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ABSTRACT 

Motivated by the limitations of the current reinforcement learning and optimal 

control techniques, this dissertation proposes quantum theory inspired algorithms for 

learning and control of both single-agent and multi-agent stochastic systems.  

A common problem encountered in traditional reinforcement learning techniques 

is the exploration-exploitation trade-off. To address the above issue an action selection 

procedure inspired by a quantum search algorithm called Grover’s iteration is developed. 

This procedure does not require an explicit design parameter to specify the relative 

frequency of explorative/exploitative actions. 

 The second part of this dissertation extends the powerful adaptive critic design 

methodology to solve finite horizon stochastic optimal control problems. To numerically 

solve the stochastic Hamilton Jacobi Bellman equation, which characterizes the optimal 

expected cost function, large number of trajectory samples are required. The proposed 

methodology overcomes the above difficulty by using the path integral control 

formulation to adaptively sample trajectories of importance. 

 The third part of this dissertation presents two quantum inspired coordination 

models to dynamically assign targets to agents operating in a stochastic environment. The 

first approach uses a quantum decision theory model that explains irrational action choices 

in human decision making. The second approach uses a quantum game theory model that 

exploits the quantum mechanical phenomena “entanglement” to increase individual pay-

off in multi-player games. The efficiency and scalability of the proposed coordination 

models are demonstrated through simulations of a large scale multi-agent system. 
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1. INTRODUCTION 

1.1. MOTIVATION 

Optimal control theory is an established mathematical framework with numerous 

applications in science and engineering [1-3]. However, very few optimal control problems 

have analytical solutions. The growth of computers has enabled the use of numerical 

techniques to solve some of the challenging optimal control problems. It also has fuelled 

the evolution of intelligent autonomous systems capable of learning and performing tasks 

in any unstructured or stochastic environment with a high degree of autonomy. The idea of 

utilizing multiple autonomous systems to complete complex tasks has also garnered 

immense interest. Although efficient numerical techniques have been discovered, the state 

space dimension of these autonomous systems can prohibit the use of such numerical 

techniques. Furthermore, even finding comprehensive optimal control solutions for single 

agent operating in stochastic environments is still a computationally hard problem. In case 

of multi-agent systems this is a much harder problem. To reduce the computational 

complexity, they typically need to operate with limited information. Moreover, a general 

dynamic model of multi-agent interactions is hard to build. Hence, a new numerically 

efficient design philosophy is required to address the above issues.  

Famous physicist Richard Feynman first envisaged that a quantum computer 

can efficiently simulate the quantum mechanical effects compared to a classical 

computer. His idea inspired many researchers and a new branch of computer science 

called quantum computation was born. The main focus of this research field is to 

find efficient algorithms that uses the quantum mechanical effects to solve 

challenging classical problems. Over the years, lot of success has been achieved by 
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using the quantum superposition effect intelligently for building efficient quantum 

algorithms. Some famous algorithms are: Shor's factoring algorithm [4], Grover's search 

algorithm [5-6] etc. However, the success of these algorithms entirely depends on the 

availability of quantum computers. 

The mathematics of quantum theory has find applications in other branches of 

science also. Quantum cognition [7] is a branch of cognition science which applies the 

mathematical formalism of quantum theory to model various human cognitive 

phenomena. The governing belief is that humans are highly sensitive to context, order 

effects and the measurement disturbance. The human cognition models based on classic 

probability cannot accurately represent these complex phenomena. However, models 

based on quantum theory are more general and can efficiently represent the above 

complex phenomena. Furthermore, humans are very efficient in finding reasonable 

solution in limited time for certain complex problems (Examples: playing a game of 

chess, driving a car etc.), even with limited computation and information. There has 

been attempts to build artificial intelligence that can efficiently mimic this human 

intelligence. Quantum way of processing the available information might help us 

build better models of human intelligence [15].  

Motivated by the above factors this dissertation proposes a quantum inspired 

action selection mechanism to improve the performance of traditional reinforcement 

learning techniques. It also proposes a quantum inspired coordination mechanism to 

reduce the computational complexity encountered in multi-agent dynamic task 

allocation problems. Another important contribution of this dissertation is to provide a 

http://en.wikipedia.org/wiki/Quantum_mechanics
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path integral based adaptive critic solution suitable for stochastic optimal controller 

design. 

Since ideas and notations from quantum theory are freely used in this 

dissertation a brief introduction to the subject is given in the next section. 

 

1.2. QUANTUM MECHANICS 

Classical mechanics [8] describes the motions of macroscopic objects; however, 

as the size of the object becomes sufficiently small, its laws fails to hold good. 

Quantum mechanics [9-11] was specifically developed to accurately predict the 

behaviors of microscopic particles. Some of the microscopic phenomena that the 

classical mechanics cannot account for are: 

The wave-particle duality of the matter: The famous double split experiment 

demonstrated that the fundamental matter can behave both as a wave and as a particle. In 

a basic version of this experiment, light emitted from a coherent source of light was used 

to illuminate a plate with two parallel slits. A screen was placed behind the plate to observe 

the light passing through the slits. Interference patterns were observed on the screen when 

both the slits were open which indicated that the light behaves as a wave. However, when 

detectors were placed in the slit, they detected one photon passing through one slit. To 

account for this puzzling phenomena, in quantum mechanics the state of the 

microscopic particle is associated with a wave function. The interference patterns can 

now be explained through the interference of these wave functions. Then the detection 

of the light particles is explained through the collapse of the wave function during the 

measurement process. The square of the wave function gives the probability of 

detecting the light particle at a particular position. 
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Quantum superposition: It refers to the quantum mechanical property of a particle 

to exist in all possible states simultaneously. This quantum superposition state is quite 

different from the concept of mixed states defined in both classical and quantum 

mechanics. Mixed states are merely a statistical ensemble of pure states. However, 

superposition states are actual states of the quantum mechanical system that are formed 

by the superposition of pure states. They can cause observable effects. One example is 

the interference effect observed in the double slit experiment. 

Quantum entanglement: The concept of entanglement in quantum mechanics 

describes the unintuitive behavior of two quantum particles prepared in a special quantum 

state. When these quantum particles are separated spatially and their spins are 

measured, the results obtained indicate that the spins of the particles are anti-correlated. 

This non-local behavior of entangled particles cannot be explained by classical mechanics. 

1.2.1. Postulates of Quantum Mechanics.  The basic mathematical framework 

of quantum mechanics is summarized using these postulates [9]: 

Postulate I: The dynamical state of a quantum mechanical system at every time 

instant is completely described by a state vector of unit norm in Hilbert space. In Dirac’s 

Ket notation it is represented by  . Hence, the possible state vectors of a quantum 

mechanical system are the elements of a complex Hilbert space. The quantum state can also 

be completely described by a mathematical object called wave function. For example, the 

square modulus of the position wave function denoted by  
2

,x t  can be interpreted as 

the probability density that the particle is at position x . 

Postulate II:  The continuous time evolution of a quantum mechanical system is 

deterministically described by the Schrodinger wave equation:  
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  
 

   
22

2

,
, , ,

2

x t
i x t V x t x t

t m x


 

 
 

 
  (1) 

 

Here, m  is the particle’s mass, V  is its potential energy function and  is the 

reduced Planck’s constant. Moreover, the states of a quantum mechanical system at two 

different time instants are related by a unitary transformation 

Postulate III: Every measurable quantity/observable of a quantum mechanical 

system is associated with a linear Hermitian operator. The numerical outcome of the 

measurement process is given by the eigenvalues of these Hermitian operators. 

Postulate IV: The state-space of the composite system is the tensor product of the 

component systems. 

1.2.2. An Example to Illustrate Quantum Theory.  A simplest quantum 

mechanical system is a qubit. It is very similar to the classical bit. The difference 

between a classical bit and a qubit is that, the qubit can be in a state other than 0 or 1. 

Thus, the state-space of the qubit is a two-dimensional Hilbert space. In Dirac notation, 

the orthonormal basis of this state space are denoted as 0  and 1 . Let the qubit be in 

one of the superposition state: 

   0 1t      (2) 

at time t  where   and    are complex numbers such  that 
2 2

1   . The terms  

and   are called probability amplitudes. Suppose a measurement is performed, then the 

probability of obtaining 0  as outcome is 
2

 and the probability of obtaining 1  as 

outcome is 
2

 ; also the qubit will collapse from the superposition state to one of the 
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basis states. Let us assume that the qubit given in Eq. (2) is subjected to a time evolution 

in which the basis states are flipped i.e. 0 to 1 and 1 to 0 then this time evolution can be 

represented by a unitary transformation given by 

    t U t      (3) 

where 

 

 
0 1

,  0 1
1 0

U t   
 

    
    (4) 

Suppose a measurement is performed after the quantum evolution, then the probability of 

obtaining 
1

 as outcome is 

2


 and the probability of obtaining 
0

 as outcome is

2


 

.Consider two qubits with states 1
 and 2

 such that
  

 
1 1 1

2 2 2

0 1

0 1

  

  

 

 
  (5) 

According to postulate IV, the composite state of the combined system is given by 

 1 2 1 2 1 2 1 2 1 200 01 10 11                (6) 

Here, 01 represents that the first qubit is in state 0  and the second qubit is in state 1 . 

In similar vein, other notations 00 , 10  and 11  also can be interpreted. There are some 

distinct states in composite quantum systems such that, they cannot be represented using 

Eq. (6). These states are called entangled states. One such state is given below 

 00 11      (7) 



 

 

7 

Note that if both coefficients   and   are non-zero, it is not possible to reduce Eq. 

(7) to any of the states given in Eq.(6). The concept of entangled states was first discussed 

by Albert Einstein in 1935 [12], as a non-classical behavior of microscopic particles to 

show that quantum mechanical theory was incomplete. However, both theoretically [13] 

and experimentally [14] the existence of entanglement have been verified. This concludes 

the brief introduction to quantum mechanics. 

1.2.3. Connection Between Classical Mechanics and Quantum Mechanics.  The 

common theoretical framework that links both classical mechanics and quantum mechanics 

is the Hamilton-Jacobi theory [16]. Consider a particle moving in an external potential field 

V  from the initial position  1 1q t q
 to final position  2 2q t q

 . According to classical 

mechanics the particle will follow a trajectory that minimizes the following functional 

 
2

1

( , , )  

t

t

J L t q q dt    (8) 

where q  is the particle’s position, q  is the particle’s velocity and L  is the Lagrangian 

function defined by 

 
1

( , , ) ( )
2

TL q q t q q V q    (9) 

To solve the above problem using the Hamilton-Jacobi theory the Hamiltonian 

function is defined as following 

  , ,TH p q L q q t    (10) 

where /i ip L q    is called the canonical momentum. Let min
q

S J . S  is called the 

Hamilton’s principal function. It is also called as the least action function in Lagrangian 

mechanics. By Hamilton -Jacobi theory we can obtain the Hamilton-Jacobi equation: 
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 ( , ) 0
S

H q p
t


 


  (11) 

The canonical momentum p  can also be written using the principal function as

 /p S q   . For a particle of mass m moving in a one dimensional potential field, the 

above HJ equation becomes 

 ( , , ) 0
S S

q L q q t
t q

 
  

 
  (12) 

The solution S  obtained from Hamilton-Jacobi equation is non-unique for a given 

mechanical problem. It is connected with an infinite set of potential trajectories pursued by 

an ensemble of identical particles. To get a unique solution both the initial position and 

velocity has to be defined.  The Hamilton-Jacobi equation solution naturally provides us 

with an ensemble description of particle motion and provides a basis for classical statistical 

mechanics. In classical statistical mechanics the motion of a particle is deterministic but 

unpredictable because of lack of information. Suppose we know the initial probability 

distribution  1,q t for position of an ensemble of particles the evolution of this 

distribution is given by the Liouville’s equation  

 . 0 
S

t m




  
  

  
  (13) 

In classical statistical mechanics the HJ equation and density equation are partially 

coupled we can solve the HJ equation without knowing the probability distribution but 

solving of the density equation requires knowledge about S . As mentioned earlier, in 

quantum mechanics the state of the system is completely defined by the wave function 

( , )x t  and the evolution of this wave function is dictated by the Schrodinger equation 

given in Eq. (1). 
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Now to bring in the particle interpretation of quantum mechanics (Bohmian 

Mechanics [16-17]) the following form of the wave function is considered 

 /( , ) ( , ) iSx t R x t e    (14) 

Substituting the above form of wave equation in the Schrodinger equation and splitting 

them into real and imaginary parts will result in the quantum Hamilton Jacobi equation  

 
 

2 2 2

0
2 2

SS R
V

t m m R

 
   


  (15) 

and the density equation 

 
2 2

2. 0,
R R S

R
t m


  

   
  

  (16) 

Comparing the classical HJ equation and the quantum HJ equation we will see there 

is one extra term 
2 2

2

R

m R

 
 
 

 in the quantum HJ equation which is called quantum 

potential and that is a major difference between classical and quantum mechanics. The 

density equation of quantum mechanics is of the same form as classical mechanics but 

unlike classical mechanics the HJ equation and density equation are fully coupled. Both of 

them have to be solved simultaneously. Interestingly the quantum potential term in the 

quantum HJ equation depends on the shape of the density function (i.e. the curvature 2R  

). Thus the motion uncertainty in quantum mechanics is not due to lack of information, 

nevertheless a fundamental attribute of the microscopic particle. 

There is a close connection between classical mechanics and deterministic optimal 

control theory [18]. In a general optimal control problem, given the dynamics of the system, 

 ( , )x f x u   (17) 

the objective is to find control u  that minimizes the cost function. 



 

 

10 

 
2

1

( , ) ( , ) 

t

t

J x t l x u dt    (18) 

Suppose ( , ) min  ( , )S x t J x t , then  ( , )S x t  is the solution of the HJB equation 

 ( , ) ( , ) 0
S S

f x u l x u
t x

 
  

 
  (19) 

The HJB equation given in Eq. (19) becomes the classical HJ equation when 

( , )f x u u  and ( , ) ( , )l x u L x x  . Thus the deterministic optimal control theory is simply 

a generalization of the classical mechanics. Similarly there were various attempts to link 

the stochastic processes and quantum mechanics [18-20]. However, much progress has not 

been made yet. 

