191 research outputs found

    A systematic approach to reliable multistage interconnection network design

    Get PDF
    Bibliography: p. 34-35.Army Research Office grant no. DAAG29-84-K-0005 Advanced Research Projects Agency monitored by ONR, contract N00014-81-K-0742C.-C. Jay Kuo

    EGOIST: Overlay Routing Using Selfish Neighbor Selection

    Full text link
    A foundational issue underlying many overlay network applications ranging from routing to P2P file sharing is that of connectivity management, i.e., folding new arrivals into an existing overlay, and re-wiring to cope with changing network conditions. Previous work has considered the problem from two perspectives: devising practical heuristics for specific applications designed to work well in real deployments, and providing abstractions for the underlying problem that are analytically tractable, especially via game-theoretic analysis. In this paper, we unify these two thrusts by using insights gleaned from novel, realistic theoretic models in the design of Egoist – a prototype overlay routing system that we implemented, deployed, and evaluated on PlanetLab. Using measurements on PlanetLab and trace-based simulations, we demonstrate that Egoist's neighbor selection primitives significantly outperform existing heuristics on a variety of performance metrics, including delay, available bandwidth, and node utilization. Moreover, we demonstrate that Egoist is competitive with an optimal, but unscalable full-mesh approach, remains highly effective under significant churn, is robust to cheating, and incurs minimal overhead. Finally, we discuss some of the potential benefits Egoist may offer to applications.National Science Foundation (CISE/CSR 0720604, ENG/EFRI 0735974, CISE/CNS 0524477, CNS/NeTS 0520166, CNS/ITR 0205294; CISE/EIA RI 0202067; CAREER 04446522); European Commission (RIDS-011923

    The design and performance evaluation of a proactive multipath routing protocol for mobile ad hoc networks

    Get PDF
    Due to unpredictable network topology changes, routing in Mobile Ad Hoc Networks (MANET) is an important and challenging research area. The routing protocol should detect and maintain a good route(s) between source and destination nodes in these dynamic networks. Many routing protocols have been proposed for mobile ad hoc networks, and none can be considered as the best under all conditions. This thesis presents the design and implementation of a new proactive multipath MANET routing protocol. The protocol, named Multipath Destination Sequenced Distance Vector (MDSDV), is based on the well known single path Destination Sequenced Distance Vector (DSDV). We show that the protocol finds node-disjoint paths, i.e., paths which do not have any nodes in common, except for the source and the destination. The thesis presents a systematic evaluation of MDSDV in comparison with three well known protocols: one proactive (DSDV), and two reactive (AODV) and (DSR). MDSDV behaves very well in terms of its packet delivery fraction and data dropped in both static and dynamic networks. It delivers nearly 100% of data in dense networks (networks with more than 20 nodes). The speed of the nodes and the number of sources have a low impact on its performance

    End-to-End Resilience Mechanisms for Network Transport Protocols

    Get PDF
    The universal reliance on and hence the need for resilience in network communications has been well established. Current transport protocols are designed to provide fixed mechanisms for error remediation (if any), using techniques such as ARQ, and offer little or no adaptability to underlying network conditions, or to different sets of application requirements. The ubiquitous TCP transport protocol makes too many assumptions about underlying layers to provide resilient end-to-end service in all network scenarios, especially those which include significant heterogeneity. Additionally the properties of reliability, performability, availability, dependability, and survivability are not explicitly addressed in the design, so there is no support for resilience. This dissertation presents considerations which must be taken in designing new resilience mechanisms for future transport protocols to meet service requirements in the face of various attacks and challenges. The primary mechanisms addressed include diverse end-to-end paths, and multi-mode operation for changing network conditions

