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Abstract

Very Long Baseline Interferometry (VLBI) is an observational technique devel-

oped in astronomy for combining multiple radio telescopes into a single virtual

instrument with an effective aperture reaching up to many thousand kilometers

and enabling measurements at highest angular resolutions. The celebrated exam-

ples of applying VLBI to astrophysical studies include detailed, high-resolution

images of the innermost parts of relativistic outflows (jets) in active galactic nu-

clei (AGN) and recent pioneering observations of the ‘shadows’ of supermassive

black holes (SMBH) in the center of our Galaxy and in the galaxy M87.

Despite these and many other proven successes of VLBI, analysis and imaging

of VLBI data still remain difficult, owing in part to the fact that VLBI imaging

inherently constitutes an ill-posed inverse problem. Historically, this problem has

been addressed in radio interferometry by the CLEAN algorithm, a matching-

pursuit inverse modeling method developed in the early 1970-s and since then

established as a de-facto standard approach for imaging VLBI data.

In recent years, the constantly increasing demand for improving quality and

fidelity of interferometric image reconstruction has resulted in several attempts

to employ new approaches, such as forward modeling and Bayesian estimation,

for application to VLBI imaging.

While the current state-of-the-art forward modeling and Bayesian techniques

may outperform CLEAN in terms of accuracy, resolution, robustness, and adapt-

ability, they also tend to require more complex structure and longer computation

times, and rely on extensive finetuning of a larger number of non-trivial hyper-

parameters. This leaves an ample room for further searches for potentially more

effective imaging approaches and provides the main motivation for this disserta-

tion and its particular focusing on the need to unify algorithmic frameworks and

to study VLBI imaging from the perspective of inverse problems in general.

In pursuit of this goal, and based on an extensive qualitative comparison of

the existing methods, this dissertation comprises the development, testing, and

first implementations of two novel concepts for improved interferometric image

reconstruction. The concepts combine the known benefits of current forward

modeling techniques, develop more automatic and less supervised algorithms for

image reconstruction, and realize them within two different frameworks.

The first framework unites multiscale imaging algorithms in the spirit of com-

pressive sensing with a dictionary adapted to the uv-coverage and its defects

(DoG-HiT, DoB-CLEAN). We extend this approach to dynamical imaging and

polarimetric imaging. The core components of this framework are realized in a

multidisciplinary and multipurpose software MrBeam, developed as part of this



dissertation.

The second framework employs a multiobjective genetic evolutionary algo-

rithm (MOEA/D) for the purpose of achieving fully unsupervised image recon-

struction and hyperparameter optimization.

These new methods are shown to outperform the existing methods in various

metrics such as angular resolution, structural sensitivity, and degree of supervi-

sion. We demonstrate the great potential of these new techniques with selected

applications to frontline VLBI observations of AGN jets and SMBH.

In addition to improving the quality and robustness of image reconstruction,

DoG-HiT, DoB-CLEAN and MOEA/D also provide such novel capabilities as

dynamic reconstruction of polarimetric images on minute time-scales, or near-

real time and unsupervised data analysis (useful in particular for application to

large imaging surveys).

The techniques and software developed in this dissertation are of interest for

a wider range of inverse problems as well. This includes such versatile fields

such as Lyα tomography (where we improve estimates of the thermal state of

the intergalactic medium), the cosmographic search for dark matter (where we

improve forecasted bounds on ultralight dilatons), medical imaging, and solar

spectroscopy.

The structure of this dissertation is as follows. We present in chapter 1 the

background theory to radio astronomy, active galaxies and VLBI in general.

Chapter 2 presents a detailed discussion of existing imaging algorithms, their

respective advantages and disadvantages. In particular, we discuss the limita-

tions of CLEAN, e.g. a suboptimal representation of extended emission, missing

regularization, a disparity between the model and the image, and limited reso-

lution. In order to uniform imaging techniques and software, we demonstrate a

deep connection of the several imaging techniques in the spirit of inverse problems

and (convex) optimization. We discuss in chapter 3 our newly proposed multi-

scale imaging algorithms DoG-HiT and DoB-CLEAN in detail. In chapter 4 we

present the details behind MOEA/D. DoG-HiT, DoB-CLEAN and MOEA/D are

currently in application in a wide range of ongoing VLBI projects. We present a

small exemplary excerpt of these applications to synthetic data and observational

data in chapter 5. Furthermore, we summarize the transfer and connection to

alternative, closely connected (astrophysical) inverse problems such as cosmogra-

phy or solar observations. Finally, we present our conclusions in chapter 6 and

discuss future developments in chapter 7.



Zusammenfassung

Very Long Baseline Interferometry (VLBI) ist eine Beobachtungstechnik, die

in der Radioastronomie entwickelt wurde. Mehrere Radioteleskope werden zu

einem einzelnen, virtuellen Instrument mit einer effektiven Apertur von bis zu

tausenden Kilometern kombiniert. Dies ermöglicht Beobachtungen bei höchster

Winkelauflösung. Bekannte Anwendungsbeispiele von VLBI in astrophysikalis-

chen Studien sind die detaillierten und hoch-auflösenden Bilder der innersten

Jets in aktiven Galaxienkernen (AGN), und kürzliche, wegweisende Beobachtun-

gen des ”Schattens” supermassereicher schwarzer Löcher (SMBH) im Zentrum

unserer Galaxie und in der Galaxie M87.

Trotz dieser und vieler anderer Erfolge von VLBI bleibt die Analyse von VLBI

Daten schwierig, teilweise weil VLBI-Bildgebung ein schlecht-gestelltes inverses

Problem darstellt. Historisch wurde dieses Problem in der Radiointerferometrie

mit dem CLEAN-Algorithmus gelöst. CLEAN ist eine matching-pursuit Model-

lierungsmethode, die in den früheren 1970er entiwckelt wurde, und ist seitdem

der de-facto Standard-Ansatz in VLBI.

In den vergangenen Jahren haben die konstant ansteigenden Anforderungen

an die Bildqualität und Genauigkeit interferometrischer Bildgebung in verschiede-

nen neuen Ansätzen resultiert, wie forward-modeling und Bayesianische Tech-

niken.

Während die aktuellen forward-modeling und Bayesianischen Methoden CLEAN

hinsichtlich Genauigkeit, Auflösung, Robustheit und Adaptierbarkeit verbessern,

sind sie typischerweise komplizierter, benötigen länger für die Berechnung, und

basieren auf der Feineinstellung einer Zahl nicht-trivialer Hyperparameter. Dies

lässt Raum für die weitere Suche nach potentiell effektiveren Bildgebungsver-

fahren und stellt die Motivation für diese Doktoarbeit und die Fokussierung auf

die Notwendigkeit algorithmische Herangehensweise aus der Perspektive inverser

Probleme zu vereinheitlichen dar.

Um dieses Ziel zu erreichen, und basierend auf einem ausgedehnten qualita-

tiven Vergleich existierender Methoden, stellt diese Doktorarbeit die Entwicklung,

das Testen, und erste Anwendungen zweier neuer Konzepte für eine verbesserte

Bildrekonstruktion vor. Dafür werden die bekannten Vorteile aktueller forward-

modeling Techniken kombiniert, und automatisiertere und weniger überwachte

Algorithmen für die Rekonstruktion entwickelt. Dies wird in zwei verschiedenen

grundlegenden Strukturen realisiert.

Erstens entwicklen wir multiskalare Bildgebungsverfahren mit Basisfunktio-

nen die datengestützt zum uv-coverage gefittet werden (DoG-HiT, DoB-CLEAN)

und entwickeln diesen Ansatz weiter zur Bildgebung dynamischer Quellen und



zu Polarimetrie. Die Kern-komponente dieser Algorithmen sind in der inter-

disziplinären und multifunktionellen Software MrBeam implementiert.

Zweitens präsentieren wir einen genetischen, evolutionären Mehrzieloptimierungs-

Algorithmus (MOEA/D) um automatisierte Bildrekonstruktionen und Hyperparameter-

Optimierungen zu ermöglichen.

Diese neue Methoden verbessern existierende Methoden hinsichtlich verschiedener

Metriken wie der Winkelauflösung, strukturellen Sensitivität und des Grades der

Automatisierung. Wir demonstrieren das große Potenzial dieser neuen Techniken

mit ausgewählten Anwendungen zu führenden VLBI Beobachtungen von AGN

Jets und SMBH.

Zusätzlich zu der Verbesserung der Qualität und Robustheit der Rekonstruk-

tion, bieten DoG-HiT, DoB-CLEAN und MOEA/D bisher nicht verfügbare Fähigkeiten

wie die dynamische Rekonstruktion polarimetrischer Filme auf Zeitskalen von

Minuten und die automatisierte Bildgebung in nahezu Echtzeit (insbesondere

geeignet für systematische, häufige Beobachtungen).

Weiterhin sind die Techniken und die Software die für diese Dissertation en-

twickelt wurden von Interesse für ein größeres Gebiet inverser Probleme. Dies

beinhaltet so verschiedene Felder wie Lyα-forest Tomographie (in welchem wir

aktuelle Messungen des thermischen Zustandes des intergalaktischen Mediums

verbessern), die kosmographische Suche nach dunkler Materie (in welcher wir

Vorhersagen zu ultraleichten Dilatonen verfeinern), medizinische Bildgebung und

solare Spektroskopie.

Die Struktur dieser Dissertation ist wie folgt. Wir präsentieren in Kapitel

1 die notwendige Theorie zu Radioastronomie, aktiven Galaxien und VLBI im

Allgemeinen. Kapitel 2 beinhaltet eine detaillierte Diskussion aktueller Bildge-

bungsverfahren und ihrer Vor- und Nachteile. Insbesondere diskutieren wir die

Limitierungen von CLEAN, beispielsweise eine suboptimale Repräsentation aus-

gebreiteter Emission, fehlende Regularisierung, die Ungleichheit zwischen dem

Modell und dem finalen Bild, und die limitierte Auflösung. Um Bildgebungsver-

fahren und Software zu vereinheitlichen, zeigen wir eine tiefere Verbindung zwis-

chen den verschiedenen Methoden auf im Rahmen inverser Probleme und (kon-

vexer) Optimierung. Wir diskutieren in Kapitel 3 die neuen multiskalaren Algo-

rithmen DoG-HiT und DoB-CLEAN im Detail. In Kapitel 4 präsentieren wir die

Details von MOEA/D. DoG-HiT, DoB-CLEAN und MOEA/D werden momen-

tan für eine große Zahl laufender VLBI Projekte angewendet. Wir präsentieren

einen kurzen, beispielhaften Auszug dieser Anwendungen auf synthetische Daten

und beobachtete Daten in Kapitel 5. Weiterhin fassen wir den Wissenstransfer

zu alternativen, nahe verwandten (astrophysikalischen) inversen Problemem wie

Kosmographie oder Sonnenbeobachtungen zusammen. Letztendlich, präsentieren



wir unsere Schlußfolgerungen in Kapitel 6 und diskutieren zukünftige Entwick-

lungen in Kapitel 7.
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1 Introduction

Since the beginning of astronomy humans used the optically visible part of the

spectrum to observe the Universe, first by naked eye, then after the invention of

the first telescopes with the help of magnifying optics. The visible light however

is only a very narrow band of the complete spectrum and allows only a restricted

view on the Universe. With upcoming radar technology in the twentieth century,

radio astronomy was born and opened a complete new window to observe the

astrophysical phenomena around us. Radio waves peek through dense gaseous

environments and cosmic dust, uncovering a structural richness that was hidden

to observations in other frequency bands. However, radio observations with single

aperture telescopes have a worse resolution due to their long wavelengths. This

limitation has been successfully overcome through the development of radio in-

terferometry, and very long baseline interferometry (VLBI) in particular. VLBI

combines individual radio telescopes into a virtual instrument with an effective

aperture reaching up to many thousand kilometers and allowing to achieve record

high angular resolution. In this chapter we introduce the basic concepts of radio

astronomy and radio interferometry in particular. This chapter makes explicit

use of the textbooks Burke et al. (2019), Thompson et al. (2017) and Snell et al.

(2019).

1.1 Radio Astronomy

Radio astronomy studies the Universe across an extremely broad part of the

electromagnetic spectrum, spanning over five orders of magnitude in wavelength,

from submillimeter to decameter regimes. The good atmospheric transparency

at cm- and m-wavelength provides the radio astronomy community with rich

possibilities for ground based observations (Snell et al. 2019), see also Fig. 1.1.

Continuum radio emission is produced in a wide range of astronomical objects

and through several fundamental emission processes including free-free radiation,

synchroton radiation and inverse Compton radiation (Burke et al. 2019). Many of

the fundamental and most actively studied emission and absorption lines also lie

in the radio window, in particular the hyperfine structure line of neutral hydrogen

(the HI line), with its rest frame wavelength of ∼ 21 cm (Ewen & Purcell 1951;

Pritchard & Loeb 2012). Strong redshifting of the emission from objects in the

early Universe makes the radio regime extremely relevant for cosmological studies.

The prime example of this is the hydrogen ionization line emitted at the time of

recombination, today known as the cosmic microwave background (CMB), which

peaks at ∼ 160 GHz (Planck Collaboration et al. 2020).

The strength of a radio signal is expressed by its spectral flux density in units
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Figure 1.1: Sketch of the opacity of the atmosphere as a function of frequency.
The image was taken from the ESO public outreach materials: https://www.es
o.org/public/germany/images/atm_opacity/ at 23.12.2022.

of Jansky: 1 Jy = 1 Wm−2Hz−1, i.e. the energy flux per unit frequency and area

(Thompson et al. 2017). Reflecting the predominant source of noise in radio

astronomy, it is common practice to express signal strength and noise levels in

terms of temperatures by relating the energy flux density to the temperature of a

blackbody emitter with the same spectral flux density. Following this convention,

we can classify the extent of typical radio astronomy sources in four categories

(list and categorization adapted from Burke et al. 2019):

Cold Sources Sources emitting the blackbody radiation, with temperature of up to ∼
100 K, including the cosmic microwave background, atomic hydrogen clouds,

molecular clouds and interstellar dust.

Warm Sources Objects in which emission is produced by free-free radiation, e.g. in higher

temperature plasma. Sources of interest are stellar photospheres, planetary

nebulae and stellar winds.

Hot Sources Objects which are emitting nonthermal synchroton radiation with bright-

ness temperatures TB > 105 K, e.g. pulsars, supernovae, γ-ray bursts, and

active galactic nuclei (AGN). We will put a special focus on AGN in the

course of this dissertation.

Maser Sources Nonthermal maser sources with brightness temperatures up to 1012 K.

2
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1.2 Brief History of Radio Astronomy

The first radio telescope was constructed by Karl Guthe Jansky in the thirties

(Jansky 1933). Grote Reber constructed the first fully steerable radio antenna

based on a parabolic reflector in 1937. Subsequently he discovered many of the

strongest radio sources and obtained the first radio map of the Milky Way (Reber

1944). For almost ten years Grote Reber remained the only radio astronomer in

the world. Technically, the need for advanced radar systems during World War

II helped to advance the existing instruments. First breakthrough discoveries

made at radio frequencies include the observation that the Sun is a strong radio

source (Hey 1946), the detection of the hydrogen hyperfine structure line (Ewen

& Purcell 1951), the detection of the cosmic microwave background (Penzias &

Wilson 1965), the detection of the first maser in 1965 (Weaver et al. 1965) and

the discovery of pulsars (Hewish et al. 1968).

In the meantime the radio astronomy evolved into an integral field of astro-

physics that studies astronomical objects on all scales (Burke et al. 2019), ranging

from cosmic structure formation (e.g. CMB), over galactic scales (e.g. research

on active galactic nuclei and jets), and down to stellar (e.g. pulsars) and plane-

tary astronomy. The radio window is essential to understand astrophysical phe-

nomena. Groundbreaking observations produced in recent years include, among

many others, the first image of the shadow of a supermassive black hole by the

Event Horizon Telescope (Event Horizon Telescope Collaboration et al. 2019a)

and ultra-sharp images of H-Tauri delivered by the ALMA telescope that demon-

strate how forming planets are accumulating dust and gas in a protoplanetary

disc (ALMA Partnership et al. 2015).

Radio astronomy will continue to deliver frontline observational results, with

a variety of upcoming or planned next generation radio instruments such as the

next generation Event Horizon Telescope (ngEHT), the Square Kilometer Array

(SKA) and the next generation Very Large Array (ngVLA). These telescopes

will be able to probe the Universe at an unmatched resolution, sensitivity and

dynamic range. On the other hand, the upcoming decades of precision astronomy

instruments require the invention of novel data analysis methods as well, in order

to meet the high profile research goals of their respective missions.

1.3 Active Galactic Nuclei (AGN)

A variety of different types of galaxies is known by now, varying in morphology

(e.g. elliptical, spiral, bulk-spiral or irregular), size, mass and bolometric lumi-

nosity. As a rough estimate of order of magnitude, ‘normal’ galaxies have an

optical bolometric luminosity L ∼ 109 − 1011L⊙ where L⊙ is the luminosity of

3
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Figure 1.2: The radio galaxy Cygnus A observed with the Very Large Array
(VLA). Image was taken from http://www.aoc.nrao.edu/~ccarilli/cyga.s

html at 02.01.2023. For details, see Carilli & Barthel (1996).

the Sun (Mo et al. 2010). Active galaxies, broadly speaking, differ from ‘nor-

mal’ galaxies by a compact, luminous core with optical bolometric brightness’s

of up to L ∼ 1011 − 1014L⊙. These cores form the class of active galactic nuclei

(AGN). Further phenomena that have been observed in some (but not all, see the

unifying model) active galaxies are highly excited emission lines and ‘forbidden’

lines, nonthermal continuum radiation in the radio regime and γ regime, and a

rapid variability (Robson 1996). Additionally, some active galaxies exhibit a very

specific morphological feature: an elongated jet which often ends in an extended

lobe (Robinson & Terlevich 1994). We present an exemplary radio image of such

a two-lobed jet structure in Fig. 1.2. Based on their observed morphologies and

spectra, AGN have been classified in many different categories. A rough overview

of the most important AGN types is provided in Tab. 1 including quasars (QSO),

blazars, BL Lacertae, radio galaxies, and Seyfert galaxies (Robson 1996).

All these types of nuclear activity in galaxies are unified in the unifying model

of AGN. We show a sketch of the current AGN unification scheme in Fig. 1.3.

The central engine consists of a supermassive black hole (SMBH) embedded in

an accretion disk. The accretion onto the central SMBH heats the gas in the sur-

rounding disk, hence producing the compact, high brightness nucleus of an active

galaxy. Broadband continuum radiation is produced in the accretion disk and in

the relativistic jets ejected from the nucleus. The accretion disk is surrounded

by clouds of gas producing broad emission and absorption lines in the optical

spectrum of AGN (the broad line region, BLR). On larger scales, this system is

surrounded by a dusty torus and by a collection of colder clouds revealed by nar-

row emission and absorption lines (the narrow line region, NLR). Jets are formed

4
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Type Host Variability Spectrum Jets possible

Quasar all days

opt: point source,
radio-loud and radio-quiet,
emission lines, hard X, γ strong

Blazar ellipt. days
highest luminosity, double-humped,

X, γ to TeV, compact radio core strong

BL Lac ellipt. days
high luminosity, optical variable,

no em./abs. lines, radio-loud yes

Radio gal. ellipt. months
strong radio core: flat spectrum,
jet and hotspots: steep spectrum strong

Seyfert spiral months

comptonized continuum,
em./abs. lines,
reflection bump weak

Table 1: AGN Classification, adapted from the AGN lecture of W. Kollatschny
in the winter semester 2016/2017, University of Göttingen.

in a fraction of active galaxies and propagate in a direction which is roughly per-

pendicular to the plane of the accretion disk. This unifying model can explain

the various types of AGN by different viewing angles (Robson 1996). We discuss

radio-loud galaxies first. When observed face on, i.e. looking into the jet or close

to the jet axis, strong (jetted) radio emission is visible. Moreover, due to the face

on viewing, direct observations of the variable (turbulent) nature of the accretion

flow and the jet are possible and explain the observed fast variability. We see

these objects as blazars or, at a small angle off axis, BL Lac objects. In these

objects, both narrow and broad emission lines can be observed, unless the non-

thermal continuum strongly dominates the emission. The relative prominence

of these two types of emission lines leads to classifying the radio-loud galaxies

as broad line radio galaxies (BLRG) and narrow line radio galaxies (NLRG).

Quasi stellar objects (QSO) or ‘quasars’ are the high power active galactic nuclei

counterparts to radio galaxies observed at the same viewing angle. They can be

further subdivided into Type I QSOs (broad lines) and Type II QSOs (narrow

lines). The dusty torus absorbs, reflects and scatters the light produced in the

nuclear region (Robson 1996). Active galaxies which do not have strong jets are

classified as Seyfert (Sy) galaxies and radio-quiet QSO. Again, depending on the

viewing angle, the geometry of the absorbing torus, the size of the broad line and

the narrow line region, we subdivide Seyfert galaxies in Seyfert 1 galaxies (broad

emission lines) and Seyfert 2 galaxies (narrow emission lines).

There is growing observational evidence for the unifying model since it can ex-

plain the various spectral properties, variability and morphology of active galax-

ies within a single and self-consistent framework (Robson 1996). The detailed

physical mechanisms in the central engine that produce the compact luminous

synchroton radiation and jets are still the matter of ongoing debate. Several as-

5
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Figure 1.3: Illustration of the unified model of AGNs. Image from Urry &
Padovani (1995).
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trophysical probes confirmed the existence of a supermassive black hole (SMBH),

i.e. by the observed motions of stars on close orbits around the central SMBH

in the Milky Way (GRAVITY Collaboration et al. 2019, 2022), the gravitational

lens effect (first observed by Walsh et al. 1979), the observation of relativistic

iron Kα lines in the X-ray regime (Fabian et al. 1989, 2000) or the imaging of

the black hole shadow by radio interferometry (Event Horizon Telescope Collab-

oration et al. 2019a, 2022a). Most alternative explanations that were proposed

historically, e.g. massive stars or dense clusters, do not match to the observations.

However, there are some horizonless objects such as gravastars that are proposed

as alternatives to SMBH (Chirenti & Rezzolla 2016; Lobanov 2017; Mazur &

Mottola 2004; Sakai et al. 2014).

Relativistic jets that are formed in a fraction of AGN are observed from meter

wavelengths to γ-rays (Blandford et al. 2019). On large, kiloparscec scales the

jets are commonly classified as the Fanaroff-Ryley (FR) types I and II (Fanaroff

& Riley 1974). The FR I jets are low power, edge darkened radio sources. FR

II jets are high power, edge brightened jets. We follow the review by Blandford

et al. (2019) in the following description of jet properties. Blandford et al. (2019)

considered three scales of jets: ‘Galaxy jets’, ‘black hole jets’ (inward extension to

the gravitational radius of the central SMBH) and ‘lobe jets’ (outward extension).

A multifrequency montage of these scales of the galaxy M87 is presented in Fig.

1.4. Galaxy jets are often one-sided (Lister et al. 2018; Wilkinson et al. 1977)

as a result of relativistic beaming. Regular VLBI monitoring (e.g. Lister et al.

2018) demonstrated complex kinematics and dynamics of the jets on these scales,

with distinct plasma condensations (jet components) expanding and moving with

apparent superluminal speeds along the jet. Around a third of all observed jet

components show nonradial motion while a small percentage (∼ 4%) even seems

to move inwards (Blandford et al. 2019). This can be explained by the joint

effect of relativistic shocks and plasma instabilities developing in the jet (Mertens

et al. 2016). Both, clearly limb-brightened jets (e.g. Kim et al. 2018) and clearly

edge-brightened jets (e.g. Giovannini et al. 2018) were observed. This probably

indicates different jet anchors (Blandford et al. 2019). The richness of structural

features in jets is further underlined by polarization measurements. We refer

the reader here to systematic surveys of linear polarization within the MOJAVE

project, e.g. Lister et al. (2018); Pushkarev et al. (2017); Zobnina et al. (2022).

As an overall tendency, the fractional polarization increases with core separation

with an increase towards the edge of the jet (Blandford et al. 2019).

Blandford et al. (2019) denotes the most inward portion of the jet the ‘black

hole jet’. To describe this jet region, we shall recall here the main findings from

the VLBI monitoring of M87 (whose innermost radio jet is the most detailed
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Figure 1.4: Different scales of the M87 jet. Adapted from Blandford et al. (2019)
under license agreement 1307729-1 with Copyright Clearance Center Inc. (CCC).
Panel a: VLA observation of the love jet at 90 cm. Panel b: VLA observation
of the galaxy jet at 20 cm. Panel c: VLBA observations of the black hole jet at
20 cm (Cheung et al. 2007). Panel d: VLBA observations of the innermost jet at
7 mm (Walker et al. 2018). Panel e: GMVA observations of the innermost jet at
3 mm (Kim et al. 2018). Panel f: EHT observations of the black hole shadow at
1.3 mm (Event Horizon Telescope Collaboration et al. 2019b).

studied black hole jet so far) from Walker et al. (2018) reprinted in Blandford

et al. (2019). The jet in M87 is two sided, with edge brightening observed both

in the stronger jet and weaker counter-jet. Close to the black hole, the jet can

be accelerated to superluminal speeds in a semi-parabolic shape. At the Bondi

radius the jet decelerates and transforms into a conical shape. An overview of the

collimation profiles is presented in Fig. 1.5. Observations of the magnetic field

close to the black hole indicate a strong helical field structure (Event Horizon

Telescope Collaboration et al. 2021a,b).

All in all, observations suggest that the jet acceleration and collimation appear

close to the central SMBH within the Bondi radius (Blandford et al. 2019). The

jet is collimated due to strong magnetic fields. Downstream the jet relativistic

shocks may form and manifest themselves as superluminal jet components. We

show a sketch of this blazar model in Fig. 1.6. However, the details of the jet

confinement, accretion and jet launching are still not fully understood. Current

theories either propose a jet launching from the rotation of the black hole (Bland-

ford & Znajek 1977) or from the accretion disk (Blandford & Payne 1982). At

extremely low and extremely high, super-Eddington accretion rates, jet forma-

tion is believed to be related to radiatively inefficient accretion flows (Blandford

et al. 2019). The mechanism for the initial jet collimation and confinement is also

poorly known, with strong magnetic fields proposed to play a vital role (Boccardi

8
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Figure 1.5: Collimation profile of M87 as transverse radius vs function of distance
to core. Image adapted from Blandford et al. (2019) under license agreement
1307729-1 with Copyright Clearance Center Inc. (CCC).
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Figure 1.6: Blazar model proposed by A. Marscher. Image taken from Park &
Algaba (2022) by CC BY.4.0. Image copyright: A. Marsher.

et al. 2021; Ricci et al. 2022). The possibility of jet confinement by the walls

of a funnel by a ion-supported torus has also been discussed (Blandford et al.

2019). Pressure gradients in the dense ambient medium or dynamical disk winds

(Globus & Levinson 2016) may as well play a role in the jet confinement. There

are further open question about the physics of relativistic jets and their connec-

tion to the AGN phenomenon (see the discussion in Blandford et al. 2019). Where

and how are the emitting particles accelerated in the jet? How do jets transit so

rapidly from electromagnetic to particle dominance? What is the environmental

impact on the formation of a jet? What physical process exactly decides whether

a galaxy is active or not? What is the evolution of active galaxies and what was

their role during cosmic structure formation and the reionization epoch?

1.4 Very Long Baseline Interferometry (VLBI)

Very long baseline interferometry (VLBI) is the prime observational technique

employed for studies of relativistic jets in AGN. We discuss the fundamentals

of VLBI in this chapter. We provide a short overview of radio telescopes in

general, the fundamentals of interferometry, the specifics of VLBI and an overview

of the data processing in VLBI. Finally, we discuss factors and effects limiting

the quality of VLBI measurements. As the main result from this chapter, we

introduce in Eq. (1.8) and (1.12) the forward equations will be subsequently

used in the imaging algorithms developed in this dissertation.
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1.4.1 Radio Telescopes

The prime element of a radio telescope, determining its design and performance,

is the receptor of radiation or radio antenna. Depending on the observing wave-

length, λ, three different antenna designs are common: reflector antennas (λ <

1m), wire mesh-antennas (λ ∼ 1m) and half-wavelength dipole antennas (λ >

1m) (Taylor et al. 1999). We will focus on reflector antennas for the sub-meter

regime. Radio waves arriving at the reflector (aperture) are collimated and fo-

cused onto a feed horn where the signal is coherently added (Burke et al. 2019).

The optical system consisting of the primary reflector (complemented, in some

optical designs, by a secondary ‘subreflector’) and feed horn is called the fron-

tend of the radio telescope. A sketch of a frontend system is shown in Fig. 1.7.

However, the exact design and geometry varies from telescope to telescope due to

various mounts, light paths, and electronics. Most radio dishes are made steer-

able in azimuth and altitude, in order to track the source during the observation

time. However, there are prominent exceptions, such as the full-aperture Arecibo

and FAST telescopes or the semi-aperture RATAN-600 telescope. While such

telescopes have the best sensitivity for object close to the zenith, a movable sec-

ondary reflector (e.g. at Arecibo, see Cohen 2009) and a deformable surface (e.g.

at FAST, see Li & Pan 2016) allow for off-zenith observations as well.

Radio antennas are not equally sensitive in any direction. The sensitivity

of the antenna off-focus is described by the antenna beam pattern A(l,m) that

will be introduced in the more detailed discussions in chapter 1.4.4. Moreover,

the antenna beam pattern is complex, consisting of a single primary lobe and

multiple secondary lobes (sidelobes). Noise from non-desirable nearby sources

whose emission is received in one of the sidelobes could therefore corrupt the data

sets recorded by a single antenna (Thompson et al. 2017). Another prominent

factor corrupting radio observations is the radio frequency interference (RFI)

signal from digital communication, satellites and other synthetic human generated

radio sources (Burke et al. 2019). It is an increasingly difficult task to shield

radio astronomic observations against the RFI. Radio telescopes are typically

constructed in radio-quiet zones such that the interaction with RFI is minimal.

The signal accumulated at the receiving horn of the telescope is transported

into the backend system where a heterodyne detector translates the detected radio

waves into a time series of complex voltages (Burke et al. 2019). However, it is

hard to record time series at GHz-frequencies. The heterodyne receiver therefore

downsamples the recorded signal to smaller frequencies that can be digitized.

The incoming signal is (analogously and digitally) filtered, mixed with a local

oscillator (and hence effectively down-sampled) and finally digitized (Thompson
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Figure 1.7: Sketch of the light and signal path in a radio telescope, taken from
Encyclopedia Brittanica https://cdn.britannica.com/34/4634-050-DA53D88

D/Radio-telescope-system.jpg at 23.12.2022.

et al. 2017). We describe these steps in greater details in chapter 1.4.4.

1.4.2 Basic Principles of Interferometry

The following description of basic principles of radio interferometry derives from

the discussion presented in chapter 3 of Thompson et al. (2017). We define

a locally Euclidean coordinate system on sky at the point of the source with

direction cosines l,m, see Fig. 1.8. The voltage reception pattern of an antenna

UA(l,m) is characterized by the field distribution in the antenna aperture E(x, y)

via (Thompson et al. 2017):

UA(l,m) ∝
∫ ∫

E(x, y)e2πi[lx/λ+my/λ]dxdy, (1.1)

where x, y are point coordinates in the antenna aperture and λ is the wavelength.

Eq. (1.1) describes the effective interference between all points in the aperture. It

implies that the voltage reception pattern and the aperture illumination function

form a Fourier pair. We define the effective collecting area by the modulus of UA

12
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Figure 1.8: Coordinate system used to express an on-sky distribution (direction
cosines l,m) and baselines (u, v, w expressed in units of wavelengths). The figure
is taken from Thompson et al. (2017), Fig. 3.2. by CC BY 4.0.
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for a normalized point source, i.e. (Thompson et al. 2017):√
A(l,m) = |UA(l,m)|. (1.2)

From Eq. (1.1) it becomes obvious that the smallest resolvable structures on sky

are limited by the longest sampled spatial Fourier frequencies, i.e. the resolution

limit is of order of λ/D where D is the diameter of the reflector antenna. Hence, a

poor resolution can be expected for single aperture telescopes operating at radio

wavelengths.

Radio interferometry provides a very powerful method for overcoming the

problem of poor resolution of radio telescopes. In radio interferometry an array

of antennas is used. All of the array antennas simultaneously observe the same

target objects, and the signals recorded at all these antennas are subsequently

correlated for all pairs of the antennas. In the following we will discuss the case

of an antenna pair in a simplified setup for first illustration. We first assume that

the source is unresolved for both antennas, i.e. appears as a point source. If both

antennas track the source, then the antenna response at antenna k to an incident

field E(l,m) could be expressed as (Thompson et al. 2017):

Ck(t) =

∫
dl

∫
dm

∫
dνE(l,m, ν)

√
Ak(l,m)Hk(ν)e2πiνt, (1.3)

with a frequency ν and a frequency response Hk(ν), i.e. a frequency filter function.

Hence, the correlation product is:

r(τ) = limT→∞
1

2T

∫ T

−T

dtC1(t)C
∗
2(t− τ) = limT→∞

1

2T

∫ T

−T

dt

∫
dldmdl′dm′dνdν ′

E(l,m)E∗(l′,m′)
√

A1(l,m)A2(l′,m′)H1(ν)H∗
2 (ν ′)e2πiνte−2πiν′(t−τ). (1.4)

We have to assume that the source is spatially incoherent, eliminating off-diagonal

integrals in l′ and m′. Moreover, we integrate out the time dependence eliminat-

ing the integral in ν ′ and define the intensity as the squared field amplitude

(Thompson et al. 2017):

I(l,m) = E(l,m)E∗(l,m). (1.5)

Hence (Thompson et al. 2017):

r(τ) =

∫
dldmdνI(l,m)

√
A1(l,m)A2(l,m)H1(ν)H∗

2 (ν)e2πiντ . (1.6)

The geometric delay between the two antennas is given by the baseline array ex-
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pressed by harmonic coordinates u, v, w associated to the direction cosines l,m, n

(u, v define the baseline vector in the plane perpendicular to the source direction,

and w is the baseline vector component along the source direction), compare Fig.

1.8. It is ν0τ = ul + vm + w
[√

1− l2 −m2 − 1
]
≈ ul + vm with a central fre-

quency ν0. The w-term becomes important in wide-field applications, but can be

ignored with the small field of views of VLBI (Taylor et al. 1999). In the special

case of two identical antennas with a constant antenna beam pattern across the

field of view (i.e. small field of view) with an ideal narrow box frequency filter

we get (Thompson et al. 2017):

r(u, v) = A0V(u, v)∆ν , (1.7)

where A0 is the combined response, and ∆ν the observing bandwidth. V = FI are

the visibilities. While Eq. (1.7) was derived in a very simplified setting, it illus-

trates the main idea behind radio interferometry already: The correlation product

of an antenna pair gives rise to the visibilities, i.e. to the Fourier transform of

the true sky brightness distribution. For a variable antenna beam pattern, the

measured visibilities are related to the convolution of the power reception pattern

A(l,m) and the intensity, expressed by a transfer function W (u, v) in the Fourier

domain. The relation between these various antenna properties is illustrated in

Fig. 1.9.

For the remainder of this dissertation we focus on the imaging problem, i.e. we

assume complex visibilities as our observables from which the two-dimensional sky

brightness distribution needs to be robustly reconstructed. In such generalized

setting the van-Cittert-Zernike theorem holds true approximately (Burke et al.

2019; van Cittert 1934; Zernike 1938):

V(u, v) =

∫ ∫
e−2πi(lu+mv)I(l,m)dldm . (1.8)

Every antenna pair at a fixed point in time provides the visibility at one Fourier

frequency (u, v) determined by the baseline between the two antennas. As the

Earth rotates relative to the source, each antenna pair produces an elliptical track

(for all objects with non-zero declinations) in the Fourier plane (uv-coverage) de-

fined by the (u, v) coordinates (Taylor et al. 1999). The combination of all such

uv-tracks determines the total coverage (uv-coverage) of the Fourier plane by an

interferometric observation. With a fully filled uv-coverage, the true sky bright-

ness distribution could be derived from an inverse Fourier transform. However,

due to the limited number of antennas and observing time, the Fourier domain

is only sparsely filled. Examples of uv-coverages with the typical elliptical tracks
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Figure 1.9: Relation between functions involved in imaging a source, adapted
after Thompson et al. (2017), Fig. 5.5.

due to Earth rotation are presented in Fig. 1.10. Compared to the resolution

limit of a single dish instrument, θmin ∼ λ
D

with the diameter of the antenna

D, we conclude by comparing Eq. (1.1) and (1.8) that the resolution limit of

an interferometric array is of order: θmin ∼ λ
B

where B is the longest baseline

in the array (i.e. the longest u, v-distance covered by observations). Hence, the

main advantages of radio interferometers are as follows: The effective collecting

area of an interferometric array is the sum of the collecting areas of its antennas,

and the resolution is inversely proportional to the longest distance between the

antennas, which is typically much larger than the size of a single antenna. On the

contrary, radio interferometers, opposed to single dish instruments, do not have

a full aperture, i.e. significant gaps in the uv-coverage.

1.4.3 Very Long Baseline Interferometry

Very long baseline interferometry (VLBI) is a special radio interferometric tech-

nique with long baselines, up to a global scale (and in the case of space-VLBI with

even longer baselines to a space antenna). As a special interferometric technique,

VLBI has a special range of additional issues that distinguish it from usual radio

interferometers. Among others we like to mention (Thompson et al. 2017):

• Due to the lack of short baselines and the focus on high angular resolution,

16



1 INTRODUCTION

(a) (b)

Figure 1.10: Panel a: Synthetic uv-coverage of the Karl G. Jansky Very Large
Array (VLA) taken from the CASA documentation: https://casaguides.n

rao.edu/index.php/VLA-CASA-Imaging-CASA5.5.0 at 23.12.2022. One can
clearly see the elliptical tracks of the uv-coverage and the significant gaps between
several tracks and towards the center., Panel b: uv-coverage of the 2017 EHT
campaign of M87 (Fig. 2 Event Horizon Telescope Collaboration et al. 2019b).

VLBI typically targets small fields of view. The w-projection term for wide-

field applications is often ignored.

• Continental scale and global scale VLBI experiments do not contain a cen-

tral master oscillator station distributing the clock signal to all participating

antennas. The data sets need to be stored on harddrives instead and corre-

lated in a post-processing step. Therefore, there is less control over the sys-

tem stability and time delay, affecting most significantly the phase stability,

particularly for mm-wavelengths. As a result, a thorough (self-)calibration

procedure is needed.

• Due to the high angular resolution of VLBI arrays, there are few unresolved

sources that can be used for calibration.

• Typically, but not necessarily, VLBI arrays are limited to a rather small

number of antennas due to the high technical requirements of single anten-

nas to participate in a VLBI experiment.

1.4.4 Overview of VLBI Data Processing

We will only provide a short and simplified overview of the data analysis pro-

cedure in VLBI. The data analysis procedure generally comprises data taking,

correlation, calibration and imaging. The procedure is described in more detail

in the usual textbooks (Burke et al. 2019; Snell et al. 2019; Taylor et al. 1999;

17
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Figure 1.11: Sketch of heterodyne receiver system.

Thompson et al. 2017). We refer the interested reader also to the more recent

overview of VLBI software provided in Janssen et al. (2022).

During observation the science target and (ideally unresolved) calibrator sources

are observed with alternated observing scans. From the calibrator source time

delays between the antennas are detected. This time delay is caused by the ge-

ometric distance and atmospheric effects, e.g. water vapor in the line of sight

of single antennas. These phase solutions will work as an initial phase solution

for the fringe detection. In addition to this we observe a total flux calibrator to

translate the arbitrary antenna counts to physical intensities. Typically, a short

measurement of the system temperature at the antennas and a pointing or focus

correction is applied between the science scans.

The time series recorded by a single antenna looks like random noise due to

the spatially incoherent superposition of incoming waves of the observed source

and the superposition of various frequencies (Burke et al. 2019). In the following

we outline the system of a generic heterodyne receiver system, although structural

details of the complicated electronics would go beyond the scope of this intro-

duction. A sketch of the different analysis steps is presented in Fig. 1.11. The

detected signal is amplified by an amplifier and send through an analog bandpass

filter (Thompson et al. 2017). The time series gets mixed with a local oscillator

that oscillates at a frequency νLO. Note that by the trigonometric addition theo-

rem the relation 2 sin(ν) cos(νLO) = sin(ν+νLO)+sin(ν−νLO) holds true. Hence,

by mixing the signal is separated into a low side band and a high side band. With

the application of an additional analog low-band filter the frequency is effectively

shifted down, such that the signal can be digitized by a digitizer with sufficiently

fast temporal sampling (Burke et al. 2019). In a single dish instrument, a square-

law detector and an averager pick the amplitude of the voltage pattern that is

proportional to the intensity that should be measured by averaging out spatially

incoherent cross terms (Burke et al. 2019).

A radio interferometer works similarly. We show a sketch of the working

procedure in a radio interferometer in Fig. 1.12 (Thompson et al. 2017). If
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the antennas are fiber-connected to a central station, the amplified and filtered

signal is mixed with a master oscillator of a central station. After additional

filtering (as outlined above) and the application of a variable phase delay, the two

signals are multiplied in a multiplier and integrated in time. These two steps are

called correlation (Janssen et al. 2022; Thompson et al. 2017). Hence, for a radio

interferometer the correlator replaces the square-law detector and the averager.

In VLBI the antennas are often not connected to a central control station and

every antenna has its own local oscillator. Therefore, we copy the digitized signal

on hard disk drives and correlate the data on specific supercomputer systems:

correlators (Taylor et al. 1999). A high clock precision and a good initial phase

solution is key to the success of the correlation, i.e. fringe detection (Janssen et al.

2022). It is worth mentioning that while software correlators are currently more

common (Janssen et al. 2022), there is continued progress in the development of

hardware correlators (e.g. at the Korean VLBI Network (KVN), see Lee et al.

2014c) originally introduced for processing large volumes of radio interferometry

data.

After correlation, we need to calibrate the data set. We present a schematic

overview of the necessary calibration steps in Fig. 1.13, adapted from Janssen

et al. (2022). Delay models computed at the correlation stage are still imperfect.

The data set could still suffer from corrupted data points. Moreover, the de-

lay model at the correlation stage does not account for atmospheric fluctuations.

Furthermore, we have to correct the observed data sets for instrumental effects

such as cross-delay between orthogonal polarization channels and a frequency-

dependent response function (bandpass) of the receiver system. We call the pro-

cedure to finetune the delay model (i.e. maximizing the correlation) fringe fitting.

Now we discuss the several stages presented in Fig. 1.13 in some more detail. As

a first step, the correlation output needs to be correctly loaded and converted into

a uniform data format since a VLBI array is often highly heterogeneous, with a

variety of different receiver systems and mounts. Moreover, we have to correct for

the parallactic angles (Taylor et al. 1999). To avoid outliers that corrupt the data

analysis further downstream, we flag possible statistical outliers. Next we cali-

brate the bandpass response of the antennas. If the bands are reasonable narrow,

only a small variation from band to band could be expected. An auto-correlation

analysis therefore provides initial gains per frequency bandpass. The correla-

tor outputs are electronic counts in arbitrary units. We translate these counts

into physical units by comparing to the known total fluxes of the flux-calibrator

sources observed typically at the beginning and the end of the VLBI observing

run. When this is not feasible, the measured antenna gains and system tem-

peratures are applied for the flux density calibration. Next we can pre-calibrate
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Figure 1.12: Schematic illustration of a radio interferometer, taken from Thomp-
son et al. (2017), Fig. 6.2. by CC BY 4.0.
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Figure 1.13: Flowchart of the calibration after correlation. Figure taken from
Janssen et al. (2022), Fig.2 by CC BY 4.0.
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for atmospheric phase-delays (Janssen et al. 2022). For weak sources, we use

phase-referencing: during the observation the science target and the calibrator

are observed in an alternating cadence. The calibrator is often a strong, ideally

unresolved source. We obtain a proper delay model correction from the calibrator

source and apply it to the science target (Taylor et al. 1999). Subsequently we

correct for phase delays between frequency bands and polarization channels. Fi-

nally, we fit the fringes, i.e. we obtain a finer phase delay model for any baseline.

The common fringe fitting method is a least square optimization with an assumed

source model (Janssen et al. 2022; Schwab & Cotton 1983). Fringe fitting is a

numerically expensive and time consumptive procedure, especially for heteroge-

neous arrays (Janssen et al. 2022). Therefore, a valid precalibration is essential to

allow for local fringe finding. Ideally, the final calibrated data set would be free

of systematic data corruption effects except for thermal noise. While we account

for most effects during the calibration, the calibration is never perfect in practice.

This is particularly the case if the the source contains a rich structural complexity

that was not accounted for with the simple source models during global fringe

fitting. In these cases, we have to refine the calibration during the imaging (self-

calibration), i.e. with a gradually evolving reconstruction we can refine the delay

and sensitivity models.

Imaging is the last step in the VLBI data analysis procedure comprising a set

of procedures of recovering an image from calibrated visibilities. As described

by the van-Cittert-Zernike theorem, see Eq. (1.8), imaging mainly deals with an

incomplete Fourier transform. However, the observed visibilities have additional

data corruptions and noise effects that need to be corrected for during imaging as

well (which is normally achieved through self-calibration). This hybrid approach

consisting of calibration and imaging at the same stage of the data analysis is

called hybrid imaging (Taylor et al. 1999). We will discuss several data corruption

effects in the following subsection and describe the imaging procedure in detail

in chapter 2

1.4.5 Corruption Effects

With a full uv-coverage, the true image is related to the true visibilities through

the Fourier transform. However, the imaging problem is complicated by two

issues. First, the uv-coverage is sparse as every antenna pair at a fixed point

in time provides only one Fourier frequency, and the number of antennas and

observing time is limited. Second, the measured visibilities differ from the true

visibilities due to noise and non-accounted antenna based (atmospheric) errors.

The effect of the uv-coverage on the final image can be well illustrated by the

dirty beam or the effective point spread function (psf) of an interferometric array.

22



1 INTRODUCTION

The dirty beam is the image domain response to a point source on sky, i.e. to a

flat uniform Fourier transform. Hence, it is the inverse Fourier transform of the

uv-coverage itself (Taylor et al. 1999):

BD = F−1G
∑

(u,v)∈uv−coverage

ωu,vδ(u, v) =: F−1GSFδ(0), (1.9)

where ωu,v are possible weighting parameters, G is a gridding operator that rep-

resents the uv-points on a rectangular grid accessible to a fast Fourier transform

and S a sampling operator that projects the visibilities to the measured, weighted

visibilities and sets all non-measured visibilities to zero.

Obviously, the uv-coverage is limited to a finite support: there is a finite,

longest baseline in the array. The highest sampled Fourier frequency limits the

angular resolution. Even with the ideal, uniformly filled uv-coverage, i.e. if the

uv-coverage would be a disk, this creates a sidelobe structure. As an illustration

and for subsequent discussions it is useful to establish the Fourier transform of a

disk function rectR = 1{x2+y2<R2}:

F(rectR)(k, α) =
R

k
J1(2πkR) =: fR(k), (1.10)

with polar coordinates k, α. J1 is the first order Bessel function which is plotted

in the upper right panel in Fig. 1.14. With additional gaps in the uv-coverage the

sidelobe pattern becomes more complex. As an illustrating example, we consider

the situation with a gap in the uv-coverage between a radius in uv-coverage r1

and r2 with r1 < r2 < R (where R is the limiting longest baseline). Such a

simplified uv-coverage would be expressed by the function rectR− rectr2 + rectr1

with a dirty beam:

F(rectR − rectr2 + rectr1)(k, α) = fR(k)− fr2(k) + fr1(k), (1.11)

a sum of of three Bessel functions, each of them introducing sidelobes at a different

spatial scale, compare also Fig. 1.14. A directional dependence of the filling of

the uv-coverage adds even more complexity to the pattern. Hence, the dirty

beam corresponding to the uv-coverage of a real observation is a superposition

of elliptical Bessel functions with a complex sidelobe pattern (see the detailed

discussion in Müller & Lobanov 2023a). It is the goal of imaging to ‘clean’ these

sidelobes out of the image, or equivalently to ‘fill’ the gaps in the uv-coverage

with a reasonable interpolation. One specific gap is inherent to the uv-coverage

in every radio interferometer: the zero point of the uv-plane and the uv-distance

corresponding to the closest pair of antennas in a VLBI array, such that the
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Full uv-coverage Dirty Beam

Radial uv-coverage with gaps Dirty Beam

Figure 1.14: Upper panels: Dirty beam and uv-coverage for an array without
gaps, i.e. a single spherical Bessel functions in the upper right panel. Bottom
panel: uv-coverage and dirty beam as superposition of Bessel functions of different
scales for an uv-coverage with radially symmetric gaps.

maximum structural scale to which the observation is sensitive remains restricted.

Up to now we have only discussed the situation of uniformly weighted visi-

bilities with gaps. However, the filling factor and signal-to-noise ratio is varying

for different regions of the uv-coverage, typically with a prominent overweighting

of the short baselines (Taylor et al. 1999). Hence, the dirty beam is not only a

superposition of elliptical Bessel functions of first order, but these constituents of

the beam pattern have varying weights as well.

Moreover, the observed visibilities differ from the true visibilities by direction-

independent calibration effects that can be multiplied into antenna based complex

gains gi. More details on the calibration effects that still need to be accounted for

are provided in chapter 1.4.4 and Janssen et al. (2022). Additionally, the observed
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visibilities are corrupted by thermal noise specific to the corresponding antenna

pair i, j: ϵi,j. The observed visibilities of an antenna pair i, j are therefore (Taylor

et al. 1999):

Vi,j = gig
∗
jV(ui, vj) + ϵi,j, (1.12)

where all terms can be time-dependent in principle, i.e. the gains vary over the

course of observations.
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2 Imaging

We study the imaging problem in VLBI and some closely related inverse problems

in this dissertation. This chapter serves as an overview of the background theory

laying the foundation for the current developments in the image reconstruction

and for the specific imaging algorithms developed and introduced in this disser-

tation. In general, images are reconstructed with a variety of apparently loosely

connected algorithmic frameworks. We present a common language for all these

methods and demonstrate their deeper connections as instances of the generalized

Tikhonov regularization method. This is essential for achieving a same-level theo-

retical comparison and for providing a common basis for algorithm development.

Moreover, the generalized Tikhonov framework and the methods and software de-

veloped in this dissertation have a wider range of applications outside of VLBI as

well. We first set the scope of VLBI imaging, introduce the basic terms of inverse

problems, and then discuss common data products in VLBI. We present various

imaging approaches employing both inverse modeling and forward modeling and

conclude with their qualitative comparison. Finally, we present the motivation

for this dissertation.

2.1 Scope of VLBI Imaging

All radio interferometers share the same fundamental issue for imaging: the

Fourier domain is undersampled. However, there are significant differences be-

tween VLBI arrays and denser arrays such as the proposed Square Kilometer

Array (SKA), the Atacama Large Millimeter/submillimeter Array (ALMA), the

Very Large Array (VLA) or MeerKAT regarding the proposed and used data

analysis techniques. Foremost, these two data regimes (i.e. VLBI and ‘dense ar-

rays’) vary by the number of observed visibilities (i.e. the uv-coverage), compare

e.g. Fig. 1.10.

For dense arrays, the large number of antennas allows for high dynamic range

reconstructions. For reconstructions at these dynamic ranges a detailed cali-

bration is necessary. Among the calibration of gains, this includes direction-

dependent gains and wide-field effects. Thermal noise would be amplified in a

naive direct inversion. For this reason, regularization needs to be added: we aim

to recover an optimal, high dynamic range image from noisy data and want to sta-

bilize the reconstruction process against observational noise and data corruptions.

In this sense, the problem could be approximated as a regularized deconvolution

problem with an approximately injective convolution kernel (the point spread

function).

In VLBI, wide-field effects are typically ignored. On the contrary, the fringes
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are more unstable, such that in mm-VLBI imaging methods that are agnostic

against an initial phase-calibration were proposed recently (Chael et al. 2018;

Müller & Lobanov 2022). The primary issue for VLBI arrays is the small num-

ber of visibilities. The uv-coverages of VLBI experiments have significant gaps

that are much more prominent than for denser arrays. The philosophy behind

reconstructing an image changes slightly: we want to interpolate the observed

visibilities in the gaps of the uv-coverage without introducing new (not observed)

features in the map. The point spread function is clearly not injective (miss-

ing data). The undersampling of the Fourier domain, i.e. the issue of missing

information, dominates the reconstruction and limits the dynamic range.

The differences between these two data regimes led to different inversion meth-

ods that have been proposed respectively. In this dissertation we focus on the

VLBI side. Hence, in the following chapters we mainly focus on the missing data

issue and address this multimodality of the reconstruction directly either with

multiscalar basis functions or with a multiobjective optimization.

2.2 Inverse Problems

The imaging problem can be effectively formulated in the language of inverse

problems. We therefore introduce the basic concepts of inverse problems in this

chapter. However, we provide only a coarse overview of the general ideas and

omit derivations of the mathematically rigorous formulations. Building upon this

general formulation of inverse problems, we present the basic approach how to

solve them (regularization) and how to realize this numerically in the context of

convex optimization.

2.2.1 General Introduction

Generally, we study a forward problem of the form:

gδ = FI + ϵδ, (2.1)

with a generic forward operator F : X → Y acting between Hilbert spaces X
and Y and noise ϵδ of magnitude ∥ϵδ∥l2 = δ. In the case of VLBI, the forward

operator is the operator mapping the sky brightness distribution to the measured

visibilities, i.e. it describes a Fourier transform, sampling and multiplication with

complex gains. The forward problem reads as follows: Given the input/image I,

predict the measured data (i.e. visibilities) gδ. The inverse problem asks the

reverse question: Given the noisy observed data gδ, what was the input array

(Kirsch 2011)?
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Interestingly, even if the forward problem has analytically desirable properties,

e.g. it is smooth, convex, compact, bounded or Lipschitz-continuous, the inverse

problem is typically harder to solve (Kirsch 2011). We call an inverse problem

well-posed, if there exists a solution (existence), the solution is unique and de-

pends continuously on the input parameters. If one of these criterions fail, we call

the inverse problem ill-posed (Hadamard & Morse 1953). This is the situation

in VLBI: There are non-measured Fourier coefficients, i.e. missing information.

The stability requirement is most crucial since existence and uniqueness condi-

tions could be achieved by enlarging or shrinking the domain of possible solutions

(Kirsch 2011). An ill-conditioned inverse problem is typically unstable against

observational noise, i.e. the naive inversion by the pseudo-inverse operator could

amplify observational noise. This is the case if the (pseudo-)inverse operator is

not bounded.

A simple example of such a problem can be formulated in the context of linear

inverse problems: If the sequence of singular values has a (weak) accumulation

point at zero, the inverse operator (if it exists at all) will be unbounded, as the

singular values of the inverse operator are the inverse of the singular values of the

forward operator. A naive inversion could therefore lead to an arbitrary increase

of noise effects during reconstruction. The prime example of such an analytically

invertible, but ill-conditioned problem is inverting a Gaussian convolution, i.e.

deblurring. A deconvolution, following the Fourier convolution theorem, would

require dividing by the Fourier transform of a Gaussian filter which decreases

exponentially fast to zero with Fourier frequency. Image reconstruction employing

this type of deconvolution is prone to be unstable against observational noise ϵδ,

and this is the typical situation in VLBI.

Another simple ill-posed inverse problem is (numerical) differentiation (Varah

1983). The corresponding forward operator is the integral operator, respectively

its discretization. While there exists a simple unique solution, it is unstable

against noise. The differential quotient could grow large for a noise distribution

that is rapidly varying from pixel to pixel.

Inverse problems should not be confused with simple fitting problems. A

linear, invertible operator between finite dimensional Hilbert spaces always has a

bounded inverse: In the finite manifold of singular values, there is a well defined

smallest singular value unequal to zero (invertibility). Inverse problems typically

arise in infinite dimensional reconstruction problems, i.e. the reconstruction of an

image (sky brightness distribution) from its sparse Fourier transform. However,

in practice a pixelized finite representation, i.e. on a grid, always has to be used

for computations.
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2.2.2 Regularization Theory

For perturbed data, we aim to recover an approximation of the true solution that

fits the observed (noisy) data at the level of the noise (Kirsch 2011). To this end,

we call the procedure to approximate an ill-posed inverse problem by a family

of single-valued, stable reconstruction problems regularization (Morozov 1967).

There are various approaches to introduce regularization to an ill-posed problem,

and they all share great similarity. We describe here the motivation behind

the generalized/non-linear Tikhonov regularization. In the VLBI community, the

same idea is known under the name Regularized Maximum Likelihood (RML) or

Maximum Entropy Method (MEM). First we reformulate the problem stated in

Eq. (2.1) as an optimization problem. We look for a guess solution Î such that:

Î ∈ argminf

{∥∥∥gδ − Ff
∥∥∥2 =: T F (gδ, f)

}
. (2.2)

Note that the norm is always non-negative and, in the absence of noise, for the

true solution I, the argument in the norm would vanish. Hence, Eq. (2.2) is

equivalent to the original, non-regularized formulation of the inverse problem.

The minimum is still multi-valued (ill-posedness). Moreover, in the presence

of noise we find a guess solution that fits the data and the noise distribution

(overfitting). Hence, a second term is added (Kirsch 2011; Landweber 1951;

Tikhonov 1963a,b):

Îαδ
∈ argminf

{∥∥∥gδ − Ff
∥∥∥2 + αδR(f) =: T F

αδ,R
(gδ, f)

}
, (2.3)

where R is called the regularization term and αδ ∈ [0,∞) is the regularization

parameter depending on the noise level δ. The regularization term measures the

feasibility of the solution: among all the possible (pseudo-)optimal solutions (ill-

posedness) we choose the one that is most feasible according to our perception of

the image structure. In many cases, this prior information just includes a sim-

plicity assumption, i.e. we recover the simplest solution that still fits the data.

However, more advanced priors are possible as well (see e.g. Akiyama et al. 2017b;

Chael et al. 2016, for a variety of regularization terms in VLBI). Note that T F
αδ,R

is an approximation to T F , and in particular T F
αδ,R
→ T F for αδ → 0. Moreover,

if the regularization term R is well-chosen, every operator T F
αδ,R

(gδ, ·) has a well-

defined, single-valued guess solution (minimum) Îαδ
that is stable against noise.

Hence, as a rationale, to account for ill-posedness, we approximate the multi-

valued inverse problem (formulated as an optimization problem) by a sequence of

single-valued and robust objective functionals that converge to the initial inverse
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problem if the noise level converges to zero (Kirsch 2011). Originally, Tikhonov

regularization was proposed with an l2-prior. However, in what follows we will

apply the term generalized Tikhonov regularization to every regularization ap-

proach that tries to solve the reconstruction problem by minimizing a weighted

sum of data fidelity terms and regularization terms:

Î ∈ argminf

∑
i

αiSi(g
δ, Ff) +

∑
j

βjRj(f)

 , (2.4)

with data fidelity terms Si, regularization terms Rj and regularization parameters

αi, βj. The data fidelity terms measure the proximity of the guess solutions to

the observed data. The regularization terms measure the feasibility of the guess

solutions. The regularization parameters control the tradeoff between fitting the

data and feasibility of the solution. By minimizing a weighted sum of data fidelity

terms and regularization terms, an optimal solutions is found that fits the data

and is feasible according to the used priors.

2.2.3 Convex Optimization

As described in chapter 2.2.2, we solve inverse problems by minimizing a com-

plex objective functional such as Eq. (2.4). A description of the solution of

inverse problems therefore requires some background in optimization theory. A

detailed overview is provided in Boyd & Vandenberghe (2004). Optimization can

be broadly divided into two classes: convex and non-convex optimization. We

will concentrate on convex optimization for this discussion. However, we should

mention that some VLBI data products (i.e. closure quantities) and regular-

ization terms (l0-penalization) are not convex. Hence, for example the objective

functional of the DoG-HiT algorithm is non-convex. A more rigorous convergence

analysis is needed in this case and will be discussed in chapter 3.

A functional T : X→ [0,∞] is called convex if (Boyd & Vandenberghe 2004):

T (rx1 + (1− r)x2) ≤ rT (x1) + (1− r)T (x2) (2.5)

holds for all x1, x2 ∈ X and r ∈ [0, 1]. Moreover, a functional is called strictly

convex if strict inequality holds true. Strict convexity warrants uniqueness of the

minimization problem by a simple contradiction argument: assume that T would

have multiple minima. Let x1 ̸= x2 ∈ X be two of these T -minimizing solutions.

Then every combination of the form x3 = rx1 + (1 − r)x2 would be a smaller

minimum according to strict convexity of T , i.e. T (x3) < T (x1) = T (x2), which

is a contradiction to the initial assumptions.
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If all terms in the objective functional would be smooth, minimization could

be done with gradient based minimization procedures. The simplest minimization

procedure is steepest descent (first proposed by Debye 1909), i.e. we minimize

the objective in Eq. (2.4) by the iteration:

f ← f − γ

∑
i

αi∂Si(g
δ, ·)(Ff)∇F (f) +

∑
j

βj∇Rj(f)

 , (2.6)

with a stepsize parameter γ. A wide range of more sophisticated variants exist

that allow for convergence acceleration, implicit schemes, additional constraints,

an improved numerical performance and a more global search spectrum, e.g. ac-

celeration by Nesterov’s heavy ball algorithm (Nesterov 1983), conjugate gradient

methods (Fletcher & Reeves 1964; Hestenes & Stiefel 1952), Broyden-Fletcher-

Goldfarb-Shanno (BFGS) methods and its variants (Broyden 1970; Byrd et al.

1995; Fletcher 1970; Goldfarb 1970; Shanno 1970), or the Levenberg-Marquardt

algorithm (Levenberg 1944; Marquardt 1963). We will not go into more details

here.

Not all terms in an objective functional of the form of Eq. (2.4) are smooth.

In particular, sparsity promoting regularization terms (l1-norm, total variation)

do not have a single-valued gradient. Since these terms are typically convex, we

can use tools of convex optimization instead. However, there are prominent ex-

ceptions, in particular in VLBI (see chapter 3 for more details). The following

paragraph is rewritten from the publication Müller & Lobanov (2022) related to

this dissertation. We assume an objective functional of the form of T F
αδ,R

(gδ, f),

see Eq. (2.3), for this discussion with a smooth functional S and a convex func-

tional R, i.e. we have splitted the objective into the smooth and the convex part.

In general we define the proximal-operator of a generic functional H defined on

a Hilbert space X by (Müller & Lobanov 2022):

proxτ,H(z) = argmins∈X

{
H(s) +

1

2τ
∥s− z∥X

}
. (2.7)

If H is proper, lower-semi-continuous and convex, then proxτ,H is well-defined

(Moreau 1962). We can prove now that:

ŝ ∈ argminsH(s) ⇐⇒ ŝ = proxτ,H(ŝ) (2.8)

holds true independently of τ ≥ 0. A sketch of the proof is presented in Appendix

A of Müller & Lobanov (2022) and reprinted in chapter 3. Hence, applied to

T F
αδ,R

(gδ, f), we get the two-step minimization procedure (Combettes & Pesquet
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2011):

f ← proxτα,R(f − τ∇F (gδ − Ff)). (2.9)

These types of algorithms are called forward-backward splitting as they split the

iterations in a gradient-based forward step and a proximal point based backward

step. Most optimization problems occurring in VLBI imaging need to be solved

with these kind of minimizers due to the complexity and non-smoothness of the

optimization terms involved. Again, it is worth mentioning that acceleration tech-

niques and more advanced variants of the forward-backward splitting algorithm

exist, e.g. fast iterative soft thrinkage thresholding (FISTA) first proposed by

Beck & Teboulle (2009) or recently proposed primal-dual algorithms (Chambolle

& Pock 2011).

Most convex optimization algorithms such as forward-backward splitting are

formulated in the framework of Eq. (2.4), i.e. with only one smooth data term

and one convex penalty term (Combettes & Pesquet 2011; Kirsch 2011). How-

ever, in VLBI we typically deal with a larger combination of terms (Chael et al.

2016; Event Horizon Telescope Collaboration et al. 2019b, 2022b) which makes

slight extensions of the underlying optimization tools necessary. An alternative

approach would be multiobjective optimization methods, i.e. evolutionary algo-

rithms (Müller et al. 2023d; Zhang & Li 2007).

2.3 VLBI Data Products

In the previous subsection, we introduced the generalized Tikhonov regularization

method as a minimization of a weighted sum of data fidelity terms and penalty

terms. We focus in this chapter on the data fidelity terms, i.e. on the VLBI data

products that we try to fit. We first discuss interferometric visibilities as the most

important data products and then extend the discussion to more abstract data

products such as closure quantities and polarimetric visibilities.

2.3.1 Visibilities

The prime data product coming out of an observation by a VLBI experiment are

the observed visibilities V . The fit quality of a guess solution Î to the observed

visibilities is typically expressed by the reduced χ2:

Svis(V, ·) : W 7→ 1

Nvis

Nvis∑
i=1

|Wi − Vi|2

ϵ2i
, (2.10)

32



2 IMAGING

where Nvis is the number of observed visibilities, ϵi the estimated thermal noise

of a given visibility and W = F Î the forwarded visibilities of the current guess

Î. Similarly, the quality of the fit to the observed data can be expressed in the

image domain by the magnitude of the residual Ires in natural weighting:

Ires = F−1G

Nvis∑
i=1

Wi − Vi

ϵi
δ(ui, vi), (2.11)

with the gridding operator G introduced earlier. Due to the unitary of the Fourier

transform (i.e. the Fourier transform does not change the norm) it is:

∥Ires∥2 = NvisSvis(V,W ), (2.12)

where we ignored aliasing and sampling errors due to the sampling and gridding

of the Fourier coefficients. We call the initial residual corresponding to W = 0

the dirty map:

ID = F−1G

Nvis∑
i=1

Vi

ϵi
δ(ui, vi), (2.13)

There exist several variants of Svis in practice (and in particular for inverse mod-

eling approaches).

First, it has become common practice in mm-VLBI to add a small systematic

noise floor to the error budget to correct for non-accounted thermal errors or

telescope pointing errors (Event Horizon Telescope Collaboration et al. 2019b,

2022b). Moreover, this additional noise floor would prohibit Svis to be driven by

single data points with nonphysically small system temperature estimates.

Second, when computing the residual, weighting schemes other than the nat-

ural one could be introduced (Taylor et al. 1999). A prominent alternative is

uniform weighting. The uniform weighting accounts for the fact that in most

VLBI arrays more short baselines exist than long baselines, hence large scale

structures are favored. With the uniform weighting, every grid cell after the

gridding gets the same weight, regardless of the number and significance of the

visibility points sampled in it, thus giving more weight to the longer baselines

(Taylor et al. 1999). In order to formulate different weighting schemes, let us first

introduce the ungridded data weights, ωi, as the inverse variance by ωi = 1/ϵ2i .

Then we define the grid weights Wi as the gridded inverse variances ωi over a

grid size of 2/FOV (where FOV is the field of view). The uniform weights are
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(Briggs 1995):

wuniform
i =

ωi

Wi

. (2.14)

Both weighting schemes are unified in the Briggs-weighting scheme (Briggs 1995):

wrobust
i =

ωi

1 +Wks2
(2.15)

s2 =

(
5 · 10−r

)2
∑

i W2
i∑

i ωi

(2.16)

with Briggs robustness parameter r.