1.3. DISSERTATION OUTLINE 

There are 5 Sections in this dissertation including the introductory Section. Section 

2 presents a novel Quantum inspired reinforcement learning (QiRL) algorithm. In RL 

algorithms, agents learn by interacting with the environment. Hence, the agent has two 

options: either to pick an action based on already gained knowledge or to explore by 

choosing a random action. Ideally, the agent should try a variety of actions and 

progressively favor the action that maximizes its reward. Section 2.1 starts with a brief 

introduction to current action selection mechanisms available in literature to handle the 

exploration-exploitation trade-off. Then, the details of a fast quantum search algorithm 

called Grover’s iteration are discussed. The Grover’s iteration effectively uses the 

superposition property to reduce the search time when dealing with unsorted databases. 

Next, the concept of QiRL is introduced in Section 2.2. QiRL uses a generalized version 

of Grover’s iteration to select actions. Several simulation results are presented in Section 

2.3 to demonstrate the effectiveness of the proposed algorithm. 
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In Section 3, an approximate dynamic programming approach using neural 

networks is proposed for solving a class of finite horizon stochastic optimal control 

problems. This Section starts with a brief introduction to existing literature on deterministic 

optimal control approaches. Then, the path integral formulation of the stochastic optimal 

control theory is discussed. For non-linear deterministic systems, Pontraygin Maximum 

principle based adaptive critic approaches provide a systematic way to synthesize the 

optimal control solution. However, in the presence of noise the maximum principle 

formulation becomes complex and very few methods exist to synthesize the optimal control 

solution. On the other hand, inclusion of noise in the Hamilton-Jacobi-Bellman (HJB) 

framework is very straight forward. For certain class of systems, the solution of stochastic 

HJB equation can be formulated as a path integral problem. The contribution of this 

dissertation is the development of an adaptive critic approach for synthesizing stochastic 

optimal controllers using path integrals. The developed adaptive critic algorithm is 

presented in Section 3.3 and the convergence analysis of this algorithm is performed in 

Section 3.4. 

In Section 4, two quantum inspired coordination models are developed to 

dynamically assign targets to agents operating in a stochastic environment. Two ideas 

governed this development: a quantum decision theory model and a quantum game theory 

model. In Section 4.1, the principles of the above theories are discussed through examples. 

The quantum decision theory model explains the irrational behavior of humans as a result 

of entanglement between their actions and beliefs. On the other hand, quantum game theory 

model assumes that the game players have access to entangled quantum states and then 

finds quantum strategies that will maximizes the individual pay-off. In Section 4.2, the 
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multi-agent problem considered for this study is presented and in Section 4.3 solution 

approaches are discussed. These quantum inspired coordination algorithms are scalable 

and efficient. In addition to the above algorithms, a classical game theory based 

coordination algorithm is also developed and its details are discussed in Section 4.4. 

Several simulation studies were conducted to analyze the performance of the developed 

approaches. In Section 4.6, the results obtained are presented and discussed. 

In Section 5, conclusions are drawn. 
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2. QUANTUM INSPIRED REINFORCEMENT LEARNING 

2.1. INTRODUCTION 

In many real world automation problems, the software agents need to learn how to 

perform a task optimally. A general machine learning approach used for this purpose is 

supervised learning [21]. In supervised learning, agents are trained using examples 

prepared by an expert supervisor. However, there are many problems in which such 

external knowledge might not be available. In such cases, the agents need to figure out 

themselves the optimal way of performing a task. Reinforcement learning (RL) [22-23] is 

a trial and error approach in which an intelligent agent learns to take optimal actions by 

interacting with the environment. In RL, the goal of the agent is defined by a reward 

function. The agent receives a positive reinforcement (reward) whenever its actions result 

in a favorable outcome. Typically the RL agents start from an initial state and perform a 

series of action to reach a final state. The agent might receive immediate rewards for every 

action it performs or a delayed reward that depends only on the terminal state. The RL 

researchers widely use the Markov decision processes (MDPs) [24] framework to study 

sequential decision tasks. A MDP model contains a set of possible world states  ts S , a 

set of possible actions  ta A , a real valued reward function  ,AR S  and a state 

transition probability descriptor  ,T S A . The solution of an MDP problem is the optimal 

mapping * : S A   between the states and actions that will maximize a long term 

expected reward. For a given policy   the long term expected reward is given by [22] 

    1

0

, ,t

t t k t k t k t

k

V s E R s s a s s

 


   



 
  

 
   (20) 
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where V   is also called the value function for policy  and  0,1   is the discount factor. 

Dynamic programming approaches are typically employed to solve MDP problems. 

However, they are computationally infeasible for large-scale problems. Furthermore, 

dynamic programming algorithms require full specification of the MDPs. However, RL 

algorithms can be used even when the full specification of the MDP is unavailable. One of 

the key ideas in both the dynamic programming approaches and RL algorithms is the 

Bellman optimality equation: 

        * *

'

max , , ' , , ' '
a

s

V s T s a s R s a s V s      (21) 

Here,    * maxV s V s


 . The optimality equation reduces the infinite-stage optimization 

problem to a two-stage optimization problem. Another way of writing Eq. (21) is by using 

Q-values [25-26].  

        * *

'
'

, , , ' , , ' max ', '
a

s

Q s a T s a s R s a s Q s a  
    (22) 

where  **( ) max ,
a

V s Q s a . Unlike value functions V  which are state dependent, Q-

values are dependent on state-action pairs. This form of representation is very helpful for 

model-free learning. For example, if the transition probability  , , 'T s a s  of the MDP is 

unknown, then the agents can directly interact with the environment and record their 

experience of choosing action a  in state s  by updating the Q-values. There are different 

RL techniques available to solve MDP when there is no explicit specification of transition 

probabilities. Temporal difference learning [22, 27] (TDL) is one such approach. TDL uses 

an estimate of the future reward to update the Q-values. A version of TDL called Sarsa on-

policy is presented here. 
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           1

1 1 1, , , , , ,i i i i

t t t t t t t t t t tQ s a Q s a R s a s Q s a Q s a 

        (23) 

In this technique, the future reward is approximated using 

   1 1 1, , ,i

t t t t tR s a s Q s a   and   is the learning rate. During the learning process, the 

agents need to choose actions based on their current knowledge. However, their current 

knowledge might not be complete. One of the challenges in reinforcement learning is the 

trade-off between exploration and exploitation [28]. The agent must try a variety of actions 

and progressively settle for those that maximizes their reward. Various action selection 

mechanisms are proposed in literature to resolve the exploration-exploitation trade-off. In 

[29], the agent maintains a complete but inaccurate model of its environment and optimal 

actions are chosen based on this model. A biology-inspired model-based RL scheme is 

proposed in [30] to control the balance between exploration and exploitation. In [31], an 

idea inspired by the Monte Carlo simulation literature called “probability of correct 

selection” is used to improve the action selection during exploratory phase. However, the 

most widely used approaches are 

a.   greedy policy 

b. Softmax approach 

In   -greedy policy [25], optimal actions are selected using acquired knowledge 

with probability 1   and new actions are explored with probability1  . However, there 

is no particular methodology exists for selecting the right value of   and it is problem 

dependent. To counter the above issue, an adaptive  -greedy policy that depends on the 

temporal-difference error is proposed in [32]. Furthermore, during exploration the 𝜖-greedy 

policy equally weighs all possible actions. Hence, there is no difference between best 
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action, second best action, and worst action and so on. In Softmax approach, a probability 

distribution is defined over the action set using the Q-values. The probability of selecting 

an action u  is proportional to 

 

 

 

,

,

i

i

Q s u

T

Q s a

T

a

e

e

  (24) 

where T  is a positive parameter called temperature. A high value of temperature parameter 

will make all the actions equally probable. For small value, the action with maximum Q-

value is highly probable. In contrast to   -greedy policy, Softmax approach ranks the 

actions according to the Q-values. The advantage of both the approaches is that the designer 

need to tune only one parameter to learn near-optimal control policies [33]. Designing   

and T  parameter depends on the complexity of the environment and plays a critical role in 

convergence of search algorithms and the speed of convergence. In this Section, a 

reinforcement learning algorithm inspired by the quantum mechanical phenomena is 

proposed to mitigate the exploration-exploitation trade-off. 

Quantum information processing is rapidly emerging field [34]. The basis of this 

field is the use of quantum mechanical phenomena like superposition and entanglement for 

processing of data. Exploiting these basic characteristics of quantum systems many 

quantum algorithms have emerged which can solve certain kind of difficult problems much 

faster than classical algorithm. For example Grover algorithm [5-6] can search an unsorted 

database of N  entities for a particular data in N  iterations compared to its classical 

counterpart which will take N iterations. Although these algorithms are primarily designed 

for quantum computers, they can be still simulated in traditional computers. Dong et.al [35-

37] suggested using these quantum algorithms for improving the performance of traditional 
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RL method and they call this novel methodology as “Quantum Reinforcement Learning”. 

Inspired by the above idea, a more robust RL algorithm using a generalized version of the 

Grover algorithm is developed. A brief introduction to quantum theory concepts relevant 

to our discussion are presented here. 

2.1.1. Grover Algorithm.  Quantum theory allows the microscopic particles to 

exist in a superposition state at each moment in time. A definite state is realized only when 

the state of the particle is measured. This property of quantum particles is effectively 

utilized in the construction of Grover’s algorithm. Consider a function  : 0,1f A  where 

A  is a set with N  elements. Let each element of the set A  has an index  0, 1x N  . 

However, there is only one element s A  such that ( ) 1f x  . Our objective is to search for 

that element. With a classical algorithm, the time that it will take to complete a search is

 O N . Finding a solution to the search problem is a hard task. However, recognizing a 

solution is much easier. Assume we can construct a device called oracle which can 

recognize the solution when it is presented to it. Then by superposition principle, in a 

quantum search, we can look at all possible solutions simultaneously. Assume the index x  

can be stored in n  qubits and 2nN  . Prepare the quantum mechanical system in the 

following super positional state 

 
1

0

1 N

x

x
N






    (25) 

Here, 
1

N
 is the amplitude of any index state x . Then, the probability of selecting any 

state is given by 

2

1 1

NN

 
 

 
. Apply the oracle on  . The oracle O  is a unitary operator 
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and it flips the sign of the solution element that we are searching for. The resulting quantum 

state is given by 

  
 

1

1

0

1
1

N
f x

x

O x
N

 




     (26) 

As mentioned earlier, during the measurement process the quantum mechanical 

system changes from the indefinite state given in Eq. (26) to a definite state. The result of 

the measurement process might be any one of the states  ,  0, -1x x N . Hence, the sign 

change cannot be detected by any measurement. To tackle the above issue, Grover 

proposed an algorithm that maximizes the probability of getting the right answer. He 

proposed a unitary operator which is now called the Grover diffusion operator: 

 2 N NU I      (27) 

Suppose 
0x  is the index of the searched element, then Eq. (26) can be rewritten as  

 1 0

1 1N
x

N N
 


    (28) 

where 

 
0

1

0,

1

1

N

x x x

x
N




 




   (29) 

Then, the application of the Grover diffusion operator results in 

 2 1 0

1 4 1 3 4N N N
U x

N N NN
  

     
      

   
  (30) 

If we take 21
sin

2N

 
  

 
, then 

  21
cos

2

N

N

  
  

 
  (31) 
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 22 2 231 3 4
sin 3 4sin sin

2 2 2

N

NN

          
          

        
  (32) 

 22 2 231 4
cos 3 4cos cos

2 2 2

N N

N N

           
            

        
  (33) 

Hence, Eq. (30) becomes 

 2 2
2 0

3 3
cos sin

2 2
x

 
 

   
    

   
  (34) 

Furthermore,   also can be represented as 

 2 2
0cos sin

2 2
x

 
 

   
    

   
  (35) 

Comparing Eq. (34) and Eq. (35), as long as 23

2 2

 
  the probability of measuring 0x  

increases. To further increase the likelihood of detecting 0x  the oracle and Grover 

diffusion operator can be applied l  times which results in 

  
   2 2

2 0

2 1 2 1
cos sin

2 2

l l l
UO x

 
  

     
     

   
  (36) 

However, one should be careful that 
  22 1

2

l 
 should not exceed 

2


. In quantum 

framework, the idea of increasing the probability is equivalent to boosting the amplitude. 

A generalization of boosting technique applied by Grover was proposed by Brassard and 

Hoyer [38-39]. Their idea is referred to as amplitude amplification. In their version, the 

operators O  and sU  are defined as 

   1

0 01 i

N NO I e x x

     (37) 

  21 i

N NU e I        (38) 
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Here, 
1  and 

2  are factors that control the amount of amplification. Hence, a generalized 

unitary operator for amplitude amplification is given by 

          2 1

0 01 1
l

li i

N N N NG e I I e x x UO
            (39) 

Note that Eq. (39) will be equivalent to the Grover’s searching algorithm when 
1 2     

The RL algorithm proposed in this Section uses Eq. (39) for the action selection 

mechanism. 

2.2. REINFORCEMENT LEARNING USING GROVER’S ALGORITHM 

Quantum inspired Reinforcement Learning (QiRL) uses all the main concepts of 

traditional RL. It requires goal-oriented reward function, a Q-values update rule etc. 

However, action representation, action selection mechanism and policy updates are very 

different. 

In QiRL, events are possible actions that agent could choose. The basic idea is that 

the current environmental state puts the agent in a superposition state over the set of 

possible actions. The superposition state is a vector in a 𝑚 dimensional space spanned by 

𝑚 orthonormal basis vectors denoted |𝑎〉 , 𝑘 = 1, … , 𝑚 and each basis vector corresponds 

to one of the actions. If the current state is s , then the superposition state over actions is 

 
1

m

s sk k

k

a 


   (40) 

In this formula, sk  indicates the amplitude of each action. If there is any action not 

available for state s , then 0sk   for that particular action. The probability of taking action 

ka  in state s  by definition equals to 
2

sk ; thus amplitudes are related to probability by a 

nonlinear mapping. In QiRL formulation, initially the agent doesn’t have any preferences 
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among different actions; so it could equally weigh them. Assuming the agent is at the state 

s , one representation of superposition state in first episode might be the following: 

 
4

1

1

2
s k

k

a


   (41) 

This representation indicates that the agent has equally weighted all four possible actions. 

