

presented in Sec. 4.4. 

4.3 Optimization Using Genetic Algorithms. 

The actuator placement optimization problem has mixed discrete (actuator 

locations) and continuous (members cross-sectional areas) design variables; 

therefore, it cannot be solved using conventional gradient based optimization 

methods. A genetic algorithm based approach is used in this work to solve this 

problem with mixed discrete-continuous variables.  

 4.3.1. Genetic Algorithms 

Genetic Algorithms are a guided random search technique derived from 

the natural genetics of populations. The design variables are coded as a string of 

binary bits which correspond to the chromosome in natural genetics. A simple 

genetic algorithm involves copying strings and swapping partial strings between 

two mating strings. The three basic operators used in genetic algorithms are: 

reproduction, crossover and mutation. They are used to produce new 

generations as the search progresses and are briefly described below. 

4.3.1.1 Reproduction 

Reproduction is a randomized selection process in which individual strings 

are copied according to their objective function (fitness) value. Strings 

(population members) with a higher fitness value have a higher chance at 
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reproduction. The probability of reproduction is calculated by dividing the 

individual fitness by the sum of fitness values of the entire population. 

4.3.1.2 Crossover 

Crossover is the primary operator in the mating process which generates 

new individuals in the population. It consists of two steps. First, a crossover point 

is randomly selected between the mating couple. The second is swapping of 

genetic information between these two mating couples past the crossover point. 

Therefore, the mechanics of reproduction and crossover involves making copies 

of strings in proportion to their fitness values and exchange of genetic information 

between members in the mating pool. 

4.3.1.3 Mutation 

Mutation is the occasional random alteration (with small probability) of the 

gene value in a chromosome (string), that is, it involves changing a particular bit 

of a coded string from 0 to 1 and vice versa. Mutation is a random walk through 

the string space. Mutation rates are usually quite small, and it is considered as a 

secondary mechanism/operator of genetic algorithm. 

Since genetic algorithms are primarily suited for solving unconstrained 

optimization problems, some simple modifications are needed to adapt the 

techniques for solving constrained optimization problems. In this work, the 

constraints in the problem are handled using a penalty function method and the 

objective function is defined as:  
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2

1

( , ) ( ) ( )
m

k k j
j

X r f X r g Xφ
=

= + ∑          (4.23) 

where  is a positive penalty parameter,kr 1,......j m= , is the total number of 

inequality constraints, and the bracket function ( )jg X  is defined as: 

  ( )jg X = max ( )( ), 0jg X  

  =
( ) ( ) 0

0 (
j j

j

g X g X

g X

>⎧⎪
⎨ ) 0≤⎪⎩

         (4.24) 

4.4 Multi-objective Optimization Using Game Theory 

Multi-objective optimization (MOO) problems requiring a simultaneous 

consideration of two or more conflicting objective functions frequently arise in 

design. A general MOO problem has the following form: 

 Min ( )f x  = 1 2[ ( ), ( ),..... ( )]kf x f x f x        

subject to 

        ( ) 0ig x ≤ 1.....i m=  

       ( ) 0jh x = 1.....j p=    (4.25) 

   min max
i i ix x x≤ ≤    1.....i n=  

where 1 2( ), ( ),..... ( )nf x f x f x  are  different objective functions,  and  

are inequality and equality constraints and 

k ( )ig x ( )jh x

ix  denotes the set of design variables. 

In a MOO problem, it is not possible to find an optimum point where all objective 

functions are simultaneously minimized. Therefore, the concept of a Pareto-

optimal (PO) is frequently used in solving a MOO problem. Frequently, the set of 

 
    



55 
 

PO solutions contains more than one solution. Different methods have been used 

to determine an optimal compromise solution from the set of PO solutions. Game 

theory is one such approach which helps determine a compromise solution 

acceptable to all objective functions (players). 

4.4.1 Game Theory Method 

In the game theory method, the MOO problem is viewed as a game where 

each player corresponds to an objective function being optimized. These players 

are competing with each other to improve their overall position subject to some 

constraints.  

There are three types of games in the context of engineering design: 

cooperative game, non-cooperative (Nash) game, and an extensive game. In a 

cooperative game, the players have knowledge of the strategies chosen by other 

players and collaborate with each other to find a Pareto-optimal solution. In a 

non-cooperative game, each player has a set of variables under his control and 

optimizes his objective function individually. The player does not care how his 

selection affects the payoff functions of other players. The players bargain with 

each other to obtain an equilibrium solution, called the Nash solution. Extensive 

games refer to situations in which the players make their decisions sequentially. 

Extensive games with two players have been used in engineering design and are 

called Stackelberg games. There are two groups of players in this game; one 

called the leader which dominates the other group called the follower. The leader 

makes its decision first and according to its decision, the follower optimizes its 

objective function. 

 
    



56 
 

Consider two players, 1 and 2, who select strategies 1x  and 2x  where 

1
1 1

nx X R∈ ⊂  and 2
2 2

nx X R∈ ⊂ . Here 1X  and 2X  are the set of all possible 

strategies each player can select. The objective functions ( )1 1 2,f x x  and ( )2 1 2,f x x  

represent the cost function for players 1 and 2, respectively. 

In a Nash (non-cooperative) game, each player determines its optimum 

solution based on the choices made by other player(s). The set of solutions for 

each player is called the rational reaction set (RRS). The RRS for players 1 and 

2 are defined as follows: 

 ( ) ( ) ( )1 1 2 1 1 2 1 2

1 1

, min ,N Nf x x f x x x x

x X

= →

∈
 (4.26) 

 ( ) ( ) ( )2 1 2 2 1 2 2 1

2 2

, min ,N Nf x x f x x x x

x X

= →

∈
 (4.27) 

where 1
Nx  is the optimum solution of player 1 which varies depending on the 

strategy 2x  chosen by player 2. The functions ( )1 2
Nx x  and ( )2 1

Nx x  denote the 

RRS for players 1 and 2 respectively. The intersection of these two sets, if it 

exists, is the Nash solution for the non-cooperative game.  

In a cooperative game, the players have knowledge of the strategies 

chosen by other players and collaborate with each other to find a Pareto-optimal 

solution. Unlike  Nash and Stackelberg games, where players do not cooperate, 

it is not uncommon for players to improve their non-cooperative solution by 

cooperating. The cooperative game captures the effect of competition between 

the players in a bargaining situation.  
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4.4.2 Cooperative Game Theory Method 

Consider a cooperative game-theory problem with two players. Let  

is a utility (payoff) function associated with each player  such that if 

strategy

( )iU X

1,2i =

X  is selected from a set of alternative strategies , player i  will 

have payoff . The two players compromise to select a mutually beneficial 

strategy such that their payoffs are as high as possible. It is assumed that if the 

players decide not to cooperate, their payoffs will be  and  where 

 and  and 

(S X S∈ )

) )

( )iU X

*u *v

*
1( wu U X= *

2 ( wv U X= wX is a status-quo point wX S∈ . The players 

want to maximize their distance from wX . 

The bargaining model that determines a compromise solution using the 

bargaining function ( )B X defined as: 

                      
2

* *

1

( ) ( )( ) [ ( ) ( )]i i
i

wB X u u v v U X U X
=

= − − = −∏    (4.28)  

for all *X S∈ ⊂ S  , where * [ | , ( ) ( ) 0]i i wS X X S U X U X= ∈ − ≥  

An optimum compromise solution is now defined as: 

*( ) max ( ),optB X B X X= S∈        (4.29) 

This bargaining function yields a pareto-optimal solution optX  which maximizes 

the payoff for each player.  

Next consider a multi-objective function problem with  objectives which 

need to be minimized (Eq. 4.25). A game theory formulation for this problem 

consists of  players where each player corresponds to an objective function to 

be minimized. The bargaining function 

k

k

( )B X in this case is defined as: 
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1

( ) [ ( )]
k

iw i
i

B X f f
=

= −∏ X        (4.30) 

where iwf  is the worst value of the objective function if  that player i  is willing to 

accept. The assumption in the above bargaining function is that all objective 

functions if ’s are equally important. Therefore the game theory formulation for a 

multi-objective problem becomes: 

1

max ( ) [ ( )]
k

iw i
i

B X f f
=

= −∏ X           (4.31) 

such that  *X S∈ . 

 Presented next are two formulations of the structure-control optimization 

problem. The first formulation treats the problem as a single objective problem 

whereas the second formulation casts the problem as a multi-objective 

optimization problem. 

4.5 Design Example 

The ACOSS-four flexible space structure shown in Fig. 3.1 is considered 

again in this chapter. The nodal coordinates of the system are given in Table 

3.1. Four lumped masses of 2 units each are attached at nodes 1 through 4. The 

actuators can be located in any one of the twelve members. Both the state 

weighting matrix [  and the control weighting matrix []Q ]R  are assumed to be 

identity matrices. 
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4.5.1 Single Objective Optimization Formulation  

The actuator placement problem has mixed discrete-continuous design 

variables with member cross-sectional areas as continuous and actuator 

locations as discrete design variables. The presence or absence of actuators is 

denoted by discrete values 1 or 0. Since the structure under consideration has 12 

members, therefore the problem has a total of 24 design variables (12 member 

cross-sectional areas and 12 potential actuator locations). A maximization of 

trace[  is considered a]H s the objective function and the constraints  imposed on 

the problem are: (i) The closed loop damping ratio 1 0.16434ξ > ; (ii) The 

imaginary part of the first closed loop eigenvalue 1 1.3374β > ; (iii) The imaginary 

part of the second closed loop eigenvalue 2 1.5β > ; (iv) The cross-sectional areas 

of the members are bounded between 10 and 2000. The optimization problem is 

given as: 

Minimize trace [ ]H  

 by varying cross-sectional areas and actuator locations 

subject to 

 10.16434 0ξ− ≤  

 11.3374 0β− ≤         (4.32) 

 21.5 0β− ≤  

         

  

10 2000iA≤ ≤
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The weight of the structures at the nominal areas (given in Table 3.2) is 43.69. 

