11,128 research outputs found

    System calibration method for Fourier ptychographic microscopy

    Full text link
    Fourier ptychographic microscopy (FPM) is a recently proposed quantitative phase imaging technique with high resolution and wide field-of-view (FOV). In current FPM imaging platforms, systematic error sources come from the aberrations, LED intensity fluctuation, parameter imperfections and noise, which will severely corrupt the reconstruction results with artifacts. Although these problems have been researched and some special methods have been proposed respectively, there is no method to solve all of them. However, the systematic error is a mixture of various sources in the real situation. It is difficult to distinguish a kind of error source from another due to the similar artifacts. To this end, we report a system calibration procedure, termed SC-FPM, based on the simulated annealing (SA) algorithm, LED intensity correction and adaptive step-size strategy, which involves the evaluation of an error matric at each iteration step, followed by the re-estimation of accurate parameters. The great performance has been achieved both in simulation and experiments. The reported system calibration scheme improves the robustness of FPM and relaxes the experiment conditions, which makes the FPM more pragmatic.Comment: 18 pages, 9 figure

    Stent optical inspection system calibration and performance

    Get PDF
    Implantable medical devices, such as stents, have to be inspected 100% so no defective ones are implanted into a human body. In this paper, a novel optical stent inspection system is presented. By the combination of a high numerical aperture microscope, a triple illumination system, a rotational stage, and a CMOS camera, unrolled sections of the outer and inner surfaces of the stent are obtained with high resolution at high speed with a line-scan approach. In this paper, a comparison between the conventional microscope image formation and this new approach is shown. A calibration process and the investigation of the error sources that lead to inaccuracies of the critical dimension measurements are presented.Postprint (author's final draft

    Image synthesis for SAR system, calibration and processor design

    Get PDF
    The Point Scattering Method of simulating radar imagery rigorously models all aspects of the imaging radar phenomena. Its computational algorithms operate on a symbolic representation of the terrain test site to calculate such parameters as range, angle of incidence, resolution cell size, etc. Empirical backscatter data and elevation data are utilized to model the terrain. Additionally, the important geometrical/propagation effects such as shadow, foreshortening, layover, and local angle of incidence are rigorously treated. Applications of radar image simulation to a proposed calibrated SAR system are highlighted: soil moisture detection and vegetation discrimination

    Characterization of a dense aperture array for radio astronomy

    Get PDF
    EMBRACE@Nancay is a prototype instrument consisting of an array of 4608 densely packed antenna elements creating a fully sampled, unblocked aperture. This technology is proposed for the Square Kilometre Array and has the potential of providing an extremely large field of view making it the ideal survey instrument. We describe the system,calibration procedures, and results from the prototype.Comment: 17 pages, accepted for publication in A&

    Air fluorescence measurements in the spectral range 300-420 nm using a 28.5 GeV electron beam

    Full text link
    Measurements are reported of the yield and spectrum of fluorescence, excited by a 28.5 GeV electron beam, in air at a range of pressures of interest to ultra-high energy cosmic ray detectors. The wavelength range was 300 - 420 nm. System calibration has been performed using Rayleigh scattering of a nitrogen laser beam. In atmospheric pressure dry air at 304 K the yield is 20.8 +/- 1.6 photons per MeV.Comment: 29 pages, 10 figures. Submitted to Astroparticle Physic

    Positioning and trajectory following tasks in microsystems using model free visual servoing

    Get PDF
    In this paper, we explore model free visual servoing algorithms by experimentally evaluating their performances for various tasks performed on a microassembly workstation developed in our lab. Model free or so called uncalibrated visual servoing does not need the system calibration (microscope-camera-micromanipulator) and the model of the observed scene. It is robust to parameter changes and disturbances. We tested its performance in point-to-point positioning and various trajectory following tasks. Experimental results validate the utility of model free visual servoing in microassembly tasks

    LIDAR SYSTEM CALIBRATION USING OVERLAPPING STRIPS

    Get PDF
    A LiDAR system calibration procedure estimates a set of parameters that represent biases in the system parameters and measurements. These parameters can be used to improve the quality of any subsequently-collected LiDAR data. Current LiDAR calibration techniques require full access to the system parameters and raw measurements (e.g., platform position and orientation, laser ranges, and scan-mirror angles). Unfortunately, the raw measurements are not usually available to end-users. The absence of such information is limiting the widespread adoption of LiDAR calibration activities by the end users. This research proposes alternative methods for LiDAR system calibration, without the need for the system raw measurements. The simplified method that is proposed in this paper uses the available coordinates of the LiDAR points in overlapping parallel strips to estimate biases in the system parameters and measurements (more specifically, biases in the planimetric lever-arm offset components, boresight angles, ranges, and mirror-angles). In this approach, the conventional LiDAR equation is simplified based on a few reasonable assumptions; the simplified LiDAR equation is then used to model the mathematical relationship between conjugate surface elements in overlapping parallel strips in the presence of the systematic biases. In addition, a quasi-igorous calibration method is also proposed to deal with non-parallel overlapping strips. The quasi-rigorous method can handle heading angle and elevation variations of platform trajectories since it also makes use of time-agged point cloud and trajectory position data. To illustrate the feasibility and the performance of the proposed calibration methods, experimental results from simulated and real datasets are introduced.

    Evaluation of anomalies observed on film from S-190A flight system calibration test

    Get PDF
    Due to a persistent problem of scratched film from testing of the Skylab S-190A system, a series of tests were designed to identify the cause of the film scratching. The procedures followed in this test for pretest handling and packaging of the film, the makeup of the rolls for processing, and the results of the processed film evaluation are reported

    Model-based vs. model-free visual servoing: A Performance evaluation in microsystems

    Get PDF
    In this paper, model-based and model-free image based visual servoing (VS) approaches are implemented on a microassembly workstation, and their regulation and tracking performances are evaluated. A precise image based VS relies on computation of the image jacobian. In the model-based visual servoing, the image Jacobian is computed via calibrating the optical system. Precisely calibrated model based VS promises better positioning and tracking performance than the model-free approach. However, in the model-free approach, optical system calibration is not required due to the dynamic Jacobian estimation, thus it has the advantage of adapting to the different operating modes

    An LED-based Flasher System for VERITAS

    Full text link
    We describe a flasher system designed for use in monitoring the gains of the photomultiplier tubes used in the VERITAS gamma-ray telescopes. This system uses blue light-emitting diodes (LEDs) so it can be operated at much higher rates than a traditional laser-based system. Calibration information can be obtained with better statistical precision with reduced loss of observing time. The LEDs are also much less expensive than a laser. The design features of the new system are presented, along with measurements made with a prototype mounted on one of the VERITAS telescopes.Comment: Accepted for publication in Nuclear Instruments and Methods in Physics Research
    corecore