719 research outputs found

    Pigment Melanin: Pattern for Iris Recognition

    Full text link
    Recognition of iris based on Visible Light (VL) imaging is a difficult problem because of the light reflection from the cornea. Nonetheless, pigment melanin provides a rich feature source in VL, unavailable in Near-Infrared (NIR) imaging. This is due to biological spectroscopy of eumelanin, a chemical not stimulated in NIR. In this case, a plausible solution to observe such patterns may be provided by an adaptive procedure using a variational technique on the image histogram. To describe the patterns, a shape analysis method is used to derive feature-code for each subject. An important question is how much the melanin patterns, extracted from VL, are independent of iris texture in NIR. With this question in mind, the present investigation proposes fusion of features extracted from NIR and VL to boost the recognition performance. We have collected our own database (UTIRIS) consisting of both NIR and VL images of 158 eyes of 79 individuals. This investigation demonstrates that the proposed algorithm is highly sensitive to the patterns of cromophores and improves the iris recognition rate.Comment: To be Published on Special Issue on Biometrics, IEEE Transaction on Instruments and Measurements, Volume 59, Issue number 4, April 201

    3D Object Recognition Based On Constrained 2D Views

    Get PDF
    The aim of the present work was to build a novel 3D object recognition system capable of classifying man-made and natural objects based on single 2D views. The approach to this problem has been one motivated by recent theories on biological vision and multiresolution analysis. The project's objectives were the implementation of a system that is able to deal with simple 3D scenes and constitutes an engineering solution to the problem of 3D object recognition, allowing the proposed recognition system to operate in a practically acceptable time frame. The developed system takes further the work on automatic classification of marine phytoplank- (ons, carried out at the Centre for Intelligent Systems, University of Plymouth. The thesis discusses the main theoretical issues that prompted the fundamental system design options. The principles and the implementation of the coarse data channels used in the system are described. A new multiresolution representation of 2D views is presented, which provides the classifier module of the system with coarse-coded descriptions of the scale-space distribution of potentially interesting features. A multiresolution analysis-based mechanism is proposed, which directs the system's attention towards potentially salient features. Unsupervised similarity-based feature grouping is introduced, which is used in coarse data channels to yield feature signatures that are not spatially coherent and provide the classifier module with salient descriptions of object views. A simple texture descriptor is described, which is based on properties of a special wavelet transform. The system has been tested on computer-generated and natural image data sets, in conditions where the inter-object similarity was monitored and quantitatively assessed by human subjects, or the analysed objects were very similar and their discrimination constituted a difficult task even for human experts. The validity of the above described approaches has been proven. The studies conducted with various statistical and artificial neural network-based classifiers have shown that the system is able to perform well in all of the above mentioned situations. These investigations also made possible to take further and generalise a number of important conclusions drawn during previous work carried out in the field of 2D shape (plankton) recognition, regarding the behaviour of multiple coarse data channels-based pattern recognition systems and various classifier architectures. The system possesses the ability of dealing with difficult field-collected images of objects and the techniques employed by its component modules make possible its extension to the domain of complex multiple-object 3D scene recognition. The system is expected to find immediate applicability in the field of marine biota classification

    Advanced VLBI Imaging

    Get PDF
    Very Long Baseline Interferometry (VLBI) is an observational technique developed in astronomy for combining multiple radio telescopes into a single virtual instrument with an effective aperture reaching up to many thousand kilometers and enabling measurements at highest angular resolutions. The celebrated examples of applying VLBI to astrophysical studies include detailed, high-resolution images of the innermost parts of relativistic outflows (jets) in active galactic nuclei (AGN) and recent pioneering observations of the shadows of supermassive black holes (SMBH) in the center of our Galaxy and in the galaxy M87. Despite these and many other proven successes of VLBI, analysis and imaging of VLBI data still remain difficult, owing in part to the fact that VLBI imaging inherently constitutes an ill-posed inverse problem. Historically, this problem has been addressed in radio interferometry by the CLEAN algorithm, a matching-pursuit inverse modeling method developed in the early 1970-s and since then established as a de-facto standard approach for imaging VLBI data. In recent years, the constantly increasing demand for improving quality and fidelity of interferometric image reconstruction has resulted in several attempts to employ new approaches, such as forward modeling and Bayesian estimation, for application to VLBI imaging. While the current state-of-the-art forward modeling and Bayesian techniques may outperform CLEAN in terms of accuracy, resolution, robustness, and adaptability, they also tend to require more complex structure and longer computation times, and rely on extensive finetuning of a larger number of non-trivial hyperparameters. This leaves an ample room for further searches for potentially more effective imaging approaches and provides the main motivation for this dissertation and its particular focusing on the need to unify algorithmic frameworks and to study VLBI imaging from the perspective of inverse problems in general. In pursuit of this goal, and based on an extensive qualitative comparison of the existing methods, this dissertation comprises the development, testing, and first implementations of two novel concepts for improved interferometric image reconstruction. The concepts combine the known benefits of current forward modeling techniques, develop more automatic and less supervised algorithms for image reconstruction, and realize them within two different frameworks. The first framework unites multiscale imaging algorithms in the spirit of compressive sensing with a dictionary adapted to the uv-coverage and its defects (DoG-HiT, DoB-CLEAN). We extend this approach to dynamical imaging and polarimetric imaging. The core components of this framework are realized in a multidisciplinary and multipurpose software MrBeam, developed as part of this dissertation. The second framework employs a multiobjective genetic evolutionary algorithm (MOEA/D) for the purpose of achieving fully unsupervised image reconstruction and hyperparameter optimization. These new methods are shown to outperform the existing methods in various metrics such as angular resolution, structural sensitivity, and degree of supervision. We demonstrate the great potential of these new techniques with selected applications to frontline VLBI observations of AGN jets and SMBH. In addition to improving the quality and robustness of image reconstruction, DoG-HiT, DoB-CLEAN and MOEA/D also provide such novel capabilities as dynamic reconstruction of polarimetric images on minute time-scales, or near-real time and unsupervised data analysis (useful in particular for application to large imaging surveys). The techniques and software developed in this dissertation are of interest for a wider range of inverse problems as well. This includes such versatile fields such as Ly-alpha tomography (where we improve estimates of the thermal state of the intergalactic medium), the cosmographic search for dark matter (where we improve forecasted bounds on ultralight dilatons), medical imaging, and solar spectroscopy