By randomly placing the actuators in elements 6, 7, 9 and 11, the trace [ ]H  value 

is 265.36 and the LOS error is shown in Fig. 4.1. The weight of the structure at 

the optimum design is found to be 55.11, trace [ ]H  value is 11751 and the 

optimum number of actuators is four placed in element 2, 5, 7 and 8. The 

optimum areas, closed-loop damping ratios, closed-loop eigenvalues and 

squares of the natural frequencies are given in Table 4.1. The LOS error for this 

design is shown in Fig. 4.2. The response was simulated by subjecting the 

optimized structure to a disturbance at node 2 in the x-direction at t=0. Although 

the weight of the structure at the optimum design is higher than the weight at 

nominal design but it should be noted that weight is not the objective function in 

this case. The objective function is to maximize trace [  and therefore the 

optimum design has a very higher value of trace [  than the nominal design. By 

comparing Fig. 4.1 and Fig. 4.2, it is clear that by placing the actuators at the 

optimum locations, the response dies out faster than the case when the actuators 

are placed randomly at certain locations.  

]H

]H

4.5.2 Multi-objective Formulation 

The two objective functions considered in this work are minimizing the 

weight of the structure ( 1f ) and maximizing the energy (trace [ ]H ) dissipated by 

the controllers ( 2f ). A bargaining function is constructed in between the two 

objectives as follows: 
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 1 1 2 2

1 1 2 2

( ) *worst worst

worst best best worst

f f f fB x
f f f f

− −
=

− −
          (4.33) 

where 1bestf  and 2bestf  are the single objective function optimum values and  

and  are their corresponding worst values. The bargaining function between 

the weight and trace[  is maximized. Again, the design variables are the 

member cross-sectional areas and actuator locations (12+12=24 design 

variables). The constraints imposed on the problem are the same as given in Eq. 

(4.32) except for 

1worstf

2worstf

]H

1 1.2β ≥ . The optimum value of the bargaining function is 0.51. 

The optimum weight of the structure is 40.7, the optimum value of trace [ ]H  is 

9654.2 and the optimum locations of the actuators are in element 2, 5, 7 and 8. 

This result shows about 18% lower trace [ ]H  value than the single objective case 

because in this case trace [ ]H  has to cooperate with the other objective (weight). 

The optimum values of member cross-sectional areas, closed-loop damping 

ratios, closed-loop eigenvalues, and square of the natural frequencies are given 

in Table 4.2. The LOS error for multi-objective design is shown in Fig. 4.3. 

4.6 Conclusions 

The method presented in this chapter permits a simultaneous 

determination of optimum cross-sectional areas, optimum number and optimum 

locations of the actuators in actively controlled structures. The energy dissipated 

by the actuators is used as the performance criterion for the single objective 

problem. The problem variables include mixed discrete-continuous design 

variables. The solution approach involves solving the problem using genetic 
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algorithms. The optimum number of actuators, for both single objective and multi-

objective problems, is four with actuators present in elements 2, 5, 7 and 8 

(Table 4.1 and Table 4.2). In the case of multi-objective problem, the bargaining 

function between structural weight and trace [ ]H  is maximized. The optimum 

value of weight is 40.7 which is lower compared to the single objective value of 

55.1. This result makes sense as weight was not the objective for the single 

optimization problem. Since trace [  was the only objective considered for the 

single objective case, the resulting design has a better value for trace[  when 

compared to the multi-objective case. The multi-objective optimization problem 

results in a better value for weight, but this improvement is at the expense of a 

lower trace [

]H

]H

]H  value. 
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Table 4.1 Cross-sectional areas, closed-loop damping ratios, closed-loop eigenvalues 
and natural frequencies with optimum actuator placement (Single Objective) 

Element Actuator Areas Damping Real Imag. Sq. of 
      Ratio Part Part natural freq. 

1   749.60 0.1711 -0.2325 1.3387 1.7512 
2 X 80.40 0.0569 -0.0858 1.5045 2.3332 
3   96.00 0.0086 -0.0256 2.9664 8.7997 
4   250.10 0.0552 -0.2085 3.768 14.2378 
5 X 1535.90 0.0084 -0.0525 6.2334 38.8575 
6   110.90 0.03 -0.3082 10.2812 105.7966 
7 X 1681.60 0.0002 -0.0038 15.7195 247.0667 
8 X 1399.40 0.0166 -0.2605 15.727 247.4106 
9   1837.80 0.0181 -0.3114 17.1611 294.6292 

10   1859.10 0.0005 -0.0087 18.052 325.8032 
11   1363.70 0.0207 -0.3746 18.079 327.0376 
12   1362.20 0.0005 -0.0096 18.1576 329.7372 

trace [ ]H = 11751  Weight= 55.11 

 

Table 4.2  Cross-sectional areas, closed-loop damping ratios, closed-loop eigenvalues 
and natural frequencies with optimum actuator placement (Multi-objective) 

Element Actuator Areas Damping Real Imag. Sq. of 
      Ratio Part Part natural freq. 

1   250.00 0.1736 -0.2112 1.1987 1.4283 
2 X 248.20 0.0939 -0.1575 1.6707 2.8292 
3   825.30 0.0327 -0.1128 3.445 11.796 
4   168.70 0.068 -0.2572 3.7725 14.3362 
5 X 54.60 0.0292 -0.1235 4.2327 18.0031 
6   198.20 0.0281 -0.1715 6.1114 37.3813 
7 X 1897.50 0.0016 -0.0127 8.0068 64.1063 
8 X 1885.60 0.0024 -0.0261 10.8812 118.3959 
9   240.40 0.001 -0.0183 18.3085 334.78 

10   422.00 0.0233 -0.4279 18.3216 336.2055 
11   1886.60 0.0003 -0.0051 18.3851 338.0179 
12   1894.00 0.0193 -0.3557 18.4638 341.0945 

trace [ ]H = 9654.2  Weight= 40.7 
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Figure 4.1  Structure response at nominal areas with 4 actuators randomly 
placed in elements 6, 7, 9 and 11 (LOS 2.4) 
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Figure 4.2  Structure response with 4 actuators present at optimum locations-

single objective formulation (LOS 2.6) 
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Figure 4.3  Structure response with 4 actuators present at optimum locations- 
multi-objective formulation (LOS 2.6) 
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Chapter 5 

Multi-objective Optimization of Actively Controlled Structures 

This chapter addresses the design of actively controlled structures wherein 

both the actuator placement and controller design aspects are addressed 

simultaneously. It is assumed that a hierarchical structure exists between the 

actuator placement and controller design objective functions with the actuator 

placement problem considered as being more important. The resulting multi-

objective design problem is solved as a bi-level Stackelberg game. A 

computational procedure based on variable updating using response surface 

methods is developed for exchanging information between the two levels (leader 

and follower). The optimization problem has mixed discrete-continuous variables 

with discrete variables corresponding to actuator placement and continuous 

variables associated with the structural and controller design problems. The 

solution approach includes a blend of genetic algorithms and sequential 

quadratic programming techniques.  

5.1 Introduction 

Some of the important aspects of structural-control optimization include 

minimum weight design, minimum control energy design, maximum energy 

dissipated by the actuators, and fast damping of vibrations. The weight of the 

structure is controlled by the cross-sectional areas of the elements. A 

minimization of control energy required is dependent on the proper choice of 

state and control weighting matrices (Q  and R ). Varying the number of actuators 
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as well as their locations has significant effect on the dynamic response of the 

structure. Therefore, the optimum values of Q  and R  should be selected with 

actuators placed at optimum locations in order to achieve optimum control 

performance with minimum control cost. The approach proposed in this chapter 

presents a solution to the multi-objective, integrated structural and control 

optimization problem using the Stackelberg game theory approach.  

The weight of the structure, the energy dissipated by the controller 

(trace [ ]H ) and the quadratic performance index of LQR controller (trace [ ) are 

all considered as the objective functions. The cross-sectional areas of the 

structural members, diagonal entries of the state weighting matrix, and actuator 

locations are treated as the design variables. The problem has mixed discrete-

continuous design variables. To meet the stability requirements for the active 

controller, constraints are placed on the closed-loop damping ratios and closed-

loop eigenvalues. To date, not much literature is available on solving multi-

objective problems with mixed discrete-continuous design variables. Because of 

the mixed discrete-continuous nature of problem variables, the structural and 

control optimization problem cannot be solved using conventional gradient based 

optimization methods. The proposed solution approach partitions the discrete 

and continuous design variables into different levels each with their own objective 

function. A computational procedure based on variable updating using DOE-RSM 

approach is developed for exchanging information between the two levels (leader 

and follower).  

]P
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5.2. Multi-level Design Optimization 

A number of methods have been proposed over the years to solve the 

multi-objective optimization problem (Marler and Arora, 2004). These include the 

utility function method, bounded objective function method, lexicographic 

method, goal programming, and game theory based approaches. Many of the 

proposed approaches for multi-objective optimization essentially convert a multi-

objective optimization into a single objective problem through a weighted 

combination of objective functions. If the objective functions have varying degree 

of importance such that a hierarchical structure exists, then a scalarization of 

objectives is not possible and multi-level optimization techniques are needed. In 

this chapter, the Stackelberg method is used to solve the multi-level optimization 

problem. If more than one objective function is present at the leader or the 

follower level, then either cooperative or non-cooperative game techniques are 

used to combine these objective functions. Both cooperative and non-

cooperative game theoretic approaches were discussed in Sec. 4.4.  

Presented next is the solution procedure when a hierarchical structure 

exists in the multi-objective optimization problem. This problem is modeled as a 

Stackelberg game and solved using the solution approach outlined in the next 

section.  

5.2.1 Stackelberg Game Theory Method 

Consider two players, A and B, who can select strategies 1x  and 2x  where 

1
1 1

nx X R∈ ⊂  and 2
2 2

nx X R∈ ⊂ . Here 1X  and 2X  are the set of all possible 
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strategies each player can select. The objective functions 1 1 2( , )f x x  and 2 1 2( , )f x x  

account for the cost (or loss) functions of players 1 and 2, respectively. The 

game theory models deal with finding the optimum strategy 1 2( , )x x  which 

corresponds to the decision protocol of the specific game model. The goal of 

each model is to minimize the loss function for each player.  

If there exists a mapping (function) 1 2: 1R x → x  such that for any fixed 2x , 

1 1 2 2 1 1 2( ( ), ) ( , )f R x x f x x≤  for all 1x , then 1R  is the Rational Reaction Set (RRS) for 

player 1. Similarly, the RRS for player 2, 2R , can be defined. The Nash solution 

1 2( ,N N )x x  for players 1 and 2 is the intersection of 1R  and 2R  and indicates that 

1 2( ,N N )x x  satisfies 1R  and 2R simultaneously.  