After a while when it learns more about the environment, this representation might be 

changed to: 

 1 2 3 40.0294 0.4401 0.0970 0.8922s a a a a       (42) 

which demonstrates that the agent weighs less (close to zero) 1a and 3a  and considers 4a  

with a high probability of 80%  and 2a with probability of 19% . We will describe in details 

how these probabilities are updated in next section but the key new idea is the learning rule 

for modifying the amplitudes sk . 

2.2.1. Amplitude Amplification.  In this step, agent learns to adjust transition 

probabilities in each state using updating algorithms. In other words, the agent modifies its 

estimation of action-reward map in each state. In traditional RL techniques like TDL, only 

the Q-values are updated. However, in QiRL, the TD updating is followed by another 

updating rule, namely the Grover algorithm which amplifies actions’ amplitude based on 

their Q-values. To increase the amplitude of action ka , using Eq. (37), the oracle is 

defined as  

   11 i

N N k kO I e a a

     (43) 

Then, using Eq. (39) we get 
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   sup

li

s UO    (44) 

where  

 
1

sup

0

1 N

k

k

a
N






    (45) 

Here, i

s  is the superposition state over actions for state s  at the end of iteration i . The 

novel idea of QiRL is to relate the parameters 
1 , 

2  and l  of the Grover algorithm to Q-

values. There are two ways by which the above objective can be implemented: 

1) By fixing l  and varying 
1  and 

2  

2) By fixing 
1 &

2  and varying l   

Dong et. al. [36], proposed a version of QiRL in which they fixed 
1 2     and 

varied l . The algorithm proposed here follows the first approach i.e. l  is assigned the value 

of 1  and the parameters 
1  and 

2 are varied. For example, consider a problem in which an 

agent has four possible actions. If the first action is chosen for amplitude amplification, 

then its probability 
2

1s  computed using Eq. (44) is shown in Figure 2.1. Further, the 

probability of choosing any one of other three actions becomes 

2

11

3

s
. It can be observed 

that Eq. (44) exhibits a very nonlinear behavior. To simplify the amplification process, a 

parameterization of the following form is suggested 

 
 1

2 1

3.7

0.15

  

 

 


  (46) 
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where  0.3,1 . Figure 2.2 shows the 
2

1s variation with respect to  . The parameter   

indicates the degree of goodness of the chosen action. Higher the value of , higher the 

amplification. For 0.3  , all actions are equally weighed. 

Based on the above discussions, a RL algorithm using amplitude amplification is 

outlined next. At each state, probability distribution for action selection is created as 

follows: 

Step 1: Find the action max ( )a s  corresponding to maximum Q-value in the current state s  

and select it for amplitude amplification. 
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Figure 2.1 Probability variation with respect to changes in 
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Step 2: Find the next possible states ns  from the current state s  and determine the 

following ratio  

 

  

 

maxmax ,

max max ,

 max max ( , ) 0  0  0.3 

a

ns a

ns a

Q ns a a

Q ns a

if Q ns a or then



 



  

  (47) 

Here,  maxns a represents the future state that will result if the agent chooses maxa  

in the current state. This step provides crucial information about how good a particular 

action is in the given state and provides a measure for assigning correct weightage for the 

selected action. Note the basic idea behind Eq. (47) is that if the agent follows a greedy 

policy then it will choose maxa . Hence, the Q-values of  maxns a  is compared with the Q-

values of the all the possible future states to determine the degree of goodness of action

maxa . 
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Step 3: Determine  1 3.7     and 2 10.15   . This set of equations will change 

depending on the number of actions available to the agent. 

Step 4: Determine the probability amplitude using Eq. (44) and the square of their 

magnitude will give the probability distribution. This probability distribution will be used 

for action selection. 

Step 5: Update the Q-values using Eq. (23). 

2.3. SIMULATION RESULTS  

To evaluate the proposed QiRL algorithm, a typical grid world example with two 

agents is considered; one is predator and the other is prey. The aim of the task is to find a 

policy which will let the predator to find the prey with minimum punishment. Two specific 

cases were considered 

In one, the size of the grid world is 20  by 20 and it has obstacles in and around it. 

The prey is fixed in all time steps but the predator has four possible actions to consider on 

each time step: four directions (up, down, right and left). This grid world environment is 

shown in Figure 2.3. For simulations, an episode begins when the predator moves from 

starting point and ends when it catches the prey or reaches the maximum number of steps. 

This termination criterion indicates the time agent could explore the grid world and 

depends on the grid world’s size. If we set a smaller number of steps, then the agent has 

less time to observe action/state to updates the Q-values. Thus, this criterion is important 

for the very first episodes which agent explores more and isn’t biased to a particular policy 

yet. Agents don’t have previous knowledge about the environment and must experience it 

to find the relationship between the inputs and outputs of the system and update their 
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estimation. To explain experimental set-up in detail, we consider these two scenarios 

separately, although the first scenario is special case of the second. 

2.3.1. Case A: One Predator and Fixed Prey.  In this 20  by 20  grid world, each 

agent can start from different positions in the environment. The predator receives a reward 

of 100 when it finds the prey, for all other steps it is punished by a reward of 1 . The 

amount of the reward (punishment) is deterministic and independent of the distance 

between the goal and the agent. The maximum number of steps is 8000; which means that 

if the predator couldn’t capture the prey in 8000 number of steps the episode will be 

terminated and new episode begins. The discount factor,   is 0.99. The learning rate for 

Q-values,  is 0.04 . 

In this particular problem, the agent has four actions; hence Eq. (46) is used for 

amplitude amplification. In Figure 2.3, S1 and S2 are two possible starting points for 

predator and G indicates prey position. In this scenario each cell in the grid world relates 

to a particular state in the environment. In other words, state definition is based on X and 

Y coordination. For instance, in Figure 2.3, S1 is in state (cell) 22, S2 is in state 39 and G 

is in state 379. Overall we have 400 states including vertical and horizontal boundaries 

(e.g. 1 to 21), obstacles (e.g. 260 or 301) and available positions for agents (e.g. 146). 

Figures 2.4 and 2.5 show the learning history of the RL agent for starting states S1 and S2 

respectively. It can be observed that the number of steps the agent took to reach the final 

goal state G progressively decreases irrespective of the starting state. 

Another scenario that was considered was that there is uncertainty in the agent’s 

movement. It was assumed that if the agent executes a particular action say going up, then 

there is only 80%  chance that the agent will go up; the remaining 20%  the agent will move. 
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Figure 2.3 Task environment 



 

 

28 

in some other direction. Figures 2.6 and 2.7 illustrate the results obtained. Not much change 

in the performance was observed. To compare the performance of the QiRL algorithm with 

traditional RL algorithm a complex problem is simulated in the next section. 

 

 

2.3.2. Case B: Two Predator and One Prey.  In this experiment a scenario 

involving two intelligent predators and one randomly moving prey is considered. The size 

of the grid world is 10 by 10 and there is no obstacle in the environment. 

The state of any predator is defined by its relative distance from the prey. Both the 

predators and the prey will have five actions to choose from. They are left, right, up, down 

and stay put. One of the predators uses QRL for action selection and the other predator uses 

Softmax method for action selection .The prey moves randomly and all its actions are 

weighted equally. In case of ‘Softmax method’ the temperature parameter was set at a 

constant value of 0.9 for determining the probability distribution. 
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Figure 2.7 Predator learning history 

with noise for starting state S2 
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Experimental setup: The experiment has two phases, the training phase and the testing 

phase. In the training phase both the agents are trained separately to catch the randomly 

moving prey. During the training the starting position of the predator and the prey are 

randomly chosen. Each agent is trained for 20000 episodes. The following 

reward/punishment strategy was used for simulation 

a) A punishment of 1  for any action that does not result in predator catching the 

prey. 

b) A reward of 100 for any action that result in predator catching the prey. 

The number of steps both the agent takes to catch the prey for each of the training 

episode is shown in Figures 2.8 and 2.9. It can be observed that initially both the agents 

take more than 100 steps to catch the prey.  
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Figure 2.8 Number of steps history for 

QRL agent alone winning episodes 

Figure 2.9 Number of steps history for 

Softmax agent alone winning episodes 
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As the training progresses the number of steps decreases and both the agents are 

able to catch the prey in less than 50 steps. In the final stages of the training the QRL agent 

is able to catch the prey in a minimum of one step and a maximum of 45 steps. The Softmax 

agent has a slightly higher variance and it takes a minimum of one step and a maximum of 

70 steps for catching the prey in the final training stages. 

Testing Phase: In the testing phase both the predator agents will start from the same initial 

grid position and the prey will start from some random position. The predator’s initial grid 

position was fixed at upper left corner of the grid world. The predators do not know about 

each other and hence can occupy the same grid position any time. Both the QRL and 

Softmax agent will now use greedy policy for action selection. To compare the 

performance of QRL algorithm and Softmax algorithm, the Q-values in the intermediate 

stages of training were used for evaluation. The Q-values considered for evaluation are 

a) Initial stage – Q-values at the end of 100th training episode. 

b) Intermediate stage – Q-values at the end of 1000th episode. 

c) Final stage – Q-values at the end of 20000th episode. 

Results: For each case 50000 trails were carried out and the results are presented below. 

The winning statistics of both agents for the three different test cases is tabulated in Table 

2.1. Figures 2.10 and 2.11 show the number of steps the agents takes to catch the prey when 

Q-values at the end of 100th training episode are used for action selection. Figures 2.12 and 

2.13 show the number of steps the agents takes to catch the prey when final Q-values are 

used for action selection. 

The number of episodes the ‘Softmax agent’ alone wins during the initial stages is 

quite high compared to ‘QRL agent’ (Table 2.1). When intermediate and final Q-values are 
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used the QRL agent is able to completely outperform the Softmax agent. The reason for 

above behavior of QRL agent is during the initial stages the QRL action selection policy 

favors more exploration compared to Softmax agent. Because of the additional exploration, 

the Q-values as determined by the QRL agent is complete i.e the rewards the agent will 

receive from the environment is more accurate. The Softmax action selection policy 

provides limited exploration during the initial stages and as the Q-values become relatively 

bigger than the temperature parameter it behaves like a greedy policy. This tendency of 

Softmax agents limit its exploration space and effectively limit the accuracy of the 

determined Q-values. During the initial stages the average number of steps required for 

both the agents is quite high (Figures 2.8 and 2.9). As the training proceeded the number 

of the steps decreased as shown in Table 2.1 and Figures 2.10 to 2.13. For all the three test 

cases the average number of steps taken by the QRL agent is less than the Softmax agent. 

 

Test cases QRL alone 

winning 

Softmax 

alone 

winning 

Both agents 

winning 

Average number of 

steps 

QRL Softmax 

Initial stage 14722 31795 3482 32.76 41.23 

Intermediate 

stage 

28463 11129 10407 18.27 19.73 

Final stage 33511 15494 994 10.53 10.71 

 

 

 

Table 2.1. Winning statistics of QRL and Softmax agent 
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Figure 2.10 Number of steps history for 

QRL agent winning episodes (initial 
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Figure 2.13 Number of steps history 

for Softmax agent winning episodes 

(final stage) 

Figure 2.12 Number of steps history for 

QRL agent winning episodes (final stage) 

. 

Figure 2.11 Number of steps history for 

Softmax agent winning episodes 

(initial stage) 
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2.4. CONCLUSIONS 

A new quantum theory based reinforcement learning is proposed. In this novel 

method, the action selection mechanism uses unitary transformation to assign a probability 

distribution to the available actions. The proposed approach does not use any design 

parameter to explicitly specify the relative frequency of explorative-exploitive actions. 

However, the quantum inspired algorithm considers all possible future rewards to 

determine the degree of goodness of the selected action. Its performance was evaluated in 

a complex scenario involving two intelligent predators and one randomly moving prey 

wherein it totally outperformed the Softmax algorithm. In Softmax algorithm, adjusting 

temperature to balance the exploration-exploitation trade-off is a very crucial factor. 

However, in QiRL, this adjustment implicitly happens through the evolution of Q-values. 
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3. STOCHASTIC OPTIMAL CONTROL USING PATH INTEGRALS 

3.1. INTRODUCTION 

Many real world systems are nonlinear, dynamical in nature and may require 

decision-making in uncertain environment. These uncertainties can affect the system 

behavior in unexpected ways and cause instability. The decision-maker using only the 

current state information, need to select from a set of possible actions an optimal action 

such that the dynamical system will evolve as planned. Typically these dynamical systems 

in uncertain environment are characterized by a set of stochastic differential equations 

(SDE). Stochastic optimal control theory [2-3, 40] provides the framework to arrive at 

optimal decisions for systems modeled by SDEs. The two most commonly used approaches 

for solving the stochastic optimal control problems are the Pontryagin’s maximum 

principle and the Bellman’s dynamic programming. 

For deterministic optimal control problems, the Pontryagin’s maximum principle 

[3] leads to a set of first order differential equations (state equation and adjoint equation) 

as necessary conditions for computing the optimal pair (state trajectory and control input). 

If the final time is fixed, then the optimal control problem is reduced to a two point 

boundary value problem. The boundary conditions are specified by the state vector at the 

initial time and the adjoint vector at the final time. However, in case of stochastic optimal 

control, stochastic maximum principle leads to a backward stochastic differential equation 

(SDE) as adjoint equation with final time boundary constraint [40]. The above set of SDEs 

is difficult to solve. 

Another approach called Bellman’s dynamic programming establishes 

relationships among a family of optimal control problems with different initial states and 
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time via a partial differential equation called the Hamilton-Jacobi-Bellman (HJB) equation. 

The solution of this partial differential equation is the optimal cost function.  This nonlinear 

PDE is of first order in deterministic cases and second order in stochastic cases. For 

nonlinear dynamical systems and even for some linear systems getting analytical solutions 

for the controller using any of the above two approaches is practically impossible. Hence, 

one has to resort to numerical techniques for solving the optimal control problem. 

However, the associated computational cost is very high for higher dimensional systems. 

Approximate dynamic programming [41-44] provides a way out of the above 

bottlenecks by using reinforcement learning for identifying the optimal value function and 

the optimal controller. In this approach, the value function is incrementally updated as new 

information becomes available. A typical reinforcement learning architecture consists of 

an actor that provides optimal action (control input) information and a critic that criticizes 

the actions taken by the actor. Generally, neural networks are used to approximate both the 

control function and the cost function. The training of the respective networks takes place 

alternatively. The advantage of the above approach, called the 'adaptive critic' is that 

information regarding optimal trajectory or control action need not be known beforehand. 