    Multipath Router Architectures to Reduce Latency in Network-on-Chips

    Get PDF
    The low latency is a prime concern for large Network-on-Chips (NoCs) typically used in chip-multiprocessors (CMPs) and multiprocessor system-on-chips (MPSoCs). A significant component of overall latency is the serialization delay for applications which have long packets such as typical video stream traffic. To address the serialization latency, we propose to exploit the inherent path diversity available in a typical 2-D Mesh with our two novel router architectures, Dual-path router and Dandelion router. We observe that, in a 2-D mesh, for any source-destination pair, there are two minimal paths along the edges of the bounding box. We call it XY Dimension Order Routing (DOR) and YX DOR. There are also two non-minimal paths which are non-coinciding and out of the bounding box created by XY and YX DOR paths. Dual-path Router implements two injection and two ejection ports for parallel packet injection through two minimal paths. Packets are split into two halves and injected simultaneously into the network. Dandelion router implements four injection and ejection ports for parallel packet injection. Packets are split into smaller sub-packets and are injected simultaneously in all possible directions which typically include two minimal paths and two non-minimal paths. When all the sub-packets reach the destination, they are eventually recombined. We find that our technique significantly increases the throughput and reduces the serialization latency and hence overall latency of long packets. We explore the impact of Dual-path and Dandelion on various packet lengths in order to prove the advantage of our routers over the baseline. We further implement different deadlock free disjoint path models for Dandelion and develop a switching mechanism between Dual-path and Dandelion based on the traffic congestion

    Dynamic routing balancing on InfiniBand network

    Get PDF
    InfiniBand (IBA) technology was developed to address the performance issues associated with messages movement among Endnodes and computer I/O devices. However, InfiniBand is also widely deployed within high performance computing (HPC) clusters due to the high bandwidth and low message latency attributes it offers to inter-processor communication systems. An interconnection-network efficient design is mandatory because its great impact on the parallel computer performance. Therefore, a high speed routing scheme that minimizes congestion and avoids hot-spot areas should be included in the network components. We have developed Dynamic Routing Balancing (DRB), an adaptive routing mechanism that balances the communication traffic over the interconnection network. It is based on limited and load-controlled multipath expansion in order to maintain low and bounded network latency. In this work, we propose using DRB as the congestion control mechanism for InfiniBand networks. Experimentation shows that our method achieves significant performance improvement over the original InfiniBand technique which is based on message throttling. An improvement up to 66% for latency and 35% for throughput is achieved for the networks under analysis. Finally, the proposed mechanism use the management model defined in InfiniBand specs, thus full compatibility is provided.Facultad de Informátic

    Traffic Engineering in Multiprotocol Label Switching networks

    Get PDF
    The goal of Traffic Engineering is to optimize the resource utilization and increase the network performance. Constraint-based routing has been proposed as an networks effective approach to implement traffic engineering in Multiprotocol Label Switching. In this thesis, we review several algorithms on constraint-based routing from the literature and point out their advantages and disadvantages. We then propose several algorithms to overcome some of the shortcomings of these approaches. Our algorithms are specifically suitable for large densely connected networks supporting both Quality of Service traffic and the Best Effort traffic. In large networks the size of the MPLS label space in a node may become extremely large. Our algorithms allow for control on the size of the label space for each node in the network. In addition, explicit routes can be accommodated supporting both node and link affinity. We address an algorithm that implements the node and link affinity correctly. If the QoS traffic has stringent delay requirements, a path length limit can be imposed so that the number of hops on the path for such traffic is limited. Finally, we propose the 1 + 1 and 1 : 1 path protection mechanisms using the constraint-based routing in MPLS and establish backup for the working path carrying the primary traffic. Our approach appropriately overcome the problems and the result are satisfying