The Stackelberg game is a bi-level game in which each level has its own 

player, with one player dominating other. The two players are referred to as the 

leader and the follower. The follower’s solution depends on the choices made by 

the leader. The leader first chooses a value of its design variables and then the 

follower selects best possible value for its variables (Rational Reaction Set, RRS) 

based on the values of leader’s design variables. The leader then optimizes its 

problem, over its variables, based on the rational reaction set provided by 

follower. In other words, the leader always optimizes its model over the optimum 

design model of the follower. 

The non linear programming (NLP) formulation for a bi-level game is 

defined as: 

           Minimize   1 1 2( , , )f l l x  
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  by varying   1l

  subject to 

                (5.1) 2 2( , ) ( )Rl x X l= 1

where 1f  is the leader’s objective function and  
2 1( )RX l   is the rational reaction set 

(RRS) of the follower which is defined as solution of following problem: 

 
         Minimize   2 1 2( , , )f l l x  
                (5.2) 

by varying  2( , )l x

where 2f  is the follower’s objective function. 
 

For simple optimization problems, it may be possible to obtain the RRS 

analytically. Otherwise, approximation techniques such as the response surface 

method (RSM) or a sensitivity based approach (Ghotbi and Dhingra, 2012) can 

be used to construct a RRS. The RSM utilizes design of experiments (DOE) 

techniques to construct various experiments and a response surface is then fitted 

to the experiment outcomes. In this work, since the leader’s design variables are 

discontinuous (0-1 variables), the sensitivity based approach cannot be applied. 

Therefore, the RSM method is used to construct the rational reaction set of the 

follower problem. 

5.2.2 Design of Experiments and Response Surface Method 

Design of experiments plays an important role in engineering. In an 

experiment, some input x  transform into an output that has one or more 

observable response variables Y . Therefore useful results are drawn by 
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conducting experiments. In this thesis, the relationship between leader and 

follower design variables is approximated using the Response Surface Method. 

The Response Surface Method is a collection of statistical and mathematical 

techniques useful for the modeling and analysis of problems in which a response 

of interest is influenced by several variables, and the objective is to optimize this 

response (Montgomery, 2005). 

 In case of two independent variables 1x  and 2x , the mathematical 

relationship between the response Y  and variables 1x  and 2x  is given as: 

           (5.3) 1 2( , )Y f x x= e+
 
The response Y  is a function of the variables 1x , 2x , and the experimental error is 

denoted as . The error term represents any measurement error or other 

variations not accounted in f. It is a statistical error that is assumed to be normally 

distributed with a zero mean and a finite variance. 

e

If the response is defined by a linear function of the independent variables, 

then the approximating function is a first-order model and is defined as: 

 0 1 1 2 2 .... n nY x x x eα α α α= + + + +         (5.4) 

where  is the number of independent variables. If there is a curvature in the 

response surface, then a higher degree polynomial should be used; then the 

approximating function is a second-order model. In case of two variables, the 

approximating function is: 

n

       (5.5) 2 2
0 1 1 2 2 11 11 22 22 12 1 2Y x x x x x xα α α α α α= + + + + + + e
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A model with several independent variables is a multiple-regression model and 

the '
i sα  are the regression coefficients. Since the independent variables for the 

actuator placement problem considered in this work are zeros and ones, the 

second-order model converges to the first-order model because the higher order 

terms simply reduce to zeros and ones. Therefore, the first order model is used 

in this work for finding the RRS. 

5.2.3 Multiple Regression Model 

Regression Model is a mathematical model which determines the 

relationship between a set of independent variables, 'x s , and the response . 

When there are more than two independent variables, the model is referred to as 

a multiple-regression model. The mathematical formulation of a multiple-

regression model with  experimental runs and q  independent variables is 

defined as: 

y

n

 i0 1 1 2 2 .....i i i q iqy x x x eα α α α= + + + + + n  where     (5.6) 1,2......i =

The data structure for multiple-regression-model is shown below: 

 

1 2

1 11 12 1

2 21 22 2

1 2

....
....
....

.. . .

.. . .

.. . .
....

q

q

q

nqn n n

y x x x
y x x x
y x x x

xy x x

 

The multiple-regression model can be expressed in a matrix from: 

 Y X ε= Α+            (5.7) 
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where  
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⎢ ⎥⎣ ⎦

 

Y  is an  vector of observations, 1n× X  is an n q×  matrix of levels of independent 

variables, is a  vector of regression coefficients and Α 1q× ε  is an  vector of 

random errors. (Montgomery 2005). The multiple-regression model given by Eq.  

(5.7) is used to construct the RRS for the follower problem. The MATLAB 

function “regress” is used to solve for the regression coefficients. 

1n×

5.3 Solution Procedure  

The actuator placement and control system design problem presented 

here is solved as a bi-level Stackelberg game. The two levels correspond to the 

leader’s and follower’s objective functions. In case of two objective functions, the 

objective function of the leader is a maximization of the energy dissipated by the 

actuators with actuator locations as the design variables. The objective function 

of the follower is the minimization of the weight of the structure with cross-

sectional areas of the members as design variables.  

In case of three objective functions, the objective function of the leader is 

the maximization of energy dissipated by the actuators with actuator locations as 

design variables. The objective function of the follower is the maximization of the 

bargaining function (Eq. 4.31) between minimization of the weight of the structure 

(with cross-sectional areas of the members as design variables) and 
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minimization of trace[  (with diagonal entries of state weighting matrix as 

design variables). 

]P

One critical point in solving a bi-level problem as a Stackelberg game is 

obtaining the RRS of the follower. The rational reaction set of the follower gives 

the change of optimum solution of the follower problem while the leader’s 

variables are varying. Finding the RRS of the follower involves solving the 

follower problem using various combinations of leader’s design variables, which 

are discrete 0 or 1, actuator locations. If the number of possible actuator 

locations is x , then each potential actuator location variable has two possibilities 

0 or 1 (presence or absence). Therefore, a total of  combinations of design 

variables are possible. These combinations are used to construct the RRS for the 

follower. Since the follower problem has continuous variables, that is, the cross-

sectional area of structural elements, a sequential quadratic programming 

method is used in this problem.  

2x

Once the RRS of the follower is found, it is inserted into the leader problem 

to find the optimum solution to the leader problem. The leader’s problem has 

discrete variables and will be solved using a genetic algorithm. The flowchart of 

the complete solution process is shown in Fig. 5.1. 

5.4 Design Example  

Once again, the ACOSS-four flexible space truss structure shown in Fig. 

3.1 is considered for the multi-level optimization problem considered in this 

chapter. The multi-level, multi-objective problem is solved with two objectives as 

well as with three objective functions. For the case with two objective functions, 
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the objective functions considered are: i) maximize trace[ , and (ii) minimize 

structural weight, whereas in the case of three objective functions, the objective 

functions considered are: i) maximize trace[ , (ii) minimize structural weight, 

and (iii) minimize trace[ .  

]H

]H

]P

5.4.1 Case 1 - Two Objective Functions 

The two objective functions considered include maximizing trace[  and 

minimizing the weight of the structure. Player 1 (trace[ ) wishes to maximize 

the energy dissipated by the controller by controlling variables 

]H

]H

1 6x x−  which are 

actuator locations in elements 2, 5, 6, 7, 9 and 11. Player 2 (weight) wants to 

minimize the weight of the structure with control over variables  which are 

the cross-sectional areas of elements 1-6. The cross-sectional areas of the other 

six bipod legs (elements 7-12) are all fixed at 100 units. Since there are 6 

possible actuator locations with two possibilities for each member, 0 or 1 

(presence or absence), a total of 

1y y− 6

62 64=  combinations of design variables are 

possible. These combinations are used to construct the RRS for the follower. The 

problem constraints include:  

1. The closed-loop damping ratio corresponding to the 1st mode must be 

greater than 0.16434. 

2. The imaginary part of the first closed-loop eigenvalue should be greater 

than 1.2. 

3. The imaginary part of the second closed-loop eigenvalue should be 

greater than 1.5. 
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4. The cross-sectional area of the members must lie between 10 and 2000.  

The optimization problem is given as:  

Leader: 

Maximize trace [ ]  H

           by varying ( 1 6x x− ) 

subject to      

   

1

2

1

1.2
1.5
0.16434

10 2000iA

β
β
ξ

≥
≥
≥
≤ ≤

          (5.8) 

    Follower: 

           Minimize Weight       

  by varying ( 1 6y y− ) 

subject to the same constraints in Eq. (5.8). 

5.4.1.1 Results 

For each actuator location 1 2 3 4 5 6( , , , , , )x x x x x x  combination, an optimum solution 

for cross-sectional areas, 1y y6− , is obtained. From the 64 solutions, a response 

surface regression yields the following approximation function for the RRS for the 

follower objective function. 

1 1 2 3 4 5627.3 0.84 9.83 9.92 203.56 187.39 181.95y x x x x x= + − + − − − 6x

6x

6x

  

2 1 2 3 4 5212.65 17.32 3.01 0.74 132.57 29.62 35.08y x x x x x= + − − + − −   

3 1 2 3 4 5595.87 37.21 5.95 25.29 137.77 158.27 147.34y x x x x x= − − − − − −         (5.9)  
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4 1 2 3 4 5562.13 11.83 11.75 3.35 125.06 129.70 119.04y x x x x x= − − − − − − 6x

6x

6x

6

  

5 1 2 3 4 5222.53 39.91 5.13 25.88 16.92 84.75 93.901y x x x x x= − − − − − +   

6 1 2 3 4 5184.27 18.61 10.38 25.90 110.07 85.97 62.12y x x x x x= + + + − + −                            

where  approximates the optimum vector of the weight minimization problem 

for varying values of 

( )y x

1x x− . Next, this RRS is used to obtain the Stackelberg 

solution.  

5.4.1.2 Stackelberg Solution 

With players trace [ ]H  as the leader and weight as the follower, the 

Stackelberg game problem is solved by substituting Eq. (5.9), which is RRS of 

the follower problem, into the leader’s problem. The optimum solution to the 

leader problem results in an optimum value of trace [ ]H =151.55, the optimum 

weight of the structure is 15.90, and the LOS error for this design is 2.11. The 

optimum cross-sectional areas are listed in Table 5.1. The optimum number of 

actuators is three corresponding to placement of actuators in elements 2, 6 and 

11. The system response to an external disturbance is shown in Fig. 5.2.   

The two next best solutions with three actuators include actuators placed 

in elements 5, 7 and 11, and elements 6, 9 and 11. These two solutions are 

compared with the optimum solution as shown in Table 5.1 and Fig. 5.3. It is 

seen that if the actuators are placed in elements 5, 7 and 11, the minimum 

weight of the structure is 20.5, trace [ ]H  is 167.3 and the LOS error is 3.62. 