Many variants of adaptive critic designs (ACDs) are now available [45]. The most common 

adaptive critic architectures are Heuristic Dynamic Programming (HDP) and Dual 

Heuristic Programming (DHP). In the HDP design, the critic network maps the control and 

state function to the optimal cost function and the action network maps the state function 

to the optimal control function. In the DHP design, the critic network directly maps the 

gradient of the cost function to the system states and thus provides better performance. To 

alleviate the computational burden of two network ACDs, single network adaptive critic 
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(SNAC) architectures [46] have been proposed. In SNAC, the dual network acts both as an 

actor and critic. All the above mentioned approaches require a model of the system in some 

form or other to train their critic networks. The success of ACDs can be measured by the 

number of current literature available in this topic and its simplicity of implementation has 

been exploited in a wide variety of applications [47-49]. 

The potential of ACDs in solving stochastic optimal control problems has not been 

fully explored. In the presence of Weiner noise, the HJB equation characterizing optimal 

value functions becomes second order and embeds information about process noise 

variance. In this paper, a continuous time single network adaptive critic architecture is 

proposed which uses the above information while solving the stochastic optimal control 

problem. 

Recently, Kappen [50] has proposed the idea of using logarithmic transformations 

of the cost function to convert the nonlinear stochastic HJB equation into a linear HJB 

equation. The above linear transformation is possible for control affine non-linear 

dynamical systems with quadratic control cost function and arbitrary state cost function. 

The Feynman-Kac Lemma connects the solution of the above linear PDE to a forward 

diffusion process. Hence, the transformed cost function can be computed as an expected 

value under a forward diffusion process. For numerical computation this expected value is 

represented in terms of path integrals. The above formulation of stochastic optimal control 

theory is called the path integral control. One of the major drawbacks of the path integral 

control framework is the requirement of large number of trajectory samples to accurately 

estimate the optimal controller. Hence, generating comprehensive solutions for the entire 

operating domain of the system will be computationally expensive. However, adaptive 
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critic formulations can effectively handle the curse of dimensionality problems. In this 

paper, a continuous time adaptive critic algorithm that effectively uses the path integral 

framework is proposed. 

3.2. PROBLEM FORMULATION 

Consider a system described by a stochastic differential equation of the following 

form 

  ( )dx f x dt B udt d      (48) 

where x  is the state vector of dimension n , n  is a compact subset, mu  is 

the control vector of dimension m , : n nf   and n mB   represent known system 

dynamics, m   is the Weiner process with mean 0  and variance t  and m m   is the 

noise variance of the dynamics. The objective of the control problem is to find the optimal 

control  * , ,  fu x t t t  that minimizes the following cost function: 

            
,

1
,  

2

ft

T

f

t
x t

C x t x t Q x u Ru d    
 

   
 
  (49) 

where  .  is the terminal cost at the final time 
ft ,  .Q  is the instantaneous state cost and 

0m mR    is the control weighting matrix. The optimal cost-to-go is defined by 

  , min ( , )
u

J x t C x t  (50) 

From stochastic optimal control theory [40], the optimal cost-to-go function is the 

solution of the stochastic HJB equation  
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 

 (51) 

with the boundary condition     , f fJ x t x t . Here, 
uL is the infinitesimal generator of 

the stochastic process specified in Eq. (48); It is defined by 

     
2

2

1
trace

2

T T T

uL f x Bu B B
x x


 

  
 

 (52) 

Since the cost function is quadratic in u , minimization of Eq. (51) yields 

  * 1, T J
u x t R B

x

 
 


 (53) 

Then, Eq. (51) becomes 

   *

11

2

T

T

u

J J J
BR B Q x L J

t x x

  
   
  

 (54) 

The stochastic HJB equation given in Eq. (54) is nonlinear and does not lend itself 

to analytical solutions. Hence, numerical techniques are needed to find solutions. In this 

paper, a continuous time adaptive critic learning scheme is proposed to solve the stochastic 

HJB equation. 

3.3. ADAPTIVE CRITIC SCHEME FOR STOCHASTIC SYSTEMS 

For stochastic systems, the recursive expression for cost function involves the 

expectation operator as shown below: 
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
  (55) 

Here,   *,g x t t u   is the path cost and 0  . Note that the computation of 

 ,J x t  requires a set of sample paths. In adaptive dynamic programming literature, noise 

effect is typically ignored. However, to accurately estimate the cost function, sufficient 

number of sample trajectories is needed. For multidimensional problems, this might result 

in high computational cost. One way of reducing the computational cost is to use 

importance sampling(reference). Path integral control approach associates with each 

sample path a probability value. The optimal cost function can then be expressed as a 

weighted sum of individual path costs. The adaptive critic approach proposed in this paper 

uses the path integral formulation to adaptively sample trajectories of importance. The 

theory behind the path integral control approach is explained in the next subsection. 

3.3.1. Path Integral Formulation.  Assume that the noise variance of the 

stochastic system given in Eq. (48) can be related to a constant parameter   by the relation  

 1T R    (56) 

Then the path integral formulation [50-52] allows us to convert the nonlinear stochastic 

HJB equation into a linear form by using a logarithmic transformation 

   , log ,J x t x t    which results in 
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 (57) 

The linear stochastic HJB is given by 
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  (58) 

with the boundary constraint    ( , ) exp /f fx t x t    . The above linear PDE is 

called the Chapman-Kolmorgov backward equation. The Feynman-Kac Lemma [84] 

connects the solution of the above PDE to a forward diffusion process. This solution can 

be computed as an expected value using the Feynman-Kac formula: 
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 
   (59) 

The expectation value is the sum over all possible sample paths originating from x  

at time t  and propagated until time reaches t  . Propagation is performed by using an 

uncontrolled forward diffusion process given below: 

 ( )dy f y dt B d     (60) 

with  y t x .For writing Eq. (59) as a path integral, the time interval  ,  t t   is split 

into N  intervals of equal length t  with 1 2 3 1........ Nt t t t t t       . The 
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corresponding states at these time intervals are represented by

 1 2 1,  ,  ........., Nx x x x y t    . The resulting path integral equation is given by 

 1
1

2 3 1 1 1 1 1
0

2

( , )
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lim ..... ( , | , ) exp ( , )  
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N k k k k N N
t
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 
  

(61) 

where 1 1( , | , )k k k kx t x t    is the transition probability of the uncontrolled dynamics given 

in Eq. (60) to propagate from  ,k kx t  to  1 1,k kx t  . In most systems, the dimension of the 

control vector is usually less than that of the state vector. Since it is assumed that both noise 

and the control input acts on the same subspace, the states that are not directly actuated will 

behave deterministically. Thus, the transition probability will depend only on the directly 

actuated states. Hence, the state vector is partitioned into directly actuated and non-directly 

actuated states. Equation (60) is rewritten in the following form: 
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  (62) 

where 
T
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 with a m mB  . The transition 

probability of the forward diffusion process is given by 
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By using Eq. (63) and the assumption given in Eq.(56), Eq. (61) is rewritten in the 

following path integral form as 
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Optimal control *( , )u x t  is computed by the relation 
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From Eq. (65), the probability of a sample path contributing to the computation of 

the optimum cost-to-go function is given by 

 

   

 

 

1 1

1 2 1 1 1

1 1

exp ,
1

, ,.... / ,
,

det 2

t
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N N
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a T a

S
x t

P x x x x t
x t

t B B





 



 



 
  
 



 (67) 

The proposed adaptive critic scheme uses Eq. (67) to adaptively sample the trajectories and 

is described next. 
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3.3.2. Adaptive Critic Algorithm.  Let  ,  iJ x t  be the cost function estimate at 

the end of iteration 0i  . Then, the iterative procedure is mathematically represented by 

the following set of equations:  

i) Generate trajectories using the forward diffusion process given in Eq. (60). 

Sample the generated trajectories according to the following probability 

distribution: 

 

   

 

 

1

1

exp ,
1

,.... / ,
,

det 2

t

path i

N

i

N iN
T

a T a

S
x t

P x x x t
x t

t B B

 



 







 
   
 



 (68) 

where     , exp , /i ix t J x t   . Let  y t  represent one of the sampled trajectories. 

ii) Compute  1 ,i x t 
 using the following relation 

   

1

2 3 1 1 1
0

ˆ ( , )

1
lim ..... exp ( , )  

det 2

i

t

patha a a i

N N N
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T
a T a

x t

S
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t B B




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 


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  
 

 
   

 

     (69) 

iii) Compute 1iu   from 1ˆ ( , )i x t   using the optimal control relation given in Eq. 

(66) 

iv) Compute the cost function  1 ,  iJ x t
 using the following relation: 

 
          
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     


 (70) 
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    1 , ,i i

f fJ x t J x t   (71) 

For the next iteration, the paths are sampled using the updated cost function  1 ,iJ x t
. 

Convergence analysis of this iterative procedure is performed in the next section. 

3.4. CONVERGENCE ANALYSIS OF THE ADAPTIVE CRITIC SCHEME 

3.4.1. Relation Between  1 ,iJ x t
 and  ,iJ x t .  In this section, a partial 

differential equation characterizing the relation between  1 ,iJ x t  and  ,iJ x t  is derived.  

Theorem 1: Assume an arbitrary function  , :i nJ x t    with continuous iJ , 
iJ

t





,
iJ

x




and 

2

2

iJ

x




 and it satisfies the condition  

  
2

2 2

2
1

i i i
i J J J

J x x x
t x x


  

    
  

  (72) 

where   is a suitable constant. Then, the cost function  1iJ   computed using Eqs. (68) to 

(71) satisfies the following condition: 

    1

1
1 1 11

0
2

i

i
T

i i i

u

J
L J Q x u Ru

t



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   


  (73) 

Proof: Equation (70) can be rewritten as  
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By applying Ito’s integration [84] formula to  1,
i

NJ x t    along the trajectory  y   we 

get 
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  

 (75) 

Note that the path  y   generated during the sampling process is equivalent to 

propagating the following stochastic process  

 1( ) idy f y dt Bu B d      (76) 

Substituting Eq. (76) in Eq. (75) results in 
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 (77) 

Taking expectation on both sides leads to 
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 (78) 

Let      1 1, , ,i i i

dJ x t J x t J x t   . Hence, Eq. (74) becomes 
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By using the definition of Eq. (52), Eq. (79) is simplified as 
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Equation (80) is claimed as the solution of the following PDE 
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
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  
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  (81) 

with boundary condition  1

1, 0i

d NJ x t 

   . To prove the above claim, expressing 

  1 ,i

ddJ y  
 in terms of Ito’s lemma leads to 
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Integrating Eq. (82) from t   to t    and taking expectation results in 
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Since  1

1, 0i

d NJ x t 

   ,     1 , ,

t

i

d

t

J x t y d



   


   . Thus, Eq. (80) can be 

construed as the solution of the PDE defined in Eq. (81). Expanding the terms of the PDE 

results in 
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t



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  (84) 

with the boundary condition   1( , )i

f fJ x t x t  . Hence, Theorem 1 is proved. The 

above equation describes the relationship between  1 ,iJ x t
 and  ,iJ x t . Note that 1iu   

depends on iJ   

3.4.2. Scalar Diffusion Problem. The convergence analysis of the adaptive critic 

scheme described in the previous section is performed on a scalar diffusion problem. The 

governing equations of the diffusion process are given by 

 dx udt d     (85) 

The objective of the controller design is to minimize the following objective function 

  
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21
( , )

2

ft

f f

t
x

c x t Q x t Ru dt
 
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 
   (86) 

For the adaptive critic scheme, the optimum cost function at iteration i  is approximated as 

follows 

     2, ( )i i iJ x t a t T t x    (87) 
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where ( ) 0ia t   and ( ) 0iT t  . The iteration process can be started with any 0 ( ) 0T t  . For 

the purpose of convergence analysis 1N  , t   and 
1Nx y   . 

The state transition probability for the uncontrolled dynamics of the stochastic system 

defined in Eq. (85) is given by 

  
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  (88) 

The transformed cost function  1 ,i x t 
 can now be computed as 
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Evaluation of Eq. (89) results in 
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The control 1iu   can now be computed as 
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Evaluation of Eq. (91) leads to 
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To interpret the above control expression consider the deterministic discrete dynamics of 

the stochastic system defined in Eq. (85)  

 1s s sx x u     (93) 

with 0,1,2....s F . The discretized cost function is defined as 

 2 2 2( , ) ,  
2

s
d

s f F j ds s dF f

j s

c x s Q x Ru T x T Q




      (94) 

The dynamics of the cost function parameter dsT  is described by the discrete Riccati 

equation  

 

2 2

( 1) ( 1)
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( 1) ( 1)
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2

2 2

d s d s

ds d s

d s d s

T RT
T T

R T R T


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
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  
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 (95) 

Comparing Eq. (113) and Eq. (122), the expressions for 1iF   and dsT are very similar. Thus 

the sampling process (Eqs.(88) to (90)) results in a controller expression that depends on 

the discrete Riccati equation solution. 

 To compute  1iT t  substitute    1 1 1 2,i i iJ x t a t T x     in Eq. (84) that results in 

        1 2 1 2 1 1 1 2
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i i i i i
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       (96) 

Let the parameter  1ia t
 be updated such that 

    1 2 11

2

T

i i

t

a t T d       (97) 

Substituting Eq. (97) and Eq. (113) in Eq. (96) results in 
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      
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i i i iT t x T t x F Rx F        (98) 

      
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i i i iT t T t F R F       (99) 

Equation (99) is the continuous time Riccati equation with the boundary condition

 f fT t Q . For computer implementation  1iT t
 is approximated as  
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By using Eq. (99) and Eq. (126) a backward difference equation satisfying the boundary 

condition  1i

f fT t Q  can be derived as 
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The adaptive critic iterative procedure for the scalar diffusion problem can be summarized 

as follows 

i) Select 0 ( ) 0T t    

ii) Compute  1iF t  using 
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iii) Compute  1iT t  using 
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iv) Repeat steps (ii) and (iii) until convergence is achieved. 