    High-ISO long-exposure image denoising based on quantitative blob characterization

    Get PDF
    Blob detection and image denoising are fundamental, sometimes related tasks in computer vision. In this paper, we present a computational method to quantitatively measure blob characteristics using normalized unilateral second-order Gaussian kernels. This method suppresses non-blob structures while yielding a quantitative measurement of the position, prominence and scale of blobs, which can facilitate the tasks of blob reconstruction and blob reduction. Subsequently, we propose a denoising scheme to address high-ISO long-exposure noise, which sometimes spatially shows a blob appearance, employing a blob reduction procedure as a cheap preprocessing for conventional denoising methods. We apply the proposed denoising methods to real-world noisy images as well as standard images that are corrupted by real noise. The experimental results demonstrate the superiority of the proposed methods over state-of-the-art denoising methods

    Image Fusion - The ARSIS concept and some successful implementation schemes

    No full text
    International audienceThis article aims at explaining the ARSIS concept. By fusing two sets of images A and B, one with a high spatial resolution, the other with a low spatial resolution and different spectral bands, the ARSIS concept permits to synthesise the dataset B at the resolution of A that is as close as possible to reality. It is based on the assumption that the missing information is linked to the high frequencies in the sets A and B. It searches a relationship between the high frequencies in the multispectral set B and the set A and models this relationship. The general problem for the synthesis is presented first. The general properties of the fused product are given. Then, the ARSIS concept is discussed. The general scheme for the implementation of a method belonging to this concept is presented. Then, this article intends to help practitioners and researchers to better understand this concept through practical details about implementations. Two Multi-Scale Models are described as well as two Inter-Band Structure Models. They are applied to an Ikonos image as an illustration case. The fused products are assessed by the means of a known protocol comprising a series of qualitative and quantitative tests. The products are found of satisfactory quality. This case illustrates the differences existing between the various models, their advantages and limits. Tracks for future improvements are discussed

    Anisotropic multiresolution analyses for deepfake detection

    Full text link
    Generative Adversarial Networks (GANs) have paved the path towards entirely new media generation capabilities at the forefront of image, video, and audio synthesis. However, they can also be misused and abused to fabricate elaborate lies, capable of stirring up the public debate. The threat posed by GANs has sparked the need to discern between genuine content and fabricated one. Previous studies have tackled this task by using classical machine learning techniques, such as k-nearest neighbours and eigenfaces, which unfortunately did not prove very effective. Subsequent methods have focused on leveraging on frequency decompositions, i.e., discrete cosine transform, wavelets, and wavelet packets, to preprocess the input features for classifiers. However, existing approaches only rely on isotropic transformations. We argue that, since GANs primarily utilize isotropic convolutions to generate their output, they leave clear traces, their fingerprint, in the coefficient distribution on sub-bands extracted by anisotropic transformations. We employ the fully separable wavelet transform and multiwavelets to obtain the anisotropic features to feed to standard CNN classifiers. Lastly, we find the fully separable transform capable of improving the state-of-the-art

    Geometric Surface Processing and Virtual Modeling

    Get PDF
    In this work we focus on two main topics "Geometric Surface Processing" and "Virtual Modeling". The inspiration and coordination for most of the research work contained in the thesis has been driven by the project New Interactive and Innovative Technologies for CAD (NIIT4CAD), funded by the European Eurostars Programme. NIIT4CAD has the ambitious aim of overcoming the limitations of the traditional approach to surface modeling of current 3D CAD systems by introducing new methodologies and technologies based on subdivision surfaces in a new virtual modeling framework. These innovations will allow designers and engineers to transform quickly and intuitively an idea of shape in a high-quality geometrical model suited for engineering and manufacturing purposes. One of the objective of the thesis is indeed the reconstruction and modeling of surfaces, representing arbitrary topology objects, starting from 3D irregular curve networks acquired through an ad-hoc smart-pen device. The thesis is organized in two main parts: "Geometric Surface Processing" and "Virtual Modeling". During the development of the geometric pipeline in our Virtual Modeling system, we faced many challenges that captured our interest and opened new areas of research and experimentation. In the first part, we present these theories and some applications to Geometric Surface Processing. This allowed us to better formalize and give a broader understanding on some of the techniques used in our latest advancements on virtual modeling and surface reconstruction. The research on both topics led to important results that have been published and presented in articles and conferences of international relevance
    • …
    corecore