Likewise, actuator placement in elements 6, 9 and 11 yields a weight of 20.25, 
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trace [ ]H  equaling 166.89 and the LOS error is 4.96. It may be noted that while 

moving from an optimum to a sub-optimal design results in a better value for 

trace [ ]H , but this improvement is at the expense of a higher weight and a higher 

LOS error.  Therefore, an integrated determination of the optimum number and 

locations of the actuators as well as optimum structural weight is critical in 

determining the overall optimum solution. 

5.4.2 Case 2 - Three Objective Functions 

The bi-level structural-control optimization problem is modeled using 

Stackelberg game and cooperative game theory. The three objective functions 

considered are (i) maximize trace[ , (ii) minimize structural weight, and (iii) 

minimize trace[ . Player 1 (leader) wishes to maximize trace[  by varying 

]H

]P ]H

1 6x x− , which are the actuator locations in elements 2, 5, 6, 7, 9 and 11. The 

follower level contains two objective functions, minimize weight and minimize 

trace[ . It is assumed that a cooperative game scenario exist between these 

two functions. These two objective functions are combined using a bargaining 

function. Therefore, player 2 (follower) maximizes the bargaining function  

between weight and trace[  by varying member cross-sectional areas, 

, and diagonal entries of state weighting matrix, [ , namely , , 

  and . The other entries of diagonal entries of [  are fixed at 1.0. The 

control weighting matrix [

]P

arg( )bF

]P

1area area− 12 ]Q 1Q 2Q

3Q 13Q ]Q

]R  is assumed to be identity matrix.  

Finding the RRS of the follower involves solving the follower’s problem for 

various combinations of leader’s design variables, which are discrete 0 or 1 
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actuator locations. Once again, there are six leader design variables with two 

possibilities either 0 or 1, the follower problem is solved  times to 

construct the RRS. Once the RRS for the follower is found, it is inserted into the 

leader problem to find the optimum solution to the leader problem. The problem 

constraints are same as given by Eq. (5.8) with one additional constraint on the 

diagonal entries of the state weighting matrix which should all be greater than 

1.0. 

62 6= 4

The optimization problem is stated as: 

Leader: 

  Maximize trace [ ]  H

 by varying ( 1 6x x− ) 

subject to 

 

1

2

1

1.2
1.5
0.16434
1.0

10 2000
jj

i

Q

A

β
β
ξ

≥
≥
≥
≥

≤ ≤

        (5.10) 

   Follower: 

          Maximize 1 1 2 2
arg

1 1 2 2

( )(
( )(

w w
b

w b w b

)
)

f f f fF
f f f f

− −
=

− −
       

  by varying ( 1 1y y 6− ) 

subject to the constraints in Eq. (5.10). Here 1wf , 2wf , 1bf  and 2bf  denote the 

worst and best values of weight and trace[ . For the problem under 

consideration the best and worst values of weight are found to be 2.7 and 33.1 

]P
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respectively. Similarly, the best and worst values of trace [  are found to be 

421.4 and 1.11x10

]P

4 respectively. 

5.4.2.1 Stackelberg Solution 

For each 1 2 3 4 5 6( , , , , , )x x x x x x  combination, an optimum solution for 1 1y y 6−  is 

obtained. In this case, the response surface regression yields the following RRS 

for the follower. 

  

    (5.11)  

1 1 2 3 4 5

2 1 2 3 4 5

3 1 2 3 4 5 6

4 1 2 3

173.26 14.17 22.30 21.93 28.68 30.78 40.77
129.81 17.89 14.41 4.57 8.85 42.61 18.64
136.17 12.81 0.15 11.15 19.05 23.44 8.88
132.35 6.88 12.49 3.33 6

y x x x x x
y x x x x x
y x x x x x
y x x x

= − − − − − −
= + − − − − −
= − − − − − −
= + − − − 4 5 6

5 1 2 3 4 5 6

6 1 2 3 4 5

7 1 2 3 4 5

8 1

.73 20.80 11.96
118.55 0.07 6.47 5.77 21.64 27.80 1.35
154.07 1.79 20.94 14.54 20.70 18.87 30.68
98.94 44.75 3.34 12.10 24.97 11.89 8.70
86.26 5.44

x x x
y x x x x x
y x x x x x
y x x x x x x
y x

− −

= + − − − − −
= + − − − − −
= − − − − − −
= − − 2 3 4 5 6

9 1 2 3 4 5

10 1 2 3 4 5 6

11 1 2 3 4 5 6

4.92 6.26 10.17 19.51 41.71
68.00 2.07 29.91 3.41 7.41 18.94 4.87
121.66 6.07 19.89 25.67 18.61 25.11 32.36
70.51 0.61 2.00 306.61 18.06 6.04 0.60

x x x x x
y x x x x x x
y x x x x x
y x x x x x

− − − −

= + − − + − −
= − − − − − −
= − + − − − −

12 1 2 3 4 5 6

13 1 2 3 4 5 6

14 1 2 3 4 5 6

15 1 2 3 4

89.33 3.51 15.27 10.40 10.80 5.83 15.55
215.66 0.54 5.98 4.91 1.18 4.43 3.36
163.58 4.32 2.20 7.74 0.84 3.51 3.58
16.45 8.54 0.43 2.11 6.29 5.1

y x x x x x
y x x x x x x
y x x x x x x
y x x x x

= − − − − − −

= + − − + − +
= + + + − − −
= + + + − + 5 6

16 1 2 3 4 5 6

2 3.98
5.69 0.77 0.41 1.83 0.03 0.38 0.61

x x
y x x x x x x

+

= + + + − − −

6

6

x
x
x

6

6

x
x

6

x
x
x

6

where  approximates the optimum vector which maximizes the bargaining 

function between weight and trace[  for varying values of 

( )y x

]P 1x x− . Note that 

 are the member cross-sectional areas and 1 1y y− 2 13 16y y−  corresponds to 1 3Q Q−  

and . Next, this RRS is used to obtain the Stackelberg solution. Substituting 13Q
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the RRS of the follower problem into the leader’s problem, the leader’s problem 

is solved. Since the leader problem variables are discrete, a genetic algorithm 

based approach is used to solve the leader’s problem. The optimum solution of 

the leader’s problem results in an optimum value of trace [ =98.68 with 

actuators located in elements 2 and 6. The weight of the structure is 6.98 and 

trace  is 1452.4 and the LOS error is 1.48. The optimum cross-sectional 

areas are listed in Table 5.2 and the LOS error shown in Fig. 5.4. It should be 

noted that the three objective function problem results in about 57% improvement 

in the weight and 30% improvement in the LOS but at the same time about 35% 

reduction in trace [

]H

[ ]P

]H  value. 

5.5 Conclusions 

A multi-objective problem for design of actively controlled structures is 

solved using a bi-level game theoretic formulation. The optimization problem is 

modeled as a Stackelberg game. The leader corresponds to maximization of 

energy dissipated by the controller. At the follower level either the structural 

weight is minimized or both the structural weight and controller performance 

index are minimized. A RSM based computational procedure is developed for 

generating the RRS of follower’s variables as a function of leader’s variables. 

The RRS facilitates information exchange between the two levels. The proposed 

method can be applied to problems with conflicting objectives and with discrete 

and continuous design variables. From the example problem considered in this 

work with two objective functions, the proposed approach results in a 30% 
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reduction in weight and about 40% improvement in LOS error when compared 

with designs where the actuator locations are not optimum. It is shown that the 

proposed approach yields an optimum controller which minimizes the weight of 

the structure while simultaneously maximizing the energy dissipated by the 

controllers needed to bring the structure to its equilibrium position. 
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Table 5.1 Cross-sectional Areas of Members and Actuator Locations at Optimum 
Design-two objectives 

Optimum Result Two next best Actuator Locations 

Element Actuator Areas Actuator Areas Actuator Areas 
1   246.27   456.1   440 
2 X 314.86   194.15   179.28 
3   274.54   386.03   406.36 
4   304.02   427.91   417.33 
5   94.98 X 250.64   106.77 
6 X 186.07   166.67 X 306.52 
7   100 X 100   100 
8   100   100   100 
9   100   100 X 100 

10   100   100   100 
11 X 100 X 100 X 100 
12   100   100   100 

Trace [ ]  H   151.55   167.31   166.89 
Weight  15.9   20.51   20.25 

LOS   2.11   3.62   4.96 
 

 
Table 5.2 Cross-sectional Areas of Members, Diagonal entries of Q and Actuator 
Locations at Optimum Design-three objectives 
 

    
Element Actuator Areas Q* 

1   113.79 212.41 
2 X 78.34 159.22 
3   93.67 15.28 
4   104.82 5.28 
5   69.11   
6 X 114.49   
7   62.07   
8   56.57   
9   56.47   

10   77.93   
11   46.4   
12   72.69   

Trace [ ]H 98.68    
Weight 6.79    

Trace [ ]P 1452.4     

Q*=First, second, third and thirteenth diagonal entry of Q matrix 
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Figure 5.1 Flow Chart for determining Stackelberg Solutions. 

Assume leader design variable value 
(actuator location)   

Solve follower (min weight) problem to find optimum 
design variables (cross-sectional areas) 

1i i= +  

 
If i Perform RSM 64≤  

Constraint
s 

Satisfied
End 

Update design variables 

Min leader objective, f1 with 
follower design variables as 

Find RRS 
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Figure 5.2 LOS error at the optimum design - two objectives 
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Figure 5.3 LOS error at the optimum and non-optimum design - two 

objectives 
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Figure 5.4  LOS error at the optimum design -three objectives 
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Chapter 6 

 

Integrated Topology and Sizing Optimization of Actively 
Controlled Structures 

 
A review of the available literature indicates that topology optimization has 

primarily been considered in the context of structural design. Further, most of the 

available literature for design of actively controlled structures deals with 

structures of a predetermined topology. It is recognized that the structural 

performance can be improved significantly by optimization of topology. This 

chapter presents a comprehensive treatment of structural and topological 

considerations in the context of actively controlled structures. 