The convergence of the above iterative procedure to the optimal solution when started with 

an initial stabilizing controller  0F t  is shown in [53-54]. 

For numerical illustration of the above iterative procedure the cost function 

parameters are assumed as 1R  , 2.5fQ  , 5ft s  and ( ) fT t Q . Figure 3.1 compares 

the solution of the iterative procedure with that of the Riccati equation. It can be observed 

that the adaptive critic algorithm converged to the optimal solution by the end of 6th 

iteration. 

 

 

 

 

3.4.3. Vector Diffusion Problem.  The governing equations of a class of linear 

systems are given by 

  dx Ax u dt d      (104) 
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Figure 3.1. Comparison of the adaptive critic and Riccati equation solutions 

(Scalar case) 
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The objective of the controller design is to minimize the following objective function 
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For the adaptive critic scheme, the optimum cost function at iteration i  is approximated as 

follows 

    , ( )i i T iJ x t a t x T t x    (106) 

where ( ) 0ia t  ,  i n nT t   is a positive symmetric matrix. The iteration process can be 

started with any 0 ( ) 0T t  . For the purpose of convergence analysis 1N  , t   and 

1Nx y   . 

The state transition probability for the uncontrolled dynamics of the stochastic system is 

given by 

  
 

       
11

/ , exp
2det 2

T T

T
x y x t t t


 

 

 
     

 
  (107) 

where  
y x

t Ax


 
   

 
. The transformed cost function  1 ,i x t 

 can now be 

computed as 

 

   

 
      

 

1

1

,

, / , ,

( )
exp exp

2det 2

i

i

i T i
T T

T

x t

dy y t x t y t

a t y T t ydy
t t



   

 


 





  

     
      

   





 (108) 

After some algebraic manipulation Eq. (108) is written in the following form 
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  
 

1

1 2

1
,  exp

2det 2

i T T

T
x t dy y C y C y




 

  
   

 
  (109) 

with  

 

 

 

2

2 2

1

2
2

exp
2

2

i

T T

i

T
T

x
S Ax

a t
S RS x Qx

T tR
C

S R
C



  


  



 



 

 
    

 

 
  
 



  (110) 

Evaluation of Eq. (109) results in 

  
 

 1 1

2 1 2

1

2 1
, exp

2det 2

n

i T

T
x t C C C

C




 

  
  

 
 (111) 

The control 1iu   is computed as 

 
 

1
1 1

1 ,

i
i

i
u R

x t x

 




 



 
 


  (112) 

Evaluation of Eq. (112) leads to 

 
 

 
1 1

2

2

i

i i

i

x T t
u F x

R T t



 

 


   
 

  (113) 
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      

1 1 2 2
2 2 3

1

3

1

2

1
      = 2

     

i T T

T

n n

i

S S
u R S R S C Q x

x x

R I A C R I A Q x

F x



  


 





    
     

   

 
    

 

 

  (114) 

with 

 

  
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1 1

3

2

1
2

i
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n n

C R R T t R R

F R I A C R I A Q
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



 

   

 
      

 

  (115) 

The expression for control given in Eq. (114) can be further simplified as follows: 

 
  
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1
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1
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          2
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C R R R T t R R

R R T t R R
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 






    

   
  (116) 

Further by using the matrix inversion lemma for   
1

2 iR T t 


   it can be shown that 

      
1

3 2 2i iC R R R T t T t   


        (117) 

Applying the matrix inversion lemma for   
1

2 iR T t 


   once again results in 

        
1

3 2 2 2i i iC R I T t R T t T t     


          (118) 

Hence 
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 (119) 
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To interpret the above control expression, consider the deterministic discrete dynamics of 

the stochastic system defined in Eq. (104), 

 
 1

     

s n s s

d s s

x I A x u

A x u

 



   

 
  (120) 

with 0,1,2....s F . The discretized cost function is defined as 

 s( , ) ,  
2

s
d T T T T

s F f F j j s ds dF f

j s

c x s x Q x u Ru x Qx x T x T Q





 
     

 
   (121) 

The dynamics of the cost function parameter dsT  is described by the discrete Riccati 

equation  

  
1

( 1) ( 1) ( 1) ( 1)2 2 4 2T T

ds d d s d d d s d s d s dT Q A T A A T R T T A  


        (122) 

Comparing Eq. (119) and Eq. (122), the expressions for 1iF   and dsT are very similar. Thus 

the sampling process Eqs. (107) to (111) results in a controller expression that depends on 

the discrete Riccati equation solution. 

 To compute  1iT t
 substitute    1 1 1,i i T iJ x t a t x T x     and Eq. (114) in Eq. 

(84)that results in 

           

          
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1 1 1 1 1 1

1 1 11
                              trace 0

2

T
T i i T i i T i i

T
T i T T i i

x T t x a t x A F T t x x T t A F x

T t x Qx x F RF x

     

  

    

   
  (123) 

Let the parameter  1ia t
 be updated such that 
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      1 11
trace

2

T

i T i

t

a t T d       (124) 

Substituting Eq. (124) in Eq. (123) results in 

                    1 1 1 1 1 1 11
0

2

T T
i i i i i i iT t A F T t T t A F Q F RF               (125) 

Equation (125) is just the continuous time Riccati equation with the boundary condition

 f fT t Q . For computer implementation  1iT t
 is approximated as  

  
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i i
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T t T t
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Substituting Eq. (126) in Eq. (125) results in 
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  (127) 

Equation (127) is rewritten in a compact form as 

    1 1i i

syl syl sylA T t T t B C      (128) 

with 
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Equation (128) is a Sylvester equation and a unique solution 1( )iT t  exists as long 

as 
sylA  and 

sylB  do not have any common eigenvalues. The adaptive critic iterative 

procedure can be summarized as follows: 

v) Select a 0 ( ) 0T t    

vi) Compute  1iF t
 using 
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   

  (130) 

vii) Compute  1iT t
 using 

    1 1i i

syl syl sylA T t T t B C      (131) 

viii) Repeat steps (ii) and (iii) until convergence is achieved. 

The convergence of the above iterative procedure to the optimal solution when started with 

an initial stabilizing controller  0F t  is shown in [53-54]. For numerical illustration of the 

above iterative procedure the cost function parameters are assumed as 

 
0 1 2 0 3 0 11 12

,  Q= , ,  ( )
2 1 0 2 0 3 21 22

T T
A R T t

T T

       
         
       

  (132) 

Figure 3.2 compares the solution of the iterative procedure with that of the Riccati 

equation. It can be observed that the adaptive critic algorithm converged to the optimal 

solution by the end of 6th iteration. 



 

 

58 

 

 

 

 

 

 

 

0 0.5 1 1.5 2 2.5 3 3.5 4 4.5 5
3.8

4

4.2

4.4

4.6

4.8

5

time

T
1
1

 

 

1st iteration

2nd iteration

3rd iteration

4th iteration

5th iteration

6th iteration

Ricatti Equation

0 0.5 1 1.5 2 2.5 3 3.5 4 4.5 5
0

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

1.8

2

time

T
1
2

 

 

0 0.5 1 1.5 2 2.5 3 3.5 4 4.5 5
0

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

1.8

2

time

T
2
1

 

 

0 0.5 1 1.5 2 2.5 3 3.5 4 4.5 5
3.8

4

4.2

4.4

4.6

4.8

5

time

T
2
2

 

 

(a) T11 (b) T12 

(b) T21 
(c) T22 

Figure 3.2. Comparison of the adaptive critic and Riccati equation solutions 

(Vector case) 
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3.5. IMPLEMENTATION USING NEURAL NETWORKS 

For nonlinear systems, adaptive critic schemes are typically implemented using 

neural network models. In this Section, the cost function  ,iJ x t  is approximated using a 

multi-layer neural network model. Since the optimum cost function depends both on the 

current state and the time-to-go; it is approximated as 

    , ,  i i

fJ x t NN x t t    (133) 

The analytical computation of the  ˆ ,x t  using the path integral expression given in Eq. 

(69) is very difficult. However, numerical Monte Carlo techniques can be employed to 

evaluate the path integral. In this paper, the Metropolis-Hastings sampling scheme [55-56] 

is employed to sample trajectories as per the probability distribution given in Eq. (68). 

Details of the sampling scheme are given in Table 1. In numerical implementation, the path 

cost     1, ig y t t u t t      is approximated by 
t

pathS 
. The neural network 

training procedure is given as follows: 

Step 1: Generate M  samples of the state vector x  randomly. For each sample of 

state vector choose randomly a time step ,i ft t t   . Then, execute the 

following steps. 

Step 2: Generate the initial trajectory  1 2 1, ,......., Ny x x x   by propagating the state 

vector 1x x  from time 1t t  upto time 1Nt t     using the following 

deterministic dynamics: 

 1 ( )  k k k kx x f x t Bu t        (134) 
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 1 2 1, ,......., Ny x x x   

for 21:n N   

Define a Gaussian distribution centered on the directly actuated states 

 1 2 1, ,.......,a a a

Nx x x 
 of the initial trajectory with variance equal to  . 

Local update: 

 '

11y x   

for 2: 1j N    

        Draw a sample a

jz  from the proposal distribution. 

        Find na

jz  from the state dynamics equation given in Eq. (134). 

        Compute    1 2 1 1 2 1

1 1
exp , ,......., , ,.. ....,t t

path N path j Np S x x x S x x z x
 

 

 

 
  

 
  

        If ( 1p  ) 

             j jx z   

        else 

             
j jx z  with probability  1 p  

       endif 

         '

jy j x   

end 

 

Table 3.1. Metropolis-Hastings sampling scheme 
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Global update: 

Compute    '1

1 1
exp t t

path pathp S y S y
 

  
  

 
  

If ( 1 1p   ) 

'y y   

else 

'y y  with probability  11 p   

endif 

 1 2 1, ,.......,n n n

Nx x x y    

1n n   

end  

 

where 1

k

T

k

x

NN
u R B

x

  
   

 
 with 1,  2,  .....k N . 

Step 3: Generate 2N  sample trajectories using the Metropolis-Hastings sampling 

scheme explained in Table 1. 

Step 4: Compute   1,
i n

N fJ x t t     using the critic network. 

Step 5: Compute  1 2 1, ,.......,t n n n

path NS x x x


 for all the sample paths. 

Step 6: Compute the average cost  

      1 2 1 1 2
ˆ , , ,......., ,  , 1,  2,  3,......t n n n n

path N N f
n

J x t S x x x J x t t n N

        (135) 

Table 3.1. Metropolis-Hastings sampling scheme (cont.) 
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Step 7: Repeat steps (2) to (6) for the next sample. 

Step 8: Train the critic network to minimize the following error 

     
2

11
, ,i i

M

E J x t J x t
M

    (136) 

Step 9: Repeat steps (i) to (viii) until the error E  reaches the desired level. 

Remark 1: The proposed adaptive critic scheme belongs to the class of reinforcement 

learning schemes called value iteration scheme. The initial weights of the neural network 

can be chosen randomly. However, convergence of the proposed adaptive critic to the 

optimal solution depends heavily on the sampling procedure. To minimize the search 

space, it is recommended to start the training process with a stabilizing controller. 

3.6. SIMULATION RESULTS 

The proposed controller design methodology was applied to two bench mark 

problems. 

3.6.1. Case A: Scalar Example.  The first problem considered is a diffusion 

problem for which analytical solution for optimal controller exists. The governing equation 

of the diffusion problem is given by 

 dx udt d     (137) 

where  0.1  . Objective of the controller design is to minimize the following cost 

function 

  
2

2 21
( , )

2

ft

f f

t
x

c x t Q x t Ru Px dt
 

   
 
   (138) 
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In this study, the cost function parameters are selected as 5fQ  , 5P  , 1R   and 5sft 

. The cost function is approximated using a single hidden layer neural network with twelve 

neurons. The neurons are constructed using tansigmoid basis functions. The training of the 

critic network was done using “Matlab R2014a” neural network toolbox. The first iteration 

of the critic network training was carried out with an arbitrarily chosen stabilizing 

controller 20initu x  . The critic network was trained for a range where  1,1x  . 

Initially, the performance of the adaptive critic controller is evaluated with zero noise input. 

Figure 3.3 shows the performance of the adaptive critic controller for different initial 

conditions. 

The analytical optimal control solution for this scalar case is given by 

 

2

2

f

f

opt

f

f

PR Q

PR QP
u x

R PR Q

PR Q









 






  (139) 

where 
 / fP R t t

e


 . Figure 3.4 shows how the training process iteratively improves the 

adaptive critic controller performance. It can be observed that as the number of iteration 

steps increases the adaptive critic solution tends toward the analytical solution Figures 3.5 

and 3.6 show the performance of the adaptive critic controller in the presence of noise. It 

can be observed that even in the presence of noise the performance of the adaptive critic 

controller is very similar to that of the optimal control solution. 
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Figure 3.4. Adaptive critic controller performance at different iteration steps 
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Figure 3.5 PI Adaptive critic controller performance with noise     0.9ix t 

(a) State history (b) Control history 

(a) State history (b) Control history 

Figure 3.6 PI Adaptive critic controller performance with noise     0.9ix t  
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3.6.2. Case B: Nonlinear Vector Example.  The proposed PI adaptive critic 

controller is now applied to a difficult Vanderpol oscillator problem. Since the path integral 

formulation requires that both the control and the noise act in the same subspace it is 

assumed that noise is present only in velocity state evolution. The governing SDEs of the 

system are given by 

 
 

1 2

2

2 1 1 2(1 )

dx x dt

dx x x x u dt d  



     
 (140) 

where 0.9  and  0.1  . The objective is to minimize the following cost function: 

 
1

( , ) ( ) ( )
2

ft

T T T

f f f

t

c x t x t Q x t x Px u Ru d
 

   
 
  (141) 

The cost function parameters are 

 
5 0

10;  ;  1
0 10

fQ P R
 

   
 

 (142) 

The cost function in this case was approximated using a single hidden layer neural 

network with 20 neurons. The neurons are constructed using tansigmoid basis functions as 

in the scalar example. The weights and bias of the neural network were initialized to zero 

i.e. no initial stabilizing controller was used. Figures 3.7 and 3.8 show the performance of 

the PI adaptive critic controller for different initial conditions. It can be observed that in 

both the cases the adaptive critic controller was able to stabilize the oscillator. 