If desired, one could introduce additional weights at the gridding stage man-

ually with a tapering function. A taper is a Gaussian function of the uv-radius

that is multiplied to the observed and recovered visibilities. A taper therefore

gives more weight to the short baselines. Less common, also inverse tapers were

used (Event Horizon Telescope Collaboration et al. 2019b).

An important consideration arises in radio interferometry from the fact that

the visibilities are complex numbers, i.e. they consist of an amplitude and a phase.

After calibration, the phase is often more unstable than the amplitudes, such that

it is beneficial in some cases to calculate the fit to the observed amplitudes only:

Samp(V, ·) : W 7→ 1

Nvis

Nvis∑
i=1

(|Wi| − |Vi|)2

ϵ2i
. (2.17)

It should be stressed here that for all weighting schemes the functionals Svis ◦ F
is differentiable and convex.

2.3.2 Closure Quantities

Visibilities (amplitudes and phases) are corrupted by errors in the measured an-

tenna gains, compare chapter 1.4.5. Hence, fidelity criteria such as Svis are prone

to calibration effects. Closure quantities, i.e. closure phases and closure ampli-

tudes, are gain-independent alternatives. A closure phase is the added phase over

a closed triangle of antennas i, j, k. It is (Taylor et al. 1999):

Ψi,j,k = arg(VijVjkV
∗
kl) = arg(VijVjkV∗

ik) + arg(gig
∗
j gjg

∗
kgkg

∗
i ) = arg(VijVjkV∗

ik),

in the absence of thermal noise. Hence, closure phases are independent of antenna

based gains. A similar property are closure amplitudes comprising the ratio of

34



2 IMAGING

visibility amplitudes over a quadrangle of antennas i, j, k, l (Taylor et al. 1999):

Ai,j,k,l =
|Vi,j||Vk,l|
|Vj,k||Vl,i|

=
|Vi,j||Vk,l|
|Vj,k||Vl,i|

×
|gig∗j gkg∗l |
|g∗i gjg∗kgl|

=
|Vi,j||Vk,l|
|Vj,k||Vl,i|

. (2.18)

Hence, closure amplitudes are also independent of antenna based gains. For

forward modeling approaches, closure phases and closure amplitudes could be

directly used as data fidelity quantities:

Scph(V, ·) : W 7→ 1

Ncph

Ncph∑
i=1

|Ψi(W )−Ψi(V )|2

ϵ2cph,i
, (2.19)

where Ncph is the number of independent closure phase combinations and Σcph,i

the noise on a closure phase Ψi(V ). Similarly we define:

Sca(V, ·) : W 7→ 1

Nca

Nca∑
i=1

|Ai(W )− Ai(V )|2

ϵ2ca,i
, (2.20)

with analogous notation. Instead of the amplitudes, sometimes the logarithm of

the closure amplitudes is used to give more weight to small amplitudes and in

particular the separation between vanishing visibilities and small signals:

Scla(V, ·) : W 7→ 1

Ncla

Ncla∑
i=1

| lnAi(W )− lnAi(V )|2

ϵ2cla,i
. (2.21)

It is important to note that Eq. (2.19), Eq. (2.20) and (2.21) are only approx-

imations to the correct log-likelihoods for closure products, see e.g. Arras et al.

(2022); Blackburn et al. (2020).

Chael et al. (2018) explored the possibility to carry out interferometric imaging

using only the closure quantities, with promising results that found application

in later EHT data reductions (see Event Horizon Telescope Collaboration et al.

2019b, 2022b). An important characteristics in imaging with closure quantities

is the number of independent closure phases and closure amplitudes. If there are

Nant antennas in the array, then the number of independent visibilities at a single

time is:

Nvis =
Nant(Nant − 1)

2
. (2.22)

Chael et al. (2018) estimated the number of independent closure phases to be:

Nclp =
(Nant − 1)(Nant − 2)

2
=

(
1− 2

Nant

)
Nvis. (2.23)
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and the number of independent closure amplitudes to be:

Ncla =
Nant(Nant − 3)

2
=

(
1− 2

Nant − 1

)
Nvis. (2.24)

Thus, there are fewer degrees of freedom in the closure quantities. These show

up in two degeneracies particularly. First, closure amplitudes and closure phases

are independent against the image shift, i.e. the absolute position information is

not maintained. Second, closure phases and closure amplitudes are independent

against rescaling the image with a constant number λ > 0. Hence, total flux

information is also lost and therefore strict convexity is broken.

Moreover, we have to bring up the issue noted first in Lockhart & Gralla

(2022a). While closure phases and closure amplitudes are independent of antenna

based gains, the statistical errors of the closure quantities are not. Lockhart

& Gralla (2022a) presented two natural approximations for the variance: The

variable model (using data visibilities V to compute the error) and the fixed

model (using the model visibilities W ). The choice affects the final reconstruction

results. The χ2-fit quality to the closure quantities (i.e. Sca, Sclp) has been used in

VLBI for decades to quantify the goodness of the fit independent of antenna based

gains. This is simply a wrong assumption according to the findings in Lockhart &

Gralla (2022a). However, application in practice demonstrated that closure-only

imaging still performs very robustly against gain corruptions (e.g. compare the

extensive synthetic data validations in Chael et al. 2018; Event Horizon Telescope

Collaboration et al. 2019b, 2022b).

2.3.3 Polarimetry

Synchroton sources show typically some degree of polarization. Let us write down

the electric field as a vector with two orthogonal components in the plane (x,y)

perpendicular to the direction of field propagation (Thompson et al. 2017):(
Ex(t)

Ey(t)

)
=

(
Ẽx(t) cos(2πνt + ϕx(t))

Ẽy(t) cos(2πνt + ϕy(t))

)
, (2.25)

with frequency ν (assuming monochromaticity), phase-shift ϕ and amplitude

modulation Ẽ. Then the Stokes parameters are defined by (Thompson et al.
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2017):

I = ⟨Ẽ2
x(t)⟩+ ⟨Ẽ2

y(t)⟩ (2.26)

Q = ⟨Ẽ2
x(t)⟩ − ⟨Ẽ2

y(t)⟩ (2.27)

U = 2⟨Ẽx(t)Ẽy(t) cos(ϕx(t)− ϕy(t))⟩ (2.28)

V = 2⟨Ẽx(t)Ẽy(t) cos(ϕx(t) + ϕy(t))⟩ . (2.29)

The Stokes parameters describe the polarization state of the incoming signal.

Stokes I is the total intensity, Stokes Q and U (orthogonal) linear polarization

and V circular polarization. It follows directly that the inequality:

I2 ≥ Q2 + U2 + V 2 (2.30)

holds true. We can identify the Stokes visibilities from the Stokes parameters by

a Fourier transform (Thompson et al. 2017):

VI = FI (2.31)

VQ = FQ (2.32)

VU = FU (2.33)

VV = FV (2.34)

We denote the action on an electric field by Jones matrices. An antenna in

the VLBI array observes the polarimetric source in two perpendicular polariza-

tion filter (either orthogonal linear polarization or opposite circular polarization,

Thompson et al. (2017)). The antenna based gains could vary between both

bands. Hence, gains are represented by the Jones matrix (Thompson et al. 2017):

Jgain =

(
gx 0

0 gy

)
. (2.35)

Moreover, we have to calibrate for the rotation of the polarization surface relative

to the antenna by an angle θ (Thompson et al. 2017):

Jrotation =

(
exp(iθ) 0

0 exp(−iθ)

)
, (2.36)

and the leakage between the polarization filter (Thompson et al. 2017):

Jleakage =

(
1 dx

dy 1

)
. (2.37)
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We combine these corruption effects into an antenna based Jones matrix J =

JgainJrotationJleakage. When we multiply the two polarization bands from two an-

tennas i, j we get four correlation products. This is short noticed by the outer

product ⊗:

si,j(t) := (JiEi(t))⊗ (J∗
jE

∗
j(t)) = (Ji ⊗ J∗

j)(Ei(t)⊗ E∗
j(t)) (2.38)

We have shown in chapter 1.4.2 that, when we integrate the multiplied quantities

over time (i.e. correlating), the resulting quantity is related to the visibilities. Ex-

actly the same computation, but for all four components, shows now (Thompson

et al. 2017):

ri,j = ⟨Ei(t)⊗ E∗
j(t)⟩ =


rxxi,j

rxyi,j
ryxi,j
ryyi,j

 =


1 1 0 0

0 0 1 i

0 0 1 −i
1 −1 0 0



VI(uij, vij)

VQ(uij, vij)

VU(uij, vij)

VV (uij, vij)

 ,

(2.39)

for linear polarization, compare Eq. (2.26), (2.27), (2.28) and (2.29). The calcu-

lation for circular polarization is analogous (with a different base) and is therefore

not repeated here. Hence, in polarimetry, the correlation products of each an-

tenna pair give rise to four different visibilities corresponding to the four Stokes

parameters. Similarly to our discussions in chapter 2.3.1, we can therefore also

define data fidelity terms for the Stokes visibilities Q,U, V . In consistency with

our notation before we denote the measured visibilities by:

si,j =


V ij
I

V ij
Q

V ij
U

V ij
V

 (2.40)

Recently Broderick & Pesce (2020) also derived closure quantities for polari-

metric properties: the closure traces. We define the visibility matrix Vij for an

antenna pair ij first:

Vij =

(
V ij
I + V ij

V V ij
Q + iV ij

V

V ij
Q + iV ij

V V ij
I − V ij

V

)
(2.41)

Then the trace over a quadrangle of antennas i, j, k, l:

Trijkl =
1

2
trace

(
VijV

−1
kj VklV

−1
il

)
(2.42)
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is independent of the corruption matrices J (Broderick & Pesce 2020). Hence,

Trijkl is independent of leakage terms, gain amplitudes, and gain phases. Closure

traces have been used for calibration (Event Horizon Telescope Collaboration

et al. 2021a), but not for imaging yet. A serious drawback of closure traces is its

independence against rotations in the Poincare-sphere (Broderick & Pesce 2020).

2.3.4 Extended Imaging Problems

The classical imaging problem described above has several important extensions,

including multifrequency imaging, dynamical imaging and spectral imaging. In

dynamical imaging, we do not recover a single image I(l,m) from our data, but a

movie I(l,m, t), i.e. we extend the imaging problem to the time domain. For dy-

namical imaging, the problem is decomposed into several scans of shorter length.

Instead of a quality of fit metric for the full observation, we use a quality of fit

metric on each individual sub-scan. Roelofs et al. (2023) provide an overview over

the current approaches for dynamical imaging. We provide a more comprehensive

overview on the reconstruction of dynamics in chapter 3.4.

For spectral imaging, imaging is extended to the spectral domain. If there is

an isolated emission line in the spectrum (such as the hyperfine structure line of

hydrogen), the spectral dimension could be associated to the radial direction due

to the Hubble redshift, e.g. compare 21 cm intensity mapping.

For multifrequency imaging, data of several frequency bands are combined.

The multifrequency data set is fitted by a suitable common model with built-in

spectral variability (Chael et al. 2023). For these reconstructions, the data fidelity

term is a (weighted) sum of the data fidelity terms at single frequencies.

2.4 Imaging with CLEAN Deconvolution

The original CLEAN algorithm (Högbom 1974) and its many variants (Bhatna-

gar & Cornwell 2004; Clark 1980; Cornwell 2008; Müller & Lobanov 2023a; Rau

& Cornwell 2011; Sault & Wieringa 1994; Schwab 1984) have been the de-facto

standard in VLBI for the last decades, mainly because they are practical. We

present the CLEAN algorithm in this chapter, and discuss its convergence, limi-

tations and extensions. A schematic overview of usual CLEAN methods proposed

for VLBI is presented in Fig. 2.15.

2.4.1 Algorithm

For CLEAN the imaging problem is equivalently reformulated as a deconvolution

problem with the dirty map ID, i.e. the first residual, compare Eq. (2.13), and
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Inverse 
Modeling

Multiscalar

DoB-CLEAN 
(Müller 
2023a)

Asp-CLEAN 
(Bhatnagar

2004)

MS-CLEAN 
(Cornwell 

2008)

Single Scale

CLEAN-
Difmap

Figure 2.15: Overview of inverse modeling imaging methods (i.e. variants of
CLEAN) that have been applied to VLBI. We spare here CLEAN methods that
have been proposed for non-VLBI applications such as wide-field imaging.

the dirty beam BD, see Eq. (1.9):

ID = BD ∗ I, (2.43)

where I is the true sky brightness distribution. As discussed in chapter 1.4.5, the

dirty beam is a superposition of weighted spherical Bessel functions. The dirty

beam always has a central peak (limiting resolution) and a range of sidelobes.

With CLEAN, we try to reduce the sidelobes from the image. For this we define

a Gaussian clean beam BC that is fitted to the central component of the dirty

beam, i.e. a beam that only contains the main lobe of the dirty beam, but not

the sidelobes. CLEAN consists of the following steps (Högbom 1974), see also

the sketched outline in Fig. 2.16:

1. We search for the biggest peak in the current residual. Instead of searching

the complete field of view, we only look for peaks in user defined (manually

drawn) search windows (CLEAN windows). The windowing in CLEAN

is typically a subjective operation aimed at restricting the algorithm ap-

plication to the true emission regions and excluding contributions from

beam sidelobes and other potential artifacts. We store the position and the

strength of the recently found peak in a list of delta-components (CLEAN

components).

2. We shift the dirty beam to the position of the maximal peak in the residual

and rescale it to a fraction (the CLEAN gain) of the strength of the last

found maximum in the residual.
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Figure 2.16: Illustration of the CLEAN algorithm. We reformulate the problem
as a deconvolution problem. The dirty map is the convolution of the dirty beam
with the true image. In every iteration we search for the maximal peak in the
residual and subtract the rescaled and shifted dirty beam from the dirty beam.
Finally we convolve the list of all these CLEAN image with the clean map and
add the last residual.
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3. We substitute the rescaled and reshifted dirty beam from the residual/dirty

map and update the dirty map. Then we iterate these three steps again

until the residual looks noise-like. This procedure is illustrated in the middle

panels of Fig. 2.16.

In this way, we compute a list of CLEAN components {a0δ(l0,m0), a1δ(l1,m1), ..., anδ(ln,mn)}
that approximates the initial dirty map, i.e.:

ID ≈ BD ∗

 n∑
i=0

aiδ(li,mi)

 . (2.44)

The recovered physical image (the clean map) will be (compare the last row in

Fig. 2.16):

IC = BC ∗

 n∑
i=0

aiδ(li,mi)

 . (2.45)

As a common practice, we add the last residual to the clean map as well.

CLEAN is a straightforward algorithm that allows for manual interaction

and adjustments between its successive major cycles. The scientist perform-

ing CLEAN has the freedom to manipulate the CLEAN procedure: by drawing

CLEAN windows, by reweighting the observed visibilities by a taper or by a dif-

ferent weighting scheme, or by calibrating and flagging the data points itself. In

particular, interactive self-calibration is important in mm-VLBI where reliable

phase information often is lost. The hybrid approach of interactively alternate

imaging and self-calibration is called hybrid imaging and discussed in more detail

in chapter 2.5.

CLEAN is a greedy matching pursuit approach to solve the imaging problem

by inversely modeling the emission from the dirty image. However, it can be

shown that, under certain circumstances, it can be viewed as an instance of the

generalized Tikhonov method with l0 penalty term in the pixel basis and Svis

(with corresponding weighting scheme) as data fidelity term (Lannes et al. 1997).

2.4.2 Convergence

The first mathematical proof for the convergence of the CLEAN algorithm in

the absence of thermal noise and antenna based gains was derived by Schwarz

(1978). We will not reiterate the rigorous mathematical statement, but rather

present the idea behind the convergence of CLEAN in this chapter. Let us denote

the current model (list of delta components) after k CLEAN iterations by Mk =(∑k
i=0 aiδ(li,mi)

)
. Then Mk+1 differs from Mk by ∆Mk = Grkδ(lk,mk) where G
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denotes the CLEAN gain and rk = max Iresk the maximum in the k-th residual.

Let us define the sequence Qk by:

Qk = ⟨Ik − I, BD ∗ (Ik − I)⟩. (2.46)

Then simple numerics shows:

∆Qk = Qk+1 −Qk =
(
G2 − 2G

)
r2k. (2.47)

Hence, for all gains G ∈ [0, 2], ∆Qk is always negative. Thus, Qk is strictly

monotonically decreasing. Note that the dirty beam is positive semi-definite

(Fourier transform is unitary, and the Fourier transform of the dirty beam only

contains non-negative harmonics). Hence, Qk is bounded from below by 0. Thus,

Qk is converging. Schwarz (1978) deduced convergence from here, however strict

monotonicity does not prove convergence to zero. To get Qk → 0, we need an

additional argument. Since Qk is converging, it holds ∆Qk → 0. By Eq. (2.47)

we get rk → 0. Since rk was defined as the maximum of the residual Iresk , we see

that the residuals are converging to zero array-wise as well: Iresk → 0. Schwarz

(1978) obtained the CLEAN convergence to the true solution by assuming positive

definiteness of the dirty beam. This may be approximately true for dense arrays

with a moderate degree of undersampling, but does not hold for sparse VLBI

arrays once the missing data issue becomes prevalent. Thus, we can only conclude

that BD∗(I−Ik)→ 0, i.e. the difference between the true image and the CLEAN

model is in the kernel of the dirty beam.

There is no proof for the convergence of CLEAN in the presence of noise. Sim-

ilar arguments as before show, in the presence of noise, that Iresk → 0. However,

this is prone to overfitting the noise distribution as the residual Iresk = I− Ik +N

is perturbed by a random noise field N . Therefore, it is crucial to stop CLEAN

before the algorithm starts to overfit noise. The stopping rule plays the role of

an effective regularization parameter in this case. However, a valid stopping cri-

terion does not exist due to the unknown correlation structure of the observed

visibilities and the respective noise contribution. In practice, it is rather done

based on a manually inspection of the data. The problem is further complicated

by the existence of calibration issues in the data, i.e. the need for self-calibration

during the imaging (hybrid imaging).

2.4.3 Limitations of CLEAN

While being the standard imaging tool in VLBI, CLEAN has some serious lim-

itations. We summarized these limitations in Müller & Lobanov (2023c). Here
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Figure 2.17: Illustration of the disparity issue related to CLEAN with synthetic
EVN data. Upper left panel: The ground truth image. Bottom left panel: The
uv-coverage. Upper middle panel: The model computed by CLEAN. The model
is a set of CLEAN components. Bottom middle panel: The recovered visibilities
from the CLEAN model. The model fits the observed visibility points (red points)
well. However, the model does not interpolate reasonably in the gaps of the uv-
coverage. Top right panel: The clean image, i.e. the clean beam convolved with
the model. This image approximates the true image reasonable well. Bottom
right panel: However, the predicted visibilities of the convolved image do not
match the observations anymore.

44



2 IMAGING

we reprint these arguments. The following enumeration (indented text) is an

excerpt of the manuscript Müller & Lobanov (2023c) accepted for publication

to the Proceedings of Science as part of the conference proceeding for the 15th

EVN symposium 2022 in Cork adapted to the layout of this thesis. Writing and

content was compiled by me with consultation by Andrei Lobanov.

• CLEAN introduces a disparity between the model that fits the ob-

served visibilities (list of delta components) and the final image (delta

components convolved with the clean beam). This is clearly unphys-

ical as the final images produced by CLEAN do not fit the observed

visibilities anymore, e.g. compare the discussion in Müller & Lobanov

(2023a)

• CLEAN does not introduce effective regularization and is therefore

prone to overfitting the data, in particular in the gaps of the uv-

coverage, e.g. see the discussions in Müller & Lobanov (2023a). In

fact, the regularization of CLEAN relies on the user finding the cor-

rect stopping rule by hand, compare Schwarz (1978).

• CLEAN typically requires supervision by a scientist introducing a sig-

nificant human bias.

• CLEAN relies on an inverse modeling approach. Hence, the success of

CLEAN relies strongly on the success of the phase calibration. A for-

ward modeling approach would be more salient as it allows the direct

use of calibration-independent closure quantities (Chael et al. 2018).

Moreover, a forward approach would allow straightforwardly to in-

corporate additional hyperparameters in the reconstruction procedure

such as gains, other polarimetric channels or prior distributions (Arras

et al. 2021).

• The formal resolution of CLEAN is rigidly set by the precalculated

restoring beam. However, recent developements in super-resolution

imaging in VLBI demonstrated that the CLEAN beam might be too

conservative (Arras et al. 2021; Broderick et al. 2022b; Event Horizon

Telescope Collaboration et al. 2019b; Müller & Lobanov 2022; Roelofs

et al. 2023). In fact, the theoretical model fitting resolution of an VLBI

array is much higher than the clean beam resolution, but only reachable

if the range of possible solutions is limited by strong prior assumptions

(Lobanov 2005). Since CLEAN does not make any reasonable prior

assumptions compared to Regularized Maximum Likelihood (RML)
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and Bayesian approaches, its resolution is worse compared to these

more recent approaches.

• The representation of the image by a list of CLEAN components is dis-

advantageous for the reconstruction of extended emission. (Cornwell

2008)

• While CLEAN is relatively fast to apply since, after initialization, only

subtractions of arrays and list searches have to be applied in the mi-

nor loop, it does not scale up well to the data science needs for the

next generation of radio interferometers such as the SKA, ngEHT or

ngVLA. In particular, CLEAN does not make use of modern GPU

accelerated computing infrastructures.

We illustrate the serious issue that there is a disparity between the CLEAN model

and the CLEAN image in Fig. 2.17. Moreover, Fig. 2.17 also illustrates the issue

with missing regularization. While the measured visibilities are fitted correctly,

the full Fourier transform of the fitted model (bottom, middle panel) reveals that

the most dominating recovered feature (the pattern of horizontal stripes) appears

in the gaps, i.e. is not measured.

2.4.4 Multiscale-CLEAN

Some of the limitations of standard Högbom CLEAN (Högbom 1974) are caused

by the fact that δ-components are no well suited basis functions to represent ex-

tended emission. In particular, the prior assumption behind CLEAN, i.e. that the

image is sparsely represented in the pixel basis, might be inadequate. Multiscale-

CLEAN approaches (MS-CLEAN) model the image with extended basis functions

to address the representation of extended emission (Bhatnagar & Cornwell 2004;

Cornwell 2008; Offringa & Smirnov 2017; Starck et al. 1994; Wakker & Schwarz

1988) or to solve the disparity between the CLEAN model and the CLEAN image

(Müller & Lobanov 2023a). We will discuss MS-CLEAN approaches in more de-

tail in chapter 3 when presenting our newly proposed MS-CLEAN variant DoB-

CLEAN. For a general introduction, we only summarize the basic algorithmic

outline of MS-CLEAN approaches. For MS-CLEAN, we construct a dictionary

of extended basis functions: either by manual selection (Cornwell 2008; Offringa

& Smirnov 2017; Starck et al. 1994; Wakker & Schwarz 1988), or optimally se-

lected based on the current residual (Bhatnagar & Cornwell 2004) or fitted to

the uv-coverage (Müller & Lobanov 2023a). We perform basically the same steps

(minor loop) as for CLEAN in MS-CLEAN as well. However, when we search for

the maximum in the residual, we do not only search for the location in the image

domain, but also across the different scales represented by the basis functions.
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Once a peak is selected, we substitute a rescaled and shifted dirty beam from the

residual that is convolved with the corresponding basis functions. We refer to

chapter 3 for more details.

2.5 Self-calibration

Recall from chapter 1.4.5 that the observed visibilities differ from the true visibil-

ities in the presence of various antenna based gain errors. The complete forward

problem is stated in Eq. (1.12). Direct imaging of such visibilities accounts

only for the sparsity of the observation and regularization against thermal noise.

Hence, we have to deal with the gain calibration in an additional step. This

procedure is called self-calibration (Taylor et al. 1999; Thompson et al. 2017).

Assuming that we would have already a proper model for the sky brightness

distribution Î ≈ I, we can calibrate the gains by fitting the gains to the recov-

ered visibilities. Let Wj,k,t = F Î(uj,k,t, vj,k,t) be the recovered visibilities over an

antenna pair j, k at a time t, then we minimize (Thompson et al. 2017):

{ĝ1, ..., ĝNant} ∈ argmin{g1,...,gNant}

Nant∑
j=1

Nant∑
k=1,j ̸=k

∑
tjk

|Wj,k,tgjg
∗
k − Vj,k,t|2

ϵ2j,k,t
, (2.48)

where Nant is the number of antennas, tjk the times of independent measurements

of the visibilities over antenna pair j, k, and ϵj,k,t as before the estimated thermal

error of the visibility. The inverse gains are applied to the observed data set.

The minimization problem in Eq. (2.48) is typically over-constrained. Gain

variations are mainly caused by atmospheric effects such that gains could vary

over the time of observation (Janssen et al. 2022). In this case we compute

various gain corrections for parts of the observation rather than for the complete

observation run. Moreover, in the standard VLBI data reduction packages such as

ehtim, AIPS and Difmap we do not search for gain solutions globally, but restrict

the allowed variance to an initial tolerance. The gains are complex prefactors,

i.e. they consist of an amplitude and a phase. It is possible to restrict the

minimization to the phases only or to the amplitudes only, if needed. A further

option is to exclude single antennas explicitly from the gain calibration.

Self-calibration requires a reasonable image model Î with reasonable model

visibilities W . On the other hand, imaging requires a well calibrated data set.

To overcome this self-referencing, the following procedure of hybrid imaging was

introduced: We do a manually fixed number of CLEAN iterations, self-calibrate

the visibilities, recalculate the residual with the new visibilities and return to

the first step (Taylor et al. 1999). Since phases are typically more unstable

than amplitudes, it is common practice to use only phase calibration in the first
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self-calibration rounds. A generic pitfall for hybrid imaging is that true image

features which cause a spatial variability of the visibilities are absorbed in the

gain calibration. To avoid this issue, self-calibration is often initially applied over

long time intervals (allowing for a single gain solution per time interval), shifting

towards shorter solution intervals at later iterations.

Self-calibration is a well established tool in VLBI by now and has proven

to be useful in practice. From a mathematical perspective, hybrid imaging is

comparable to a two-step gradient descent or alternate projection approach in

which the array of unknowns consists of the sky brightness distribution I(l,m)

and the array of gains. However, hybrid imaging is by design a local search

method and may get trapped in local minima.

Lastly, we need to mention, that closure phases and closure amplitudes play

a vital role in the gain calibration since they are independent of the gains in the

absence of thermal noise. While these possibilities are not directly realized within

CLEAN, we can use them in the interactive data manipulation and data visual-

ization steps inherent to CLEAN as a verification. However, we should here point

out one of the limitations of inverse modeling again: closure quantities cannot

be used as data fidelity terms, opposed to forward modeling techniques. Addi-

tionally, the procedure of alternate imaging and self-calibration remains highly

supervised, hence introducing a human bias in the analysis.

2.6 Forward Modeling

Recently, forward modeling techniques have been developed for VLBI. For these

techniques a model is forwardly recovered by minimizing a sum of data fidelity

terms and regularization terms in the spirit of Eq. (2.4). Forward modeling

techniques often surpass CLEAN in dynamic range and resolution, while trading

this advantage for a higher computational cost. We show a schematic overview

of recently proposed, novel VLBI forward modeling techniques in Fig. 2.18.

2.6.1 MEM

The oldest forward modeling technique used is the Maximum Entropy Method

(MEM), dating back to Frieden (1972), Ponsonby (1973) and Ables (1974). MEM

assumes entropy maximization as a prior. For this discussion we follow the de-

scription of Cornwell & Evans (1985). The entropy of the guess solution f is

measured by the term (Cornwell & Evans 1985):

RMEM(f) =
∑
i

fi ln
fi
Mi

, (2.49)

48



2 IMAGING

Forward 
Modeling

RML

Compressed 
Sensing

DoG-HiT
(Müller2022)

Neural Networks

NETT (proposed)

Entropy/Sparsity

ehtim
(Chael2016)

SMILI 
(Akiyama2017)

Posterior
Evaluation

Bayesian

RESOLVE 
(Arras2020)

THEMIS 
(Broderick2022)

Comrade
(Tiede2022)

Multiobjective

MOEAD 
(Müller2023d)

Figure 2.18: Overview of recent forward modeling techniques and the respective
software tools.

with a prior distribution M . A common choice for the prior distribution is a Gaus-

sian distribution. RMEM therefore measures the simplicity of a guess solution.

Cornwell & Evans (1985) proposed to use the entropy prior in the generalized

Tikhonov framework together with the fit quality to the visibilities. Moreover,

application in practice proved it beneficial to add the model flux to the optimiza-

tion terms as well:

Rmodel−flux(f) =

∫
dldmf(l,m). (2.50)

The complete objective functionals, equivalently reformulated in the language of

this dissertation, reads (Cornwell & Evans 1985):

TMEM
α,β (f) = Svis(V, Ff) + αRMEM(f) + βRmodel−flux(f), (2.51)

with measured visibilities V and forward operator F . TMEM
α,β is typically min-

imized by a gradient descent algorithm since all terms are differentiable. The

Lagrangian parameters α and β are varied during the reconstruction in order

to achieve the expected values (χ2 ∼ 1) and expected total flux in the image

(Cornwell & Evans 1985).

A wide range of alternative MEM frameworks with a slightly different defini-

tion of the entropy functional, representation of the image (i.e. by a multiscalar

function) or minimization procedure were discussed in the past. We refer the

interested reader to Bontekoe et al. (1994); Garsden et al. (2015); Gull & Daniell
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(1979); Högbom (1979); Li et al. (2011); Maisinger et al. (2004); Mus & Marti-

Vidal (2023); Narayan & Nityananda (1984, 1986); Pantin & Starck (1996); Starck

et al. (2001); Thiébaut & Young (2017); Wernecke & D’Addario (1977); Wiaux

et al. (2009). A comprehensive comparison between CLEAN and MEM methods

is provided in Thompson et al. (2017) and Cornwell et al. (1999). CLEAN per-

forms faster for smaller data sets, while MEM gives better performance for large

data sets and large arrays. Moreover, since smoothness is built in in the prior en-

tropy functional, MEM typically performs better for smooth, extended emission

than CLEAN. Vice versa, CLEAN performs better for point sources. Narayan &

Nityananda (1986) concluded that the reconstruction with MEM varied strongly

with the background noise level and, in consequence, absorption features under

the background noise level are poorly reconstructed.

2.6.2 RML

Regularized Maximum Likelihood (RML) methods are the next natural develop-

ment step after the MEM algorithms. New RML capabilities were in particular

developed for the data analysis of the Event Horizon Telescope (EHT), e.g. see

Akiyama et al. (2017a,b); Chael et al. (2016, 2018); Event Horizon Telescope

Collaboration et al. (2019b); Ikeda et al. (2016). RML methods are directly

formulated in the framework of the general Tikhonov method by minimizing a

weighted sum of data fidelity terms and regularization terms. A combination

of Svis, Samp, Scph and Scla is used as data fidelity terms. Chael et al. (2018)

demonstrated that reasonable image reconstructions could be obtained if closure

phases and closure quantities are fitted directly without the use of a fit to the

visibilities. Since the closure quantities are independent of the gains, this ap-

proach promises an alternative to classical self-calibration. This approach was

used in Event Horizon Telescope Collaboration et al. (2019b) and Event Hori-

zon Telescope Collaboration et al. (2022b). However, Lockhart & Gralla (2022a)

demonstrated that the closure errors are not independent of the gains and the

way how these are approximated affects the final image.

The MEM prior term RMEM is reused in RML implementations as a regular-

ization term. Moreover, additional regularization terms are included. We briefly

introduce these terms in this chapter. Sparsity of the solution can be introduced

by l0-regularization:

Rl0(f) =∥f∥l0 . (2.52)

However, the l0 norm is neither smooth nor convex, with all the consequential

issues for the optimization procedures discussed above. Therefore, the l1 norm is
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used as a convex approximation:

Rl1(f) =∥f∥l1 . (2.53)

Rl1 is not smooth, but has a simple proximal operator. The proximal operator of

the l1-norm is the soft thrinkage operator. A natural extension, favoring simplicity

of the solution instead of sparsity, is the l2-term:

Rl2(f) =∥f∥l2 . (2.54)

Other than sparsity, regularization terms can be used to assume smoothness of

the solution. These are expressed by the magnitude of the gradient of the current

solution (assuming that it has one). We define the total variation:

RTV (f) =∥∇f∥l1 , (2.55)

and the total squared variation:

RTSV (f) =∥∇f∥l2 . (2.56)

RTSV promotes smoothness of the recovered solution, while RTV promotes piece-

wise constant smooth functions with smooth sigmoid connections. RTV is there-

fore best suited for the detection of edges and filaments. Finally, a total flux

constraint may be used:

Rflux(f) = |
∫ ∫

dldmf(l,m)− c|, (2.57)

where c is the compact flux. The complete optimization problem reads:

Î ∈ argminf

{
αvisSvis(V, Ff) + αampSamp(V, Ff) + αcphScph(V, Ff) + αclaScla(V, Ff)

+βl0Rl0(f) + βl1Rl1(f) + βl2Rl2(f) + βTVRTV (f) + βTSVRTSV (f) + βfluxRflux(f)
}

(2.58)

For the main software packages that implement RML imaging routines, i.e. SMILI

and ehtim, the minimization is done by gradient descent optimization routines.

This, however, is strictly speaking not correct since some of the aforementioned

regularization terms (i.e. Rl1 and RTV ) do not have a well defined gradient

everywhere. We developed in Müller & Lobanov (2022) a framework for the

mathematically more rigorous forward-backward splitting and implemented it in

the software package MrBeam2.

2https://github.com/hmuellergoe/mrbeam
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Typically in convex optimization and inverse problems, only one data term

and one regularization term is combined. In this setting, optimization algorithms

such as forward-backward splitting are exact (Combettes & Pesquet 2011). An

objective functional consisting of a combination of ten smooth or convex objective

functionals as in Eq. (2.58) is rather unusual (Kirsch 2011) and questions the min-

imization by splitting algorithms. Nevertheless, the application to observational

and synthetic data with the degree of undersampling present in current VLBI ar-

rays proved that this large number of penalty terms with the correct weightings is

necessary. Particularly, we refer to the synthetic data surveys presented in Event

Horizon Telescope Collaboration et al. (2019b) and Event Horizon Telescope Col-

laboration et al. (2022b). The selected top-sets (i.e. the reconstructions that were

consistent with the ground truth image) consisted of all the regularization terms

mentioned in Eq. (2.58) and the reconstructions from only a subset of terms did

not pass the top-set selection criteria. This issue is worsened even more when the

imaging is done from the closure quantities only (Chael et al. 2018). The number

of independent closure phases and closure amplitudes is smaller than the number

of independent visibilities, thus introducing degeneracies (e.g. lost absolute posi-

tion and lost total flux) that need to be adjusted for by the regularization terms

as well.

RML methods share some basic advantages superior to CLEAN and MEM.

With the correct selection of the weighting parameters αi and βj, the reconstruc-

tions have a higher resolution than CLEAN (e.g Arras et al. 2021; Event Hori-

zon Telescope Collaboration et al. 2019b; Müller & Lobanov 2022; Roelofs et al.

2023), they are more precise, and break the degeneracy between model and image

introduced by CLEAN. Moreover, they allow for the use of (self-)calibration in-

dependent terms. All in all, RML methods produce the more favorable solutions

compared to CLEAN. However, as a serious drawback, the RML solution depends

strongly on the choice of the regularization parameters that are unknown prior

to the imaging procedure. This makes tedious parameter surveys with synthetic

model data sets necessary.

2.6.3 Bayesian Imaging

Recent years saw an ongoing development of Bayesian imaging methods that

were specially designed for VLBI: Themis (Broderick et al. 2020a,b), Comrade

(Tiede 2022) and resolve (Arras et al. 2019, 2021; Greiner et al. 2016; Junklewitz

et al. 2016). As before, let us denote the data by gδ and the image guess models

by f . In Bayesian approaches, we are interested in the posterior probability

density P
(
f |gδ

)
. The posterior probability density distribution is related to the

52



2 IMAGING

Likelihood P
(
gδ|f

)
and the prior distribution P (f) by Bayes theorem:

P
(
f |gδ

)
=
P
(
gδ|f

)
P (f)

P
(
gδ
) . (2.59)

We can use any VLBI data product as data term gδ. The most prominent ones

are again the visibilities, amplitudes, and closure quantities. Let us first discuss

the standard case that full complex visibilities are used as data product. The

forward problem is described by Eq. (1.8) and Eq. (1.12). Let us denote, as

before, the computed guess visibilities by W = Ff (ignoring gains for now).

Since the additional thermal noise is assumed to be independent and Gaussian,

we get the likelihood:

P
(
V |f

)
= (2π)−Nvis/2

Nvis∏
i=1

1

ϵi

 exp

(
−Nvis

2
Svis(V,W )

)
, (2.60)

with the notation of chapter 2.3.1, compare Eq. (2.10). Hence, it is:

lnP
(
V |f

)
= const.− Nvis

2
Svis(V,W ) (2.61)

Similar relations can be derived for the amplitudes, and closure quantities:

lnP
(
|V ||f

)
= const.− Namp

2
Samp(V,W ) (2.62)

lnP
(
Ψ(V )|f

)
∼ const.− Ncph

2
Scph(V,W ) (2.63)

lnP
(
A(V )|f

)
∼ const.− Ncla

2
Scla(V,W ), (2.64)

in the notation of chapter 2.3.2. Note that for the closure quantities Eq. (2.63)

and Eq. (2.64) are only approximations to the true log-likelihood of the closure

quantities (Blackburn et al. 2020).

We encode our existing knowledge of the sky brightness distribution into the

prior distribution. It is one of the great advantages of Bayesian algorithms that

prior information on the spatial correlation of pixels is naturally introduced at

this stage by the auto-correlation of the prior distribution P(f), i.e. we as-

sume a Gaussian or lognormal (non-negativity) distribution with specified auto-

correlation. Current applications of Bayesian imaging algorithms (e.g. Arras et al.

2022) add more layers of complexity to the determination of the correlation struc-

ture: Instead of assuming specific prior correlation function, the correlation func-

tion is determined in a non-parametric fashion. As a result, the model is more

flexible and adaptable, and this can reduce biases. This highlights an additional
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advantage of Bayesian frameworks: the forward model could naturally consist of

any additional parameters (such as the gains) or deeper layers of the model (model

components, multi-frequency representation by mean image and spectral index

map, time-dynamic evolution etc.) as long as a reasonable prior distribution can

be derived (e.g. compare the extensions of the classical Bayesian framework in

Arras et al. 2022; Broderick et al. 2022a; Roelofs et al. 2023).

After combining the likelihood and the prior the best guess is derived by the

expectation value:

Îmean =

∫
fP
(
f |gδ

)
df. (2.65)

The higher order momenta of the distribution P
(
f |gδ

)
describe the uncertainty

of the recovered image, such as the variance:

Var =

∫ (
f − Îmean

)2
P
(
f |gδ

)
df. (2.66)

We encounter here another key advantage of Bayesian approaches: they do not

only recover an image representation, but also an uncertainty quantification.

However, it is questionable whether these uncertainty estimates have a physi-

cal meaning as the prior distributions are often not physical, but rather chosen

on a best effort basis to ensure a viable image reconstruction (Arras et al. 2021).

Bayesian methods originally appeared in Bayesian parameter estimation frame-

works with a restricted number of free parameters and clearly defined prior dis-

tributions. The (infinite-dimensional) reconstruction of a function I(l,m) is a

more challenging problem (and this is were the ill-posedness arises). The large

number of pixels (free parameters) required to represent the image poses severe

performance issues. The evaluation of integrals of the form of Eq. (2.65) is nu-

merically expensive due to the high dimensionality. A full-dimensional Markov-

Chain Monte-Carlo simulation takes often too much time (Cai et al. 2018a,b).

Various solutions have been proposed in the past, e.g. in the context of Bayesian

neural networks (Goan & Fookes 2020), but are only rarely translated to VLBI.

Broderick et al. (2020b) tried to sample the posterior distribution exactly, thus

they had to represent the image on a low-dimensional grid only with interpola-

tion between the gridding points. Tiede (2022) translated Bayesian methods to

a faster software framework to gain numerical speed. Arras et al. (2019, 2021)

proposed a variational interference method called Metric Gaussian Variational

Inference (Knollmüller & Enßlin 2019) for fast approximations of the posterior

distribution.

Finally, we should also point out a deep connection of Bayesian imaging algo-
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rithms to the generalized Tikhonov method. The mean, see Eq. (2.65), could be

approximated by the maximum of the posterior (MAP estimator), in particular

for symmetric distributions we have:

Îmean ≈ argmaxfP
(
f |gδ

)
= argmaxf lnP

(
f |gδ

)
= argmaxf

{
lnP

(
gδ|f

)
+ lnP (f)

}
, (2.67)

where the last equality holds due to Bayes theorem Eq. (2.59). Referring to Eq.

(2.61), (2.62), (2.63), (2.64) the first term resembles the data fidelity terms of

RML formulations. The second term in the optimization (lnP(f)) plays the role

of the penalty term. Consider for example a Gaussian prior distribution for f

with standard covariance, then lnP(f) ∝∥f∥l2 . Hence, the maximum-a-posterior

estimator would be equivalent to l2-regularization.

Bayesian approaches have some advantages that are outlined above: they

allow for a quantification of the image uncertainty, and they allow for the natu-

ral introduction of prior assumptions that are more difficult to express in other

frameworks. On the downside, they are numerically very expensive. Moreover,

the results depend strongly on the assumed prior distribution and a larger number

of non-trivial hyperparameters that are unknown a-priori.

2.6.4 Compressive Sensing

Compressive sensing (CS) is the signal processing technique that allows for a com-

pression of images by a sparse representation. The technique has a wide range of

applications across multiple disciplines including facial recognition, photography,

image restoration or portable network graphics (Starck & Murtagh 2006). For

a full discussion in the context of astronomy we refer to Candès et al. (2006);

Donoho (2006); Starck & Murtagh (2006); Starck et al. (2015). The underlying

idea of compressive sensing is to transform the image to another domain in which

the image structure could be sparsely represented (Candès et al. 2006). As a triv-

ial example, a monochromatic harmonic oscillation could be sparsely represented

by a single data point by transforming it into the Fourier domain. For astronom-

ical images, wavelets have been proposed with promising sparsifying properties

(Line et al. 2020; Mertens & Lobanov 2015; Mertens et al. 2016; Mohan & Raf-

ferty 2015; Starck et al. 2003; Starck & Murtagh 2006; Starck et al. 2015). In

particular, we like to highlight Mertens & Lobanov (2015) who proposed the use

of a sparsifying wavelet transform in the context of post-processing VLBI images

of AGN jets.

Wavelets are a variant of the short-time Fourier transform that can be varied
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in position, strength and in spatial scale. Hence, there are wavelets that de-

scribe the extended large scale emission and wavelets that compress small scale

fluctuations. The combination of both in a single dictionary allows for a sparse

(i.e. sparser than in pixel-basis) representation of the image structure. Sev-

eral wavelet functions have been proposed in the past: among others the Morlet

wavelet (Coupinot et al. 1992; Goupillaud et al. 1984), the Mexican-hat wavelet

(Murenzi 1989), the Haar wavelet (Stollnitz et al. 1994), and difference of Gaus-

sian wavelets (Assirati et al. 2014; Gonzalez & Woods 2006). There exist discrete

á-trous versions of these wavelet functions (e.g. Mallat 1989). For a full descrip-

tion we refer to Starck et al. (2015). We presented in Müller & Lobanov (2022) a

novel wavelet dictionary combining the difference of Gaussian wavelets with the

philosophy of the á-trous wavelet decomposition. Moreover, we extended these

wavelets to radially asymmetric wavelets in Müller & Lobanov (2023a).

We discussed sparsity as a relevant imaging prior already in chapter 2.6.2: The

l0-norm and l1-norm are sparsity promoting. Moreover, sparsity in the pixel-basis

is the essential prior information for the CLEAN algorithm (Lannes et al. 1997):

We try to model the visibilities with as few CLEAN components as possible.

However, for these approaches we assume sparsity in the pixel-basis, which may

be inadequate for extended and resolved emission (compare our discussion on the

limitations of CLEAN in chapter 2.4.3). For imaging algorithms that make use of

compressive sensing theory, this assumption is relaxed. We represent the image by

a sparsifying matrix of basis functions I = ΓI. Γ is called a dictionary, while the

single elements of Γ (the basis functions) are called atoms (Starck et al. 2015).

I is a set of wavelet coefficients. We propose sparsity on the array of wavelet

coefficients. As in preceding chapters, we call the forward operator, F , that

maps the guess image f to the measured visibilities (Fourier transform, sampling

to visibility points, weighting, tapering). In its easiest formulation, imaging by

compressive sensing reads (Garsden et al. 2015):

Î ∈ argminI
{
Svis(V, FΓI) + αRl1(I)

}
, (2.68)

with the recovered image:

Î = ΓÎ. (2.69)

The similarity to RML methods is obvious. Moreover, straightforwardly, CS-

imaging is an instance of the generalized Tikhonov regularization. It is also worth

noting that some of the more complex regularization terms of RML methods,

such as RTV can be rewritten in the language of CS as well: it is equivalent to

sparsity of the Haar-wavelets.
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Similar to the RML and Bayesian approaches, the data fidelity term could be

replaced by more calibration robust data terms (Samp, Scph, Scla or a combination

of them). Moreover, the l1 penalization could be replaced by hard threshold-

ing (Rl0) or intermediate strategies such as iteratively reweighted l1 penalization

(Candès et al. 2007). Sparsifying imaging has been applied for radio interfer-

ometry before with great success, historically first in framework of MEM (e.g.

Bontekoe et al. 1994; Maisinger et al. 2004; Pantin & Starck 1996; Starck et al.

1994, 2001; Weir 1992), later in a more general setting (among others Cai et al.

2018a,b; Carrillo et al. 2012, 2014; Garsden et al. 2015; Girard et al. 2015; Li

et al. 2011; Onose et al. 2016, 2017; Pratley et al. 2018). We transferred these

ideas to VLBI (Müller & Lobanov 2022, 2023a,b). Moreover, for the first time, we

succeeded to construct a largely unsupervised reconstruction method by choosing

the dictionary data-driven (Müller & Lobanov 2022).

2.6.5 Deep Learning

Deep Learning techniques have been proposed successfully for various pattern

recognition problems and have been used for inverse problems. Particularly we

like to mention their success for magnetic resonance tomography (MRI) recon-

structions, as for example demonstrated by the fastMRI challenge (Muckley et al.

2021). In MRI, a similar problem is solved, i.e. the reconstruction of an image

from a sparsely sampled Fourier domain (Sodickson 2021), for more details we

refer to the more detailed discussion in chapter 5.4.3. Due to these developments

and the relative similarity, it is evident that these techniques are currently studied

for radio interferometry as well (e.g. compare the works in Aghabiglou et al. 2022;

Dabbech et al. 2022; Gheller & Vazza 2022; Terris et al. 2023). These methods

promise great potential. Once trained, the networks scale well to big data sets

(Terris et al. 2023). Moreover, they provide a natural way to express structured

prior information that is more complicated to adapt in standard sparsifying bases

(Aghabiglou et al. 2022). Applications to VLBI are however rare. Yao-Yu Lin

et al. (2021) proposed an end-to-end pipeline for the classification of images. Sun

et al. (2022) proposed a first network for VLBI in a plug-and-play framework.

Neural Network Tikhonov (NETT) may be another powerful approach (Li et al.

2020), specifically due to its conceptual similarity to multiscale imaging methods.

We discuss more prospects of NETT in chapter 7. However, due to the limited

number of visibilities and the large uncertainties (e.g. phase errors) imaging in

the VLBI data regime requires strong prior information. Since it remains diffi-

cult (despite the considerable recent effort) to determine how a network learned a

specific structural pattern and prior information, the application of deep learning

techniques to VLBI remains restricted by now.
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2.7 Evaluation Metrics

In the previous chapter, we gave an overview over the landscape of reconstruction

methods in VLBI (and radio interferometry in general). In this chapter, we

present how to evaluate and compare RML and Bayesian methods with CLEAN

qualitatively. We do not include deep learning methods in this comparison since

they are still in the proposing stage for VLBI currently and not applied to VLBI

data sets at a considerable level by now (although there is great potential for

these methods). An exhaustive quantitative comparison is not always feasible

and should be left for further discussion. The interested reader can be referred

here to existing imaging comparisons, e.g. Arras et al. (2021); Event Horizon

Telescope Collaboration et al. (2019b); Müller & Lobanov (2022); Roelofs et al.

(2023). However, these comparisons should all be treated with relative caution.

They only discuss various algorithms in very specific settings (e.g. for the needs

of the EHT telescope). The following assessment presented below is based on

generally accepted experience in practice. For the remainder of the dissertation,

we will treat MEM and RML algorithms as the same, as MEM could be derived as

an instance of the RML method with entropy prior. Moreover, we spare a detailed

discussion of CS-methods here, and defer a detailed discussion for the conclusions

of this dissertation. Except for DoG-HiT, whose development constitutes the

main body of this dissertation in the following subsections, CS-based algorithms

are regularly applied in radio-interfometry, but only rarely to VLBI data sets.

2.7.1 Accuracy

Arguably, the most important criterion of success for any new imaging algorithm

is its accuracy when reconstructing synthetic data. The accuracy of the recon-

struction is typically measured by the cross-correlation between the recovered

image and some realization of the ground truth image representing the expected

result of the perfect reconstruction. However, this metric is often not sufficient.

Images of AGN jets, on which this dissertation is focused, typically consist of

a bright core and much fainter extended emission. On one hand, the cross-

correlation between the recovered image and the ground truth image is dominated

by the reconstruction of the core-component (and hence by resolution power). On

the other hand, scientific interest often lies in the extended jet structures. Hence,

Roelofs et al. (2023) proposed to use the cross-correlation between the logarithms

of the images instead.

Decade-long application of CLEAN has demonstrated that it works overall

quite well in recovering the true image structure, except for two special cases: in

the presence of wide, extended emission and when the VLBI array is very sparse.
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In the first case, the CLEAN reconstruction tends to represent the smooth ex-

tended structures by a combination of discretized regions of enhanced brightness,

thus creating the characteristic ‘spotty’ appearance on scales substantially larger

than the primary lobe scale of the dirty beam. This particular issue could be

solved by the use of extended basis functions as CLEAN components, i.e. by

MS-CLEAN algorithms (Bhatnagar & Cornwell 2004; Cornwell 2008; Offringa

& Smirnov 2017; Rau & Cornwell 2011; Starck et al. 1994; Wakker & Schwarz

1988). In the second case (extreme sparse uv-coverage), the amount of infor-

mation available to CLEAN is very limited. The more limited the information

contained in the data is, the more the reconstruction relies on the prior assump-

tion. The extensive investigations of these matters presented in Event Horizon

Telescope Collaboration et al. (2019b) and Event Horizon Telescope Collabora-

tion et al. (2022b) proved that in this case RML and Bayesian methods lead to

more reliable reconstruction results.

A number of forward modeling approaches have been developed in recent years

for imaging VLBI data (Akiyama et al. 2017a,b; Arras et al. 2019, 2021; Broderick

et al. 2020a,b; Chael et al. 2016, 2018; Müller & Lobanov 2022; Tiede 2022). In

these publications, the respective algorithms were benchmarked against CLEAN,

always outperforming classical CLEAN in accuracy of reconstructing images from

synthetic data for which the exact ground truth image is always available. A

thorough cross-comparison on a wider set of arrays, synthetic data sets and noise

corruptions however is still pending. Furthermore, we have to mention the main

theoretical issue with CLEAN here as well: the model fitted to the visibilities

and the final image do not match. This issue is solved only recently for CLEAN

(Müller & Lobanov 2023a), but does not occur for forward modeling techniques

in general.

2.7.2 Dynamic Range

The dynamic range of a reconstructed image is one of the standard parameters

used for specifying the quality of reconstruction. Based on the assumption that,

after the imaging has ended, the final residual is noise-like, we quantify the mag-

nitude of the noise. The dynamic range is the ratio of the recovered peak flux and

the noise floor in the residual. However, a closely related, but mathematically less

rigorously defined metric of image fidelity seems to be more salient here: what is

the brightness of the faintest (extended) emission features that are still reliably

recovered? CLEAN works overall quite well in recovering faint, extended emis-

sion with the major drawback of a fractured and disconnected reconstruction of

extended emission features. The manual execution of CLEAN by an experienced

astronomer is key to the success of high dynamic range imaging (Taylor et al.
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1999).

Recent comparisons of VLBI data processing tools (e.g. Roelofs et al. 2023)

proved that current RML and Bayesian methods outperform CLEAN in dynamic

range as well in some specific settings. Moreover, current hybrid approaches

(Broderick et al. 2020b; GRAVITY Collaboration et al. 2022) that combine

model-fitting and imaging steps proved that fainter, formerly undetected fea-

tures can reliably be recovered in the residual after the dominating bright feature

has been fitted by an analytical template at a higher resolution. However, ex-

perience with applications in practice shows that fitting faint, extended emission

by forward modeling is a bit more subtle: the data fidelity terms for forward

modeling techniques are rather dominated by the high resolution reconstruction

of the bright core component. The emission will only be reliably recovered if the

correct data term weightings (RML) and priors (Bayesian) are used.

2.7.3 Resolution

The resolution that an imaging algorithm can achieve is a significant criterion

for the evaluation of the quality of an image reconstruction. There is, however,

not a unique concept for resolution. Loosely speaking, the resolution limit of

an algorithm can be defined as the angular size of the smallest features that are

still robustly recovered. (MS-)CLEAN has a solid resolution limit originating

from the convolution with a finite beam. More recent imaging routines however

demonstrated that this bound is too conservative (Event Horizon Telescope Col-

laboration et al. 2019b; Müller & Lobanov 2022; Roelofs et al. 2023). Forward

modeling techniques utilize more advanced imaging priors that allow us to re-

construct images at higher resolutions, commonly referred to as super-resolution.

In this chapter, we discuss the theoretical resolution limit of a radio interferom-

eter showing that the general conception of super-resolution may be misleading:

forward modeling techniques can achieve a resolution that is closer to the true

resolution limit than CLEAN, rather than super-resolving structures.

As one possible resolution criterion we discuss the case of a Gaussian source

as opposed to a point source as it was done in Lobanov (2005). The Gaussian

source is still resolved, if it can be separated from the delta source with sufficient

statistical significance. In order to get an analytic limit, rather than numerical, we

have to make several simplifying assumption. Lobanov (2005) used the signal-

to-noise ratio on the longest baseline. Here we present a novel, more rigorous

calculation. We extend this procedure to a hypothesis test including all data

points. We test the hypothesis, the image is a delta-peak (zero-hypothesis),

against the hypothesis, the image is a Gaussian with width s. We compute the χ2

and reject the hypothesis for χ2 > 2.7 (90% exclusion limit). Note that the Fourier
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transform of a Gaussian Gs(x) = 1√
2πs2

e−x2/(2s2) is given by e−k2/(2Σ2) with trivial

expansion to two dimensions and Σ = 1
2πs

. Hence (with q(u, v) =
√
u2 + u2):

χ2 =
∑
i

(
1− e−k2i /(2Σ

2)
)2

σ2
i

∼
∫ ∫

dudv
ρ(u, v)

(
1− e−q2/(2Σ2)

)2
σ(u, v)2

=

∫ ∫
dudvρ(u, v)

(
1− e−q2/(2Σ2)

)2
SNR2

= 2πSNR2

∫
dqqρ(q)

(
1− e−q2/(2Σ2)

)2
=

SNR2Nvis

log(qmax/qmin)

∫
dqq−1

(
1− e−q2/(2Σ2)

)2
, (2.70)

where ρ(u, v) is the density of uv-points in the uv-domain and is (neglecting

directional dependent patterns of the uv-coverage) approximated by a radially

decreasing function: ρ(q) ∝ q−2 with
∫ ∫

dudvρ(u, v) = Nvis. Nvis is the number

of independent visibility points and qmax and qmin denote the maximal and mini-

mal uv-distance in the array. Moreover, we assumed that the signal to noise ratio

(SNR) is constant along the array. We use the integral exponential function:

Ei(t) :=
∫ x

−∞
et

t
dt. Substitution with t = −q2 shows:∫ qmax

0

q−1e−q2dq =
1

2
Ei(−q2max) + const. (2.71)

Hence, we have:∫ qmax

qmin

dqq−1
(

1− e−q2/(2Σ2)
)2

= log(qmax)− log(qmin)

+ Ei

(
−q2min

2Σ2

)
− Ei

(
−q2max

2Σ2

)
+

1

2
Ei

(
−q2max

Σ2

)
− 1

2
Ei

(
−q2min

Σ2

)
(2.72)

The following expansion holds (where γ is the Euler-Mascheroni constant):

Ei(x) = γ + log(|x|) +
∑ xk

k!k
(2.73)

The constant terms vanish. The logarithmic terms vanish as well:

log(qmax)− log(qmin)+ log

(
q2min

2Σ2

)
− log

(
q2max

2Σ2

)

+
1

2
log

(
q2max

Σ2

)
− 1

2
log

(
q2min

Σ2

)
= 0 (2.74)

The diverging terms limqmin 7→0 log(qmin) vanish! Only the potence terms survive.
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When setting qmin to zero, we arrive at:∫ qmax

0

dqq−1(1− e−q2/(2Σ2))2 = −
∞∑
k=1

(−1)k

k!k

q2kmax

2kΣ2k
+

1

2

∞∑
k=1

(−1)k

k!k

q2kmax

Σ2k

=
∞∑
k=1

(−1)k

k!k

q2kmax

Σ2k

2k−1 − 1

2k
= 0 +

1

4

q4max

Σ4

2− 1

4
+ O

((
qmax

Σ

)6
)
. (2.75)

Hence:

χ2 ∼ SNR2Nvis

log(qmax/qmin)

q4max

16Σ4
=

π4Nvis

log(qmax/qmin)
q4maxs

4SNR2. (2.76)

Thus:

dlim =
1

qmax

1√
SNR

(
χ2 log(qmax/qmin)

π4Nvis

)1/4

. (2.77)

We see that the limiting resolution scales inversely with the longest baseline and

inversely with the square root of the signal-to-noise ratio, consistent with the

findings in Lobanov (2005). While Eq. (2.77) was derived in a rather simplified

setting, it demonstrates a key feature of the discussion about limiting resolution:

The resolution of an observation is not only improved by the addition of longer

baselines, but also by the signal-to-noise ratio and the number of visibilities. This

has possible strategic consequences for the future of high precision VLBI measure-

ments: The theoretical resolution limit of an array such as the GMVA+ALMA is

comparable to the one of the EHT albeit observing at a smaller frequency, since

the number of antennas is higher. Moreover, the rationale behind space-VLBI

missions is questionable if the calibration of the space-antenna (and thus the noise

level at the longest baselines) cannot be done well enough.

The CLEAN resolution does not match with the scaling presented in Eq.

(2.77). If the noise level would be smaller by a constant factor on all baselines,

the dirty beam would not change since the relative weighting between the visibility

points stays the same. Hence, the CLEAN resolution limit does not respect the

overall signal-to-noise ratio. In the extreme limit of this calculation, for infinite

signal-to-noise ratio, CLEAN reconstructions still would have the same resolution

limit, albeit a correct model-fitting would be possible (as long as enough degrees

of freedom are observed).

General derivations of resolution limits for forward fitting techniques are more

complicated. The effective resolution limits for the general Tikhonov regulariza-

tion methods of the form Eq. (2.4) is determined by the balancing between the

data terms and the regularization terms. Therefore, a general well-defined res-
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olution limit such as for CLEAN cannot be given. It depends on the weighting

factors, the true image, how sensitive the regularization terms are to the features

of the true sky brightness distribution and the quality of the fit metrics. However,

as a rule of thumb, forward modeling techniques can achieve higher resolutions,

when the data have more visibility points with less noise. In this case the data

terms dominate over the regularization terms that typically impose smoothness

(e.g. compare the reconstructions with EHT and ngEHT configuration or single-

frequency vs multifrequency reconstructions in Chael et al. 2023; Roelofs et al.

2023). Furthermore, the more sophisticated the used prior information (e.g. prior

distributions, simplicity, sparsity or smoothness) match to the observed target,

the better small-scale features can be detected.

All in all, the following tendency can be observed in practice: CLEAN has

a well defined resolution by the pre-calculated Gaussian restoring beam. This

is however too conservative (Broderick et al. 2022a; Chael et al. 2016; Event

Horizon Telescope Collaboration et al. 2019b; Müller & Lobanov 2022, 2023a).

The theoretical resolution limit is often much better. But this resolution can only

be achieved in model-fitting approaches with a very restricted range of image

structures (e.g. such as we have to assume that the image is composed of a single

Gaussian and fit the parameters of this Gaussian). Forward modeling methods

achieve better resolutions than CLEAN (super-resolution by a factor of 2−3) since

more advanced prior information is processed at the imaging stage. Therefore,

the term super-resolution is misleading. Forward modeling techniques do not

super-resolve a structure, but they lean ideas of model-fitting techniques to come

closer to the theoretical model fitting resolution.

2.7.4 Supervision

The necessity of human interaction during the data analysis is often a severe

problem for VLBI. One reason for this is that manual image reconstruction takes

a lot of time, which might be acceptable for single VLBI experiments, but is

simply not acceptable for large-scale surveys. The other reason is that an intensive

human interaction with the imaging procedure may introduce a subjective bias,

with the resulting reconstruction becoming difficult to reproduce. An automated

imaging pipeline is needed and has indeed been used, at least in part, for imaging

VLBI data from large surveys such as MOJAVE (Lister et al. 2018).

CLEAN is by design strongly supervised. A scientist applying CLEAN for

imaging VLBI data has to make a series of crucial decisions, such as taper-

ing, weighting, CLEAN windows, CLEAN gains, parameters of progressive self-

calibration steps, and the criterion for terminating the hybrid imaging cycle.

Nearly all of these parameters are varied during the data analysis procedure in
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an interactive way. Therefore it is challenging to reproduce CLEAN reconstruc-

tions. Indeed the CLEAN reconstructions provided by different scientists often

differ significantly, especially for very sparse data sets with corrupted phase in-

formation.

RML and Bayesian methods are less supervised by design. They solve a well

defined optimization problem without strong need for intermediate adjustments

and user intervention. On the contrary, we have to specify a larger number

of non-trivial hyperparameters such as the weighting terms, parameters of the

prior distributions, or parameters related to the minimization procedure. As a

complex, non-linear objective functional is optimized, the effect of each of these

hyperparameters on the final reconstruction is way less obvious than for CLEAN.

For Event Horizon Telescope Collaboration et al. (2019b, 2022b) therefore exten-

sive parameter surveys were utilized: All possible parameter combinations were

tested on a set of synthetic data sets. The top-set consisted of all hyperparameter

sets that passed the synthetic data tests. This combination was then applied to

the observed data. This brute-force approach, however, is computationally very

expensive, specifically for data qualities that require the use full amount of terms

in Eq. (2.58).

2.7.5 Robustness and Adaptability

Recent rapid developments of novel, and often conceptually different approaches

to image reconstruction call for detailed comparisons of their relative perfor-

mance, robustness, and adaptability. Many of the forward modeling techniques

were developed in recent years (Akiyama et al. 2017a,b; Arras et al. 2019, 2021;

Broderick et al. 2020a,b; Chael et al. 2016, 2018; Müller & Lobanov 2022, 2023a,b;

Tiede 2022). They approach the VLBI imaging problem differently than CLEAN.

This led to the development of completely new software packages, e.g. ehtim,

SMILI, resolve, Comrade, Themis and MrBeam rather than extending the ex-

isting ones. Compared to the experience with the decade-long application of

CLEAN in software packages such as AIPS, Difmap or CASA, the relative youth

of the new software packages and their limited range of applications by now in-

creases the danger of bugs and pitfalls (although no major bugs were identified

by now). The rather simple, but matured, application of CLEAN on the contrary

was found to be very robust.

As another criterion we like to bring up adaptability: How easy is it to adapt

the existing imaging algorithms to closely related data analysis problems such as

polarimetry, dynamic imaging or closure-only imaging. The extension of RML

algorithms is very straightforward. As we already shortly discussed in chapter

2.3.4, we could easily replace the data terms by data terms tailored to the cor-
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responding problem, e.g. we could use the fit quality to the closure quantities

Scph and Scla instead of Svis to be less dependent on the antenna based gains.

Furthermore, the extension of the appropriate regularization terms is straight-

forward as well. For instance, for dynamic imaging as an additional term the

temporal correlation/smoothness can be used (Müller & Lobanov 2023b; Roelofs

et al. 2023). The same applies for Bayesian methods, although not all possible

terms have an easy correspondent in the language of Bayesian statistics. Adapt-

ing CLEAN for dynamic imaging, spectral imaging or multifrequency imaging is

harder, but possible. The data products often do not have a simple description

as a deconvolution problem and explicit (correlation) prior information is more

complicated to encode in the image reconstructions. For CLEAN, a series of sin-

gle deconvolution problems is solved instead with cross-matching at the major

cycle step (Rau & Cornwell 2011).

2.7.6 Numerical Performance

Finally, we discuss the numerical performance of different image reconstruction

approaches. CLEAN is a numerically cheap algorithm. After initiation, the

minor loops only consist of rescaling, shifting and substituting of arrays. The

Fourier transform does not have to be evaluated in the minor loops. Non-linear

least square minimization (first introduced by Briggs 1995) evaluate the Fourier

transform in every iteration. On the other hand, CLEAN is a local optimization

algorithm: it only updates the residual in the neighborhood of the maximum peak

in the residual in the minor cycle iterations. A minimization based on the gradient

descent updates the image at every pixel at the same time, thus less iterations

are needed. Cornwell et al. (1999) concluded that MEM-reconstructions overtake

CLEAN reconstructions in speed for images with more than 106 pixels. Current

RML methods are even more complicated than the early MEM-algorithms. On

the other hand, they make use of the enhanced computational speed with the

current generation of computing systems. A ehtim-reconstruction of an EHT

data set does not take longer than a couple of minutes right now on a standard

notebook. More advanced multiscale approaches such as DoG-HiT (Müller &

Lobanov 2022, 2023a) can take up to an hour of computation time. Bayesian

algorithms however, have a worse numerical performance due to the expensive

sampling of the posterior (Broderick et al. 2020a; Cai et al. 2018a,b). This is

caused by the different philosophy behind Bayesian algorithms. While CS, RML,

MEM and CLEAN approaches recover only one image (i.e. only approximate the

maximum of the posterior distribution), Bayesian algorithms recover the complete

posterior landscape with rich additional information about the uncertainty of the

recovered features.
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Apart from the numerical performance, the data analysis could take much

more time as the existing algorithms are not unsupervised. In particular, the

necessity for tedious parameter surveys delays the data analysis significantly.

The same applies for CLEAN with its manual trial-and-error way of working.

2.8 Motivation for New Algorithms

In order to outline better the motivation for developing new algorithms for VLBI

image reconstruction, we first summarize the main conclusion from the preceding

discussion in this chapter. CLEAN and its variants are the de-facto standard

for the VLBI data analysis. However, all CLEAN realizations have well-known

limitations, such as a disparity between the model and the image or a worse rep-

resentation of extended emission. In recent years, many new methods in various

frameworks have been proposed: Bayesian, CS, RML and modern MEM algo-

rithms. We have demonstrated above that while these are different perspectives

on the imaging problem, they are all closely related. These new methods surpass

CLEAN in most evaluation metrics such as resolution, accuracy, and adaptabil-

ity, while (similarly to CLEAN) their reconstructions rely on a larger number

of hyperparameters. For Bayesian and RML methods, the effect of the hyper-

parameters on the final reconstruction is particularly difficult to be assessed. In

this dissertation we propose several competitive alternatives that combine less

supervision (i.e. less sensitivity to input parameters) with the known advantages

of forward modeling techniques.