6.1 Introduction 

The approach for solving the combined topology, structural and control 

optimization involves first determining the optimum topology followed by an 

iterated structural and control system optimization of the optimum topology. To 

reduce the computational burden involved with sizing and controller design of 

each candidate topology, the optimum topology is determined first. This is 

followed by a sizing and control system optimization of the predetermined 

optimum topology. The approach to finding an optimum structure topology 

involves defining a domain for the structure as well as the points of load 

application and supports. The optimum topology is created by minimizing the 

strain energy. Once the optimum topology is obtained, the next step involves a 

simultaneous sizing and control system optimization of the optimum topology. 
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Since the structural and control optimization is performed after topology 

optimization, the results may not be system-optimal. In spite of this simplifying 

assumption, it is shown through numerical examples that both structural and 

control system performance can be simultaneously improved if topological 

considerations are included in the problem formulation. In general, it is shown 

that a simultaneous reduction in structural weight and improvement in root mean 

square displacement (RMSD) error can be achieved when topological, control 

and structural aspects of design are considered simultaneously. 

6.2 Topology Optimization 

Topology optimization deals with finding the optimum layout of structure 

within a specified region when the only known quantities are applied loads, 

possible structural supports and the volume of the structure. The approach 

generally is to find optimum density distribution of material in a fixed domain 

modeled with a fixed finite element mesh, that is, finding the optimum placement 

of a given isotropic material in space by determining which points of space 

should be material points and which points should remain void. For a fixed 

domain, the topology design problem can be formulated as a sizing problem by 

modifying the stiffness matrix which can be expressed in terms of density of the 

material, which is the design variable. The optimization results in design 

consisting almost entirely of region of material or no material. This means that 

intermediate values of the density functions should be penalized in a manner 

analogous to other continuous optimization approximations to a 0-1 problem. The 
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popular and efficient SIMP (solid isotropic material with penalization) model 

(Bendsoe and Sigmund 2003) is used herein where: 

( ) ( )

( ) ;0 ( ) 1,

p o
ijkl ijklE x x E

x d V x x

ρ

ρ ρ
Ω

=

Ω ≤ ≤ ≤ ∈Ω∫
                  (6.1)  

Here ( )xρ  is the relative density function and  represents the stiffness 

tensor for the solid phase and  denotes the tensor for the heterogeneous 

material. The density varies between the material properties 0 and . It has 

been shown that 

o
ijklE

( )ijklE x

o
ijklE

3ρ >  helps minimize problem associated with intermediate 

values of density function. Reuss (iso-stress) and Voigt (iso-strain) mixing rules 

are commonly used to express  as a function of the density. ijklE

The numerical approach to topological design adopted herein starts with a 

region of material meshed into small finite elements. External loads and 

boundary conditions are defined next. Every element is assumed to consist of a 

porous material of density ρ  to which external loads and boundary conditions 

are applied. The purpose of optimization is to find optimum density distribution 

while maintaining a constant volume constraint. Topology optimization is done by 

creating design variables associated with the Young’s Modulus and density of 

each element in the design space. The design variable value ranges between 0 

and 1 where 0 indicates the element has no stiffness or mass and 1 indicated the 

element has its normal stiffness and mass. A power law interpolation penalizes 

intermediate densities to obtain nearly 0/1 material distribution. The solution 

process starts with a block of material formed by a large number of finite 
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elements and then the search procedure will take out from the block the 

unnecessary elements such that the volume constraint is met. 

Mathematically, the topology optimization problem is formulated as 

follows: The design domain is divided into xN N N y= × elements where 

denotes number of elements along x-axis and denotes the number of 

elements along y-axis. The optimization problem to minimize the compliance is 

formulated as: 

xN yN

1min ( ) [ ] [ ] [ ] [ ][ ]
2

T TC F u u K
ρ

ρ = = u  

subject to 

( ) 
o

V f
V
ρ

=            (6.2) 

[ ][ ] [ ]K u F=  

min0 1ρ ρ< ≤ ≤                      

Here  and [  denote the global nodal displacement and force vectors, 

respectively,  is the global stiffness matrix, 

[ ]u ]F

[ ]K f  is the prescribed volume 

fraction (VF), and the density 0 1xyρ≤ ≤  for each element. Depending on the 

finite element type selected to model the structural continuum, the entries in the 

stiffness matrix will change. 

As members are added to and removed from a given topology, the strain 

energy of the structure changes. The changes to the strain energy of the 

structure can be computed as shown next. 

In finite element analysis, the static equilibrium equations are given as: 
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  (6.3) [ ][ ] [ ]K d P=

where  is the nodal load vector, [  is the nodal displacement vector and [ ]  

is the global stiffness matrix. Whenever an element is added to or removed from 

the structure, it will have an effect on the overall stiffness and the nodal 

displacements but the load vector remains unchanged. Let the resulting change 

in the stiffness matrix when  element is removed be given as: 

[ ]P ]d K

thi

  (6.4) [ ] [ ] [ ] [ iK K K K−∆ = − = − ]

] ]

]

]d

where  denotes the stiffness matrix of the  element and [  is the 

stiffness matrix of the structure after the element is removed. 

[ iK thi K −

 For a linear approximation, the resulting change in the displacement 

vector [  from Eq. (6.3) is given as: d∆

     (6.5) 1[ ] [ ] [ ][d K K−∆ = − ∆

The strain energy of the structure can be expressed as:  

  1 [ ] [ ]
2

TC P= d                      (6.6) 

From Eq. (6.5) and (6.6), the corresponding change in the strain energy is given 

as: 

 11 1[ ] [ ] [ ] [ ] [ ][ ]
2 2

T TC P d P K K−∆ = ∆ = − ∆ d−  (6.7) 

 1 [ ] [ ][ ]
2

i T i id K d=  (6.8) 

The equation above gives the change in strain energy due to the removal of  

element. Here, [  is the element displacement vector containing the entries of 

thi

]id
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[ ]d  which are related to the  element. Similarly, the change in strain energy 

due to the addition of  element is given by: 

thi

thi

 1 [ ] [ ][ ]
2

i T i iC d K+∆ = − d  (6.9) 

In topology optimization, the objective is to minimize the strain energy 

(which is equivalent to maximizing the stiffness) while keeping the volume 

constant. The strain energy of the structure is increased when the material is 

removed and decreased when material is added. The solution approach herein is 

to start with an initial structure with a fully connected grid meshed into a number 

of elements. In order to minimize the structural strain energy, it would be most 

effective to remove elements with minimum C−∆  value and add elements with 

minimum  value. To keep the structural volume constant, the material added 

should equal material removed.  

C+∆

Lastly, the sensitivity of response (displacements, strain energy etc.) with 

respect to the variables ( )iρ  is computed as follows: 

[ ][ ] [ ]K d P=         (6.10) 

[ ] [ ] 0
i i

K dd K
ρ ρ
∂ ∂

+
∂ ∂

=        (6.11) 

1 [ ] [ ][ ]
2

TC d K d=        (6.12) 

1 12[ ] [ ] [ ] [ ] 2[ ] [ ] [ ] [ ]
2 2

T T T T

i i i i

C d K Kd K d d d d d d
ρ ρ ρ ρ

⎛ ⎞ ⎛∂ ∂ ∂ ∂
= + = − +⎜ ⎟ ⎜∂ ∂ ∂ ∂⎝ ⎠ ⎝ i

K
ρ

⎞∂
⎟∂ ⎠
 

  1 [ ] [ ]
2

T

i

Kd
ρ

d∂
= −

∂
      (6.13) 
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Since the global stiffness matrix [  is assembled from element stiffness 

matrix, , and each element stiffness matrix is a function of the density 

]K

i
ek iρ , 

( )iw ρ , the derivative in Eq. (6.13) at the element level is calculated as follows. 

The stiffness matrix for element is defined as: thi

0( )i
e ik w kρ= e         (6.14) 

where  is the stiffness matrix with full material. Differentiating Eq. (6.14) yields 0
ek

( )
( )

i
ie i
e

i i

k w k
w

ρ
ρ ρ

′∂
=

∂
       (6.15) 

These derivatives can now be used to update the design variables (material 

density) when the topology optimization problem is solved to minimize the 

compliance. 

6.3 Optimization Problem Formulation 

Once the optimum topology is known by solving the optimization problem 

given in Eq. (6.2), a detailed sizing and control optimization is performed on the 

given topology. The control design theory has been explained in detail in Chapter 

3 (Sec. 3.2). A minimization of the structural weight is considered as the objective 

function and is defined as: 

 
1

n

i i
i

Alρ
=

=∑F  (6.16) 

where  ρ  is the weight density of the members,  is the cross sectional area of 

 element,  is the length of the  element, and  denotes the total number of 

members. 

iA

thi il
thi n

Some of the constraints that can be imposed on the problem include: 
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1. Stresses induced in each member should be less than the allowable 

stress, iσ <  |S|. 

 2. The closed-loop damping ratio corresponding to the  mode must be greater 

than a specified value, 

thi

0iξ ξ>  

3. The controlled system must be asymptotically stable (constraint on real part of 

closed loop eigenvalue iλ ) 

4. The eigenvalues of the closed-loop system matrix must meet performance 

related requirements such as peak overshoot, settling time, etc. 

5. The fundamental natural frequency of the open loop system must be greater 

than a specified value. 

6. The cross-sectional area of the members must lie within prescribed bounds, 

         l u
i i iA A A≤ ≤    

The above enumeration of constraints is by no means the only set of constraints 

that can be imposed. The nature and number of constraints varies depending on 

the desired system performance characteristics for open and closed-loop system. 

Mathematically, the optimization problem is formulated as follows: 

Minimize Weight  
 

by varying   1( )iA A−  
  

subject to 
 

0i Sσ − ≤ , 1,...i n=  
0o iξ ξ− ≤  
0o iα α− ≤          (6.17) 

1 0oω ω− ≤          
l u
i i iA A A≤ ≤ , 1,...i n=         

 
    



95 
 

where  is the total number of elements,  is the allowable stress limit, n S iξ  is the 

closed-loop damping ratio corresponding to the  mode, thi iα  is the real part of 

closed-loop eigenvalue corresponding to the  mode, thi 1ω  is the fundamental 

natural frequency of the open loop system, and l
iA  and u

iA  are the lower and 

upper bound on the member cross-sectional areas. 

6.4 Solution Procedure 

The complete solution procedure involves determination of optimum 

topology followed by sizing and control optimization of the optimum topology. A 

determination of optimum topology begins with defining an initial domain of the 

structure, i.e., the region occupied by the structure. This region of material is 

meshed using finite elements. External loads and boundary conditions are next 

specified with respect to this domain. The purpose of topology optimization is to 

find optimum density distribution while maintaining a constant volume fraction. 

The objective is to minimize the strain energy such that the final volume (or 

weight) of the structure should not be more than, say 20% of the initial volume of 

the structure.  