 



 

 

67 

 

 

 

 

0 0.5 1 1.5 2 2.5 3 3.5 4 4.5 5
-0.1

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

time(s)

p
o
s
it
io

n

 

 

0 0.5 1 1.5 2 2.5 3 3.5 4 4.5 5
-0.7

-0.6

-0.5

-0.4

-0.3

-0.2

-0.1

0

0.1

time(s)

v
e
lo

c
it
y

 

 

0 0.5 1 1.5 2 2.5 3 3.5 4 4.5 5
-1

-0.5

0

0.5

1

1.5

2

2.5

time(s)

C
o
n
tr

o
l

 

 

Figure 3.7 Adaptive critic controller for Vanderpol oscillator problem with noise 

   1 20.7,  0.7i ix t x t    
  

 

(a) Position history (b) Velocity history 

(c) Control history 

(d)  
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3.7. CONCLUSIONS 

A novel adaptive critic framework based stochastic optimal controller design 
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Figure 3.8 Adaptive critic controller for Vanderpol oscillator problem with noise 

   1 21,  1i ix t x t    

(a) Position history (b) Velocity history 

(c) Control history 
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combines the recently developed path integral control approach with the powerful adaptive 

critic design methodology and provides a robust iterative algorithm for solving stochastic 

optimal control problems. The novelty of the proposed adaptive critic algorithm is in using 

the stochastic model for state propagation and directly solving for the second order 

stochastic Hamilton-Jacobi-Bellman equation. The adaptive critic controller was tested on 

a scalar diffusion problem for which analytical solution already exists. The resulting 

performance matches the analytical solution very closely. The methodology was also 

applied on a difficult Vanderpol oscillator problem. The adaptive critic algorithm was able 

to come up with stabilizing solution for all the test cases. Since no constraining assumptions 

were made in its development, the path integral based adaptive critic controller is widely 

applicable. 
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4. QUANTUM INSPIRED COORDINATION MECHANISMS 

4.1. INTRODUCTION 

The control of Multi-agent systems is a fast developing research area. In [57] 

(Tomlin), an air traffic management problem is considered. Future aircrafts will have full 

autonomous capability and they should be able to choose their own optimal flight paths. 

However, when multiple aircrafts are involved a robust negotiation mechanism is required 

to synthesize conflict-free trajectories. Tomlin et.al [57] proposed an approach using hybrid 

control theory to address the above issue. Ren [58], proposed a decentralized scheme using 

virtual structure approach for spacecraft formation flying. Behavior based approaches are 

used in [59] for multi-robot teams formation control. A potential based approach was 

proposed in [60] for distributed cooperative control of multiple vehicle formations using 

structural potential functions.  

Most of the control approaches available in the literature does not consider the 

effect of stochastic noise on the dynamics of the agents. In real world problems, the 

assumption that the agent’s dynamics are deterministic is rarely valid. One approach to 

find the optimal action when there is uncertainty in agent’s dynamics is to model the 

problem as a Markov decision process (MDP). The MDPs satisfy the Markov property, i.e. 

an agent’s transition to a new state depends only on the current state and the action choice 

of the agent. The application of MDP model for single agent decision-making problems is 

a well-studied problem. Typically dynamic programming [1] and reinforcement learning 

[22] approaches are employed to synthesize optimal policies for a MDP problem. The 

application of MDP framework for multi-agent systems is a relatively new field. Boutilier 

[61] showed how various single-agent decision-making mechanisms can be readily 
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extended to multi-agent settings. However, he assumed that any new information is readily 

available to all agents. The extension of MDP framework to cases where the agent has 

incomplete information about the environment is called partially observable MDPs 

(POMDPs). Bernstein [62] used the decentralized framework to solve multi-agent 

problems where the individual agents make decisions based only on local observations and 

called it as decentralized partially observable Markov decision process (Dec-POMDP). 

Furthermore, they showed that the decentralized MDP problems are computationally 

complex then a centralized MDP. Guestrin et. al. [63] developed a multi-agent planning 

algorithm that uses system dynamics and factorized linear value function approximations 

to reduce the computational complexity of the multi-agent planning algorithm. 

4.1.1. Game Theory.  Game theory [64-66] examines situations where a player’s 

reward depends both on his decision and the behavior of other players. The mathematical 

tools of game theory have found applications in a wide variety of fields. It has been applied 

to economics, biological sciences, social sciences etc. Some of the most commonly used 

game theory terminologies are introduced in this section: 

Payoff function: In game theory, the payoff function assigns to each player a reward 

depending on his strategy and the strategy of other players. 

Nash Equilibrium:  The Nash equilibrium is a solution concept used in game theory to 

define a playing situation in which none of the players will benefit by unilaterally changing 

their strategies. 

Best Response: The best response is the strategy that a player should play to achieve a 

desired outcome, given the strategies of other players. 
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Learning in games: Game theory as such cannot be applied for dynamic situations. 

Furthermore, it assumes that the players are rational. Hence, it is typically used to perform 

equilibrium analysis in situations where multiple intelligent agents interact. However to 

accommodate the non-rational behavior of agents, equilibrium concepts like Nash 

equilibrium can be thought of as a long-run outcome of a non-equilibrium dynamic process 

that models learning or adaptation of the agents. There are different learning models 

available in literature. They can be generally classified as individual level model or 

aggregate level model.  

Fictitious play: The fictitious play learning model was introduced as an iterative 

solution procedure to find equilibrium solutions of discrete zero-sum games [67]. It was 

later extended as a learning model in multi-player games by Fudenberg and Levine [68]. 

The fictitious play is a belief based approach in which players form beliefs about the 

behavior of other players and act rationally with respect to these beliefs. A standard model 

of fictitious play is presented here. Consider a N   players game. Let iA  denote the action 

set of the player i and  i j ia t a A   represent the action played by the player i  at time t . 

Further, the empirical frequency of player i  upto time t  is given by  

     
1

t
t

i s i s

n

q a I a n a


    (143) 

Here,  iI A  is the indicator function and  t

i sq a  denotes the count that how many times 

the player i  has played action sa  upto time t . Now each player will select a best response 

with respect to the joint empirical frequency distribution. One of the assumptions typically 

used in fictitious play is that the agents make a simultaneous and independent action 
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selection. Let 
i ia A   represent the action selected by any player other than agent i , then 

the best response of the player i  is given by 

   max ,
i

i

i a i i
A

a E f a a
    (144) 

where  ,i jf s s  is the pay-off function. 

4.1.2.  Evolutionary Game Theory. Evolutionary game theory also provides a 

mathematical framework to account for irrational behavior of players. Hence, it can be 

used to describe the time evolution of player’s strategies. Evolutionary game theory (EGT) 

originated through the works of mathematical biologist John Maynard smith [69-70]. He 

adapted the methods from traditional game theory to explain the natural selection process 

among biological species. In a similar vein, EGT studies the interaction among different 

population of players and how the players might change the strategy they follow at the end 

of any interaction. The dynamic evolution of player’s strategies is described using 

differential equations. A central concept in evolutionary game theory is the notion of 

evolutionarily stable strategies (ESS). 

Evolutionarily stable strategies: ESS is a strategy which, if adopted by all the 

players of a population, then the natural selection process itself will not allow any 

competing alternative strategies to invade. Thus, ESS can be interpreted as an equilibrium 

strategy of the natural selection processes. The differential equations that describes how 

populations playing specific strategies evolve are known as the replicator dynamics. 

Consider a two-player game that has a set of pure strategies  1 2 3,  ,  ,  ..... nS s s s s . 

Let,  ,i jf s s  denote the pay-off function and is  is the strategy played by player ‘1’ and 

js  is the strategy played by player ‘2’. The proportion of players playing strategy is  at 
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time t  is denoted by ( )iP t . The evolution of player’s strategies over a period of time is 

described by the following differential equation: 

     ( ) ( )i i iP t P t f t f t    (145) 

    
1

( ) ,
n

i j i j

j

f t P t f s s


   (146) 

    
1

( )
n

j i

j

f t P t f t


   (147) 

where   is the learning rate, ( )if t  is the expected utility of player ( )iP t  at time t  and ( )f t  

is the expected utility for the entire population at time t . In this Section, a game theory 

based approach is proposed for dynamic target assignment of multiple agents moving in a 

stochastic environment. 

4.1.3. Quantum Game Theory. There have been attempts to recast the classical 

game theory using quantum formalism [71]. This new field called the quantum game theory 

finds ways of using quantum phenomena to maximize a player’s utility. Meyer [72] 

analyzed a coin tossing game and demonstrated that by utilizing quantum superposition a 

player could win with certainty against a classical player. Eisert et. al. [73] proposed a 

generalized quantization technique for converting a 2-player-2-strategy classical game into 

quantum game. Further, they showed that the dilemma of the classical prisoner’s dilemma 

game can be resolved by entangling the states of the two players. The concept of quantizing 

has also been extended to multi-player classical games [74].  

To demonstrate the use of quantum theory in classical games an example problem 

is presented here. The concept of entanglement in quantum mechanics describes the 

unintuitive behavior of two quantum particles prepared in a special quantum state. When 
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these quantum particles are separated spatially and their spins are measured, the results 

obtained indicate that the spins of the particles are anti-correlated. Hence, it is possible to 

predict the state of both quantum particles by just knowing the state of one particle. Another 

way to interpret this phenomena is that the behavior of one particle influences the behavior 

of the other particle. Quantum game theory often exploits the concept of entangled states 

to increase the space of possible strategies and maximize the utility of quantum players. 

Consider the classical 2- person prisoner’s dilemma game. In this game each player has 1 

move and they have to choose among two pure strategies: confess and defect. The payoff 

matrix of this game is given in Table 4.1. 

 

 

 

 

The payoff matrix is such that there is a conflict between the Nash Equilibrium 

solution and Pareto optimal outcome. The Nash equilibrium solution (Defect, Defect) is 

not a good one for players, however if both players have chosen (confess, confess) then 

both would have got a higher payoff of (3, 3). In the absence of communication, there is a 

dilemma among players in choosing the best action. Eisert et. al. [73] quantized the 

classical prisoner‘s dilemma game and showed that if entanglement is introduced between 

the player’s actions, then the dilemma can be resolved. In an entangled state, the space of 

joint action strategies is reduced and the player’s actions are non-classically correlated.  

 Bob: Confess Bob: Defect 

Alice: Confess (3,3) (0,5) 

Alice: Defect (5,0) (1,1) 

Table 4.1. Pay-off matrix in prisoner’s dilemma game 
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In quantum formulation, the classical strategies confess (C) and defect (D) are 

represented as basis vectors C  and D  of the two dimensional Hilbert space. The state 

of the game at any stage is described by a vector in the tensor product space which is 

spanned by the following basis vectors: CC , CD , DC  and DD . Here, the first entry 

refer to player 1’s state and the second entry refers to player 2’s state. The space of 

strategies available to both the players are represented by a set of 2 2  unitary matrices: 

  
   

   

cos / 2 sin / 2
ˆ ,

sin / 2 cos / 2

i

i

e
U

e





 
 

 

 
  

 
  (148) 

where 0     and 0 / 2   . Then, the classical strategies confess and defect are 

represented respectively by the following unitary matrices: 

  
1 0

ˆ ˆ 0,0
0 1

C U
 

   
 

  (149) 

  
0 1

ˆ ˆ ,0
1 0

D U 
 

   
 

  (150) 

The initial state of the game is given by 

 0
ˆ CC     (151) 

with 

   ˆ ˆˆ exp / 2i D D     (152) 

Here, ̂  is a unitary operator that is known to both players and  0, / 2   is called the 

entanglement factor. Suppose 1Û  and 2Û  are the strategies of the players 1 and 2 

respectively then the final state of the game is given by 
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  †

1 2
ˆ ˆˆ ˆ

f U U CC       (153) 

The unitary operator †̂  represents the measurement device. If both the players are 

assumed to play rationally, then from the classical prisoner’s dilemma game the best 

strategy for both the players is D̂ . The initial and final state of the game for different values 

of the entanglement factor is given below: 

 
0

0
f

CC

DD






 
  



  (154) 
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1

2
2

f

CC i DD

DD







 

  
 


  (155) 

Hence, for both the separable game  0   and the maximally entangled game 

2



 

 
 

the final state of the game is similar to the classical version. However, if the 

players switch to a quantum strategy given below: 

 
0

ˆ
0

i
Q

i

 
  

 
  (156) 

Then, the following final state results in the maximally entangled case 

 
 0

1

2
2

f

CC i DD

CC







 

  
 


  (157) 

Thus, in the quantum version of the prisoner’s dilemma game the state DD  is no 

longer the Nash equilibrium point. However, a new Nash equilibrium point CC  appears 
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and both the Nash equilibrium and the pareto-optimal solution coincides. It is important to 

note that the realization of quantized prisoner’s dilemma requires hardware that behaves 

quantum mechanically.  

4.1.4. Quantum Decision Theory.  The mathematics of quantum theory has found 

applications in other branches of science like cognition science. Quantum decision theory 

(QDT) [75, 82] is a branch of cognition science which employs the mathematical 

formalism of quantum theory to explain various features of human decision making. The 

governing belief is that humans are highly sensitive to context, sequential effects and the 

measurement disturbance. The human cognition models based on classic probability find 

it more and more difficult to accurately represent an accumulating array of complex 

phenomena. However, models based on quantum theory are more general and can 

efficiently represent the above complex phenomena. The process of quantum decision 

making is very different from the classical decision making process. In traditional theory 

of decision making, the decisions are based on a utility function. The optimal decision 

corresponds to the maximal expected utility. However, in QDT, the concept of an optimal 

decision is replaced by a probabilistic decision. Thus, QDT is emerging as an alternative 

approach to explain observed irrational behaviors and choices in human decision-making 

[75-80]. 

The results of the quantum version of the prisoner’s dilemma game can also be 

explained using QDT. Martinez [80] proposed a connection between quantum decision 

theory and quantum games by introducing a Hamiltonian of interaction. His version of the 

prisoner’s dilemma game is discussed here. In the EWL model, the deviation from the 

classical result is explained using the interaction between strategies of the two players. It 
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is assumed that both the players are given an entangled state and they have to choose from 

a set of strategies (represented using unitary transformations) to play the game. However 

in QDT, the interaction is assumed to be between the player’s action space and his belief 

space. Further, the strategic space of both the players is restricted to the subset of classical 

strategies i.e. 