Firstly, we propose a new method in the framework of RML and CS imaging

methods and present steps towards an unsupervised, automated imaging pipeline.

RML methods achieve their superior performance due to the combination of var-

ious data terms and regularization terms. But the result depends strongly on

the a-priori unknown weights of the terms. The penalty terms promote spar-

sity, smoothness and simplicity respectively. These terms prove efficient, with

the correct weighting, to recover high quality images. Our approach is differ-

ent. We construct a novel penalty term that is as data-driven as possible. As

this penalty term is inspired in an automatized fashion from the uv-coverage,

i.e. the data structure itself, the penalty term is automatically tailored to the

experiment. Therefore, we do not need a series of regularizers, but only one reg-

ularization term. We demonstrate that, although the optimization landscape is

much easier, this new method (DoG-HiT) shares the advantages of RML methods

(super-resolution, high accuracy) and even surpasses them in terms of sensitivity

to extended emission (Müller & Lobanov 2022) while simultaneously providing a

strong reduction in the number of free parameters used for the reconstruction.
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To this end, we propose to use a wavelet dictionary fitted to the uv-coverage

and utilize sparsity in the wavelet domain in the spirit of compressive sensing the-

ory. For more details, we refer to the following chapters and Müller & Lobanov

(2022, 2023a,b,c). This new method (DoG-HiT) is unsupervised (wavelet dic-

tionary automatically selected, only one free parameter with a-priori parameter

choice), topping CLEAN in all relevant metrics and being competitive to RML

methods. Moreover, DoG-HiT can be used as a basis for several extensions of

the standard imaging problem. Challenging extensions of the classical imaging

problem, such as closure-only imaging, dynamical imaging and polarimetry, can

be easily tackled with the specific, newly designed regularizer method. In partic-

ular, DoG-HiT is independent of antenna based gains by only processing closure

phases and closure amplitudes. Furthermore, we succeeded to transfer the main

concepts behind DoG-HiT to a second new algorithm (DoB-CLEAN) that works

in the framework of CLEAN, and thus allows for an iterative data manipulation

and data investigation (Müller & Lobanov 2023a). DoB-CLEAN successfully

overcomes some of the known limitations of CLEAN.

Complementary to the wavelet based approach, we propose a multiobjective

evolutionary algorithm (MOEA/D) as a viable alternative. With MOEA/D we

probe the complete set of locally optimal (non-dominated) solutions with respect

to the input parameters: the Pareto front (Zhang & Li 2007) which spans a

hypersurface in the domain of possible solutions. These solutions appear to be

clustered in clusters of coincident solutions (Müller et al. 2023d). All solutions

in the Pareto front are mathematically optimal. With this technique we are

able to investigate the range of all reasonable images that fit the data similar in

philosophy to a Bayesian exploration, although an interpretation of the clusters

as a Bayesian posterior would be an over-interpretation (Müller et al. 2023d).

Imaging now deals with the question of choosing the most natural image among all

possible images clusters. We present a selection criterion based on the principle of

least action and benchmark its performance on synthetic and observational data.

In that way, MOEA/D provides a completely data-driven and unsupervised best

guess reconstruction with an additional robustness estimate.

As a side product we have designed and developed the novel imaging software

MrBeam and contributed significantly to regpy. MrBeam and regpy implement

iterative regularization of the general Tikhonov method with the tools of convex

optimization. Such a modular software package is of interest also outside of the

VLBI community. Thus, we were able to contribute with this work significantly

to such versatile fields such as Lyα tomography (Müller et al. 2020, 2021), the

search for dark matter (Hamaide et al. 2022), medical imaging (MRI) and solar

observations.
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We present in this chapter the novel multiscale imaging algorithms DoG-HiT and

DoB-CLEAN. First we recall the motivation and main idea behind the project.

Then we show the main publications relevant for this dissertation. Finally, we

present the imaging pipeline and an overview of the software tools used in practice.

The publications presented in this chapter are in this order:

• Müller, H. and Lobanov, A.P.: DoG-HiT: A novel VLBI Multiscale Imag-

ing Approach, 2022, A&A, 666, A137. Conceptualization: H.M., A.L.,

methodology/software: H.M., formal data analysis: H.M., writing/editing:

H.M., A.L.. — Müller & Lobanov (2022), Paper 1

• Müller, H. and Lobanov, A.P.: Multi-scale and multi-directional VLBI

imaging with CLEAN, 2023, A&A, 672, A26. Conceptualization: H.M.,

A.L., methodology/software: H.M., formal data analysis: H.M., writing/editing:

H.M., A.L.. — Müller & Lobanov (2023a), Paper 2

• Müller, H. and Lobanov, A.P.: Dynamic and polarimetric VLBI imaging

with a multiscalar approach, 2023, A&A, 673, A151. Conceptualization:

H.M., A.L., methodology/software: H.M., formal data analysis: H.M., writ-

ing/editing: H.M., A.L.. — Müller & Lobanov (2023b), Paper 3

• Müller, H. and Lobanov, A.P.: Multiscale VLBI Imaging, 2023, Pro-

ceedings of the 15th European VLBI Network Mini-Symposium and Users’

Meeting, DOI: https://doi.org/10.22323/1.428.0056. Conceptual-

ization: H.M., A.L., methodology/software: H.M., writing/editing: H.M.,

A.L.. — Müller & Lobanov (2023c), partially reproduced in Sec. 3.5 and

in Sec. 3.7.

3.1 Rationale

Our prime goal is to define a data-driven regularizer, allowing for unsupervised

imaging. Recalling from chapter 2, the imaging problem can be understood as

a deconvolution problem. During the deconvolution, the sidelobes arising in the

dirty image due to gaps in the uv-coverage ought to be suppressed. To achieve

this, we aim to interpolate the fit in the Fourier domain to the uv-gaps. In

this perspective, the rationale behind DoG-Hit is easy to explain: we want to

find the simplest, physically reasonable model that fits the visibilities. These

requirements, i.e. fitting the visibilities while being physically reasonable and as

simple as possible, can be translated to the Fourier domain as follows:

https://doi.org/10.22323/1.428.0056
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• We have to ensure that the recovered model fits the observed visibilities,

i.e. we have to minimize a reasonable data-fidelity term in the objective

functional. To be less dependent on the phase and amplitude calibration,

we propose to use closure phases Scph and closure amplitudes Scla here.

• The recovered model should be physically reasonable, i.e. free of secondary

sidelobes and reasonably smooth. Hence, the interpolation in the Fourier

domain has to satisfy the same requirements: we want to smoothly inter-

polate the fit to the gaps of the uv-coverage.

• The model should be as simple as possible to fit the observed data rea-

sonably. In particular, we do not want to induce image features that are

mainly compressed by Fourier frequencies in the gaps of the uv-coverage,

i.e. by not measured visibilities. This requirement is particularly important

for VLBI observations with a high sparsity.

From these three points, it becomes obvious that spatial scales covered by obser-

vations need to be clearly distinguished from those not covered by observations.

To this end, we use specially designed wavelets as basis functions. The image is

decomposed by these basis functions. Following the Fourier deconvolution the-

orem, convolution with a basis function in the image domain is equivalent to

multiplication by its Fourier transform in the Fourier domain. Hence, the decom-

position by a dictionary of basis functions can be equivalently understood as a

multiplication by spatial frequency filters in the Fourier domain. We make use of

this idea to separate covered from non-covered scales. By fitting the filters to the

uv-coverage, some of the basis functions compress the image scales corresponding

to the gaps of the coverage and should hence be smoothly suppressed (simplicity).

As an additional requirement, the basis functions itself have to be smooth and

free of sidelobes to allow for physically reasonable reconstructions.

The following publications present a series of developements for DoG-HiT over

the course of the last years. In Müller & Lobanov (2022), we presented the ini-

tial description of the method, and we demonstrated its capabilities on synthetic

data. In Müller & Lobanov (2023a), we discussed which set of basis functions

would be optimal. We extended DoG-HiT to multidirectional dictionaries, differ-

ence of spherical Bessel functions as basis functions, and presented for the first

time the idea of switching between two dictionaries. Furthermore, in Müller &

Lobanov (2023a) we combined and translated the ideas behind DoG-HiT and our

findings about optimal dictionaries to a novel MS-CLEAN framework. In Müller

& Lobanov (2023b) we extended DoG-HiT to dynamic imaging and polarimetry.

A concise overview of the current state of DoG-HiT and DoB-CLEAN, combining
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all these developements together, and adding a total flux calibration step to the

pipeline was presented in Müller & Lobanov (2023c).

3.2 Paper 1: Müller & Lobanov 2022, A&A, 666, A137

Figure 3.19: Multiscale Decomposition of the jet in M87. Images are adapted
from Mertens et al. (2016).

Figure 3.20: Synthetic uv-coverage of an EHT observation. The radial distribu-
tion of visibility points has significant radial gaps (blue shaded).

We present the basic DoG-HiT publication in this subsection. The project on

multiscale VLBI imaging was mainly inspired by the recent successes of wavelet

transforms in sparse representation of image features that are typical for the

primary VLBI targets, i.e. for AGN core-jet structures. One example of such

application is provided by the jet segmentation presented in Mertens & Lobanov

(2015) and Mertens et al. (2016). Mertens & Lobanov (2015) demonstrated that

an AGN jet can be effectively decomposed with a wavelet transform into subbands

of a specific spatial scale, compare e.g. Fig. 3.19. This procedure has been used

to divide the jet into spatial components by a watershed segmentation and track
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these components in time to infer the dynamics within the jet. In this work, we

transferred the ideas and the software of Mertens & Lobanov (2015); Mertens

et al. (2016) to the visibility domain and studied their use for VLBI imaging. To

this end, we are primarily focused on EHT data reductions and on addressing

the problem of missing spatial frequencies inherent to interferometric data. The

radial distribution of the visibility points, see Fig. 3.20, has clearly separable

covered visibilities and uncovered gaps. DoG-HiT is designed to identify these

gaps and turn this spatial information in a strong prior information.

Multiscalar RML imaging algorithms have been proposed before (e.g. Carrillo

et al. 2012, 2014; Garsden et al. 2015; Girard et al. 2015; Li et al. 2011; Mouri

Sardarabadi et al. 2016; Onose et al. 2016, 2017; Pantin & Starck 1996; Pratley

et al. 2018; Starck et al. 2001; Wiaux et al. 2009). DoG-HiT presents the first

variant that was directly developed for application in VLBI. It differs from pre-

vious attempts by using a different wavelet transform (fitted to the uv-coverage

to account for the typical gaps in the VLBI uv-coverages), the use of non-linear

and non-convex, but calibration-agnostic data terms, the minimization procedure

and data-analysis pipeline.
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ABSTRACT

Context. Reconstructing images from very long baseline interferometry (VLBI) data with a sparse sampling of the Fourier domain
(uv-coverage) constitutes an ill-posed deconvolution problem. It requires application of robust algorithms, maximizing the information
extraction from all of the sampled spatial scales, and minimizing the influence of the unsampled scales on image quality.
Aims. We develop a new multiscale wavelet deconvolution algorithm, DoG-HiT, for imaging sparsely sampled interferometric data,
which combines the difference of Gaussian (DoG) wavelets and hard image thresholding (HiT). Based on DoG-HiT, we propose a
multistep imaging pipeline for analysis of interferometric data.
Methods. DoG-HiT applies the compressed sensing approach to imaging by employing a flexible DoG wavelet dictionary, which is
designed to adapt smoothly to the uv-coverage. It uses closure properties as data fidelity terms only, initially, and performs nonconvex,
nonsmooth optimization by an amplitude-conserving and total-flux-conserving, hard thresholding splitting. DoG-HiT calculates a
multiresolution support as a side product. The final reconstruction is refined through self-calibration loops and imaging with amplitude
and phase information applied for the multiresolution support only.
Results. We demonstrate the stability of DoG-HiT, and benchmark its performance against image reconstructions made with the
CLEAN and regularized maximum-likelihood (RML) methods using synthetic data. The comparison shows that DoG-HiT matches
the super-resolution achieved by the RML reconstructions and surpasses the sensitivity to extended emission reached by CLEAN.
Conclusions. The application of regularized maximum likelihood methods, outfitted with flexible multiscale wavelet dictionaries, to
imaging of interferometric data, matches the performance of state-of-the art convex optimization imaging algorithms and requires
fewer prior and user-defined constraints.

Key words. techniques: interferometric – techniques: image processing – techniques: high angular resolution –
methods: numerical – galaxies: jets – galaxies: nuclei

1. Introduction

In very long baseline interferometry (VLBI), signals recorded at
individual radio antennas are combined (correlated) in order to
sample angular scales inversely proportional to pairwise antenna
separations projected onto the plane of the incoming wavefront.
Described by the van Cittert–Zernike theorem, the correlation
product (visibility) of the signals recorded at two antennas at a
given time is given by a single spectral harmonic correspond-
ing to a single spatial frequency of the Fourier transform of the
observed sky brightness distribution (see Thompson et al. 1994).
From a complete sampling of spatial frequencies, the true image
could be revealed by the inverse Fourier transform. However, the
practical limitations on the number of antennas, observing band-
width, and observing time often result in a situation where VLBI
data provide only sparse sampling (uv-coverage) of the spatial
frequencies (or “Fourier domain”), below the Nyquist–Shannon
sampling rate.

The development of powerful imaging algorithms such as
CLEAN (Högbom 1974) and their decade long successful appli-
cation in VLBI studies demonstrated that a reliable reconstruc-
tion of the true sky brightness distribution is still possible
under a strong assumption that the sky brightness distribution is
compressible as a sum of point sources. CLEAN and its many
variants (e.g., Clark 1980; Schwab 1984) work well not only
for compact structures but also for extended emission. CLEAN

is still broadly used, mainly because it is practical. However,
frontline VLBI applications, such as millimeter- or space-VLBI,
demand better imaging tools that would alleviate the known
limitations of CLEAN and provide super-resolution, multiscalar
decompositions, and a high dynamic range.

Multiresolution imaging routines based on the greedy match-
ing pursuit procedure, inherent to CLEAN, have been developed
for decades now (Wakker & Schwarz 1988; Starck et al. 1994;
Bhatnagar & Cornwell 2004; Cornwell 2008; Rau & Cornwell
2011). These studies build upon the great success of compressed
sensing theory (e.g., Candès et al. 2006; Donoho 2006), namely
that an image can be sparsely represented in a suitable set of
basis functions (atoms). Even the CLEAN algorithm (sparsity in
pixel basis; Lannes et al. 1997) and total variation regularization
methods (sparsity of the Haar wavelet) could be understood in
this way.

Imaging algorithms based on wavelets attract close atten-
tion from the astronomy community because they stand out as
extremely helpful in the analysis and compression of image fea-
tures on multiple scales (Starck & Murtagh 2006; Starck et al.
2015; Mertens & Lobanov 2015; Line et al. 2020). Both extended
emission features and small-scale structures are well compress-
ible with wavelets. Moreover, wavelets of varying scales are
sensitive to different ranges of visibilities, allowing the user to
incorporate information about the radially distributed positions
of gaps in the uv-coverage in the imaging procedure. Hence,
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sparsity in the wavelet domain is a strong and interesting image
prior for the radio aperture synthesis imaging problem.

The past five decades have seen an ongoing develop-
ment of regularized maximum likelihood (RML) methods for
interferometric imaging, in particular with the development
of image entropy regularizers such as the maximum entropy
method (MEM; e.g., Frieden 1972; Narayan & Nityananda 1986;
Wiaux et al. 2009; Li et al. 2011; Garsden et al. 2015; Thiébaut
& Young 2017). The RML methods have been applied particu-
larly extensively for imaging with the Event Horizon Telescope
(EHT; e.g., Ikeda et al. 2016; Akiyama et al. 2017b,a; Chael
et al. 2018; Event Horizon Telescope Collaboration 2019). In
a typical RML application, the image is recovered by simul-
taneously minimizing a data fidelity term, which measures the
proximity of the recovered solution to the true data, namely vis-
ibilities and/or closure properties, and a set of regularization
terms, which measure the feasibility of the recovered solution.
It has been demonstrated that l1-penalty terms promote sparsity
in the image domain. Hence, RML algorithms and the progress
in convex optimization (Beck & Teboulle 2009; Combettes &
Pesquet 2009) provide a powerful framework for respecting
sparsity during image deconvolution.

However, the deficiencies of uv-coverages, inherent to such
interferometric instruments as the EHT or the space VLBI
mission RadioAstron, pose additional challenges. Compressed
sensing approaches applied to data from such arrays are capable,
in principle, of recovering the significant structure of the tar-
get (achieving small data fidelity terms), while suppressing any
additional noise-induced image features and sidelobes (achiev-
ing small penalty terms). However, in VLBI observations the
sidelobes and the true image structure often become compa-
rable in their magnitudes. The suppression of structure due to
image sparsity affects the recovered data significantly. A more
advanced treatment of image features, in other words a more
advanced differentiation between observed emission and noisy
structures induced by uv-gap, and an amplitude conserving opti-
mization strategy are needed. Furthermore, an unsupervised
approach for blind imaging is desired.

Random and systematic noise factors in the final image can
be induced at various steps of the analysis. In particular, errors
resulting from uv-coverage deficiencies and antenna-based noise
factors (calibration issues, thermal noise) depend on the loca-
tion of the trace of the antenna pair in the uv-plane. Hence,
these errors are scale and direction dependent. We need a novel
algorithm that can deal with this, in other words one that can
automatically decompose noisy features from signal features.
This is a task that is suitable for wavelets in the first instance,
since they decompose the image into a sequence of scales.
Direction-dependent information is more difficult to compress
and will not be addressed in this paper.

In this paper, we present a new multiscalar wavelet imag-
ing algorithm built upon the compressed sensing approach. Our
method goes beyond standard sparsity, promoting imaging algo-
rithms by applying a more stringent separation of significant
image features from noise contributions, by using an adaptive
wavelet dictionary and suppressing the noise-induced artifacts
in a novel amplitude-conserving hard thresholding algorithm.
This algorithm is well suited for dealing with high-level side-
lobes such as those typically found in the data from the EHT or
space-VLBI observations.

An important feature of the algorithm is that the initial selec-
tion of the scales in the wavelet dictionary is derived from
the uv-coverage of observations, and not from any assump-
tions about the structure of the target source. We utilize current

state-of-the-art optimization algorithms to solve the resulting
RML minimization problem, but amend the imaging pipeline
by a hard thresholding sparsity term based on the multires-
olution support, which allows us to retain necessary image
information while suppressing noisy scales. We deal with poten-
tial residual calibration deficiencies of the data by first using
only the gain-invariant closure quantities for imaging and then,
after identifying and suppressing noise contributions, imaging
the full data with an optimized, fixed multiresolution support.
The resulting objective functional for minimization is not con-
vex and not smooth, which requires employing nonconvex and
nonsmooth optimization strategies. We present a final imaging
pipeline that is immediately applicable to VLBI data. This imag-
ing pipeline requires considerably fewer parameters than typical
RML pipelines, thereby presenting a viable step toward a more
unsupervised imaging approach.

We test our pipeline routine on test images that were recently
used to verify the modern generation of RML image routines
(Tiede et al. 2020). For incomplete uv-coverages, our algo-
rithm performs better than the canonical CLEAN algorithm
and its multiscale variants, owing to the flexibility of the dic-
tionary (allowing it to be adapted to a specific uv-coverage
of the array), the sparse representation of astronomical images
in the wavelet basis (compared to the representation with the
CLEAN or MS-CLEAN components), and the correct treatment
of scale-dependent noise properties.

2. Theory

This section summarizes the relevant theory and background for
different aspects of the new algorithm. We focus primarily on
application of wavelets for deconvolution in aperture synthesis
and on specific aspects of the optimization procedures applied to
sparsely sampled data.

2.1. Aperture synthesis

In interferometric observations, every antenna in the array
records the electromagnetic field of an incoherent sky bright-
ness distribution I(x, y), where x and y are angular coordinates
on the sky. Following the van Cittert–Zernike theorem, the cross-
correlation between the signals recorded by two antennas over
a baseline (u, v) (spatial frequencies in units of wavelengths) is
given by the Fourier transform of I(x, y) at this baseline:

V(u, v) =
∫ ∫

e−2πi(xu+yv)I(x, y)dxdy, (1)

where V is the complex visibility. This relation holds under
assumptions of a flat wavefront and a small field-of-view approx-
imation. Every antenna pair, at a fixed time, gives rise to a
specific baseline. The projection of a baseline on a plane orthog-
onal to the direction to the target shifts smoothly by time due
to Earth rotation describing the typical elliptical traces in uv-
coverages. However, due to the small number of antennas in
VLBI arrays, the coverage of measurements in the uv-domain
remains sparse. In particular, gaps in the uv-coverage introduce
sidelobes and artefacts in the recovered image. When inverting
the Fourier transform (to produce ID), the result can be written
as a convolution:

ID = B ∗ I, (2)

where ID is the dirty image, meaning the inverse Fourier trans-
form of the (tapered) observed visibilities, and B is the dirty
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beam, meaning the inverse Fourier transform of the (tapered)
projection onto measured baselines in the Fourier codomain.

Aperture synthesis imaging is the problem of recovering the
true distribution I(x, y) from a discrete, sparse set of observed
visibilities. This procedure could also be understood as a decon-
volution problem, see Eq. (2). The incomplete uv-coverage
introduces direction- and scale-dependent sidelobe patterns in
the dirty image and the dirty beam. Deconvolution, in this case,
becomes an ill-posed inverse problem. In particular, the solu-
tion to the imaging problem in Eq. (2) is, strictly speaking, not
unique as Fourier harmonics are missing from the observation
(historically called the “invisible distributions”). A successful
deconvolution method must be able to identify and categorize
these invisible distributions and minimize their impact on the
restored image.

Image restoration is further complicated by the variable
thermal noise and signal-to-noise ratio (S/N) of visibility mea-
surements. The visibility S/N is systematically reduced at long
baselines. As the antenna sensitivity enters the reconstruction
at specific scales and directions, determined by the position of
the baseline corresponding to a given antenna pair, the noise
becomes scale and direction dependent.

Various calibration issues also need to be addressed during
image restoration. Systematic direction-independent calibration
errors can be factorized into multiplicative station-based gains
gi (where the index i denotes the antenna in the array), affect-
ing the relation between the observed visibilities Vi j and the true
visibilitiesVi j:

Vi j ≈ gig
⋆
jVi j + Ni j, (3)

where Ni j denotes thermal noise on the baseline. In particular,
phase information is typically only available after a calibration
by an ad hoc initial model. In standard imaging approaches (e.g.,
in CLEAN), the problem of calibration is typically addressed
through a hybrid imaging approach. In this case, an initial image
is first produced using the a priori set of instrumental gains,
and then the gain terms are solved for, as in Eq. (3), in order
to enforce consistency with the current image guess (with the
solution typically obtained by a gradient descent approach or
self-calibration). These two steps are repeated iteratively until
the desired image quality is reached. In this way, alternating self-
calibration and imaging steps converge to a self-contained model
description, consistent with the observed and self-calibrated
data.

Some of the calibration issues can be circumvented by
employing closure quantities computed from combinations of
visibilities that are independent of antenna-based gain errors.
The closure phase, Ψi jk, is the phase over a triangle of antennas
i, j, k:

Ψi jk = arg
(
Vi jV jkVki

)
. (4)

The closure amplitude, A, is the ratio of amplitudes over a square
of antennas i, j, k, l:

Ai jkl =
|Vi j||Vkl|
|Vik ||V jl| . (5)

Not all closure triangles and closure squares are independent,
which leads to the number of total observables being reduced.
We assume that at a specific time N, antennas are observing
simultaneously. This gives rise to N(N − 1)/2 independent base-
lines, while there are only (N − 1)(N − 2)/2 independent closure

phases, and N(N − 3)/2 independent closure amplitudes (Chael
et al. 2018). Hence, the number of observables is reduced by
a fraction of 1−2/N for closure phases, and 1−2/(N − 1) for
closure amplitudes.

2.2. Deconvolution

Historically, the imaging problem described by Eq. (2) has
been addressed through inverse modeling, that is, by CLEAN
(Högbom 1974), which can be classified as a greedy, matching
pursuit algorithm. The problem is first translated into a decon-
volution problem by taking the inverse Fourier transform of the
visibilities. Hence, CLEAN needs to perform this inversion on
calibrated complex visibilities at every stage. The deconvolu-
tion problem is therefore solved by inverse modeling; CLEAN
searches iteratively for the position of the maximum in the resid-
ual image, stores this in a list of delta-components, and updates
the residual by subtracting the rescaled and shifted dirty beam
from the residual image. In multiscale variants of CLEAN, the
delta components are replaced by more sophisticated extended
basis functions (Bhatnagar & Cornwell 2004; Cornwell 2008;
Rau & Cornwell 2011). In recent years, there has been a contin-
ued development of imaging by forward modeling (e.g., Garsden
et al. 2015; Akiyama et al. 2017b; Chael et al. 2018) in which
Eq. (1) is solved by fitting a model solution to the visibilities,
by minimizing the error in some cost functional (data fidelity
term). With this forward modeling approach, RML methods can
work directly on the closure quantities or a mix of data prod-
ucts in order to reduce the influence of calibration errors on the
reconstruction. Regularization and missing information are dealt
with by simultaneously minimizing a penalization term, which
promotes the desired image features (i.e., sparsity, smoothness,
or small entropy). The resulting minimization problem is then
solved by standard numerical optimization algorithms, such as a
gradient descent algorithm.

A major advantage of the work presented in this paper is the
use of novel basis functions (i.e., wavelets). We will discuss them
in more detail in Sect. 2.3. These wavelets are extended and allow
a more thorough analysis of the uv-coverage of the observations.
The basis functions used in the (MS-)CLEAN and RML methods
do not typically offer this kind of analysis. The standard CLEAN
(Högbom 1974) algorithm models the image as a set of delta
functions. Its multiscalar variants use some version of truncated
Gaussian functions (see the discussions in Cornwell 2008). RML
methods utilize pixel grids.

2.3. Wavelets

The continuous wavelet transform (CWT) could be understood
as an extension of the Fourier transform (Starck et al. 2015),
in which the Fourier decomposition in the frequency domain is
amended by a windowing of the measurement domain with a
specially designed analyzing wavelet function. In the definition
of Grossmann et al. (1989), the CWT related to an analyzing
wavelet Φ(t) operates in one dimension on the space of square
integrable functions so that

I 7→ W(a, b) =
1√
a

∫
I(t)Φ∗

(
t − b

a

)
dt = I ∗ Φ̃a(b), (6)

where Φ̃a(t) = 1√
aΦ
∗(−t

a ), a is the scale parameter, and b is
the position parameter. Hence, the CWT effectively performs
a number of convolutions with dilated versions of the analyz-
ing wavelet Φ. There are different choices for analyzing wavelet
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functions, including the Morlet wavelet (Goupillaud et al. 1984;
Coupinot et al. 1992), the Haar wavelet (Stollnitz et al. 1994),
the Mexican-hat wavelets (Murenzi 1989), and discrete versions
(e.g., see Mallat 1989; Starck et al. 2015, and references therein).

In this work we are using difference of Gaussian (DoG)
wavelets that are commonly applied to approximate Mexican-hat
wavelets (Gonzalez & Woods 2006; Assirati et al. 2014):

Φ
σ1,σ2
DoG (x, y) =

1
2πσ2

1

exp

−r(x, y)2

2σ2
1

 − 1
2πσ2

2

exp

−r(x, y)2

2σ2
2



= Gσ1 −Gσ2 , (7)

where necessarily σ1 ≤ σ2, and Gσ j denotes a Gaussian with
standard deviation σ j.

Wavelets in the image domain (convolution) directly trans-
late to masks in the Fourier domain (pointwise multiplication):

FΦσ1,σ2
DoG (u, v) ∝ exp

(
−2π2σ2

1q(u, v)2
)
− exp

(
−2π2σ2

2q(u, v)2
)
,

(8)
where q(u, v) denotes the radius in Fourier domain.

Of special interest for image compression is the discrete
wavelet transform, in particular the à trous wavelet transform
(also called the starlet transform). In a nutshell, the à trous
wavelet transform aims to compute a sequence of smoothing
scales c j by convolving the image with a discretized smoothing
kernel dilated by 2 j pixels, where j labels the scale and ranges
from 0 up to a final smoothing scale J. Wavelet scales are defined
as the difference of two smoothing scales:

ω j = c j − c j+1. (9)

The last smoothing scale cJ is added to the set of wavelet scales
resulting in the set: [ω0, ω1, ..., ωJ−1, cJ]. This set decomposes
the initial image into subbands ω j, each of them containing
information on spatial scales from 2 jρ to 2 j+1ρ, where ρ is the
smallest scale in the image, namely the width of the smooth-
ing kernel (which is often chosen to be close to the pixel scale).
The set is complete in the sense that the image at the limiting
resolution c0 can be recovered by summing all scales:

c0 =
∑

j

ω j + cJ . (10)

The à trous wavelet transform has a wide range of appli-
cations and was successfully applied to radio interferometry
previously (e.g., Li et al. 2011; Garsden et al. 2015). However,
the à trous wavelet decomposition, by construction, allows only
for scales with the widths of 20, 21, 22, 23, ... pixels. In this study,
we are interested in obtaining a more flexible selection of scales
in order to adapt the scales to the uv-coverage and differentiate
better between well- and poorly constrained spatial scales.

Therefore, we propose constructing a continuous wavelet
decomposition out of DoG wavelets in the same way as the
à trous wavelet transform was constructed out of a discretized
smoothing kernel. We select an ascending sequence of widths
σ0 ≤ σ1 ≤ ... ≤ σJ and compute the smoothing scales c j by
convolution with Gaussians that have widths σ j, namely c j =
I ∗Gσ j . The wavelet scales ω j are then set by

ω j = c j − c j+1 = I ∗ Φσ j,σ j+1

DoG , (11)

which sufficiently approximates the Mexican hat wavelet scales.
We call a set of basis functions in compressed sensing a “dic-

tionary”, while the basis functions themselves are called “atoms”

of the dictionary. The term dictionary is also used for the linear
mapping that evaluates a coefficient array of these atoms (Starck
et al. 2015). The set of DoG wavelet functions Φσ j,σ j+1

DoG , together
with the last smoothing scale GσJ , builds a multiscalar dictionary
Γ:

Γ : (I0, I1, I2, ..., IJ) 7→
J−1∑

j=0

Φ
σ j,σ j+1

DoG ∗ I j +GσJ ∗ IJ . (12)

The atoms of the dictionary Γ are the wavelets Φσ j,σ j+1

DoG and GσJ .
By construction, see also Eq. (10), all atoms in the dictionary
sum to Gσ0 , which (given that σ0 should be chosen very small,
i.e., Gσ0 is a delta peak at the pixel scale) indicates that the
dictionary Γ has full rank.

Another crucial property of the dictionary Γ is that the inte-
gral of the atoms Φσ j,σ j+1

DoG is vanishing. Hence, only the final
smoothing scale GσJ transports the total flux in the image.

The subbands I j hold the information of the image at a
respective scale described by σ j and σ j+1. We will denote the
collection of subbands of an image I by I = {I1, I2, ..., IJ} for
the rest of the paper. However, even if I = Γ(I1, I2, ..., IJ) holds,
it is usually I j , ω j due to the nonorthogonality of the DoG
wavelet functions. Nevertheless, ω j should provide a reasonable
initial guess if one tries to find an array I = {I1, I2, ..., I j} that
satisfies I = ΓI .

2.4. Sparsity-promoting regularization

We apply sparsity-promoting regularization in the generalized
Tikhonov framework:

Î ∈ argminI [S (FΓI ,V) + αR(I )] , (13)

where S is the data fidelity term, which measures the proxim-
ity between the recovered visibilities FΓI and the observed
visibility data, V . The term F denotes mapping of the image
intensity onto the visibilities, meaning it computes a tapered and
weighted projection of the Fourier transform of x on a discrete
and fixed sampling. The term R denotes the regularization term,
which measures the feasibility of the guess I . The parameter α
controls the bias between both terms. The final recovered image
solution is then:

Î = ΓÎ . (14)

The data fidelity terms used for this paper are introduced
as follows. Let V = FΓI denote the visibility data predicted
from the current guess. We quantify the proximity between the
predicted and measured visibilities by the effective χ2-distance
between them,

S vis(V ,V) =
1

Nvis

Nvis∑

i=1

|Vi − Vi|2
Σ2

i

, (15)

where Nvis is the number of visibilities and Σi the estimated ther-
mal noise of a given visibility. This χ2 corresponds directly to
a log-likelihood, given uncorrelated Gaussian thermal noise on
the different baselines. In addition to this, we also use similar
distances defined for three additional quantities: (a) the distance
between the measured and predicted visibility amplitudes,

S amp(V ,V) =
1

Nvis

Nvis∑

i=1

(|Vi| − |Vi|)2

Σ2
i

; (16)
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(b) the distance between the measured and predicted closure
phases,

S cph(V ,V) =
1

Ncph

Ncph∑

i=1

|Ψi(V ) − Ψi(V)|2
Σ2

cph,i

, (17)

where Ncph is the number of closure phase combinations, Σcph,i
the noise on a closure phase Ψi(V), and Ψi(V ) denotes the
respective closure phase computed from the array of predicted
visibilities, V ; and finally, (c) the distance between the measured
and predicted closure amplitudes,

S cla(V ,V) =
1

Ncla

Ncla∑

i=1

| ln Ai(V ) − ln Ai(V)|2
Σ2

cla,i

, (18)

with similar conventions as for the closure phases. We would
like to note here that Eqs. (17) and (18) are only approximate
expressions for the correct log-likelihoods for closure products
(e.g., Blackburn et al. 2020; Arras et al. 2022). These approxi-
mations and the combinations of them are applied in Sect. 4 for
the analysis of test data.

It is known that sparsity is promoted by convex pseudonorm
functionals as a regularization term (Starck et al. 2015), for
example by a term of the form:

Rl0 (I ) = ∥I ∥l0 =
J∑

j=0

∑

i

w j|Ii
j|0, (19)

with weights w j = maxΨσ j,σ j+1

DoG (see our discussion in Sect. 3.1)
and i referring to the pixels in the subbands.

Another type of regularization term used for this work are
characteristic functions, incorporating a total flux f constraint

Rflux(I, f ) =
{

0 total flux of I = f
∞ else,

(20)

or a multiresolution support, M, such that

Rmrs(I ,M) =
{

0 I , 0 only in M
∞ else.

(21)

The multiresolution support M is a subdomain of the parame-
ter space occupied by I = {I1, I2, ..., IJ}, and it comprises the
coefficients in I that are allowed to be unequal to zero. In this
sense, Rmrs could be understood as a compact flux constraint (i.e.,
all coefficients in the subbands I1, I2, ..., IJ outside of a compact
core region are constrained to zero), a multiscale constraint (i.e.,
all coefficients within one uncovered subband I j are set to zero),
or a combination of both.

2.5. Optimization

We use a flexible dictionary of DoG wavelets and minimize
Eq. (13) directly with convex optimization algorithms. Gener-
ally, a gradient descent algorithm could be used for this task, as
long as the data fidelity term and the penalty term are smooth
(i.e., possess a gradient). However, for sparsity-promoting algo-
rithms, the penalty term is typically nonsmooth, meaning that
the l0-norm is not differentiable. In numerical optimization, it
is common practice to use the l1-norm as a convex approxi-
mation to the nonconvex l0-functional stated above (e.g., Starck
et al. 2015). As the l1-norm is also not smooth (preventing gradi-
ent descent algorithms from being used), powerful optimization

strategies were developed in numerical mathematics that typi-
cally outperform smooth approximations to the l1-norm. Several
of such optimization strategies have been recently applied to
aperture synthesis as well (Li et al. 2011; Carrillo et al. 2012,
2014; Garsden et al. 2015; Girard et al. 2015; Onose et al.
2016, 2017; Mouri Sardarabadi et al. 2016; Akiyama et al.
2017b,a; Cai et al. 2018a,b; Chael et al. 2018; Pratley et al. 2018;
Event Horizon Telescope Collaboration 2019). These algorithms
depend on the proximal point operator instead of the gradi-
ent. However, in the present work we are addressing a slightly
more advanced problem of maintaining sufficient contrast in the
image, and hence we are interested in the l0 functional instead of
its common convex approximation l1. Moreover, this will allow
us to construct a multiresolution support later on. Relying on the
overall success of proximal-point-based algorithms to deal with
this kind of optimization problem, we nevertheless attempt to
address our minimization problem using a proximal-point-based
optimization.

In the following, we describe the basic properties of the
proximal_point operator. If H is a proper, convex and lower semi-
continuous functional on a Hilbert space X, then the proximity
operator of H is defined as the mapping (Moreau 1962):

proxτ,H(z) = argmins∈X

{
H(s) +

1
2τ
∥s − z∥X

}
, (22)

and proxτ,H is well defined (i.e., there is a unique single-value
minimum). For a convex, proper and lower semicontinuous
objective functional, such as the right hand side of Eq. (22), the
zero element is in the subdifferential of the functional at the point
of the minimum. Hence, ŝ := proxτ,H(z) satisfies:

z − ŝ ∈ τ∂H[ŝ]. (23)

The power of proximal operators comes from their fixed-point
property. It follows directly from Eqs. (22) and (23), that:

ŝ ∈ argminsH(s) ⇐⇒ ŝ = proxτ,H(ŝ) (24)

independently of τ ≥ 0. For a sketch of the proof see
Appendix A.

Hence, we can solve the minimization in Eq. (13) by fixed-
point iterating the proximity operator. This procedure is exact,
in the sense that convergence proofs are available (e.g., Martinet
1972). For the combination of a smooth term (data-fidelity term)
and a nonsmooth term (penalty term), we use a two-step split-
ting minimization strategy consisting of a gradient descent step
for the data fidelity term and one proximity step for the penalty
term (Combettes & Pesquet 2009). The forward–backward split-
ting algorithm is outlined in its general framework in Table 1.
The two-step splitting is realized during the last step of the algo-
rithm, when the current guess is updated by a proximal step and
a gradient descent step.

Interestingly, despite being derived in the context of convex
optimization, there are also local convergence proofs available
for the cases when S and R are not convex, but the penalty
term remains lower semicontinuous and proper, and satisfies the
technical Kurdyka-Łojasiewicz property (e.g., see Attouch et al.
2013; Ochs et al. 2014; Xiao et al. 2015; Boţ et al. 2016; Liang
et al. 2016 or Bao et al. 2016 for a connection to wavelets). This is
of special interest for radio aperture synthesis as the data fidelity
terms S amp, S cph, and S cla are indeed not convex. Local conver-
gence to a steady point is known, and under some circumstances
even global convergence could be proven (compare the discus-
sion in Liang et al. 2016). Application in practice shows that,
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Table 1. Forward–backward splitting for the minimization of S + R.

Input: S ,R : X 7→ R (convex)
Input: grad S is L-Lipschitz continuous

Step size: τ ∈ (0, 2/L), typical choice: τ = 1/ ∥grad(S )∥2
Initial guess: x0 ∈ X
while i = 0, 1, 2, ... do

xi+1 = proxτ,R(xi − τgradS (xi))

given a reasonable initial guess, local minima could be avoided
(Starck et al. 2015).

One may wonder if the difficulty with convex nonsmooth
penalty functionals is now just transported to the probably trou-
blesome minimization problem in the definition of the proximity
operator in Eq. (22). But the proximity operator is known for
a large number of examples and the computation is often not
more time-consuming than one Landweber iteration. For exam-
ple, for the l0-functional, the proximity operator is (e.g., Starck
et al. 2015):

proxτ,∥·∥l0 (z) =



z |z| > √2τ
sign(z)[0, z] |z| = 0
0 |z| < √2τ

, (25)

where the signum and absolute value are meant to be evaluated
pointwise. This not always a single value, since the l0 norm is not
convex. The proximal point operator of characteristic functions
is the projection on the support of the characteristic function;
in the case of multiresolution support, this is the function that
nullifies all coefficients outside the multiresolution support, and
in the case of the total flux, it is the function that projects the
current guess to the guess with the correct total flux.

3. Pipeline

3.1. Outline

We use the same notations as in the previous subsections: V are
the observed visibilities, f the prior compact total flux, Γ the
dictionary of composed of DoG wavelets, and F the linear map-
ping of the image intensity to the tapered visibilities. The core of
our imaging method concerns solving the following optimization
problem:

Î ∈ argminI

[
S cph(FΓI ,V) + S cla(FΓI ,V)

+α · Rl0 (I ) + Rflux(I , f )
]
, (26)

where we choose the maximum of the corresponding DoG
wavelet function as weights ωi. We have only one regulariza-
tion parameter α that controls the amount of suppression by hard
thresholding. We like to emphasize the main motivations behind
this optimization problem.

Firstly, we use the more flexible DoG dictionary here, see
Eq. (12). This allows us to adapt the dictionary to the uv-coverage
by separating scales that are well covered by observations from
those that are less accurately constrained by observations. This
will allow us to better suppress the signal from the latter scales.

Secondly, we initially use the closure properties as the data
fidelity term, as a measure to reduce the effect of possible
antenna-based calibration errors. Chael et al. (2018) demon-
strated that this information is sufficient to recover the image
when using strong regularization priors. In later imaging rounds,

that is after several self-calibration steps, we also start to include
amplitude and phase information.

Thirdly, we use hard thresholding (l0 pseudonorm regular-
ization), which promotes sparsity. In the few works addressing
multiscalar imaging for radio aperture synthesis (Li et al. 2011;
Carrillo et al. 2012, 2014; Garsden et al. 2015; Onose et al. 2016,
2017; Mouri Sardarabadi et al. 2016; Pratley et al. 2018), often the
l1-norm is used as a convex approximation to Rl0 . This is stan-
dard for sparsity-promoting inverse problems (e.g., Starck et al.
2015). However, the l1-norm suppresses both the image features
and noisy structures. As it is important to preserve the ampli-
tude on the well-covered scales, we resort to using the nonconvex
l0-pseudonorm as penalization. We weight the l0 pseudonorms
by the maximal peak of the corresponding DoG wavelet basis
function. This is done to prevent the scale selection having a
strong effect on the choice of the best regularization parame-
ter. In principle these weighting parameters could be considered
as free regularization parameters as well. However, to meet our
requirement of constructing an algorithm that is as unbiased
and data-driven as possible, we restrict them in this work to the
choice that seems most reasonable.

It should be noted that S cph, S cla, and Rl0 are invariant against
rescaling the coefficients x (atoms) by a scale factor λ ∈ R. To
select the most feasible solution along this line, we select the one
that matches the prior compact total flux.

There are more possible regularization terms available, for
example the total variation or the total squared variation terms
that are applied for the EHT imaging (Event Horizon Telescope
Collaboration 2019). However, finding suitable weighting param-
eters for the different data terms and penalty terms is somewhat
unintuitive for such different types of regularizations. This task
often requires large parameter surveys with feasible synthetic
data. We aim to find a largely unsupervised algorithm with only
a few free parameters.

Our optimization problem differs significantly from previ-
ous multiscalar RML imaging approaches (e.g., Li et al. 2011;
Carrillo et al. 2012, 2014; Garsden et al. 2015; Girard et al. 2015;
Onose et al. 2016, 2017; Mouri Sardarabadi et al. 2016; Cai et al.
2018a,b; Pratley et al. 2018). They used the starlet transform as a
dictionary (which we replaced by the DoG dictionary), the dis-
tance of observed and predicted visibilities as the data fidelity
term (which we replaced by closure properties), and l1 penalty
terms (which we replaced by l0 penalization).

Nevertheless, our algorithm shares some similarities with
RML reconstructions. The unpenalized minimization of the data
fidelity terms yields a high-resolving reconstruction that fits the
observed data points with a fidelity that is (too) high, but that
provides clearly unphysical, highly oscillating fits of the visi-
bilities in the gaps of the uv-coverage. Total variation and total
squared variation penalization effectively smooth the recovered
model to a reasonable extent, where the amount of smoothing is
controlled by the trade-off between the data fidelity term and the
penalization term. We achieve a similar effect by modeling the
brightness density distribution with (as few as possible) smooth,
extended basis functions.

3.2. Pipeline

The data fidelity terms S cph and S cla, and the regularization
term Rl0 , are not convex. Therefore, the minimization problem
stated in Eq. (26), strictly speaking, may not have a single-value
minimum. Therefore, a careful imaging pipeline helping global
convergence is needed. It should also be noted that the rep-
resentation of the image in wavelet scales is an overcomplete
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representation. Due to the resulting large arrays, computation
could be slow. Computation time can, in principle, be reduced
when starting from a reasonable initial guess instead of a flat
image or a Gaussian prior.

On the other hand, the solution of Eq. (26) returns an
adequate calibration image Î = Γx̂ and computes, on the fly,
a multiresolution support M (all the pixels that are unequal
to zero). Further imaging rounds, including the self-calibrated
visibilities, allow the solution to vary only in the multiresolu-
tion support, and thus could sharpen the image further while
respecting the sparsity assumption thanks to the multiresolution
support. This approach is realized within the following imaging
pipeline:

The first imaging round consists of “single scalar flux con-
straining imaging”: We minimize the term:

Î1 ∈ argminIS amp(FI,V) + S cph(FI,V)
+S cla(FI,V) + Rflux(I, f ), (27)

where no dictionary is involved. We do this by the fast minimiza-
tion method available in the scipy package. In fact, this imaging
round is similar to the first imaging round with the ehtim imag-
ing package for Event Horizon Telescope Collaboration (2019).
This imaging round is used for finding a reasonable initial guess
in order to reduce the overall computation time. We convolve the
result with the instrument clean beam (to avoid local minima)
and only use a few iterations, meaning it is an incomplete decom-
position. Finally, we have to find a wavelet coefficient array Î 1

that satisfies Î1 = ΓÎ 1. To satisfy Eq. (10), we copy the intensity
Î1 in every scale Î 1

j = Î1, where j denotes the scale in use.
The second imaging round consists of “multiscalar closure

property hard thresholding imaging”: This imaging round is the
heart of the new algorithm. We solve Eq. (26) using a forward–
backward splitting approach. We start from the initial guess Î 1

computed in the first imaging round and compute a scale dis-
crete guess in order to minimize Eq. (26). We start from the
largest scales only (setting all other subbands to zero), suc-
cessively adding smaller scales and larger thresholds. We stop
at the scale at which the functional (26) is minimal, in other
words at the smoothing when accuracy of the fit and sparsity
penalization balance. Lastly, we reestimate the thresholds for
each scale individually starting from the smallest scales. We
then minimize, starting from this initial guess, the functional
with a forward–backward splitting strategy. We will explain this
forward–backward splitting minimization strategy in Sect. 3.3.
An outline of the round 2 imaging algorithm is presented in
Table 2.

The third imaging round consists of “multiresolution imag-
ing with visibility amplitudes”: We self-calibrate the data with
the image guess derived in the second image round. More-
over, we compute the multiresolution support M from the result
Î 2 of the second imaging round, that is to say, we choose
all nonzero elements of the multiscalar coefficient array Î 2 as
multiresolution support. We now solve the problem:

Î 2 ∈ argminIS amp(FΓI ,V) + S cph(FΓI ,V)
+S cla(FΓI ,V) + Rmrs(I ,M). (28)

This is solved by a simple gradient descent algorithm starting
from the initial guess Î 3 in which only the gradient with respect
to the coefficient in the multiresolution support is computed.

The fourth imaging round is “multiresolution imaging with
full visibilities”: after another self-calibration step, we solve the

imaging problem:

Î 4 ∈ argminI S vis(FΓI ,V) + Rmrs(I ,M), (29)

by a gradient descent algorithm that only varies coefficients in
the multiresolution support analog to the third imaging round.

For the last, fifth imaging round we do “single scalar visi-
bility imaging”: We set all pixels with negative flux to zero flux
and increase the match to the observed visibilities by a gradient
descent algorithm that minimizes. S vis(FI,V) in the pixel scale
starting from Î5 = Γ̂5.

The last three imaging rounds (in particular round 5) are
optional and only refine the reconstruction. This will be dis-
cussed in our demonstration on synthetic data in Sect. 4.

3.3. Minimization algorithm

We now discuss the minimization algorithm used to minimize
Eq. (26). All other imaging rounds are based on smooth gra-
dient descent imaging algorithms (rounds 3–5) or a smooth
Newton-type minimization (round 1). But Eq. (26) is neither
convex nor smooth. However, the data fidelity terms are smooth
with Lipschitz continuous derivatives and the l0 pseudonorm
is proper and lower-semicontinuous, and satisfies the Kurdyka–
Lojasiewicz property (e.g., Liang et al. 2016). Thus, the forward–
backward splitting algorithm 1 remains applicable, see our
discussion in Sect. 2.5. Additionally, we recall that S cph, S cla, and
Rl0 are invariant against rescaling the coefficient array by a scalar
factor λ. We therefore propose the following iterative scheme: we
first minimize S cph(FΓx,V)+ S cla(FΓx,V)+ α ·Rl0 (x) by a fixed
number of forward–backward splitting iterations, and then we
rescale the coefficient array by a scale factor, such that I = Γx
has a total flux matching the prior compact flux (leaving the data
fidelity terms and regularization terms unaffected). Then we pro-
ceed with our forward–backward splitting algorithm, performing
rescaling again, and so on. The complete procedure is outlined
in Table 2. The needed proximal operator for the l0 pseudonorm
is computed in Eq. (25).

Iterative reweighted l1-regularization proposed by Candès
et al. (2007) provides an alternative approach to solving opti-
mization problems with nonconvex l0-terms and is more com-
mon than our forward–backward scheme. However, our rescaling
approach to match the total flux would affect the reweight-
ing step of the reweighted l1-regularization method. Thus, it
would introduce an additional layer of complexity in solving
the optimization problem. This would fail our requirement of
a preferably simple imaging algorithm with a small number of
parameters to specify.

3.4. Selection of scales

Our DoG-wavelet dictionary is flexible in the sense that the
Gaussian widths could be chosen to adapt to the uv-coverage.
Hence, the selection of scales is data driven (e.g., by the uv-
coverage) and should be performed automatically. In this section
we discuss the automatic scale-width selection and outline the
key points of this approach.

The Fourier transform of a two-dimensional DoG wavelet is a
ring shaped mask, see Eq. (8). It is reasonable to select the masks
such that well-covered regions of the uv-space and poorly cov-
ered regions are separated. However, for very sparse arrays, there
are no really well covered scales. In this situation, our selection
should be also driven by the assertion that all the data points
belonging to the same antenna pair should be covered in one
scale.
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Table 2. Wavelet forward–backward splitting: pipeline round 2.

Input: Visibilities: V
Input: Stepsize: τ (chosen artificially, such that algorithm converges)
Input: Regularization Parameter: α
Input: Total flux: f

▷ Precompute needed data terms and operators
Define a dictionary of basis functions(wavelets): Γ
Define a forward operator: G : I 7→ F ΓI (note G is linear)
Define a data-fidelity functional: d f : I 7→ S lca(V,GI ) + S cph(V,ΓI )
Precompute gradient of data-fidelity functional: d f ′[I ]
Define a penalty term: pen : I 7→ |support(x)| (l0-norm)
Precompute proximal operator of penalty term: proxτ (hard thrinkage operator, Eq. (25))
I = initialguess

▷ Find initial image thresholding by minimizing Eq. (26) on a predefined grid of thresholds
Define grid of possible thresholds: ti
for i = 1, 2, 3, ... do

Hard thresholding: testi = proxti (I )
mini = d f (testi) + αpen(testi)

Find minimum i and update initial guess I = proxti (I )
mintot = mini

for j = 0, 1, 2, ..., J do
for i = 1, 2, 3, ... do

Hard thresholding single scale: testi, j = {I1, ..., proxti (I j), ...,IJ}
mini, j = d f (testi, j) + αpen(testi, j)
if mini, j < mintot then

mintot = mini, j

I j = proxti (I j)

▷ Start forward–backward iterations from this guess
while stopping-rule 1 do

while stopping-rule 2 do
I = I − τ · d f ′[I ]
I = proxτ·α(I )

I = I · f /sum(ΓI )

Compute Multiresolution support M = {I , 0}

Output: I is approximate minimizer to Eq. (26)
Output: Î = ΓI is an approximation to the true sky brightness distribution
Output: As a byproduct M is a reasonable multi-resolution support

We present a sketch of our automatic scale selection in Fig. 1.
We unpack the array of uv-distances of the full array, sort it
in increasing order (black dots in Fig. 1), and search for jumps
between two consecutive data points that exceed a certain thresh-
old. These jumps clearly appear at gaps in the uv-coverage (most
visible between the blue and orange lines in Fig. 1, respectively
between the green and the red lines). We store the uv-distances
at which these gaps appear and select the DoG wavelet widths by
the mean of the consecutive distances (represented by horizontal
colored lines in Fig. 1).

As a demonstration, we apply this procedure to the EHT 2017
array. In Fig. 2, we show our masks and the data points in uv-
space. The width information of the scales shown in Fig. 2 is
given in Table 3. We also mention in Table 3 which scale is most
sensitive to which antenna pair (i.e., what the selection criterion
was for this scale). As all DoG wavelets satisfy the zero inte-
gral property of wavelets, the only flux-transporting scale is the
smoothing scale GσJ .

The smallest scale in our set has a width of 9.96µas, which
corresponds to 5.02 pixels in our discretization. For the sake of

completing our dictionary of wavelet functions so that Eq. (10)
remains satisfied, we complete our sets of scales down to the
pixel size by adding DoG wavelets according to the widths of
one, two, and four pixels. This, however, will turn out to be
less relevant, as these scales will be suppressed by the algorithm
automatically, see Sect. 4.2.

4. Tests with synthetic data

4.1. Testdata

We test our algorithm on the same set of synthetic data that were
recently used for testing feature extraction from the EHT data
(Tiede et al. 2020). In particular, we use a crescent, a disk, a
double Gaussian, and a ring structure.

The crescent is described by the equation (Tiede et al. 2020):

I(r, θ) = I0(1 − s cos(θ − ξ))δ(r − r0)
2πr0

. (30)
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Fig. 1. Sketch of the automatic scale selection. The sorted array of
uv-distances is plotted with black points. This array has clearly visible
jumps (gaps in radial uv-coverage). We identify these jumps and assign
scalar widths to them (horizontal colored lines).

Table 3. Widths of DoG wavelets and their main sensitivity to the uv-
coverage, i.e., which antenna pair is mainly covered by these scales.

Scale σ1 → σ2 (µas) Main Sensitivity
0 0.84→ 1.69 Unresolved
1 1.69→ 3.37 Unresolved
2 3.37→ 4.23 Unresolved
3 4.23→ 5.78 PV-SMA/JCMT
4 5.78→ 6.66 Gap
5 6.66→ 7.06 AA/AP-JCMT/SMA, AA/AP-PV
6 7.06→ 12.18 AA/AP-SMT, SMT-PV, LMT-PV
7 12.18→ 14.13 AA/AP-LMT, JCMT/SMA-LMT
8 14.13→ 17.55 JCMT/SMA-SMT
9 17.55→ 33.69 Gap
10 33.69→ 39.81 LMT-SMT
11 39.81 AA-AP, JCMT-SMA

Notes. Different scales are most sensitive either to specific baselines or
the gaps in the uv-coverage. The three smallest scales were added to
complete the dictionary down to the pixel size and compress unresolved
structures.

We use ξ = 180◦, r0 = 22µas, s = 0.46, and I0 = 0.6 Jy. The
crescent is then convolved with a Gaussian with a full width at
half maximum (FWHM) of 10µas. The disk is a disk of diam-
eter 70µas. The disk is then convolved with a Gaussian with
FWHM 10µas.

The double Gaussian image consists of two Gaussian peaks
with a FWHM of 20µas. The first Gaussian is placed at the ori-
gin and has a flux of 0.27 Jy. The second Gaussian is placed
30µas to the east and 12µas to the south. It has a flux of 0.33 Jy.

The ring has radius of 22µas and a total flux of 0.6 Jy. The
ring is convolved with a Gaussian with a FWHM of 10µas.

We simulate visibility data from the test images with the help
of the ehtim package, using the EHT 2017 array at 229 GHz. We
mimic the observation with the observe_same option, assum-
ing the same systematic noise levels, observation intervals, and
correlation times as for the EHT observations (Event Horizon
Telescope Collaboration 2019). We assume phase and gain
calibration, but add thermal noise.

We aim to study the image on a 128x128 pixel grid with
1µas-pixels. However, to avoid boundary effects in the com-
putation (the largest chosen Gaussian has a FWHM of already
93.75µas), we widen the field of view by a factor of two. More-
over, we use 129 pixels instead of 128 pixels to discretize narrow
central Gaussians correctly. We have defined 12 different wavelet
scales. Thus, we are attempting to solve for 12 × 129 × 129 ≈
2 × 105 parameters in the multiscale imaging rounds.

4.2. Imaging pipeline

In this subsection, we use with the crescent image to demon-
strate the stability of our imaging pipeline and present some key
features. We show in Fig. 3 the imaging results obtained from
the crescent test data after different imaging rounds. The image
after the second imaging round is shown in the upper right panel,
and the final image after the fifth imaging round is shown in the
lower right panel. The essential image structure is already recov-
ered after the second imaging round (multiscalar imaging with
closure properties). This indicates that the multiscalar imaging
approach might also be applicable to badly calibrated data and
that satisfactory image quality could be achieved even without
self-calibration loops. Nevertheless, the use of the amplitudes
and full visibility data (imaging rounds 3–5, lower panels)
refines the recovered structures, and increases coincidence with
observed visibilities. Moreover, the steady improvement of the
image quality shown in Fig. 3 demonstrates that our amplitude
conserving hard thresholding approach works as intended. We
observe a strong contrast between the ring feature and the inner
depression (due to sparsity) while the amplitude and total flux is
conserved. This would not be available with soft thresholding.

We demonstrate in Fig. 4 that our final image fits the
observed visibilities well. The hard thresholding approach sup-
presses emission that is not significant for fitting the visibilities,
but it does not break the fit to the observed data as soft thresh-
olding would do. In fact, we successfully separated between
significant image structures (fitting the visibilities) and noise
induced features (very small sidelobe level in the final image).

We present the multiscalar composition of the image in
more detail in Fig. 5. The panels of Fig. 5 suggest that differ-
ent scales are sensitive to different parts of the final image, for
example an extended Gaussian component (bottom right panel),
the ring feature with a central negative peak to compensate for
this extended emission (middle panels), or the asymmetry of
the crescent (bottom left panel). The final high-resolution and
high-contrast image is only visible when summing all the single-
scale images. Additionally, we present in Fig. 4 the fit to the
data from the single scales only for some selected single scales,
namely the ones that have the largest signal according to Fig. 5.
In the Fourier domain, the various scales are mostly sensitive
to varying parts of the uv-coverage, from the short baselines
(scales 9 and 11), over the middle baselines (scale 6), to the
longest PV-SMA/JCMT baselines (scale 4) as designed. More-
over, Fig. 5 demonstrates that there are certain scales that are
completely suppressed due to the sparsity-promoting imaging
pipeline (the smallest scales, top panels). Consequently, there is
no signal at these scales in Fig. 5. This is reasonable as these
scales are sensitive mainly to fine structures, that could only be
sampled at baselines longer than the maximum baseline in the
data. Moreover, it is noticeable that the scale that is most sensi-
tive to the longest baselines (PV-SMA/JCMT, the fourth scale in
Fig. 5) is completely suppressed. That, however, does not neces-
sarily mean these data points do not affect the reconstruction
anymore. As can be seen in the ring-like masks presented in
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Fig. 2. Observed uv-coverage (black and red points) of the EHT data array (observation of M 87 on 5 April 2017) and masks defined by the DoG
wavelets listed in Table 3 (color maps). The masks are the Fourier transform of the respective wavelets and they define ring-like filters in Fourier
domain. The visibilities highlighted by a specific filter are plotted in red.

Fig. 2, these data points, in fact, affect all other scales as well
(as the Fourier masks are not steep Heaviside functions), but
with reduced importance. However, the suppression of this scale
could be a hint that further improvement of the method may be
available by treating the weighting coefficients w j in Eq. (19) as
free parameters.

4.3. Proof of concept

One of the principal ideas of this paper is to define a flexible
wavelet dictionary that adapts smoothly to the uv-coverage. We
now prove this concept. We present in Fig. 6 a reconstruction
with the complete pipeline, with the selection of scales specified
in Table 3, and with a coarser grid that would be available, for
instance, with the less flexible à trous wavelet transform (right
panel): Σ̃ = [1, 4, 8, 32] (in units of 1.98µas pixels). We used
only every second power of two here for demonstration purposes,
to enhance the effect of a less fine grid of scales.

The crescent structure is much more robustly recovered with
our selection of scales. This is expected, as illustrated by Fig. 5.
The smaller scales respond to different aspects of the fine struc-
ture of the crescent test image, such as the ring-like emission,
the narrow central ring line or the southern emission peak. The

larger scales compress the extended emission. The final high-
resolution image is only visible by the sum of all these scales.
The artificial selection of scales Σ̃ has a less complex separation
of scales. The complex conglomerate of multiple structure fea-
tures has to be compressed in only one or two scales. Due to the
coarse gridding of widths in Σ̃, the algorithm is forced to uti-
lize to small scales, which are not able to compensate the bad
fitting of the unconstrained minimization. Our automatic scale
selection outperforms this rigid choice of scales because of a
more suitable smoothing and thresholding due to adaptive steps
in the scale selection, and hence a more rigorous compression of
structure information.

That said, it should be mentioned again that the wavelet
dictionaries are complete regardless of the selection of scales.
Hence, theoretically, the same image can be represented by both
wavelet dictionaries regardless of the special choice of scales.
The dependency of the reconstruction on the selection of scales
is induced by the imaging pipeline (we recall that the objective
functional is not convex, and thus only convergence to a local
minimum can be assured). It is easier to recover the image feature
at a specific scale, if this scale is well covered by measurements,
which helps global convergence with our imaging pipeline. On
the other hand, a deconvolution at a less well covered scale is
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Fig. 3. Imaging results of the crescent at various steps of the imaging pipeline. Upper left: Gaussian prior image. Upper middle: initial guess, result
after round 1 blurred by the 20µas beam. Upper right: after imaging round 2. Bottom left: after imaging round 3. Bottom middle: after imaging
round 4. Bottom right: final image after imaging round 5.

Fig. 4. Observed amplitudes (black) and recovered visibilities (yellow)
as functions of uv-radius for the crescent test data. Moreover, we show
the fit of single scales for some selected scales (blue, red, purple, green).

more uncertain and would possibly fail in the reconstruction of
some features.

One may ask now whether progressively refining the grid of
scales could further increase the accuracy of image restoration.
Whilst, in principle, this is expected, it also comes with the cost
of increased computation time and requires more complexity. In
this regard, our automatic scale selection may be viewed as a
viable optimum and data-driven approach.

4.4. Regularization parameter

Our algorithm depends on significantly fewer critical parame-
ters that need to be specified by the user. The user only needs

to define the regularization parameter α that controls the size
of the penalty term, in contrast to the RML methods, which
require multiple penalty terms (e.g., with MEM, l1, TV, TSV
... penalty terms), balanced by the term weightings. All other
parameters in DoG-HiT are determined automatically from data;
the widths of the DoG dictionary are defined by the auto-
matic procedure described in Sect. 3.4 and the total flux could
be identified with the zero-spacing flux, which can be mea-
sured or estimated. Parameters corresponding to the numerical
minimization methods (stepsize, number of iterations, relative
tolerance) have only a minor impact on the final result, as long
as convergence is assured. We present a more quantitative anal-
ysis of the impact of the regularization parameter α on the
reconstruction in Appendix B. In short, if the regularization
parameter is too small, the visibilities are overfitted by a greedy
model with a high background level. For higher regularization
parameters, the penalty term becomes more important; the back-
ground flux level is decreased and the greedy, blobby model
becomes more uniform. Thus, the best fit is achieved. On the
other hand, if the regularization parameter chosen is too big,
the sparsity penalization dominates the objective functional. The
hard thresholding suppresses significant image information and
the image is badly fitted with a small number of large wavelet
scales.

5. Comparison to alternative imaging algorithms

We compare our image reconstruction with the image recon-
structions by standard Högbom CLEAN and the RML method
available in the ehtim software package. We utilize the weight-
ing of the data terms for RML reconstructions that was used for
Event Horizon Telescope Collaboration (2019) and apply their
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Fig. 5. Multiresolution image after imaging round 4. Each panel shows the recovered images from one scale only. The scales are computed with
the DoG method with the widths defined in Table 3. The images is shown for every scale in increasing order from the upper left to the lower right.

Fig. 6. Reconstruction of the crescent image. Left panel: true image. Middle panel: reconstruction with the selection of scales specified in Table 3.
Right panel: reconstruction with scale widths that are a power of two (discrete wavelet transform).

four-round imaging pipeline published in the EHT data release1.
The CLEAN reconstructions are performed with the circular
window available in the EHT data release2 and are restored with
a 20µas restoring beam. It is worth noting that the RML scripts
used for this imaging were extensively optimized for the obser-
vations of M87 with the EHT, and so excellent reconstructions
are expected for this comparison with RML. On the other hand,
in contrast to DoG-HiT, these excellent reconstructions required
many different parameters to be specified.

1 Available under https://github.com/eventhorizontelescope/
2019-D01-02
2 https://github.com/eventhorizontelescope/2019-D01-
02

5.1. Qualitative comparison

We show in Fig. 7 our test image reconstructions on the set
of test data presented in Sect. 4.1. Our image reconstruction
shows a greater resolution than the CLEAN images. Moreover,
we achieve a greater contrast between image features and back-
ground noise levels than the CLEAN algorithm, (i.e., sharper
edges in the recovered images).

Compared to the powerful RML imaging method, our algo-
rithm achieves comparable resolutions. This is surprising, as we
probe the observed images with extended basis functions. In par-
ticular, we are able to recover some of the fine structure that is not
visible in the RML reconstructions. We find the correct crescent-
shaped north–south asymmetry in the crescent image, the fine
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Fig. 7. Comparison of the reconstructions with various imaging algorithms. We show in the upper line the true images (crescent, disk, double,
ring). In the second to fourth lines, we present the image reconstructions with DoG-HiT, RML, and CLEAN, respectively.

ring ridgeline in the ring image, and the correct peak values in
the double Gaussian image. Moreover, we find a greater contrast
between the ring-like features in the ring and crescent images,
and the central depression, compared to the contrast observed in
RML image. However, the inner “no-emission” radius is smaller
than in the true images with DoG-HiT, while the spherical
shape remains better recovered. This region is significantly bet-
ter recovered by the RML algorithm. Moreover, RML appears
to perform better in resolving the ring and crescent features
transversely.

Notably, our algorithm also succeeds in the reconstruction of
smooth extended emission (e.g., of the disk image). The recon-
struction of the disk is quite accurate and comparable to the
reconstruction with CLEAN. It does not manifest the greedy
image disk features or background emission present in the RML
reconstruction. The ring image demonstrates that DoG-HiT is
able to fit uniform emission (ring extension) and sharp features
(ring edges) simultaneously. The CLEAN reconstruction of the
ring lacks the proper reconstruction of the sharp ring edges and
the central depression. The RML reconstruction fits the cen-
tral depression well, but the ring brightness distribution is less

homogeneous than in the DoG-HiT reconstruction. In this way
DoG-HiT combines the major advantages of RML reconstruc-
tions (super-resolving structures) and CLEAN (high dynamic
range sensitivity to extended structures), and at the same time
reduces the drawbacks of both of these two methods. It should,
therefore, be well suited for imaging problems arising in the
context of EHT observations, in which the demand for the recov-
ery of information contained on the smallest accessible scales
requires simultaneous robust imaging of extended structures
(jet). The performance of Dog-HiT under these conditions will
be discussed in Sect. 6, using simulated data with a wide range
of spatial scales.