Once the optimum topology is found, the resulting configuration is 

approximated using truss elements. It may be noted that for the problems 

considered herein, since the structural members are expected to carry only axial 

loads, truss elements are sufficient to approximate the structure. If lateral loads 

and/or moments are expected to be present, beam elements can be used to 

approximate the topology.  
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Next, support conditions are defined and loads are applied as defined in 

the topology optimization and a sizing optimization is performed. In this case, the 

cross-sectional areas of the elements are treated as design variables with the 

objective of minimizing the weight of the structure such that the stresses induced 

in the members are below the specified limits. Next, the optimum control problem 

is solved by adding controlled system performance constraints. The member 

cross-sectional areas are varied, the controller problem is re-solved; these 

iterations continue until the weight cannot be reduced any further. A complete 

flowchart of the solution process is given in Fig. 6.1. 

For the two of the three example problems considered next, a sensitivity 

study was also performed to assess the influence of VF ratio on the optimum 

topology. This was done by changing the VF constraint limit to 25%, 30%, 35% 

and 40% of the initial volume. As discussed in the next section, for both the 

examples considered herein, it is seen that the optimum topology does not 

change significantly as the VF constraint value is varied. It may be noted that this 

somewhat low sensitivity of optimum topology to volume fraction ratio may not 

hold in general. For such cases, the designer needs to carefully select the 

prescribed value of VF ratio used in Eq. (6.2). 

6.5 Numerical Examples 

Three examples are presented next for solving the topology and control 

optimization problem. For all these examples, it is shown that an integration of 

topological considerations leads to final solutions which outperform fixed 

topology optima on both structural and control performance measures. 
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6.5.1 Example 1 

The first example deals with sizing and control design for a 10-bar truss 

(fixed topology) followed by topology, sizing and control design for the same 

problem. 

6.5.1.1 Sizing and Control Design for a fixed Topology  

The 10 bar truss shown in Fig. 6.2 is first considered for structural design 

followed by simultaneous structure and control system design to establish a base 

line design to be used for comparison purposes later. The structure has eight 

degrees of freedom, two at each of the four free nodes. The total length of the 

truss is 720 inches, equally divided between two bays. The width of the truss is 

360 inches. Two loads, 5000 lbs each, are acting at nodes 2 and 4 in the y 

direction whereas nodes 5 and 6 are fixed. The Young’s modulus of the 

members is 10x106 psi and the weight density of the material is 0.1 lb/in3. A 

sizing optimization on this structure is performed first to minimize the weight of 

the structure subject to the constraint that member stresses should not exceed 

25,000 psi. The cross-sectional areas of the members are taken as design 

variables and are constrained to lie between 0.1-20 in2. The minimum weight of 

the structure is found to be 88.38 lbs and the corresponding optimum cross 

sectional areas are listed in Table 6.1. 

Next, a controller is designed for the 10-bar truss. A non-structural mass 

of 1.29 lb-s2/in is attached at nodes 1 through 4. A total of four actuators are 

present at the four free nodes and they are assumed to be acting along y- 

direction only. The passive (material) damping is taken to be 1.0 E-5. The control 
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weighting matrix [R] is a 4x4 identity matrix and the state weighting matrix [Q] is 

taken as 1000*I.  

The cross-sectional areas of the members are taken as design variables 

and are assumed to lie between 0.1 and 20 in2. The objective is to minimize the 

weight of the structure. The design constraints imposed on the problem include: 

i) The stress in each member should not exceed 25,000 psi ( ); ii) The 

closed-loop damping ratio corresponding to the first mode should be greater than 

0.6 ( ); iii) a stability margin of 5 is required corresponding to the second 

eigenvalue of the closed-loop system matrix ( ). Thus the problem formulation 

has a total of twelve inequality constraints. The complete problem is as follows: 

1 1g g− 0

11g

12g

Minimize Weight 
 

by varying   1 10( )x x−  
 

subject to 
 

1 10

1

2

25000 0
0.6 0

5 0
0.1 0

20 0
i

i

x
x

σ
ξ
α

− − ≤
− ≤
− ≤
− ≤
− ≤

 1,...10i =       (6.18) 

 
where 1 10x x−  are the cross-sectional areas of the elements. This optimization 

problem is solved using sequential quadratic programming. The integrated 

structure and control optimization problem yields an optimum structural weight of 

93.69 lb and the corresponding cross-sectional areas are given in Table 6.1. 

The dynamic response of the optimum structure to an initial disturbance is 

studied by measuring the root mean square displacement (RMSD) associated 
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with all free nodes. The square root of the sum of the squares of displacements 

at all free nodes (nodes 1-4) in x and y direction is called the RMSD error and it 

should be damped out to fall within a certain range in a specified time interval. 

The dynamic response of the optimum structure is initiated by a unit 

displacement at node 3 in the y-direction at t=0. The RMSD error for this design 

is given in Fig. 6.3, and is about 0.102 in. 

In addition to the stress constraints, Euler buckling constraints are also 

imposed on the problem. The members are assumed to be tubular with a 

nominal diameter to thickness ratio of 100 and the buckling stress in member  is 

given as: 

i

 2

100.01
8

i i
i

i

E AP
l
π−

=  1,...i n=       (6.19) 

 where ,  and  denote the Young’s modulus, cross-sectional area and 

length of member  respectively. The optimum weight of the structure is found to 

be 314.52 lb. The optimum cross-sectional areas listed in Table 6.2. When 

control constraints are added to the problem with both stress and buckling 

constraints, the optimum weight of the structure is found to be 326.1 lb. The 

optimum cross- sectional areas for this design are also listed in Table 6.2. 

iE iA il

i

6.5.1.2 Topology Optimization 

Next, a topology optimization of this structure is performed. For this 

problem, the initial problem domain is defined as a rectangular grid of nodal 

points as shown in Fig. 6.4 The Young’s modulus and material density are  

E=10x106 psi and ρ = 0.1 lb/in3 respectively. Top and bottom nodes on the 
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extreme left are fixed while the nodes at the center and the bottom right are 

subjected to two loads of 5000 lbs acting simultaneously in the y-direction. A 

topology optimization is performed using pshell elements with the objective of 

minimizing strain energy such that the mass of the final structure should not be 

more than 20% of the initial structure. The resulting optimum topology is shown 

in Fig. 6.5. The topologies for 25% and 30% volume fraction constraint are 

shown in Figs. 6.6 and 6.7. It can be seen from Figs. 6.6 and 6.7 that the 

optimum topology does not change significantly as the volume constraint is 

varied. 

6.5.1.3 Sizing and Control Design for Optimum Topology 

The resulting optimum topology can be approximated as an 8-bar or a 6-

bar truss as shown in Fig. 6.8 and Fig. 6.9. A sizing optimization of these 

structures is performed next. Keeping every thing same as in case of initial 10 

bar truss (Sec. 6.5.1.1), the minimum weight of the structures are found to be 

79.3 lbs and 79.2 lbs. So, an optimization of topology leads to a 10% reduction in 

the optimum weight of the structure. The optimum cross-sectional areas for the 

6-bar truss are listed in Table 6.3. Since both these structures results in the same 

minimum weight, the 6-bar truss is selected for controller design.  

Next, a controller is designed for the optimum 6-bar truss shown in Fig. 

6.9. The material properties and the applied loading is kept the same as in case 

of 10-bar truss (Sec 6.5.1.1). A non-structural mass of 1.29 lb-s2 /in is attached at 

nodes 1 through 3. A total of three actuators are present at the three free nodes 

and they are assumed to be acting along y- direction only. The control weighting 
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matrix [ ]R  is a 3x3 identity matrix and the state weighting matrix [  is taken as 

1000*I. The design constraints are also kept the same as those in ten bar truss.  

The optimum weight of the structure is 79.2 lbs and the cross sectional areas are 

listed in Table 6.3. This design has a 15% lower weight than the corresponding 

design given in Table 6.1.The RMSD error for this design is given in Fig. 6.10. 

The overall RMSD error over a 2 sec interval in this case is 0.019 in, which is one 

order of magnitude smaller than the non optimum topology case. It is evident 

from Fig. 6.10 that the optimum topology case has a response that damps out 

much faster than the non-optimum topology case (Fig. 6.3). This example 

illustrates that by integrating topological considerations in the design process, 

designs with improved structural and control system performance are obtained. 

]Q

6.5.2 Example 2 

The next example considers a topology optimization problem considered 

by Ohsaki and Katoh (2005) to analyze the influence of grid size on overall 

topology. 

6.5.2.1 Topology Optimization 

Consider first the topology optimization for 3x2 grid considered by Ohsaki 

and Katoh (2005), and shown in Fig. 6.11. The length of each member is 200 in. 

The structure is subjected to two loads, each equaling 1000 lbs, acting in the 

negative y-direction at x=400 in and x=600 in as shown in Fig. 6.11. The top and 

bottom left nodes are fixed.  
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A topology optimization is performed by considering a 600x400 

rectangular region on the problem domain and meshing it using 90x45 elements 

(see Fig. 6.4). The objective function is to minimize the strain energy of the 

structure with the constraint that the final mass of the structure should not be 

more than 25% of the initial mass. The optimum topology is shown in Fig. 6.12. 

This topology is approximated in two ways as shown in figures 6.13 and 

6.14. In Fig. 6.13, nodes 4 and 6 are stretched to the original fixed positions as in 

a  grid whereas in Fig. 6.14, these nodes are retained at the respective 

position as shown in Fig. 6.12. A sizing optimization of these structures is 

performed with the objective of minimizing the weight of the structure. The 

optimization problem formulation is as follows: 

3 2×

Minimize Weight 

 by varying 1( )iA A−  

subject to 

25000 0iσ − ≤

n

        (6.20) 

0.001 20iA≤ ≤   1......i =         

where  is the total number of elements. The minimum weight for the structure in 

Fig. 6.13 is 13.62 lbs whereas the structure shown in Fig. 6.14 yields a minimum 

weight 13.2 lb. These results show that a 3% reduction in weight is possible if the 

nodes in the optimum topology are not stretched to conform to the grid shown in 

Fig. 6.11. A sizing optimization of the optimum topology reported in Ohsaki and 

Katoh (2005) yielded an optimum weight of 15.22 lbs, 13% higher than the result 

reported herein. 

n
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Controls optimization of the optimum topology shown in Fig. 6.14 is 

performed next by adding three actuators at nodes 2, 3 and 4 and they are 

assumed to be acting along y-direction only. A load of 1000 lb is applied 

downwards at nodes 2 and 3 and nodes 1 and 7 are fixed. In addition to the 

structural constraints, constraints on the first and second closed-loop damping 

ratios are also imposed on the problem. The complete optimization problem is 

given as follows: 

Minimize Weight 

 by varying 1( )iA A−  

subject to 

 25000 0iσ − ≤  

 11 0ξ− ≤          (6.21) 

 20.5 0ξ− ≤  

    0.001 20iA≤ ≤ 1......i n=        

The optimum weight of the resulting structure is 13.5 lb and the corresponding 

cross-sectional areas are listed in Table 6.4. The RMSD error for the optimum 

design is 0.017 in. A controller design for the optimum topology reported in 

Ohsaki and Katoh (2005) is performed by adding actuators and applying 

disturbance at the corresponding nodes results in an optimum weight of 15.2 lb 

and an RMSD error of 0.024 in. This example highlights that topologies based on 

grids corresponding to a predetermined distribution of nodal points are less 

efficient than topologies where nodal points as well as their connectivity is 

determined by the optimization procedure. 
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6.5.3 Example 3 

Examples1 and 2 demonstrated the benefits of integrating topological 

considerations in the context of structure and control design of actively controlled 

structures. Example 3 considers a multi-objective optimization problem where 

topological, structural and control considerations are combined using a game 

theory approach. 