  
   

   

cos / 2 sin / 2
ˆ ,0

sin / 2 cos / 2
U

 


 

 
  

 
  (158) 

The decision-making process is assumed to take place in two stages. During the 

first stage, the state of the game evolves according to the rational considerations. Assume 

that the player 1 is intending to play defect i.e. 1
ˆ ˆU D . However, he does not know the 

strategy of player 2. Then, the disentangled state of the game is represented by 

   2
1 2

2

0

0

ˆ  cos
2

sin
2

D U CC






 
 
 
  

     
  

  
  

  

  (159) 

During the second stage, the state of the game evolves due to irrational considerations and 

this is represented by 
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  
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2 1
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    

   
    

      
   
    

    
   
    

    

  (160) 

Here, the entanglement factor   models the belief of player 1 about the state of the game. 

From Eq. (160), the probability that the player 1 will choose confess is given by 

  1 2Pr sin
2

C
 

  
 

  (161) 

According to Eq. (161), if 0  , player 1 will act rationally and choose the 

dominant strategy irrespective of the player 2’s strategy. However, in the maximally 

entangled state  / 2   player 1 completely deviates from the rational behavior and 

chooses to confess. Thus, in Martinez’s model of quantum prisoner’s dilemma game the 

deviation from Nash equilibrium strategies is characterized as irrational behavior of the 

players. Suppose player 2 acts rationally, then 2
ˆU D . Hence, the composite state of the 

game (See Eq. (160)) becomes 

 
2 sin cos

2 2
i CC DD

 


   
    

   
  (162) 

However, Eq. (162) is only in the mind of the player 1. Similarly, player 2 will also have a 

composite state of the game in its mind. Thus, QDT model of the prisoner’s dilemma 

explains how humans deviate from normative behavior (Nash strategies). In the multi-
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agent task assignment problems situations may arise that require agents to deviate from 

rational behaviors (behaviors that will maximize their individual rewards) in order to 

achieve a desired collective behavior. 

4.2. PROBLEM DEFINITION 

 The objective here is to optimally coordinate a group of agents to reach specific 

target points in a stochastic environment as shown in Figure 4.1. 

 

 

  

 

 

 

Let the dynamics of each agent be governed by the following stochastic differential 

equation: 

 ,  1,2,3,....,a adz u dt d a n      (163) 

where  
T

a a az x y is the position of the agent with ,a ax y  , 2

au   is the control 

input, a  denotes the agent label and n  is the number of agents. The term 2d   

represents the Weiner process with zero mean and variance dt  and 2 2  is the variance 

of the noise process. The controller for each agent is designed using finite horizon 

Figure 4.1. Multiple agents moving in a stochastic environment to reach unique targets 
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stochastic optimal control theory with the objective of minimizing the following cost 

function: 

         
1

,
2

T
T

a a

t

C z t z T u Ru d   
 

   
 
   (164) 

Different controller design methodologies can be utilized to synthesize a variety of 

stabilizing controllers. In Eq. (164), T is the final time, 2 2R   is a control weighting 

matrix and   ax T  is the end cost. Suppose the objective here is that the agent should 

reach a target 
j  at final time T  then, it is represented as 

     
2

2
a a jz T z T


     (165) 

where 0  is a scalar constant. Let 
*

ju  be the optimal control, then from finite-horizon 

stochastic optimal control theory the equation for optimal controller is given by 

 *

/

j a

j

z
u

T t R








 
  (166) 

However, our original objective is to coordinate multiple agents to reach specific target 

points. Let m  be the number of targets. We will assume that n m  and each target is 

assigned to at least one agent. Then, the overall objective is to minimize the following cost 

function: 

  
1

( , ) ,
n

a

a

V z t C z t


   (167) 

where 1 2 ...
T

T T T

nz z z z    .  
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4.3. SOLUTION APPROACHES 

To solve the above problem consider the case in which there is only one agent and 

it has the choice of reaching any one of the target points, then this objective can be 

expressed in terms of the following end cost function  

     
2

1

log exp
2

n

a a j

j

z T z T


  


  
     

  
   (168) 

Here, 0   is a scalar constant and it is defined as follows 

 1 TR     (169) 

Then, the expression for optimal controller can be expressed in terms of single-agent, single 

target optimal controllers 

  * *

1

/ ,
m

a j a j

j

u p z t u


   (170) 

where  

  
 

 

2

2

2

2
1

exp
2 /

/ ,

exp
2 /

a j

a j a

n
a j

j

z

T t R

p z t
z

T t R



 




 

 
 
  
 
 
 
  
 



  (171) 

The expression in Eq. (170) relates the single-agent, single-target optimal 

controllers with single-agent, multiple-target optimal controllers. The solution approaches 

proposed for the original problem (multiple agent, multiple targets) is inspired by the 

expression given in Eq. (170).  
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Three different approaches are discussed to address the multi-agent, multi-target 

problem. The first approach uses the fictitious play learning model as a negotiation 

mechanism to drive the agents to unique targets. This approach is inspired by the game-

theoretical approach suggested in [83] to solve a static target assignment problem. The 

second and third approaches are developed using the entanglement phenomena introduced 

in section 1. 

4.4. GAME THEORY BASED COORDINATION MECHANISM 

In this approach, it is assumed that the agents are playing a game in which, they 

have to choose a target that will maximize their individual utility. The utility functions will 

depend both on the assignment profile and the time. Typically in game theory only static 

utility functions are used. To utilize the game theory approach in the dynamic target 

assignment problem, it is assumed that at every time instant, a static game is played and 

the agent has to choose one of the targets. Initially, no agent is aware of the strategies 

played by other agents. As time progresses, they learn the strategies of other agents and 

choose an action that will maximize an expected utility function. The learning process is 

modelled using the fictitious play approach. In fictitious play, each agent models the 

behavior of every other agent by keeping track of their actions at every time instant. An 

empirical probability distribution is then derived using the above information and it is used 

to compute the expected utility function.  

To use the game theory approach, utility functions are defined for each action of 

the agent. Furthermore, best action derived using the above utility functions should result 

in the desired collective behavior i.e. each agent reaches a unique target at the final time 
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T  with minimum the cost (see Eq.(167)). Taking into consideration the above concerns 

the following approach is proposed: 

At every time instant t , an assignment probability vector that depends on the agent’s 

target choice is defined for all the targets  

        1 2, ; , , ... ,
j j jj np s t p s t p s t p s t    

 
  (172) 

Here, 
11p   is the probability that agent 1 will be assigned target 1 , 

12p   is the probability 

that agent 2 will be assigned target 1 and so on. Let,  1 2 .... ns s s s  is the target 

assignment profile i.e. 1s  is the target chosen by agent 1, 2s  is the target chosen by agent 2 

and so on. Then, the utility values 
1ap   for any agent a  is obtained as follows 

 

 

if 

/ ,

else

0

end

j

j

a j

a a j a

a

s

p p z t

p















  (173) 

The utility vector depends on the probability vector  / ,a j ap z t given in Eq. (171). In this 

way, the agent with the highest probability of reaching target 
j  gets assigned to it. By 

using the utility vector defined in Eq. (172), a target utility function is derived as follows 

     
1

,
j j aj j

n

a

U s t V n s p
    



 
   

 
   (174) 
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Here, 0
j

V   is the target value and   is the Dirac delta function. Further,  
j

n s


 

is the number of vehicles with 0
jap    and   is the desired number of targets that need to 

be assigned to target
j .The utility, any agent k  will receive for choosing a target 

j  is 

defined in the following way 

 

     

     

      
1 1

, , / ,

           /

            = /

j j

j j j j T jj

j j j jj

k k

n n

a k a

a a

a k l

U s t U s t U s s t

V n s p V n s s p

V n s p n s s p


 

    

   

   

   

 

 

   
      

   

  

    (175) 

where l  is the agent other than agent k  that chose target 
j  and / ks s denotes the 

assignment profile in which agent k  is not assigned any target. 

As mentioned earlier, the fictitious play approach requires that each agent should 

keep track of the actions selected by other agents at every time instant. This aids in creating 

an empirical probability distribution (See Eq. (143)) about the action selection behavior of 

other agents. Then, each agent chooses an action that maximizes the following expected 

utility function: 

   
/

arg max E , / ,
aj

a k j a
s s

s U s s t


   (176) 

Note that, in the above equation the expectation value is computed using the empirical 

probability distribution. The expectation is taken over all possible target assignment 

profiles and this makes the above step computationally time consuming. Then a target 

probability is defined using the following relations: 

    / , 1; / , 0N N

a j a a j ap z t p z t     (177) 
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Then, the controller value is computed using Eq. (170) 

   *

1

/ ,
m

N

a j a j

j

u p z t u


   (178) 

4.5. ENTANGLEMENT BASED COORDINATION MECHANISM 

4.5.1. Approach 1.  The proposed approach is inspired from the Martinez’s 

prisoner’s dilemma QDT model. In this approach, each agent has m  composite state 

representations of its intentions with each one corresponding to the intention of choosing a 

particular target. 

 

   

   

   

1

1 1 1 1 1 1

2

2 2 2 2 2 2

/ , , 1 / , ,

/ , , 1 / , ,

.

/ , , 1 / , ,

N N

a a a a a

N N

a a a a a

m N N

a a m a m m a m a m m

i p z t p z t

i p z t p z t

i p z t p z t

      

      

      

  

  

  

  (179) 

Here, 
j  represents choosing a target other than

j . To rewrite the above set of equations 

in a form similar to that given in Eq. (162), define  
 2/ , sin

2

j

aN

a j a

t
p z t





 

  
 
 

. Here, the 

parameter  j

a t


  aids agent a  in modelling the collective behavior of other agents. It is 

assumed that the agent’s decision-making process evolves in two stages.  

i) In the first stage, the agents act in a self-interested way and assign a probability 

distribution to their intentions. One way of assigning the probability distribution is to 

utilize the single-agent, multi-target probability distribution presented in Eq. (171). 

ii) In the second stage, each agent communicates its intention probability distributions to 

other agents. The communication overhead can be eliminated if each agent can deduce 



 

 

88 

the intention probability distribution of other agents on its own (for example: use the 

position information of other agents). Then, every agent updates its entanglement 

model given in Eq. (179) and uses this to compute the controller. The step-by-step 

procedure for the second stage is given below: 

a) At every time instant t  assign each agent a unique target. This assignment 

depends on  / ,a j ap z t . For example, target 
1  is assigned an agent with the 

highest  1 / ,a ap z t .Remove this agent from the agent list. For target 2 , 

assign from the updated agent list, the agent with the highest  2 / ,a ap z t  and 

so on. Each agent can perform this computation independently. However, the 

target assignment in this step is performed myopically. The final target each 

agent will reach depends on  / ,N

a j ap z t  

b) Based on the above assignment, update the probability distribution

 / ,N

a j ap z t . Since  .N

ap  is a probability distribution, it should obey the 

normalization condition: 

  
 2

1 1

/ , 1 sin 1
2

jn n
aN

a j a

j j

t
p z t





 

 
   

 
 

    (180) 

Further, we require that each agent should reach unique targets, hence the following 

conditions are required to be satisfied at the final time 

      1 2

1 1 1

/ , 1,  / , 1,........ / , 1
n n n

N N N

a a a a a m a

a a a

p z T p z T p z T  
  

       (181) 

c) Compute the controller using the following equation 
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   *

1

/ ,
m

N

a j a j

j

u p z t u


   (182) 

Updation procedure for  / ,N

a j ap z t : The entanglement factors are updated using a 

differential equation. Suppose agent ‘a’ is assigned target
j , then the entanglement factor 

j

a


  is updated using a differential equation of the following form: 

          ~ 0

1
. / , . / , ,  / ,j j

a

T mean N

a a a a g a a j at p z t p z t K p z t
m

 
        

 (183) 

where    ~ ~

~

1
. / , . / ,

1
a

mean

a a a

a

p z t p z t
m



 . The entanglement factor is constrained to lie 

within the range    0,j

a t


  . In Eq. (184), the product term    ~. / , . / ,a

T mean

a a ap z t p z t

will have non-zero value whenever more than one agent compete for the same target. 

Further, the design parameter 
gK  ensures that  / ,N

a j ap z t  will increase even when the 

product term is zero. This parameter can be kept as a constant or inversely varied with 

respect to  T t   

 
1

gK
T t c


 

  (185) 

To maintain the normalization condition given in Eq. (180) the other entanglement factors 

j

a


  are varied as follows: 
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  
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j j
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a a
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t
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 
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 



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
  (186) 
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Since each agent synthesize their own composite representation of the system state, the 

agents are not exactly entangled in the quantum mechanics sense. That is, the actions of 

the agents are not naturally anti-correlated. Hence, the assignment procedure and the design 

parameter 
gK  both play a major role in ensuring that the agent’s reach unique targets at 

the final time T . In the next section, another approach that directly uses the entanglement 

phenomenon in the quantum mechanics sense is proposed. This approach does not require 

any assignment procedure. 

4.5.2. Approach 2.  In approach 2 also, each agent has a set of equations of the 

form presented in Eq. (179). However, 
 / ,N

a j ap z t
 is updated in a different way than 

that given in Eq. (183). A replicator dynamics model is used to describe the time evolution 

of 
 / ,N

a j ap z t
 . 