    Routing protocol optimization in challenged multihop wireless networks

    Get PDF
    Durant ces dernières années, de nombreux travaux de recherches ont été menés dans le domaine des réseaux multi-sauts sans fil à contraintes (MWNs: Multihop Wireless Networks). Grâce à l'évolution de la technologie des systèmes mico-electro-méchaniques (MEMS) et, depuis peu, les nanotechnologies, les MWNs sont une solution de choix pour une variété de problèmes. Le principal avantage de ces réseaux est leur faible coût de production qui permet de développer des applications ayant un unique cycle de vie. Cependant, si le coût de fabrication des nœuds constituant ce type de réseaux est assez faible, ces nœuds sont aussi limités en capacité en termes de: rayon de transmission radio, bande passante, puissance de calcul, mémoire, énergie, etc. Ainsi, les applications qui visent l'utilisation des MWNs doivent être conçues avec une grande précaution, et plus spécialement la conception de la fonction de routage, vu que les communications radio constituent la tâche la plus consommatrice d'énergie.Le but de cette thèse est d'analyser les différents défis et contraintes qui régissent la conception d'applications utilisant les MWNs. Ces contraintes se répartissent tout le long de la pile protocolaire. On trouve au niveau application des contraintes comme: la qualité de service, la tolérance aux pannes, le modèle de livraison de données au niveau application, etc. Au niveau réseau, on peut citer les problèmes de la dynamicité de la topologie réseau, la présence de trous, la mobilité, etc. Nos contributions dans cette thèse sont centrées sur l'optimisation de la fonction de routage en considérant les besoins de l'application et les contraintes du réseau. Premièrement, nous avons proposé un protocole de routage multi-chemin "en ligne" pour les applications orientées QoS utilisant des réseaux de capteurs multimédia. Ce protocole repose sur la construction de multiples chemins durant la transmission des paquets vers leur destination, c'est-à-dire sans découverte et construction des routes préalables. En permettant des transmissions parallèles, ce protocole améliore la transmission de bout-en-bout en maximisant la bande passante du chemin agrégé et en minimisant les délais. Ainsi, il permet de répondre aux exigences des applications orientées QoS.Deuxièmement, nous avons traité le problème du routage dans les réseaux mobiles tolérants aux délais. Nous avons commencé par étudier la connectivité intermittente entre les différents et nous avons extrait un modèle pour les contacts dans le but pouvoir prédire les future contacts entre les nœuds. En se basant sur ce modèle, nous avons proposé un protocole de routage, qui met à profit la position géographique des nœuds, leurs trajectoires, et la prédiction des futurs contacts dans le but d'améliorer les décisions de routage. Le protocole proposé permet la réduction des délais de bout-en-bout tout en utilisant d'une manière efficace les ressources limitées des nœuds que ce soit en termes de mémoire (pour le stockage des messages dans les files d'attentes) ou la puissance de calcul (pour l'exécution de l'algorithme de prédiction).Finalement, nous avons proposé un mécanisme de contrôle de la topologie avec un algorithme de routage des paquets pour les applications orientés évènement et qui utilisent des réseaux de capteurs sans fil statiques. Le contrôle de la topologie est réalisé à travers l'utilisation d'un algorithme distribué pour l'ordonnancement du cycle de service (sleep/awake). Les paramètres de l'algorithme proposé peuvent être réglés et ajustés en fonction de la taille du voisinage actif désiré (le nombre moyen de voisin actifs pour chaque nœud). Le mécanisme proposé assure un compromis entre le délai pour la notification d'un événement et la consommation d'énergie globale dans le réseau.Great research efforts have been carried out in the field of challenged multihop wireless networks (MWNs). Thanks to the evolution of the Micro-Electro-Mechanical Systems (MEMS) technology and nanotechnologies, multihop wireless networks have been the solution of choice for a plethora of problems. The main advantage of these networks is their low manufacturing cost that permits one-time application lifecycle. However, if nodes are low-costly to produce, they are also less capable in terms of radio range, bandwidth, processing power, memory, energy, etc. Thus, applications need to be carefully designed and especially the routing task because radio communication is the most energy-consuming functionality and energy is the main issue for challenged multihop wireless networks.The aim of this thesis is to analyse the different challenges that govern the design of challenged multihop wireless networks such as applications challenges in terms of quality of service (QoS), fault-tolerance, data delivery model, etc., but also networking challenges in terms of dynamic network topology, topology voids, etc. Our contributions in this thesis focus on the optimization of routing under different application requirements and network constraints. First, we propose an online multipath routing protocol for QoS-based applications using wireless multimedia sensor networks. The proposed protocol relies on the construction of multiple paths while transmitting data packets to their destination, i.e. without prior topology discovery and path establishment. This protocol achieves parallel transmissions and enhances the end-to-end transmission by maximizing path bandwidth and minimizing the delays, and thus meets the requirements of QoS-based applications. Second, we tackle the problem of routing in mobile delay-tolerant networks by studying the intermittent connectivity of nodes and deriving a contact model in order to forecast future nodes' contacts. Based upon this contact model, we propose a routing protocol that makes use of nodes' locations, nodes' trajectories, and inter-node contact prediction in order to perform forwarding decisions. The proposed routing protocol achieves low end-to-end delays while using efficiently constrained nodes' resources in terms of memory (packet queue occupancy) and processing power (forecasting algorithm). Finally, we present a topology control mechanism along a packet forwarding algorithm for event-driven applications using stationary wireless sensor networks. Topology control is achieved by using a distributed duty-cycle scheduling algorithm. Algorithm parameters can be tuned according to the desired node's awake neighbourhood size. The proposed topology control mechanism ensures trade-off between event-reporting delay and energy consumption.BORDEAUX1-Bib.electronique (335229901) / SudocSudocFranceF
    • …
    corecore