6.5.3.1 Topology Optimization 

Consider first the problem domain shown in Fig. 6.15 where a structure is 

required to support two loads of 1000 lb each acting in the negative y-direction. 

The top and bottom left nodes are fixed. A candidate topology for this problem is 

based on a 3x2 grid, shown in Fig. 6.11. The sizing optimization of this topology 

results in an optimum weight of 13.81 lb. In this work, topology optimization is 

performed by considering a 600x400 rectangular region on the problem domain 

and meshing it using 180x90 elements (see Fig. 6.15). The objective function is 

to minimize the strain energy of the structure with the constraint that final volume 

of the structure should not be more than 25% of the initial volume. The resulting 

optimum topology is shown in Fig. 6.16. A sizing optimization of this structure 

results in an optimum weight of 12.7 lb, which corresponds to a 9% reduction in 

optimum weight. 
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6.5.3.2 Structural and Control Optimization 

A multi-objective structural and control optimization of the optimum 

topology obtained in Sec 6.5.3.1 is presented next. Stackelberg and Cooperative 

game theory formulations are used to solve the problem with multiple objectives. 

6.5.3.2.1 Single Objective Optimization 

The optimum topology of Fig. 6.16 is approximated as an eight bar truss 

shown in Fig. 6.17. This structure has eight degrees of freedom (DOF), two DOF 

at each of the four free nodes. The Young’s modulus of the members is 10x106 

psi and the weight density of the material is 0.1 lb/in3. A load of 1000 lb is applied 

downwards at nodes 3 and 4.The [ ]R  and [  matrices are 8x8 and 16x16 

diagonal matrices. The single objective optimization problems are solved first to 

determine the best and worst values of the follower objective functions which are 

weight (

]Q

1f ) and trace [  (]P 2f ) with cross-sectional areas of members and 

diagonal entries of [  and []Q ]R  as design variables. It is seen that the best and 

worst values of weight are 14.7 lb and 61.15 lb respectively. Similarly the best 

and worst values of trace [  are found to be 43814 and 4.26x10]P 6 respectively. 

6.5.3.2.2 Multi-objective Optimization 

The multi-objective optimization is performed using Stackelberg and 

cooperative game theory as shown in Fig. 6.18. The three objective functions 

considered are (i) the maximization of energy dissipated by the actuators 

(trace[ ), (ii) minimization of the weight of the structures, and (iii) minimization ]H
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of trace[ . Player 1 (leader, trace[ ) wishes to maximize the energy 

dissipated by controller by controlling variables 

]P ]H

1 8x x− , which are the actuator 

locations in all elements whereas player 2 (follower, ) maximizes the 

bargaining function between weight and trace [  with control over variables, 

, a diagonal entry of state weighting matrix,[  and first, second, third and 

sixth diagonal entries of control weighting matrix, [

argbF

]P

1A A− 8 ]Q

]R . The other entries of [ ]  

and [

Q

]R  matrices are fixed at 0.1.  

The rational reaction set (RRS) of follower gives the change of optimum 

solution of follower problem while the leader’s variables are varying. Since there 

are eight leader design variables with two possibilities, either zero or one, the 

follower problem is run 28
 = 256 times to find the RRS. The sequential quadratic 

programming method is used to solve the follower problem with continuous 

design variables. Once the RRS for the bargaining function for the follower is 

found, it is inserted into the leader problem to find the optimum solution to the 

leader problem. The problem formulation is stated as: 

Leader: 

  Maximize  [ ]trace H

 by varying ( 1 8x x− ) 

subject to  

10.03 0ξ− ≤  

200 2500iβ≤ ≤  1,...8i =  

25000 0iσ − ≤         (6.22) 
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0.001 20iarea≤ ≤  

0.1 1000jQ≤ ≤  9j =  

0.1 1000pR≤ ≤  1,2,3,6p =                    

Follower: 

Maximize 1 1 2 2
arg

1 1 2 2

( )(
( )(

w w
b

w b w b

)
)

f f f fF
f f f f

− −
=

− −
         (6.23) 

by varying ( )           , ,area Q R

subject to the same constraint in Eq. (6.22). Here 1wf  and 1bf  are the worst and 

best values of first follower objective function (weight) and 2wf  and 2bf  are the 

worst and best values of second follower objective function (trace[ ) as 

specified in Sec. 6.5.3.2.1. 

]P

6.5.3.3 Results 

For each 1 2 3 4 5 6 7 8( , , , , , , , )x x x x x x x x  combination, an optimum solution for 1 8A A− , 

 is obtained. From the 256 solutions, a response surface 

regression yields the following approximation function for the RRS for the 

follower objective function . 

9 1 2 3 6, , , ,Q R R R R

argbF

4 4 4
1 1 2 3 4 5 6 7A =0.1206-8.4041 10 ( + )+0.9979 10 -8.4041 10 ( + )-1.003 10 4

8x x x x x x x x− − −× + × × + × −

4

 

4 4 4
2 1 2 3 4

4 4 4 4
5 6 7 8

A =0.0495-5.8829 10 -7.5156 10 -6.2875 10 -2.6468 10

-7.3374 10 -5.9925 10 -7.3127 10 -4.2876 10

x x x

x x x x

− − −

− − − −

× × × ×

× × × ×

x−

6 7 8

 

5 5 5
3 1 2 3 4 5A =0.0749-1.6555 10 ( + ) 1.7269 10 1.6555 10 ( + )x x x x x x x x− − −× + + × − × + +  
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4 4 4 4
4 1 2 3 4

4 4 4
6 7 8

A =0.0355-1.0606 10 +1.9600 10 +2.7567 10 -4.4676 10 +1.6085 10

+3.2073 10 +0.7784 10 -0.6327 10

4
5x x x x

x x x

− − − −

− − −

× × × × ×

× × ×

x−

4
5

 

4 4 4 4
5 1 2 3 4

4 4
6 7 8

A =0.0657-2.9621 10 -3.8406 10 -3.0136 10 -3.1952 10 +1.9552 10

-2.0022 10 -3.8406 10 ( )

x x x x

x x x

− − − −

− −

× × × × ×

× × +

x−

3
5

 

3 3 3 3
6 1 2 3 4

3 3 3
6 7 8

A =0.0362-1.6823 10 -2.2994 10 -2.1958 10 +0.4443 10 -2.6243 10

-2.2788 10 -2.3711 10 -0.7722 10

x x x x

x x x

− − − −

− − −

× × × × ×

× × ×

x−

 

5 5
7 1 2 3 4 5 6 7 8A =0.1003+7.7238 10 -7.8801 10 ( )x x x x x x x x− −× × + + + + + +  

5
8 1 2 3 4 5 6 7 8A =0.0473-2.5557 10 ( )x x x x x x x x−× + + + + + + +  

1 1 1 1
9 1 2 3 4

1 1 1
6 7 8

Q =2.3815+2.7677 10 -7.5077 10 -4.3118 10 -2.1125 10 -8.9931 10

-9.4868 10 +5.1807 10 -9.8433 10

1
5x x x x

x x x

− − − −

− − −

× × × × ×

× × ×

x−

2
4

 

2 2 2
1 1 2 3

2 2 2
5 6 7 8

R =0.1275+4.2284 10 -4.2284 10 +3.0104 10 +4.1747 10

-4.2284 10 ( )+4.2284 10 -4.2284 10

x x x

x x x x

− − −

− − −

× × × ×

× + × ×

x−

3
8

 

3 3 3
2 1 2 3 4 5 6 7R =0.1092-3.6764 10 +3.6764 10 -3.6764 10 ( )+3.6764 10x x x x x x x− − −× × × + + + + × x−

3
7

 

3 3 3
3 1 2 3 4 5 6

3
8

R =0.1077-5.1429 10 ( )+5.1429 10 ( + )-5.1429 10 ( )+5.1429 10

-5.1429 10

x x x x x x

x

− − −

−

× + × × + ×

×

x−

1
6

 

1 1 1
6 1 2 3 4 5

1
7 8

R =0.5415-1.7660 10 ( )+1.7660 10 -1.7660 10 +1.7660 10

-1.7660 10 ( )

x x x x x x

x x

− − −

−

× + + × × ×

× +

−

 

                (6.24) 

Stackelberg Solution: With player trace [  as the leader and the bargaining 

function between weight and trace [  as the follower, the Stackelberg 

game problem is solved by substituting Eq. (6.24), which is RRS of the follower 

]H

argbF ]P
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problem, into the leader’s problem. The optimum solution to the leader problem 

results in an optimum value of trace [ =5.99x10]H 6 with optimum actuator 

locations of in element 4, 7 and 8. The weight of the structure is 14.92 lb and 

trace [  is 6.27x10]P 4. The dynamic response of the optimum structure is initiated 

by a unit displacement at node 2 in the y-direction at t=0. The dynamic response 

of the optimum structure to an initial disturbance is studied by measuring the root 

mean square displacement (RMSD) error associated with all free nodes. The 

RMSD error for this design is given in Fig 6.19 and is about 0.0895 in. The 

optimum cross-sectional areas are listed in Table 6.5. 