          
1

/ , / , , / , ,
n

N N N

a j a a j a j k j k j

k

p z t p z t a p z t k      


 
  

 
   (187) 

Here,  ,j a  is the utility of agent a  with respect to target
j . In approach 1, Eqs. (183) 

to (186) preserve the normalization condition given in Eq. (180). However, in approach 2, 

Eq. (187) preserves the following normalization condition:  

  
1

/ , 1
n

N

k j k

k

p z t


   (188) 

To implement Eq. (187) in a decentralized approach, each agent should know the utilities 

every other agent receives. The target assignment mechanism for approach 2 is 

demonstrated using an example. Consider a problem in which three agents need to reach 

three unique targets at the final time. The entanglement equations of agents are given by, 
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Agent 1: 

    1

1 1 1 1 1 1 1 1 1 1 1/ , , 1 / , ,N Ni p z t p z t           (189) 

    2

1 1 2 1 2 2 1 2 1 2 2/ , , 1 / , ,N Ni p z t p z t           (190) 

Agent 2: 

    1

2 2 1 2 1 1 2 1 2 1 1/ , , 1 / , ,N Ni p z t p z t           (191) 

    2

2 2 2 2 2 2 2 2 2 2 2/ , , 1 / , ,N Ni p z t p z t           (192) 

Agent 3: 

    1

3 3 1 3 1 1 3 1 3 1 1/ , , 1 / , ,N Ni p z t p z t           (193) 

    2

3 3 2 3 2 2 3 2 3 2 2/ , , 1 / , ,N Ni p z t p z t           (194) 

Furthermore, 

    
3 3

1 2

1 1

/ , 1 ; / , 1N N

k k k k

k k

p z t p z t 
 

     (195) 

Agent 1 has three possible actions: i) to choose target 1  ii) to choose target 2  or iii) to 

choose target 3 . Equations (189) and (190) are interpreted in the following way: 

1 1,   - Only Agent 1 chooses 1 . 

1 1,   - Agent 1 chooses 2 or 3 and one of the other agents chooses 1  

2 2,   - Only Agent 1 chooses 2 . 

2 2,   - Agent 1 chooses 3 and one of the other agents chooses 2  
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The above interpretation implicitly represent the preference order of agent 1. It prefers the 

three targets in the following order:
1 , 2  and 

3 . This can be represented by assigning a 

probability distribution over agent 1’s choices 

 

   

    

     

1 1 1 1 1 2

1 1 1 1 1 2 1

2 1 1 1 1 2 1

Pr / ,

1 / , / , ;

1 / , 1 / ,

T
N

N N

N N

t p z t

p z t p z t

p z t p z t



 

 

    

  

   

  (196) 

Then, agent 1 randomly chooses an action using Eq. (196). This information is 

communicated to agent 2. Suppose agent 1 chooses 3 , it means that the state 2 2,   in 

Eq. (190) is realized. For agent 2, this is equivalent to realizing one of the following states 

in Eq. (191): 1 1,  , 2 2,  Hence, agent 2 can either choose 1  or 2 . A probability 

distribution is assigned to agent 2’s action choices using Eq. (191) 

      2 2 1 2 2 1 2Pr / , 1 / , 0
T

N Nt p z t p z t       (197) 

Suppose agent 2 chooses 1 , then the state  1 1,   in Eq. (191) is realized. For agent 3, 

this is equivalent to realizing state 1 1~ ,   in Eq. (193). Hence, agent 3 can only choose

2 . Accordingly agent 3’s probability distribution vector is given by 

    3Pr 0 1 0
T

t    (198) 

  The above selection process mimics the entanglement phenomenon in quantum 

mechanics sense. If a quantum computer is available, then the agents need not have to 

communicate the current state information to each other. Table 4.2 lists the possible ways 

Eq. (197) and Eq. (198) can vary depending on agent 1’s choice. The described selection 
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process transfers information from agent 1 to agent 2 and agent 2 to agent 3. Any other 

preferred order can also be used. 

Agent 

1’s 

choic

e 

Agent 2’s Probability vector 

Agent 

2’s 

choic

e 

Agent 3’s 

Probability vector 

1        2 2 2 2 2 2 2Pr 0 / , 1 / ,
T

N Nt p z t p z t    

 

2     3Pr 0 0 1
T

t 

 

3     3Pr 0 1 0
T

t 

 

2       2 2 1 2 2 1 2Pr / , 0 1 / ,
T

N Nt p z t p z t      

1     3Pr 0 0 1
T

t 

 

3     3Pr 1 0 0
T

t 

 

3       2 2 1 2 2 1 2Pr / , 0 1 / ,
T

N Nt p z t p z t      

1     3Pr 0 1 0
T

t 

 

2     3Pr 1 0 0
T

t 

 

 

 

4.6. SIMULATION RESULTS 

Simulations were performed to compare the performance of all the three 

approaches. It was assumed that all the agents have same dynamics. The noise variance   

of the agent’s dynamics (See Eq.(163)) is taken as 0.1. Simulations were performed for the 

following scenarios 

i) Five agents with all the agents starting from the origin.  

Table 4.2. Probability distribution of agent 2 and agent 3  
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ii) Five agents with two of the agents starting from origin and three other agents 

starting from  0,12 .  

iii) Ten agents with all the agents starting from the origin.  

iv) Twenty agents with all the agents starting from the origin. 

In all the above cases, the final target points lie at equal intervals on a semi-circle of radius 

6 units. The final timeT was fixed at 10 seconds. The cost function parameters were chosen 

as 1R   and  100  . Comparisons were made by using the same noise realization for all 

the three approaches. 100 test cases were simulated for each of the approaches to study the 

noise effect. The design parameters used for simulation are listed below (Table 4.3): 

 

 

 

 

 

 

 

Case I: Figure 4.2 shows the results obtained using classical game theory approach for one 

of the sample runs. The total cost accrued in each of the sample runs for all the three 

approaches are compared in Figure 4.3. It can be observed that the differences in 

performance between the three approaches is very minimal. Table 4.4 lists the maximum, 

minimum, average and standard deviation of the total costs obtained with each of the 

Methodology Design parameter values 

Classical Game theory approach 1,  =1
j

V   

Entanglement Approach 1 10gK   

Entanglement Approach 2 
   

   ~

, 10 10 / ,

, 10 / ,

j a j a

j a j a

a p z t

a p z t

  

  

 

 
 

Table 4.3. Design parameter values 
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approaches. The entanglement method using approach 1 performs slightly better compared 

to the other approaches. The time taken for the simulation to run with each of the 

approaches is also listed in Table 4.4. Classical game theory based approach takes the 

maximum time as compared to the entanglement based approaches. A main contributing  

 

 

 

 

factor to the computational time is that each agent calculates the maximum expected utility 

by going through all the possible unique assignment profiles. For case I, this amounts to 

120 unique assignment profiles. Among the entanglement methods, second approach takes 

more computational time than the first approach. This is due to the fact that the second 

approach uses a random number generator for the action selection process. 
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Figure 4.2. Classical game theory approach (sample run (case I)) 
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Case II: In case II, the agents start from different initial positions. Figure 4.4 shows the 

results obtained using the entanglement method (Approach 1) during one of the sample 

runs. The total cost accrued during each sample run is compared in Figure 4.5. The 

entanglement method (Approach II) performs much better than the other two approaches.  

Table 4.5 lists the performance statistics obtained for case II. Simulation results indicate 

that Approach I is sensitive to initial conditions. Hence, the effect of the design parameter 

(100 cases) Entanglement 

method 

(Approach 1) 

Entanglement 

method 

(Approach 2) 

Fictitious play 

Minimum 8.4798 9.5440 9.6653 

Maximum 16.6769 16.6859 18.1994 

Average 12.7734 12.8617 12.5975 

Standard deviation 1.6165 1.4742 1.4752 

Time (s) 141.7714 216.0761 337.4022 

Table 4.4. Performance comparison for case I 

Figure 3 Total cost comparison for case I 

0 10 20 30 40 50 60 70 80 90 100
8

10

12

14

16

18

20

Simulation runs

to
ta

l 
c
o
s
t

 

 

Approach 1

Approach 2

Classical game theory

Figure 4.3. Total cost comparison for case I 
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gK  on the performance of Approach I was studied. Table 4.6 shows the performance statics 

for different values of
gK . Variations in performance indicate that the designer need to tune 

the value of 
gK  to obtain desired performance. However, for both case I and case II, the 

second entanglement approach performed consistently better than that of the classical game 

theory approach. 
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(100 cases) Entanglement 

method 

(Approach 1) 

Entanglement 

method 

(Approach 2) 

Fictitious play 

Minimum 17.4118 13.4201 16.3560 

Maximum 30.7587 27.2374 28.5442 

Average 24.7072 21.5058 21.7343 

Standard deviation 2.6826 2.7119 2.4431 

Time (s) 150.197935 216.0761 333.3727 

(100 cases) 

Entanglement 

method(Approach 1) 

5gk   10gk   10 / ( )gk T t c  

 

Minimum 17.4240 17.4118 17.8537 

Maximum 34.2371 30.7587 48.7480 

Average 24.8178 24.7072 26.9622 

Standard deviation 2.8478 2.6826 4.3496 

Time 151.7901 150.1979 151.2624 

Figure 4.5. Total cost comparison for case II 

Table 4.5. Performance comparison for case II 

Table 4.6. Design parameter effect on the performance of Approach I 
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Case III and Case IV: For case III and case IV simulation, the number of agents were 

increased to ten and twenty respectively. The classical game theory based approach cannot 

be employed for both these cases, since the number of unique target assignment profiles 

exceeds 300000. However, both the entanglement based approaches can be easily utilized 

to coordinate the agents. Figures 4.6 and 4.7 shows the results obtained during two of the 

sample runs using Approach II. Table 4.7 and 4.8 compares the performance obtained for 

cases I, III and IV with Approach I and Approach II, respectively. It can be observed that 

for both the approaches, computational time increases almost linearly with increase in 

number of agents. However, Approach II performs consistently better than Approach I in 

terms of maximum cost, minimum cost and standard deviation in costs. As demonstrated 

earlier, the design parameter gk , played a crucial role in the performance of Approach I. 

For the 20 agents case, the value 10gK   resulted in very poor performance. Hence, this 

gain was increased to 30  to obtain the performance listed in Table 4.7. 
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Figure 4.6 Entanglement (Approach II) with 10 agents 

Figure 4.7 Entanglement (Approach II) with 20 agents 
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4.7. CONCLUSIONS 

Dynamic target assignment of multi-agent systems operating in a stochastic 

environment is a very complex problem. Three coordination approaches are developed to 

tackle the above problem. The first approach uses classical game theory ideas to 

dynamically assign targets. The other two approaches uses quantum inspired coordination 

models. The implementation of classical game theory approach was limited by the number 

of participating agents. However, quantum inspired approaches are scalable to large-scale 

(100 cases) 

Entanglement method 

(Approach 1) 

5 agents 

10gk   

10 agents 

10gk   

20 agents 

30gk   

Minimum 8.4798 21.9928 45.5187 

Maximum 16.6769 68.2732 156.4333 

Average 12.7734 29.1979 68.4166 

Standard deviation 1.6165 6.1664 21.2780 

Time (s) 141.7714 302.9712 705.6765 

(100 cases) 

Entanglement method 

(Approach 2) 

5 agents 10 agents 20 agents 

Minimum 9.5440 20.2938 45.6062 

Maximum 16.6859 31.6877 59.9715 

Average 12.8617 26.2754 52.1360 

Standard deviation 1.4742 2.4852 3.0041 

Time (s) 216.0761 424.153 918.1783 

Table 4.7. Performance statistics for Case III and Case IV using Approach 1 

 

Table 6: Performance statistics for Case III and Case IV using approach 2 

Table 4.8. Performance statistics for Case III and Case IV using Approach 2 

 

Table 6: Performance statistics for Case III and Case IV using approach 2 



 

 

102 

multi-agent systems as demonstrated in 20 agent-20 target simulation results. Among the 

quantum inspired approaches, approach 2 performs consistently well, independent of the 

number of participating agents. However, the performance of approach 1 highly depends 

on the entanglement gain gK . The implementation of Approach 2 either requires a quantum 

hardware or a communication network among agents to relay the information regarding 

realized entangled states. No such limitation exists for Approach 1. 
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5. CONCLUSIONS 

Quantum theory provides a promising new research framework to find ideas that 

can reduce the computational cost of current machine learning and optimal control 

synthesizing algorithms. Generally to utilize the power of quantum mechanical phenomena 

like superposition, entanglement etc. one requires quantum computers, however the 

pioneers of quantum decision theory have shown us that quantum models can be effectively 

used to explain complex phenomena like irrational human behavior. Inspired by this idea, 

three major issues in learning and control of stochastic systems were studied for 

reformulation using ideas from quantum theory. These issues and proposed solutions are 

listed below: 

 Exploration-exploitation trade-off in reinforcement learning algorithms 

A new approach that uses Grover’s algorithm to assign probability distribution over 

available actions is proposed. At every state, depending on the current Q-values, the agent’s 

action state evolves quantum mechanically from the initial superposition state. Further, the 

degree of quantum evolution depends upon the relative difference between Q-values of the 

possible future states. Unless the relative difference is quite high, at any learning time-step 

the agent might prefer equally all the possible actions. This is one of the major difference 

between QiRL action selection mechanism and the currently popular approaches like  - 

greedy, Softmax approach etc., wherein a user defined time-dependent parameter like or

T decides the degree of exploration/exploitation. The effectiveness of the QiRL algorithm 

was demonstrated using a complex prey-predator problem, wherein it totally outperformed 

the Softmax approach. 
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 Synthesizing optimal controller for stochastic systems  

A new single network adaptive critic approach that uses path integrals to adaptively 

estimate the optimal cost function is proposed. This approach iteratively estimates the 

optimal cost function using numerically computed state trajectories samples. For a 

stochastic system, to accurately estimate the optimal cost function large number of 

trajectory samples are required. However, the proposed approach minimizes this 

requirement by using an adaptive importance sampling technique. This technique is 

derived using the path integral formulation of stochastic optimal control theory. For a 

certain class of linear stochastic systems, the convergence of the proposed adaptive critic 

algorithm to optimal control solutions was theoretically demonstrated. Further, this 

methodology was also applied on a difficult stochastic Vanderpol oscillator problem. It 

was able to come up with stabilizing solution for all the test cases. 

 Dynamic target assignment of multi-agent systems in stochastic environment 

Two quantum inspired coordination mechanisms that are easily scalable to large-

scale multi-agent systems are proposed. These approaches uses the entanglement 

phenomena to effectively reduce the dimension of the joint action space of the multi-agent 

systems. In Approach I, each agent models the influence of other agents on its action 

choices using an entanglement model. Hence, an agent’s action space and its belief space 

are entangled. In Approach II, all the agent’s action spaces are physically entangled. This 

physical entanglement is simulated classically by explicit communication. Approach II, 

performed consistently well in all the test cases. The performance of Approach I depended 

on the magnitude of a user-defined parameter. For both the approaches, the computational 

time increases linearly with the increase in number of agents.  
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