5.2. Quantitative comparison

We now compare the various imaging algorithms in a more
quantitative way, using a measure of their relative error,

err =

∥∥∥recovered solution − exact image
∥∥∥

∥∥∥exact image
∥∥∥

. (31)
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Fig. 8. Residuals of the reconstructions
with DoG-HiT (left) and RML (right)
for the ring image. Upper panels: true
image subtracted from the reconstructed
image. Lower panels: histogram of the
residual distribution.

Table 4. Relative errors of the reconstructions shown in Fig. 7.

Blurring Crescent Disk Double Ring

DoG-HiT 0.156 0.138 0.167 0.139
0µas RML 0.16 0.266 0.164 0.211

CLEAN 1.121 1.282 1.427 1.082

DoG-HiT 0.219 0.144 0.191 0.215
10µas RML 0.238 0.219 0.234 0.245

CLEAN 0.294 0.568 0.658 0.285

DoG-HiT 0.414 0.203 0.402 0.411
20µas RML 0.433 0.275 0.443 0.441

CLEAN 0.399 0.156 0.556 0.396

We present the relative errors of the reconstructions in Table 4.
The comparison may be somewhat unfair for CLEAN, given the
large beam size compared to the size of the structures, but a final
convolution with a synthetic point spread function is the com-
mon standard in radio astronomy. We present the relative error
of the reconstruction both without blurring (as is standard for
RML and DoG-HiT) and with blurring by one-half of the beam
size and the full beam size (as is standard for CLEAN). The
super-resolving DoG-HiT reconstructions worsen with a larger
restoring beam, while for CLEAN the opposite is true. DoG-HiT
wins the challenge for three of the four test images (crescent,
disk, ring) and performs similar to RML for narrow structures
(crescent, double). Overall, we can conclude that DoG-HiT is

able to achieve a similar precision as current imaging algorithms,
but alleviates some of the limitations of both CLEAN (no super-
resolution) and RML methods (sensitivity to smooth extended
features).

We present in Fig. 8 the residuals of the reconstructions
of the ring feature with RML and with DoG-HiT. The resid-
uals for both imaging methods are ring-shaped and spatially
correlated, indicating that there is still not recovered structure.
However, the histograms of the residuals in the lower panels of
Fig. 8 demonstrate a very good reconstruction overall. The pixel
residual distribution is well approximated by a narrow Gaussian
distribution in both cases. Nevertheless, the residual distribution
for DoG-HiT is slightly more narrow and less skewed, which
agrees well with the overall slightly smaller relative error listed
in Table 4.

5.3. Transverse resolution

We study the transverse resolution of the algorithms with the
crescent image in this section. We present in Fig. 9 the pro-
files of the true (blue) and the recovered crescent images in the
north–south direction at central right ascension. We recover the
correct double peak structure with north–south asymmetry, both
with the RML method and with DoG-HiT. CLEAN is not able
to reproduce this fine structure sufficiently. Regarding transverse
resolution of the ring features and the central depression, RML
and DoG-HiT perform equally well, approximately recovering
the correct widths of the Gaussian blurred ring and the correct
depth of the central depression. However, DoG-HiT recovers a
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zero-flux central depression, which is not captured in the true
image. We computed the blurring beam size that maximizes
the correlation between the (blurred) true image and the recov-
ered images to quantify the resolutions. The largest correlation
between the DoG-HiT reconstruction and the true image was
achieved if the true image was blurred by a beam with widths
6.1µas. That means that DoG-HiT was able to reproduce image
features down to a resolution of approximately 6µas. For the
RML reconstruction, we found a maximal correlation for a beam
of 5.2µas, similar to DoG-HiT. This resolution is expected due
to the reverse taper of 5µas applied in the ehtim pipeline. For
CLEAN we found a width of 19.7µas, coinciding well with the
applied point spread function of the array.

5.4. Simplicity and performance

The five imaging steps presented in Sect. 3.2 may not appear as a
simple approach to imaging. However, one should recall that this
strategy resembles typical steps in the imaging of interferometric
data with CLEAN (imaging in several loops of cleaning and self-
calibration). Hence, our lengthy pipeline is not more complex
than automatic cleaning scripts.

More importantly, DoG-HiT only takes into account a very
limited number of regularization parameters, namely only the
prior guess for the total flux and the biasing parameter α, which
controls the weight of the hard thresholding regularization term
(see Eq. (26)). Apart from these parameters, only solver related
choices such as stepsize or relative tolerances need to be spec-
ified. This is a first step toward a more unsupervised imaging
algorithm in which crucial choices for the imaging procedure
(i.e., selection of window or regularization parameters) come
directly from data and are not manually selected doing the
analysis.

The down side of this simplicity is that DoG-HiT is also less
flexible compared to RML methods. RML methods combine dif-
ferent type of penalizations and prior assumptions that could be
relatively weighted according to specifications of a certain data
set. While it is promising news that wavelet sparsity-promoting
algorithms are similar to RML methods, or in some settings,
perform better, this conclusion cannot be automatically gen-
eralized. In particular, more advanced calibration issues could
add an additional layer of complexity to the problem. Further-
more, the hard thresholding method used in DoG-HiT may limit
the dynamic range of the reconstruction (i.e., the minimal flux
that can be recovered). A more rigorous study of this drawback
should be made in subsequent works and applications.

Furthermore, a serious disadvantage of our algorithm is
that it presently requires considerably more time and computing
resources than the fast RML methods. This is because the image
is represented by an overcomplete dictionary of wavelet scales.

6. Physical source model

To demonstrate the performance of the algorithm on structures
covering a wider range of spatial scales, we present here a DoG-
HiT image reconstruction made from synthetic data from the
first ngEHT Analysis Challenge3, which emulate the black hole
shadow and the jet base in M 87 as observed with a possible
ngEHT configuration (Roelofs et. al. 2022). The ngEHT is a
planned, but not finally proposed, future global VLBI array,
designed to produce real time movies of the dynamics in the
extreme vicinity of a black hole and the innermost jet region

3 Available under https://challenge.ngeht.org/challenge1/

Fig. 9. Profiles of the recovered crescent images in the north–south
direction and central right ascension.

(Doeleman et al. 2019). The ngEHT will build upon the enor-
mous success of the EHT and will extend the EHT science
with higher dynamic ranges, sensitivity, and resolution. It is
believed that it will deliver novel groundbreaking results for
the formation of jets, accretion physics, and general relativity
tests (Doeleman et al. 2019). In particular, the dense uv-coverage
(including short baselines) and high sensitivity of the ngEHT,
compared to the current EHT, allow for the reconstruction of
the extended jet emission. The reconstruction and the true image
are compared in Fig. 10 in linear (left column) and logarithmic
(middle and right column) scales, with the latter employed to
highlight the extended emission. The simulated source structure
is taken from a MAD GRMHD simulation of a rapid spinning
black hole surrounded by an accretion disk with electron heat-
ing from reconnection (Roelofs et. al. 2022; Mizuno et al. 2021;
Fromm et al. 2022). The simulated visibilities are calculated
for a possible template ngEHT configuration at 230 GHz that is
used throughout the ngEHT Analysis Challenge (Roelofs et. al.
2022) and might be realized in the final concept of the array. It
contains the 11 current EHT sites (ALMA, APEX, GLT, IRAM-
30 m, JCMT, KP, LMT, NOEMA, SMA, SMT, SPT) and ten
additional stations from the list of Raymond et al. (2021, BAR,
OVRO, BAJA, NZ, SGO, CAT, GARS, HAY, CNI, GAM). HAY,
OVRO, and GAM are 37-, 10.4-, and 15-m antennas, respec-
tively. All of the remaining additional antennas are assumed to be
of 6 m in diameter. The synthetic visibilities are simulated with
a 10-s averaging time and with alternating 10-min observation
scans and 10-min gaps. The resulting uv-coverage is presented in
Fig. 11. For more information on the generation of the ground
truth image and the synthetic observation, we refer the inter-
ested reader to the description of the ngEHT Analysis Challenge
available at the link listed in footnote 3.

The DoG-HiT reconstruction in Fig. 10 accurately repre-
sents the central ring-like structure. This is expected, judging
from the successful reconstructions obtained in Sect. 5.1 on the
compact crescent images from a much sparser synthetic obser-
vation. In addition to this, Fig. 10 demonstrates that DoG-HiT
also reproduces the extended emission from the jet base (mid-
dle and right panels) very well. The structural details of the jet
base are compressed on much larger scales than the smaller ring
feature, and are less bright (hence only visible in logarithmic
scale). This result demonstrates the ability of DoG-HiT to work
on images with a wide range of spatial scales and a large dynamic
range.
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Fig. 10. Reconstruction of synthetic
M87 observation with a possible
ngEHT array taken from the ngEHT
Analysis Challenge (Roelofs et. al.
2022). The true image is presented in
the upper panels, and the reconstruction
with DoG-HiT in the lower panels. The
left panels show the ground truth and
the recovered images in linear scale, the
middle panels in logarithmic scale (i.e.,
highlighting the extended emission
from the jet basis), and the right panels
compare the ground truth and the
recovered image, both smoothed with a
restoring beam of 20 µas.

noise.

Fig. 11. uv-coverage of a synthetic ngEHT observation of M87 at
230 GHz. The uv-coverage with the EHT 2017 antennas only is plot-
ted in red. For more details, see Roelofs et. al. (2022).

7. Conclusion

In this paper, we presented a novel interferometric imaging
algorithm that is capable of adapting to the Fourier domain cov-
erage of observations and is particularly applicable to sparse
uv-coverages. Our imaging algorithm models the image as a sum
of the difference of Gaussians wavelet functions. This wavelet
dictionary is more flexible than the usual discrete à trous wavelet
transform and allows us to select the scales to adapt to the
uv-coverage.

We formulate the imaging problem as an optimization prob-
lem with an objective functional consisting of the reduced χ2 of
the recovered closure properties (closure phase and logarithmic
closure amplitudes) and an l0-pseudonorm sparsity term in the

wavelet domain. As this objective functional is still invariant
against rescaling of the image guess, we also add a total flux
constraint. The resulting objective functional is nonsmooth and
nonconvex, but could be solved by an iterative hard threshold-
ing splitting algorithm for which local convergence to a steady
point is known. Due to nonconvexity, global convergence can-
not be assured, but practice shows that local minima could be
avoided by proper initial guesses. Our algorithm is an amplitude-
and total-flux-conserving algorithm, in contrast to schemes using
soft thresholding. Together with a more thorough separation of
image features and sidelobes by a flexible wavelet dictionary
analysis, this is expected to bring significant improvements in
imaging of VLBI data with strongly varying and scale-dependent
noise.

We present a complete imaging pipeline ready for appli-
cation. Our imaging pipeline consists of five imaging rounds,
where we refine the initial imaging results from the closure prop-
erties in an iterative imaging, self-calibration loop, which uses
the amplitude and phase information. We apply, for the first time,
a multiresolution constraint for these refinement steps. Moreover,
we prove the stability of our pipeline in practice on synthetic
data.

Comparisons of imaging performance on the synthetic data
show that DoG-HiT achieves super-resolution and outperforms
CLEAN in the reconstruction of fine structure (super-resolving)
and that it comparable to RML methods in terms of accuracy
of reconstruction. DoG-HiT succeeds in the reconstruction of
smooth extended emission components, where it outperforms
RML. It effectively combines the strengths of CLEAN and
RML methods, and reduces their specific weaknesses. DoG-HiT
should therefore be well suited for application to targets with a
wide range of spatial scales, for which it may outperform cur-
rent RML reconstructions in the context of better recovering
smoother emission on large scales. We have demonstrated this
capability on a synthetic data set from the first ngEHT chal-
lenge, with excellent reconstructions achieved for of both the
small-scale inner ring-like structure and the faint, larger-scale
emission from the jet base. It should also be noted that the
DoG-HiT reconstruction accurately reproduces features with a

A137, page 16 of 19

3 MULTISCALE VLBI IMAGING

87



H. Müller and A. P. Lobanov: DoG-HiT: A novel VLBI multiscale imaging approach

strong contrast between emission and the background. At the
same time, DoG-HiT presently introduces some systematic inac-
curacies (e.g., a limited dynamic range) into the reconstruction,
and this needs to be addressed in future works.
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α 0 10−3 10−2 10−1 100 101

crescent 0.345 0.17 0.148 0.148 0.169 0.254
disk 0.202 0.164 0.154 0.137 0.138 0.231

Table B.1. Relative error of the DoG-HiT reconstruction with varying
assumptions on the regularization parameter α.

Appendix A: Fixed point property of proximity
operators

Let x̂ ∈ argminsH(x) and let x ∈ X. Then it is:

H(x) +
1
2τ
∥s − ŝ∥X ≥ H(ŝ) +

1
2τ
∥ŝ − ŝ∥X, (A.1)

as ŝ is in the argmin of H and τ ≥ 0. Vice versa, let ŝ be the
solution to ŝ = proxτ,H(ŝ), then it follows, see Eq. (23):

0 = ŝ − ŝ ∈ τ∂H[ŝ], (A.2)

which suffices to show that for a convex, proper, and lower
semicontinuous functional, x̂ is in the argmin of H.

Appendix B: Variation of the regularization
parameter

In this subsection we discuss the impact of the regularization
parameter α. We show in Fig. B.1 the reconstruction of the cres-
cent image and of the disk image, with varying regularization
parameter α. The leftmost panels show the true image, and the
panels to the right of that show the unconstrained reconstructions
(e.g., α = 0). The middle panels show, from left to right, the
reconstruction results obtained with increasing values of α. In
Table B.1 we present the relative precisions (31) of the different
reconstructions. The reconstructions are worse for α that is too
small or too big. The best-fit value lies somewhere in between.

The reconstructions for very small α show a greedy resolv-
ing model that is too fine, which differs significantly from the
true image. Moreover, fainter sidelobes and background emis-
sion are visible in the reconstruction. These models overfit the
observed visibilities, in other words, the observed visibilities
are fitted exactly, but the gaps in the uv-coverage are filled by
high-oscillating fits.

For intermediate α, the reconstruction is best. The uncon-
strained reconstruction is modeled with few (due to sparsity)
extended, smooth wavelet functions. This approach effectively
smooths the fit to the visibilities and fills the gaps in the uv-
coverage with smooth fits. In this spirit, the sparsity approach in
the wavelet basis has a similar effect on the data, such as total
variation, total squared variation, and maximum entropy penal-
izations. Moreover, sidelobes in the image are suppressed by the
hard thresholding.

At the other end of the table, the reconstructions worsen
again for reconstruction parameters that are too large. In these
cases, the penalty term dominates the objective functional in
the forward-backward minimization. The image is modeled with
too few wavelet scales. The result is a blurry reconstruction.
Moreover, the hard thresholding minimization procedure cuts
significant fainter features, for instance, the northern emission
in the crescent test image (upper most right panel in Fig. B.1).
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Fig. B.1. Reconstructions with varying regularization parameter α. Leftmost panels: True images. Middle panels from left to right: α ∈
{0, 10−3, 10−2, 10−1, 100, 101}.
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3.3 Paper 2: Müller & Lobanov 2023a, A&A, 672, A26

We present in this subsection the second VLBI imaging publication for this dis-

sertation Müller & Lobanov (2023a). This is the natural continuation of the

work started in Müller & Lobanov (2022). Inspired by the success of combining

several multiscale transforms (e.g. Carrillo et al. 2013; Starck et al. 2003), we

extend here the multiscalar dictionaries to a series of multidirectional dictionar-

ies. We introduce a second wavelet dictionary by difference of spherical Bessel

functions which are best suited to represent both scale and directional properties

of the uv-coverage. With these two dictionaries at hand, we introduce for the

first time the concept of swapping the dictionaries during image reconstruction.

The following manuscript uses this concept for developing a multiscale CLEAN

framework (DoB-CLEAN), departing from the forward modeling framework dis-

cussed in Müller & Lobanov (2022). We illustrate the conceptual motivation for

DoB-CLEAN first, before we present the manuscript.

CLEAN has several limitations. One of the theoretically most severe issues

for VLBI experiments is the need to convolve the set of CLEAN components

with the rigidly fixed, Gaussian CLEAN restoring beam after the minor and

major loops have ended. This limits the achievable resolution and introduces

an unphysical disparity between the model fitted to the visibilities and the final

(convolved) image. As a naive approach to resolve this conflict, one could try to

fit the residual directly with the final image IC , i.e. solve a problem of the kind:

ID ≈ BD ∗ IC = BD ∗BC ∗

 n∑
i=0

aiδ(li,mi)

 , (3.1)

instead of solving Eq. (2.44) and Eq. (2.45). However, such an approach would

quickly start to diverge since the main lobe of the dirty beam BD is convolved

with the clean beam BC smearing out the residuals. In order to avoid divergence,

we replace the clean beam with a set of extended multiscalar basis functions

{Φ0,Φ1, ...,Φk}, i.e.:

ID ≈ BD ∗ IC = BD ∗

 n∑
i=0

aiΦji(li,mi)

 . (3.2)

If the basis functions would be constructed such that they are orthogonal to the

kernel of the dirty beam, i.e. if BD ∗ Φj ≈ Φj, the divergence due to smearing

would be solved. However, it turns out that wavelets that satisfy this property

(i.e. that are fitted to the uv-coverage), would have to contain sidelobes on their

own, and hence promote unphysical solutions. We therefore define a second set
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of basis functions {Φ̃0, Φ̃1, ..., Φ̃k} that only approximate the main lobe of the

wavelets Φj. We reduce the residual in the way described by Eq. (3.2), but the

final CLEAN model will be:

IC =
n∑

i=0

aiΦ̃ji(li,mi). (3.3)

This procedure is similar in philosophy to the approach in the canonical CLEAN

and looks like a standard multiscalar version of CLEAN at first glance. However,

there is a subtle difference. We can update the residual with the model IC without

divergence since the basis functions are already extended. Hence, the convolution

with the multiscalar equivalent of the clean beam takes place within the minor

loops (before the residual is updated) now and a final, unphysical convolution with

a clean beam is not needed anymore. This solves the disparity between the model

and the image in CLEAN and allows for super-resolution in the reconstruction.

For more details, we refer to the following manuscript.

DoB-CLEAN transfers the algorithmic ideas behind DoG-HiT to a CLEAN

framework and cures most of the issues and limitations related to CLEAN by

this. Moreover, the subtle updates introduced to DoB-CLEAN compared to

MS-CLEAN approaches (i.e. swapping between two different dictionaries, convo-

lution within the minor loop, scale-selection criterion), are done under the surface

within the minor loop. The interface could be used in exactly the same way (MS-

)CLEAN was used in VLBI for decades. Hence, we decrease the hurdle to adapt

to a novel imaging framework for the user and make use of the extensive expe-

rience of astronomers. A more detailed comparison to MS-CLEAN algorithms

(e.g. Bhatnagar & Cornwell 2004; Cornwell 2008; Offringa & Smirnov 2017; Rau

& Cornwell 2011; Starck et al. 1994; Wakker & Schwarz 1988) can be found in

the following manuscript. We want to highlight here however, that MS-CLEAN

and DoB-CLEAN were proposed for different data regimes. MS-CLEAN was de-

veloped for the reconstruction of extended emissions in which the representation

by CLEAN components is suboptimal. DoB-CLEAN is developed specifically for

the reconstruction at the highest possible resolution in a sparse VLBI experiment.

That implies significant algorithmic differences between classical MS-CLEAN and

DoB-CLEAN. For MS-CLEAN the multiscale basis functions are used to repre-

sent extended emission uniformly, for DoB-CLEAN they are used to distinguish

between covered and non-covered Fourier coefficients.
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ABSTRACT

Context. Very long baseline interferometry (VLBI) is a radio-astronomical technique whereby the correlated signal from various
baselines is combined into an image of the highest possible angular resolution. Due to the sparsity of the measurements, this imaging
procedure constitutes an ill-posed inverse problem. For decades, the CLEAN algorithm has been the standard choice in VLBI studies,
despite it bringing on some serious disadvantages and pathologies that are brought on by the requirements of modern frontline VLBI
applications.
Aims. We developed a novel multiscale CLEAN deconvolution method (DoB-CLEAN) based on continuous wavelet transforms that
address several pathologies in CLEAN imaging. We benchmarked this novel algorithm against CLEAN reconstructions on synthetic
data and reanalyzed BL Lac observations of RadioAstron with DoB-CLEAN.
Methods. The DoB-CLEAN method approaches the image via multiscalar and multidirectional wavelet dictionaries. Two different
dictionaries were used: 1) a difference of elliptical spherical Bessel functions dictionary fitted to the uv-coverage of the observation
that is used to sparsely represent the features in the dirty image; 2) a difference of elliptical Gaussian wavelet dictionary that is well
suited to represent relevant image features cleanly. The deconvolution was performed by switching between the dictionaries.
Results. DoB-CLEAN achieves a super-resolution compared to CLEAN and remedies the spurious regularization properties of
CLEAN. In contrast to CLEAN, the representation via basis functions has a physical meaning. Hence, the computed deconvolved
image still fits the observed visibilities, in contrast to CLEAN.
Conclusions. State-of-the-art multiscalar imaging approaches seem to outperform single-scalar standard approaches in VLBI and are
well suited to maximize the extraction of information in ongoing frontline VLBI applications.

Key words. techniques: interferometric – techniques: image processing – techniques: high angular resolution –
methods: numerical – galaxies: nuclei – galaxies: jets

1. Introduction

Very long baseline interferometry (VLBI) is a radio-
interferometric technique that achieves an unmatched angular
resolution. An array of single-dish antennas altogether form an
instrument with angular resolution determined by the wave-
length and longest separation between two antennas in the array
(Thompson et al. 2017). The signal recorded at each antenna pair
is correlated. The correlation product (visibility) is proportional
to the Fourier-transform of the true sky-brightness distribution
(van Cittert-Zernike theorem), where the spatial frequency is
specified by the baseline separating the two antennas recording.
In principle, the true image could be revealed from a complete
sampling of the uv-space by an inverse Fourier transform.
However, since an interferometer is a sparse array of single
antennas with a limited number of baselines, the coverage
of Fourier coefficients (uv-coverage) is often sparse and has
significant gaps (Thompson et al. 2017). This makes imaging,
namely, the procedure of creating an image from the correlated
antenna outputs, an ill-posed inverse problem.

The imaging problem (inverse Fourier transform from
sparsely sampled data) is often expressed equivalently as a
deconvolution problem, namely, the dirty image (inverse Fourier
transform of visibilities) is modeled as the convolution of the

dirty beam (inverse Fourier transform of mask) and the true sky
brightness distribution (Thompson et al. 2017).

CLEAN and its variants (Högbom 1974; Clark 1980; Schwab
1984) have been the standard in VLBI imaging for decades and
are still widely used. CLEAN models the image iteratively as
a set of point sources: CLEAN searches for the position of the
maximum in the residual image, stores the intensity and the posi-
tion in a list of delta-components, and updates the residual by
subtracting the rescaled and shifted dirty beam from the residual
image. Despite the general success of CLEAN in VLBI appli-
cations, a number of issues have arisen thus far: CLEAN is less
precise than recently developed regularized maximum likelihood
(RML) methods (Akiyama et al. 2017b,a; Chael et al. 2018; Event
Horizon Telescope Collaboration 2019; Müller & Lobanov 2022)
and Bayesian approaches (Arras et al. 2021), particularly when
the true sky brightness distribution is uniform and extended, it
offers a poorer resolution and relies on manual input from the
astronomer performing the imaging to achieve a convergence
to the true solution. Moreover, the sequential nature inherent to
CLEAN makes CLEAN slow compared to modern optimization
algorithms that were developed in an environment of parallel
CPU computing facilities.

From a theoretical point of view, CLEAN is inadequate.
An imaging procedure needs to satisfy two basic requirements.
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Firstly, the final image needs to fit the observed visibilities. Sec-
ondly, among all possible solutions that fit the data (i.e., among
the kernel spanned by the convolution with the dirty beam),
the imaging procedure should select the image that is most
reasonable, namely, the one that interpolates the gaps in the uv-
coverage in the most reasonable way. CLEAN can only achieve
one of these goals simultaneously. CLEAN separates between a
model (the list of delta-components) that fits the observed data
and the final image (the model convolved with a clean beam)
that is thought to be a reasonable approximation to the true
sky brightness distribution. However, strictly speaking, the final
image that CLEAN produces in VLBI (and that is used in further
studies) no longer provides a reasonable data fit.

In fact, the regularizing property of CLEAN is questionable
as well. While CLEAN typically provides decent fits for the uv-
tracks that were observed, the (typically not plotted) fit in the
gaps in the uv-coverage is sometimes clearly unphysical, we will
discuss this attribute in more detail in Sect. 4. A more thorough
imaging approach is needed that takes the distribution of gaps in
the uv-coverage in account and provides more control over the
non-measured Fourier coefficients.

Most of these issues are caused by CLEAN modeling of
the image as a sequence of delta components which is inade-
quate to describe extended image features in real astronomical
images. One possible solution is the use of multiscalar algo-
rithms that model the image as a set of extended basis functions
of different scales (Wakker & Schwarz 1988; Starck et al. 1994;
Bhatnagar & Cornwell 2004; Cornwell 2008; Rau & Cornwell
2011; Müller & Lobanov 2022). While this is a great step for-
ward in imaging, MS-CLEAN methods have not been widely
adopted in frontline VLBI applications in the past. This is
because the selection of suitable basis functions greatly affects
the fitting procedure as various scales are sensitive to various
parts of the uv-coverage and do not necessarily solve the prob-
lem of missing regularization in CLEAN, namely, the unphysical
fits in the gaps of the uv-coverage. To also address this prob-
lem of missing regularization, we propose a more data-driven
approach here: the basis functions are selected in a way that
they fit to the uv-coverage, namely, they define masks in the
Fourier domain that are separate between visibilities covered by
observations and visibilities that are not covered by observations
(gaps in the uv-coverage). The features from the latter should
be suppressed during imaging, namely, the unphysical fit in the
gaps occurring during CLEAN should be smoothed and regu-
larized. As the uv-coverage of an observation is typically not
circularly symmetric, we propose (for the first time) not only
a multiscalar, but also a multidirectional set of basis functions
(i.e., dictionary).

In this way, our procedure allows for a more thorough separa-
tion between reliable image information, namely, image features
introduced by regions in the Fourier domain that are covered by
data and “invisible distributions,” that is, image features that are
most sensitive to regions of the uv-coverage that are not covered
by observations. This is certainly needed to match our second
basic requirement for an imaging algorithm for frontline VLBI
arrays; among all possible solutions, the one that is most physical
(regularized) should be selected.

In this paper, we present an approach to constructing a
suitable multiscalar and multidirectional dictionary for imaging
and implementing this dictionary in a CLEAN-like algorithm
called DoB-CLEAN (difference of elliptical Bessel functions
CLEAN) that fits in the normal workflow that radio astronomers
are used to.

2. Theory

2.1. Background

A radio interferometer observes a source with all antennas avail-
able in the array at the same time. The source typically appears
point-like per antenna in the constructed array. The interfero-
metric observation, however, reveals image features at a much
greater resolution. We denote the (incoherent) sky-brightness
distribution of the source by I(l,m). Here, l and m denote spa-
tial on-sky coordinates. The recorded signals are correlated for
each antenna pair at a fixed time. The antenna pair is speci-
fied by a corresponding separation vector (u, v), namely, spatial
frequencies in units of wavelengths, which is called baseline.
While the Earth continues to rotate over the period of observa-
tions, the projected baselines vary as well, leading to the typical
elliptical tracks in the uv-coverage. Described by the van-Cittert-
Zernike theorem (assuming the small-field approximation and a
flat wavefront), the correlation product at a single baseline is the
Fourier coefficient of the true sky brightness distribution at this
baseline (Thompson et al. 2017):

V(u, v) =
∫ ∫

I(l,m)e−2πi(lu+mv)dldm. (1)

These Fourier coefficients are referred to as the “visibilities.”
Imaging is the problem of recovering the on-sky distribution,

I, from the measured complex visibilities,V. From a full sample
of the uv-domain, this could be achieved by an (gridded) inverse
Fourier transform. However, every antenna pair at a a particular
instance in time gives rise to only one Fourier coefficient. Hence,
the limited number of available antennas and the limited amount
of observation time only allow for a very sparse coverage of the
uv-domain.

For imaging with CLEAN (Högbom 1974), Eq. (1) is equiv-
alently reformulated as a deconvolution problem. The observed
visibilities are gridded on a regular grid and possibly weighted
– for instance, by baseline-dependent S/N and in the case of
uniform weighting, by the number of data points per cell. The
gridding cells corresponding to unmeasured Fourier coefficients
are set to zero. The dirty image ID is now defined as the inverse
Fourier transform of the gridded (and weighted) observed vis-
ibilities. Furthermore, the dirty beam BD is the response to a
synthetic point-source, namely, the inverse Fourier transform of
the gridding (and weighting) alone. It is:

ID = BD ∗ I. (2)

The imaging problem is now translated into a deconvolution
problem. The dirty image and the dirty beam contain significant
sidelobes that are caused by the gaps in the uv-coverage, that is,
the cells in the Fourier domain that are initialized with zero dur-
ing gridding. These sidelobes are “cleaned,” that is, suppressed,
by deconvolution. Hence, the deconvolution process can also be
understood as an approach to interpolate the observed measured
visibilities to the gaps.

Among the sparsity of the observed Fourier coefficients,
the imaging procedure has to deal with further complica-
tions: scale-dependent thermal noise on different baselines and
direction-independent calibration issues. The former complica-
tion is addressed by weighting the visibilities by their thermal
noise level. The latter complication is factored in station-based
multiplicative gains. In particular, the relative phase is often
unknown in VLBI imaging. Station-based gains are corrected by
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gain-self-calibration loops alternating with deconvolution itera-
tions. In principle, more complex calibration errors could also
occur, which cannot be factored in station-based gains at all.

2.2. CLEAN

CLEAN directly solves the deconvolution in Eq. (2) by itera-
tively subtracting the dirty beam from the residual. Classical
CLEAN (Högbom 1974) approaches the image as a sequence
of point sources. Hence, once the position of a new component
is found, the dirty beam is shifted to this position and rescaled
to the intensity in the residual image at that location multiplied
with some gain parameter. The residual image is updated by
subtracting the shifted and rescaled dirty beam. The list of delta-
components constitutes the model that CLEAN computes to fit
the observed visibilities.

It is crucial for CLEAN to find a proper location of the next
component. This is handled mostly manually by the astronomer
by specifying search-windows for the next components. This
procedure has proven successful, particularly in the presence of
calibration errors. However, the iterative windowing, flagging,
and self-calibration lacks reproducibility. Within the specified
window, the location of the next component is found by the loca-
tion of the peak in the current residual image. However, this is
only approximately correct. If the assumption behind CLEAN,
namely, that the true sky brightness distribution is modeled by
a sum of point-sources, were true and we would ignore thermal
noise for one moment, the current residual (ID) could be envi-
sioned as the convolution of the dirty beam BD with the sum of
point sources that are unmodeled by CLEAN until this step ({δl}
with intensities al):

ID =
∑

l

alBD ∗ δl. (3)

The most efficient selection criterion would be to find the
largest of these unmodeled point sources, namely, the largest al.
CLEAN takes the largest peak in the residual instead. This might
not always be the optimal choice since overlapping sidelobes
from different emission features can suppress real emission and
can create a false source when the sidelobes are constructively
added. In practice, this subtle difference however was not found
to cause problems. However, we would like to note that the new
multiscale CLEAN (DoB-CLEAN) algorithm that we propose in
Sect. 3 is based on the same assumption (see Sect. 3.4).

After the final CLEAN-iteration, the list of delta components
is typically convolved with a clean beam that represents the res-
olution limits of the instrument. Moreover, the last residual is
added to the final image. This step is of direct meaning for the
regularizing property of CLEAN: how does CLEAN fit the gaps
in the uv-coverage? Again we assume the model of point-sources
from Eq. (3). Let us assume that CLEAN has computed a guess
model: M =

∑
l âlδl, where the weights, âl, should approximate

the true weights, al, sufficiently well. Then, the final residual, R,
reads:

R = ID − BD ∗ M = BD ∗

∑

l

(al − âl)δl

 , (4)

and the final model:

IM = M + R = BD ∗
∑

l

alδl + (1 − BD) ∗
∑

l

âlδl, (5)

where 1 denotes the identity operator. The sum is decomposed
in a part that corresponds to the measured Fourier coefficients
– the first term, convolution with dirty beam sets the Fourier
coefficients in the gaps exactly to zero) and a part that corre-
sponds to the uncovered gaps in the uv-coverage; and the second
term, convolution with an “invisible” beam Id − B that is exactly
zero for the measured Fourier coefficients and unequal to zero in
the gaps. Hence, the model should always fit the data correctly
(first term) in the unphysical, ideal situation of an infinite field
of view and uniform weighted data without thermal noise and
calibration errors. It becomes obvious that CLEAN (assuming
that the âl values are good approximations to the true weights)
interpolates the uncovered gaps in the uv-coverage by assum-
ing that the same pattern of delta components could be used to
describe these signals once they were measured. This, however,
is problematic primarily for two reasons: first, the uv-coverage of
a real VLBI array shows rich radial (e.g., a denser coverage on
short baselines) and direction-dependent structural patterns (e.g.,
highly elliptical uv-tracks for some antenna pairs that give rise to
only a few directions in the uv-domain). It is far from obvious
that these different regions in the Fourier domain should encode
the same feature. It is more likely that the small-scale struc-
ture hidden on short baselines and the large-scale structure on
long baselines show less similarity. A more rigorous multiscalar
(and multidirectional) approach is needed to separate these dif-
ferent structural features and to take the structural pattern of the
uv-coverage into account. Secondly, the convergence rates and
fitting properties in the presence of thermal noise remain unclear
(Schwarz 1978). In practice, the CLEAN model often results in
severe overfitting when not stopped early enough. This problem
is solved by convolving the final model by the clean beam, that
is, the fits to the usual more-poorly-covered long baselines are
generally suppressed. However, this only trades the problem of
overfitting for a limited resolution that is challenged by mod-
ern state-of-the-art imaging algorithms and for an unphysical
separation between the final image (that is used for further anal-
ysis, but does not fit the visibilities due to the convolution with
the clean beam that causes disparity from the observed visibil-
ities) and a model (that fits the visibilities, but is not useful for
image analysis). Again a more rigorous multiscale approach that
improves the separation between gaps and covered regions in
the uv-coverage (and suppresses the overfits in former one) is
desired.

The regularization introduced by CLEAN can also be visu-
alized in the image-domain instead of the Fourier domain: here,
the extrapolation into gaps in the fit translates into suppressing
sidelobes in the dirty image. Sidelobes are suppressed as the
basis functions (delta-functions) are sidelobe-less and the dirty
image and the dirty beam consist of the same sidelobe pattern.
Hence, deconvolution suppresses sidelobes by subtracting the
sidelobe pattern of the dirty beam from the residual. As we go
on to discuss later in this paper, this stands be a major difference
with regard to our new DoB-CLEAN algorithm.

2.3. Multiscale CLEAN and wavelets

Multiscale-CLEAN (MS-CLEAN) methods have been proposed
in the past (Bhatnagar & Cornwell 2004; Cornwell 2008) to mit-
igate the problems detailed above. In a nutshell, the point-like
basis functions from CLEAN are replaced by smooth, posi-
tive, extended basis functions that are suitable for representing
the image structure. Bhatnagar & Cornwell (2004) used adap-
tive scale pixels (Asp) which could, in principle, compress any
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shape. Cornwell (2008) specified this and used tapered, trun-
cated parabolas, namely, a function with a minor difference
with regard to Gaussians (i.e., they have a finite support). In
particular, Cornwell (2008) mentions that Gaussians would be
possible as well, as long as a very high dynamic range is not
desired or image-plane support constraints are required. Our new
method is based on the spirit of MS-CLEAN developed in these
works. However, we fit the image with a completely different
wavelet-based dictionary resulting in a different imaging proce-
dure. We explain how we theoretically compare our new algo-
rithm with standard MS-CLEAN approaches in more detail in
Sect. 4.2.

2.4. Alternative imaging approaches

CLEAN and its variants (Högbom 1974; Clark 1980; Schwab
1984; Bhatnagar & Cornwell 2004; Cornwell 2008; Rau &
Cornwell 2011) have been the standard method in VLBI for the
last decades. They remain in use due to their practical nature that
allows the astronomer to interact with the imaging manually, to
manipulate the data set and to self-calibrate the data set during
imaging. We therefore aim to keep this workflow for our new
proposed procedure. However, we like to mention the many
modern methods developed for VLBI. This includes regularized
maximum likelihood (RML) methods (e.g., Carrillo et al. 2012;
Garsden et al. 2015; Akiyama et al. 2017b; Chael et al. 2018;
Müller & Lobanov 2022) as well as Bayesian reconstructions
(e.g., Junklewitz et al. 2016; Cai et al. 2018a,b; Arras et al. 2019,
2021; Broderick et al. 2020b,a). In comparison to CLEAN,
the problem is solved by forward modeling instead of inverse
modeling.

3. Algorithm

3.1. Overview

We demonstrated in Müller & Lobanov (2022) how a multiscale
approach can improve imaging performance. Our algorithm
was based on a wavelet-based sparsity promoting (compressed
sensing) approach in the RML fashion. In this paper, we are
interested in a more CLEAN-like algorithm as this working
procedure is well established within the VLBI community. In
particular, we are proposing a new version of MS-CLEAN
(Cornwell 2008), but for the first time we are selecting the basis
functions in a way that they fit to the uv-coverage. This pro-
vides an optimal selection between observed image features and
sidelobes induced by uv-coverage defects.

We model the true image by a set of extended basis functions
(a dictionary) Ψ = {Φ0,Φ1, ...} instead of delta functions, that
is, I = Ψx with some coefficient array x. We try to recover the
coefficient array x from the data and infer the recovered image
from there by applying the dictionary on x once more, the recov-
ered image will be I = Ψx (where x is the recovered array of
coefficients). The basis functions, Φi, have some connection to
the Fourier domain: convolving with Φi in the image domain is
equivalent to multiplying with the Fourier transform, FΦi, in the
Fourier domain. The basis functions of the dictionary therefore
define filters in the Fourier domain which allow for information
on the uv-coverage to be injected during the imaging proce-
dure, namely, every basis function, Φi, compresses features of
a specific set of baselines.

Here, we consider which basis functions are most effi-
cient in that regard. For the sake of optimally representing the
image, we seek basis functions that are smooth, sidelobe-free,

and positive (cf. the selection of basis functions in Cornwell
2008). An optimal fitting of the uv-coverage calls for basis func-
tions that provide steep radial masks in the Fourier domain and
that are optimally orthogonal on each other are desired. These
are demonstrably contradicting requirements. Typical orthogo-
nal wavelet functions (e.g., Daubechies wavelets) already contain
wide sidelobes (Starck et al. 2015). Therefore, we are dealing
with two different dictionaries: with a dictionary of (radially)
orthogonal wavelets, ΨDoB, referred to as the “difference of
Bessel” (DoB) in the following, which enables the optimized
handling of masks in the Fourier domain and with a dictionary
of smooth and clean wavelets, ΨDoG, that can be used best to
describe image features, referred to as “difference of Gaussian
(DoG) in the following”. The two wavelet dictionaries are related
to each other such that latter one (the image-driven dictionarym
ΨDoG) contains only the central peak (without sidelobes) of the
wavelets in the former one (the Fourier domain driven dictio-
nary ΨDoB). This is a similar approximation to that of CLEAN
and MS-CLEAN via the transition from the dirty beam to the
clean beam, namely, by fitting a central Gaussian component to
dirty beam pattern.

The CLEANing procedure is done with ΨDoB. We represent
the dirty image by ID = BD ∗ (ΨDoBx) and iteratively recover
the coefficient array, x, by CLEAN loops, that is, we iteratively
search for the maximum peak, store this in a list of multiscalar
components and update the residual. The list of multiscalar com-
ponents for the final image, however, is convolved with ΨDoG,
instead of ΨDoB. In this sense, representing the model by shifted
and rescaled DoB wavelets does not suppress sidelobes in the
image (since the basis functions ΨDoB contain sidelobes on their
own), but works as a feature-finder algorithm that decomposes
the dirty image into a list of (extended) multiscalar basis func-
tions. These are then replaced by more regular basis functions
that compress the same image features (the same scales), but sup-
press the long elongating sidelobes. This is done in an alternating
iterative procedure with iterative updates of the residual map: we
represent the dirty image by the dictionary, ΨDoB, by CLEAN
loops; we compute a guess solution by replacing the dictionary,
ΨDoB, with the dictionary, ΨDoG; we update the residual image
and repeat these steps until the residual image is noise-like. As
opposed to CLEAN, the suppression of sidelobes is not done by
finding the CLEAN components and subtracting the dirty beam
from the image, but by replacing ΨDoB with ΨDoG.

In our previous paper Müller & Lobanov (2022), we pre-
sented a novel wavelet dictionary based on the DoG method,
which proved flexible enough to compress information about the
uv-coverage of the observation. Thus, we reused this dictionary
for the image domain, ΨDoG. It is the canonical extension to
orthogonal wavelets to replace the Gaussians in the construc-
tion of the DoG wavelets by modified Bessel functions of the
same width (i.e., the central peak of the Bessel functions has the
same width as the Gaussians). The Fourier transform of modified
Bessel functions is a uniform disk, hence, the Fourier transforms
of difference of Bessel (DoB) wavelets are uniform rings. These
have non-overlapping support in the Fourier domain, hence,
they are orthogonal. We therefore construct the wavelets for fit-
ting the uv-coverage, ΨDoB, out of DoB wavelets. Moreover, we
present ways to extend this concept also to direction-dependent
wavelets. Some examples of our sequence of wavelets and their
corresponding filter in Fourier domain are presented in Fig. 1.
Moreover, we present the cross-section of two example wavelets
in Figs. 2 and 3, demonstrating the correspondence between DoB
wavelet scales and DoG wavelets. We present more details on
this in the subsequent subsections.
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Fig. 1. Illustration of the used wavelet scales, ΦDoB, fitted to to a synthetic RadioAstron uv-coverage in image and Fourier domain. Scales of various
radial widths (scales 3, 4, scales 5–9, and scale 10) and four different elliptical directions are shown. The scales are fit to the uv-coverage, as
they are sensitive to gaps or covered coefficients, respectively. Upper panel: Fourier transform of the wavelet scales and the synthetic RadioAstron
uv-coverage (red points). Lower panels: respective wavelet basis function in image domain.

Fig. 2. Cross-section of the DoB and DoG wavelet scale 5 presented
in Fig. 1. The DoB-wavelet fits the central peak, but suppresses the
extended sidelobes.

Fig. 3. Cross-section of the DoB and DoG wavelet scale 7 presented
in Fig. 1. The DoB wavelet fits the central peak, but suppresses the
extended sidelobes.

3.2. Wavelet-basis functions

We explain in this section the design of the wavelet functions
used in this work. As discussed in Sect. 3.1, we aim to find a
suitable dictionary, ΨDoG, that is flexible in its radial scales and

smooth to compress image features best, and a dictionary, ΨDoB,
that corresponds to the same radial (and angular) scales and pro-
vides an optimal analysis masks in the uv-domain. Our wavelet
dictionaries are based on the design of DoG wavelets that we
successfully applied to VLBI imaging in Müller & Lobanov
(2022). We first summarize the construction of the DoG wavelet
dictionary from Müller & Lobanov (2022), then we discuss
the straightforward extensions to difference of Bessel functions
(DoB) and angular wavelet dictionaries. For more details we
refer to Müller & Lobanov (2022).

One of the most frequently applied continuous wavelet func-
tions is the “Mexican hat” wavelet (Murenzi 1989; Starck et al.
2015), which is known to offer image compressions for a wide
range of model images. The Mexican hat wavelet is effectively
a (rescaled) Laplacian of Gaussian (Gonzalez & Woods 2006).
Hence, it is well approximated by the corresponding differential
quotient for small variations (Assirati et al. 2014), which we call
a DoG wavelet in the following:

Φ
σ1,σ2
DoG (x, y) =

1
2πσ2

1

exp

−r(x, y)2

2σ2
1

 − 1
2πσ2

2

exp

−r(x, y)2

2σ2
2

 ,

(6)
= Gσ1 −Gσ2 , (7)

where, necessarily, σ1 ≤ σ2 and Gσ j denotes a Gaussian with
standard deviation σ j.

In the past, discrete à trous wavelet decompositions have
been of special interest in radio astronomy (Starck & Murtagh
2006; Starck et al. 2015; Mohan & Rafferty 2015; Mertens &
Lobanov 2015; Line et al. 2020). These wavelet decomposi-
tions (called starlets) were successfully applied to imaging and
image segmentation. A starlet decomposition can be computed
quickly by a hierarchical upstream filtering instead of repeated
convolutions in high dimensions. The image is iteratively con-
volved with a small filter which has typically a small support
of only a couple of coefficients. The filter is applied on the
output of the preceding filtering operation, respectively. In this
way, a sequence of smoothed images is computed, which we
denote following our notation in Müller & Lobanov (2022) by c j,
where j ∈ [0, 1, 2, ..., J] labels the scale. Thus, the scales, c j, are
smoothed copies of the original (full resolution) image smoothed
by 2 jρ pixels, where ρ is the limiting resolution of filter kernel in
units of pixels. Wavelets are computed by the difference method:

ω j = c j − c j+1, (8)
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such that each wavelet scale, ω j, compresses the image informa-
tion on spatial scales between 2 jρ pixels and 2 j+1ρ pixels. The
sequence of discrete à trous wavelets is completed by the final
smoothing scale cJ . The set [ω0, ω1, ω2, ..., ωJ−1, cJ] is an over-
complete representation of the original information, that is, no
information is lost or suppressed during convolution. In particu-
lar, the image at limiting resolution, c0, is recovered by all scales
by an easy superposition:

c0 =

J−1∑

j=0

ω j + cJ . (9)

This property proved to be key to our application of wavelets in
Müller & Lobanov (2022).

While discrete à trous wavelets are very successful in the
compression of image information, they are less flexible than a
continuous wavelet transform due to the inherent upsampling by
a factor of two. Hence, they lack the ability to fit sufficiently to
the more complex uv-coverage of real VLBI arrays. Therefore,
we defined a flexible wavelet dictionary out of DoG wavelets
in the same procedure as was done for the à trous wavelet: we
defined an increasing set of widths [σ0, σ1, σ2, ..., σJ] and com-
puted the filtered scales of the original image by convolving with
Gaussians, that is, c j = Gσ j ∗ I (where I denotes the original
image). It is (compare Müller & Lobanov 2022):

ω j = c j − c j+1 = Φ
σ j,σ j+1

DoG ∗ I, (10)

and the complete set of scale satisfies the completeness relation
Eq. (9) again. If the original image, I, is noisy, the scales, ω j,
will be noisy as well with a scale-specific noise-level. All in all,
the DoG wavelet decomposition operation reads:

ΨDoG : I 7→ [Φσ0,σ1
DoG ∗ I,Φσ1,σ2

DoG ∗ I, ...,GσJ ∗ I]. (11)

Convolutions in the image domain translate to multiplicative
masks in the Fourier domain. The Fourier transform of a DoG
wavelet is a difference of non-normalized Gaussian functions:

FΦσ j,σ j+1

DoG (u, v) ∝ exp
(
−2π2σ2

jq(u, v)2
)
− exp

(
−2π2σ2

j+1q(u, v)2
)
,

(12)

which defines ring-like masks in the uv-domain, as described in
Müller & Lobanov (2022). To have steep and orthogonal masks,
however, we propose to replace Gaussians in the construction of
wavelets by spherical Bessel functions. Hence:

Φ
σ̃ j,σ̃ j+1

DoB (x, y) =
1

σ̃ jr(x, y)
J1(2πr(x, y)/σ̃ j) − 1

σ̃ j+1r(x, y)
J1(2πr(x, y)/σ̃ j+1), (13)

where J0 denotes the Bessel function of first order and σ̃ j repre-
sents the widths of the Bessel functions. The widths for the DoB
wavelets, σ̃, are typically not the same as the widths that we use
for the DoG-wavelets. In fact, we determine σ̃ j first by fitting
DoB wavelets to the uv-coverage, as described in Sect. 3.3, then
we select the widths for the DoG wavelets, σ j, such that the cor-
relation between DoB wavelet and DoG wavelet is maximal (see
our demonstration in Figs. 2 and 3).

In 2D, it is:

F −1(1K)(r) =
K
r

J0(2πKr) =: J̃1/K(r), (14)

where 1K is a disc with a radius of K in the Fourier domain.
Hence, the Fourier transform of the DoB wavelet is a ring-shaped
mask with step-like cross-section:

F (Φσ̃ j,σ̃ j+1

DoB )(k) = 11/σ̃ j (k) − 11/σ̃ j+1 (k). (15)

All DoB wavelets are therefore orthogonal to each other, as
the Fourier transform is a unitary operation and the wavelets,
Φ
σ̃ j,σ̃ j+1

DoB , have non-overlapping support in the Fourier domain.
Up until now, we have only discussed the case of radially

symmetric wavelets. To match the patterns in uv-coverages of
real VLBI arrays, a direction-dependent dictionary is desired
as well. This extension is straightforward by replacing the
radial symmetric Gaussian-Bessel functions via elliptical beams.
We now demonstrate the construction of direction-dependent
wavelet dictionary for the DoG wavelets. The construction for
DoB wavelets is analogous.

We start with radial widths [σ j], and N angles α0, α1 =

α0 +
2π
N , ..., αN−1 = α0 +

2π
N (N − 1) equidistantly distributed on

a circle. We then calculate radial Gaussians Gr
σ j

and elliptical
Gaussians Ge

σ j,σ j+1,αi
with major axis σ j+1 and minor axis σ j

rotated by an angle αi. Hence, when decomposing an image I
we compute filtered smoothed, radial bands cr

j = Gr
σ j
∗ I and

elliptical bands ce
j,i = Ge

σ j,σ j+1,αi
∗ I and compute the wavelets via:

ω j,i = cr
j − ce

j,i. (16)

Due to the combination of radial wavelets and elliptic wavelets,
ω j,i has a single directionality that is necessary to capture the
direction dependence. Moreover, a construction in the spirit of
Eq. (16) allows to complete the dictionary easily, that is, to sat-
isfy a completeness property similar to Eq. (9). We completed
the set of wavelets with the residual scales ω j,N =

1
B j

∑N−1
i=0 ce

j,i −
cr

j+1 (where B is a normalization constant such that
∥∥∥ω j,N

∥∥∥ =∥∥∥ω j,N−1
∥∥∥ for a response to a delta source). The final smoothing

scale is ωJ = cr
J. We present the complete action of the dictionar-

ies ΨDoG and ΨDoB in Appendix A. The complete set of wavelet
scales {ω j,i, ωJ} satisfies a completeness property again:

Ncr
0 =

J−1∑

j=0


N−1∑

i=0

ω j,i + B jω j,N

 + NωJ . (17)

3.3. Radial widths

In this subsection, we explain which widths σ0 < σ1 < ... <
σJ were selected to get an optimal fit to the uv-coverage. The
selection of these basis functions has to be done prior to the
imaging procedure. The basis functions are selected in a way that
they allow for an optimal separation between covered Fourier
coefficients and unsampled Fourier coefficients, such that some
wavelet basis functions compress Fourier information that is cov-
ered by data and the remaining one compress scalar information
that has not been observed (gaps). The only important criterion
here is whether a scale is sampled or not. For the selection of
scales we do not process the signal strength or phase observed in
the visibilities. Hence, at this stage, only the uv-coverage is pro-
cessed. During the imaging a least-square fit to the visibilities
at every scale will be done, with an effective suppression of the
non-covered scales.

This selection is similar to the procedure that we already
proposed in Müller & Lobanov (2022). We selected the radial
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widths only, while the angular elliptical beams are always con-
structed from the same array of angles equidistantly distributed
on a circle at all radial scales, σ j.

The angle offset, α0, was chosen to be the rotation of the
major axis in the clean beam. For the selection of the radial
scales, we extract the array of uv-distances, sort this array in
increasing order, and look for jumps in the sorted new array.
If the increase from one component in the sorted array to the
next one exceeds some (manually chosen) threshold, we store
the radial baseline lengths, q(u, v), for the two neighboring data
points in a list of lengths in the Fourier domain. We translate
these lengths in the Fourier domain into an increasing list of
radial widths of spherical Bessel functions in the image plane
[σi] by inverting. Finally, we complete this list: if there is an
index, i, such that 2σi < σi+1, we add a scalar width σ =
(σi+1 + σi)/2 to avoid to large gaps between consecutive widths.

The resulting DoB wavelet dictionary fits the uv-coverage
well, as can be seen in the comparison of the Fourier filters pre-
sented in Fig. 1. As a next step, we have to find the radial widths
for the DoG wavelets. We recall that the DoB wavelets were con-
structed with the à trous differential method. We constructed
the DoG wavelets in the same way. Thus, we fit the Gaussians
with varying radial widths to the central peaks of the spher-
ical Bessel functions of widths [σi]. We then constructed the
DoG wavelets by the differential method from these Gaussians.
The resulting DoG wavelets approximate the central peaks of
the DoB-wavelets, but without the wide sidelobes of the DoB
wavelets. This is demonstrated in Figs. 2 and 3. A sequence
of examples of selected DoB scales and the respective Fourier
transform masks is shown in Fig. 1.

The threshold parameter used in this procedure to identify
the gaps in the uv-coverage is a free parameter. If it is chosen too
large, smaller gaps will be skipped. If it is chosen too small, the
number of selected basis functions increases and samples the uv-
coverage more accurate than might be necessary. In this work,
the threshold has always been chosen such that the most obvious
radial gaps are kept and the number of basis functions does not
exceed 50 to assure good numerical performance, but this may
vary based on the array configuration.

3.4. Scale-selection criterion

We assume orthogonal wavelet functions, Φ j, where j is the
count of the scale.

We then assume the true image, I, is modeled via a sum of
wavelets:

I =
∑

j,n,l

a j,n,lΦ j,n ∗ δl, (18)

where j labels the (radial) scale in use, n labels the angle of
the ellipse, and l labels the pixels in the image (position of
the wavelet). This assumption is well motivated by the great
success that wavelet-based segmentation, image compression,
and decomposition have in radio astronomy (Starck et al. 2015;
Mertens & Lobanov 2015; Line et al. 2020); and, in particular,
better motivated than the implicit pixel-based CLEAN assump-
tion. We note that if we replace one scale, Φ j, by two smaller
scales, Φ j1 and Φ j2, satisfying Φ j = 2Φ j1 = 2Φ j2, it would hold
that a j = a j1 = a j2. Hence, the magnitude of a j,n,l does not
depend on the relative size of the corresponding wavelet. Thus,
in every CLEAN iteration, we would like to find the biggest
a j,n,l still in the dirty image. However, some scales are not cov-
ered in the data. We therefore update our goal: we want to find

the biggest a j,n,l still in the residual for which the correspond-
ing wavelet basis function ΦDoB

j,n corresponds to sampled Fourier
coefficients. How much a scale is covered in the data is mea-
sured by the dirty beam: if one scale is covered (i.e., the Fourier
coefficients compressed by this scale are sampled), the prod-
uct

∥∥∥∥FΦDoB
j,n · S

∥∥∥∥ =
∥∥∥∥ΦDoB

j,n ∗ BD
∥∥∥∥ is large and vice versa (where

S = F BD is a pixel-based mask in the Fourier domain). We
therefore formulate our selection criterion as follows: we want
to find the scale, j, angle, n, and position, l, such that:

{ j, n, l} ∈ argmax

∥∥∥Φ j,n ∗ BD
∥∥∥

∥∥∥Φ j,n

∥∥∥
a j,n,l (19)

is maximal and whereby BD denotes the dirty beam. The ques-
tion at hand is how we can fulfill this criterion in the selection of
peaks. We note that the model parameters a j,n,l are not known to
us. In fact, we want to determine them from the dirty image (in
the following labeled as ID).

We demonstrate that we can fulfill our criterion if we con-
volve the dirty image with the beam:

Bϕ =
1∥∥∥Φi,m ∗ BD

∥∥∥
∥∥∥Φi,m

∥∥∥
Φi,m ∗ BD (20)

and search for the maximum over the scales, i, the angle, m, and
the position of the peak, k, namely, {imax,mmax, kmax} ≈ { j, n, l}.
In fact, when we search for the peak over all these scales, we
solve the optimization problem:

{i,m, k} ∈ argmaxi,m,k
1∥∥∥Φi,m ∗ BD

∥∥∥
∥∥∥Φi,m

∥∥∥
(
Φi,m ∗ BD ∗ ID

)
(k).

(21)

A detailed proof of this identification, namely, showing that we
matched our selection criterion Eq. (20) with the optimization
strategy Eq. (21), is presented in Appendix B.

3.5. Pseudocode and implementation

We summarize the parametersof DoB CLEAN in Algorithm 1.
First, we computed the dirty image, ID, and the dirty beam, BD,
as usual for CLEAN. We then fit the scale widths {σ̃i} to the
uv-coverage as described in Sect. 3.3. Out of these scale-widths,
{σ̃i}, we constructed the DoB wavelet dictionary, ΨDoB

clean, via the
difference method from modified Bessel functions. We find the
widths of the corresponding DoG wavelet dictionary by fitting
the central peak of the modified Bessel functions with Gaussian
functions. We define the DoG wavelet dictionary, ΨDoG

clean, via the
difference method again from these Gaussians.

From Sect. 3.4, we recall that for the weights of the different
scales and for the selection of the correct scales, the convolution
of our wavelet functions with the dirty beam plays a vital role,
as seen in Eq. (21). We therefore absorbed the dirty beams in
the definition of the dictionaries to reduce computational cost,
namely, we computed a “dirty” DoB wavelet dictionary: ΨDoB

dirty =

D ∗ ΨDoB
clean.

Now, before the cleaning process starts, we can precompute
the data products required for the cleaning iterations later on. We
decomposed the dirty image by ΨDoB

dirty for the multiscalar search
of the maximal peak in the residual during the minor loop. We
have to use the “dirty” dictionary here according to our scale-
selection criterion Eq. (21). Moreover, we have to decompose
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Algorithm 1: Wavelet CLEAN algorithm.

Require: Dirty Image: ID

Require: Dirty Beam: BD

Require: gain: g
Require: scale-widths for Wavelet-decomposition (DoB): {σ̃ j}

fitted to uv-coverage

Define “clean” DWT by difference of Bessel functions with
scales σ̃ j: ΨDoB

clean.
Fit Gaussian functions to the central peaks of the Bessel func-
tions, define a difference of Gaussians (DoG) dictionary by
these fits: ΨDoG

clean. We note that this dictionary approximates
the Bessel dictionary, but without the sidelobes.

Define “dirty” DWT by DoB with “dirty” scales σ̂ j: Ψdirty,
where ΨDoB

dirty = Ψ
DoB
clean ∗ BD

Decompose dirty image by ΨDoB
dirty: ID =

∑
ID

j ,
Decompose dirty beam by ΨDoB

clean: BD =
∑

BD
j ,

Decompose the scales of the dirty beam byΨDoB
dirty: BD

j =
∑

BD
ij .

Find normalization constants: n j = max(BD
j ),

Normalize beam and psf by n j: BD
i j = BD

i j/n j ... for all i and j.

Find weights: w j =
1∥∥∥∥ΨDoB

dirty

∥∥∥∥·∥ΨDoB
clean∥ (these weights were proven

to be optimal).

Initialize restoring image: M = 0,
while residual not noise-like do,

while number of maximal iterations not reached do,
Find Maximum of [w j · abs(I j)] searching over scales

j and pixels k,
Store maximum Ik

j · δkj in list of components,
For every scale l: Il = Il − g · Ik

j · shi f t(BD
l j, k),

M = M +
∑
g · Ik

j · ΨDoG
cleanδ

k
j,

Update dirty image/residual: ID = ID − BD ∗ M,
Reinitialize the decomposition: ΨDoB

dirty: ID =
∑

ID
j ,

optional: self-calibration,
optional: project solution to positive values.

Add residual image: M = M +
∑

ID
j ,

Ensure: M is approximation to true sky image.

the dirty beam by our set of basis function that will represent
the image in the first instance, that is, by ΨDoB

clean. These scales
of the dirty beam BD

j are then subtracted from the residual during
the minor loop of the CLEAN iterations. It is further beneficial
to compute the subtraction from the image-scales, Ii, scale-by-
scale independently, instead of subtracting the complete beam
BD

j from the residual and recomputing the image-scale decompo-
sition newly every iteration. Hence, we precomputed the scalar
decomposition of the beam-scales, BD

j , by the “dirty” dictionary,
ΨDoB

dirty, as well. Moreover, we normalize these beams by their
maximal peak. We note that these data products (BD

i, j) have to
be computed only once before the CLEAN loops start until the

dirty beam is changed (due to a new weighting scheme, flag-
ging of data, and other operations). Later on, only convolutions
of these wavelets with delta-components have to be computed.
Hence, we can compute the subtractions of the multiscalar beams
very efficiently by shifting and rescaling the precomputed beam
scales Di, j. Finally, we precomputed the multiscalar weights, w j,
explained in Sect. 3.4 – more specifically, the denominator in
Eq. (21).

As outlined previously, we carried out the CLEANing pro-
cedure by iterating between a CLEAN loop (with DoB wavelets
as basis functions, i.e., the inner loop) and switching between
dictionaries (from DoB dictionary to DoG dictionary, i.e., the
outer loop). In the inner loop, we iteratively search for the largest
peak among the image scales and we store the position, the scale,
and intensity in a list of delta components. We then update the
residual scale-by-scale by subtracting the recently found com-
ponent. After a sufficient number of iterations, we compute a
model M by summing our stored delta components, but apply-
ing the dictionary, ΨDoG

clean, instead of the dictionary, ΨDoB
clean (outer

loop). After this switch of dictionaries, we have to reinitialize the
residual and the residual scales for the next DoB-CLEAN runs.
At this step, further data manipulation steps, such as flagging,
self-calibration, thresholding the image, or projecting to posi-
tive fluxes, could also be applied as required, depending on the
data set under consideration. We also refer to Fig. 5, where we
demonstrate the working procedure of DoB-CLEAN on one of
the synthetic data sets that are used in Sect. 4. The dirty beam
is successfully cleaned out of the image by the representation by
DoB wavelets (small residual). However, the wavelets itself con-
tain sidelobes and, hence, the DoB model has these sidelobes
as well. By switching to DoG wavelets, we get a physical and
smooth model that still fits the visibilities.

3.6. Comparison to CLEAN and MS-CLEAN

DoB-CLEAN succeeds over CLEAN by using a multi-resolution
approach to imaging. This allows for a better separation between
image features and sidelobes. Hence, DoB-CLEAN provides
more reasonable regularization. Thus, we repeat the regulariza-
tion analysis presented in Eqs. (4)–(5). We assume that the true
model is expressed as:

I =
∑

l

alΨ
DoB
l . (22)

We note that although the wavelet functionsΨDoB
l contain clearly

unphysical sidelobe structures, this is not a stronger assumption
than the point source assumption that we did for the analysis of
CLEAN, namely, Eq. (2), due to the completeness of the wavelet
dictionary, as in Eq. (9). The dirty image is then:

ID =
∑

l

alΨ
DoB
l ∗ BD ≈

∑

i

aiΨ
DoB
i ∗ BD, (23)

where the indices, i, are a typically sparse subset of the space
of indices, l. This harvests one of the main advantages of DoB-
CLEAN over CLEAN. While the sparsity assumption that is
hard-coded in CLEAN is somewhat dubious, in particular if
extended structures are studied, DoB-CLEAN tries to sparsely
represent the dirty image with a dictionary especially designed
for this purpose. The wavelet functions that correspond to scales
in the Fourier domain that are not covered can be omitted in
the sum above (the convolution with the dirty beam vanishes)
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and the sparsity assumption is really fulfilled. The dirty image is
modeled by:

MD =
∑

i

âiΨ
DoB, (24)

where âi denotes the estimated approximations to the true coeffi-
cients, ai, calculated by DoB-CLEAN. The cleaned image model
reads:

M =
∑

i

âiΨ
DoG. (25)

Hence, the residual is:

R = ID − BD ∗ M ≈ BD ∗
∑

i

[
aiΨ

DoB
i − âiΨ

DoG
i

]
. (26)

Thus:

IM = M + R = BD ∗
∑

l

alΨ
DoB
l + (1 − BD) ∗

∑

i

âiΨ
DoG. (27)

Again we recover the correct data fit for the covered scales. In the
second term we process information from covered scales only
(indices i). We therefore extrapolate the data fit to the gaps in
the uv-coverage by the same core-information as the signal from
the covered scales (the DoG-wavelets fit the central peak of the
DoB-wavelets), but we suppress the sidelobes. This can be trans-
lated to the Fourier domain in that we copy the same information
that we recovered from covered scales in the uncovered scales as
well, but the importance decreases with distance from the cov-
ered Fourier coefficients. We, therefore, in contrast to CLEAN,
recover the final model from the measured visibility points only
and suppress the information in the gaps to a level, such that the
final recovered model appears smooth and free of sidelobes, but
no image features are hidden in the gaps. This seems to be an
optimal criterion for us given the sparsity of the measured visi-
bilities. We will expand more on how CLEAN and DoB-CLEAN
fit the gaps in the uv-coverage in Sect. 4.4.

The replacing of DoB wavelets by DoG wavelets is similar
to a multiscalar variant of replacing the dirty beam by the clean
beam as done for CLEAN. However, there are subtle differences.
For DoB-CLEAN, the convolution is not done as a final step, but
takes place within the minor loop, such that the new residuals
are computed after convolution withΨDoG. Moreover, in compar-
ing with Algorithm 1, we replace, in the minor loop, the “dirty”
scales, ΨDoB

dirty = Ψ
DoB
dirty ∗ BD, with the “clean” scales, ΨDoG

clean. Since
the basis functions are already extended and fit to the uv-coverage
(i.e., the limiting resolution) a final additional convolution with
a clean beam is not needed. This convolution is unphysical as
it introduces a disparity between the model fitted to the visibili-
ties and the final image. Our algorithm directly computes a clean
(i.e., free of sidelobes) model that fits to the visibilities and that
matches our perception of astronomical reality – in other words,
it solves this disparity.

We go on to briefly discuss the convergence of DoB-CLEAN
at this point. If the model is composed of extended DoG wavelet
functions with widths equivalent to the limiting resolution, an
additional convolution with the dirty beam to compute the resid-
ual could smear out the model image even more and cause
divergence. This however is prevented by the scale selection cri-
terion Eq. (21). Since we convolve the dirty image another time
with the dirty beam to find the optimal scale, we select smaller
scales (already respecting the fact that another convolution for
the computation of the residual will smear out features).