6.6 Conclusions 

This chapter presented an approach for simultaneous topological and 

sizing optimization of actively controlled structures. Based on the results of the 

numerical examples, it is seen that irrespective of the fact that only structural 

optimization is performed or an integrated structural and control optimization is 

solved, the optimum topology formulation always yields better structural and 

control designs compared with a fixed topology formulation. For one of the 

examples considered herein, a 10-15% reduction in weight and about 80% 

improvement in RMSD error is obtained by optimizing the topology of the 

structure. The solution approach for optimizing the topology, structure and control 

system is not intense because control system optimization is performed once 

optimum topology is determined. It is seen that the proposed approach yields 

designs with improved structural and controller performance and the controller is 
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quickly able to bring the structure to its equilibrium position when subjected to an 

external disturbance. 
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Table 6.1 Cross-sectional areas for 10 bar truss 

Design Starting  Optimum Areas Optimum Areas 
Variables Values Stress Constraints only Stress & Control Constraints 

x1 1.0 0.1000 0.2511 
x2 1.0 0.1000 0.1000 
x3 1.0 0.1379 0.1121 
x4 1.0 0.3379 0.3281 
x5 1.0 0.1000 0.1000 
x6 1.0 0.4621 0.4842 
x7 1.0 0.1949 0.1585 
x8 1.0 0.1000 0.1434 
x9 1.0 0.3707 0.4018 

x10 1.0 0.1949 0.1638 
Weight 419.64 88.38 93.69 

 
 
 
 
 
 
Table 6.2 Cross-sectional areas with stress, buckling and control constraints for 10 bar 
truss 
 

Design 
Variables 

Optimum areas with 
stress & buckling constraints

Optimum areas with 
stress, buckling & control constraints

x1 0.1 0.1 
x2 0.1 0.1 
x3 1.2832 1.1561 
x4 0.5736 0.4531 
x5 0.1 0.1 
x6 1.5744 1.6918 
x7 0.6525 0.2785 
x8 0.1 0.9419 
x9 0.142 0.2077 

x10 2.6442 2.4305 
Weight 314.515 326.1122 
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Table 6.3 Cross-sectional areas for optimum topology formulation (6-bar) 
 

Design Starting  Optimum Areas Optimum Areas 
Variables Values Stress Constraints only Stress & Control Constraints 

x1 1.0 0.400 0.400 
x2 1.0 0.283 0.283 
x3 1.0 0.200 0.200 
x4 1.0 0.400 0.400 
x5 1.0 0.283 0.283 
x6 1.0 0.283 0.283 

Weight 260.73 79.20 79.20 
 
 
 
 
 
 
 
Table 6.4 Cross-sectional areas for optimum topology –example 2. 
 

Design Optimum Areas Optimum Areas 
Variables Stress Constraints only Stress & Control Constraints

x1 0.080 0.080 
x2 0.020 0.021 
x3 0.045 0.045 
x4 0.015 0.029 
x5 0.075 0.075 
x6 0.028 0.028 
x7 0.030 0.030 
x8 0.085 0.085 
x9 0.040 0.040 

x10 0.038 0.038 
Weight 13.20 13.53 
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Table 6.5 Optimum results for example 3. 
 

Element Actuator Areas R* Q9

1   0.1198 0.1692 1.7 
2   0.0481 0.1055   
3   0.0749 0.1128   
4 X 0.0351 0.3649   
5   0.0646     
6   0.0334     
7 X 0.1     
8 X 0.0473     

Trace H 5.99x106       
Weight 14.92       
Trace P 6.27x104       
RMSD 0.0895       

R*=First, second, third and sixth diagonal entries of R matrix 
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Figure 6.1  Steps for solving the Integrated Topology and Control Optimization 

Problem 
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Figure 6.2 Ten bar truss with two applied loads 
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                 Figure 6.3  Transient response of 10 bar structure at optimum design 
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Figure 6.4 Problem domain for example 1 showing support and points of load 

application 
 

 
Figure 6.5  Optimum topology for example 1 with 20% volume constraint 
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Figure 6.6  Optimum topology for example 1 with 25% volume constraint 
 
 
 
 
 

 
 

Figure 6.7  Optimum topology for example 1 with 30% volume constraint 
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Figure 6.8 Approximated optimum topology for example 1 
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Figure 6.9 Another Approximated optimum topology for example 1 
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      Figure 6.10 Transient response of 6 bar truss at optimum design 
 
 

 
Figure 6.11  3x2 plane grid of Ohsaki and Katoh (2005) 
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Figure 6.12  Optimum topology for example 2 

 

 
 

Figure 6.13 Approximated Optimum topology of 3x2 plane grid (with node 
stretching) 
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Figure 6.14 Approximated Optimum topology of 3x2 plane grid (without node 
stretching) 

 

 
 

Figure 6.15  Problem domain with supports and points of load application for 
example 3 
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Figure 6.16  Optimum topology for example 3 with 25% volume constraint  
 

 
 

Figure 6.17  Approximated topology for example 3  
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Leader: Maximize trace H with actuator 

locations as design variables 

 
 
     Cooperative Game 
 
 
 
 

Follower 1: Minimize Weight 

with member cross-sectional 

areas as design variables 

Follower 2: Minimize Trace P 

with diagonal entries of Q 

and R as design variables 

 
 

Figure 6.18 Two level Stackelberg and Cooperative Game  
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Figure 6.19  Transient response at optimum design - example 3  
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Chapter 7 

Conclusions and Future Work  

 

This thesis presented some solution techniques using a multi-objective 

formulation, for a comprehensive treatment of the structural and topological 

considerations in the design of actively controlled structures. The objectives of 

this dissertation can be divided into the three broad areas: (1) A simultaneous 

structure and control design of actively controlled structures with mixed discrete 

and continuous design variables representing actuator locations and member 

cross-sectional areas, (2) Multi-objective formulation and solution of structure 

and control design problem using game theory approaches, and (3) 

Comprehensive treatment of topological considerations in sizing and control 

optimization of actively controlled structures. 

7.1 Actuator Placement in Structural-Control Design 

This thesis presented an approach for finding the optimum number and 

optimum location of actuators in the design of actively controlled structures such 

that the structure satisfies the requirement on weight, control effort and 

performance. The member cross-sectional areas are also determined while 

solving the optimization problem. The structure and control designs are linked 

through constraints on structural and control performance. Since the locations of 

actuators are discrete (0-1) variables whereas the cross-sectional areas are 

continuous, this mixed discrete-continuous variable problem is solved using a 

genetic algorithm based approach. The constrained optimization problem is 
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converted to an equivalent unconstrained problem by using penalty function 

concept so that genetic algorithms can be used to obtain an optimum solution. 

The numerical results presented for an example problem show that the proposed 

approach can successfully design an optimum controller to minimize the weight 

of the structure and maximize the energy dissipated by the controller to bring the 

structure to its equilibrium position when subjected to an external disturbance.  

7.2 Multi-level/Multi-Objective Optimization 

In case of large complex structures where the number of design variables 

is large, the problem size becomes unmanageable and requires more 

computational time and effort. By dividing the whole problem into smaller sub 

problems (sub levels) makes the problem easy to solve. In this case each level 

has its own objective function and design variables, and an exchange of 

information is done between different levels. In this thesis, for the multi-objective 

problem considered, the design variables are cross-sectional areas of the 

members, locations of the actuators and the diagonal entries of Q and R 

matrices. The problem is divided into two levels. Two game theory approaches 

are used to solve the multi-objective structural control optimization problem. In 

the first approach, the two objectives considered are at the same level and a 

bargaining function between them is constructed and maximized using 

cooperative game theory. In the second approach, Stackelberg game theoretic 

formulation is used when the two objectives considered are not on the same 

level. In this method, the two objectives are treated at two levels with one level as 

the leader and the other as the follower. The discrete and continuous variables 
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are also separated into two levels with each level having its own objective 

function. Member cross-sectional areas are the design variables with the 

objective function corresponding to minimizing the weight of the structure in one 

level; the actuator locations are design variables with the objective of maximizing 

the energy dissipated by the actuators in the other level. The solution approach 

includes a blend of genetic algorithms and sequential quadratic programming 

techniques. A computational procedure based on variable updating using 

response surface methods is developed for exchanging information between the 

two levels. 

7.3 Topology Optimization 

This thesis also considers the simultaneous structural and control design 

of actively controlled structures with optimized topology. The available literature 

on simultaneous structural and control optimization primarily deals with structures 

with known topologies. It has been recognized that the performance of a 

controlled structure can be significantly improved by optimization of topology. 

The approach presented in this thesis involves first performing the topology 

optimization followed by a structural and control system optimization of the 

optimum topology.  

Two approaches are considered in this work. The first is a sizing 

optimization of a structure with known topology, and the second is a 

determination of optimum topology followed by sizing and control optimization of 

the optimized topology.  The approach to topology optimization involves defining 

a domain for the structure, points of applied loads and supports. Topology 
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optimization is performed by creating design variables associated with the 

Young’s Modulus and density of each element in the design space. The design 

variable value ranges between 0 and 1 where 0 indicates the element has no 

stiffness or mass and 1 indicates the element has its normal stiffness and mass. 

The objective function for the topology optimization is a minimization of strain 

energy. Based on the results of the numerical examples, it is seen that 

irrespective of the fact that only structural optimization is performed or an 

integrated structural and control optimization problem is solved, the optimum 

topology formulation always results in a better structural and control designs 

compared to fixed topology formulation. The solution approach presented for 

optimizing the topology and structure and control system design is not intense 

because control system optimization is performed once optimum topology is 

determined.  

7.4 Scope for Future Work 

The techniques proposed in this thesis use the linear quadratic regulator 

(LQR) theory for the control system design. Though the LQR theory is efficient 

and a popular method for control design, it suffers from a major limitation that all 

states must be measured exactly when specifying the control law. In case of 

higher order systems, measuring all states can be very expensive. Another 

limitation of this controller is that uncertainties/disturbances in the system cannot 

be considered by using LQR design. Since many real world problems may 

preclude exact measurement of all state variables, further research in this area 
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should consider the influence of uncertainties on the controller performance and 

stability.  

The DOE-RSM method used in the thesis for capturing the change in 

follower’s variable as a function of leader’s variable involves approximating the 

RRS for the follower’s problem. Based on the DOE set up used for the follower’s 

problem, a fixed function results as an approximation for RRS. This RRS does 

not get updated while iterations continue in the leader’s problem. An updating of 

the RRS as more data becomes available can improve the efficiency of this 

method. Moving least squares method or Kriging techniques can both be used to 

update the RRS of the follower as iterations continue for the leader problem. This 

aspect of model updating will be explored in the near future.  
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