DoB-CLEAN is based on the ideas pioneered in multireso-
lution CLEAN methods (Bhatnagar & Cornwell 2004; Cornwell
2008; Rau & Cornwell 2011). However, our new method has
some significant differences. Most obviously, we use different
dictionaries than in previous works. MS-CLEAN basis func-
tions are selected on a best effort basis manually (Cornwell
2008). Asp-CLEAN (Bhatnagar & Cornwell 2004) is a variant
of MS-CLEAN in which the proper scale widths of the basis
functions (Asps) are selected by a fit to the data alternating
with the minor loop iterations. Asp-CLEAN therefore shares
some more philosophical similarities with DoB-CLEAN than
standard MS-CLEAN. However, the basic outline remains the
same: basis functions are selected based on the image domain
to describe the perceived image structure best, thereby solv-
ing practical issues related to CLEAN in representing extended
emission. Cornwell (2008) defined three requirements for such
basis functions: each basis function should be astrophysically
plausible, as well as radially symmetric, and the shape should
allow support constraints (although the latter one can be weak-
ened). In contrast, our dictionaries are designed on different
requirements: we designed wavelet basis functions,ΨDoB, that fit
to the uv-coverage, namely, those that sparsely represent the dirty
image. Hence, in contrast to MS-CLEAN and Asp-CLEAN, our
selection of scales is purely driven by the instrument – with
no perception of the image structure. This highlights a differ-
ence that is strictly specific to Asp-CLEAN: in Asp-CLEAN, the
applied scales are meant to optimally fit the observed visibilities
in every iteration and this selection strongly affects the minor
loop iterations. In DoB-CLEAN, it is only the uv-coverage, and
not the visibilities, that is used to define scales and the selection
of which scales fits the visibilities ideally is controlled by the
minor loop. Moreover, we use, for the first time, a multidirec-
tional dictionary. These requirements are not compatible. This
has a couple of consequences that cause DoB-CLEAN to differ
from MS-CLEAN algorithms. MS-CLEAN and Asp-CLEAN
use the minor and major loops to suppress sidelobes (compare
our discussion in Sect. 2.2) by a sparse representation of the true
model. DoB-CLEAN uses the minor and major loop of CLEAN
to find a sparse representation of the dirty image (not the true
image). This makes the use of a second dictionary, ΨDoG, and
a switch between both dictionaries needed. Sidelobes are sup-
pressed by replacing the DoB wavelets (with large sidelobes) by
the DoG wavelets (without sidelobes). Also, ΨDoB features some
more advantages: it is orthogonal in radial dimension. Hence, in
the DoB-CLEAN scalar features that, for example, only affect
intermediate baselines, but not long or small baselines, can
be expressed sparsely, while in MS-CLEAN and Asp-CLEAN,
every basis function necessarily affects the shortest baselines.
In particular, there is only one scale, cJ , that transports flux in
the image (compare Eqs. (8) and (9)), all other scales have an
integral of zero. The orthogonality offers the additional advan-
tage that a solid scale-selection criterion could be derived (see
Sect. 3.4), in contrast to Cornwell (2008), where the selection
of the correct scale is done in an ad hoc manner by manu-
ally choosing a specific scale-bias. We, however, select for the
first time the scale that provides the largest correlation to the
dirty image. Moreover, the basis function dictionary is complete.
Hence, opposite to Asp-CLEAN and MS-CLEAN, there is no
doubling of information compressed at different scales.

All in all, compared to CLEAN and MS-CLEAN, DoB-
CLEAN succeeds in two important aspects. First, the regu-
larization property (i.e., how to fill the gaps in uv-coverage)
is more reasonable. Second, in CLEAN (Högbom 1974) and
in MS-CLEAN (Cornwell 2008), the final model is blurred
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with the clean beam, which causes an unphysical separation
between model and image as described in the introduction. In
DoB-CLEAN however, the basis functions are already extended
functions that represent the image features well and are used to fit
to the visibilities. Thus, a final convolution with the clean beam
is (theoretically) not needed in making the computed image the
same as the computed model.

3.7. Software and pipeline

The method has been implemented in the new software pack-
age MrBeam, which makes explicit use of ehtim (Chael et al.
2018) and regpy (Regpy 2019). We designed the user interface
to resemble standard VLBI software packages such as Difmap
(Shepherd 1997). This has several practical benefits: it resembles
a method of working that is common and familiar to scien-
tists. Hence, MrBeam allows for the typical tools of interactive
manipulation, visualization and inspection of data known from
CLEAN softwares: interactive drawing of CLEAN windows
(search masks for peaks in the residual), the option for vari-
ous weighting schemes, taperings and flagging of data, a hybrid
self-calibration routine, and so on. This proved practical in the
past to address data corruption and calibration issues. However,
the practical use of interactive tools remains restricted to small
arrays in MrBeam as the multiscalar image decompositions have
to be recomputed every time the weights or gains have been
updated.

In principle, DoB-CLEAN needs two stopping rules to be
specified. Firstly, we have to specify after how many iterations
we want to stop the overall CLEANing procedure (stopping rule
1 in Algorithm 1). Secondly, we have to determine for how many
iterations do we want to represent the image with DoB wavelets
before we perform the change to the DoG wavelets (stopping rule
2 in Algorithm 1). The former stopping-rule is defined by the
noise level of the observation and the current residual. We do
not provide a quantitative stopping criterion here but stopped the
iterations whenever the residual image looked Gaussian-like and
the residuals were not reduced significantly with further itera-
tions. For the latter stopping rule, changing the dictionaries every
iteration proved to be the most practical solution, that is, we
updated the model image every iteration.

The fitting of the observed visibilities by extended, specially-
designed basis functions proved to be helpful in introducing
regularization. However, to account for every un-fitted source of
flux in the final image, it could be beneficial to clean the already-
cleaned residual with several Högbom CLEAN iterations on the
complete field to improve the fit to observed visibilities. We
provide such an option in the software package imagingbase
underlying this work. However, this finalization step was not
found to amend the final model on a level that is visible by eye.

Lastly, we would like to comment on the use of CLEAN win-
dows. In standard Högbom CLEAN, windows are essential in the
early iterations of the CLEANing and self-calibration to sepa-
rate the essential true sky brightness distribution from sidelobes.
After several iterations the residual is smaller, the sidelobes are
suppressed and the underlying image structure becomes visible.
The windows can be drawn larger. However, for DoB-CLEAN
drawing sophisticated windows did not prove to be essential at
all. The sidelobe structure of the beam is imprinted in the basis
functions of the DoB wavelet dictionary and the role of the con-
volution with the dirty beam is in particular represented, for the
first time, in our scale-selection criterion. The maximal correla-
tion is achieved when the multiscalar component is centered in
the sidelobe structure and components are not falsely set in the

sidelobes, but rather where the true sky brightness distribution
is located. Hence, for our tests on synthetic data in Sect. 4, we
imaged with DoB-CLEAN on the complete field of view without
setting any window.

3.8. Post-processing

The multiscalar and multidirectional decomposition offers rich
possibilities for post-processing. The multiscale dictionary Ψ
provides control over the fit of the model in the gaps within
the uv-coverage. This is a great advantage of DoB-CLEAN. In
particular, we can identify the image features that are present in
the observation and those that are not covered. The signal from
the latter is suppressed. In this sense, we end up constructing
a mostly sidelobe-free representation of the robustly-measured
image information. However, we can use this information as well
to reintroduce missing scales in the observation to the image.
This step should be done with relative caution as we are adding
extrapolated signals.

We implemented and tested the most natural approach to
reintroduce missing information in the image, namely, by inter-
polating between neighboring scales. For that we first have to
identify which scales are labeled as uncovered (i.e., which scales
do we have to add to the image in post-processing). We can use
the scale-selection criterion here again: we define a threshold t
(usually we use t = 0.1), compute the initial dirty beam with
uniform weighting, and label scales as missing if:
∥∥∥ΨDoB

l ∗ BD
∥∥∥

∥∥∥ΨDoB
l

∥∥∥
< t. (28)

For each of these missing scales, we search for the next smaller
scale in the same direction (for elliptical scales) and the next
larger scale in the same direction and interpolate the coefficient
array for the missing scale between these two. We evaluated the
performance of post-processing by missing scales in Sect. 4.4.
In a nutshell, adding missing (not measured) scales to the image
proved useful to suppress artifacts that are introduced by gaps
in the uv-coverage. However, this option should be used only
with relative caution as signal is predicted for Fourier coeffi-
cients that are not constrained by observations, that is, false
image features could be added to the reconstruction when the
adding of the missing scales is overdone. While it is a natural
choice to interpolate the missing scale from adjacent scales, this
does not always have to be the best option. This is in particu-
lar true when the structures at various scales have only a small
correlation as common for example in VLBI studies of jets pow-
ered by an active galactic nuclei (AGN). The bright small-scale
features (VLBI-core, innermost jet) and the large scale features
(extended jet emission) can vary in morphology, localization
and orientation (e.g., compare the multifrequency studies in Kim
et al. 2020, with highly varying morphologies between scales).
Recent progress in multifrequency observations, and the ongo-
ing combination of short baseline and long baseline arrays (and,
consequently, the desire to map galactic structures on a range of
spatial scales) may further highlight the issue raised above.

3.9. Numerical challenges

In this subsection, we present some numerical issues and chal-
lenges for DoB-CLEAN and possible strategies to resolve them.

As the DoB wavelets are designed to define steep, orthogonal
masks in the uv-domain, we have to deal with the Gibbs-
phenomenon at the edges of these masks. We found that the field
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of view should be large enough, such that roughly ten sidelobes
of the spherical Bessel functions still fit in it to avoid numerical
issues by the Gibbs phenomenon. Additionally, it proved ben-
eficial to fight the rapid accumulation of numerical errors by
reinitializing the decomposition of the dirty image from time to
time.

Low-level negative fluxes are introduced into the images by
the basis functions itself and have to be negated by neighboring
scales (see the completeness relation Eq. (9)). However, this also
reveals the great advantage of DoB-CLEAN over CLEAN. Due
to the completeness relation Eq. (9) and the explicit allowance
of negative wavelet coefficients, every structure in the current
model could, in principle, be deleted again or completely altered
and partly negated by other scales in later iterations. This is more
difficult in CLEAN, where falsely set components (e.g., due to
corrupted data, calibration issues, or falsely-identified windows)
are typically removed from the model by flagging them manu-
ally. Hence, DoB-CLEAN interacts well with extended starting
models similar to the working procedure standard in RML meth-
ods (iterative imaging with a new starting model and blurring).
We therefore have a new RML-inspired ad hoc method to avoid
negative fluxes in the final image: alternating with imaging we
threshold (and blur) the image to the significant flux and reini-
tialize the residual and the DoB-CLEAN parameters with the
thresholded model as a starting model.

After some iterations we project the recovered model to the
significant fluxes – that is: we threshold the model by a small
fraction, typically one percent of the peak flux, and, in par-
ticular, projecting all negative fluxes to zero; then we blur the
image by the nominal resolution. We take this image as a proper
starting model for the next imaging rounds. We recompute the
residual and the corresponding decomposition and proceed with
the CLEANing with the thresholded model as a starting model.
This strategy is well motivated, every high dynamic range image
structure that might be falsely deleted from the model, is reintro-
duced in the newly computed residual and will be reintroduced
to the model in the subsequent CLEANing loops. In particu-
lar, a worse resolution after blurring will be corrected later by
readding small-scale DoG wavelets that shift power from larger
scales to smaller scales. As a weaker version of this strategy, we
also can project only the negative fluxes to zero flux (i.e., use
a zero-percentage threshold) and recompute the residuals that
had proved to be sufficient in some cases. This blurring strat-
egy is not a necessary requirement for DoB-CLEAN, but it does
serve as an alternative way to guide the imaging, similar to how
it is done with tapers in CLEAN; however, here, it is translated
into the image domain due to the simple possibility to read any
missing small-scale structure at a later point in the iterations.

4. Tests on synthetic data

4.1. Synthetic data

In the following, we explain how we checked our imaging algo-
rithm on several test images. For these purpose, we chose a
range of test images presenting various source structures and
uv-coverages: we study a synthetic image with a Gaussian core
and faint ellipse observed with EVN coverage (Gaussian-evn),
a double-sided core dominated synthetic source with a syn-
thetic ring-like uv-coverage (dumbbell-ring), and a synthetic
observation of BL Lac with RadioAstron (bllac-space).

The Gaussian-evn model consists of a small Gaussian with
width of 5 mas (0.5 Jy) and a (faint) elliptical blob with semi-
axes of 50 mas and 20 mas directed to the south (0.5 Jy).

The elliptical source is shifted by 100 mas to the south. The
Gaussian-evn model is chosen to artificially approximate typ-
ical core-jet structures. The model is plotted in the first panel
of Fig. 4. We synthetically observe the model with a past EVN
configuration from Lobanov et al. (2011) and observed the syn-
thetic source by the software ehtim (Chael et al. 2018) with
the observe_same option. The uv-coverage of this observation
is plotted in panel five of Fig. 4.

The dumbbell-ring model consists of an ellipse with 50 mas
times 500 mas semi-axes (1 Jy) centered at the middle, a
Gaussian with width 2 mas (0.3 Jy), and a second negative
Gaussian with with 5 mas (−0.3 Jy). The Gaussians and ellipse
were chosen in a way that no negative flux appears in the model.
The source model is presented in panel 1 of row 2 of Fig. 4.
We observed the source for testing purposes with a synthetic
instrument with ring-like uv-coverage; for this reason, we placed
artificial antennas equally spaced from the south pole, observed
the synthetic source, and flagged out all baselines that did not
involve the central station. From this uniform uv-distribution
we then introduced two significant radial gaps by flagging. The
corresponding uv-coverage is presented in Fig. 4 (panel 5 of
row 2).

Finally, we took RadioAstron observations of BL Lac as a
more physical source model. We took the natural weighted image
from Gómez et al. (2016) as the true source structure (see panel 1,
row 3 in Fig. 4) and observed it, again with the observe_same
option, with the array of that observation. The corresponding
(time-averaged) uv-coverage is plotted in Fig. 4 (panel 5 row
3). All the observations had thermal noise added, but without
adding phase or amplitude calibration errors.

4.2. Qualitative comparison

Figure 4 presents the reconstructions of our three synthetic
sources with DoB-CLEAN (second column) and with CLEAN
(third column: final CLEAN image, fourth column: CLEAN
model). For the bllac-space model, a set of rectangular windows
that constrain the flux to the lower half of the image was used.
For the Gaussian-evn and the dumbbell-ring reconstructions, no
particular window was used. Figure 5 presents an outline for
the imaging procedure done for the dumbbell-ring example. We
remove the dirty beam successfully during the minor loop, but
represent the image by a multiscalar set of DoB wavelets that
contain sidelobes on its own. By replacing the DoB wavelets by
DoG wavelets, we get a physically meaningful result, from which
we recompute a significantly reduced residual.

We show additionally in Fig. 6, a comparison of the DoB-
CLEAN reconstruction with MS-CLEAN reconstructions. For
the MS-CLEAN reconstructions we used in all three examples a
dictionary consisting of a delta component and Gaussians with
one, two, and three times the width of the clean beam.

The DoB-CLEAN reconstructions were very successful
overall. The core-jet-like structures were well represented, even
if the array configuration was extremely sparse. The represen-
tation of the wider, extended emission, in particular in the
Gaussian-evn example is excellent, opposed to CLEAN. As
expected a similar effect is achieved by MS-CLEAN reconstruc-
tions opposed to Högbom CLEAN (compare the upper panels in
Figs. 4 and 6. The reconstructions of the wide-field Gaussian-evn
structure in Fig. 6 is of similar quality between DoB-CLEAN and
MS-CLEAN. Moreover, the DoB-CLEAN reconstruction allows
for the reconstruction of small scales simultaneously, as demon-
strated with the two-component core in the bllac-space image
(indicating a good use of space-baselines).
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Fig. 4. Comparison of reconstructions on synthetic data. First row: Gaussian-evn; second row: dumbbell-ring; third row: bllac-space, with various
algorithms. First column: true image, second column: DoB-CLEAN reconstruction. Third column: CLEAN image. Fourth column: CLEAN model.
Fifth column: uv-coverage of the synthetic observations. Contour levels for the bllac-space example are [0.5%, 1%, 2%, 4%, 8%, 16%, 32%, 64%]
of the peak flux.

When comparing to CLEAN (third column), it becomes
obvious that DoB-CLEAN achieves super-resolution. It reliably
recovers structures smaller than the clean beam, particularly in
the bllac-space example, even if these structures are faint com-
pared to the central core region (fainter by a factor ≈100–1000
for bllac-space). This super-resolving feature, however, does not
come at the price of reduced sensitivity to extended emission as
discussed above. MS-CLEAN reconstructions are bound to the
clean beam resolution as well, thus ending up outperformed by
DoB-CLEAN in terms of resolution as well.

We present in the fourth column of Fig. 4 the single CLEAN
model, that is, the composition of delta components. We recall
that we identified the mismatch between the final image and the
CLEAN model that fits the data as a main theoretical disadvan-
tage of CLEAN. The same applies for MS-CLEAN. In fact, the
model maps are no useful description of the source structure in
either way. DoB-CLEAN directly computes a model with phys-
ical meaning. The reconstructions shown here match the model
fitted to the visibilities. Hence, the cleaning with DoB-CLEAN
leaves a similar final residual (dominated by thermal noise) as
the standard Högbom CLEAN, but with a much more useful

source model. In this sense, DoB-CLEAN produces more robust
source structures.

While CLEAN and MS-CLEAN reconstructions are overall
quite successful as well, we identify several qualitative metrics
in which DoB-CLEAN clearly outperforms CLEAN and MS-
CLEAN. All in all, we conclude from here that DoB-CLEAN
seems to be an improvement over CLEAN in terms of reso-
lution (achieving super-resolution), robustness (model matches
to final image), and sensitivity to extended emission. The latter
advantage becomes obvious, particularly for the Gaussian-evn
data set in which the CLEAN beam is much smaller than the
extended elliptical source structure, leading to a fractured recon-
struction opposed to the smooth extended emission recovered by
DoB-CLEAN.

4.3. Performance tests

We go on to use the Gaussian-evn example for a set of additional
tests to study the features and performance of DoB-CLEAN
further.
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Fig. 5. Sketch of the imaging iterations for the dumbbell-ring example.
Upper left: initial residual. Upper right: we remove the dirty beam by
computing a multiscalar model composed of DoB wavelets. The panel
presents the recovered model

∑
g · Ik

j · ΨDoB
cleanδ

k
j (notation from Algo-

rithm 1). Bottom right: we replace the DoB wavelets by DoG wavelets:∑
g · Ik

j · ΨDoB
cleanδ

k
j getting a physically reasonable model that still fits

the data. Bottom left: final updated residual computed from the DoG-
model. Iterations continue if needed.

To discuss the advantage of super-resolution further, we
redid the Gaussian-evn observation and reconstruction, but with
a source structure scaled down by a factor of four in size to
highlight the signal on longer baselines more. We present our
reconstructions in Fig. 7. The extended, elliptical emission is
still very well recovered by DoB-CLEAN. The small Gaussian
core is overestimated in size due to the large beam size and
a smaller central core component becomes visible as a signal
from the long baselines. However, the CLEAN reconstruction
again has bigger issues with the beam size and the (ellipti-
cal) beam shape. This example demonstrates the potential for
super-resolving structures at the size of the clean beam with
DoB-CLEAN.

With this excellent performance at hand for small source
structures that require super-resolution, we advance on this state-
ment by studying the Gaussian-evn source example with syn-
thetic RadioAstron observations (as space-VLBI observations
are typically designed to study sources at the highest resolution).
VLBI observations with space antennas, however, pose a new
range of challenges: the special uv-coverage leading to highly
elliptical beams, a bad signal-to-noise ratio on the long space
baselines, and the complex calibration of the space baselines.
In this study we ignored calibration issues, but we considered
highly scale-dependent noise by mirroring a real observation
(Gómez et al. 2016). We took the Gaussian-evn source, scaled
it down in size from a field of view of 1′′ to a field of view of
16 mas (e.g., by a factor of ≈16) and synthetically observed it
with RadioAstron. Our reconstructions are shown in Fig. 8. This
test run again solidifies the problem that CLEAN reconstructions
seem to have for highly elliptical beams. DoB-CLEAN works

better in this regard, recovering a clearly visible core and a dis-
connected, approximately elliptical, extended emission pattern
without many sidelobes. However, compared to the reconstruc-
tions that we presented in Fig. 7, the reconstruction is worse
due to the sparsity at small scales (long baselines). The cir-
cular Gaussian core-component is represented by a dumb-bell
structure instead, the elliptical faint emission is recovered by
two connected Gaussian blobs. The dumb-bell structure is a
consequence of relative sparsity at small scales as it represents
the typical structure that a single scale out of the difference of
elliptical beams dictionary features. Basically, only the scale ori-
ented in the direction described by the longer-elongating space
baselines is selected, all other scales at this radial width are sup-
pressed. All in all, we can conclude that DoB-CLEAN is capable
of reconstructing super-resolved images even with such chal-
lenging arrays such as RadioAstron, although a higher level of
artifacts is visible at higher resolution.

It is difficult to quantify the amount of super-resolution in
general. Since the limiting resolution is not limited by a well-
defined beam convolution, but, instead, due to the balancing
between fitting the visibilities and a multiscale sparsity assump-
tion. The achievable resolution depends both on the specifics
of the instrument (i.e., uv-coverage and scale-dependent noise-
level) and the source structure itself. To get a rough impression of
the resolution that is achievable with DoB-CLEAN we apply the
following strategy: we observe the Gaussian-evn source model
with RadioAstron coverage (see Fig. 9) and with EVN cover-
age (see Fig. 10). Iteratively, we minimize the source size (by
keeping the same image array, but minimizing the pixel size,
i.e., the field of view). Each time, we carried out a reconstruc-
tion with DoB-CLEAN and blur the (minimized) ground truth
images on a predefined fine grid of circular Gaussian blurring
kernels. We computed the correlation of the blurred synthetic
ground truth images and the reconstructions in any case (left
panels in Figs. 9 and 10). The correlation curves look reason-
able with a clearly identifiable maximal peak. We show the
blurring kernel size with the maximal correlation for the small-
est source sizes in the right panels. If the source is that small
that it becomes unresolved by DoB-CLEAN, the blurring kernel
size needs to converge from below roughly towards the limiting
resolution: indeed, the maximum correlation is roughly con-
stant within the errorbars indicating an effective resolution for
a RadioAstron configuration of ∼20µas (beam: ∼290 × 31µas)
and an effective resolution for an EVN resolution of ∼2 mas
(beam: ∼18 × 4 mas). Hence, a moderate super-resolution by a
factor of 2–3 might be possible. However, while the represen-
tation of super-resolved features with wavelets is clearly more
reasonable than a representation with delta components, we have
to note that the reconstruction problem at a higher resolution is
also more challenging and artifacts that are usually hidden under
the convolution with the beam can be expected (and are visible,
e.g., in Fig. 8).

Finally, we study the effect of thermal noise on the recon-
struction. For this purpose we again observed the Gaussian-evn
example, but this time, we added a constant thermal noise on
all baselines at a level such that the final signal-to-noise ratio is
approximately one. The reconstructions are presented in Fig. 11.
Comparing the reconstruction shown in Fig. 4, the source struc-
tures recovered by DoB-CLEAN and CLEAN remain relatively
unaffected. Faint, blobby background sidelobes as expected from
Gaussian noise are introduced to the CLEAN image. In DoB-
CLEAN, the effect is different: a coronal emission around the
central component is introduced. This feature, however, is very
weak and can only be seen at high dynamic range. This coronal
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Fig. 6. Comparison of reconstructions on synthetic data. First row: Gaussian-evn; second row: dumbbell-ring; third row: bllac-space, with various
algorithms. First column: true image; second column: DoB-CLEAN reconstruction; third column: MS-CLEAN image. Contour levels for the bllac-
space example are [0.5%, 1%, 2%, 4%, 8%, 16%, 32%, 64%] of the peak flux.

feature has to be noted as an explicit image artifact that DoB-
CLEAN introduces in the image when studying noisy images at
high dynamic range.

4.4. Artifacts compared to CLEAN

We now compare DoB-CLEAN to CLEAN with the Gaussian-
evn example with a reduced source size, as seen in Fig. 7,
with special emphasis on the image artifacts introduced by
these algorithms. We present the complete Fourier transform of

the true image and the reconstructions (DoB-CLEAN, CLEAN
model, and final CLEAN image) in Fig. 12. In the upper row,
we show the amplitude of the Fourier transform of the true
source model and the uv-points over-plotted in red. In the lower
panels, we show the fit between the measured and observed
visibilities. Standard imaging software such as Difmap typi-
cally only show the latter ones indicating a successful fit of the
observed visibilities for both CLEAN (i.e., the model) and DoB-
CLEAN. However, the complete Fourier transform reveals that
this might be inadequate. The CLEAN reconstruction shows a
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Fig. 7. Reconstructions of the Gaussian-evn test case, but with smaller source size. The contour levels are [0.5%, 1%, 2%, 4%, 8%, 16%, 32%, 64%]
of the peak flux.

Fig. 8. Reconstructions of the Gaussian-evn test case with RadioAstron uv-coverage. The contour levels are [0.5%, 1%, 2%, 4%, 8%, 16%,
32%, 64%] of the peak flux.

rich, periodic structure in the Fourier domain, in the gap between
short and long baselines, but also at baselines longer than the
observed ones. These structures in the gaps are not motivated by
any measured visibility and, in particular, they are very slightly
correlated with the signal measured at long baselines. This par-
ticular CLEAN problem is solved by convolving with the clean
beam, but at the cost of a worsened fit of the final image to the
observed visibilities (compare the bottom panel for the CLEAN
image). The DoB-CLEAN reconstruction shows a much better fit
to the Fourier coefficients. The signal in the large gap between
short and long baselines is suppressed as well as the unphysical
signal on Fourier coefficients longer than the longest baselines,
but the fit to the observed baselines remains excellent.

Due to this suppression, minimal structural information is
added in the gaps and only the robust, measured image infor-
mation is processed. However, comparing to the true Fourier
transform, this also gives rise to some possible problems in the
imaging procedure: as the uv-coverage is sparse and contains a
prominent gap with unmeasured Fourier coefficients, there is
image information in this gap that is not recovered in the final
image with DoB-CLEAN. In particular, this gap introduces the

spurious image structure visible in Fig. 7 in the core compo-
nent. The core Gaussian is recovered by a small DoG component
compressed by the longest baselines in the array and a wider
Gaussian component compressed by the shorter baselines. The
missing scale (i.e., a missing DoG-scale to satisfy complete-
ness) is visible in the final image by the ring-like feature of
weak flux sources around the inner component. While imaging
only robust image features with a reduced sidelobe level would
appear to be an optimal solution for imaging, these kinds of
structures are a clear indicator of missing amplitudes on non-
measured baselines. As explained in Sect. 3.8, DoB-CLEAN,
as opposed to CLEAN, offers a unique way to identify these
problems and to re-add these uncovered scales in the image.
We demonstrate the usefulness of this approach in Fig. 13. With
an increasing fraction of added missing scales, the interpolated
flux in the gap becomes more prominent (upper panels). The
artifact in the core component vanishes (bottom panels). When
overdoing the interpolation however (i.e., adding too much infor-
mation on small scales or long baselines), the elliptic extended
emission gets erroneously estimated. Hence, when applied to
observational data, this interpolation option should be used with
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Fig. 9. Illustration of the estimation procedure for the effective resolution of DoB-CLEAN. Left panel: correlation between DoB-CLEAN recon-
structions for varying source sizes with RadioAstron synthetic observation of the Gaussian-evn ground truth image and the blurred ground truth
images. Right panel: blurring at maximal correlation as a function of source size (field of view).

Fig. 10. Illustration of the estimation procedure for the effective resolution of DoB-CLEAN as in Fig. 9, but with EVN coverage.

relative caution as we are interpolating structural information in
the image that is (in principle) unmeasured.

5. BL Lac

5.1. Data

We reanalyzed the public data set of BL Lac observations with
RadioAstron (Gómez et al. 2016), as described in this section as
an additional test with real observational data. In what follows,
we summarize these observations and for more detailed infor-
mation, we refer to Gómez et al. (2016). BL Lac was observed
at 22 GHz on November 10 and 11, 2013. Due to some technical
problems, BL Lac was only observed by 15 correlated anten-
nas (instead of the 26 possible in the array). The data set was
correlated at the DiFX correlator at the Max-Planck-Institut für
Radioastronomie (MPIfR). Data reduction and calibration took

place with AIPS and Difmap (Shepherd 1997). We used the self-
calibrated data set of Gómez et al. (2016) as a starting point for
reconstructions with DoB-CLEAN.

5.2. Reconstructions

We present our reconstruction results with DoB-CLEAN in
Fig. 14. Moreover, we show our reconstructions blurred with the
corresponding clean beam in Fig. 15.

Comparing our imaging results blurred with the clean beam
(Fig. 15) to the reconstruction results with CLEAN (Fig. 16), we
identify very similar structures, in particular, for natural weight-
ing. We identify the central core with an elliptic shape and the
two connected Gaussian blobs to the south. Some of the fine-
structure in the CLEAN image is visible in the DoB-CLEAN
image as well, such as the shape of the core or the orienta-
tion of the components in the jet. However, there are also some
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Fig. 11. High dynamic range reconstructions of the Gaussian-evn test case, but higher thermal noise level. The contour levels are [0.5%, 1%, 2%,
4%, 8%, 16%, 32%, 64%] of the peak flux.

Fig. 12. Comparison of the fits of the Gaussian-evn synthetic data reconstruction in the Fourier domain. Upper panels: complete Fourier transform
of reconstructions (true, DoB-CLEAN, CLEAN image, and CLEAN model), with uv-coverage over-plotted (red crosses). Lower panels: Radplot
showing the fit of the recovered model to the observed visibilities. It is only for DoB-CLEAN that the fit is successful (lower panels) and the Fourier
transform of the model is physically reasonable (upper panels).

slight differences, such as the faint emission to the north-east
that is not related to the jet. This emission could be an artifact of
DoB-CLEAN reconstructions, as compared to the typical image
artifacts that we discussed in Sect. 4.2, which are caused by the
intrinsic sidelobes in the basis functions. In the middle panels,
we show the reconstructions with uniform weighting, and in the
right panels, a zoom-in on the central core region with uniform
weighting. These reconstructions with their more highly resolved
structures better highlight the core region. Overall, the similar-
ity between the blurred DoB-CLEAN images (Fig. 15) and the
CLEAN images (Fig. 16) is beneficial in uniform weighting,
particularly in the zoom-in panels into the core. Interestingly,

CLEAN finds stronger extended emission. Moreover, we find
a possible edge-brightened structure in the reconstructions
with DoB-CLEAN that is not apparent in the CLEAN
images.

We demonstrated that DoB-CLEAN allows for super-
resolution and the actual model computed features a physical
model, in contrast to CLEAN. We present in Fig. 14 the DoB-
CLEAN reconstructions at full resolution. In fact, Fig. 14 shows
more highly resolved structures of a narrow jet. We would like
to mention some features that become visible in the full reso-
lution DoB-CLEAN reconstructions, as opposed to the blurred
reconstructions.
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Fig. 13. Fourier transform of recovered data with DoB-CLEAN (upper panels) and the recovered model (lower panels) in the Gaussian-evn test
case. From left to right: missing (not measured) scales are interpolated from the covered scales with a higher fraction. The most right panels show
the true image. The used contour-levels are [1%, 2%, 4%, 8%, 16%, 32%, 64%] of the peak flux.
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Fig. 14. BL Lac reconstructions with DoB-CLEAN at full resolution with natural weighting (left pane), uniform weighting (middle panel) and
uniform weighting with smaller pixel size zoomed in the central core region (right panel). The contour levels are: [0.1,0.2,0.4,0.8,1.6,3.2,6.4,
12.8,25.6,51.2]% ([0.025, 0.05, 0.1,0.2,0.4,0.8,1.6,3.2,6.4,12.8,25.6,51.2]%, [0.8,1.6,3.2,6.4,12.8,25.6,51.2]%) of the respective peak brightness.

Fig. 15. BL Lac reconstructions with DoB-CLEAN blurred with the clean beam with natural weighting (left panel), uniform weighting (middle
panel) and uniform weighting with smaller pixel size zoomed in the central core region (right panel). The contour levels are: [0.1,0.2, 0.4,0.8,
1.6,3.2,6.4,12.8,25.6,51.2]% ([0.025, 0.05, 0.1,0.2,0.4,0.8,1.6,3.2,6.4,12.8,25.6,51.2]%, [0.8,1.6,3.2,6.4,12.8,25.6,51.2]%) of the respective peak
brightness.

As visible in the natural-weighted image, we can identify
three (instead of two) peaks in the jet emission and the central
jet component is now resolved. Moreover, we observe a core
structure of a very narrow central core component surrounded
by a wider coronal emission. This structure cannot be seen with
CLEAN or DoB-CLEAN at lower resolution as the feature is
blurred out by the clean beam. We note that when comparing
the reconstructions of the innermost core region, for instance, in

the right panels in Figs. 16 and 15, also the CLEAN reconstruc-
tions show signs of a quasi-coronal emission around the core,
namely, emission to the north-west and to the south-east of the
central core component. However, in making a comparison to
our discussions in Sect. 4, it is also possible that this feature is
caused by missing scales in the reconstruction. A further anal-
ysis of this feature with alternative super-resolving algorithms,
namely, RML algorithms (Chael et al. 2018; Müller & Lobanov
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Fig. 16. BL Lac reconstructions with DoB-CLEAN blurred with the clean beam with natural weighting (left panel), uniform weighting
(middle panel) and uniform weighting with smaller pixel size zoomed in the central core region (right panel). The contour levels are:
[0.1,0.2,0.4,0.8,1.6,3.2,6.4,12.8,25.6,51.2]% ([0.1,0.2,0.4,0.8,1.6,3.2,6.4,12.8,25.6,51.2]%, [0.8,1.6,3.2,6.4,12.8,25.6,51.2]%) of the respective peak
brightness.

2022), is fully desired but we leave this aspect for subsequent
works.

We observe a sign of possible edge-brightening in the jet
base due to a second component towards the left. This was not
observed with CLEAN reconstructions. This structural feature
is also visible in the blurred DoB-CLEAN reconstructions, as
shown in the middle panel of Fig. 15. Furthermore, the core
structure in CLEAN and blurred DoB-CLEAN has a double-
elliptic shape, as seen by comparing the right panels in Figs. 16
and 15. With the full-resolution DoB-CLEAN reconstructions,
we see a more regular, circular reconstruction of the core, with a
clearly visible jet basis in the innermost region.

While a concordance between all reconstructions is generally
very high, the novel DoB-CLEAN reconstructions demonstrate
some possible features that are different from CLEAN recon-
structions, especially at the highest angular resolution. Some
of them could be connected to imaging artifacts either by
DoB-CLEAN or standard Högbom CLEAN. We discuss the
robustness of these features in Appendix C in more detail. In
a nutshell, both the possible edge-brightening and the coronal
emission around the core could be associated with a common
sidelobe pattern. The information regarding which emission is
real and which emission is thought of to be caused by side-
lobes is highly uncertain. This example once more highlights the
need for more variety in the choice of reconstruction methods in
VLBI. More work is required on the innermost jet in BL Lac with
more modern methods based on Bayesian and RML approaches
to establish a better concordance between various methods. This
aspect will be the subject of subsequent works.

6. Conclusion

In this work, we develop the novel multiscalar imaging algorithm
DoB-CLEAN, which is based on the framework of CLEAN
with the goal to still allow the straightforward manual manip-
ulation and calibration of data that has proven successful in the
VLBI community over recent decades. However, DoB-CLEAN
addresses some pathologies of the CLEAN algorithm: CLEAN
has spurious regularization properties, is inadequate to describe
extended emission, and introduces a separation between the
model fitted to the observed visibilites and the final astronom-
ical image. These pathologies are mainly caused by CLEAN
approaching the image as a set of delta functions. DoB-CLEAN
basically replaces these CLEAN components by wavelets that

compress radial and directional information in parallel. The
wavelet dictionary is fitted to the uv-coverage which provides a
more data-driven approach to imaging. Sidelobes are suppressed
by switching between a wavelet dictionary of steep, orthogonal
masks in the Fourier domain and a sidelobe free representation
in the image domain.

We implemented DoB-CLEAN and benchmarked its per-
formance against CLEAN reconstructions on synthetic data.
DoB-CLEAN succeeds over CLEAN in terms of resolution and
accuracy. It removes the separation between model and image,
that is, DoB-CLEAN fits a model to the uv-coverage that, in
fact, has a physical meaning. The biggest plausible advantage of
DoB-CLEAN, however, is the control it offers over the fit in the
gaps of the uv-coverage offered by the multiscalar wavelet dic-
tionary. First, this helps to prevent overfitting and fosters image
robustness (i.e., only measured, robust image features are mea-
sured). Second, this offers rich opportunities for post-processing,
that is, identifying missing scales and missing image features in
the observation and imaging. These post-processing capabilities
are also of general interest as they offer a way to identify an
uncertainty estimate of cleaned features in VLBI observations.

Despite these great advantages, DoB-CLEAN does not solve
any problem related to the sparsity of the uv-coverage. The lack
of certain scales in the observation can introduce artifacts in
the DoB-CLEAN imaging results when completely suppressed.
Moreover, the basis functions have negative flux; that is to say
that on a low level, it is still present in the final images (i.e., the
dynamic range remains limited).

Finally, we applied DoB-CLEAN to some existing and
already calibrated data from RadioAstron observations of BL
Lac. The reconstructions with DoB-CLEAN and with CLEAN
share certan similarities when blurred to the same resolution,
but there are also some visible differences that may alter the sci-
entific interpretation, especially at the highest resolution. This,
once more, elucidates the need for more variety in the imag-
ing algorithms used in frontline VLBI observations to establish
concordance between them and robustness of the scientific
interpretation. We address this issue in subsequent works.
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Appendix A: Dictionaries

The dictionaries used in this paper are as follows::

ΨDoG : I 7→ [Gr
σ0
∗ I −Ge

σ0,σ1,α0
∗ I,Gr

σ0
∗ I −Ge

σ0,σ1,α1
∗ I, ...,Gr

σ0
∗ I −Ge

σ0,σ1,αN−1
∗ I,

1
B0

N−1∑

i=0

Ge
σ0,σ1,αi

∗ I −Gr
σ1
∗ I,

Gr
σ1
∗ I −Ge

σ1,σ2,α0
∗ I, ... ,Gr

σ1
∗ I −Ge

σ1,σ2,αN−1
∗ I,

1
B1

N−1∑

i=0

Ge
σ1,σ2,αi

∗ I −Gr
σ2
∗ I,

Gr
σ2
∗ I −Ge

σ2,σ3,α0
∗ I, ... ,Gr

σ2
∗ I −Ge

σ2,σ3,αN−1
∗ I,

1
B2

N−1∑

i=0

Ge
σ2,σ3,αi

∗ I −Gr
σ3
∗ I,

...

Gr
σJ−1
∗ I −Ge

σJ−1,σJ ,α0
∗ I, ... ,Gr

σJ−1
∗ I −Ge

σJ−1,σJ ,αN−1
∗ I,

1
BJ−1

N−1∑

i=0

Ge
σJ−1,σJ ,αi

∗ I −Gr
σJ
∗ I,

Gr
σJ
∗ I]

and:

ΨDoB : I 7→ [J̃r
σ̃0
∗ I −Ge

σ̃0,σ̃1,α0
∗ I, J̃r

σ̃0
∗ I − J̃e

σ̃0,σ̃1,α1
∗ I, ..., J̃r

σ̃0
∗ I − J̃e

σ̃0,σ̃1,αN−1
∗ I,

1
B0

N−1∑

i=0

J̃e
σ̃0,σ̃1,αi

∗ I − J̃r
σ̃1
∗ I,

J̃r
σ̃1
∗ I − J̃e

σ̃1,σ̃2,α0
∗ I, ... , J̃r

σ̃1
∗ I − J̃e

σ̃1,σ̃2,αN−1
∗ I,

1
B1

N−1∑

i=0

J̃e
σ̃1,σ̃2,αi

∗ I − J̃r
σ̃2
∗ I,

J̃r
σ̃2
∗ I − J̃e

σ̃2,σ̃3,α0
∗ I, ... , J̃r

σ̃2
∗ I − J̃e

σ̃2,σ̃3,αN−1
∗ I,

1
B2

N−1∑

i=0

J̃e
σ̃2,σ̃3,αi

∗ I − J̃r
σ̃3
∗ I,

...

J̃r
σ̃J−1
∗ I − J̃e

σ̃J−1,σ̃J ,α0
∗ I, ... , J̃r

σ̃J−1
∗ I − J̃e

σ̃J−1,σ̃J ,αN−1
∗ I,

1
BJ−1

N−1∑

i=0

J̃e
σ̃J−1,σ̃J ,αi

∗ I − J̃r
σ̃J
∗ I,

J̃r
σ̃J
∗ I]

where Gr
σ denotes a two-dimensional radially symmetric (nor-

malized) Gaussian function with standard deviation σ and
Ge
σ1,σ2,α

a 2D elliptical (and normalized) Gaussian function with
minor axis, σ1, and major axis, σ2, that is rotated by an angle α.
J̃r
σ is a 2D radially symmetric modified Bessel function, namely,

J̃r
σ(r) = 1

σr J1(2πr/σ) and J̃e
σ1,σ2,α is the elliptical analog with a

minor axis of σ1, major axis of σ2, and rotation angle α.
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Appendix B: Proof for the selection criterion

It is:

argmax
i,m,k

1∥∥∥Φi,m ∗ BD
∥∥∥
∥∥∥Φi,m

∥∥∥
(
Φi,m ∗ BD ∗ ID

)
(k)

= argmax
i,m,k

1∥∥∥Φi,m ∗ BD
∥∥∥
∥∥∥Φi,m

∥∥∥
(
Φi,m ∗ BD ∗ BD ∗ I

)
(k)

= argmax
i,m,k

1∥∥∥Φi,m ∗ BD
∥∥∥
∥∥∥Φi,m

∥∥∥

Φi,m ∗ BD ∗ BD ∗
∑

j,n,l

a j,n,lΦ j,n ∗ δl

 (k)

= argmax
i,m,k

1∥∥∥Φi,m ∗ BD
∥∥∥
∥∥∥Φi,m

∥∥∥

Φi,m ∗ BD ∗ δk ∗ BD ∗
∑

j,n,l

a j,n,lΦ j,n ∗ δl

 (0)

= argmax
i,m,k

∑

j,n,l

a j,n,l

〈
1∥∥∥Φi,m ∗ BD

∥∥∥
∥∥∥Φi,m

∥∥∥
Φi,m ∗ BD ∗ δk, BD ∗ Φ j,n ∗ δl

〉

(B.1)

At this point we have to make an approximation. The maximum
of the sum is approximately achieved at the maximal summand
(this approximation also lies behind the minor loop of standard
CLEAN, compare our discussion in Sect. 2.2). In other words,
we solve:

argmax
i,m,k

max
j,n,l

a j,n,l

〈
1∥∥∥Φi ∗ BD
∥∥∥
∥∥∥Φi,m

∥∥∥
Φi,m ∗ BD ∗ δk,Φ j,n ∗ BD ∗ δl

〉

= argmax
i,m,k

max
j,n

a j,n,k

〈
1∥∥∥Φi,m ∗ BD

∥∥∥
∥∥∥Φi,m

∥∥∥
Φi,m ∗ BD,Φ j,n ∗ BD

〉

(B.2)

where equality holds since Φ ∗ BD is centrally peaked.
It is:

⟨Φi,m ∗ BD,Φ j,n ∗ BD⟩ = 1i, j⟨Φi,m ∗ BD,Φi,n ∗ BD⟩, (B.3)

as the DoB wavelet functions of varying radial widths have dis-
tinct supports in the Fourier domain. Hence, we are left with the
argmax-problem:

argmax
i,m,k

max
n

a j,n,k
1∥∥∥Φi,m ∗ BD

∥∥∥
∥∥∥Φi,m

∥∥∥
⟨Φi,m ∗ BD,Φi,n ∗ BD⟩ (B.4)

Then:

max
i,m,k,n

a j,n,k
1∥∥∥Φi,m ∗ BD

∥∥∥
∥∥∥Φi,m

∥∥∥
⟨Φi,m ∗ BD,Φi,n ∗ BD⟩

≤ max
i,m,k,n

a j,n,k
1∥∥∥Φi,m ∗ BD

∥∥∥
∥∥∥Φi,m

∥∥∥
∥∥∥Φi,m ∗ BD

∥∥∥
∥∥∥Φi,n ∗ BD

∥∥∥

= max
i,m,k,n,N

a j,n,k

∥∥∥Φi,n ∗ BD
∥∥∥

∥∥∥Φi,m

∥∥∥

= max
i,k,n,N

a j,n,k

∥∥∥Φi,n ∗ BD
∥∥∥

∥∥∥Φi,n

∥∥∥
, (B.5)

where the last equality holds since
∥∥∥Φi,n1

∥∥∥ =
∥∥∥Φi,n2

∥∥∥ for every
n1, n2. This maximum gets reached exactly for m = n. Hence,
our selection criterion Eq. 20 is met by this procedure.

Appendix C: Reliability of features recovered with
DoB-CLEAN

We now discuss the reliability of the new features recovered in
the reanalysis of the BL Lac observations with DoB-CLEAN.

Two features are in particular outstanding at highest resolution:
the coronal emission around the core, and the possible sign
of an edge-brightening. We have demonstrated in Sect. 4 that
DoB-CLEAN addresses several pathologies of CLEAN, allows
for moderate super-resolution and more accurate representation
of extended emission. However, as was also demonstrated in
Sect. 4, these advantages come to the cost of low-level imaging
artifacts, in particular for the more challenging problem of recov-
ering images with super-resolution (i.e., when not convolving
with a beam). It is therefore unknown from a-priori how reliable
the image features observed with DoB-CLEAN really are. Does
DoB-CLEAN resolve some features that were not visible with
CLEAN since DoB-CLEAN processes the uv-coverage more
seriously? Or does vice versa DoB-CLEAN pick up on some
artifacts that were suppressed by CLEAN since the interactive
data manipulation (self-calibration, tapering, CLEAN-windows,
flagging, ...) is more natural in CLEAN?

We present in Fig. C.1 the progress of the CLEANing proce-
dure with DoB-CLEAN on the BL Lac data set. The residuals
show a ring-like sidelobe structure that indicates the missing
of certain scales in the not yet fully converged reconstructions.
These scales will be added during later iterations as can be seen
from the final reconstruction, namely, the vanishing residual,
in the most-right panel. However, the progress of the DoB-
CLEAN procedure highlights a specific requirement: since the
image is composed by a sequence of wavelet sub-bands that each
encode information on a specific spatial scale (i.e., the scale of
the ring-like sidelobe pattern, the scale of the second ring-like
sidelobe-pattern, ...) a final and clean reconstruction result will
be only achievable if the various scales enter the recovered image
with the correct weighting relative to each other. If one scale
is over-weighted by the reconstruction procedure, the recovered
image will contain sidelobes at this spatial scale as well. The
correct relative weighting of scales is taken into account by our
scale-selection criterion that was proven to be optimal in the
absence of calibration issues. However, this fosters an important
essential in the application to real, observational data: the self-
calibration procedure needs to produce well estimates to the true
gains such that no scale will be preferred or suppressed as a con-
sequence of gain variations. Vice versa, the absence of sidelobe
emission in the final reconstruction, see the most-right panel in
Fig. C.1, indicates that the calibration and imaging procedure is
consistent and was successful.

We note that the coronal emission around the central core
component appears at the size of the first sidelobe scale, while
the second edge-brightened blob left to the main jet-feature
corresponds well to the second sidelobe scale (see Fig. C.1).
This questions the robustness of the presence (DoB-CLEAN)
or absence (CLEAN) of these image features. According to our
reasoning above, we admit that DoB-CLEAN might be more
prone than CLEAN to capture on sidelobe artifacts. However,
the overall success of the reconstruction points towards a robust
recovery. Moreover, also the CLEAN reconstructions seem to
indicate emission to the north-west and south-east of the central
core component, comparable to the coronal emission found with
DoB-CLEAN (e.g., compare the most right panels in Fig. 16
and 14, working towards consistency). Typically, in CLEAN-like
algorithms (such as CLEAN and DoB-CLEAN), the decision
which emission is true and which emission is thought to be
caused by a sidelobe is answered manually by setting proper
CLEAN windows and by self calibration. A final answer regard-
ing which reconstruction is more correct cannot be answered
here. We recommend the use of a RML based method that fit
the closure quantities instead of the visibilities (e.g., Chael et al.
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Fig. C.1. Progress of the cleaning with DoB-CLEAN. Shown is the sum of the recovered image and the residual after 4000 iterations
(left panel), 5000 iterations and phase self-calibration (middle panel) and the final ground-only image (right panel). The contour levels are
[0.1,0.2,0.4,0.8,1.6,3.2,6.4,12.8,25.6,51.2]% of the peak brightness.

2018; Müller & Lobanov 2022) for consecutive works to build
concordance between various reconstructions.
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3.4 Paper 3: Müller & Lobanov 2023b, A&A, 673, A151

We present in this chapter the third paper in the line of works regarding mul-

tiscale VLBI imaging Müller & Lobanov (2023b). In this work, we include the

multidirectional, multiscale dictionaries proposed in Müller & Lobanov (2023a)

in DoG-HiT and extend DoG-HiT to both polarimetry and dynamic reconstruc-

tions. This research is inspired particularly by the future planning of the EHT

and the ngEHT project (Doeleman et al. 2019), with their primary goals to pro-

duce polarimetric movies at the event horizon scales. Such movies are expected to

uncover much stronger constraints on the nature of accretion and the launching

of the innermost jet (Doeleman et al. 2019). The movie reconstruction prob-

lem is particularly challenging, probably presenting the most challenging imaging

problem in VLBI so far. It requires the image reconstruction algorithm to be

able to deal with super-resolution (to resolve the event horizon), fast dynamics,

polarimetry, relatively sparse, heterogeneous arrays and poor data quality (due

to the high frequency).

In the following manuscript, we utilize the multiresolution support to achieve

these goals with a multiscalar constrained minimization strategy as pioneered by

Murtagh et al. (1995); Starck & Murtagh (1994). We conclusively demonstrate,

albeit at somewhat lower fidelity in comparison to static reconstruction, that we

can recover, in an unsupervised fashion, dynamic chanes of polarized emission

occurring on minute timescales. This achievement presently cannot be matched

by any other reconstruction algorithm applied to EHT/ngEHT image reconstruc-

tion, thus signifying a major algorithmic milestone on the way toward reaching

the scientific goals of the next generation of VLBI arrays. It should further be

mentioned that the multiresolution support is a rather simple constraint that

could be easily transferred to other RML and Bayesian frameworks. We expect

great improvements in movie quality from such a combined hybrid approach.
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ABSTRACT

Context. Due to the limited number of antennas and the limited observation time, an array of antennas in very long baseline interfer-
ometry (VLBI) often samples the Fourier domain only very sparsely. Powerful deconvolution algorithms are needed to compute a final
image. Multiscale imaging approaches such as DoG-HiT have recently been developed to solve the VLBI imaging problem and show
promising performance: they are fast, accurate, unbiased, and automatic.
Aims. We extend the multiscalar imaging approach to polarimetric imaging, to reconstructions of dynamically evolving sources, and
finally to dynamic polarimetric reconstructions.
Methods. These extensions (mr-support imaging) utilize a multiscalar approach. The time-averaged Stokes I image was decomposed
by a wavelet transform into single subbands. We used the set of statistically significant wavelet coefficients, the multiresolution sup-
port (mr-support), computed by DoG-HiT as a prior in a constrained minimization manner; we fitted the single-frame (polarimetric)
observables by only varying the coefficients in the multiresolution support.
Results. The Event Horizon Telescope (EHT) is a VLBI array imaging supermassive black holes. We demonstrate on synthetic data
that mr-support imaging offers ample regularization and is able to recover simple geometric dynamics at the horizon scale in a typical
EHT setup. The approach is relatively lightweight, fast, and largely automatic and data driven. The ngEHT is a planned extension
of the EHT designed to recover movies at the event horizon scales of a supermassive black hole. We benchmark the performance of
mr-support imaging for the denser ngEHT configuration demonstrating the major improvements the additional ngEHT antennas will
bring to dynamic polarimetric reconstructions.
Conclusions. Current and upcoming instruments offer the observational possibility to do polarimetric imaging of dynamically evolv-
ing structural patterns with the highest spatial and temporal resolution. State-of-the-art dynamic reconstruction methods can capture
this motion with a range of temporal regularizers and priors. With this work, we add an additional simpler regularizer to the list:
constraining the reconstruction to the multiresolution support.

Key words. techniques: interferometric – techniques: image processing – techniques: high angular resolution –
methods: numerical – galaxies: nuclei – galaxies: jets

1. Introduction

In very long baseline interferometry (VLBI) the signals recorded
at single antennas are correlated to achieve spatial resolution that
would not be achievable with single-dish instruments. The corre-
lation product of every antenna pair at a fixed time is the Fourier
coefficient (visibility) of the true sky brightness distribution with
a Fourier frequency determined by the projected spatial vector
joining two antennas (baseline). As the Earth rotates during the
observing run, baselines rotate on elliptical tracks in the Fourier
domain, hence filling up the Fourier plane (uv-plane) continu-
ously. However, due to the limited number of antennas and the
limited amount of observing time, the coverage of Fourier coeffi-
cients (uv-coverage) is sparse. The procedure to recover the true
sky brightness distribution from these sparsely covered Fourier
coefficients is called VLBI imaging.

It is a long-standing frontline goal in astronomy to recover
images of the shadow of a supermassive black hole. The Event
Horizon Telescope (EHT) is a globally spanning VLBI array
that observes at 230 GHz (with a recent upgrade to 345 GHz).
With the combination of global baselines and short baselines,
the EHT achieves the angular resolution that is needed to capture

the first image of the black hole shadow in M87 (Event Horizon
Telescope Collaboration 2019a) and in the Milky Way (Event
Horizon Telescope Collaboration 2022a). The next-generation
Event Horizon Telescope (ngEHT) is a planned extension of the
EHT (Doeleman et al. 2019; Johnson et al. 2023). It will produce
movies of the accretion onto the central black hole SGR A* at
the scales of the event horizon (Roelofs et al. 2023; Emami et al.
2023). The dynamic timescales for these observations are very
short. Observations of Sgr A* in the submillimeter (Bower et al.
2015; Wielgus et al. 2022) and near-infrared regime (GRAVITY
Collaboration 2018a,b) confirm that Sgr A* is time-varying
on timescales as short as 30 min. The predicted innermost
stable circular orbit (ISCO) period varies between 4 min and
roughly 30 min, depending on the spin of the black hole.
Palumbo et al. (2019) concluded that a well-sampled baseline
coverage on timescales of ∼30 min is needed to recover the
source dynamics.

CLEAN (Högbom 1974) and its many variants (Clark 1980;
Schwab 1984; Wakker & Schwarz 1988; Bhatnagar & Cornwell
2004; Cornwell 2008; Rau & Cornwell 2011; Müller & Lobanov
2023) have served the community well for decades, but are
recently being challenged by forward-imaging approaches in
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the spirit of regularized maximum likelihood (RML) methods
(Narayan & Nityananda 1986; Wiaux et al. 2009; Garsden et al.
2015; Ikeda et al. 2016; Chael et al. 2016, 2018; Akiyama et al.
2017b,a; Event Horizon Telescope Collaboration 2019b; Müller
& Lobanov 2022) and Bayesian approaches (Arras et al. 2019,
2021; Broderick et al. 2020a,b). Recently we developed new
multiresolution tools for performing VLBI imaging (Müller
& Lobanov 2022, 2023). For these multiscalar approaches we
designed special wavelet-based basis functions (difference of
Gaussian and difference of spherical Bessel functions) and fitted
the basis functions to the uv-coverage. In this way we define
smooth basis-functions that are well suited to describe (com-
press) the recovered image features by encoding information
about the uv-coverage itself. Some wavelets are most sensitive
to gaps in the uv-coverage, while others are most sensitive to
covered Fourier coefficients. While the signal from the latter
should be recovered, the signal from former are suppressed
(effectively avoiding overfitting).

As a byproduct of these multiscalar imaging algorithms,
we compute the multiresolution support (mr-support; Müller &
Lobanov 2022): a set of wavelet parameters that are deemed sta-
tistically significant to represent the recovered image features.
The multiresolution support encodes various information about
the recovered image. First, it implements a support constraint
(to determine where the emission is located in the image). Sec-
ond, it encodes a spatial constraint (to understand which spatial
scales are needed to represent the image features at these loca-
tions). In particular, the second prior information is determined
by the spatial scales that are present in the data (i.e., covered
by baselines in the observation). We demonstrated in Müller &
Lobanov (2022) that the multiresolution support is a powerful
prior information very well suited to refining the imaging pro-
cedure. In Müller & Lobanov (2022) we proposed the addition
of amplitudes and phases to the data terms and the removal of
any regularizer term, in order to solve the resulting optimization
problem by only updating the coefficients in the multiresolution
support. The fit to the observed visibilities improved, but without
the addition of spurious artifacts that are typical of overfitting.

Among Stokes I imaging, full polarimetric imaging is of
interest for the VLBI community, both theoretically (Blandford
& Znajek 1977; Hardee et al. 2007; Kramer & MacDonald 2021)
and observationally (e.g., Gómez et al. 2011, 2016; Hovatta
et al. 2012; Zamaninasab et al. 2014; Pötzl et al. 2021; Ricci
et al. 2022, among many others), in particular at event hori-
zon scales (Event Horizon Telescope Collaboration 2021a,b). In
polarimetric imaging the recorded data are separated into several
polarized subbands and recombined in the four Stokes parame-
ters. Essentially, we have four Stokes parameters (I, Q, U, V) and
corresponding polarized visibilities. Hence, the problem that we
aim to solve for the other three Stokes parameters is the same as
for Stokes I: recovering a signal from a sparse measurement of
the Fourier coefficients. However, there are some slight differ-
ences. While the Stokes I image is necessarily nonnegative (and
used during imaging as a prior), this does not have to be true for
Stokes Q, U, and V. Moreover, I2 ≥ Q2 + U2 + V2 applies.

The multiresolution support is a well-suited prior to be
applied to the polarimetric imaging when the Stokes I image is
already done. The support constraint of the multiresolution sup-
port encodes the information that linear and circular polarized
emission theoretically can only appear at locations where total
intensity (Stokes I) is greater than zero. This might not reflect
the observation situation in every case. Sometimes the Stokes I
signature cannot be retrieved with the spatial sensitivity of the
interferometer, while the more localized (e.g., due to Faraday

rotation) polarized structural pattern is visible. However, in most
VLBI studies this pathological situation does not appear and
support constraint is a good approximation. Moreover, the spa-
tial constraint adheres to the fact that the polarimetric visibilities
have the same uv-coverage as total intensity visibilities (i.e., the
same spatial scales, those covered by uv-coverage, are present in
the polarized images).

Another domain of current research is the study of dynamic
sources, such as Sgr A*. We study in this case the static imaging
of a dynamically evolving source as in Event Horizon Telescope
Collaboration (2022b), and the dynamic reconstruction of a
movie (Roelofs et al. 2023). In this work we focus on the
latter problem. Data sets of dynamic sources pose additional
challenges. Due to the short variability timescale, the effective
uv-coverage in every frame is not sufficient for efficient snap-
shot imaging. Modern approaches utilize a temporal correlation
instead, in a Bayesian framework (Bouman et al. 2018; Broderick
et al. 2022; Roelofs et al. 2023) or as temporal regularizer in
the RML framework (Johnson et al. 2017; Bouman et al. 2018;
Chael et al. 2022; Roelofs et al. 2023). Moreover, the variability
of the source could be misidentified with the calibration of the
gains (Event Horizon Telescope Collaboration 2022b).

Again, the multiresolution support (computed for the time-
averaged image) encodes prior information that is very desirable
for dynamic imaging. The support constraint encodes the infor-
mation that every location of an emission spike appearing during
the observation is present also in the mean image. The uv-
coverage of the full observation run is the sum of the uv-coverage
of the single frames. Hence, the spatial constraint also provides a
powerful image prior for dynamic imaging; the multiresolution
support only allows spatial scales that are present in the mean
image (in the full observation run), which means that the fit in
the gaps of the uv-coverage remains under control. On the other
hand, the spatial constraint allows for the addition of the spatial
scales to single frames that might be not represented in the uv-
coverage of this single frame, but in earlier or later snapshots.
However, we note that there may be a bias toward larger scales
since the mean image suppresses small-scale structures present
in only part of the individual frames.

Based on the success of the approach presented in Müller &
Lobanov (2022) of only changing the coefficients in the multires-
olution support to introduce effective regularization, we propose
the same approach for static polarimetric imaging and dynamic
imaging. As outlined above, the multiresolution support is well
suited to be used as a regularizer in these problems as it exactly
encodes the prior information that is needed. As we solve two
quite different extensions to the standard VLBI imaging with the
same approach, it is natural to use the same approach for the
combined problem: a dynamic polarimetric reconstruction.

2. Theory

2.1. VLBI

As described by the van Cittert–Zernike theorem, the visi-
bilities V are related to the true sky-brightness distribution
I(x, y) by a two-dimensional Fourier transform under reasonable
assumptions (Thompson et al. 2017):

VI(u, v) =
∫ ∫

e−2πi(xu+yv)I(x, y)dxdy =: F I(u, v). (1)

From a full coverage of the Fourier coefficients (visibilities)
the true sky brightness distribution could be computed by an
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inverse Fourier transform. However, in VLBI the uv-coverage
is very sparse with significant gaps. This makes the problem of
recovering the image an ill-posed inverse problem. The polar-
ized quantities are measured at every antenna with orthogonal
polarimetric filters (linear or circular). The cross-correlation of
these signals gives rise to the polarimetric Stokes I parameters
and their respective polarimetric visibilities:

VI = F I, (2)
VQ = FQ, (3)
VU = FU, (4)
VV = FV. (5)

Here I is the total brightness, Q and U the linear polarizations,
and V the fraction of circular polarization. By construction it is

I2 ≥ Q2 + U2 + V2. (6)

2.2. Imaging

Imaging with the CLEAN algorithm and its variants (Högbom
1974; Schwab 1984; Wakker & Schwarz 1988) were the stan-
dard in VLBI imaging for the last decades. In CLEAN the
imaging problem is equivalently reformulated as a deconvolution
problem,

ID = BD ∗ I, (7)

where ID is called the dirty map (the inverse Fourier transform
of all measured, and probably reweighted, Fourier coefficients)
and BD is called the dirty beam (the dirty map of a synthetic
delta source). The astronomer using CLEAN determines some
search windows for components; CLEAN looks for the max-
imum peak in the residual in this window (minor loop) and
subtracts the shifted and rescaled dirty beam from the resid-
ual (major loop). This procedure is iterated until the residual is
noise-like. In this way, CLEAN models the image as a set of
delta functions. Finally, these components are restored with a
restoring beam (clean beam) that fits the central peak of the dirty
beam. CLEAN is an inverse modeling approach to the imaging
problem.

Recently, forward-modeling approaches have gained interest
in the community in the framework of RML (Akiyama et al.
2017a; Chael et al. 2018; Müller & Lobanov 2022) and Bayesian
methods (Arras et al. 2019; Broderick et al. 2020a,b). These
methods seem to outperform classical CLEAN in terms of
speed, spatial resolution, sensitivity, and precision, in particular
when the uv-coverage is sparse (e.g., Event Horizon Telescope
Collaboration 2019b; Arras et al. 2021; Müller & Lobanov 2022;
Roelofs et al. 2023). On the other hand, these forward-modeling
methods require the fine-tuning of some hyperparameters and
regularization parameters, despite the recent effort to reduce this
dependence (Müller & Lobanov 2022). For the remainder of
this manuscript we focus on RML methods, and ignore Bayesian
approaches for now.

In RML a sum of data fidelity terms and penalty terms is
minimized

Î ∈ argminI

∑

i

αiS i(I) +
∑

j

β jR j(I), (8)

where the data fidelity term S i measures the fidelity of the
recovered solution I to the observed data (i.e., polarized visi-
bilities) and the regularization terms R j measure the fidelity of

the guess image I. The regularization parameters αi and β j are
manually set weights that balance data fidelity and regularization
terms. Typical choices for the data terms are chi-square values
to the observed (polarimetric) visibilities, and related calibration
independent quantities such as closure phases and closure ampli-
tudes. For the regularization terms a wide range of regularizers
has been applied in the past, for example sparsity promoting reg-
ularization (l1, l2), smoothness constraints (total variation, total
squared variation), hard constraints (total flux, non-negativity),
entropy maximization (MEM), and multiscale decompositions
(hard thresholding on scales). The regularization terms introduce
regularization to the ill-posed imaging problem. By balancing
the data terms and the regularization terms, we select a pos-
sible guess solution that fits the data (small data terms) and
is robust against noise and artifacts (small penalty terms). We
demonstrated in previous works (Müller & Lobanov 2022) that a
support constraint has the same regularization effect. By con-
straining the space of free parameters to the multiresolution
support we were able to refine the fit to the observed data in
later imaging rounds.

2.3. Wavelets

The basis behind multiscalar approaches are multiscalar dic-
tionaries. In Müller & Lobanov (2022) we proposed the use
of radial-symmetric difference of Gaussian (DoG) wavelets,
and extended them to directional dependent basis functions in
Müller & Lobanov (2023). Moreover, we introduced in Müller &
Lobanov (2023) steep quasi-orthogonal basis functions to study
the Fourier domain by difference of Bessel functions (DoB).
Both dictionaries (DoG and DoB) are related to each other: the
DoG wavelets approximate the central peak of the DoB wavelets,
but do not contain the wider sidelobes of latter ones. In what fol-
lows we quickly summarize these wavelet dictionaries. For more
detailed information we refer to Müller & Lobanov (2022, 2023).

Wavelets have a wide range of applications in image com-
pression. The most widely used continuous wavelet is the
Mexican-hat wavelet which is a rescaled second-order deriva-
tive of a Gaussian (Lagrangian of Gaussians; Starck et al. 2015).
The difference of Gaussian method offers some viable approxi-
mation to Mexican hat wavelets. A DoG wavelet is described by
two width parameters σ1, σ2:

Φ
σ1,σ2
DoG (x, y) =

1
2πσ2

1

exp

−r(x, y)2

2σ2
1

 − 1
2πσ2

2

exp

−r(x, y)2

2σ2
2



= Gσ1 −Gσ2 . (9)

The Fourier transform of these DoG wavelets define ring-like
filters in the Fourier domain:

FΦσ j ,σ j+1

DoG (u, v) ∝ exp
(
−2π2σ2

jq(u, v)2
)
− exp

(
−2π2σ2

j+1q(u, v)2
)
.

(10)

The extension to DoB wavelets is natural. We replace the DoG
wavelets by spherical Bessel functions:

Φ
σ̃ j,σ̃ j+1

DoB (x, y)

=
1

σ̃ jr(x, y)
J1(2πr(x, y)/σ̃ j) − 1

σ̃ j+1r(x, y)
J1(2πr(x, y)/σ̃ j+1).

(11)

Moreover, the extension of both wavelets to directional depen-
dent basis functions is straightforward as well. The radial
coordinates just need to be replaced by elliptical ones.
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Fig. 1. Illustration of wavelet decomposition and multiresolution support of an astronomical image. Left panels: true image and true image with
additional Gaussian noise; middle panels: Wavelet decomposition of the noised image with the DoG wavelet dictionary computed with filter sizes
σ0 = 1, σ1 = 2, σ2 = 4, ..., σ5 = 32 pixels; right panels: multiresolution support computed by thresholding the wavelet scales to the scale-dependent
noise plotted as a mask with value 1 (coefficient in the support) or 0 (coefficient not in the multiresolution support).

The wavelet decomposition is composed from the wavelet
basis functions from a sequence of increasing widths σ0 ≤ σ1 ≤
... ≤ σJ:

ΨDoG : I 7→ I = [Φσ0,σ1
DoG ∗ I,Φσ1,σ2

DoG ∗ I, ...,GσJ ∗ I], (12)

ΨDoB : I 7→ I = [Φσ0,σ1
DoB ∗ I,Φσ1,σ2

DoB ∗ I, ..., JσJ ∗ I]. (13)

For direction dependent dictionaries we use elliptical Gaussians
and Bessel functions instead. For more details we refer to our dis-
cussion in Müller & Lobanov (2023). The multiscale dictionary
is the adjoint of the multiscale decomposition (in what follows
called Γ)

Γ : I = {I0, I1, I2, ..., IJ} 7→
J−1∑

i=0

Φ
σi,σi+1
DoG ∗ Ii +GσJ ∗ IJ , (14)

with an analogous action for DoB wavelets and multidirectional
wavelets. The complete action of the multiscalar and multidirec-
tional wavelet decomposition is presented in the appendix.

2.4. DoG-HiT

Our novel algorithm for doing dynamic polarimetric reconstruc-
tions is an extension of the DoG-HiT algorithm (Müller &
Lobanov 2023). We summarize this algorithmic framework in
this section. DoG-HiT models the image by a radial symmet-
ric wavelet dictionary ΨDoG. The Fourier transform of the basis
functions of the dictionary (atoms) are sensitivity filters in the
Fourier domain. Hence, by fitting the widths of the Gaussians
to the uv-coverage, we define wavelets that are most sensitive to
measured Fourier coefficients and wavelets that are most sensi-
tive to gaps in the uv-coverage. The signal of the former should
be kept, while the lack of the latter atoms causes sidelobes in the
image. In this way the dictionary allows for a better separation
between measured features (covered by baselines) and uncovered
artifacts. We interpolate the signal in the gaps by the smooth
nature of the basis functions, but suppress the signal in the gaps
to a level where overfitting is prohibited. All in all, we solve the
minimization problem (Müller & Lobanov 2022):

Î ∈ argminI [S cph(FΓI ,V) + S cla(FΓI ,V)
+β · ∥I ∥l0 + Rflux(I , f )]. (15)

Here S cph and S lca denote the χ2 fit to the closure phases
and closure amplitudes, respectively, and Rflux denotes a char-
acteristic function on the total flux of the guess solution. We

use the pseudo-norm ∥·∥l0 (i.e., the number of non-zero coef-
ficients) as a sparsity promoting regularization term weighted
with a regularization parameter β. Equation (15) is solved by a
forward–backward splitting algorithm alternated with rescaling
the emission to a predefined total flux (Müller & Lobanov 2022).
The final recovered solution is:

Î = ΓI . (16)

The regularization parameter β is the only free parameter that
needs to be chosen manually by the user. The number of free
parameters is therefore much smaller than the number of free
parameters for RML methods such as ehtim (Chael et al. 2016,
2018) or SMILI (Akiyama et al. 2017b,a) since the penalty term
is chosen data-driven. We demonstrated in Müller & Lobanov
(2022) that although the optimization landscape is much sim-
pler, the reconstructions obtained by DoG-HiT are competitive to
RML reconstructions. Moreover, we only fit closure phases and
closure amplitudes for DoG-HiT in Eq. (15) (i.e., the reconstruc-
tion is robust against instrumental gain corruptions). Next, we
use the model computed by DoG-HiT for self-calibration (i.e.,
we determine the gains).

2.5. Multiresolution support

A specific property of the multiscalar decompositions is the mul-
tiresolution support. Mertens & Lobanov (2015) paved the way
for the application of the multiresolution support in the analysis
of active glactic nucleus (AGN) jets. The multiresolution support
is a set of wavelet components that are statistically significant
(Starck et al. 2015). We decompose a noisy image by a wavelet
dictionary: [I0, I1, I2, ..., IJ] = ΨI. Moreover, we compute the
scale-dependent noise level s j by decomposing a Gaussian white
noise field with the same wavelet dictionary. Given a thresh-
old ks, we can define a set of statistically significant wavelet
coefficients with the criterion that

∥∥∥I j(x, y)
∥∥∥ ≥ kss j, where the

noise level is approximated by the variance from an emission-
free region of the image scale I j (i.e., far away from the center).
The multiresolution support for a celestial ground truth image
from the EHT imaging challenges1 is illustrated in Fig. 1.

The multiresolution support encodes two different types of
prior information about the model. First, it encodes a support
constraint (i.e., it defines the position of significant emission
spikes in the field of view). Second, the multiresolution support
contains information about the spatial scales that are present in

1 http://vlbiimaging.csail.mit.edu/
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the observation. In sparse VLBI arrays, this is dominated by the
uv-coverage (i.e., by which spatial scales are covered by observed
baselines in the Fourier domain). As various wavelet basis func-
tions are most sensitive to various baselines or gaps in the
uv-coverage, the information about which spatial scales are cov-
ered by observations is directly imprinted in the multiresolution
support. This is especially true for the direction-dependent DoG
and DoB wavelets used for DoG-HiT that were fitted to the uv-
coverage (i.e., that were developed to allow an optimal separation
between covered features and gaps in the uv-coverage).

DoG-HiT solves the minimization of Eq. (15) with a
forward–backward splitting algorithm. The backward projection
step is the application of the proximal-point operator of the l0
penalization function, which is a hard thresholding (Müller &
Lobanov 2022). Hence, all insignificant wavelet coefficients are
set to zero. DoG-HiT therefore computes an approximation of the
multiresolution support as a byproduct. This support was used to
further refine rounds in the imaging (Müller & Lobanov 2022).

The computation of the multiresolution support as a byprod-
uct of DoG-HiT highlights an essential improvement of DoG-
HiT compared to CLEAN regarding supervision. The support of
significant emission is found by DoG-HiT automatically, while
it has to be selected in CLEAN by the user-defined CLEAN
windows. DoG-HiT is therefore is less user-biased and pro-
vides (compared to standard RML frameworks and CLEAN) an
essential step toward unsupervised VLBI imaging.

3. Algorithms

We outline in this section the algorithms used for static polarime-
try, dynamic Stokes I imaging, and dynamic polarimetry. In what
follows we call these algorithms mr-support imaging.

3.1. Stokes I

Static Stokes I images are constructed with DoG-HiT with the
five round pipeline presented in Müller & Lobanov (2022).
However, in that work we used only radially symmetric
wavelets. As an extension, we used the multi-directional dic-
tionaries developed in Müller & Lobanov (2023) for this work
(i.e., we replaced the circular symmetric Gaussians by elliptical
Gaussians). Moreover, we used a grid search in Müller &
Lobanov (2022) to find a proper starting point for the forward–
backward splitting minimization iterations of DoG-HiT. Since
the backward step in the minimization is essentially a hard
thresholding, we tried different scale-dependent thresholds in
an equidistant grid to minimize Eq. (15), and used the setting
of the minimum as the starting point for the forward–backward
iterations. For this manuscript, we used the same grid search,
but applied the orthogonal DoB wavelets in the grid search,
while still using the DoG wavelets in the imaging rounds of
the pipeline. We do not focus on the Stokes I reconstruction
in this work as these extensions are rather straightforward and
minor, and the focus of the manuscript is on an extension of
DoG-HiT to polarimetry. We recall one of the main advantages
of DoG-HiT: the algorithm works mainly unsupervised with a
minimal set of free parameters, hence adding a minimal human
bias in the imaging procedure.

3.2. Polarimetry

For polarimetric reconstructions we first reconstruct a Stokes I
image with DoG-HiT and solve for the gains by self-calibrating
to the final output (DoG-HiT relies on calibration independent

closure quantities). As a second step, we solve for the polarimet-
ric Stokes parameters Q,U, and V . We take the multiresolution
support computed by DoG-HiT for the Stokes I imaging and con-
strain the space of free parameters to all wavelet coefficients in
the multiresolution support. We then solve for Q,U,V by mini-
mizing the fit toVQ,VU ,VV with a gradient descent algorithm,
but only allow coefficients in the multiresolution support to vary.
In summary we solve the following problems:

Q̂ ∈ argminQ={Q0,...,Qn},Q j(x,y)=0 whenever Î j(x,y)=0
[
S Q(FΓQ,VQ)

]
,

Û ∈ argminU={U0,...,Un},U j(x,y)=0 whenever Î j(x,y)=0 [S U(FΓU,VU)].

(17)

Here {Î0, ..., În} =: Î are the recovered wavelet coefficients for
the Stokes I image as in Sect. 2.4, and S U and S Q are the chi2
fit qualities to the Stokes Q and U visibilities. The side condition
Q j(x, y) = 0 whenever Î j(x, y) = 0 denotes the constraint that we
only vary coefficients in the multiresolution support.

The multiresolution support is a well-suited regularizer here;
the support constraint encodes the side-condition Eq. (6) effec-
tively, which means that polarized emission is only allowed
to appear at locations in the images in which we found rele-
vant emission in total intensity. While this inequality Eq. (6)
holds true theoretically in any case, in practice the pathologi-
cal situation could occur that due to the instrumental effect a
non-detection of Stokes I does not rule out polarimetric struc-
tures. With this caveat in mind, we assume for the rest of the
manuscript that inequality Eq. (6) holds true in observations as
well. Moreover, the polarimetric visibilities have the same uv-
coverage as the Stokes I visibility. The spatial constraint of the
multiresolution support describes which spatial scales are statis-
tically significant to describe the emission in the image, which in
the case of sparse VLBI arrays is dominated by the uv-coverage
(i.e., which spatial scales are compressed by which baselines
and whether these baselines are measured). Hence, we already
computed the multiresolution support as a byproduct in DoG-
HiT to study the uv-coverage of the observation, and get control
over overfitting in the gaps of the uv-coverage by suppressing the
respective atoms of the dictionary. This effective regularization
can be copied to the polarized visibilities as the uv-coverage is
the same.

Moreover, we would like to note once again that the multires-
olution support is a completely data driven property computed as
a sideproduct by DoG-HiT. Hence, the reconstruction of polari-
metric properties still relies on a minimal set of hyperparameters
and remains largely unsupervised.

We fitted complex polarimetric visiblities directly here,
which requires that a good polarization calibration is already
available. However, the method is easy to adapt to more realistic
situations since it is (opposed to CLEAN) a forward-modeling
technique. First, instead of a constrained χ2 minimization to
the complex visibilities, one could just optimize the fit to
the visibility-domain polarization fraction as in Johnson et al.
(2015). Second, the minimization in Eq. (17) is done iteratively,
where the most important features are recovered first and grad-
ually more detailed features are recovered at later iterations.
Hence, with a similar philosophy to how self-calibration inter-
acts with CLEAN, we could run the minimization for some iter-
ations and do the calibration on the current model, then continue
the minimization and calibration in an alternating manner.

3.3. Dynamic Stokes I

For dynamic Stokes I imaging, we first reconstruct a static image
with DoG-HiT. For this work we assume that the static image of
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a dynamically evolving source might be a good approximation
to the mean image during the time of observation. This might
be true in particular if the source structure contains some per-
sistent structure during the complete observing run, as could
be expected for Sgr A* in EHT observations with a persistent
shadow in rotating hotspot models (Tiede et al. 2020). How-
ever, based on the dynamics of the target, it may be difficult to
recover a decent fit to the data with a static image. In this work
we applied a procedure inspired by the strategy in Event Horizon
Telescope Collaboration (2022b); we added a systematic noise-
floor on every baseline to account for variability. However, we
did not repeat the sophisticated noise modeling applied in Event
Horizon Telescope Collaboration (2022b).

We computed the multiresolution support by the static mean
image. Then we cut the observation in single frames and recon-
struct images at every frame independently. All frames together
make up the dynamic movie reconstruction. However, due to the
shortness of single frames, snapshot imaging is not possible due
to the sparsity of the uv-coverage. Again, we propose using the
multiresolution support instead. We minimize the χ2 for every
single frame observation independently for every frame in a
gradient descent algorithm (using the mean image as an initial
guess), but only allow coefficients in the multiresolution support
to vary.

The multiresolution support is a well-suited regularizer here
as well; if the static image is a good approximation to the mean
image, the static image contains all the locations of emission in
the field of view. If at some time an emission spike occurs at
a specific location, this emission spike should be visible in the
mean as well. Hence, the support constraint encodes information
about the location of emission at single frames. This assump-
tion comes with the caveat that short-lived small-scale features
may be not strong enough in the mean image and excluded later
from the dynamic reconstructions due to the multiresolution sup-
port. However, we also doubt that such a feature would be visible
with the much sparser uv-coverage of single scans, and there-
fore would not be recovered. Moreover, the uv-coverage of the
complete observation is the sum of the observations of the sin-
gle frames. In single frame observations there are three different
categories of Fourier coefficients and/or baselines: the ones mea-
sured by observations in this single frame (very sparse), the ones
that are not measured during the time of the single frame but
will be measured at later (earlier) times in the observation, and
the baselines that are not measured at all due to the sparsity of
the array. By doing constrained optimization (constrained by the
multiresolution support) to the single frame observation we fit
the first class of baselines, copy the solution over from the initial
guess (mean image) for the second class of baselines, and sup-
press the last class of baselines by the multiresolution support.
Hence, the spatial constraint implemented by the multiresolution
support is a well-suited prior to do dynamic imaging.

The reasonable assumption of temporal correlation between
scans (e.g., by a regularizer term favoring temporal smooth-
ness) is not used explicitly for mr-support imaging. However,
this assumption can be included in the dynamic reconstruction
straightforwardly. Instead of fitting the visibilities with a con-
strained minimization approach, we can minimize the sum of a
quality metric for the fit to the visibilities and a temporal regular-
ization term, but only vary the coefficients in the multiresolution
support. However, for this work we restricted ourselves to recon-
structions without penalization on the temporal evolution such
that now new regularization parameters are introduced and the
reconstruction remains automatic and completely data-driven.

Moreover, this means that all scans can be computed in parallel,
allowing for fast computations.

3.4. Dynamic polarimetry

We propose the same procedure for polarized imaging and
dynamic Stokes I imaging: fitting the respective visibilities with
a gradient descent approach, while only varying coefficients in
the multiresolution support computed by DoG-HiT. It is there-
fore natural to utilize this approach for dynamic polarimetry
as well. We propose the following strategy. First, reconstruct
a static Stokes I image by DoG-HiT and compute the mul-
tiresolution support. Then cut the observation in single frames
and solve for dynamics and polarimetry together by fitting to
VI ,VQ,VU ,VV together in single frames independently, but
only vary coefficients in the multiresolution support.

4. Synthetic data tests

4.1. Synthetic observations

We tested the capabilities for mr-support imaging for polari-
metric image reconstructions. We tested three different source
models (static polarized Sgr A* model, a slowly rotating cres-
cent, and a rapidly rotating crescent) with two different arrays
(EHT and a possible ngEHT configuration). A thorough com-
parison of existing imaging approaches for dynamic polarimetry
is in preparation and will be deferred to a later work. For more
details we also refer to the ngEHT analysis challenges Roelofs
et al. (2023), and in particular the upcoming third challenge2

in which we compete with mr-support imaging. We review our
submission to the third challenge in Sect. 4.5.

We observe the synthetic ground truth images and movies
with the array of the EHT 2022 observations and added thermal
noise according to the measured SEFDs of the 2017 observation
campaign (Event Horizon Telescope Collaboration 2019b). We
used ten-minute cycles consisting of five minutes of continued
observation with an integration time of ten seconds and a gap of
five minutes off-source (mimicking calibration, pointing scans).
This cycle time is of special interest when discussing dynamic
reconstructions as the five-minute gaps essentially limit the tem-
poral resolution. The data sets were scan-averaged prior to the
imaging procedure.

As ngEHT configuration we took the EHT 2022 array
configuration (i.e., ALMA, APEX, GLT, IRAM-30 m, JCMT,
KP, LMT, NOEMA, SMA, SMT, SPT) and added ten addi-
tional antennas from the list of Raymond et al. (2021), as
was done for the ngEHT Analysis challenges (Roelofs et al.
2023): HAY (34 m), OVRO (10.4 m), GAM (15 m), BAR, BAJA,
NZ, SGO, CAT, GARS, CNI (all 6 m). We added instrumen-
tal noise according to the size of the telescopes, but did not
add further calibration errors. As a ground truth we took the
slowly rotating crescent model with a rotation period of one
hour. As for the EHT 2022 coverage, the ground truth movie
was observed with a cycle of five minutes on-source and a
five-minute gap and an integration time of ten seconds (ten min-
utes on-source with a two-minute gap in the quickly rotating
crescent example).

As a static synthetic test image we took a synthetic Sgr A*
image out of the ehtim software package (Chael et al. 2018).
The true image model is presented in Fig. 2. For the dynamic

2 https://challenge.ngeht.org/challenge3/
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Fig. 2. Static, polarimetric reconstruction with mr-support imaging on synthetic data. Left panel: static polarization ground truth; middle panel:
static reconstruction with mr-support imaging; right panel: uv-coverage of synthetic observation (EHT 2022 array).

Fig. 3. Synthetic ground truth dynamic movie (slowly rotating crescent) in the time interval between 10 UT and 14 UT. The green arrow ranges
from the image center to the position of the brightest pixel in the frame, hence illustrating the orientation of the crescent.

Stokes I imaging we used a crescent model (Tiede et al. 2022),

I(r, θ) = I0(1 − s cos(θ − ξ))δ(r − r0)
2πr0

, (18)

with the following parameters: I0 = 0.6 Jy, s = 0.46, and r0 =
22 µas. To account for dynamics roughly similar to rotating
hotspot models (Tiede et al. 2020) we let the crescent rotate
clockwise. One rotation period takes one hour which is roughly
comparable to the flux variability timescale of the SGR A* light
curve (Wielgus et al. 2022). The synthetic ground truth image is
presented in Fig. 3. To illustrate the orientation of the crescent,
we also show a green arrow from the image center to the location

of the brightest pixel in the image in Fig. 3. For polarized movies
we have to add polarization. For the sake of simplicity, here
we used a simpler model to test the capabilities of dynamic
polarimetry: we added a constant linear polarized structure at
10% (no circular polarization) with a rotating EVPA. To sepa-
rate the dynamic polarimetric reconstruction from effects of the
Stokes I imaging, the rotation of the EVPAs is counter-clockwise
(rotation of Stokes I was clockwise) and has a different rota-
tion period of two hours instead of one hour as for the Stokes I
images.

As an additional model we also test a rapidly rotating
crescent model with an orbistal period time of twenty minutes.
We show the ground truth movie in Fig. 4. The constant EVPA
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Fig. 4. True movie for fast rotating crescent.

pattern rotates counter-clockwise in one hour. The advance time
between scans that is used for pointing and calibration limits the
temporal resolution. For an array as sensitive as the ngEHT a
smaller gap time might be possible. We therefore synthetically
observed the rapidly rotating movie with a cycle of ten minutes
of scientific observation (ten seconds of integration time) and a
two-minute gap.

4.2. Static polarization with EHT coverage

We fitted the scales to the uv-coverage first with the procedure
outlined in Müller & Lobanov (2022) and Müller & Lobanov
(2023): we searched for jumps in the sorted distribution of
uv-distances that exceed a threshold, and we selected the radial
scales accordingly. We defined nine radial scales and used
four different angles, resulting in 36 scales to represent the
uv-coverage. The Stokes I image was recovered with DoG-HiT
(Müller & Lobanov 2022) using the multi-directional dictio-
naries introduced in (Müller & Lobanov 2023), as described
in Sect. 3.1. As presented in Sect. 3.2, we then computed
the multiresolution support. The multiresolution support is
presented in Fig. 5. Some scales that are most sensitive to gaps
in the uv-coverage are suppressed completely, while other scales
encode various parts of the emission structure, for example
the ring-like emission (scale 34 and scale 35), the extended
emission structure (scale 30 and 32), the fine crescent structure
(e.g., scale 4, 7, 9, 14, and 24), or the bright spot to the left
of the crescent (e.g., scale 0, 2, and 10). The minimization to
the polarized visibilities was done with the limited-memory

Broyden–Fletcher–Goldfarb–Shanno (BFGS) algorithm (Byrd
et al. 1995), as implemented in Scipy (Jones et al. 2001). To
assert global convergence, we blurred the Stokes Q and U image
of the reconstruction with the nominal resolution and redo the
minimization with a gradient descent procedure.

We show the final reconstruction result in Fig. 2. The recon-
struction of the Stokes I image is relatively successful. The
crescent-like shadow image is overall well recovered. However,
there are some finer structures that are not recovered by DoG-
HiT: the closing of the ring by a thin line toward the right and the
fainter structure inside the ring. The linear polarized emission is
overall very well recovered. The total fraction of linear polar-
ized light and the overall direction of the electromagnetic vector
position angles (EVPA) in the north–south direction are well
recovered. The synthetic ground truth image contains a greater
number of complex local structures for example a rotation of the
EVPA in the bottom left of the image toward the east–west direc-
tion. This shift is partly visible in the recovered image as well,
although the amount of rotation is smaller.

All in all, this example demonstrates that even for a very chal-
lenging and sparse array such as the EHT 2022 array the polari-
metric reconstruction with support imaging is quite successful in
both the overall structure, but also in the reconstruction of more
localized polarimetric structures with a size of ≈5 µas. Thus,
similar to the DoG-HiT reconstruction for the Stokes I image,
mr-support polarimetry seems to offer mild super-resolution.
Interestingly, super-resolution and a good fit to the polarized vis-
ibilities is offered without introducing artifacts in the image. This
demonstrates the power of the regularization approach.
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Fig. 5. Multiresolution support for the reconstruction of the static polarization example with EHT coverage.

Fig. 6. Recovered solution (recovered with mr-support imaging) for slowly rotating crescent observed with the EHT.
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Fig. 7. Same as Fig. 6, but for slowly rotating crescent observed with the ngEHT.

4.3. Dynamic Stokes I

The synthetic slowly rotating crescent movie was observed
as described in Sect. 4.1 with a ten-minute cycle with EHT
coverage. According to this temporal resolution, we cut the
observation into frames with a length of ten minutes for
the dynamic reconstruction. The reconstruction was then
done with the mr-support approach in the best time window
t ∈ [10 UT, 14 UT] (Farah et al. 2022) as outlined in Sect. 3.3.
As a first step we fitted a symmetric ring model to the data,
created a mean image with DoG-HiT with the fitted ring model
as an initial guess, and then we solved sequentially for every
frame by mr-support imaging with the support calculated from
the mean. As an initial guess for the single frame imaging
with mr-support imaging we used the reconstruction of the
respectively preceding frame (or the mean in case of the
first frame).

We present the reconstruction results in Fig. 6. The single
frames all show a circular structure with a radius of ≈22µas.
Moreover, nearly all frames have an asymmetry of a crescent.
However, the crescent asymmetry is less prominent than in the
true image. As for the true dynamic movie, we illustrate the
orientation of the crescent by an arrow from the center to the
brightest pixel in the reconstruction. Following the orientations
of the recovered crescents in Fig. 6 a clear rotation with an
orbital period of one hour is visible. The orientation of the recov-
ered crescents match in most frames with the synthetic ground
truth except for some notable exceptions at 11 UT (no asymmetry
recovered at all), and 13.16 UT-13.5 UT (incorrect orientations).
In particular the latter could be a consequence of taking the
reconstruction at the preceding frame as an initial guess for the

Fig. 8. True position angle (blue) and the recovered position angle
recovered with mr-support imaging for an EHT configuration (red) and
ngEHT configuration (green) for the slowly rotating crescent model.
The error bars reflect the change in position angle in the true source
model within a ten-minute scan (cycle length of synthetic observation).

next frame, and hence the false recovery at 13.16 UT also affects
all the following frames.

We present in Fig. 7 the reconstruction result for a slowly
rotating crescent with ngEHT coverage. The reconstruction of
the crescent is excellent at every frame with high contrast
images. The single-frame images do not show additional image
artifacts. Although the additional ngEHT antennas have rather
high thermal noise levels, the much improved density of the array
effectively stabilizes against thermal noise. Strikingly the orien-
tation of the crescents matches the ground truth very well. We
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Fig. 9. Reconstruction of rapidly rotating crescent observed with the ngEHT.

present in Fig. 8 a comparison between the true position angles
and the recovered ones with an error by the temporal smearing
due to the scan length.

The ngEHT array is much denser than the EHT configura-
tion of 2022. This enhances the possible temporal resolutions.
We therefore also studied the possibility to observe faster rotat-
ing structures at the event horizon with the fast rotating crescent
model. The dynamic reconstruction was done in this case in
frames of three minutes in length. The faster orbital period and
the shorter frame length complicate the reconstruction proce-
dure: there are fewer observation points per single frame, which
raises the problem of sparsity. Moreover, due to the shorter
dynamical timescale and the smaller number of observing points
per single frame, the scan-averaged visibility points worsen
the signal-to-noise ratio by a factor of

√
3 compared to the

slower rotating crescent. The reconstruction results for dynamic
Stokes I imaging with mr-support imaging are shown in Fig. 9.
The crescent is observed at every frame. Additionally, the over-
all orientation matches quite well. However, the quality of the
reconstruction decreases compared to the slowly rotating cres-
cent, as can be expected: the asymmetry of the crescents is less
clear and the orientation is slightly off by roughly 15 degrees in
some frames.

All in all, we observe that with mr-support imaging we
recover the correct image structure very well, including overall
shadow feature, crescent asymmetry, and orientation, for most
frames in the observation. Again, we note that these particular
successful reconstructions do not suffer from introducing image
artifacts despite the sparsity of the uv-coverage, especially in

single frame observations. This, once again, demonstrates the
regularizing property of the mr-support approach.

4.4. Dynamic polarimetry

As outlined in Sect. 3.4 we did the dynamic reconstruction of the
Stokes I channel first. Hence, we copied the reconstructions from
Sect. 4.3, and then added polarization frame by frame by mr-
support imaging. Similar to our procedure presented in Sect. 4.2
we first minimized the data terms (fit to polarized visibilities)
with a BFGS minimization procedure, blurred the reconstructed
polarized images with the nominal resolution, and minimized the
fit with a gradient descent procedure starting from the blurred
image as an initial guess.

The reconstruction results in the time window t ∈
[10UT, 11UT ] are presented in Fig. 10 for a slowly rotating cres-
cent model with EHT coverage. The relatively simple polarized
structure is well recovered in each frame. While the recovered
images show some local variation from the overall orientation,
the larger scale EVPA orientation matches for all frames. The
fraction of polarized linearly polarized light is surprisingly well
recovered. Again, despite some local variations in the recov-
ered EVPA, the challenging reconstruction does not show image
artifacts.

In Fig. 11 we present the reconstruction of the slowly rotating
crescent observed with the ngEHT. The quality of the recon-
struction improved compared to the reconstructions presented in
Fig. 10. The global orientation of the EVPAs is well recovered
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Fig. 10. True (upper panels) and recovered (lower panels) test images with full Stokes polarization for the slowly rotating crescent. The mr-support
imaging approach recovers the true large-scale orientation of the EVPA.

for every frame. In the reconstructions with the EHT configu-
ration we also observed some local variations from the overall
polarimetric structure. These can no longer be observed in the
reconstructions with ngEHT coverage.

We present the dynamic polarimetry reconstruction with mr-
support imaging of the rapidly rotating crescent in Fig. 12.
The reconstruction of the polarimetric structure (i.e., the rota-
tion of the EVPAs) remains excellent. These results suggest
that mr-support imaging could handle dynamic polarimetric
structural features at the event horizon with realistic dynamic
timescales.

4.5. ngEHT analysis challenge

In addition to the rather simple synthetic data tests presented in
the previous subsections, we show here the reconstructions by
mr-support imaging for the third ngEHT Analysis challenge3.
The ngEHT Analysis challenges are a series of semi-blind data
challenges to evaluate the performance of algorithms for the
planned ngEHT instrument (Roelofs et al. 2023). The ngEHT
is a planned instrument to recover (polarimetric) movies at event
horizon scales (Doeleman et al. 2019).

3 https://challenge.ngeht.org/

The ground truth movies produced for the ngEHT Analy-
sis challenge resemble the current theoretical state-of-the-art in
simulations (Roelofs et al. 2023; Chatterjee et al. 2023). Here
we present the reconstructions of a RIAF model of Sgr A*
(Broderick et al. 2016) with a shearing hotspot (Tiede et al. 2020)
with hotspot parameters inspired by GRAVITY Collaboration
(2018a). The data sets were observed with the EHT array and
with the ngEHT arrays that we used for the geometric data sets as
well. In contrast to the proof of concept with geometric models,
the ngEHT challenge data contain the full set of data corrup-
tions that may be expected from real observations (Roelofs et al.
2023) simulated with the SYMBA package (Roelofs et al. 2020)
including atmospheric turbulence, atmospheric opacity, pointing
offsets, a scattering screen, and thermal noise specific to each
antenna. However, no polarization leakage was added to the data.
For more information we refer to Roelofs et al. (2023) and the
challenge website4. The data sets were network calibrated as it is
standard in the EHT data processing (Event Horizon Telescope
Collaboration 2022b). The ngEHT Analysis challenge is partic-
ularly well suited as a verification data set since the challenge

4 https://challenge.ngeht.org/
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H.Müller and A.P. Lobanov: Dynamic and polarimetric VLBI imaging with a multiscalar approach

Fig. 11: Same as Fig. 10, but for slowly rotating crescent observed with the ngEHT.
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Fig. 11. Same as Fig. 10, but for slowly rotating crescent observed with the ngEHT.

Fig. 12. Polarimetric reconstruction of fast rotating crescent with ngEHT coverage.
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Fig. 13. Synthetic ground truth movie of Sgr A* used for the third ngEHT Analysis challenge. The model is a RIAF model with a semianalytic
shearing hotspot.

Fig. 14. Reconstruction of the movie plotted in Fig. 13 with mr-support imaging for the third ngEHT Analysis challenge.

was done blindly; neither the source files nor the specific data
corruptions were made public to the analysis teams.

We show the ground truth movie in Fig. 13. A static (but
not descattered) image was recovered by DoG-HiT with a sys-
tematic error budget of 2%. The static image is computed by
DoG-HiT in a completely unsupervised way from closure quan-
tities. We used this calibration-independent model to calibrate
the data set on long time intervals (1 h). Next we calculated
the multiresolution support and cut the image into frames of
six minutes. The dynamic reconstruction was done with mr-
support imaging. We self-calibrated the data set in every single

observing frame during the procedure. Then we added polariza-
tion in every frame.

The recovered movie is presented in Fig. 14. Moreover, we
show magnified panels of selected frames in Fig. 15. The single
frames all show a ring-like structure with a central depression.
Compared to the ground truth frames, the reconstructed images
have a worse quality due to the rapid variability, systematics, and
sparse coverage. Moreover, an interstellar scattering screen was
added to the data that was not removed during the imaging proce-
dure. The reconstruction of the shearing hotspot motion is more
challenging. We recover an approaching hotspot to the right of
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Fig. 15. Selected frames of reconstructions shown in Figs. 13 and 14 at times UT 11.3 (upper panels), UT 11.5 (middle panels), and UT 11.7 (lower
panels).

the ring at UT 11.3 (upper panels in Fig. 15), an extended (polar-
ized) tail to the northwest (top right) from UT 11.3 until UT 11.6
(middle panels in Fig. 15), and a clearly visible arc of larger
intensity within the ring to the southeast (bottom left) from UT
11.7-UT 11.9 (bottom panels in Fig. 15). These features are con-
sistent with the hotspot motion of the ground truth movie. While
we recover some motion related to the hotspot motion, a con-
tinuously evolving movie was not recovered. This is a result of
the rather bad simulated weather conditions and the observation
cadence for the third challenge: the source was (synthetically)
observed for ten minutes followed by a gap of ten minutes.
While mr-support imaging sufficiently recovers some (scattered)
hotspot related features in the frames that have observed visibil-
ities, the algorithm does not contain an interpolation scheme to
the scans without observations, it just assumes the starting point
(i.e., the preceding frame). Hence, we do not recover an evolving

movie, but several frames (e.g., UT 11.5 and UT 11.6 or UT 11.7
until end) show the same image structure.

The synthetic ground truth polarization is less dynamic and
hence easier to recover. We recover the overall radially-conic
EVPA pattern in every frame with minor small-scale perturba-
tions from the ground truth (which may also be related to the
different Stokes I images). Moreover, the recovered polarization
fraction matches the true one. As a more detailed feature we suc-
cessfully recover a larger fractional polarization for the shearing
hotspots that follows the hotspot motion.

The presented data set mimics one of the most challenging
VLBI data analysis problems so far with various data corrup-
tions, high frequencies (i.e., phase instabilities), fast dynamics
and polarimetric structures, the need for super-resolution, and
a sparse VLBI uv-coverage. As expected, the reconstruction
quality with mr-support imaging is degraded compared to the
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rather simple geometric data tests discussed above. However,
the application already highlights the potential of mr-support
imaging to do unsupervised, super-resolving, dynamical, and
polarimetric imaging together. This presents a unique capability
in the landscape of existing imaging algorithms by now, and
in particular a domain of research in which CLEAN remains
limited due to its lack of resolution, its high demand of
human supervision and calibration, and the lack of support for
dynamical reconstructions.

5. Conclusions and outlook

We presented in this manuscript a novel algorithmic approach
to do static polarimetry, dynamic imaging and finally dynamic
polarimetry. The approach was based on our previous works on
multiscalar imaging (Müller & Lobanov 2022, 2023) and the
multiresolution support in particular. The multiresolution sup-
port encodes important information about the emission structure
on one hand (which spatial scales are present in the image and
where) and the uv-coverage on the other hand (which of these
spatial scales is measured by baselines). Hence, the multires-
olution support is well suited to introduce regularization for
challenging extensions to the standard VLBI imaging problem
in the spirit of constrained minimization: we optimize the fit to
the respective data terms (chi-squared to frame-by-frame visibil-
ities or to polarized visibilities), but vary the wavelet coefficients
only in the multiresolution support.

We demonstrated with applications to simple geometric syn-
thetic observations the power of this approach. The mr-support
constraint suppressed the introduction of image artifacts, and
hence provided ample regularization. Moreover, the approach is
flexible enough to allow for the reconstruction of both dynami-
cally evolving structures and polarimetric structures. Moreover,
the blind application to more complex movies of the third ngEHT
Analysis challenges demonstrated that the algorithm may also
provide reasonable reconstructions with real data corruptions in
one of the most challenging VLBI imaging problems, although
the quality of the reconstruction is degraded.

Mr-support imaging shares the basic advantage of multi-
scalar approaches that are fitted to the uv-coverage. The static
reconstructions are done with DoG-Hit which is completely
data driven and largely automatic without many hyperparameters
(Müller & Lobanov 2022). The same applies for the exten-
sion to dynamics and polarimetric quantities. No further specific
regularization terms (with corresponding weights) were intro-
duced, rather the reconstruction was regularized again by the
data-driven multiresolution support, which is determined by the
uv-coverage and baseline-noise. Hence, mr-support imaging is
blind and unbiased as well. However, we recognized an impor-
tant bottleneck for the dynamic reconstructions with mr-support
imaging: the static average image needs to approximate the true
time-averaged image quite well.

An extension to RML approaches to dynamic imaging (i.e.,
the addition of temporal regularizers) is straightforward as well.
We note that due to the lack of regularization parameters con-
trolling the temporal correlation, mr-support imaging basically
calculates images with rich structures from the extreme spar-
sity of a single scan independently of preceding and proceeding
scans. That indicates that the multiresolution support informa-
tion is a rather strong prior information that, once a reasonable
static model is established, allows for the handling of extreme
sparsity in the data.

The geometric test observations tested throughout this study
are rather simple. First, we neglected circular polarization for

the purpose of simplicity. We note that we only added thermal
noise to the observations and no phase and amplitude errors.
This does not affect the reconstruction of the static Stokes I
image (neither for a static source nor for a dynamically evolving
source) since DoG-HiT uses the closure quantities as data terms
only (Müller & Lobanov 2022). However, phase and amplitude
calibration errors could affect the subsequent mr-support imag-
ing rounds since for every frame the (polarized) visibilities are
used instead of the closure quantities. Hence, we assume that it
is possible to solve for the (polarized) self-calibration with the
time-averaged mean image. This does not necessarily have to
be true, but might be a good approximation when the dynamic
timescale of the source and the dynamic timescale of the gain-
variability are different allowing a gain self-calibration with the
mean image (compare, e.g., Wielgus et al. 2022; Event Horizon
Telescope Collaboration 2022b).

Moreover, while a rotating crescent movie might be a good
approximation to a rotating hotspot model in the first instance,
the model is only a rough approximation to the range of mod-
els for the dynamics at the horizon scale. The same applies to
the rather simple polarization model used. We therefore tested
the algorithm in the blind third ngEHT Analysis challenge as
well. Due to the systematic errors added to the synthetic data, the
reconstructions are worse than in the previous data tests; how-
ever, mr-support imaging, for the first time, is able to recover
super-resolved polarized movies in an unsupervised way. This is
a unique capability among all currently existing VLBI imaging
algorithms. Furthermore, we expect further significant improve-
ments from including a temporal regularizer in the dynamic
imaging and from more sophisticated strategies for the static
image reconstruction, in particular from frameworks that already
demonstrated to be able to recover fast dynamics such as ehtim
or StarWarps.

Finally, the application of the same ground truth movie to a
possible ngEHT array configuration demonstrates the improve-
ments that the ngEHT project will bring to dynamic recon-
structions. The quality of the fits to Stokes I and polarimetric
properties improves. With a ngEHT configuration it is even pos-
sible to recover structural patterns on dynamic timescales of
about ∼10−20 min and therefore what can be expected from real
observations.
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Appendix A: Wavelet dictionaries

This section is adapted from Müller & Lobanov (2023). The
dictionaries used in this paper are as follows:

ΨDoG : I 7→ [Gr
σ0
∗ I −Ge

σ0,σ1,α0
∗ I,Gr

σ0
∗ I −Ge

σ0,σ1,α1
∗ I, ...,Gr

σ0
∗ I −Ge

σ0,σ1,αN−1
∗ I,

N−1∑

i=0

Ge
σ0,σ1,αi

∗ I −Gr
σ1
∗ I,

Gr
σ1
∗ I −Ge

σ1,σ2,α0
∗ I, ... ,Gr

σ1
∗ I −Ge

σ1,σ2,αN−1
∗ I,

N−1∑

i=0

Ge
σ1,σ2,αi

∗ I −Gr
σ2
∗ I,

Gr
σ2
∗ I −Ge

σ2,σ3,α0
∗ I, ... ,Gr

σ2
∗ I −Ge

σ2,σ3,αN−1
∗ I,

N−1∑

i=0

Ge
σ2,σ3,αi

∗ I −Gr
σ3
∗ I,

...

Gr
σJ−1
∗ I −Ge

σJ−1,σJ ,α0
∗ I, ... ,Gr

σJ−1
∗ I −Ge

σJ−1,σJ ,αN−1
∗ I,

N−1∑

i=0

Ge
σJ−1,σJ ,αi

∗ I −Gr
σJ
∗ I,

Gr
σJ
∗ I].

Here Gr
σ denotes a radial Gaussian function with a standard devi-

ation σ and Ge
σ1,σ2,α

an elliptical Gaussian with major semiaxis
σ1, minor semiaxis σ2, and angle α. The DoB dictionary is com-
posed in the same way by replacing Gaussians with spherical
Bessel functions,

ΨDoB : I 7→ [J̃r
σ̃0
∗ I − J̃e

σ̃0,σ̃1,α0
∗ I, J̃r

σ̃0
∗ I − J̃e

σ̃0,σ̃1,α1
∗ I, ..., J̃r

σ̃0
∗ I − J̃e

σ̃0,σ̃1,αN−1
∗ I,

N−1∑

i=0

J̃e
σ̃0,σ̃1,αi

∗ I − J̃r
σ̃1
∗ I,

J̃r
σ̃1
∗ I − J̃e

σ̃1,σ̃2,α0
∗ I, ... , J̃r

σ̃1
∗ I − J̃e

σ̃1,σ̃2,αN−1
∗ I,

N−1∑

i=0

J̃e
σ̃1,σ̃2,αi

∗ I − J̃r
σ̃2
∗ I,

J̃r
σ̃2
∗ I − J̃e

σ̃2,σ̃3,α0
∗ I, ... , J̃r

σ̃2
∗ I − J̃e

σ̃2,σ̃3,αN−1
∗ I,

N−1∑

i=0

J̃e
σ̃2,σ̃3,αi

∗ I − J̃r
σ̃3
∗ I,

...

J̃r
σ̃J−1
∗ I − J̃e

σ̃J−1,σ̃J ,α0
∗ I, ... , J̃r

σ̃J−1
∗ I − J̃e

σ̃J−1,σ̃J ,αN−1
∗ I,

N−1∑

i=0

J̃e
σ̃J−1,σ̃J ,αi

∗ I − J̃r
σ̃J
∗ I,

J̃r
σ̃J
∗ I],

with radial spherical Bessel function J̃r and elliptical Bessel
function J̃e.
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Figure 3.21: Schematic illustration of the multiround pipeline adapted for DoG-
HiT.

3.5 Imaging Pipeline

DoG-HiT could be applied directly to the observed data set. However, we find

that it performs best with a multistep imaging pipeline that was first proposed

in Müller & Lobanov (2022). We present a schematic overview of this pipeline

in Fig. 3.21. With ongoing developements, e.g. the multidirectional dictionaries

and the dictionary-switch proposed in Müller & Lobanov (2023a) or a total flux

calibration step, we updated our data analysis pipeline since its initial invention.

The new pipeline was outlined in Müller & Lobanov (2023c). The following text

in this subsection are two excerpts from chapter 2.1. and chapter 2.3 of that

manuscript adapted for the layout of this dissertation.
3 “For imaging we want to fit the observed visibilities (data-fidelity) with a

clean model (i.e. no sidelobes) with the least number of independent model

parameters while no image features corresponding to Fourier coefficients

in the gaps in the uv-coverage should be induced. Hence, we proposed a

compressed sensing approach for DoG-HiT (Müller & Lobanov 2022):

Î ∈ argminI

[
χ2
cph(ΓI, V ) + χ2

cla(ΓI, V ) + α ·∥I∥l0 + Rflux(I, f)
]
, (3.4)

3From Müller & Lobanov (2023c), Sec. 2.1
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where I is the array of wavelet coefficients, α is the regularization parameter

balancing the data fidelity and sparsity promoting penalization, and Rflux is

an indicator function total flux constraint for the total flux f . Γ denotes the

wavelet dictionary, and as before V the observed visibilities. We use the fit

quality to the closure phases χ2
cph and logarithm of closure amplitudes χ2

cla

respectively such that the reconstruction is independent from antenna based

gains. As visible from Eq. (3.4), we compose the image from multiscalar

functions that are fitted to the uv-coverage and use a sparsity promoting

penalization ∥·∥l0 penalty term on the wavelet coefficients to suppress any

wavelet scales mostly sensitive to the gaps in the uv-coverage.”
4 “While in principle Eq. (3.4) could be minimized directly, more ac-

curate reconstruction were obtained by a multiround imaging pipeline for

Stokes I imaging first proposed in Müller & Lobanov (2022). However, the

practical application of this approach Kim et al. (2023); Roelofs et al. (2023)

has revealed the need to refine this imaging strategy as follows:

1. First we find a proper initial guess.

• We do an unpenalized reconstruction with the software package

ehtim first, i.e. we use amplitudes, closure phases and closure

amplitudes and deactivate any regularization terms except for

the total flux regularization. The computed solution I1 works as

an initial guess, but still shows imaging artifacts due to missing

regularization.

• Next we find a multiscale representation of the initial guess. Due

to the completeness property DoB-wavelet dictionaries Müller &

Lobanov (2023a), it is a viable parametrization to copy I1 at every

scale, i.e. I1 = {I1, I1, ..., I1}

• Then we use a grid-search to find an initial guess for the minimiza-

tion of Eq. (3.4). The ∥·∥l0 penalty term effectively computes a

hard thresholding step (proximal-point operator of the l0-norm).

We therefore minimize Eq. (3.4) on a grid of predefined hard

threshold parameters, allowed to vary from scale to scale: I2

2. Now we do the DoG-HiT imaging step. Up to now DoB-wavelets were

used to fit the observed visibilities. Naturally we switch to DoG-

wavelets now, as described in Müller & Lobanov (2023a), by copy-

ing the guess I2, but replacing the dictionary. We then minimize Eq.

(3.4) directly with the forward-backward splitting algorithm developed

4From Müller & Lobanov (2023c), Sec. 2.3
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in Müller & Lobanov (2022) and recover the guess image by applying

the wavelet dictionary Γ to the array of wavelet coefficients: I3 = ΓI3.

3. The result can be further refined in alternate imaging and calibration

rounds

• We calibrate the total flux, since the closure quantities are invari-

ant against rescaling array with a constant value. We compute

the fit of the guess solution Γ
[
δI3
]

to the amplitudes with a

varying constant parameter δ ∈ R, peaking around the rescaling

parameter δbest that is necessary to reach the correct total flux.

Finally, we do phase-self-calibration.

• As a byproduct of step 2 we get a representation of the multires-

olution support (Müller & Lobanov 2023b). It is expressed as a

set of statistically significant wavelet coefficients (see Mertens &

Lobanov 2015, for an application in astrophysical context). This

information is used in further imaging rounds as constrained min-

imization prior, i.e. we fit the observed visibilities but vary only

coefficients in the multiresolution support.

• We add amplitudes to the array of observables and do imaging

starting from δbestI
3 as an initial guess with the constrained mini-

mization approach with the multiresolution support. After ampli-

tude and phase calibration, we replace closure phases and closure

amplitudes by full visibilities and redo the minimization.”

3.6 Software

DoG-HiT and DoB-CLEAN have been implemented in the novel software package

MrBeam. MrBeam implements an interface between regpy for iterative regular-

ization methods in general (Regpy 2019), ehtim for the handling of VLBI data

sets (Chael et al. 2016) and WISE for the handling of multiscalar transforms

(Mertens & Lobanov 2015). In particular, we extended the functionality of regpy

by tools of convex optimization. MrBeam is written in python in an object-

oriented paradigm. The modularity of MrBeam allows for quick adaption and

application also outside of VLBI. The main classes of regpy (domains, operators

and solver) treat the various components of an inverse problem independently.

Hence, the same solver that were developed in this dissertation, are easily trans-

ferable to other inverse problems as long as an implementation of the forward

problem exists (as long with its derivative, the adjoint of the derivative and the

proximal-operator). Moreover, an automatic internal handling of operator and
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functional combinations (chaining, linear combinations, definition of operators on

product spaces etc.) allows for simple code writing on the top-level. The most

important features and capabilities of MrBeam can be summarized as follows:

• MrBeam and regpy implement the basic tools of inverse problems in a gen-

eral setting. As already mentioned, only a generic implementation of the

forward operator is needed. All solvers that are implemented in scipy, and

additionally advanced smooth solvers (Gradient descent, iterative Gauss-

Newton, Newton-CG, Landweber, Lanczos-Preconditioned Newton, ...) and

convex optimization algorithms are available (e.g. forward-backward split-

ting, FISTA, Douglas-Rachford, ...).

• MrBeam implements explicitly the new algorithm DoG-HiT (Müller &

Lobanov 2022). It provides a top-set handler for easy coding.

• DoB-CLEAN (Müller & Lobanov 2023a) and CLEAN are available in Mr-

Beam. MrBeam provides an interactive interface inspired by Difmap, but

with the plotting options of ehtim, to allow a convenient way of working.

• MrBeam supports full polarimetric imaging and dynamical imaging with a

multiscalar approach as well (Müller & Lobanov 2023b).

• MrBeam is fully compatible with ehtim. Thus, it can make use of the rich

functionality provided by ehtim, such as dynamic imaging (Bouman et al.

2018), or multifrequency imaging (Chael et al. 2023). Vice versa, MrBeam

can be installed as an add-on package to ehtim. It extends the functionality

of ehtim by multiscalar penalty terms, an advanced handling of domains by

Gram matrices (mimicking the correlation matrices in Bayesian methods)

and a wide range of convex solvers that are not available in ehtim right

now.

• MrBeam provides an extension point to neural networks implemented in

keras or tensorflow as well. Additionally, support for genetic algorithms

and particle swarm optimization is build in.

• MrBeam has a tested parallelization strategy implemented.

Deriving from their high adaptability, MrBeam and regpy have found applica-

tions also outside of VLBI with necessary modifications. We like to mention in

particular the reglyman software that we developed for Lyα forest tomography

(Müller et al. 2020, 2021) and the search for fuzzy dark matter (Hamaide et al.

2022). For more details we refer to chapter 5.4.1 and chapter 5.4.2.
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3.7 Conclusions

We shall summarize the main advantages of DoG-HiT here, deriving from a de-

tailed summary of the algorithm presented in Müller & Lobanov (2023c). We

therefore print another excerpt of this manuscript here adapted to the layout of

the dissertation.

“We benchmarked the performance of DoG-HiT against CLEAN in Müller &

Lobanov (2022), see also Fig. 1 and Fig. 2 [in Müller & Lobanov (2023c)].

DoG-HiT performs better than CLEAN in terms of accuracy and resolu-

tion. Moreover, DoG-HiT introduces an effective regularization through its

sparsity promoting regularization approach and solves the disparity between

a model and a final image necessarily inherent to CLEAN reconstructions.

Furthermore, we demonstrated in Müller & Lobanov (2023a) that multiscale

and multidirectional wavelet sparsity approaches (such as DoB-CLEAN and

DoG-HiT) also have the potential to outperform CLEAN and classical MS-

CLEAN Cornwell (2008) in terms of wide-field imaging, i.e. in the uniform

representation of extended emission. Hence, DoG-HiT effectively deals with

the most notorious limitations of CLEAN.

DoG-HiT presents a significant step towards unsupervised imaging. Since

the regularization term (sparsity of wavelet coefficients of a wavelet dictio-

nary fitted to the uv-coverage) is data-driven and chosen completely auto-

matically, there is only one free parameter in the objective functional (the

regularization parameter α), thus making extended parameter surveys need-

less. Moreover, benchmarking of DoG-HiT against state-of-the-art imaging

RML methods demonstrates that DoG-HiT allows for reconstructions of the

same quality (resolution) or sometimes even better quality than RML meth-

ods (extended emission, dynamic range), although the regularizer landscape

is considerably simpler. DoG-HiT requires the evaluation of a fast Fourier

transform and an application of multiscalar dictionary at every iteration.

Since the wavelet dictionary has to be allocated only once before the itera-

tions start and the evaluation of the wavelet dictionary is only a matrix-array

operation, DoG-HiT remains comparable fast to RML methods, significantly

outperforming CLEAN.

DoG-HiT provides the multiresolution support as a byproduct and this

has been proven beneficial in the reconstruction of dynamic movies and

polarimetric images Müller & Lobanov (2022, 2023b). Hence, in a straight-

forward manner DoG-HiT can also recover polarimetric movies without the

introduction of any additional regularization or temporal correlation terms.

Thus, for these applications DoG-HiT remains largely unsupervised despite
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the increased complexity of the reconstruction problem.

DoG-HiT is in active use for a wide range of ongoing (polarimetric) mm-

VLBI projects such as observations of 3C279, OJ287 and CenA with the

EHT in 2017, or observations of 3C279 with the GMVA in 2018 (Müller

& Lobanov 2023c). Moreover, it has been applied to lower frequencies for

observations of M87 with RadioAstron (Kim et al. 2023). Furthermore,

an application to the complete MOJAVE archive of 3C120 demonstrated

convincingly the potential of DoG-HiT for survey observations: we were

able to reanalyze ∼ 100 epochs in roughly ∼ 15 minutes with the highly

parallelized and fully automated DoG-HiT algorithm and obtained images at

higher resolution and comparable dynamic range (Müller & Lobanov 2023c).

Based on the success of DoG-HiT in this variety of observations, we expect

great improvements for EVN images. In particular, we expect improvements

for combined EVN+eMerlin observations since the wide range of accessible

baselines (short baselines from eMerlin combined together with the global

baselines of the EVN) makes the use of a multiscalar algorithm that recovers

large scale structures and small scale structures in parallel necessary. This

benefit is studied in particular in an ongoing study of the Crab Nebula

observed with the EVN+eMerlin array in 2022.

DoG-HiT and its extensions are publicly available as part of the MrBeam

software package under the url: https://github.com/hmuellergoe/mrbea

m.”
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4 Evolutionary Imaging

In this chapter, we present a novel imaging algorithm based on evolutionary

optimization, i.e. a genetic algorithm. The publication presented in this chapter

is:

• Müller, H., Mus, A. and Lobanov, A.: Using multiobjective optimization

to reconstruct interferometric data. Part I, 2023, A&A, 675, A60 (shared

first authorship). Conceptualization: H.M., A.M., A.L., methodology/software:

H.M.,A.M., formal data analysis: H.M.,A.M., writing/editing: H.M., A.M.,

A.L..— Müller et al. (2023d), Paper 4

Up until now, recalling our discussions in chapter 3, our efforts for introduc-

ing unsupervised and optimally performing image reconstruction algorithms have

been centered around the idea of drastically reducing the number of free parame-

ters by selecting the penalty term data-driven. Here we discuss a different strategy

focusing on devising a procedure combining unsupervised imaging with equally

unsupervised identification of the preferred image reconstruction out of a set of

hyperparameter driven solutions to the imaging problem. The solutions computed

in a parameter survey for an RML method effectively sample a hypersurface in

the multidimensional space of all possible solutions, i.e. they approximate the

so called Pareto front. A solution to a multi-objective optimization problem is

called Pareto optimal if the further optimization of one specific functional auto-

matically worsens another one. However, the sampling of this hypersurface is not

optimal. Many solutions with similar data term and penalty term weightings de-

scribe very similar solutions, while other parts of the parameter space are poorly

sampled. Hence, we change the strategy. Instead of searching for a single solution

representing a global result of the optimization problem, we attempt to find the

complete hypersurface of possible solutions. Such a multi-objective optimization

problem is difficult to be addressed with the standard tools of convex analysis. In

this work, we develop a novel approach which allows us to address this problem

with the help of the genetic algorithm representing a broader class of evolutionary

algorithms.

The multi-objective genetic algorithm (MOEA/D) proposed here has the po-

tential to replace parameter surveys that have to be employed essentially in all

RML image reconstructions. Every solution along the Pareto front is a mathe-

matically optimal solution that fits the data and is related to a specific regular-

ization weight combination. In contrast to parameter surveys, the computation

of this set of candidate solutions is computed in parallel with significant cross-

talk. The Pareto front divides into clusters of image morphologies representing

the full set of locally ‘optimally-balanced’ solutions. These clusters of solutions
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that fit the undersampled data with a physically reasonable model is the primary

product of the imaging procedure and provides an estimate for the robustness of

image features as well. Moreover, we discuss approaches to find the most natural

guess among these solutions based on a least action principle and demonstrate

its performance on synthetic data. Thus, we select the most likely representant

completely unsupervised from the data only. This has a potential to drastically

accelerate the imaging procedure, in particular for the Event Horizon Telescope

(EHT), since extensive synthetic data creation, parameter surveys and top-set

selection may be not needed anymore.

MOEA/D is faster than any Bayesian global exploration technique. Therefore,

it scales well to needs of more challenging data reconstruction problems such

as polarimetry or dynamical imaging. MOEA/D is in particular interesting for

dynamical imaging reconstructions, since the sparsity of the snapshot uv-coverage

and the gaps for calibration scans require a global exploration technique that

explores all local minima and estimates the robustness of the reconstruction.

Finally, we would like to highlight the difference between a multiobjective

optimization algorithm and Bayesian global exploration techniques. First of all,

Pareto optimality is a different approach to optimization. Bayesian approaches

still sample the posterior by balancing the likelihood and prior terms. While

genetic algorithms are stochastic in its nature as well (random mutation, mating

of randomly selected parents), they do not compute a posterior distribution, but

rather the set of locally optimal modes for a multimodal problem. Bayesian

imaging algorithms select a preferred mode by the assumed prior distribution.

4.1 Paper 4: Müller, Mus, Lobanov 2023d, A&A, 675,

A60
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ABSTRACT

Context. Imaging in radioastronomy is an ill-posed inverse problem. However, with increasing sensitivity and capabilities of tele-
scopes, several strategies have been developed in order to solve this challenging problem. In particular, novel algorithms have recently
been proposed using (constrained) nonlinear optimization and Bayesian inference.
Aims. The Event Horizon Telescope (EHT) Collaboration convincingly investigated the fidelity of their image reconstructions with
large surveys, solving the image reconstruction problem with different optimization parameters. This strategy faces a limitation for the
existing methods when imaging active galactic nuclei: Large and expensive surveys solving the problem with different optimization
parameters are time-consuming. We present a novel nonconvex, multiobjective optimization modeling approach that gives a different
type of claim and may provide a pathway to overcome this limitation.
Methods. To this end, we use a multiobjective version of the genetic algorithm (GA): the Multiobjective Evolutionary Algorithm
Based on Decomposition, or MOEA/D. The GA strategies explore the objective function by evolutionary operations to find the differ-
ent local minima and to avoid becoming trapped in saddle points.
Results. First, we tested our algorithm (MOEA/D) using synthetic data based on the 2017 EHT array and a possible EHT plus next-
generation EHT configuration. We successfully recover a fully evolved Pareto front of nondominated solutions for these examples. The
Pareto front divides into clusters of image morphologies representing the full set of locally optimal solutions. We discuss approaches
to find the most natural guess among these solutions and demonstrate its performance on synthetic data. Finally, we apply MOEA/D
to observations of the black hole shadow in Messier 87 with the EHT data in 2017.
Conclusions. The MOEA/D is very flexible and faster than any other Bayesian method, and it explores more solutions than regular-
ized maximum likelihood methods. We have written two papers to present this new algorithm. In the first, we explain the basic idea
behind multiobjective optimization and MOEA/D, and we use MOEA/D to recover static images. In the second paper, we extend the
algorithm to allow dynamic and (static and dynamic) polarimetric reconstructions.

Key words. techniques: interferometric – techniques: image processing – techniques: high angular resolution – methods: numerical

1. Introduction

Very long baseline interferometry (VLBI) is a radio inter-
ferometric technique. All antennas in the array observe the
same source at the same time. The recorded signals at each
antenna pair in the array are correlated gradually sampling the
Fourier transform of the true image brightness distribution of the
observed source with Fourier frequencies determined by base-
lines projected on the sky plane. Imaging, that is, the procedure
of creating an image from sparsely sampled Fourier coefficients
(visibilities), is a challenging ill-posed inverse problem.

Three main families of imaging algorithms in radioas-
tronomy have been proposed by the community: CLEAN-
based algorithms (Högbom 1974; Clark 1980; Bhatnagar &
Cornwell 2004; Cornwell 2008; Rau & Cornwell 2011; Müller &
Lobanov 2023a); maximum entropy-based and regularized max-
imum likelihood-based (RML) algorithms (Cornwell & Evans
1985; Chael et al. 2016, 2018; Akiyama et al. 2017a,b; Müller &
Lobanov 2022); and Bayesian-based algorithms (Broderick et al.

⋆ The first two authors contributed equally to this work.

2020; Arras et al. 2021; Tiede 2022). Since the point spread
function (PSF) has a nonvanishing kernel (i.e., missing data),
there is not a unique image reconstruction. The solution to the
unpenalized optimization problem is multivalued. This inherent
degeneracy is addressed by the regularizer either by imposing
support constraints manually (by placing “CLEAN windows”) in
CLEAN or by adding a penalty term (in RML) to the objective
functional. However, the result is that only one representative
solution is recovered, and it does not reflect the problem of
missing data due to the fact that more than one model fits the
visibilities and a unique mathematically ideal solution does not
exist. Instead, for these methods the problem of missing data
could be addressed by testing the reconstructions with differ-
ent combinations of penalizations, as done in Event Horizon
Telescope Collaboration (2019, 2022). Alternatively, the third
family (i.e., the Bayesian methods) can be used, as it imposes
a prior distribution and looks for all possible images that fit the
data, but the high computational cost makes this approach very
slow, and it requires powerful machines.

The RML methods minimize the weighted sum of a data
fidelity term (ensuring proximity to the observed data) and a
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regularization term (ensuring simplicity and fidelity of the
guess solution). Viable regularization terms used in frontline
VLBI applications, such as observations with the Event Horizon
Telescope (EHT), include total flux and non-negativity con-
straints, smoothness assumptions (total variation, total squared
variation), entropy functionals, and sparsity priors. For more
details, we refer to the discussion in Event Horizon Telescope
Collaboration (2019). More recently, multiscalar penalization
terms have been proposed (Müller & Lobanov 2022, 2023b).
Most RML techniques use local search techniques by quasi-
Newton approaches. While the reconstructions are generally
excellent, with improvements compared to CLEAN in resolu-
tion, accuracy, and dynamic range in particular for very sparse
data (see e.g., the comparisons in Event Horizon Telescope
Collaboration 2019, 2022; Müller & Lobanov 2022; Roelofs
et al. 2023), this strategy does come with two major drawbacks.

The first drawback is that the landscape of the objective
is highly complex. Hence, local optimization strategies could
easily become trapped in local minima instead of reaching the
global minimum. Since station-based gains have a priori known
uncertainties (which can however be unbound in one direction
in the case of uncharacterized telescope errors) that need to
be self-calibrated during the imaging, current RML pipelines
use the closure phases and closure amplitudes instead of the
visibilities in a first round of self-calibration (Event Horizon
Telescope Collaboration 2019, 2022). The hybrid imaging prob-
lem (i.e., the common reconstruction of the gains and the image
in alternating imaging and self-calibration rounds) is nonconvex.
Similarly, the projection to the calibration independent closure
quantities is nonconvex as well, and therefore the use of gradient
descent-based optimization strategies is further questioned (i.e.,
the optimization problem is multimodal. Although this issue may
be addressed effectively by systematic tests of various starting
models, regularization parameter combinations, and reconstruc-
tion methods (as done in Event Horizon Telescope Collaboration
2019, 2022), a more global optimization strategy is desired.

The second issue is that with a larger number of possible
regularization terms that need to be combined to achieve an
ideal image, a priori, which selection of weighting parameters
to choose is not known. This problem is typically solved with a
brute force approach: a library of synthetic data is created that
needs to be studied with every possible parameter combination
(parameter survey). Only the parameter combination that passes
several acceptance criteria will be used for the analysis of the real
observational data. This procedure is tedious and time consum-
ing. Moreover, the process is poorly motivated. The set of test
images could impact the top set selection and thus the quality of
the reconstruction. A multiobjective algorithm that evolves the
subspace of nondominated solutions in parallel and selects the
ideal hyperparameter array automatically is therefore needed.

Overall, applications to very sparse VLBI data sets, such as
in Event Horizon Telescope Collaboration (2019, 2022), were
successful in addressing both of the issues raised above related to
the multimodality and multiobjectivity of the problem by param-
eter surveys, combining the reconstructions by different methods
and teams, and by extensive testing of the data set. This strat-
egy allowed for strong indications of the fidelity of the ring-like
appearance of the black hole shadow. In this work, we build upon
the success of such a survey strategy in identifying the fidelity of
the recovered images but look for a reformulation of the prob-
lem that allows for a faster, less time-consuming alternative. We
present a novel imaging algorithm that provides an independent,
alternative claim on the morphology of the image. Moreover, this
algorithm may provide the possibility to accelerate parameter

surveys. To this end, we present a novel formulation for RML-
like problems to adapt to the multimodality and multiobjectivity
of the problem. All the solutions calculated in a parameter sur-
vey span a subspace of “optimally balanced” (or more correctly,
nondominated solutions). Instead of computing this subspace by
independent optimizations on a regular grid of coordinates and
selecting the best representant (i.e., computing a parameter sur-
vey), we aim for the complete subspace to be the result of our
optimization procedure. This new modeling consists of solving a
multiobjective optimization problem (MOP) where the objective
function is a combination of the most used regularizing terms
in the current RML methods (Chael et al. 2016, 2018; Akiyama
et al. 2017a,b). We solve this problem by using the global search
technique of genetic algorithms (GA), in particular we utilize
the Multiobjective Evolutionary Algorithm Based on Decompo-
sition (MOEA/D) algorithm (Zhang & Li 2007). In this way, we
avoid falling into one local minimum, and we ensure more diver-
sity in the solutions. We compute a set of candidate solutions
that are nondominated (i.e., optimal with respect to the corre-
sponding regularization). Our strategy is similar in philosophy
to the parameter surveys for RML methods but not equivalent
to them since we use a different optimality concept. Instead of
searching over several hyperparameter combinations, we jointly
evolve the solutions to all hyperparameter combinations together
(i.e., we speed up the exploration of hyperparameters drastically
through genetic crosstalk of similar regularizer weight combi-
nations). In a subsequent paper, we will extend the problem to
capture dynamics (and then to reconstruct “movies” instead of
snapshots) and polarimetry.

In contrast to CLEAN and RML methods, we do not recover
only one representative solution. Instead, the hypersurface of
all nondominated (locally optimal) models is recovered. Every
model in this surface of possible solutions corresponds to a spe-
cific regularizer weight combination, and they are all explored
in parallel. This diversity of solutions represents the full set of
possible image morphologies. To find the most natural solution
within this hypersurface, we propose two different approaches:
one, by calculating the minimal distance to the ideal point and,
two, by looking for accumulation points. Though Bayesian meth-
ods are able to reconstruct a set of candidate solutions related to
the multimodality of the problem as well, the parameter space
they explore makes their time performance low (they require
quite a few hours or days of computation) for that scope, despite
there being considerable recent progress in speeding up their
performance (e.g., Knollmüller & Enßlin 2019; Tiede 2022)
and Bayesian methods having been consequently applied, even
for large data sets (e.g., Arras et al. 2021; Tychoniec et al.
2022). In contrast, the set of candidate solutions computed by
MOEA/D does not have a Bayesian interpretation as a poste-
rior distribution, and hence it does not allow for an uncertainty
quantification.

The paper is divided as follows: in Sect. 2, we describe the
basics of VLBI measurements and imaging reconstruction using
RML methods. In Sects. 3 and 4, we give a short overview of
multiobjective optimization, and we introduce the terms that will
be useful later together with a global search technique used to
solve these types of problems. We present the model of our
problem in Sect. 5. Every solution of this problem is an opti-
mal image. We test our algorithm and we discuss several points
in Sect. 6 (synthetic data) and Sect. 7 (real data). For all of these
tests, we use self-calibrated data. In Sect. 8, we run the algorithm
in data that is not self-calibrated, and we study the importance
of the initial point to constrain the problem when there is not a
self-calibration model in the case of sparse uv coverage, while
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in cases with better uv coverage, any extra constraint is needed
to recover the intrinsic source structure. The main part of this
first paper ends in Sect. 9, which contains the conclusions of the
work. Further appendixes are included to avoid an unnecessary
extension.

2. VLBI measurements and imaging

An interferometer consists of a set of T telescopes observing the
same source at the same time. The signal recorded at two inde-
pendent stations is correlated. This correlation product is called
visibilityV(u, v) with harmonic coordinates (u, v) determined by
the baseline of the antenna pair. The true sky brightness distribu-
tion I(l,m) andV are related by the van-Cittert-Zernike theorem
(Thompson et al. 1994):

V(u, v) =
∫ ∫

I(l,m)e−2πi(lu+mv)dldm. (1)

With a full aperture, the true image could be recovered from the
visibilities by an inverse Fourier transform. However, for VLBI,
only a sparse subsample of the Fourier coefficients is measured.
We call the subsample of measured Fourier frequencies the UV
coverage. The measured visibilities along one pair of antennas
(indexed with i, j ∈ 1, 2, ...,T ) at a time t is corrupted by station-
based gains gi and additional thermal noise Ni, j specific to the
baseline such that the measured visibility on this baseline reads:

V(i, j, t) = gig
∗
jV(i, j, t) + Ni, j. (2)

Closure quantities are gain-independent quantities derived from
the observed visibilities, that is, the closure phases over a triangle
of antennas i, j, k ∈ {1, 2, ...,T } are:

Ψi jk = arg
(
Vi jV jkVki

)
, (3)

and the closure amplitudes over a rectangle of antennas i, j, k, l ∈
{1, 2, ...,T } are:

Ai jkl =
|Vi j||Vkl|
|Vik ||V jl| . (4)

For RML methods, we optimize not only a single but several
objective functionals (Chael et al. 2016, 2018; Akiyama et al.
2017a,b; Event Horizon Telescope Collaboration 2019; Müller
& Lobanov 2022). These include data fidelity terms that mea-
sure the fidelity of the guess solution to the observed data, for
example, the fit quality to the visibilities:

S vis(V ,V) =
1

Nvis

Nvis∑

i=1

|Vi − Vi|2
Σ2

i

, (5)

with the number of observed visibilities Nvis, visibilities of
the guess solution Vi, and error Σi. Moreover, the fit to the
amplitudes:

S amp(V ,V) =
1

Nvis

Nvis∑

i=1

(|Vi| − |Vi|)2

Σ2
i

(6)

to the closure phases:

S cph(V ,V) =
1

Ncph

Ncph∑

i=1

|Ψi(V ) − Ψi(V)|2
Σ2

cph,i

(7)

and closure amplitudes:

S cla(V ,V) =
1

Ncla

Ncla∑

i=1

| ln Ai(V ) − ln Ai(V)|2
Σ2

cla,i

(8)

could be used. Regularization terms measure the feasibility of
the solution to fit the data with a model that is as simple as
possible. Usual choices include a flux constraint f :

Rflux(I, f ) = ∥
∫ ∫

I(l,m)dldm − f ∥, (9)

where f is the total flux together with norm constraints:

Rl1(I) = ∥I∥l1 , (10)
Rl2(I) = ∥I∥l2 , (11)

smoothness priors

Rtv(I) =
∫
∥∇I∥ dl dm, Rtsv(I) =

√∫
∥∇I∥2 dl dm, (12)

and an entropy functional

Rentr (I) =
∫ ∫

I ln
( I

M

)
dldm, (13)

where M denotes the brightness distribution of a model image.

In RML methods, these terms are added with correspond-
ing weighting parameters (e.g., α, β, ..., ι ∈ R) to create the full
objective functional F :

F = αS vis + βS amp + γS clp + δS cla

+ϵRflux + ζRl1 + ηRl2 + θRtv + ιRtsv + κRentr. (14)

The joined minimization of S vis, S amp, S clp, and S cla combines
redundant information (e.g., the information encoded by the clo-
sure amplitudes is also encoded in the amplitudes), a potential
weak point of the forward modeling techniques. In Sect. 8, we
show how our algorithm works with terms that are only closure
dependent.

3. Multiobjective optimization

A multiobjective (minimization) optimization problem in its
general form can be stated as (Pardalos et al. 2017)

Problem 1 (MOP standard form)

min
x∈D

F (x) := ( f1 (x) , . . . , fn (x)) ,

subject to x ∈ D ⊂ Rm,
(MOP)

where D is the decision space, Rn is the space of objectives,
and F : D −→ Rn is the vector-valued multiobjective optimiza-
tion functional whose individual components fi : D −→ R, i =
1 . . . ,m are an objective functional. The feasible set D ⊂ Rn

is generally expressed by a number of inequality constraints
D = {x ∈ Rn | ci (x) ≤ 0, i = 1, . . . , n}. This is the setting of
our work.

It is common to find discrepancies between objectives, mean-
ing a single point x ∈ D that minimizes (maximizes) all the fi
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Fig. 1. Schematic illustration of the Pareto front for two given functions
( f1 and f2), its ideal point, and two concepts for the most natural pre-
ferred points.

simultaneously does not exist (Pardalos et al. 2017). Therefore,
the goal of the MOP is to find the best compromise among all of
the objectives. This compromise is defined by means of a special
set of solutions: the Pareto front PRm (F) (Pardalos et al. 2017).

The Pareto front consists of the Pareto optimal (nondomi-
nated) solutions in the space of objectives. A point x∗ ∈ D is
considered Pareto optimal (nondominated) if there is no point
x ∈ D such that fi (x) ≤ fi (x∗) , ∀i = 1, . . . ,m and f j (x) < f j (x∗)
for at least one j = 1, . . . ,m. In other words, we call a point
x∗ ∈ D Pareto optimal if the further optimization in one objective
automatically has to worsen another objective functional.

In general, PRm (F) cannot be found analytically. In partic-
ular, most of the efforts are devoted to approximating PRm (F)
or identifying characteristic members (Pardalos et al. 2017). The
selection of these represent members should be carefully done
to avoid unfeasible, long running times or small diversity among
the solutions. We also point out that the Pareto front represents
a novel approach in VLBI to the multiple data and regulariza-
tion terms discussed in Sect. 2. With the weighted sum approach
(Eq. (14)) and with varying parameter combinations {α, β, ..., ι},
we calculated a hypersurface that effectively approximates the
Pareto front.

The Pareto front is bound by the nadir and the ideal objective
vectors (see for instance Pardalos et al. 2017). While the nadir
is not used in this work (we refer the reader to the bibliography
for a clear definition), the ideal objective vector is the element
l = (l1, . . . , lm) on D such that each component li is computed by
(compare also Fig. 1):

li = inf
x∈PRm (F)

fi (x) , i = 1, . . . ,m. (15)

In this work, we used this vector to define a metric used to return
one representative image, despite all the images belonging to the
Pareto front being equally valid solutions.

Among all the possible strategies used to approximate
the Pareto front (we refer the reader to the recent summary
Sharma & Chahar 2022, for a comprehensive overview), the
so-called multiobjective evolutionary algorithms (MOEAs) have
been found to be efficient approaches. In this work, we used
MOEA/D (Zhang & Li 2007; Li & Zhang 2009). This tech-
nique first obtains PRm (F) by solving a set of scalar functionals
associated with the objectives in a collaborating manner via
an evolutionary algorithm. This cooperative strategy allows for

the handling of large-scale optimization problems by decompos-
ing them into smaller scale subproblems (Tsurkov 2001). The
MOEA/D has a high search ability for continuous, combinato-
rial, and multiobjective optimization. The MOEA/D also has a
lower complexity than other algorithms. It is out of the scope of
this paper to do a comparison of algorithms for solving MOP,
and we thus refer the reader to Xin-She & Xing-Shi (2019) for
more details on the multiple variants of algorithms solving MOP.

4. MOEA/D

Nonconvex problems, as Prob. (MOP-MOEA/D), generally have
more than one optimal solution. Such solutions are called “local
optimal solutions”. Gradient- or Hessian-based algorithms are
questionable in such types of problems because they are only
able to return the first local solution they find. We refer the reader
to Mus & Marti-Vidal (in prep.) for a longer discussion on the
initial point dependence in noncovex problems. In this section,
we summarize a global search strategy called MOEA/D, which
was first proposed in Zhang & Li (2007), that overcomes this
issue. For more details, we refer to Zhang & Li (2007); Li &
Zhang (2009); Xin-She & Xing-Shi (2019).

The MOEA/D algorithm solves the optimization problem
with a genetic algorithm. Genetic algorithms are inspired by nat-
ural evolution. At every generation, a population of solutions is
created from the preceding generation. We calculated the evo-
lution from one generation to the next generation by genetic
operations, that is, by random mutation of the single repre-
sentants (genes) in the population and mating (i.e., mixing) of
randomly selected parents in the parent generation.

In MOEA/D, the problem is decomposed in single problems
either by a Tchebycheff decomposition or by a weighted sum
decomposition. For this work, we focus on the weighted sum
decomposition due to its philosophical similarity to established
RML reconstructions in VLBI (Chael et al. 2016, 2018; Johnson
et al. 2017; Akiyama et al. 2017b). We defined weight arrays
λ1 = {λ1

0, λ
1
1, ..., λ

1
m}, λ2 = {λ2

0, λ
2
1, ..., λ

2
m}, ... that are related to

the objective functionals f1, f2, ..., fm. Every weight array was
normalized:

λ
j
i ∈ [0, 1], ∀i, j, (16)
m∑

i=1

λ
j
i = 1, ∀ j. (17)

Prob. (MOP) was decomposed into solving single optimization
problems by a weighted sum approach:

x j ∈ argminx

m∑

i=1

λ
j
i fi(x). (18)

The nondominated single solutions in {x j} ∈ D ⊂ Rn approxi-
mated the Pareto front. The optimization was done with a genetic
algorithm that interchanges information between several genes
in one population at every iteration. For details, we refer the
reader to Zhang & Li (2007) and Li & Zhang (2009). In a nut-
shell, we defined the closest neighborhoods UB(λ j) around every
weight array λ j. The update step consisted roughly of the follow-
ing substeps performed for every j: first we selected two random
indices k, l from the neighborhood UB(λ j). Second, we gener-
ated a new solution y j through genetic operations from xk and
xl, that is, by random mutation and crossover among different
candidates. Third, we updated all the solutions in the neigh-
borhood, that is, for all indices n ∈ UB(λ j) we set xn = y if
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∑m
i=1 λ

n
i fi(y j) <

∑m
i=1 λ

n
i fi(xn). Finally, we found the nondomi-

nated solutions. Next, we proceed with the next update step,
i.e. we reiterated the four substeps outlined above until conver-
gence is achieved. The MOEA/D algorithm therefore evolves the
population at every point in the Pareto front at the same time.
Moreover, it preserves diversity since isolated neighborhoods are
protected from each other.

5. Modelization of the problem

To model the problem, we chose seven objective functionals:

f1 := αS vis + βS amp + γS clp + δS cla + ζRl1, (19)
f2 := αS vis + βS amp + γS clp + δS cla + θRtv, (20)
f3 := αS vis + βS amp + γS clp + δS cla + τRtsv, (21)
f4 := αS vis + βS amp + γS clp + δS cla + ηRl2, (22)
f5 := αS vis + βS amp + γS clp + δS cla + ϵRflux, (23)
f6 := αS vis + βS amp + γS clp + δS cla + κRentr, (24)
f7 := αS vis + βS amp + γS clp + δS cla. (25)

Therefore, the nonconvex multiobjective problem to be
solved is

Problem 2 (MOP for imaging reconstruction)

min
x∈D

F (x) := ( f1 (x) , . . . , f7 (x)) ,

subject to x ∈ RNpix
+ .

(MOP-MOEA/D)

This modelization is flexible and it is easy to include new
regularization functionals. Due to Eq. (17), the weighted sum
decomposition with weights array {ζ, ϵ, η, θ, τ, κ, 1 − ζ − ϵ − η −
θ−τ−κ} is equivalent to Eq. (14). Hence, every item in the Pareto
front corresponds to the optimal solution of a single hyperparam-
eter combination (thus replacing parameter surveys). Moreover,
this selection of the objective functionals ensures that the opti-
mization is compatible with the data in every optimization direc-
tion (i.e., every fi assures fit quality to the data). In contrast to the
parameter surveys that were proposed for RML methods but are
numerically unfeasible and poorly motivated, all the solutions
corresponding to a specific regularizer weight combination λ j

are evolved together in our approach. Due to the genetic mixing
of neighboring solutions, MOEA/D shares information between
the solutions for similar weight arrays λ j and is improved in
this regard compared to parameter surveys that calculate the
solutions independently. However, we mention that while the
similarity to parameter surveys constitutes the main motivation
behind the application of MOEA/D for VLBI imaging, Pareto
optimality is a slightly different optimization concept.

Although we use the combined objectives f1, ..., f7 for the
MOEA/D, during postprocessing we examine the front related to
the penalty terms Rl1 ∝ f1− f7,Rtv ∝ f2− f7, .... For more details,
we refer to Sect. 6.2, where we show examples of different Pareto
fronts. We plotted the Pareto front in the first row as projec-
tions onto the three-dimensional domain. In the second row, we
present the same front but with different projections. Every sin-
gle point in these plots corresponds to an image recovered for a
specific weighting combination. When inspecting the front, we
identified several disjoint clusters. These clusters demonstrate
several image morphologies that become visible when chang-
ing the weight parameter combinations. The image diversity
within one cluster, however, is small. We found the clusters by
a standard clustering algorithm. First, we renormalized every

axis such that the values were in the range [0, 1]. Then for every
point, we found the respective neighbors (where a point is clas-
sified as a neighbor when the relative distance between them
in the seven-dimensional space spanned by [ f1, ..., f7] is larger
than some threshold). Finally, we classified all data points that
were connected by a path of neighbors as being part of the
same cluster.

We mention that every solution in the Pareto front is an
optimal solution with respect to the multiobjective optimiza-
tion problem. Mathematically, there is no preferred solution. All
image morphologies in the different clusters are mathematically
reasonable solutions that fit the data. Therefore, the Pareto front
is the main output of MOEA/D representing the fact that there is
not a single preferred image due to missing Fourier coefficients,
and it presents an illustration of possible image features that
are similar in philosophy to Bayesian algorithms (draws from
the posterior distribution) and the survey of images produced in
a parameter surveys. However, it is standard in VLBI imaging
to select one image that is most natural with respect to scien-
tific perception. We therefore present two strategies for finding
the most natural image among all optimal solutions. These two
strategies are illustrated in Fig. 1.

In one strategy, we can first define the ideal point following
Eq. (15). As the ideal point is the point that would be optimal in
every objective, it can be found by identifying the cross section
of the minimum in every single objective (see Fig. 1). The ideal,
however, has no physical meaning since it is not a solution of
the Prob. (MOP-MOEA/D). A natural choice for a single image
would thus be the recovered solution in the Pareto front that has
the shortest (Euclidean) distance to the ideal point.

As a second strategy, we can look for accumulation points.
Every cluster of solutions represents a locally optimal image
morphology. We assumed that most solutions may cluster among
the most natural solutions, while the edges of the parameter
space with more exotic solutions are less sampled. To find a nat-
ural representative image, we therefore look for the points with
the highest number of close neighbors: the accumulation point
of the cluster.

The traditional multiobjective optimization theory lacks a
standard methodology to address the challenge of solution selec-
tion, which entails the identification of a representative solution
from an entire set of solutions comprising the Pareto front.
Although a few strategies have been put forth in the literature (for
instance Schwind et al. 2014, 2016), there is no consensus on an
optimal approach. In this paper, we introduce two distinct crite-
ria for solution selection: the accumulation point and the closest
image to the ideal. Notably, any method that yields an image
belonging to the Pareto front is a valid method of selecting a
mathematical solution for the given problem.

6. Verification on synthetic data

6.1. Synthetic data

We tested our algorithm on the four synthetic geometric models
(double, crescent, disk, and ring) that were used for the imag-
ing verification by the EHT in 2017 (Event Horizon Telescope
Collaboration 2019). For each model, two observational data sets
were generated, one based on the EHT array of 2017 (cover-
age and thermal noise level of the 2017 observations of M87 on
April 5) and the other based on a possible EHT plus ngEHT con-
figuration (Roelofs et al. 2023) including ten additional stations,
a quadrupled bandwidth, and an enhanced frequency coverage.
We simulated synthetic data at 230 GHz and added thermal
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Fig. 2. uv coverage for M87 on April 11, 2017. The red dots show EHT,
and the black crosses indicate ngEHT at 345 GHz.

noise according to the expected systematic noise levels used for
Roelofs et al. (2023).

The geometric models were the same that were used for
imaging verification in Event Horizon Telescope Collaboration
(2019) and Müller & Lobanov (2022). The size of the ring, cres-
cent, and disk mimics the size of the famous black hole shadow
in Messier 87 (M87; Event Horizon Telescope Collaboration
2019). The ring and crescent have a radius of 22µas, and the
disk has a diameter of 70µas. The double image mimics a com-
pletely different image structure that has features comparable
to 3C279, as seen by the EHT (Kim et al. 2020). All geomet-
ric models were normalized to a total flux of 0.6 Jy. Moreover,
we blurred the geometric models with a 10µas-blurring ker-
nel before synthetically observing them in order to avoid sharp
edges.

6.2. EHT + ngEHT array

Figure 2 depicts the UV coverage of the EHT plus ngEHT array.
The crosses and points together form the full EHT plus ngEHT
array. The UV plane is less sparse for the combined EHT and
ngEHT instrument, thus leading to improved constraints on the
inverse problem, which remains ill posed. To mimic the uncer-
tainty in the phases we performed the reconstruction from the
amplitudes and closure quantities only as was proposed in Chael
et al. (2018); Müller & Lobanov (2022) and applied in Event
Horizon Telescope Collaboration (2019, 2022). In particular we
used the data term combination α = 0 and β = γ = δ = 1. The
weights were chosen on a grid with ten steps in every dimension,
giving rise to 3003 parameter combinations that satisfy Eq. (17).
We used a genetic algorithm with 4000 iterations. Moreover, we
set the hyperparameters related to the genetic operations to the
default values proposed in Li & Zhang (2009). For more details
on the optimal choice of the genetic parameters (e.g., mating
probability, random mutation size, and number of iterations), we
refer the reader to Appendix A. Moreover, we added an over-
all scaling to every penalty term that was found to be ideal. For
more details, we refer the reader to Appendix A. We selected

Fig. 3. Solution space of the MOEA/D. First two rows: Pareto front for
the crescent case using the EHT + ngEHT array. The first panel of the
solution clusters (top-left corner) shows the true image. The Pareto front
is a seven-dimensional hypersurface. We illustrate the Pareto front with
six projections. The six projections show the correlation between two
regularizers and their values with respect to f7 (data fidelity term, only
functional). The bluer the points are, the lower the value for f7. Bottom
two rows: solution clusters (following rows) for the crescent case using
the EHT + ngEHT array. The family of solutions can be grouped into
eight clusters. The red box surrounding the cluster indicates the pre-
ferred solution by the accumulation point strategy, while the blue box is
the solution closest to the ideal.

a 40µas Gaussian as a prior. The entropy functional was com-
puted relative to this prior image. Moreover, we had to choose
an initial population for MOEA/D. Instead of starting from a
pre-imaging model, we started the MOEA/D algorithm from a
random distribution. Every gene in the initial population was
drawn independently from a uniform distribution with values
between 0 and 1 Jy. Finally, all the initial genes in the initial
population were re-scaled to the respective compact flux.

We show our results for the four geometric models in
Figs. 3–6. The Pareto front is a hypersurface in a seven-
dimensional space (six penalty terms and one combined data
term). We plotted the front as a series of three projections into
the three-dimensional space (respectively two penalty terms and
the data term) in the top-row panels of Figs. 3–6. Upon a first
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Fig. 4. Same as Fig. 3 but for the disk model.

Fig. 5. Same as Fig. 3 but for the double model.

observation, we saw that the entropy, total flux constraint, and
data term are strongly correlated since a wrong total flux or
source size worsens the fit to the observed amplitudes.

When inspecting specific fronts, we observed that Rl1 and
Rl2 as well as Rtv and Rtsv seemed to be correlated. That
is reasonable, as these regularization terms promote a simi-
lar prior information (sparsity and smoothness, respectively).
In the second-row panels of Figs. 3–6, we present the same
Pareto front, but this time we combined the terms with con-
flicting assumptions (smoothness versus sparsity), that is, the
various prior assumption that we aim to balance with an RML

Fig. 6. Same as Fig. 3 but for the ring model.

method. As expected, we observed an anti-correlation in most
cases. The Pareto front represents all optimal balances along
this line of conflicting assumptions. In consequence, the front
became divided into a varying number of clusters. The diversity
of the images within every cluster is small, but the diversity from
one cluster to the next cluster is significant. In the lower pan-
els of Figs. 3–6, we show the ground truth image (top left) and
a single representant (the accumulation point) of every cluster.
We also show the solution that is preferred by the accumula-
tion point selection criterion (i.e., the one that has the largest
number of close neighbors), and we show the solution that is
preferred by the closest optimum criterion. The two criteria coin-
cide except in the disk model, but in all cases, the algorithm
selected a reasonable reconstruction. For all four geometric mod-
els, the reconstruction is quite successful. The image features are
recovered very well, although MOEA/D seems to slightly prefer
blurred reconstructions.

6.3. EHT array

Figure 2 shows the UV coverage of the supermassive black hole
M87 during the 2017 EHT observation campaign. The poor cov-
erage of the campaign made the imaging more challenging, in
particular since we were limited to the closure quantities. This
resulted in a more difficult optimization problem, as demon-
strated by the enhanced diversity in the population in the case
of GA. The reconstruction was done with 5000 iterations and
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Fig. 7. Solution clusters for the crescent case using the EHT array. The
first panel (top-left corner) shows the true image. The red box surrounds
the cluster indicated by the accumulation point strategy, while the blue
box highlights the cluster closest to the ideal.

Fig. 8. Same as Fig. 7 but for the disk model.

a random starting point. Moreover, we used the same genetic
parameters as used for the EHT plus ngEHT data sets.

We show the recovered clustered images for all for geometric
models in Figs. 7–10. The recovered images show a wide vari-
ety of image morphologies. There are reasonably well-produced
(but slightly blurred) reconstructions (e.g., cluster 1 and 6 for the
crescent; cluster 1 and 4 for the ring). Moreover, we observed
over-resolved reconstructions (e.g., cluster 0 and cluster 4 for the
crescent; cluster 0 and cluster 5 for the double structure). Since
every point in the Pareto front has a one-to-one correspondence
to a specific weight vector combination {λ j

i }, we could investigate
which solutions were causing the over-resolved structural pat-
terns. As expected, these solutions are at the edge of the Pareto
front with a dominating sparsity term. Finally, we found some
clusters that show phantom repetition of the same structures
(e.g., cluster 2 and 3 for the ring; cluster 2 for the disk). These
secondary phantom images are not unusual for image reconstruc-
tions given the combination of visibility phase uncertainty and
poor UV coverage. This issue is addressed in RML algorithms
either by surveying the correct balancing of various regulariza-
tion terms (Event Horizon Telescope Collaboration 2019, 2022)
or by a multiscale-based hard thresholding (Müller & Lobanov
2022). An analysis of the reconstructions in MOEA/D showed

Fig. 9. Same as Fig. 7 but for the double-source model.

Fig. 10. Same as Fig. 7 but for the ring model.

that these solutions are related to the unpenalized reconstruction.
This result can be well explained by the dirty beam. In particu-
lar, the cluster 2 reconstruction of the disk example resembles the
dirty image, that is, the unpenalized reconstruction converges to
the dirty image, as it is the easiest solution that fits the data.

For all four geometric models, we selected well-
reconstructed cluster images using the accumulation point
strategy and the closest neighbor strategy. These strategies
may give rise to a completely data-driven image reconstruction
without the need of parameter surveys. Among all the optimal
images, we selected the best by looking for the image with the
most close neighbors in the Pareto front.

7. Real data

We applied our algorithm to real data taken during the 2017 EHT
campaign (Papers I-VI). We reconstructed images of M87 and
the calibrator source 3C279 using the UV fit files available on
the official webpage of the EHT1. To obtain the image, we used
the best-parameter setting discussed in Sect. 6. For this work, we

1 https://eventhorizontelescope.org/for-
astronomers/data
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Fig. 11. Relative Pareto fronts (top two lines) and clustered images for
M87 on April 11 (bottom three lines).

considered three variants of a data reduction pipeline: First, we
used a random starting point and a random prior (Scenario A).
Second, we tested a random starting point and a Gaussian prior
(Scenario B). Finally, we used the image with less χ2 (obtained
with ehtim without any regularizer) as a starting point and a
Gaussian prior (Scenario C). Although we only discuss Sce-
nario C in this section, the remaining scenarios can be found in
Appendix C. We emphasize the importance of the initial points
in real data, in particular when there is sparse UV coverage. To
avoid including unnecessary information in the paper, we only
show the Pareto front and clustered images. We note that the
convergence of the algorithm has been already shown in Sect. 6.

Messier 87 was observed across four days: April 6, 7, 10, and
11 (see for example Paper I). The reconstructions for all days can
be found in Appendix B. Figure 11 depicts the set of clustered
solutions for the day of April 11. Cluster 0 and cluster 1 present
a good ring structure. Indeed, the representant for cluster 1 was
chosen as the preferred image reconstruction, and it is very sim-
ilar to the one published by the EHT. The rest of clusters have
more subtle differences. The three “families” in the Pareto front
can be observed in this figure.

8. Closure-only imaging

In this paper, we consider α to be zero and β, γ, δ to be different
from zero. Hence, the reconstruction we present is independent
from the highly unstable phase calibration, but the reconstruc-
tion only works properly if the data set has an amplitude that is
self-calibrated, as described in Readhead & Wilkinson (1978).
The aim of self-calibration is to adjust the complex gains of an

Fig. 12. Cluster solutions for the case of the EHT+ngEHT data with
noise included and not self-calibrated. The starting point is a random
distribution in the pixels.

interferometer by iteratively comparing the calibrated visibilities
to an improved model. An accurate modeling of the source struc-
ture is crucial for the correct convergence of self-calibration (see
for instance Martí-Vidal & Marcaide 2008; Mus et al. 2022).

In this section, we try our algorithm on non-self-calibrated
data from the April 11 real EHT data and EHT plus ngEHT
data. For this case, when the algorithm is applied to non-self-
calibrated data, the nonclosure related fitting weights (α and
β) are set to zero, that is, only the closure phases and the clo-
sure amplitudes are fitted, as suggested by Chael et al. (2018);
Müller & Lobanov (2022). Moreover, setting α = β = 0 solves
the redundancy of data terms that we mention in Sect. 2.

The reconstruction problem becomes more challenging since
the number of independent closure phases and closure ampli-
tudes are smaller than the number of independent visibilities,
that is, the data consistency is less constraining (Kulkarni et al.
1991; Chael et al. 2018; Blackburn et al. 2020). Moreover, we
mention that S cph and S cla are only approximations to the true
likelihoods (Lockhart & Gralla 2022).

Figure 12 shows the set of solutions recovered using the EHT
plus ngEHT array and a random brightness distribution on the
pixels as starting point. We observed that MOEA/D is able to
recover the intrinsic source structure even when self-calibration
is not performed, although the obtained images are not as good as
the ones obtained with a self-calibrated amplitude data term (i.e.,
β , 0). We note that the selection criteria for optimal solutions
seemed to not select the optimal solution in this case.

In Fig. 13, we present the reconstructions for the real M87
EHT data. The poorer the UV coverage, the less constrained the
optimization problem was. In the case of self-calibrated data,
the problem is biased by the self-calibration model. If there
were not a “biased” model, there would be more degrees of
freedom, due to the smaller number of independent closure quan-
tities. The larger number of degrees of freedom is translated into
more local minima, and in consequence, there are more clus-
ters. We highlight that the starting point is even more crucial in
the case of non-self-calibrated data (i.e., without amplitude con-
sistency), particularly when the UV coverage is sparse. Since a
closure-only data set is less constraining than fitting fully cal-
ibrated visibilities, it is harder for the method to converge by
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Cluster 0 Cluster 1 Cluster 2

Cluster 3 Cluster 4 Cluster 5

Cluster 6 Cluster 7 Cluster 8

Cluster 9 Cluster 10 Cluster 11

Cluster 12 Cluster 13 Cluster 14

Cluster 15 Cluster 16 Cluster 17

Cluster 18 Cluster 19 Cluster 20

Cluster 21 Cluster 22

Fig. 13. Clusters of solutions for the case of M87 on the April 11, 2017 EHT campaign. The starting points are a ring (left panel) and Gaussian
(right panel) and play an important role in constraining the solutions in absence of a self-calibration model.

random mutation and random genetic mixing. For the left panel
of Fig. 13, we used a ring as the starting point, and for the right
panel, we used a Gaussian distribution. While we recovered a
ring with a central depression in most of the clusters in the first
case, in the second, one less ring-like structure was recovered,
but it can still be seen. Hence, the intrinsic structure of the source
is predominant in the data even when considering a distribution
not related with the real structure as a starting point.

The quality of the obtained solutions was the worst when
only closure quantities were fitted. Nevertheless, we could use
one of the clusters for creating a nonbiased model for self-
calibration and rerun MOEA/D with updated amplitude infor-
mation. Another alternative is to use this selected cluster as the
initial point and to run the MOEA/D. In this way, the MOEA/D
is run iteratively, improving the starting point.

9. Summary and conclusions
Imaging in radioastronomy is an ill-posed inverse problem, and it
is particularly difficult when UV coverage is very sparse, as is the

case of global VLBI observations. Several strategies to overcome
such a challenge using algorithms have been developed, and
they can be classified into three main families: CLEAN meth-
ods, (constrained) nonlinear optimization methods, and Bayesian
approaches. Each algorithm family has its advantages and disad-
vantages. For example, optimization methods are considerably
faster than Bayesian ones, but they lack a global posterior
exploration, and therefore a large, highly expensive parameter
survey is then required. On the other side, Bayesian methods
explore a huge set of parameters, but they have slow performance
compared to nonlinear optimization methods and CLEAN, in
particular for large data sets. We have identified two specific
issues related to the imaging problem, namely, the problem is
multimodal and multiobjective.

In this work, we have presented a novel multiobjective for-
mulation based on evolutionary algorithms that overcomes these
problems. We computed a set candidate of solutions that are
nondominated (i.e., optimally balanced): the Pareto front. A
parameter survey is not required anymore with this approach
since the complete Pareto front of optimal solutions is evolved
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in parallel, considerably speeding up the time required by stan-
dard RML approaches to obtain a set of solutions. Furthermore,
the result of parameter surveys depends on the set of test images.
This issue does not arise for MOEA/D.

Moreover, the MOEA/D is a global search technique that is
less likely to get trapped in local extrema. Therefore, we are able
to recover a full subset of solutions that are the best compromise
of multiple objective functionals. Every candidate solution in the
Pareto front is related to a specific hyperparameter combination.

The MOEA/D algorithm is faster than any Bayesian
approach, but it does not explore a posterior distribution.
Nonetheless, it is very flexible, allowing for the introduction of
new regularizers very easily without exponentially increasing
the computing complexity. We created a clustering algorithm
to group the “similar” solutions. Then, we implemented two
different techniques to choose the representative image between
all clusters. All of the clusters are mathematically valid images,
and therefore any other criterion to choose one among all can
also be used.

We successfully tested our algorithm in four synthetic mod-
els (double, disk, ring, and crescent) using a sparse array (EHT
2017) and a more complete instrumental configuration (EHT +
ngEHT). Finally, we ran our algorithm in real 2017 EHT M87
data. In this work, we discussed the role of various regulariza-
tion terms and their impact in a multiobjective framework. In
a subsequent work, we will focus on the data terms. That is,
we will include a wider variety of (nonredundant) data term
combinations in the multiobjective formulation (also including
dynamic and polarimetric data products), study their role in
more detail, and extend MOEA/D to dynamic and polarimetric
observations.
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Appendix A: Parameter survey

The genetic evolution from one generation to the next genera-
tion in MOEA/D is calculated by genetic mixing and random
mutation. These operations are controlled by specific control
parameters. For full details, we refer to Li & Zhang (2009). Fol-
lowing the algorithmic outline presented in Sec. 4, assume that
k, l are randomly selected indices in the neighborhood UB(λ j).
We aim to compute a new solution y j by genetic mixing and
random mutation. The genetic mixing is (Li & Zhang 2009):

y
j
i =


x j

i + F ·
(
xk

i − xl
i

)
with probability CR

x j
i with probability 1-CR.

(A.1)

Random mutation can be written as (Li & Zhang 2009):

y
j
i =


x j

i + σi · (bi − ai) with probability pm

x j
i with probability 1 − pm

, (A.2)

where ai and bi are the lower and upper bound of the current
decision vector. The magnitude of mutation is controlled by σi
(Li & Zhang 2009):

σi =


(2 · rand)

1
η+1 − 1 if rand < 0.5

1 − (2 − 2 · rand)
1
η+1 otherwise

, (A.3)

where rand is a random number uniformly distributed in [0, 1].
Overall, we have four control parameters: two related to the
genetic mixing (F,CR) and two related to the polynomial muta-
tion (pm, η). Moreover, the number of genes per generation and
the number of generations are free parameters. A false combi-
nation of hyperparameters could keep MOEA/D from reaching
convergence (e.g., if the random mutation is too small) or from
having diversity in the solution (e.g., if the genetic mating
appears too often). Thus, we started from the default choices
suggested in Li & Zhang (2009) and surveyed several parame-
ter combinations for the crescent example with EHT coverage.
We changed F ∈ [0.1, 0.5, 0.9], η ∈ [5, 20, 50] and changed the
grid of the weighting combinations to 107, 307, 1007, and 5007

weight combinations. Moreover, we tested 1000, 3000, and 5000
iterations. Except for parameters far out of the standard range
(i.e., F = 0.9), the performance was overall quite similar, with a
tendency toward more generations, a smaller number of weight
arrays, and genetic parameters close to those that were found to
be optimal in Li & Zhang (2009). So we used CR = 1, F = 0.5,
η = 20, and pm = 0.9 for this manuscript. The number of weight
parameter combinations was limited to 107 combinations to keep
the algorithm reasonably fast. Moreover, our investigation of
more parameter combinations did not suggest an improved per-
formance. Using 3000 − 5000 iterations seems sufficient and is
also supported by the frozen-in-convergence condition of the
decision vectors at these generations.

In MOEA/D, we solved problems of the form:

x j ∈ argminx

m∑

i=1

λ
j
i fi(x), (A.4)

with the objective functionals discussed in Sec. 5. Every point in
the Pareto front represents a solution optimal with respect to the
local parameter combination. In this way, we tested the output
of RML imaging with several parameter configurations. How-
ever, due to the normalization of λ j and the limited grid size, the
weighting parameters for different optimization terms differ only

by one order of magnitude. Since the regularization terms are not
normalized with respect to the pixel size (e.g., TV-pseudonorm
or l1-norm change when a smaller pixel size is used), we had to
re-scale the regularization terms to a similar order of magnitude
of impact before running MOEA/D. We varied the pre-factor for
Rl1 , Rl2 , Rtv, and Rtsv between [1, 10, and 100] and the pre-factor
for entropy regularization between [0.1, 1, and 10]. The param-
eter combinations were tested on synthetic EHT and EHT plus
ngEHT data for all four models, with optimal combinations for
entropy re-scaling found to be by 0.1 or one, for l2 re-scaling to
be by a factor of ten, for l1 re-scaling to be by a factor of one, and
for total variation and total squared variation re-scaling to be by
a factor of one or ten.

Appendix B: M87 in all epochs

In this appendix, we extend the results of M87 shown in Sect. 7
with the reconstructed images for the rest of the epochs. Fig-
ure B.1 depicts the image reconstructions for M87 on April 5, 6,
and 10. In all of them the preferred image is the one presenting
the clearest ring structure.

Cluster 0 Cluster 1 Cluster 2

Cluster 3 Cluster 4 Cluster 5

Cluster 0 Cluster 1 Cluster 2

Cluster 3 Cluster 4 Cluster 5

Cluster 6 Cluster 7 Cluster 8

Cluster 9

Cluster 0 Cluster 1 Cluster 2

Cluster 3 Cluster 4 Cluster 5

Cluster 6 Cluster 7 Cluster 8

Fig. B.1. Image reconstructions of M87 2017 EHT observations. From
top to bottom: April 5, April 6, and April 10.
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Appendix C: M87 reconstructed using different
starting points

In this appendix, we present two reconstructions for M87 April
11 using 1) random brightness pixel distribution and 2) ring
model as starting points, respectively. Figure C.1 shows the dif-
ferent clusters of the obtained solutions. As expected, starting
with a ring morphology helps the convergence of the algorithm.
Nevertheless, even when starting with a random brightness dis-
tribution on the pixels, we can recover a ring structure, which
is a robust signature of the presence of a ring in the data. Also
notable is the lesser degree of diversity presented with the geo-
metric model. This could be due to the robust constraints that the
random brightness distribution starting point imposes.

Cluster 0 Cluster 1 Cluster 2

Cluster 3 Cluster 4 Cluster 5

Cluster 6 Cluster 7

Cluster 0 Cluster 1 Cluster 2

Fig. C.1. Set of solutions obtained supposing a random starting point (left panel) and ring starting point (right panel).
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5 Applications

The techniques introduced in the previous chapters have been tested and applied

in a variety of settings. In this chapter, we do not discuss all ongoing imaging

projects, but rather present some exemplary applications. First, we summarize

the scoring of DoG-HiT in the ngEHT Analysis Challenges for imaging synthetic

VLBI data at 230 and 345 GHz. Then we present the DoG-HiT, DoB-CLEAN

and MOEA/D contributions to imaging the EHT data (presenting only the results

from published projects), space VLBI data from RadioAstron, and ground VLBI

data from the Global Millimeter VLBI Array (GMVA) and the Very Long Baseline

Array (VLBA). Finally, we present synergies to closely related scientific problems.

Relevant publications for this chapter are:

• Müller, H.; Behrens, C. and Marsh, D.J.E.: An optimized Ly α forest

inversion tool based on a quantitative comparison of existing reconstruc-

tion methods, 2020, MNRAS, 497, 4937-4955. Conceptualization: H.M.,

C.B., D.M., methodology/software: H.M., formal data analysis: H.M., writ-

ing/editing: H.M., C.B., D.M., part of the work was done for the Master’s

thesis.

• Müller, H.; Behrens, C. and Marsh, D.J.E.: A novel estimator for the

equation of state of the IGM by Lyα forest tomography, 2021, MNRAS, 503,

6202-6222. Conceptualization: H.M., C.B., D.M., methodology/software:

H.M., formal data analysis: H.M., writing/editing: H.M., C.B., D.M., part

of the work was done for the Master’s thesis.

• Hamaide, L.; Müller, H. and Marsh, D.J.E.: Searching for Dilaton Fields

in the Lyα forest, 2022, Phy. Rev. D, 106, 123509 (shared first author-

ship). Conceptualization: L.H., H.M., D.M., methodology/software: L.H.,

H.M., formal data analysis: L.H., H.M., writing/editing: L.H., H.M., D.M..

• Roelofs, F; Blackburn, L.; Lindahl, G.; Doeleman, S. S.; Johnson, Michael

D.; Arras, P.; Chatterjee, K.; Emami, R.; Fromm, C.; Fuentes, A.; Knollmüller,

J.; Kosogorov, N.; Müller, H.; Patel, N.; Raymond, A.; Tiede, P.;Traianou,

T.; Vega, J.: The ngEHT Analysis Challenges, 2023, Galaxies, 11, 1. Con-

tribution: Participation in challenges (data analysis), contribution of main

results for challenge 2, participation in discussions and conceptualization,

writing/editing.

• Chatterjee, K.; Chael, A.; Tiede, P.; Mizuno, Y.; Emami, R.; Fromm, C.;

Ricarte, A.; Blackburn, L.; Roelofs, F.; Johnson, M. D.; Doeleman, S. S.;

Arras, P.; Fuentes, A.; Knollmüller, J.; Kosogorov, N.; Lindahl, G.; Müller,
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H.; Patel, N.; Raymond, A.; Traianou, T.; Vega, J.: Comparing accretion

flow morphology in numerical simulations of black holes from the ngEHT

Model Library: the impact of radiation physics, 2023, 11, 2. Contribution:

Participation in challenges, participation in discussions and conceptualiza-

tion.

• Kim, J.Y.; Savolainen, T.; Voitsik, P.; Kravchenko, E.V.; Lisakov, M.M.;

Kovalev, Y.Y.; Müller, H.; Lobanov, A.; Sokolovsky, K.; Bruni, G.; Ed-

wards, P.G.; Reynolds, C.; Bach, U.; Gurvits, L.I.; Krichbaum, T.; Hada,

K.; Giroletti, M.; Orienti, M.; Anderson, J.M.; Lee, S.-S.; Sohn, B.-W. and

Zensus, A.: RadioAstron Space-VLBI Imaging of the jet in M87: I. Detec-

tion of high brightness temperature at 22 GHz, 2023, 2023, ApJ, 952, 1. Con-

tribution: Submitting a second, validation image from the self-calibrated

data set.

In order to maintain the main focus of this dissertation, we only provide sum-

maries of these works in this chapter.

5.1 ngEHT Analysis Challenges

The ngEHT Analysis Challenges are a series of data analysis competitions that

explore the scientific capabilities of a possible ngEHT configuration and its algo-

rithmic needs (Roelofs et al. 2023). The ngEHT is a planned future array that

should extend the current capabilities of the EHT (Doeleman et al. 2019). In

particular, the ngEHT is expected to deliver robust reconstructions of dynamics

at the event horizon scale, i.e. movies of the dynamic changes in the innermost

regions of the accretion disk in Sgr A* and M87, and provide much stronger

constraints on the physics of accretion and jet launching (Ricarte et al. 2023).

The increased observing bandwidth, improved uv-coverage (in particular at short

baselines), and signal-to-noise ratio, together with algorithmic improvements such

as multifrequency imaging (Chael et al. 2023), should allow for a more reliable re-

construction at high dynamic range, and possibly the reconstruction of extended

jet emission together with the black hole shadow (Roelofs et al. 2023). The Anal-

ysis Challenges target in particular the reconstruction of dynamic movies with

various techniques. In the following subsection we summarize the findings of

Chatterjee et al. (2023) and Roelofs et al. (2023). Contributions to these Chal-

lenges were made by providing submissions with an early version of DoG-HiT.

Finally, we present first results of the not-yet published third challenge.
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5.1.1 Analysis Challenge 1+2

Details on the synthetic data generation can be found in Chatterjee et al. (2023).

In short, a rapidly spinning black hole embedded in an accretion disk is simu-

lated. Two different types of simulations are explored. First, a radiatively ineffi-

cient accretion flow (RIAF) model is considered, i.e. a semi-analytic description

of sub-Eddington, radiatively-inefficient and geometrically thick accretion. The

accretion flow is semi-analytically modeled by phenomenological models of the

electron temperature, electron density, magnetic field and velocity profile (Chat-

terjee et al. 2023). A rotating hotspot is introduced by the analytic prescription

in Tiede et al. (2020).

Second, a MAD GRMHD simulation (magnetically arrested disk gravity rel-

ativistic magneto-hydrodynamics simulation) has been considered with details

given in Chatterjee et al. (2023); Fromm et al. (2022); Mizuno et al. (2021).

Specifically, a two-temperature GRMHD simulation is used, evolving the electrons

alongside the ions by calculating the electron entropy separately (Chatterjee et al.

2023; Mizuno et al. 2021). Chatterjee et al. (2023) provided a comparison between

the various simulations regarding the dynamics at the horizon scale. Overall the

different models and simulations show great consistency in all relevant properties

except for the electron temperature (Chatterjee et al. 2023).

Roelofs et al. (2023) deals with the reconstruction (imaging) of dynamic

movies with realistic observing artifacts. Effects of atmospheric turbulence, at-

mospheric opacity (mimicking average spring weather conditions), and pointing

offsets were simulated with SYMBA (Roelofs et al. 2020). Moreover, a stellar

scattering screen and antenna-specific thermal noise levels were introduced. An

EHT configuration is compared to a possible ngEHT configuration with ten ad-

ditional antennas. The challenge was conducted blindly. For Sgr A*, a GRMHD

model and a RIAF model was provided for reconstructions. Furthermore, Roelofs

et al. (2023) also discuss the reconstruction of M87 movies with extended jet

emission. However, we participated with DoG-HiT only in the reconstruction of

the rapidly spinning Sgr A* models and will therefore focus on this part of the

challenge. Nevertheless, we refer the interested reader to chapter 6 of Müller &

Lobanov (2022) for an exemplary reconstruction of extended emission with the

ngEHT configuration taken from Roelofs et al. (2023), also reprinted in this the-

sis in chapter 3. The analysis challenge consisted of two initial rounds: a static

source model to test the setup (Challenge 1), and a dynamic source reconstruc-

tion (Challenge 2). We only contributed to the latter part of the challenge. We

show the ground truth source models in Fig. 5.22. Submissions from a variety of

groups representing various dynamic imaging approaches were compared. These
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included multiscale approaches (DoG-HiT, Müller & Lobanov 2023b), RML re-

constructions (ehtim, Chael et al. 2016, 2018), and Bayesian approaches (resolve,

starwarps, Arras et al. 2019, 2021; Bouman et al. 2018). In a nutshell, all these

algorithms approach the reconstruction of a movie by the reconstruction of a se-

ries of images (scans) with a temporal regularization added in the corresponding

framework. In ehtim, a temporal smoothness penalty term (imposing correlation

from scan to scan) is added to the set of regularization terms. For resolve, a

temporal correlation is built into the prior model, i.e. the prior distribution of

the scans is lognormal with specified correlation in spatial and temporal dimen-

sion. A hybrid approach is adopted in starwarps using a RML framework to fit

the observed visibilities from scan to scan independently, and a Bayesian step

to forward dynamic evolution from one scan to the next scan (Bouman et al.

2018). The dynamic movie reconstructions with DoG-HiT are described in detail

in Müller & Lobanov (2023b), reprinted in chapter 3 in this dissertation. How-

ever, we participated in Roelofs et al. (2023) with an earlier, not yet finished

version of the DoG-HiT pipeline. After we recovered the static mean image and

computed the multiresolution support, we used the Bayesian forwarding step of

starwarps with a multiresolution support constraint instead of an independent

scan-by-scan fitting as we proposed in Müller & Lobanov (2023b).

The synthetic ground truth movies are displayed in Fig. 5.22. The reconstruc-

tions by various methods are shown in Fig. 5.23 for the RIAFSPOT model and

Fig. 5.24 for the GRMHD models. As expected the reconstructions with ngEHT

coverage are much better than the reconstructions with the current EHT setup.

In particular, no algorithm could robustly recover from the simulated EHT data

the dynamical evolution of emission at the event horizon scale, for any of the syn-

thetic models used (Roelofs et al. 2023). On the contrary, the ngEHT dynamic

reconstructions for the RIAFSPOT model clearly indicate a rotating, shearing

hotspot motion. Best overall performance can be observed with starwarps and

ehtim. However, these reconstructions utilize strong ring priors (Roelofs et al.

2023) that may be inadequate in practice and require significant user input (such

that reconstructions submitted by two different scientists can differ significantly).

DoG-HiT on the contrary is unsupervised and still recovers (although less clearly)

the black hole shadow and some evidence for dynamics.

The reconstructions for the GRMHD models, see Fig. 5.24, are less successful

due to the fast dynamic time scale of the object (∼ 1 min). While no method was

able to convincingly recover the rapid dynamics, all method succeed to recover

the crescent-like mean image (Roelofs et al. 2023).
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Figure 5.22: Overview over the synthetic Sgr A* models used for the second
ngEHT analysis challenge. Image is reprinted from Roelofs et al. (2023) by CC
BY 4.0.
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Figure 5.23: Submissions for the second ngEHT challenge at 230 GHz for the
RIAFSPOT model. Image is reprinted from Roelofs et al. (2023) by CC BY 4.0.
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Figure 5.24: Submissions for the second ngEHT challenge at 230 GHz for the
GRMHD model. Image is reprinted from Roelofs et al. (2023) by CC BY 4.0.

5.1.2 Analysis Challenge 3

The third ngEHT Analysis Challenge extends the first two challenges presented in

Roelofs et al. (2023) to dynamical polarimetry. Therefore, they are an important

test for the dynamical polarimetry capabilities of DoG-HiT. In the third challenge,

we were able to participate using the full DoG-Hit algorithm presented in Müller

& Lobanov (2023b), updating the dynamical Stokes I submission in the process

as well. Here we repeat and expand the discussion of Müller & Lobanov (2023b),

chapter 3.4. The fully polarized ground truth RIAFSPOT movie is printed in Fig.

5.25. The recovered movie is shown in Fig. 5.26. For better illustration, we also

show a comparison of single frames in Fig. 5.27. The reconstruction was done

from synthetic ngEHT observations, see Roelofs et al. (2023) for more details.

The reconstruction is overall quite successful. We would like to mention as well,

that the challenge is not a reconstruction that compares various algorithms on

a rather clean data set, but contains the full set of realistic data corruptions for

relatively bad weather conditions in a semi-blind setting (i.e. the ground-truth

movie was not known to the participants in the challenge). In total intensity, the

black hole shadow as well as signs of dynamics are well recovered. We recover

the approaching hotspot at the start of the reconstruction (right to the ring at
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Figure 5.25: Exemption of the linearly polarized ground truth movie that was
used for the third ngEHT Analysis challenge.

Figure 5.26: Reconstruction result with DoG-HiT for the third ngEHT Analysis
challenge. The ground truth image is shown in Fig. 5.25. Synthetic observations
were performed with a possible ngEHT configuration at 230 GHz.

UT 11.3), extended hotspot emission at UT 11.5 and the shearing hotspot as

a region of higher emission within the black hole shadow at UT 11.7, see Fig.

5.27. The global polarization pattern is very stable and is recovered well in every

single frame. Moreover, we recover the polarization pattern of the hotspot (EVPA

following the hotspot motion) and the larger polarization fraction for the hotspot.

As a second movie, we study the GRMHD movie which is also plotted in Fig.

5.22. The moving EVPA pattern can be retrieved from the website of the ngEHT

Analysis challenge 5. We show our reconstruction with the full version of DoG-

HiT in Fig. 5.28. While we have succeeded to recover the average ring shadow

image, we do not succeed to recover the fast variability of the simulation. This is

consistent with the findings of Roelofs et al. (2023) in which none of the proposed

algorithms was able to recover the rapid variability of the total intensity. This

5https://challenge.ngeht.org/challenge3/

163

https://challenge.ngeht.org/challenge3/


5 APPLICATIONS

Figure 5.27: Single frame comparison at UT = [11.3, 11.5, 11.7] from the ground
truth movie (left panels, Fig. 5.25) and the recovered frame (right panels, Fig.
5.26.
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Figure 5.28: Reconstruction result of the GRMHD ground truth image for the
third ngEHT Analysis challenge with DoG-HiT. Synthetic observations were per-
formed with a possible ngEHT configuration at 230 GHz.

is partly caused by the observation cadence of the synthetic observations. The

source is dynamically evolving on very short timescales, while the observation has

ten-minute gaps (for calibration). Interpolating these key-frames is not possible

anymore if the source is changing drastically within ten minutes. Hence, for

movie-making, a faster switch between calibrator and science target is needed.

We recover a circular polarization pattern in every single frame consistent with

the ground truth movie. Furthermore, the recovered polarization fractions match

the ground truth. Overall, although a rapidly, polarimetric movie of the GRMHD

data set cannot be recovered, the reconstructions for the third ngEHT Analysis

challenge (specifically for the RIAFSPOT model) demonstrate that DoG-HiT is

able to find reasonable polarimetric models even for fast evolving source models.

At the time of submission of this dissertation, this was the only reconstruction

that was submitted to the third challenge. A detailed comparison to other algo-

rithms is therefore not possible at this stage. The reconstruction with DoG-HiT

demonstrates well the overall potential of the approach. The option to recover

rapidly evolving polarimetric movies at the event horizon scale is currently a

unique capability among all existing imaging algorithms. Consistent movies with

complex polarization information are recovered in an unsupervised framework,

without enforcing temporal correlation between scans. The single frames are re-

covered independently from each other with a prior information introduced by

the multiresolution support derived from the averaged mean image. Hence, the

success of the reconstruction demonstrates that the effective prior information

provided by the multiresolution support is strong enough to allow the recon-

struction of complex source features from the uv-coverage of a single frame. An

extension to the regularization terms used by Bayesian methods or RML meth-

ods for temporal regularization is rather straightforward. Hence, a combination of
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multiscalar sparsity promoting imaging and state-of-the-art RML methods might

be a tool that allows the consistent detection of faster dynamics at the event

horizon already with EHT coverage, i.e. with already existing data. We propose

this investigation for a consecutive work.

5.2 EHT Projects

The Event Horizon Telescope (EHT) is a global VLBI array that operates at

230 GHz with a recent extension to 345 GHz. Owing to the combination of very

long global baselines and high frequencies, it reaches an angular resolution of

∼ 20µas. In 2017, the collaboration famously managed to observe the black hole

shadow in M87 (Event Horizon Telescope Collaboration et al. 2019a) and of Sgr

A* (Event Horizon Telescope Collaboration et al. 2022a). DoG-HiT, MOEA/D

and DoB-CLEAN are in regular use for ongoing EHT projects, in particular for

the data analysis of the data sets observed in 2018 (however the results from this

analysis are still under embargo by the EHT Consortium). We present here the

data re-analysis of selected, already published data sets from the 2017 observing

campaign. These reconstructions were performed independently from the data

analyses published by the EHT (Event Horizon Telescope Collaboration et al.

2019b; Janssen et al. 2021; Kim et al. 2020) and relied only on closure quantities,

i.e. are agnostic to the gain calibration in aforementioned works. Hence, the

reconstructions presented in the following subsections are independent verifica-

tions.

5.2.1 2017 M87

M87 has been observed by the EHT in 2017. In 2019, the first ever image of a

black hole shadow was released to the public (Event Horizon Telescope Collab-

oration et al. 2019a), see Fig. 5.29. The image was constructed independently

by four different teams. Two teams used CLEAN, two further teams used RML

methods (ehtim, SMILI ). The image showed a prominent ring with a brightness

asymmetry towards the south. Meanwhile, this structure has been independently

verified with Bayesian methods (Arras et al. 2022; Event Horizon Telescope Col-

laboration et al. 2021a; Sun et al. 2022), advanced model-fitting (Lockhart &

Gralla 2022a) and CLEAN (Carilli & Thyagarajan 2022), but was also criticized

(Miyoshi et al. 2022). We show our reconstructions with DoG-HiT for single days

and single bands in Fig. 5.30 and the band- and day-averaged mean in Fig. 5.31.

The reconstruction was performed on scan-averaged data with the systematic

noise levels reported in Event Horizon Telescope Collaboration et al. (2019b).

We were able to recover the famous black hole shadow with the unsupervised,
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Figure 5.29: First ever image of a black hole shadow (Event Horizon Telescope
Collaboration et al. 2019a). The image was taken from https://www.eso.org/

public/germany/images/eso1907a/ at 05.01.2023.

phase-insensitive DoG-HiT approach in only a few minutes of computation! This

is a considerable achievement, given the lengthy, year-long data analysis proce-

dure that went into the reconstruction with CLEAN and RML methods in Event

Horizon Telescope Collaboration et al. (2019b). The ring size, orientation and

overall day-to-day dynamics are consistent with the EHT observation. However,

we observe a slightly smaller compact flux: 0.48 Jy instead of ∼ 0.6 Jy as re-

ported in Event Horizon Telescope Collaboration et al. (2019b). Moreover, our

reconstruction shows an enhanced asymmetry. We recover some substructure in

the ring. The asymmetry is caused by two prominent blobs of higher intensity:

one elongated from the south to the south-east and one more Gaussian-like in

the south-west. A similar structure was also visible in Fig. 5.29, but with a

swapped order (elongated component to the west). This elongated structure to

the south-east was already observed by Arras et al. (2022). Furthermore, the

dynamics among the four days is consistent with the results reported in Arras

et al. (2022) as well.

We reprint in Fig. 5.32 the MOEA/D reconstructions of M87 from Müller

et al. (2023d). As described in chapter 4.1, every cluster of solutions describes a

reasonable, mathematically optimal solution to the imaging problem. With the

accumulation point criterion (red box) we select on all four days solutions that

are close to the ones preferred by ehtim (Event Horizon Telescope Collaboration

et al. 2019b) and DoG-HiT, see Fig. 5.30. That means, the image reported
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Figure 5.30: DoG-HiT reconstructions of single days of 2017 EHT observation of
M87. Upper panels: High band (229 GHz). Lower panels: Low band (227 GHz).

50 μas

0.000 0.001 0.002 0.003 0.004
Jy / pixel

Figure 5.31: Average DoG-HiT reconstruction of 2017 EHT observations of M87,
i.e. the average of all reconstructions presented in Fig. 5.30.
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April 5 April 6 April 10 April 11

Figure 5.32: MOEA/D reconstructions of M87 (Müller et al. 2023d) observed
with the EHT in 2017. We show all clusters of non-dominated solutions for all
four days.

by Event Horizon Telescope Collaboration et al. (2019b) seems to be the most

natural among the range of all possible solutions. Moreover, MOEA/D finds

alternative clusters that correspond to models that fit the data as well. All these

modes show a clear ring structure, rebuttal to the arguments in Miyoshi et al.

(2022). This is a strong evidence for the robustness of the EHT detection of the

ring-like structure in M87 attributed to the ”black hole shadow”.

Several re-analyses reported the existence of a south-western spot (Arras et al.

2022; Broderick et al. 2022b) that may be related to the apex of the jet. Follow-

ing the arguments of Broderick et al. (2022b) this remarkable result is achieved

by a hybrid fitting approach: A narrow ring is fitted to the visibilities, such that

faint extended emission can be recovered in the residual. Broderick et al. (2022b)

prominently announced the first detection of a narrow ring. This approach was

criticized by Lockhart & Gralla (2022b) who reached an inconclusive result in

regards to the detection of a narrow ring. Comparing the clusters computed by

MOEA/D presented in Fig. 5.32, we see that there are certain clusters (cluster

0 for all days) that favor a narrow ring. These solutions are recovered at the

edges of the Pareto front, but are mathematically optimal solutions to the imag-

ing problem with respect to the prior information as well. We can confirm from

this study that the narrow ring is consistent with the data and is a natural local

accumulation point of the imaging procedure. However, a thicker ring is consis-

tent with the data as well and favored by our least square principle selections. A

final answer which solution to prefer can therefore not be given with the current

data quality. However, resolving the debate between Broderick et al. (2022b)

and Lockhart & Gralla (2022b), MOEA/D confirms that both reconstructions

are reasonable and just probe different parts of the parameter space.

Hybrid modeling (i.e. the combination of imaging and modeling Broderick

et al. 2020b, 2022b) utilizes an interesting feature about imaging: some methods,
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90 μas
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log10(Jy / pixel)

Figure 5.33: Average DoG-HiT reconstruction of 2017 EHT observations of M87
(only high bands), averaged over all four days highlighting the extended emission
component.

such as model-fitting, provide superior resolution that is needed to resolve the

ring, while other methods show a better performance for extended emission. A

combination of the methods could therefore enable us to recover both structural

features. However, the conflicting resolution between fitting a narrow ring and

an imaging round questions the results: how much of the extended emission is

absorbed in the model-fitting parameters of the ring and vice versa? We propose

an alternative approach here that resolves the issue of conflicting resolutions. We

have demonstrated in Müller & Lobanov (2022) that DoG-HiT provides super-

resolution. Further, we demonstrated the power to smoothly represent extended

emission features with the same basis functions with DoB-CLEAN in Müller &

Lobanov (2023a). We therefore propose to search for extended emission related to

the jet in M87 with DoG-HiT. To this end we relax the compact flux assumption

in DoG-HiT (i.e. we used a smaller regularization parameter α = 0.01 instead of

α = 0.1) and widened the field of view.

We show our reconstruction in Fig. 5.33. Some extended emission towards the

south-west of the ring was detected that is consistent with the findings in Brod-

erick et al. (2022b), compare Fig. 5.34. However, we recover a more elongated

structure. The correct location is difficult to retrieve from the data due to the

lack of closure triangles at short baselines. All in all, we can confirm the detec-

tion of an extended jet emission in the data from 2017 EHT observations of M87.
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Figure 10. from
Avery E. Broderick et al 2022 Astrophys. J. 935 doi:10.3847/1538-4357/ac7c1d
https://dx.doi.org/10.3847/1538-4357/ac7c1d
© 2022. The Author(s). Published by the American Astronomical Society.

Figure 5.34: Fig. 1 of Broderick et al. (2022b). The figure shows the extended
emission recovered by THEMIS as contour levels. The right panels compare
the event horizon scale reconstructions with the extended jet observed with the
GMVA (Kim et al. 2018). The white line indicates the edge-brightened jet open-
ing. The extended emission towards the south-west of the ring is correlated with
the jet observed at smaller frequencies. Figure is reprinted by CC.BY. 4.0.
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Figure 5.35: Cen A observed with the EHT. Image credit: Janssen et al. (2021).
The image is taken from https://www.mpg.de/17216488/eht-centaurus-a-j

et at 13.01.2023.

Broderick et al. (2022b) compared the extended emission to the direction of the

larger-scale jet observed at 3mm with the GMVA (Kim et al. 2018) and concluded

that the extended component is expected from the base of a jet launched close

to the event horizon of the black hole, further supporting a spin-driven outflow

launched by the Blandford-Znajek mechanism (Broderick et al. 2022b).

5.2.2 Centaurus A

Centaurus A (Cen A) was observed in the 2017 EHT campaign and subsequently

calibrated and imaged by Janssen et al. (2021), who reported various challenges

during the imaging process. For instance, the EHT uv-coverage is limited in

the direction of the Cen A jet. Among all the non-horizon AGN sources ob-

served by the EHT in 2017, Cen A proved to be the most challenging to image

with significant discrepancies across different imaging methods. Due to the al-

ready established performance of DoG-HiT on ‘easier’ data sets such as M87, it

is therefore an important additional test to study the performance for Cen A, in

particular since DoG-HiT is unsupervised (and may resolve the discrepancies be-

tween different methods). Here we show an alternative verification of the imaging

of Cen A. We show the reconstruction of Cen A presented in Janssen et al. (2021)

in Fig. 5.35. For comparison we show the DoG-HiT reconstruction in Fig. 5.36.

Both images match surprisingly well given the quality of the data set showing

the prominent edge-brightened jet. However, we do not find the counter-jet with

DoG-HiT, a feature that was already questioned in Janssen et al. (2021).

The polarimetric analysis of Cen A is still ongoing (and omitted here following
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Figure 5.36: DoG-HiT reconstruction of Cen A.

the embargo rules of the EHT). DoG-HiT plays a significant role in it. The po-

larimetric analysis is further complicated by several data issues originating from

corrupting large scale structure and rotation across IF bands. The data issues

that the large scale structure is posing highlights another benefit of DoG-HiT:

There may be significant polarization also outside the visible Stokes I contours.

This feature could be possibly explained by the special uv-coverage of EHT obser-

vations: due to the lack of short baselines, extended emission cannot be observed

with high significance. Polarized structures residing in the wider extended jet

may be more localized, e.g. due to local Faraday rotation, and then become

visible again with the uv-coverage of the EHT experiment. Such an effect is ex-

plicitly excluded in EHT polarimetry software such as ehtim, DMC and Themis

by utilizing the inequality (2.30), although that may be not sufficient. DoG-HiT

allows to relax this assumption as the multiresolution support also allows sub-

stantial polarized emission in low-intensity parts of the image, i.e. replaces a

strong spatial support prior information with a weaker scalar support prior that

is determined by the uv-coverage.

5.2.3 3C279

In 2017, 3C279 was observed by the EHT as a calibrator source, and an image

obtained from this observation was published by Kim et al. (2020). We present

a re-analysis of this data set in Fig. 5.37 for all four days of observation. The

image shows the same prominent double structure observed by Kim et al. (2020).

The images are best recovered on the last two days. On these days a horizontally

elongated core structure is visible. It has been speculated whether this structure

173



5 APPLICATIONS

180 μas

HI+LO 3597

180 μas

HI+LO 3598

180 μas

HI+LO 3600

180 μas

HI+LO 3601

Figure 5.37: DoG-HiT reconstruction of 3C279 observed with the EHT in 2017.

might indicate a wide jet basis that may be launched from the accretion disk (Kim

et al. 2020). The images at the first two days are less well constrained due to a

worse uv-coverage. These images illustrate an important feature regarding the

resolution of DoG-HiT: the resolution is determined by the balancing between the

data fidelity terms and the regularization terms. For the first two days, compared

to the last two days, the penalty term dominates the objective since the data term

is less sensitive. The resulting resolution gets worse.

5.3 AGN projects

DoG-HiT and DoB-CLEAN were developed with a special focus on the EHT and

its planned successors. Additionally, applications to lower frequency arrays have

been tested recently as well. Among others, we report here on reconstructions

of 3C120 within the MOJAVE, observations of 3C279 with the Global mm-VLBI

Array (GMVA), and observations of M87 with RadioAstron. These applications

demonstrate additional features developed for MrBeam in the course of this dis-

sertation in order to meet the requirements of the corresponding experiment:

a fully parallized data analysis pipeline implemented on the central computing

cluster of the Max-Planck Computing and Data Facility (MPCDF). Moreover,

we develop tools for interacting with CLEAN and strategies to deal with highly

elliptical beams.

5.3.1 Parallel Cluster Computing Pipeline

The MOJAVE program has monitored AGN jets for over twenty years already

(Lister et al. 2018). The program studies the dynamic evolution of jets, e.g. the

movement of hotspots downstream the jet across epochs. 3C120 is one of the

sources with a prominent, transversely resolved and edge-brightened jet (Casadio

2016; Zabora et al. 2022). Recent theoretical and observational work suggest that

edge-brightening in jets may be related to a helical magnetic field (among others

Gabuzda et al. 2018; Gabuzda 2021; Gómez et al. 2016; Kramer & MacDonald

2021), e.g. by the detection of a transverse rotation measure gradient. Observa-
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tions at highest angular resolution, e.g. of Cen A (Janssen et al. 2021), 3C279

(Kim et al. 2018), M87 (Kim et al. 2023), 3C84 (Giovannini et al. 2018) or 3C345

(Pötzl et al. 2021) back this statement on a variety of scales. A reanalysis of a

RadioAstron 22 GHz observation of BL Lac with the super-resolving algorithm

DoB-CLEAN (Müller & Lobanov 2023a) showed a possible edge-brightening close

to the black hole that was not visible with CLEAN reconstructions, see also Fig.

5.38. For more details we refer to our detailed discussion in chapter 3.3. It has

been speculated recently whether edge-brightening is a common feature among all

jets that only recently became visible with the increased resolution and dynamic

range of current VLBI experiments (Gabuzda 2021). Many different explanations

have been proposed in the past including Kelvin-Helmholtz instabilities, magnetic

reconnection, particle acceleration at the edges of the jet, a velocity difference be-

tween the central spine and outer sheath of the jet and a helical magnetic field

carried by the jet (Gabuzda 2021).

The claim whether most jets show edge-brightening as an intrinsic features at

highest resolution could be already tested with existing data since novel super-

resolving algorithms such as DoG-HiT allow for the reconstruction of reliable

image features with a 2-3 times higher resolution. Based on these findings, we

propose to test edge-brightening by a reanalysis of already existing MOJAVE data

sets with a super-resolving imaging algorithm. To this end we use MOJAVE data

sets due to their high number of observed epochs, comparable data quality among

the epochs, and the availability of calibrated and flagged data sets (Lister et al.

2018).

The high number of MOJAVE data sets poses a severe problem for a man-

ually driven, thorough reanalysis. However, since all epochs have similar data

properties (signal-to-noise ratio, goodness of fit, stability of phase-calibration),

an unsupervised imaging algorithm such as DoG-HiT may be optimal for survey-

ing applications. It achieves super-resolution and an accuracy and performance

superior to CLEAN (Müller & Lobanov 2022) while keeping to a minimum the ne-

cessity for interactive controls (Müller & Lobanov 2023c). Thus, we implemented

DoG-HiT on the super-computer cluster raven of the Max Planck Computing

and Data Facility. We developed top-level scripts dedicated to the needs of the

computing system that allow the fully parallized image analysis of a huge number

of data sets in a completely automatized way.

As a first test of the infrastructure, we reanalyzed all 3C120 epochs observed

with MOJAVE. The CLEAN reconstructions by the MOJAVE team (Lister et al.

2018) are shown in Fig. 5.39. Every panel shows the reconstruction of a single

epoch. In the single epochs, the AGN core (the brightest, most left component)

and an extended jet is visible. The jet contains several hotspots whose motion
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Three jet
components

Coronal emission
around core

Edge 
brightened
jet base

More regular
circular core
structure

Figure 5.38: DoB-CLEAN reconstruction of BL Lac at highest angular resolution
from Müller & Lobanov (2023a). The high-resolution reconstruction shows a
possible edge-brightening that was not visible with CLEAN.

MOJAVE 3C120: CLEAN

Figure 5.39: MOJAVE observations of 3C120 with data analyzed with CLEAN
by the MOJAVE team. The scans are ordered in time starting from the top left
(earliest) scan to the bottom right. The images are plotted in logarithmic scale.
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MOJAVE 3C120: MrBeam (DoG-HiT)

Figure 5.40: MOJAVE observations of 3C120 analyzed unsupervised by DoG-HiT
(blurred with a 0.5 mas beam). The scans are ordered in time. The image series
is plotted in logarithmic scale.

CLEAN DoG-HiT

−4 −3 −2
log10(Jy / pixel)

−5 −4 −3
log10(Jy / pixel)

Figure 5.41: The single epoch observed at 27.10.1996 from the MOJAVE sample
of 3C120 analyzed with CLEAN and with DoG-HiT.
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downstream the jet are traced by MOJAVE, thus providing key observations of

the dynamics within the jet. We show the reconstructions with DoG-HiT in Fig.

5.40. Moreover, for better illustration we also show the reconstructions of a single

epoch in Fig. 5.41. Comparing the CLEAN and the DoG-HiT reconstructions

shows that the overall structures match quite well. The automatized DoG-HiT

reconstruction failed in only one epoch to reproduce an image comparable to

the CLEAN reconstruction. As expected, the DoG-HiT reconstructions reveal

structural features at a higher resolution, indicating that the jet may be composed

of a larger number of small, moving enhanced emission regions (more and finer

than observed with CLEAN) surrounded by a cocoon of faint extended emission,

i.e. compare the randomly selected single epoch presented in Fig. 5.41. While

the DoG-HiT reconstructions reveal structural features that were not observable

with CLEAN, an edge-brightening as a generic feature of jets when recovered at

highest spatial resolution is not detected, at least for 3C120. The non-detection

at 15 GHz is most likely the compound result of a steep spectral index of the

emission in the outer layers of the jet, compounded by the reduced emission and

structural sensitivity of VLBI data at 15 GHz. This work and the existing pipeline

will be extended to a larger sample of sources within MOJAVE in a consecutive

work, to allow proper statistics.

The current application of DoG-HiT to the 3C120 epochs observed by MO-

JAVE constitutes the largest-scale application of DoG-HiT to date. It proves the

capability of the software to deal with real, observational data, thus matching

well to the needs of large imaging surveys done with VLBI. Applying DoG-HiT

in an unsupervised fashion and at the high level of parallelization, we were able

to analyze a set of 130 VLBA observations in roughly ten minutes, a procedure

that took us weeks to months of manually imaging before!

5.3.2 GMVA Data on 3C279

3C279 has been observed with the GMVA at 3mm on 14.04.2018. Here we report

on the final investigation of this data set with DoG-HiT. The full analysis of

these data is still in progress. The final image will be built by achieving consis-

tency among several methods, i.e. DoG-HiT, RML and CLEAN. Benefiting from

its unsupervised nature, fast processing and stability against calibration effects,

DoG-HiT provides important guiding to the other methods that require more

thorough calibration and manual input at an early stage of analysis. Apart from

the the image itself, we present here the developements that were undertaken to

provide the imaging guidance by DoG-HiT.

We show the uv-coverage and the observed amplitudes after self-calibration

and imaging in Fig. 5.42. The data set has been coherently averaged over time
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Figure 5.42: Left panel: uv-coverage of coherently averaged data set (60 s aver-
aging). Right panel: Radplot of self-calibrated data set.
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Figure 5.43: DoG-HiT reconstruction of central core region of GMVA observations
of 3C279 at 14.April 2018.
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Figure 5.44: Overview of reconstructions of 3C279 at various wavelengths. The
figure is taken from Kim et al. (2020) by CC.BY 4.0.
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Figure 5.45: Average of CLEAN, ehtim and DoG-HiT images guided by DoG-
HiT windows.

intervals of 60 s in length. For imaging, we followed the multistep procedure

outlined in chapter 3.5. In particular, we emphasize that in the first rounds only

closure quantities are used. Gains are calibrated with the closure-only solution

on a dynamic time scale of 1 hour. The amplitudes of most antennas behave

well, with Mauna Kea as a serious outlier, probably due to the low declination

of the source or pointing issues. The imaging procedure was focused on a high

resolution reconstruction of the features close to the core, in order to constrain

better the compact flux. We present our DoG-HiT reconstruction in Fig. 5.43.

As a comparison, we show the reconstructions from 2017 with the VLBA (7 mm),

the GMVA (3.5 mm) and the EHT (1.3 mm) in Fig. 5.44. The overall jet direction

and two-component structure of the innermost jet can be well reconciled with the

images obtained from the 2017 data. However, the reconstruction of 2018 shows

two components connected by a smooth curve (probably related to a bent jet)

instead of two disconnected components.

Verification for this image comes from alternative data analysis methods, i.e.

CLEAN and ehtim. Moreover, the GMVA image will be used for guiding the

imaging of EHT data. On the CLEAN side, the most important prior information

that needs to be introduced in the imaging algorithm manually, is the selection

of the CLEAN windows. We can extract CLEAN windows out of the DoG-HiT

reconstructions by a simple threshold: we include every pixel in the CLEAN mask

that has a brightness greater than 10% of the peak flux in the image. To make

this rather simple procedure work, the DoG-HiT and the future CLEAN image

have to be aligned by maximizing a 2D correlation between the structures in

the two images, because the absolute positional information is not preserved by

either imaging algorithm. The average image (averaged over methods normalized

to same peak flux) with the driving windows overplotted is shown in Fig. 5.45.
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Figure 5.46: Left panel: uv-coverage of RadioAstron observations of M87, Right
panel: DoG-HiT reconstruction.

5.3.3 M87 RadioAstron

M87 was observed with RadioAstron at 22 GHz in February 2014. Here we

present a short summary of the findings in Kim et al. (2023) in which DoG-HiT

and DoB-CLEAN reconstructions were used for verification of the image fidelity

and the robustness of the recovered features.

The source was observed with the RadioAstron satellite and a sensitive ground

array consisting of 21 antennas. The longest uv-spacing probed by the observation

was 11 Gλ. However, fringes were only detected up to ∼ 3Gλ. This is equivalent

to an effective resolution of ∼ 150µas (Kim et al. 2023). We show the uv-coverage

of the observation in Fig. 5.46. The data set has been correlated in Bonn. Fringe

finding and evaluation of the data quality was performed with PIMA and AIPS

with no initial fringes found to the space antenna, but with high signal-to-noise

ratio fringes detected for all of the ground antennas, except for the Australia

Telescope Compact Array (ATCA) and the Mopra antenna (Kim et al. 2023). To

guide the fringe fitting on the space baselines, we mapped the source first with

the ground array alone with CLEAN. This image has been loaded to AIPS to

refine the fringe fitting on the space baselines. With this procedure, fringes up to

∼ 2.8 times the Earth diameter have been detected (Kim et al. 2023) and were

used for the final imaging. The final imaging has been performed with CLEAN

by adopting the CLEAN windows from the ground only image.

Due to the unstable fringes, and the sparse uv-coverage on long (space-) base-

lines, the reconstruction of small scale features is relatively uncertain. To exam-

ine the reliability of the recovered features, the imaging scripts have been verified

on synthetic data (for more details Kim et al. 2023). Moreover, the CLEAN
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Figure 5.47: CLEAN reconstructions of M87. Reprinted from Kim et al. (2023)
with permission for reprinting given by J.Y. Kim.
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Figure 5.48: DoG-HiT reconstructions of M87 RadioAstron observations blurred
to the natural beam (470×150µas) and the super-resolved beam (200×100µas).
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Figure 5.49: DoB-CLEAN reconstruction of M87 with RadioAstron observations
with uniform weighting.
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imaging was carried out independently by several different people. Due to the

focus on high resolution, an independent cross-verification with a super-resolving

algorithm (that is easy to handle) was desired as well. Even more salient, to

explore the structural patterns with CLEAN at high angular resolution, a cross-

verification with a super-resolving CLEAN like algorithm builds towards consis-

tence. Hence, DoG-HiT and DoB-CLEAN were applied from the early stage of

the analysis onward to provide alternative verification and guidance for CLEAN.

The DoG-HiT reconstruction is shown in the right panel of Fig. 5.46. We present

the CLEAN reconstructions with natural weighting and super-uniform weighting

in Fig. 5.47. For comparison, we also show the DoG-HiT reconstructions blurred

with the natural and the uniform beam in Fig. 5.48 and the DoB-CLEAN recon-

struction in Fig. 5.49.

The reconstructions have converged to a consistent high resolution image of

M87, with DoG-HiT and DoB-CLEAN reconstructions more focused on the core

region of the source due to computational limitations on the field of view. The

core brightness, strongly edge-brightened innermost jet (very clearly visible with

DoB-CLEAN) and overall jet shape and width has been recovered consistently

by all methods. In particular, DoG-HiT guided the reconstructions towards a

verification of the detection of an edge-brightened counter-jet. The core shows a

prominent X-shaped structure. There is, however, a specific discrepancy: In the

CLEAN reconstructions, the brightest component is the southern core component

of the double-lobed core. For DoG-HiT and DoB-CLEAN, it was the northern

one.

The images show a core that is elongated in north-south direction, more than

the beam resolution (Kim et al. 2023). This is consistent among various methods,

but has not been observed in VLBI before. There seems to be a more compli-

cated substructure in the core that becomes visible with high angular resolution

indicating that the intrinsic size of the core is larger at longer wavelengths (Kim

et al. 2023). The counter-jet has been detected consistently with all of the imag-

ing methods. Strong edge-brightening, both in the jet and in the counter-jet

indicates that the central engine might be located close to the VLBI core (Kim

et al. 2023; Walker et al. 2018). The brightness temperature of the core is at

least TB ∼ 1012 K. Such a high core brightness temperature exceeds the limit set

by inverse Compton cooling (see Blandford et al. 2019) and may require Doppler

boosting or an intrinsically high brightness distribution due to a continuous in-

jection of energetic particles in the jet (Kim et al. 2023).
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5.4 Synergies

DoG-HiT, DoB-CLEAN and MOEA/D are implemented in the software package

MrBeam that extends ehtim and regpy. For a more detailed discussion, we refer to

chapter 3.6. In a nutshell, MrBeam and regpy are modular software packages that

provide a framework for inverse problems and iterative regularization methods in

general. Due to this, several developements done for this dissertation found fields

of applications outside of VLBI as well.

5.4.1 Ly-α Tomography

In this subsection we summarize the findings of Müller et al. (2020) and Müller

et al. (2021).

The Lyα forest comprises densely packed, narrow absorption lines bluewards

the Lyα absorption line in the spectra of distant quasars. It is caused by ab-

sorption of light of the background quasar by the intergalactic medium (IGM),

e.g. see Bi & Davidsen (1997); McQuinn & Upton Sanderbeck (2016) as well as

the illustration in Fig. 5.50. The light emitted by a background quasar passes

through the IGM on its path towards us. The IGM consists of overdense regions

(clouds) and underdense regions (see e.g. the maps in Lee et al. 2014b, 2016). An

overdense region absorbs a bigger portion of the light than an underdense region.

Hence, the amount of absorption is related to the density of the IGM (Bahcall &

Salpeter 1965; Gunn & Peterson 1965). Due to the cosmic redshift, every wave-

length in the spectrum can be associated with a specific position along the line

of sight. This view on the Lyα forest is supported by studies of the line-widths

(Tytler et al. 2004), cosmological simulations (Palanque-Delabrouille et al. 2013,

2015) and the studies of the probability of transmission (Rollinde et al. 2013).

The inverse problem referred to as Lyα forest tomography is to recover the

neutral hydrogen density along a single line of sight and to interpolate the re-

covered neutral hydrogen densities along neighboring lines of sights in order to

recover the three-dimensional cosmic density field. These problems are similar

to VLBI imaging: along the line of sight we approximately solve a deconvolution

problem, the three dimensional reconstruction is a sparsely sampled interpolation

problem. Several techniques have been proposed in the past to achieve this goal,

e.g. the Richardson-Lucy inversion scheme (Nusser & Haehnelt 1999), Wiener

filtering (Pichon et al. 2001), statistical reconstructions (Gallerani et al. 2011;

Kitaura et al. 2012) and inversion by non-linear optimization (Müller et al. 2020).

Furthermore, the success of wavelet decomposition of the forest for constraining

the thermal state of the IGM from the spectra (Garzilli et al. 2012; Lidz et al.

2010) suggests a future application of a multiscale, wavelet-based reconstruction
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Figure 5.50: Illustration of the Lyα forest. Light emitted by a distant quasar
gets absorbed by the intervening gas, forming the feature of densely packed,
narrow absorption lines known as the Lyα forest. Image was taken from https:

//news.illinois.edu/view/6367/204679 on 10.01.2023. Graphic design is by
John Webb.

technique. The density distribution of the IGM is of great interest for the as-

trophysics community. Fully three dimensional reconstructions have been used

to detect protoclusters (Lee et al. 2016; Stark et al. 2015), to study dark matter

(Hamaide et al. 2022) and cosmic voids (Krolewski et al. 2018), as well as the

statistical properties of the large scale structures in the cosmic web (Caucci et al.

2008; Lee et al. 2014b; Lee & White 2016; Ozbek et al. 2016).

The one-dimensional inverse problem of recovering the Lyα signal along the

line of sight at high resolution is complicated by the thermal model of the IGM.

The single absorption lines are broadened by thermal broadening. This can be

described by a convolution with the generic profile of an absorption line, known

as the Voigt profile (Gallerani et al. 2006; Müller et al. 2020):

τ(z0) = σ0c

∫
LOS

dx(z)
nHI(x, z)

1 + z
×H

(
vH(z0)− vH(z)− vpec(x, z), b(x, z)

)
, (5.1)

where τ is the optical depth, z, z0 are redshift coordinates, σ0 is the effective Lyα

cross-section, nHI is the neutral hydrogen density and v is the Hubble velocity.

H is the Voigt profile with width b. The thermal broadening b scales with the

current temperature in the IGM. The temperature T in the IGM is related to the

baryonic fractional density perturbation δb by a power law (Hui & Gnedin 1997;
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Müller et al. 2020):

T (x, z) = T0(z)δ2βb , (5.2)

where T0 is the temperature at the mean density. The quantity γ = 1 + 2β is

called the polytropic index. Under the assumption that hydrogen and helium are

highly ionized in the post-reionization epoch, the final operator reads as (Müller

et al. 2020):

τ(z0) ≈
∫
LOS

dxA(z(x)) · nζ
HI(x)

× exp

−C(x) ·
[
vH(z0)− vH(z(x))− vpec(x)

]2
nϵ
HI(x)

, (5.3)

with parameters:

A(z) =
σ0c√

π(1 + z)

√
mp

2kBT0

(
µeα0

Γ(z)

[
Ωbρc
µmp

]2
T−0.7
0 (z)(1 + z)6

)β/α

, (5.4)

ζ =
α− β

α
, (5.5)

C(z) =
mp

2kBT0

(
µeα0

Γ(z)

[
Ωbρc
µmp

]2
T−0.7
0 (z)(1 + z)6

)ϵ

, (5.6)

ϵ =
2β

α
. (5.7)

For a detailed proof, we refer to our work in Müller et al. (2020). Here mp is the

mass of the proton, kB is the Boltzmann constant, µe = 2 · (2− Y )/(4− 3Y ) and

µ = 2/(4 − 3Y ) with helium fraction Y , Γ is the photoionization rate, α0 is the

recombination rate at mean temperature, Ωb is the cosmic baryon matter fraction,

ρc is the critical density of the Universe, and α = 2− 1.4β = 2.7− 0.7γ. As can

be seen from Eq. (5.3), the convolution kernel scales with the density again.

Hence, the forward operator nHI 7→ τ is strictly speaking not a convolution and

consequently non-linear. The inversion τ 7→ nHI is therefore more complex and

ill-posed. Because of this, advanced inversion methods have to be applied. At

this point, the synergy with VLBI imaging becomes evident. The same tools

and frameworks that were implemented for regpy and MrBeam to deal with the

minimization of complex objectives in VLBI imaging, need to be implemented

for the analysis of Lyα tomography as well.

In Müller et al. (2020), we compared already existing one-dimensional Lyα

tomography algorithms that recover the density at highest resolution along the

line of sight. Here we report about the main findings. The field of Lyα for-
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est tomography was pioneered by Nusser & Haehnelt (1999) who utilized a fast

Richardson-Lucy implementation (which is a linearized deconvolution algorithm).

Pichon et al. (2001) proposed a Wiener filtering step for the interpolation between

neighboring lines of sight and an iterative Gauss-Newton iteration for the one-

dimensional reconstruction. Effectively, this is an RML regularization with a

weighted l2 penalty term, with weights computed by the matter auto-correlation

function. Gallerani et al. (2011) used for the first time a completely statistical

approach by matching overdensity probabilities with the probability distribution

of the observed optical depths (probability conservation). This approach, how-

ever, does not include regularization. A regularized version has been proposed by

us in Müller et al. (2020). We present an overview of the acronyms used in this

chapter in Tab. 2. A tabular overview of the key findings of Müller et al. (2020)

is presented in Tab. 3. Overall the IRGN method is most precise and robust, but

also takes the most time. RL is similarly precise, but scales bad to noisy images.

PC is less accurate, and also lacks regularization against noise, i.e. it is unstable

in the presence of noisy data. On the contrary, PC utilizes a statistical approach

(conservation of probabilities). Only assumptions on the matter power spectrum

are processed, no assumptions on the detailed emission and photoionization have

to be made, i.e. the forward operator Eq. (5.3) is not used explicitly. Due to

this advantage, PC reconstructions are independent of wrong assumptions on

the a-priori unknown photoionization rate, polytropic index and temperature at

mean density T0. RPC combines the best of both worlds. We use the l2-norm

of the match of the overdensity and absorption probability density distributions

as data fidelity term and the total squared variation as penalty term (Müller

et al. 2020). Hence, we reformulate the Lyα tomography problem in the frame-

work of the generalized Tikhonov method such that it can be easily implemented

and realized within the framework provided by regpy and MrBeam. RPC is ro-

bust against noise (regularization introduced by the smoothness promoting total

squared variation penalty term) and still independent from the exact parameters

of the forward model.

In our second Lyα forest paper (Müller et al. 2021), we extended this approach

to an estimation strategy of the thermal history of the IGM. Again, we will only

provide a short overview. With two different inversion schemes at hand (RPC and

IRGN), we recover the neutral hydrogen density with both schemes. One scheme

(RPC) is independent of the temperature at mean density T0 and the power law

index β. The other scheme (IRGN) depends strongly on the choice of T0 and

β. Hence, these reconstructions only match if we assumed the correct thermal

parameters for the IRGN reconstruction. Additionally, the IRGN reconstructions

provide an independent way to constrain β and T0 as well by examining the χ2 of
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Table 2: Summary of the inversion techniques tested and acronyms used for Lyα
forest tomography. Adapted from Müller et al. (2020).

Method Acronym Type Priors Reference

Richardson-Lucy RL Deterministic, EOS Nusser & Haehnelt (1999)
Iterative

Explicit Bayesian/
IRGN

Bayesian,
Iterative Gauss Newton/ Iterative EOS, P∆ Pichon et al. (2001)
Wiener Filter
Probability Conservation PC Statistical, P∆ Gallerani et al. (2011)

Direct
Regularized Prob. Cons. RPC Statistical, P∆ Müller et al. (2020)

Iterative

Table 3: Summary of the findings of Müller et al. (2020). Adapted from Müller
et al. (2020).

RL IRGN PC RPC

Computation Time ∝ N2
pix ∝ N2

pix ∝ Npix logNpix ∝ Npix logNpix

sometimes many iterations large constant no iterations needed fast iterations
High S/N Reconstruction

→Large Overdensities underestimated underestimated underestimated underestimated
→Mean Overdensities very precise very precise precise precise
→Underdensities precise precise moderate moderate accuracy
→No. Peaks precise precise overestimated slightly overestimated

Robustness
→ Against Noise unstable robust unstable robust
→ Against Systematics robust unstable independent independent

the fit to the observed spectrum. Since the weighted l2 penalization term includes

the matter auto-correlation matrix (i.e. the matter power spectrum), χ2 ∼ 1 is

only possible for a correct configuration of the temperature at mean density T0

and polytropic index β. This property has been first observed by Pichon et al.

(2001). If the local temperature T (z) is overestimated, i.e. thermal broadening is

overestimated, a correct fit to the observed optical depths is not possible anymore.

If the thermal broadening is underestimated, we overfit the data. T0 and β affect

the size of the thermal broadening in a similar way (see Eq. (5.2)) and are hence

degenerate. However, with two independent measurements (by comparing RPC

and IRGN reconstructions, and by exploring the IRGN reconstructions) both

parameters could be uniquely determined. Details on the estimation procedure

in the philosophy of inversion are provided in Müller et al. (2021). We reprint

the flowchart of this novel estimation procedure in Fig. 5.51.

We applied this novel estimation pipeline in Müller et al. (2021) to a subset of

the UVES SQUAD spectra (Murphy et al. 2019). The subset has been selected

based on the quality of the spectra, their redshift and resolution (Müller et al.

2021). The reconstruction results yield novel estimations of the temperature of

the IGM at redshift z ∼ 2.5, the polytropic index γ and the photoionization rate

Γ, see Fig. 5.52, 5.53 and Fig. 5.54. The results are consistent with previous mea-

surements yielding an average temperature of ∼ 13000 K and a power-law index
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Figure 5.51: Flowchart of the estimation of the thermal state of the IGM from
inverse Lyα tomography. Figure adapted from Müller et al. (2021).
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Figure 5.52: Overview of estimates of the temperature at mean density as a
function of redshift. The presented data sets are from Becker et al. (2011); Boera
et al. (2014); Gaikwad et al. (2020); Garzilli et al. (2020); Hiss et al. (2018);
Telikova et al. (2019); Walther et al. (2019). Image adapted from Müller et al.
(2021).

γ ∼ 1.4. Moreover, the method improves in accuracy over previous estimation

procedures such as Voigt profile fitting (pioneered by Schaye et al. 2000). The

uncertainties obtained are competitive against other recent estimates, although

in our work they are drawn from a much smaller redshift bin and hence a much

smaller sample of absorption lines (Müller et al. 2021).

Finally, we would like to mention that the biggest uncertainty in the data

analysis is introduced by the unknown peculiar velocities (Müller et al. 2021).

However, recent developements in the reconstructions of full three-dimensional

tomographic maps (e.g. Horowitz et al. 2019; Porqueres et al. 2019, 2020) would

allow for the sampling of the velocity field. Lee et al. (2014a) investigated the

requirements for tomographic maps concluding that as long as the thermal absorp-

tion profile does not have to be resolved, tomographic maps are feasible already at

low spectral resolution (R ∼ 1000). Our simulations (Hamaide et al. 2022; Hand

et al. 2018; Müller et al. 2020, 2021) demonstrated that the velocity field is vary-

ing only mildly on small scales due to the small Jeans scale of baryonic matter, i.e.

the suppression of small-scale fluctuations by thermal pressure (Choudhury et al.
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Figure 5.53: Overview of estimations of the polytropic index γ. The estimates
are from Bolton et al. (2014); Garzilli et al. (2012); Hiss et al. (2018); Rorai et al.
(2018). Image adapted from Müller et al. (2021).
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Figure 5.54: Overview over estimations of the photoionization rate as a function
of redshift. The estimates are from Becker et al. (2013); Faucher-Giguère et al.
(2008); Telikova et al. (2019). Image adapted from Müller et al. (2021).
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2001; Gallerani et al. 2006; Zaroubi et al. 2006). Hence, a low-resolution tomo-

graphic survey combined with a high spectral resolution observation of the Lyα

forest in a single quasar may alleviate the peculiar velocity problem and allow for

uncertainties in the temperature estimation of about ∼ 100 K on small redshift

bins (Müller et al. 2021). In particular, such a three dimensional reconstructions

shares great synergies with VLBI imaging. VLBI imaging could be understood

equivalently as the problem of filling the gaps in the uv-coverage with reasonable

information regarding to prior assumptions, such as smoothness. For Lyα forest

tomography, the transverse space of sightlines is only sparsely sampled (compared

to the spectral resolution along a single line of sight). Hence, with respect to prior

knowledge on the power spectrum of the matter density perturbations, we solve

a similar interpolation problem. Even closer to the field of radio interferometry,

the concepts that are discussed here are applicable to 21 cm intensity mapping as

well and are proposed to be probed by the SKA (Santos et al. 2015). The emis-

sion profile of the 21 cm line is affected by thermal broadening in a similar way

as for the Lyα line. While cosmographic probes by 21 cm intensity mapping are

still in development, this technique promises impressive results for cosmographic,

three-dimensional maps of the diffuse IGM. The large field of view, and the high

resolution (i.e. narrow frequency bands) along the line of sights, may give unique

insights in the nature of the IGM, dark matter and the epoch of reionization.

These works (Müller et al. 2020, 2021) demonstrate the multidisciplinary back-

ground of a work dealing with inverse problems in general. The project shares

great synergies with VLBI imaging by using the same software tools, and more

abstract the same top-level framework and functionality (solving the inverse prob-

lem of sparsely sampled data by convex optimization with iterative algorithms).

5.4.2 Ultralight Dark Matter

In this subsection we summarize the results of Hamaide et al. (2022). The pub-

lication was written as a shared first-authorship publication, with a shared first-

authorship between Louis Hamaide and myself. I contributed to this work at all

stages of preparation, i.e. to the conceptualization, implementation, data analysis

and writing/editing. The manuscript presents a novel idea of constraining ultra-

light dark matter particles by a full reconstruction of the matter distribution in

the Universe. For the first time, a full (non-linear) inversion scheme has been pro-

posed to extract quantities of fundamental physics. The work demonstrates once

more the multidisciplinary benefit of designing an inversion framework in general

by the means of convex optimization and the potential behind such approaches

to constrain frontline physical applications. The work is related to the main body

of this dissertation by utilizing the same software tool (regpy, MrBeam) that was
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developed for VLBI imaging and the same algorithmic framework (solving an ill-

posed inverse problem by convex optimization) in general. Therefore, the basic

implementation of this approach shares great synergy and dual development with

the work that was pursued for this dissertation. As mentioned in the preceding

chapter, the synergy is particularly strong since we deal with a typical undersam-

pling problem in the case of three-dimensional Lyα forest tomography. Within

the scope of this dissertation, we only provide a short summary of the results

presented in Hamaide et al. (2022) and in particular spare most of the technical

details related to the (string-) theoretical background of dilatons.

Scalar degrees of freedom of string theory arising in low energy effective theo-

ries after compactification such as moduli, dilatons and radions (Arvanitaki et al.

2015; Becker et al. 2006) have been proposed as constituents of dark matter.

The value of these scalar degrees of freedom is determined by the local minimum

in some potential, e.g. a simple mass term in case of dilatons (although more

complex potentials have been investigated recently as well, e.g. Arvanitaki et al.

2015; Marsh 2011). Fields that are displaced from that local minimum at early

times start a damped oscillation around the minimum. The relic oscillations may

contribute to dark matter at current times (Turner 1983).

The dilaton couples to all fields in the standard model via the Einstein field

metric (Arvanitaki et al. 2015), in particular to the electromagnetic sector. Hence,

we have the action with the scalar dilaton field ϕ (Hamaide et al. 2022):

S =

∫
dx4
√
|g|
(

1

2
∂µϕ∂

µϕ− V (ϕ) + LSM + Lϕ,int

)
Lϕ,int =

√
4π

MPl

ϕ

(
de
4e2

FµνF
µν − dmemeϵϵ̄

)
, (5.8)

where LSM is the Standard Model Lagrangian and Lϕ,int is the dilaton interaction

term. As in the usual notation, |g| describes the determinant of the metric, Fµν

the electromagnetic field tensor, MPl is the Planck mass and ϵ is an electron spinor

wavefunction. e is the charge of an electron, me the mass of an electron and de

and dme the coupling constants of the dilaton respectively. In Hamaide et al.

(2022), we proposed to study the effect of dilatons on the profile of absorption

lines. The coupling of the dilatons to the electromagnetic sector is essentially a

second-order correction of the electromagnetic Lagrangian that we absorb into

the electromagnetic mass term (Hamaide et al. 2022):

LEM = −1− deκϕ

4e2
FµνF

µν ≈ − 1

4(1 + deκϕ)e2
FµνF

µν

α→ α + δα = α(1 + deκϕ) , (5.9)
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where α = e2/4π is the fine structure constant with electric charge e and κ =√
4π/MPl. The coupling to dilatons affects the cosmic fine-structure constant.

The perturbation of the fine-structure constant is varying with time according

to the damped oscillations of the dilaton field ϕ. The amplitude of the dilaton

field, and hence the amplitude of the oscillations of the fine-structure constant,

scales with the local dark matter density by biasing taking into account the power

spectrum cutoff of dilatons at high spatial scales compared to ordinary matter

(Bauer et al. 2020; Foster et al. 2018):

⟨ϕr⟩ =
√

2ρϕ(x, t)/mϕ (5.10)

Note that the wavelength of the astrophysically most significant hydrogen absorp-

tion lines (i.e. Lyα and the 21 cm line) depends on the value of the fine-structure

constant. A change in the value of the fine-structure constant would shift the

wavelength of the absorption line. Since the dilaton field is oscillating during

the time a photon passes through a dark matter halo at high redshift, the cor-

responding absorption line is shifted toward both shorter and longer wavelength

respective to the photon wavelength. This affects the profile of an absorption

line by additional broadening. The detailed formulation of the novel absorp-

tion profiles is provided in Hamaide et al. (2022). In a nutshell, we separate

three different regimes. If the light crossing time through a single pixel in spec-

tral resolution is smaller than the oscillation time (i.e. for very small masses

mϕ < 10−28 eV) we resolve out the dilaton oscillations and observe a line-shifting

effect. The dilaton field is evolved deterministically. If the pixel crossing time is

larger than the oscillation time, but smaller than the coherence time (for masses

10−28 eV < mϕ < 10−24 eV), we have to average over oscillations giving rise to

an additional broadening of the absorption line. The evolution of the field is not

fixed deterministically, but we rather have to draw the local field amplitude from

a Rayleigh distribution for each coherence interval (Centers et al. 2021; Hamaide

et al. 2022). If the pixel crossing time is even longer than the coherence time,

the dark matter modes start to decohere. So in this case, we average a Rayleigh

distribution instead of drawing from it.

These effects can be observed in the Lyα forest and with 21 cm-intensity map-

ping. However, the absorption profile is degenerate with the profile of the un-

derlying density distribution. How can we separate between the scenarios that

the absorption line is broadened by the effect of dilatons or that the size of the

absorbing hydrogen cloud is larger than thought? At this point, a full inversion

in the spirit of convex optimization was proposed using the software tools devel-

oped for regpy and MrBeam. Even more salient, we propose to solve the fully
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Figure 5.55: Flowchart of getting constraints on the dilaton coupling in the case
of non-detection, adapted from Hamaide et al. (2022).

three-dimensional density reconstruction problem to correct for non-accounted

peculiar velocities. In general, we propose to do an astrophysically independent

reconstruction of the matter distribution first, and then constrain the mass and

coupling to the dilaton field by fitting the observed spectra with that known

matter distribution. For very small masses, i.e. when the line-shifting applies, it

may be possible with sufficient accuracy by alternative probes (standard candles,

galaxy count, Lyβ forest) to detect the signal (Hamaide et al. 2022). In most cases

however, a probe of the matter distribution that is independent of astrophysics

is not available. In these cases, we have to infer the dilaton mass and the dilaton

coupling in the inversion procedure as well with the help of advanced inversion

algorithms, similar in spirit to the procedure that we proposed in Müller et al.

(2021). We therefore proposed an inversion strategy that gradually tests various

dark matter configurations (Hamaide et al. 2022). We present an outline of our

procedure in Fig. 5.55. The basic idea is that we can tell whether a reconstruction

was successful or not by comparing the reconstruction to the theoretically known

matter power spectrum. Only if we take the correct line broadening/shifting into

account when we recover the neutral hydrogen density along the line of sight (in

the Lyα forest or in 21 cm intensity maps respectively) the recovered density field

has the correct power spectrum. When studying non-detection (i.e. with the aim
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Figure 5.56: Forecasted constraints for the dilaton photon coupling as a functions
of the dilaton mass. The forecast shows the prediction for the UVES SQUAD
survey (Murphy et al. 2019) and a possible SKA configuration by a study of the
absorption profiles by full inversion of the spectra (Hamaide et al. 2022). The
MICROSCOPE results are taken from Bergé et al. (2018). Atomic spectroscopy
constraints have been reported in Hees et al. (2016). The Figure is adapted from
Hamaide et al. (2022).

of giving constraints on the abundance of dilaton dark matter), the recovered

density would have the correct power spectrum while reconstructions with non-

vanishing dilaton coupling would fail this test. For more details on this, and in

particular on the computation of the theoretical power spectrum in the presence

of fuzzy dark matter, we refer to our manuscript Hamaide et al. (2022). We

compute constraints on the dilaton coupling at every mass by forecasting. Once

the recovered density passes the power spectrum test, we assume that the re-

covered density matches the true density distribution reasonably well. Moreover,

we assume that the dominating source of error is the observational noise of the

spectrum (Hamaide et al. 2022). So we predict the spectrum from the recovered

density distribution with various dilaton masses and couplings including the ef-

fect of dilatons on the profile of the absorption lines. We compare the recovered

spectra to the observed spectra and reject a model once the predicted spectra

and the observed spectra differ significantly given the noise level of the observed

spectrum, i.e. if χ2 > 2.7 (Hamaide et al. 2022).

This is the first time that an astrophysical inversion of the matter distribu-

tion has been successfully used to constrain the nature of ultralight, scalar dark

matter. In Hamaide et al. (2022) we tested the approach on synthetic data and

forecasted constraints that can be achieved from the UVES SQUAD sample and
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future surveys with the Square Kilometer Array (SKA). We show the projected

forecasts in Fig. 5.56. The SKA provides a unique radio-interferometric probe

to study the clustering of dark matter on cosmic scales. Although the expected

signal is weaker for the 21 cm lines than for Lyα, the combinations of a large field

of view, fast surveying capabilities, high sensitivity and narrow spectral band-

widths of the SKA compensate for this in a statistically manner. At ultralight

masses, the forecasted constrains from already existing data sets exceed the con-

straints that come from fifth-force experiments (e.g. MICROSCOPE) and atom

spectroscopy.

5.4.3 Magnetic Resonance Tomography

Magnetic resonance imaging (MRI) is a non-invasive medical tomography and di-

agnostics method. The first MRI system was constructed by Lauterbur (Lauter-

bur 1973) in a Nobel prize awarded work. For further illustrations, it is beneficial

to present a short introduction to the general working procedure of an MRI sys-

tem here, adapted from Sodickson (2021). Note that some atoms (in particular

hydrogen) have a weak magnetic dipole moment due to their nuclear spin. With

the application of a strong external magnetic field these magnetic dipole moments

get aligned with the direction of the external magnetic field (para-magnetism).

With the short-time application of a second, high-frequency magnetic field, the

dipole magnetic orientation is deflected out of the parallel plane. The transverse

magnetization starts to rotate around the overall longitudinal magnetization with

the Lamor-frequency inducing a small electric voltage. If the second, transverse

magnetic field is turned off, the dipoles align with the overall magnetization again

with an atom-specific relaxation time. The relaxation time differs significantly

for various types of tissue and organic material. Hence, a time-averaged image

of the induced electrical current allows for non-invasive tomographic imaging.

It should be mentioned here, that while all MRI systems depend on the basic

physical concept of nuclear spin resonance, the details of the systems and their

practical implementation vary a lot. Hence, the summary given above works only

as a rough overview over the functioning of an MRI system. In particular, we

would like to mention that MRI systems have to work in the near-field such that

typical far-field approximations (i.e. parallel beam directions) do not apply.

Simple imaging in this way, with a single coil-profile (i.e. space encoding),

would limit the resolution to roughly the wavelength of the induced electromag-

netic radiation, i.e. to radio wavelengths. This is not enough to resolve the small

scale details that are important for diagnostics. The solution is frequency en-

coding. For this, the exciting magnetic fields are applied with various gradients,

where the local magnetic field strength determines the frequency of oscillation.
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Hence, the atoms along the slice of detection are out of phase with a spatial

frequency determined by the gradient of the magnetic field and the time of the

excite- and read-out procedure. In short, a spatially averaged measurement of

the electric currents encodes a Fourier coefficient of the true tomographic image.

By the combination of several coils and magnetic gradients, the Fourier domain

(conveniently called the k-space) gets filled up. However, the limited number of

coils, the limited magnetic field strength and most significantly the limited time

(to reduce the stress for the patient) limit the k-space coverage.

The forward problem in MRI can therefore be stated in the following way

(Uecker et al. 2010):

yj(t) =

∫
Ω

dx⃗ρ(x⃗)cj(x⃗)e−ik⃗(t)x⃗, (5.11)

where yj are the signals received in channel j and ρ is the density that we try to

observe. cj are sensitivity masks for various coils. Only a fraction of all Fourier

frequencies k⃗ are sampled in time on typical k-space trajectories. The synergies

to VLBI are obvious. Eq. (5.11) shares great similarities with the van-Cittert-

Zernike theorem. Moreover, the coil profiles play a similar role such as gain

factors in VLBI. In both problems, the major issue (ill-posedness) arises due to

undersampling in the Fourier domain. Moreover, it has been recognized that the

structural features that are recovered in radio interferometry and MRI are similar

(Sodickson 2021).

The synergy to MRI is most salient in dynamic, real-time applications. In

an MRI scan we could in principle sample the complete k-space when sufficient

time is given. However, shorter measurement times are desired. In case of dy-

namic imaging the short scan length limits the k-space trajectories significantly.

Although strong synergies exist, the proposed solutions are not always the same.

Dynamic MRI reconstructions were first proposed with a sliding window scheme

(e.g. MRI fluoroscopy Riederer et al. 1988), similar in philosophy to dynamically

CLEANing scans in parallel in VLBI (Sault & Wieringa 1994; Stewart et al. 2011).

MRI data acquisition is accelerated by parallel imaging strategies, i.e. GRAPPA

(Griswold et al. 2002), SENSE (Pruessmann et al. 1999) or SMASH (Sodickson &

Manning 1997). These strategies use the idea that in each single-coil image signal

superposition occurs with different weights according to the local coil sensitivi-

ties. Historically, MRI sequences sampled the data in Cartesian coordinates, with

non-Cartesian sampling schemes proposed in Pruessmann et al. (2001); Seiberlich

et al. (2007). A finer temporal resolution can be achieved by imaging with pri-

ors by mixing spatial and temporal encoding schemes (Huang et al. 2005). The

shortest time resolution (sparsest data) is achieved by methods of modern convex
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optimization, i.e. by constrained reconstructions (Liang et al. 1992), compressive

sensing (Lustig et al. 2008) and regularized non-linear inversion (Zu et al. 2013).

Uecker et al. (2010) propose a framework to do real-time MRI by simultaneously

fitting the observed data and the coil profiles. We refer to the review presented

in Nayak et al. (2020) for more details.

These recent approaches by non-linear optimization are in line with the recent

progress in VLBI (dynamic) imaging, in particular with RML methods. Bayesian

methods that achieved momentum in VLBI recently are less common in the MRI

community. On the contrary, MRI imaging shows interest in neural network

based imaging algorithms and demonstrated their great potential (Ravishankar

2021; Sodickson 2021). These methods are less common in radio astronomy,

but there is recent progress (compare the recent progress in Aghabiglou et al.

2022; Dabbech et al. 2022; Sun et al. 2022; Terris et al. 2023). Potential for

mutual interaction and development between VLBI and MRI is great. Common

research questions and synergies are for example: what framework (i.e. inverse

modeling, RML, compressive sensing, Bayesian or AI based) is best suited for

short-scan imaging? What is the optimal set of prior information (e.g. prior

distributions, simplicity, smoothness or network-learned priors) and how are they

implemented in the different frameworks? What can VLBI learn from the coil

sensitivity calibration in MRI regarding gain calibration and vice versa? Which

k-space trajectories were most successful in MRI and what does that mean for

the optimal placing of antennas in novel radio interferometers? In both fields,

the amount of data will increase in near future. What are the strategies to deal

with these amount of data and to scale up the algorithms to upcoming big-data

challenges?

The first step to study synergies in more detail is to unify the software in

both fields. This has not been done so far. Therefore, we combined, for the first

time, MRI applications implemented in binder and regpy with the VLBI standard

software ehtim in the single software package MrBeam. This will allow to address

some or all of the questions stated above.

5.4.4 Solar Spectrometry

Solar spectrometry as carried out with the Spectrometer/Telescope for Imaging

X-rays (STIX) presents another field of great synergy across different disciplines.

STIX is one of the instruments installed on the ESA mission Solar Orbiter. Its

primary goal is to observe the hot plasma in the Solar corona. The Solar corona

has temperatures of several million degrees much larger than the surface tem-

perature of the Sun. The details behind the heating process, however, remain

unsolved (Krucker et al. 2020). STIX contains several subcollimators. Each of
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these subcollimators contains a combination of grids. This hardware configura-

tion decomposes the image as a (sparsely sampled) Fourier transform (Krucker

et al. 2020) and STIX observes complex visibilities. The imaging problem is de-

scribed by the van-Cittert-Zernike theorem, e.g. Eq. (1.8). The imaging problem

is therefore the same as for VLBI. There are, however, some differences. Due

to the small number of visibilities (compare the uv-coverage in Fig. 5.57) the

achievable dynamic range is ∼ 10. The synergy is therefore greatest to VLBI

snapshot imaging. Moreover, while it became more common in mm-VLBI to do

the imaging without phase-information (Chael et al. 2018; Müller & Lobanov

2022), for STIX well-calibrated visibility-phases are in principle available. There

is nevertheless effort to exclude visibility-phases from the imaging for STIX as

well (Massa et al. 2021).

Imaging routines that were proposed for STIX include Back-Projection (Hur-

ford et al. 2002), CLEAN (Högbom 1974), Expectation Maximization (Benvenuto

et al. 2013), Maximum Entropy Methods (Bong et al. 2006; Massa et al. 2020;

Schmahl et al. 2007), and compressed sensing approaches (Duval-Poo et al. 2018;

Felix et al. 2017). We developed an interface between STIX data formats and Mr-

Beam to systematically study STIX data sets with the tools of VLBI as well. In

this way, we add modern multiscale algorithms (e.g. DoB-CLEAN and DoG-HiT

Müller & Lobanov 2022, 2023a), as well state-of-the-art RML methods (ehtim

reconstructions with various regularization parameters combinations), Bayesian

reconstructions (e.g. resolve, Arras et al. 2021) and a novel approach for Max-

imum Entropy imaging by constrained minimization (Con MEM) to the picture

of available methods. We benchmark the performance of various imaging tech-

niques on synthetic data in Fig. 5.57. We synthetically observed a ground truth

image (a real observation reconstruction result) with the STIX instrument and

added thermal Poisson noise in consistency with the instrumental properties. The

ground truth image is shown in the upper left panel in Fig. 5.57. The remaining

panels show several test reconstructions with STIX methods (CLEAN, MEM GE)

and VLBI data methods (RML, DoG-HiT, DoB-CLEAN, Bayesian, Con MEM).

MEM GE (Massa et al. 2020) is a maximum entropy method based on convex op-

timization (forward-backward splitting) with an iterative step size adaption and

presents the current state-of-the-art for STIX imaging. The resolution and dy-

namic range is clearly superior to CLEAN due to the extreme sparsity of the array.

RML reconstructions are compatible to MEM GE, but only if the correct weight-

ing combination is used. In particular, reconstructions that assume smoothness

(total variation) are worse. For the correct weighting however (L1+MEM) we

recover the best among all reconstructions. DoG-HiT was designed to overcome

this ambiguity in the selection of regularization parameters. Indeed we find a
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reasonable reconstruction with DoG-HiT that is close to optimal and comparable

to MEM GE. For MEM GE and RML-MEM methods, a weighted sum between

a data fidelity term and an entropy (and probably more penalty terms) is solved.

Con MEM is similar in philosophy, but follows a different strategy. We restrict

the χ2 of the observation to 1 and minimize the entropy along this axes with

the Byrd-Omojokun Trust Region Sequential Least Square Programming algo-

rithm (Lalee et al. 1998). The result is comparable to the reconstructions done

with weighted sum entropy methods. Bayesian reconstructions rank among the

best solutions (MEM GE, RML-MEM, DoG-HiT, Con MEM), but the compu-

tational effort is much higher. Finally, we present the DoB-CLEAN (Müller &

Lobanov 2023a) reconstruction as well. The reconstruction clearly advances over

standard CLEAN, but is worse than the quality achieved with forward modeling

techniques.

All in all, these simple tests demonstrate the potential that VLBI algorithms

may have for STIX as well. In particular, the forward modeling techniques based

on entropy and multiscalar transforms have great potential. A more compre-

hensive comparison of existing methods on a wider range of test images and

observation modalities is planned, but deferred for a future work.
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Figure 5.57: Synthetic reconstruction of STIX observation. The upper left
panel shows the ground truth image. The bottom right panel illustrates the uv-
coverage. The reconstruction was done semi-blindly by various investigators with
standard techniques of the solar spectrometry community such as CLEAN and
MEM GE (Massa et al. 2020). The other panels show reconstructions with VLBI
data analysis pipelines such as ehtim (RML) with different weighting combina-
tions, unsupervised by DoG-HiT and DoB-CLEAN, as well as with a Bayesian
VLBI method (resolve) and by maximum entropy by constrained minimization
(Con MEM).
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The founding idea of VLBI and astronomical interferometry as a whole lies in

correlating signals recorded simultaneously by any given pair of antennas par-

ticipating in an observation of an emitting object in the sky and combining the

products of these correlations together in order to reconstruct the spatial distri-

bution of the observed emission. The correlation product obtained for each of

those antenna pairs is approximately (owing to thermal noise and instrumental

contributions to the measured correlation) the Fourier transform of the true sky

brightness distribution with a Fourier frequency determined by the antenna pair

baseline projected on the sky plane. Limitations inherent to interferometric ob-

servations on their duration, the number of participating antennas, and the span

of the observing frequency bandwidth result in the Fourier domain being only

sparsely sampled by the measured Fourier coefficients. VLBI imaging is there-

fore an ill-posed inverse problem to retrieve the true sky brightness distribution

from the observed data, i.e. to solve an inverse Fourier transform from sparsely

sampled and corrupted observations. Specifically for global/continental VLBI,

in contrast to denser radio interferometric arrays, the missing data issue (gaps

in uv-coverage, phase-information) dominates the reconstruction. The imaging

problem is ill-posed.

Historically, the solution for this problem has been most often sought in in-

verse modeling, most prominently exemplified by the CLEAN algorithm. In re-

cent years, various forward modeling approaches have been also considered for

this purpose, including Regularized Maximum Likelihood, Maximum Entropy,

Bayesian methods, and Compressive Sensing approaches. We demonstrated in

this dissertation that all these methods, while addressing the problem from differ-

ent perspectives and with different priors, share deep similarities in the framework

of inverse problems and convex optimization embracing the generalized Tikhonov

method. In this dissertation we present a novel imaging software tool MrBeam

and contributed to the iterative regularization software regpy that implements

this framework directly in general and builds towards unification of VLBI soft-

ware.

CLEAN is the de-facto imaging technique of choice in VLBI, mainly because

it is practical. A comparison between different algorithms however demonstrates

that forward modeling techniques typically score better than CLEAN in terms

of accuracy, resolution, adaptability, and (under some circumstances) dynamic

range. Moreover, they address successfully several conceptual limitations related

to CLEAN, e.g. the disparity between the computed model and image, and the

divergence of reconstruction in the presence of noise. Furthermore, we demon-
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strate with a simplified analytic calculation that the resolution limit in CLEAN

is too conservative. On the other hand, superior modern imaging algorithms are

more complex and need significant supervision, i.e. the finetuning of non-trivial

hyperparameters.

This dissertation represents a significant step toward development of fully

unsupervised imaging algorithms that still have the significant benefits of RML

methods. To this end, we propose to use as few regularizers as possible and se-

lect them as data-driven as possible. We utilize a sparsity promoting multiscale

approach in the spirit of compressive sensing theory and use it as the basis for

developing the DoG-HiT algorithm. The multiscale dictionary in this approach

is fitted to the uv-coverage, i.e. allows for an unsupervised optimal separation

between observed and non-observed features. DoG-HiT is the first multiscale

VLBI algorithm that also encodes directional dependence. The DoG-HiT recon-

structions are comparable in accuracy and resolution (and even superior in the

presence of extended emission) to state-of-the-art RML reconstructions, and sig-

nificantly superior to CLEAN in terms of precision and resolution. Moreover,

DoG-HiT remains fast and has a significantly simpler optimization parameter

landscape than RML methods or Bayesian approaches, establishing itself as a

nearly completely unsupervised and automatic image reconstruction method. An

additional advantageous feature of DoG-HiT is that it processes only (less cal-

ibration sensitive) closure quantities and estimates the total compact flux in a

self-consistent way. We also provide a variation of DoG-HiT formulated in the

framework of MS-CLEAN algorithms: DoB-CLEAN. DoB-CLEAN addresses the

limitations of CLEAN effectively and is superior to CLEAN in terms of resolu-

tion, representation of extended emission and stability (regularization). At the

same time the working procedure (alternating self-calibration, mapping, and in-

teractive data editing) remains the same.

DoG-HiT is easily adaptable to more challenging VLBI data analysis problems

and has been already extended to dynamical imaging and polarimetry. Appli-

cations of DoG-HiT to imaging synthetic ngEHT data derived from numerical

models with dynamically changing source structure have demonstrated the enor-

mous potential of the approach, achieving comparable reconstruction quality than

many more complex algorithms but with a less complex optimization landscape.

For these applications, the multiresolution support is used as prior information,

but no temporal smoothness is assumed. DoG-HiT provides the unique capa-

bility to recover polarimetric features at event horizon scales on dynamic time

scales of minutes. Based on our tests and comparisons to alternative approaches,

we conclude that DoG-HiT in combination with RML and Bayesian approaches,

may enable us to do so already with existing EHT data sets.
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Broader potentials for establishing fully unsupervised VLBI imaging frame-

works have been further explored in this dissertation through the development

of a genetic evolution algorithm MOEA/D. In contrast to DoG-HiT and DoB-

CLEAN, this genetic algorithm does not require reducing the number of free pa-

rameters by data-driven choices, and instead samples the complete posterior with

regard to the input parameters. Imaging with MOEA/D results in a hypersurface

of non-dominated solutions that can be related to RML hyperparameter combi-

nations. The algorithm is significantly faster than Bayesian sampling schemes,

but still produces an image accompanied with a robustness estimate (although

less simple to interpret). We demonstrate that the hypersurface of MOEA/D

solutions represents effectively a multidimensional Pareto front, thus presenting

a faster and better motivated alternative to parameter surveys with the potential

to replace them in due time.

DoG-HiT, DoB-CLEAN, and MOEA/D are presently being actively used in

VLBI frontline research, including imaging of the data from VLBI observations

with the EHT and the GMVA. Their impact is fully demonstrated by the appli-

cation examples presented in this dissertation which highlight in particular the

following specific capabilities of these algorithms:

• DoG-HiT and MOEA/D recover robustly (polarimetric) images in an unsu-

pervised way with small computational cost, even for extremely challenging

data sets. The reduction in time necessary for the analysis is significant. At

the same time, the human bias during imaging is reduced to a minimum.

• DoG-HiT is effectively the first VLBI imaging algorithm that can robustly

recover rapid (polarimetric) movies at the event horizon scales.

• MOEA/D is the first global exploration technique that is fast, unsupervised,

and simple enough to be applied to highly data-intensive extensions of the

standard imaging problem, e.g. the reconstruction of dynamical movies.

• MOEA/D provides a unique approach to determining and quantifying the

robustness of an image reconstruction.

• DoG-HiT and in particular DoB-CLEAN are capable of robustly recovering

emission on a range of scales. This particularly provides the much needed

capability of simultaneously imaging the extended (jet) emission together

with an ultra-compact core, a feature that is currently missing from the

VLBI data analysis pipelines.

• DoB-CLEAN effectively casts several novel capabilities of modern imaging

algorithms to a CLEAN framework as well. In particular, it is the first
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CLEAN algorithm that allows for super-resolution, adds reasonable reg-

ularization and solves the disparity between the CLEAN model and the

CLEAN image.

• These three algorithms can provide (unsupervised) guidance to alternative

imaging algorithms.

• Additionally, we have developed and demonstrated great potential for sur-

veys, e.g. for MOJAVE. DoG-HiT has an unmatched combination of res-

olution, automatization, and speed, that makes it (when fully parallelized

on a cluster) best suited for these kind of survey observations.

These examples highlight that DoG-HiT, DoB-CLEAN, and MOEA/D do not

only improve the quality of the recovered images, but add unique, new capabilities

in a variety of settings. These algorithms are now firmly finding their place at

the present frontline of analysis and imaging of state-of-the-art VLBI observations

carried out with the EHT, the GMVA, and space VLBI.

Finally, the versatile tools developed for these algorithms implemented in the

software packages MrBeam and regpy are of interest for wider range of inverse

problems, thus further highlighting the multidisciplinary horizon of this work.

The modular implementation, as well as the general optimization formulation,

allow an easy knowledge transfer to closely related inverse problems, which has

been demonstrated in this dissertation with the exemplary applications to Lyα

forest tomography, the search for dark matter in cosmographic surveys, medical

imaging and solar spectroscopy. In these examples, we have found more accurate

estimates for the thermal state of the intergalactic medium in the quasi-linear

regime of structure formation and improved forecasted bounds on the existence

of ultra-light dilatons as a fraction of dark matter. Furthermore, we have provided

software infrastructure to unify and compare algorithmic developements in VLBI,

medical imaging and in solar spectroscopy that share great similarity in their

problem formulation.
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CLEAN has been the standard in VLBI imaging for over four decades. How-

ever, the continued development of interferometric instruments and increasing

demands on robustness and structural range of image reconstruction from VLBI

data have been gradually highlighting important limitations of CLEAN. Based on

the work presented in this dissertation, one can identify two major fields in which

CLEAN needs to be replaced by more advanced imaging routines: for extremely

sparse VLBI arrays with almost lost phase information (such as the EHT/ngEHT,

GMVA) and for dense, highly data intensive arrays (such as the ngEHT, LOFAR,

SKA, MeerKAT). In the former case, modern unsupervised algorithms that pro-

vide super-resolution, that are less user- and calibration-biased, and that can

avoid the disparity between the model and the image are needed. The latter data

regime requires faster, unsupervised imaging algorithms that scale better to the

high amount of data and allow for robust reconstructions of images at ultra high

dynamic ranges.

In this dissertation, we mainly focused on the first data regime and pro-

posed novel algorithms (DoG-HiT, DoB-CLEAN, MOEA/D). These algorithms

are superior to CLEAN in terms of accuracy, resolution, and supervision. We

started to apply them in a broad range of VLBI experiments (EHT, RadioAs-

tron, GMVA, EVN+eMerlin). However, a systematic application to denser, high

dynamic range, and lower frequency arrays such as the SKA or MeerKAT has

not been done by now. The issues related to these arrays differ from the ones

that we discussed in this dissertation. For instance, rather than a weak phase

stability and extreme sparsity, these arrays deal primarily with wide-field issues

(direction-dependent calibration) and the high amounts of visibility data that

needs to be processed. This requires a substantial change the in the philoso-

phy of image reconstruction, although the imaging problem remains principally

the same (sparsely sampled, noise-corrupted Fourier transform). In global VLBI,

and in particular for the EHT, the dominant source of uncertainty is the sparsity

of the uv-coverage, i.e. the problem of missing data. We directly refer to this

problem in DoG-HiT and DoB-CLEAN particularly by fitting the wavelets to

the uv-coverage and in MOEA/D by investigating the multimodality of the prob-

lem. For the SKA or LOFAR the situation is different: regularization primarily

plays the role of stabilizing the reconstruction against noise and calibration cor-

ruptions and becomes the most important factor for achieving dynamic ranges

that are not reachable with the coverage of the EHT. It is therefore questionable,

whether MOEA/D, DoG-HiT and DoB-CLEAN will bring the same amount of

improvements for these arrays. However, we would like to mention in this con-
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text the large amount of recent publications on sparsity promoting, multiscalar

imaging algorithms (Abdulaziz et al. 2019; Carrillo et al. 2012, 2014; Dabbech

et al. 2018; Garsden et al. 2015; Girard et al. 2015; Pratley et al. 2018; Thou-

venin et al. 2023a,b; Wiaux et al. 2009) all of which are similar in philosophy to

DoG-HiT. These works highlight the huge potential and interest in multiscalar

imaging. Especially, the transfer of developements and ideas that recently arose

in the mm-VLBI community (see e.g. Akiyama et al. 2017a,b; Arras et al. 2022;

Bouman et al. 2018; Broderick et al. 2020b, 2022b; Chael et al. 2016, 2018, 2023;

Müller & Lobanov 2022, 2023a,b; Müller et al. 2023d; Roelofs et al. 2023; Tiede

2022) to SKA science may be of great interest.

Vice versa, recent developements in radio imaging indicate a roadmap for

further developements for VLBI. In particular, we propose and currently develop

the parts of the following imaging algorithm:

Î ∈ argminI

∑
i

Smf
cltrace(ΓI(ti)),

∑
i

Rl1(I(ti)), Rngmem(I)

 , (7.1)

in the sense of multiobjective optimization. Here Smf
cltrace denotes the fit metric to

the (probably time dynamic) closure traces in a multifrequency observation, I(ti)

the time-variable and polarimetric wavelet coefficient array or neural network co-

efficients, and Rngmem the ngMEM entropy functional (Mus & Marti-Vidal 2023).

Such an algorithm would, once successfully implemented and developed, fit time-

dynamic, polarimetric and multifrequency data (data term) at high numerical

performance (fast forward fitting and evaluation of Γ) with an almost unsuper-

vised reconstruction (multiobjective cluster investigation with a small number of

priors), in a completely self-calibration agnostic way (closure traces) with high

image fidelity, specifically for time-variable sources (multiscalar penalization com-

bined with novel ngMEM prior) at highest resolution (comparable to DoG-HiT).

In conclusion, such an algorithm or close variants would solve most of the prob-

lems related to VLBI. While this dissertation explored the fundamental principles

already and achieved several milestones on the way towards the next generation

of imaging techniques, there is still substantial development work to be done to

achieve such a high goal, in particular due to the degeneracies of the closure

traces. In what follows we discuss several parts of the framework proposed above

and the missing parts in more detail.

We demonstrated in Müller et al. (2023d) with MOEA/D already the useful-

ness of a multiobjective formulation for VLBI imaging, particularly when com-

bined with natural selection criterions, and successfully developed an implemen-

tation for reconstructing the total intensity. Due to the flexible framework it is
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rather easy to extend this technique. First of all, we work towards adding the

capabilities to perform polarimetry and dynamical reconstructions to MOEA/D.

This development is straightforward. We reuse the data terms and penalty terms

developed for DoG-HiT (Müller & Lobanov 2023b) and do the minimization by

the genetic algorithm instead (Müller et al. 2023d). Instead of the standard en-

tropy functional, we propose to use the temporal and spatial ngMEM entropy

proposed in Mus & Marti-Vidal (2023). A related publication is currently in

preparation (Mus et al. 2023).

Broderick & Pesce (2020) proposed closure traces as a new closure quantity

that is independent from any kind of corruptions (i.e. gains and d-terms). A first

model-fitting application has been done recently in Albentosa-Ruiz & Marti-Vidal

(2023). As a natural next step, we propose to do closure-only polarimetry, i.e.

recover polarimetric structures independently from calibration effects. However,

closure traces have some degeneracies, e.g. the total position, overall position

angle and polarized intensity are lost. This results in a multimodal problem

(Albentosa-Ruiz & Marti-Vidal 2023) that could only be tackled effectively by a

global exploration technique. Albentosa-Ruiz & Marti-Vidal (2023) proposed a

grid search. However, there is a great synergy to the evolutionary optimization

developed for this dissertation. MOEA/D is specifically designed to deal with

this kind of multimodal and multiobjective settings. The synergy between the

multimodality in the fit to closure traces and MOEA/D is currently explored and

left for a future work.

The algorithms described in this dissertation can also be applied for recon-

structing images from multifrequency data. Multifrequency synthesis has been

steadily gaining more interest from the community (Chael et al. 2023) due to its

use in filling the uv-plane and the upcoming generation of multiband receivers

planned for the ngEHT and the GMVA upgrade. Chael et al. (2023) implemented

a multifrequency representation of the image at different frequencies in the for-

ward model and demonstrated its performance on synthetic data, compare also

the discussions in Roelofs et al. (2023). A similar representation may be also valid

for multiscalar imaging routines, in particular when the wavelets are fitted to the

uv-coverage as proposed in Müller & Lobanov (2022, 2023a). The uv-coverage at

every frequency band requires the use of a different subset of the wavelets that

were fitted to band-combined multifrequency uv-coverage. Hence, DoB-wavelets

may allow for an optimal separation and correlation analysis between adjunct

frequency bands as well.

In this dissertation we highlighted the benefits of a multiscalar approach to

sparse VLBI data, particularly when the used wavelet functions are fitted to the

uv-coverage and its defects. It is therefore natural to keep the ideas behind multi-
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scalar imaging for the next generation of VLBI imaging algorithms. As a natural

extension, we propose to study neural networks. A number of current studies ex-

plored the use of neural networks in radio interferometry (Aghabiglou et al. 2022;

Dabbech et al. 2022; Sun et al. 2022; Terris et al. 2023), but applications to sparse

VLBI arrays remain rare (Sun et al. 2022). Neural networks could be understood

as an effective framework for hosting adaptive multiscalar dictionaries. Instead of

defining a wavelet dictionary manually that is best suited to represent the image

sparsely, we could identify the basis from the learning process. This analogy,

however, should not be taken too far: a network is by construction non-linear,

in stark contrast to a dictionary of wavelets. Our take on neural networks is

in particular inspired by the Network Tikhonov (NETT) method proposed in Li

et al. (2020). Li et al. (2020) proposed an autoencoder architecture as illustrated

in Fig. 7.58. Such networks consist of an encoder, a sparse central layer, and a

decoder. The network is trained on the image artifacts only, i.e. the training in-

put are the corrupted data (e.g. the dirty image) and the output are the artifacts

only. In this way, the autoencoder learns how to compress the spatial information

of the image artifacts (i.e. sidelobe pattern of the beam) to the low-dimensional

central layer. The architecture of the decoder is mirrored to the architecture of

the encoder. The decoder translates the sparsified coefficients in the inner layer

back in the image domain. The concept shares great synergies with DoG-HiT: we

replace the wavelet coefficients with the coefficients in the central layer, replace

the wavelet decomposition with the encoder part and the wavelet dictionary with

the decoder part. NETT directly fits in the framework proposed for DoG-HiT,

but instead of the dictionary Γ we apply the decoder network Ψ. After replac-

ing the wavelet basis by networks, the minimization procedure stays the same.

Hence, once the network is trained, we get the further benefits of DoG-HiT as

well, i.e. NETT is automatically extended to dynamical reconstructions and po-

larimetry. Moreover, since the network is only trained on the artifacts (i.e. on

the beams) it is agnostic to the image structure (and hence biases introduced

during the training procedure). Network aided reconstruction methods are also

expected to solve the scaling problem of CLEAN to large data sets (e.g. Terris

et al. 2023), and this direction of research will certainly remain one of the prime

focus of interest in the area of interferometric image reconstruction.

Finally, the ngMEM functional, effectively a time-variable variant of the en-

tropy functional, is demonstrated to allow for superior performance compared to

traditional MEM functionals (Mus & Marti-Vidal 2023) and is currently stud-

ied in combination with MOEA/D for the reconstruction of time-variable movies

(Mus et al. 2023). We already noted in Müller & Lobanov (2023b) that while

mr-support imaging offers encouraging, super-resolving movies even with sparse
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Figure 7.58: Schematic illustration of the Neural Network Tikhonov (NETT)
method. The image structure with artifacts is projected to the artifacts only
by an autoencoder. The autoencoder consists of an encoder network, a low-
dimensional central layer, and a decoder network that is mirrored to the encoder.
The regularizer is extracted from the central layer. Image adapted from Li et al.
(2020) by CC.BY 3.0.

observationally coverage, the combination with a more powerful regularization

term that takes the temporal correlation into account may improve the recon-

struction quality significantly.

In conclusion, multiscale imaging algorithms and global exploration tech-

niques continue to make impact in the field of VLBI, demonstrating their su-

perior performance in comparison to the more conservative approach of CLEAN.

These algorithms (among others DoG-HiT, DoB-CLEAN, MOEA/D) do not only

improve the reconstruction quality, resolution or supervision, but provide funda-

mental new constraints and capabilities that would be impossible to attain with

CLEAN. These developements will play a major role in the data analysis for the

next generation of frontline VLBI experiments, e.g. the ngEHT or the ngVLA.

They are pivotal to reach the scientific goals of these and other next generation

radio interferometric instruments and facilities.

For this dissertation we explored some of the key concepts and fundamen-

tal developements for the next generation of VLBI imaging algorithms. Based

on these key concepts, we presented a clear algorithmic roadmap forward that

may allow for completely unsupervised, calibration-independent, near real time

(time-dynamic and polarimetric) reconstructions at super-resolution with an sub-

stantially improved reconstruction accuracy.
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Gómez, J. L., Lobanov, A. P., Bruni, G., et al. 2016, ApJ, 817, 96

Gonzalez, R. & Woods, R. 2006, Digital Image Processing (3rd Edition)

Goupillaud, P., Grossmann, A., & Morlet, J. 1984, Geoexploration, 23, 85, seismic

Signal Analysis and Discrimination III

GRAVITY Collaboration, Abuter, R., Amorim, A., et al. 2019, A&A, 625, L10

GRAVITY Collaboration, Abuter, R., Aimar, N., et al. 2022, A&A, 657, A82

Greiner, M., Vacca, V., Junklewitz, H., & Enßlin, T. A. 2016, arXiv e-prints,

arXiv:1605.04317

Griswold, M. A., Jakob, P. M., Heidemann, R. M., et al. 2002, Magnetic Reso-

nance in Medicine: An Official Journal of the International Society for Magnetic

Resonance in Medicine, 47, 1202

Gull, S. F. & Daniell, G. J. 1979, in Astrophysics and Space Science Library,

Vol. 76, IAU Colloq. 49: Image Formation from Coherence Functions in As-

tronomy, ed. C. van Schooneveld, 219

Gunn, J. E. & Peterson, B. A. 1965, ApJ, 142, 1633

Hadamard, J. & Morse, P. M. 1953, Physics Today, 6, 18

Hamaide, L., Müller, H., & Marsh, D. J. E. 2022, Phys. Rev. D, 106, 123509

Hand, N., Feng, Y., Beutler, F., et al. 2018, AJ, 156, 160
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